JP6589248B2 - Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same - Google Patents

Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same Download PDF

Info

Publication number
JP6589248B2
JP6589248B2 JP2018111857A JP2018111857A JP6589248B2 JP 6589248 B2 JP6589248 B2 JP 6589248B2 JP 2018111857 A JP2018111857 A JP 2018111857A JP 2018111857 A JP2018111857 A JP 2018111857A JP 6589248 B2 JP6589248 B2 JP 6589248B2
Authority
JP
Japan
Prior art keywords
group
polyorganosiloxane
polycarbonate
molecular weight
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018111857A
Other languages
Japanese (ja)
Other versions
JP2018135540A (en
Inventor
石川 康弘
康弘 石川
智子 阿部
智子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2018111857A priority Critical patent/JP6589248B2/en
Publication of JP2018135540A publication Critical patent/JP2018135540A/en
Application granted granted Critical
Publication of JP6589248B2 publication Critical patent/JP6589248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリオルガノシロキサン、透明性と低温耐衝撃性を損なうことなく、黄色味の少ないポリカーボネート成形体を得ることができるポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法に関する。   The present invention relates to a polyorganosiloxane, a polycarbonate-polyorganosiloxane copolymer capable of obtaining a polycarbonate molded product with less yellowness without impairing transparency and low-temperature impact resistance, and a method for producing the same.

ポリカーボネート−ポリオルガノシロキサン共重合体(以下、「PC−POS」と略記することがある)は、その高い耐衝撃性、耐薬品性、及び難燃性等の優れた性質のため、電気・電子機器分野、自動車分野等の様々な分野において幅広く利用が期待されている。特に、携帯電話、スマートフォン、モバイルパソコン、タブレット、携帯用端末等の筐体、照明カバー、建材、デジタルカメラ、ビデオカメラ等の視認性を要する電子機器筐体、及び警察盾、ヘルメットバイザー、スポーツ用保護具等のその他の日用品への利用が広がっている。これらは室温等の通常の条件下に加えて、寒冷地等の低温下や屋外で使用されることが想定される。
通常、代表的なポリカーボネートとしては、原料の二価フェノールとして、2,2−ビス(4−ヒドロキシフェニル)プロパン[通称:ビスフェノールA]を用いたホモポリカーボネートが一般的に使用されている。このホモポリカーボネートの難燃性や耐衝撃性等の物性を改良するために、ポリオルガノシロキサンを共重合モノマーとして用いたポリカーボネート−ポリオルガノシロキサン共重合体が知られている。ポリカーボネート−ポリオルガノシロキサン共重合体は、ビスフェノールA等のホモポリカーボネートと比較して、難燃性や耐衝撃性に優れることが知られている(特許文献1)。
特許文献2には、透明性が改善されたポリカーボネート−ポリオルガノシロキサン共重合体が開示されていて、全光線透過率やヘイズ値等の評価を行っている。
特許文献3には、色調が改善されたポリカーボネート−ポリオルガノシロキサン共重合体が開示されている。特許文献3においては、ポリカーボネート−ポリオルガノシロキサン共重合体中の特定成分の含有量を低減させることにより、優れた熱安定性と共に、射出成形時の滞留時間による色調の差が小さいことを教示している。
Polycarbonate-polyorganosiloxane copolymer (hereinafter sometimes abbreviated as “PC-POS”) has excellent properties such as high impact resistance, chemical resistance, and flame retardancy. It is expected to be widely used in various fields such as equipment field and automobile field. Especially for mobile phones, smartphones, mobile PCs, tablets, portable terminals, etc., lighting covers, building materials, digital cameras, video cameras, etc. that require visibility, police shields, helmet visors, sports Use for other daily necessities such as protective equipment is spreading. In addition to normal conditions, such as room temperature, these are assumed to be used under low temperature, such as a cold region, or outdoors.
Usually, as a typical polycarbonate, a homopolycarbonate using 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is generally used as a dihydric phenol as a raw material. In order to improve the physical properties of this homopolycarbonate such as flame retardancy and impact resistance, a polycarbonate-polyorganosiloxane copolymer using polyorganosiloxane as a copolymerization monomer is known. It is known that a polycarbonate-polyorganosiloxane copolymer is superior in flame retardancy and impact resistance as compared to a homopolycarbonate such as bisphenol A (Patent Document 1).
Patent Document 2 discloses a polycarbonate-polyorganosiloxane copolymer with improved transparency, and evaluates the total light transmittance, haze value, and the like.
Patent Document 3 discloses a polycarbonate-polyorganosiloxane copolymer with improved color tone. Patent Document 3 teaches that by reducing the content of a specific component in a polycarbonate-polyorganosiloxane copolymer, the difference in color tone due to residence time at the time of injection molding is small as well as excellent thermal stability. ing.

特開2012−246430号公報JP 2012-246430 A 特開2011−46911号公報JP 2011-46911 A 特表2011−122048号公報Special table 2011-122048 gazette

しかしながら、上記特許文献等においては、ポリカーボネート−ポリオルガノシロキサン共重合体自体の黄色味についての言及はされていない。透明性に優れていても、ポリカーボネート−ポリオルガノシロキサン共重合体自体の黄色味が低減されていないと、例えば照明カバーや良好な視認性を要求される計器パネル、ヘルメットバイザー、警察盾などへの用途において問題となる。
本発明は、機械特性を低下させることなく、透明性に優れ且つ黄色味の少ないポリカーボネート−ポリオルガノシロキサン共重合体を提供することを目的とする。
However, in the above patent documents and the like, there is no mention of the yellowish color of the polycarbonate-polyorganosiloxane copolymer itself. Even if it is excellent in transparency, if the yellowness of the polycarbonate-polyorganosiloxane copolymer itself has not been reduced, for example, lighting covers, instrument panels that require good visibility, helmet visors, police shields, etc. It becomes a problem in use.
An object of the present invention is to provide a polycarbonate-polyorganosiloxane copolymer having excellent transparency and low yellowness without deteriorating mechanical properties.

本発明者等は、ポリカーボネート−ポリオルガノシロキサン共重合体に用いるポリオルガノシロキサンの分子量分布を制御することにより、上記課題が達成されることを見出した。
すなわち本発明は、下記1〜11に関する。
1.ポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%である、ポリオルガノシロキサン。
2.前記微分分子量分布曲線において、dw/dlog(M)の値が、3.3≦log(M)≦3.9の範囲で最大となる、1に記載のポリオルガノシロキサン。
3.平均鎖長が20〜50である、1または2に記載のポリオルガノシロキサン。
4.前記ポリオルガノシロキサンが下記一般式(1)又は(2)で表されるポリオルガノシロキサンである、1〜3のいずれかに記載のポリオルガノシロキサン。

[式中、R1〜R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を示す。Yは、−R5O−、−R5COO−、−R5NH−、−R5NHR6−、−COO−、−S−、−R5COO−R7−O−、または−R5O−R8−O−を示し、前記R5は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、アリーレン基、またはジアリーレン基を示す。R6は、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。R7は、ジアリーレン基を示す。R8は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは20〜50の平均繰り返し数を示す。]
5.1〜4のいずれかに記載のポリオルガノシロキサンを原料として用いる、ポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。
6.下記一般式(I)で表される繰り返し単位からなるポリカーボネートブロック(A)及び下記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(B)を含むポリカーボネート−ポリオルガノシロキサン共重合体であって、
前記ポリオルガノシロキサンブロック(B)のポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%である、ポリカーボネート−ポリオルガノシロキサン共重合体。

[式中、R9及びR10は、それぞれ独立に、ハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Xは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO2−、−O−又は−CO−を示す。a及びbは、それぞれ独立に、0〜4の整数を示す。
1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を示す。20〜50の平均繰り返し数nは、ポリオルガノシロキサンブロック中のシロキサン繰り返し単位の合計数を示す。]
7.前記ポリオルガノシロキサンブロック(B)の微分分子量分布曲線において、dw/dlog(M)の値が、3.3≦log(M)≦3.9の範囲で最大となる、6に記載のポリカーボネート−ポリオルガノシロキサン共重合体。
8.前記ポリオルガノシロキサンブロック(B)の平均鎖長が20〜50である、6または7に記載のポリカーボネート−ポリオルガノシロキサン共重合体。
9.前記ポリカーボネート−ポリオルガノシロキサン共重合体中におけるポリオルガノシロキサンブロック(B)の含有量が0.5〜20質量%である、6〜8のいずれかに記載のポリカーボネート−ポリオルガノシロキサン共重合体。
10.粘度平均分子量が12,000〜40,000である、6〜9のいずれかに記載のポリカーボネート−ポリオルガノシロキサン共重合体。
11.6〜10のいずれかに記載のポリカーボネート−ポリオルガノシロキサン共重合体を成形してなる成形体。
The present inventors have found that the above-mentioned problems can be achieved by controlling the molecular weight distribution of the polyorganosiloxane used in the polycarbonate-polyorganosiloxane copolymer.
That is, this invention relates to the following 1-11.
1. Obtained from measurement by gel permeation chromatography using polystyrene as a conversion standard, the horizontal axis is a logarithmic value log (M) of molecular weight M, and the vertical axis is a derivative of concentration fraction w by logarithmic value log (M) of molecular weight. In the differential molecular weight distribution curve of dw / dlog (M), the integrated value of dw / dlog (M) in the range of 2.5 ≦ log (M) ≦ 3.1 is the entire range of log (M) The polyorganosiloxane is 0 to 10% based on the integrated value of dw / dlog (M).
2. 2. The polyorganosiloxane according to 1, wherein in the differential molecular weight distribution curve, the value of dw / dlog (M) is maximum within a range of 3.3 ≦ log (M) ≦ 3.9.
3. The polyorganosiloxane according to 1 or 2, having an average chain length of 20 to 50.
4). The polyorganosiloxane according to any one of 1 to 3, wherein the polyorganosiloxane is a polyorganosiloxane represented by the following general formula (1) or (2).

[Wherein, R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is, -R 5 O -, - R 5 COO -, - R 5 NH -, - R 5 NHR 6 -, - COO -, - S -, - R 5 COO-R 7 -O-, or -R 5 O—R 8 —O—, wherein R 5 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, an arylene group, or a diarylene group. R 6 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 7 represents a diarylene group. R 8 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n indicates an average number of repetitions of 20-50. ]
A process for producing a polycarbonate-polyorganosiloxane copolymer using the polyorganosiloxane according to any one of 5.1 to 4 as a raw material.
6). Polycarbonate-polyorganosiloxane copolymer comprising a polycarbonate block (A) comprising a repeating unit represented by the following general formula (I) and a polyorganosiloxane block (B) comprising a repeating unit represented by the following general formula (II) Coalesce,
The horizontal axis is the logarithmic value log (M) of the molecular weight M, and the vertical axis is the concentration fraction w obtained from the measurement by gel permeation chromatography using the polystyrene of the polyorganosiloxane block (B) as a conversion standard. In the differential molecular weight distribution curve which is dw / dlog (M) differentiated by the logarithmic value log (M), the value obtained by integrating the dw / dlog (M) value in the range of 2.5 ≦ log (M) ≦ 3.1 Is a polycarbonate-polyorganosiloxane copolymer in which dw / dlog (M) value is 0 to 10% over the entire range of log (M).

[In formula, R < 9 > and R < 10 > shows a halogen atom, a C1-C6 alkyl group, or a C1-C6 alkoxy group each independently. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon An arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—; a and b each independently represent an integer of 0 to 4.
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The average repeating number n of 20 to 50 indicates the total number of siloxane repeating units in the polyorganosiloxane block. ]
7). The polycarbonate according to 6, wherein in the differential molecular weight distribution curve of the polyorganosiloxane block (B), the value of dw / dlog (M) is maximum in the range of 3.3 ≦ log (M) ≦ 3.9. Polyorganosiloxane copolymer.
8). The polycarbonate-polyorganosiloxane copolymer according to 6 or 7, wherein the polyorganosiloxane block (B) has an average chain length of 20 to 50.
9. The polycarbonate-polyorganosiloxane copolymer according to any one of 6 to 8, wherein the content of the polyorganosiloxane block (B) in the polycarbonate-polyorganosiloxane copolymer is 0.5 to 20% by mass.
10. The polycarbonate-polyorganosiloxane copolymer according to any one of 6 to 9, which has a viscosity average molecular weight of 12,000 to 40,000.
A molded article formed by molding the polycarbonate-polyorganosiloxane copolymer according to any one of 11.6 to 10.

本発明によれば、ポリオルガノシロキサンの分子量分布を制御し、鎖長分布を制御することにより、機械的強度を低下させることなく、透明性に優れ且つ黄色味の少ないポリカーボネート−ポリオルガノシロキサン共重合体を得ることが出来る。   According to the present invention, by controlling the molecular weight distribution of the polyorganosiloxane and controlling the chain length distribution, the polycarbonate-polyorganosiloxane copolymer having excellent transparency and low yellowness is obtained without reducing the mechanical strength. Combines can be obtained.

実施例1及び比較例1のポリオルガノシロキサンの微分分子量分布曲線を示すグラフ。The graph which shows the differential molecular weight distribution curve of the polyorganosiloxane of Example 1 and Comparative Example 1.

本発明のポリオルガノシロキサンは、ポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%であることを特徴とする。   The polyorganosiloxane of the present invention is obtained by measurement by gel permeation chromatography using polystyrene as a conversion standard, the horizontal axis is a logarithmic value log (M) of molecular weight M, and the vertical axis is concentration fraction w of molecular weight. In the differential molecular weight distribution curve which is dw / dlog (M) differentiated by logarithmic value log (M), the value obtained by integrating dw / dlog (M) value in the range of 2.5 ≦ log (M) ≦ 3.1 is , Log (M) is 0 to 10% of the integrated value of dw / dlog (M) value in the entire range.

本発明においては、上記微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%であり、好ましくは0〜9%である。上記割合が10%を超えると、ポリオルガノシロキサンとポリカーボネートとの共重合体の黄色味が増加する傾向にある。ここで、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値の、log(M)の全範囲でdw/dlog(M)値を積分した値に対する割合とは、ポリオルガノシロキサンの分子量分布において、log(M)が2.5〜3.1である成分がポリオルガノシロキサン全体に対して存在する割合を示すものである。   In the present invention, in the differential molecular weight distribution curve, a value obtained by integrating dw / dlog (M) values in the range of 2.5 ≦ log (M) ≦ 3.1 is dw / M in the entire range of log (M). It is 0-10% with respect to the value which integrated dlog (M) value, Preferably it is 0-9%. When the said ratio exceeds 10%, it exists in the tendency for the yellowishness of the copolymer of polyorganosiloxane and a polycarbonate to increase. Here, the value obtained by integrating the dw / dlog (M) value in the range of 2.5 ≦ log (M) ≦ 3.1, and the value obtained by integrating the dw / dlog (M) value in the entire range of log (M). The ratio with respect to the molecular weight distribution of polyorganosiloxane indicates the ratio at which a component having a log (M) of 2.5 to 3.1 is present relative to the whole polyorganosiloxane.

ポリオルガノシロキサンの分子量/分子量分布測定値を得るためのGPC装置には特に制限はなく、一般に市販されている高温型GPC装置、例えば、東ソー株式会社製,示差屈折計(RI)内蔵型高温GPC測定機,「HLC−8200」を利用することが可能である。具体的には、GPCカラムとして、東ソー株式会社製、「TSK−GEL G4000HXL」と「TSK−GEL G2000HXL」とを連結させたものを用いる。カラム温度は40℃に設定し、溶離液にはテトラヒドロフラン(THF)を用い、流速1.0ml/分にて測定する。検量線の作製には、東ソー株式会社製の標準ポリスチレンを用いる。このようにして得られる分子量の対数値を、対数分子量(log(M))と称する。   The GPC apparatus for obtaining the molecular weight / molecular weight distribution measurement value of polyorganosiloxane is not particularly limited, and is generally a commercially available high-temperature GPC apparatus such as a high-temperature GPC with a built-in differential refractometer (RI) manufactured by Tosoh Corporation. It is possible to use a measuring instrument “HLC-8200”. Specifically, as a GPC column, a column obtained by connecting “TSK-GEL G4000HXL” and “TSK-GEL G2000HXL” manufactured by Tosoh Corporation is used. The column temperature is set to 40 ° C., tetrahydrofuran (THF) is used as the eluent, and measurement is performed at a flow rate of 1.0 ml / min. Standard polystyrene made by Tosoh Corporation is used for preparing the calibration curve. The logarithmic value of the molecular weight thus obtained is referred to as logarithmic molecular weight (log (M)).

GPC装置の示差屈折(RI)検出計において検出される強度分布の時間曲線(一般に、溶出曲線と呼ぶ)を、分子量既知の物質から得た較正曲線を用いて溶出時間を分子量に換算する。ここで、RI検出強度は成分濃度とは比例関係にあるので、溶出曲線の全面積を100%としたときの強度面積を求め、それぞれの溶出時間の濃度分率を求める。濃度分率を順次積算し、横軸に分子量の対数値(log(M))、縦軸に濃度分率(w)の積算値をプロットすることにより積分分子量分布曲線を得ることができる。
続いて、各分子量の対数値における曲線の微分値(すなわち、積分分子量曲線の傾き)を求め、横軸に分子量の対数値(log(M))、縦軸に上記微分値(dw/dlog(M))をプロットして微分分子量分布曲線を得ることができる。従って、微分分子量分布とは、濃度分率(w)を分子量の対数値(log(M))で微分した値、すなわち「dw/dlog(M)」を意味する。この微分分子量分布曲線から、特定のlog(M)における微分分子量分布dw/dlog(M)を読み取ることができる。なお、複数のポリオルガノシロキサンを配合したポリオルガノシロキサン配合物についても、ポリオルガノシロキサン配合物をGPC法により測定した後、同じ手法により微分分子量分布曲線を得ることができる。
A time curve (generally referred to as an elution curve) of an intensity distribution detected by a differential refraction (RI) detector of a GPC apparatus is converted into a molecular weight using a calibration curve obtained from a substance having a known molecular weight. Here, since the RI detection intensity is proportional to the component concentration, the intensity area when the total area of the elution curve is 100% is obtained, and the concentration fraction of each elution time is obtained. The integrated molecular weight distribution curve can be obtained by sequentially integrating the concentration fractions and plotting the logarithmic value of the molecular weight (log (M)) on the horizontal axis and the integrated value of the concentration fraction (w) on the vertical axis.
Subsequently, the differential value of the curve in the logarithmic value of each molecular weight (that is, the slope of the integral molecular weight curve) is obtained, the logarithmic value of the molecular weight (log (M)) is plotted on the horizontal axis, and the differential value (dw / dlog ( M)) can be plotted to obtain a differential molecular weight distribution curve. Therefore, the differential molecular weight distribution means a value obtained by differentiating the concentration fraction (w) by the logarithmic value of the molecular weight (log (M)), that is, “dw / dlog (M)”. From this differential molecular weight distribution curve, the differential molecular weight distribution dw / dlog (M) at a specific log (M) can be read. In addition, also about the polyorganosiloxane compound which mix | blended several polyorganosiloxane, after measuring a polyorganosiloxane compound by GPC method, a differential molecular weight distribution curve can be obtained with the same method.

本発明の他の態様において、ポリオルガノシロキサンは、上記dw/dlog(M)の値が3.3≦log(M)≦3.9の範囲で最大値をとり得る。微分分子量分布dw/dlog(M)の最大値とは、微分分子量分布曲線におけるピークトップを指す。微分分子量分布曲線においてdw/dlog(M)の値が最大値をとるときのlog(M)が3.3未満であると、ポリオルガノシロキサンとポリカーボネートとの共重合体の低温耐衝撃性に劣る結果となり、3.9を超えると上記共重合体の透明性が低下する傾向にある。   In another embodiment of the present invention, the polyorganosiloxane may have a maximum value when the value of dw / dlog (M) is 3.3 ≦ log (M) ≦ 3.9. The maximum value of the differential molecular weight distribution dw / dlog (M) refers to the peak top in the differential molecular weight distribution curve. If the log (M) when the value of dw / dlog (M) takes the maximum value in the differential molecular weight distribution curve is less than 3.3, the low-temperature impact resistance of the copolymer of polyorganosiloxane and polycarbonate is inferior. As a result, when it exceeds 3.9, the transparency of the copolymer tends to decrease.

ポリオルガノシロキサンの平均鎖長は、好ましくは20〜50、より好ましくは30〜45、さらに好ましくは35〜45である。該平均鎖長は核磁気共鳴(NMR)測定により算出される。平均鎖長が20以上であればポリオルガノシロキサンとポリカーボネートとの共重合体の低温における耐衝撃性が十分に得られる。また、平均鎖長が50以下であれば、ポリオルガノシロキサンとポリカーボネートとの共重合体は透明性に優れる。   The average chain length of the polyorganosiloxane is preferably 20 to 50, more preferably 30 to 45, and still more preferably 35 to 45. The average chain length is calculated by nuclear magnetic resonance (NMR) measurement. If the average chain length is 20 or more, the impact resistance at low temperature of the copolymer of polyorganosiloxane and polycarbonate can be sufficiently obtained. If the average chain length is 50 or less, the copolymer of polyorganosiloxane and polycarbonate is excellent in transparency.

上記特徴を有するポリオルガノシロキサンとしては、例えば、以下の一般式(1)及び(2)に示すものを挙げることができる。   As polyorganosiloxane which has the said characteristic, what is shown to the following general formula (1) and (2) can be mentioned, for example.


[式中、R1〜R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を示す。Yは、−R5O−、−R5COO−、−R5NH−、−R5NHR6−、−COO−、−S−、−R5COO−R7−O−、または−R5O−R8−O−を示す。前記R5は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、アリーレン基、またはジアリーレン基を示す。R6は、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。R7は、ジアリーレン基を示す。R8は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは20〜50の平均繰り返し数を示す。]

[Wherein, R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is, -R 5 O -, - R 5 COO -, - R 5 NH -, - R 5 NHR 6 -, - COO -, - S -, - R 5 COO-R 7 -O-, or -R 5 O—R 8 —O— is shown. R 5 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, an arylene group, or a diarylene group. R 6 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 7 represents a diarylene group. R 8 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n indicates an average number of repetitions of 20-50. ]

1〜R4がそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R1〜R4がそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、及び各種ヘキシル基が挙げられる。R1〜R4がそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R1〜R4がそれぞれ独立して示すアリール基としては、フェニル基、ナフチル基等が挙げられる。
1〜R4としては、いずれも、好ましくは、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基である。
一般式(1)及び(2)で表されるポリオルガノシロキサンとしては、R1〜R4がいずれもメチル基であるものが好ましい。
Examples of the halogen atom independently represented by R 1 to R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group independently represented by R 1 to R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” means linear and all branched chains. And the same applies hereinafter), various pentyl groups, and various hexyl groups. As an alkoxy group which R < 1 > -R < 4 > shows each independently, the case where an alkyl group site | part is the said alkyl group is mentioned. Examples of the aryl group independently represented by R 1 to R 4 include a phenyl group and a naphthyl group.
R 1 to R 4 are each preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
As the polyorganosiloxane represented by the general formulas (1) and (2), those in which R 1 to R 4 are all methyl groups are preferable.

Yが示す、−R5O−、−R5COO−、−R5NH−、−R5NHR6−、−R5COO−R7−O−、または−R5O−R8−O−におけるR5が表す直鎖又は分岐鎖アルキレン基としては、炭素数1〜8、好ましくは炭素数1〜5のアルキレン基が挙げられ、環状アルキレン基としては、炭素数5〜15、好ましくは炭素数5〜10のシクロアルキレン基が挙げられる。 Y indicated, -R 5 O -, - R 5 COO -, - R 5 NH -, - R 5 NHR 6 -, - R 5 COO-R 7 -O-, or -R 5 O-R 8 -O Examples of the linear or branched alkylene group represented by R 5 in — include alkylene groups having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and cyclic alkylene groups having 5 to 15 carbon atoms, preferably A C5-C10 cycloalkylene group is mentioned.

5が表すアリール置換アルキレン基としては、芳香環にアルコキシ基、アルキル基のような置換基を有していてもよく、その具体的構造としては、例えば、下記の一般式(3)または(4)の構造を示すことができる。なお、アリール置換アルキレン基を有する場合、アルキレン基がSiに結合している。 The aryl-substituted alkylene group represented by R 5 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring. Specific examples of the structure include, for example, the following general formula (3) or ( The structure of 4) can be shown. In addition, when it has an aryl substituted alkylene group, the alkylene group is couple | bonded with Si.


(cは正の整数を示し、通常1〜6の整数である)

(C represents a positive integer and is usually an integer of 1 to 6)

5、R7及びR8が示すジアリーレン基とは、二つのアリーレン基が直接、又は二価の有機基を介して連結された基のことであり、具体的には−Ar1−W−Ar2−で表わされる構造を有する基である。ここで、Ar1及びAr2は、アリーレン基を示し、Wは単結合、又は炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO2−、−O−若しくは−CO−を示す。
Wが表すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1〜5のアルキレン基が好ましい。Wが表すアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Wが表すシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5〜10のシクロアルキレン基が好ましい。Wが表すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5−トリメチルシクロヘキシリデン基、2−アダマンチリデン基等が挙げられ、炭素数5〜10のシクロアルキリデン基が好ましく、炭素数5〜8のシクロアルキリデン基がより好ましい。Wが表すアリールアルキレン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6〜14のアリール基が挙げられる。Wが表すアリールアルキリデン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6〜14のアリール基が挙げられる。
5、Ar1及びAr2が表すアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントリレン基などの環形成炭素数6〜14のアリーレン基が挙げられる。これらアリーレン基は、アルコキシ基、アルキル基等の任意の置換基を有していてもよい。
The diarylene group represented by R 5 , R 7 and R 8 is a group in which two arylene groups are linked directly or via a divalent organic group. Specifically, —Ar 1 —W— It is a group having a structure represented by Ar 2 —. Here, Ar < 1 > and Ar < 2 > show an arylene group, W is a single bond or a C1-C8 alkylene group, a C2-C8 alkylidene group, a C5-C15 cycloalkylene group, carbon number 5-15 cycloalkylidene group, fluorenediyl group, an arylalkylene group having 7 to 15 carbon atoms, aryl alkylidene group having 7 to 15 carbon atoms, -S -, - SO -, - SO 2 -, - O- Or -CO- is shown.
Examples of the alkylene group represented by W include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 5 carbon atoms is preferable. Examples of the alkylidene group represented by W include an ethylidene group and an isopropylidene group. Examples of the cycloalkylene group represented by W include a cyclopentanediyl group, a cyclohexanediyl group, and a cyclooctanediyl group, and a cycloalkylene group having 5 to 10 carbon atoms is preferable. Examples of the cycloalkylidene group represented by W include a cyclohexylidene group, 3,5,5-trimethylcyclohexylidene group, 2-adamantylidene group and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferable. A cycloalkylidene group having 5 to 8 carbon atoms is more preferable. Examples of the aryl moiety of the arylalkylene group represented by W include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group. Examples of the aryl moiety of the arylalkylidene group represented by W include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group.
Examples of the arylene group represented by R 5 , Ar 1, and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as a phenylene group, a naphthylene group, a biphenylene group, and an anthrylene group. These arylene groups may have an arbitrary substituent such as an alkoxy group or an alkyl group.

6が示すアルキル基としては炭素数1〜8、好ましくは1〜5の直鎖または分岐鎖のものである。アルケニル基としては、炭素数2〜8、好ましくは2〜5の直鎖または分岐鎖のものが挙げられる。アリール基としてはフェニル基、ナフチル基等が挙げられる。アラルキル基としては、フェニルメチル基、フェニルエチル基等が挙げられる。
8が示す直鎖、分岐鎖もしくは環状アルキレン基は、R5と同様である。
Yとしては、好ましくは−R5O−であって、R5が、アリール置換アルキレン基であって、特にアルキル基を有するフェノール化合物の残基であり、アリルフェノール由来の有機残基やオイゲノール由来の有機残基がより好ましい。この際、Zが水素原子であることが好ましい。
なお、一般式(2)中のp及びqについては、p=q、すなわち、p=n/2、q=n/2であることが好ましい。
また、βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示し、例えば、以下の一般式(5−1)〜(5−5)で表される2価の基が挙げられる。
The alkyl group represented by R 6 is linear or branched having 1 to 8, preferably 1 to 5 carbon atoms. Examples of the alkenyl group include straight chain or branched chain groups having 2 to 8 carbon atoms, preferably 2 to 5 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the aralkyl group include a phenylmethyl group and a phenylethyl group.
Linear chain R 8 represents, branched or cyclic alkylene group are the same as R 5.
Y is preferably —R 5 O—, and R 5 is an aryl-substituted alkylene group, particularly a residue of a phenol compound having an alkyl group, and is derived from an organic residue derived from allylphenol or eugenol. The organic residue is more preferable. At this time, it is preferable that Z is a hydrogen atom.
In addition, about p and q in General formula (2), it is preferable that it is p = q, ie, p = n / 2, q = n / 2.
Β represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid. For example, in the following general formulas (5-1) to (5-5) And a divalent group represented.

一般式(1)で表されるポリオルガノシロキサンとしては、例えば、以下の一般式(1−1)〜(1−11)の化合物が挙げられる。   Examples of the polyorganosiloxane represented by the general formula (1) include compounds represented by the following general formulas (1-1) to (1-11).

上記一般式(1−1)〜(1−11)中、R1〜R4、n及びR6は上記の定義の通りであり、好ましいものも同じである。cは正の整数を示し、通常1〜6の整数である。
これらの中でも、重合の容易さの観点においては、上記一般式(1−1)で表されるフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、上記一般式(1−2)で表される化合物中の一種であるα,ω−ビス[3−(o−ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、上記一般式(1−3)で表される化合物中の一種であるα,ω−ビス[3−(4−ヒドロキシ−3−メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
In the general formulas (1-1) to (1-11), R 1 to R 4 , n and R 6 are as defined above, and preferred ones are also the same. c shows a positive integer and is an integer of 1-6 normally.
Among these, the phenol-modified polyorganosiloxane represented by the general formula (1-1) is preferable from the viewpoint of ease of polymerization. In terms of availability, α, ω-bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane, which is one of the compounds represented by the general formula (1-2), Α, ω-bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (1-3) is preferable.

本発明に用いられる粗ポリオルガノシロキサンの製造方法は特に限定されない。例えば、特開平11−217390号公報に記載の方法によれば、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させて、α,ω−ジハイドロジェンオルガノペンタシロキサンを合成し、次いで、ヒドロシリル化反応用触媒の存在下に、該α,ω−ジハイドロジェンオルガノペンタシロキサンに不飽和基を有するフェノール化合物(例えば2−アリルフェノール、4−アリルフェノール、オイゲノール、2−プロペニルフェノール等)等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。また、特許第2662310号公報に記載の方法によれば、オクタメチルシクロテトラシロキサンとテトラメチルジシロキサンとを硫酸(酸性触媒)の存在化で反応させ、得られたα,ω−ジハイドロジェンオルガノポリシロキサンを上記と同様に、ヒドロシリル化反応用触媒の存在下に不飽和基を有するフェノール化合物等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。なお、α,ω−ジハイドロジェンオルガノポリシロキサンは、その重合条件によりその鎖長nを適宜調整して用いることもできるし、市販のα,ω−ジハイドロジェンオルガノポリシロキサンを用いてもよい。   The method for producing the crude polyorganosiloxane used in the present invention is not particularly limited. For example, according to the method described in JP-A-11-217390, cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize α, ω-dihydrogenorganopentasiloxane, Phenol compounds having an unsaturated group in the α, ω-dihydrogenorganopentasiloxane in the presence of a hydrosilylation catalyst (for example, 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.), etc. A crude polyorganosiloxane can be obtained by addition reaction. Further, according to the method described in Japanese Patent No. 2662310, octamethylcyclotetrasiloxane and tetramethyldisiloxane are reacted in the presence of sulfuric acid (acidic catalyst), and the obtained α, ω-dihydrogenorgano is obtained. Similarly to the above, a crude polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst. The α, ω-dihydrogenorganopolysiloxane can be used by appropriately adjusting its chain length n depending on the polymerization conditions, or a commercially available α, ω-dihydrogenorganopolysiloxane may be used. .

上記ヒドロシリル化反応用触媒としては、遷移金属系触媒が挙げられるが、中でも反応速度及び選択性の点から白金系触媒が好ましく用いられる。白金系触媒の具体例としては、塩化白金酸,塩化白金酸のアルコール溶液,白金のオレフィン錯体,白金とビニル基含有シロキサンとの錯体,白金担持シリカ,白金担持活性炭等が挙げられる。   Examples of the hydrosilylation reaction catalyst include transition metal catalysts. Among them, platinum catalysts are preferably used from the viewpoint of reaction rate and selectivity. Specific examples of the platinum-based catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, a complex of platinum and a vinyl group-containing siloxane, platinum-supported silica, platinum-supported activated carbon, and the like.

粗ポリオルガノシロキサンを吸着剤と接触させることにより、粗ポリオルガノシロキサン中に含まれる、上記ヒドロシリル化反応用触媒として使用された遷移金属系触媒に由来する遷移金属を、吸着剤に吸着させて除去することが好ましい。
吸着剤としては、例えば、1000Å以下の平均細孔直径を有するものを用いることができる。平均細孔直径が1000Å以下であれば、粗ポリオルガノシロキサン中の遷移金属を効率的に除去することができる。このような観点から、吸着剤の平均細孔直径は、好ましくは500Å以下、より好ましくは200Å以下、更に好ましくは150Å以下、より更に好ましくは100Å以下である。また同様の観点から、吸着剤は多孔性吸着剤であることが好ましい。
By bringing the crude polyorganosiloxane into contact with the adsorbent, the transition metal derived from the transition metal catalyst used as the hydrosilylation reaction catalyst contained in the crude polyorganosiloxane is adsorbed on the adsorbent and removed. It is preferable to do.
As the adsorbent, for example, one having an average pore diameter of 1000 mm or less can be used. If the average pore diameter is 1000 mm or less, the transition metal in the crude polyorganosiloxane can be efficiently removed. From such a viewpoint, the average pore diameter of the adsorbent is preferably 500 mm or less, more preferably 200 mm or less, still more preferably 150 mm or less, and still more preferably 100 mm or less. From the same viewpoint, the adsorbent is preferably a porous adsorbent.

吸着剤としては、上記の平均細孔直径を有するものであれば特に限定されないが、例えば活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ、シリカ−マグネシア系吸着剤、珪藻土、セルロース等を用いることができ、活性白土、酸性白土、活性炭、合成ゼオライト、天然ゼオライト、活性アルミナ、シリカ及びシリカ−マグネシア系吸着剤からなる群から選ばれる少なくとも1種であることが好ましい。   The adsorbent is not particularly limited as long as it has the above average pore diameter. For example, activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica, silica-magnesia-based adsorbent, diatomaceous earth. Cellulose and the like can be used, and it is preferably at least one selected from the group consisting of activated clay, acidic clay, activated carbon, synthetic zeolite, natural zeolite, activated alumina, silica and silica-magnesia-based adsorbent.

粗ポリオルガノシロキサン中に含まれる遷移金属を吸着剤に吸着させた後、吸着剤は任意の分離手段によってポリオルガノシロキサンから分離することができる。ポリオルガノシロキサンから吸着剤を分離する手段としては、例えばフィルタや遠心分離等が挙げられる。フィルタを用いる場合は、メンブランフィルタ、焼結金属フィルタ、ガラス繊維フィルタ等のフィルタを用いることができるが、特にメンブランフィルタを用いることが好ましい。
遷移金属の吸着後に吸着剤をポリオルガノシロキサンから分離する観点から、吸着剤の平均粒子径は、通常1μm〜4mm、好ましくは1〜100μmである。
After the transition metal contained in the crude polyorganosiloxane is adsorbed on the adsorbent, the adsorbent can be separated from the polyorganosiloxane by any separation means. Examples of means for separating the adsorbent from the polyorganosiloxane include a filter and centrifugal separation. When a filter is used, a filter such as a membrane filter, a sintered metal filter, or a glass fiber filter can be used, but it is particularly preferable to use a membrane filter.
From the viewpoint of separating the adsorbent from the polyorganosiloxane after adsorption of the transition metal, the average particle size of the adsorbent is usually 1 μm to 4 mm, preferably 1 to 100 μm.

本発明において吸着剤を使用する場合には、その使用量は特に限定されない。粗ポリオルガノシロキサン100質量部に対して、好ましくは1〜30質量部、より好ましくは2〜20質量部の範囲の量の多孔性吸着剤を使用することができる。   When the adsorbent is used in the present invention, the amount used is not particularly limited. The porous adsorbent is preferably used in an amount in the range of 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the crude polyorganosiloxane.

なお、処理する粗ポリオルガノシロキサンの分子量が高いために液体状態でない場合は、吸着剤による吸着及び吸着剤の分離を行う際に、ポリオルガノシロキサンが液体状態となるような温度に加熱してもよい。または、塩化メチレンやヘキサン等の溶剤に溶かして行ってもよい。   If the crude polyorganosiloxane to be treated is not in a liquid state due to its high molecular weight, it may be heated to a temperature at which the polyorganosiloxane is in a liquid state when adsorbing with the adsorbent and separating the adsorbent. Good. Alternatively, it may be carried out by dissolving in a solvent such as methylene chloride or hexane.

所望の分子量分布のポリオルガノシロキサンは、例えば、複数のポリオルガノシロキサンを配合することにより分子量分布を調節して得ることができる。複数のα,ω-ジハイドロジェンオルガノポリシロキサンを配合したあと、ヒドロシリル化反応用触媒の存在下に不飽和基を有するフェノール化合物等を付加反応させることで所望の分子量分布となる粗ポリオルガノシロキサンを得ることもできる。また、複数の粗ポリオルガノシロキサンを配合したのち、ヒドロシリル化反応触媒を除去させるなどの精製を行ってもよい。精製後の複数のポリオルガノシロキサンを配合してもよい。また、ポリオルガノシロキサン製造時の重合条件により適宜調整することもできる。また、既存のポリオルガノシロキサンから各種分離等の手段によって一部のみを分取する事で得ることも出来る。   A polyorganosiloxane having a desired molecular weight distribution can be obtained, for example, by adjusting the molecular weight distribution by blending a plurality of polyorganosiloxanes. After blending a plurality of α, ω-dihydrogenorganopolysiloxanes, a crude polyorganosiloxane having a desired molecular weight distribution is obtained by addition reaction of a phenol compound having an unsaturated group in the presence of a hydrosilylation reaction catalyst. You can also get Further, after blending a plurality of crude polyorganosiloxanes, purification such as removal of the hydrosilylation reaction catalyst may be performed. A plurality of polyorganosiloxanes after purification may be blended. Moreover, it can also adjust suitably with the polymerization conditions at the time of polyorganosiloxane manufacture. Moreover, it can also obtain by fractionating only a part from existing polyorganosiloxane by means of various separations.

本発明のさらに他の態様においては、ポリカーボネート−ポリオルガノシロキサン(以下、PC−POSと略することがある)共重合体の製造方法が提供され、当該製造方法は、上記したポリオルガノシロキサンを原料として用いることを特徴とする。   In still another embodiment of the present invention, a method for producing a polycarbonate-polyorganosiloxane (hereinafter sometimes abbreviated as PC-POS) copolymer is provided, and the production method uses the above-mentioned polyorganosiloxane as a raw material. It is used as.

PC−POS共重合体を製造する方法としては、界面重合法(ホスゲン法)、ピリジン法、エステル交換法等の公知の製造方法を用いることができる。特に界面重合法の場合に、PC−POS共重合体を含む有機相と未反応物や触媒残渣等を含む水相との分離工程が容易となり、アルカリ洗浄、酸洗浄、純水洗浄による各洗浄工程におけるPC−POS共重合体を含む有機相と水相との分離が容易となり、効率よくPC−POS共重合体が得られる。   As a method for producing the PC-POS copolymer, a known production method such as an interfacial polymerization method (phosgene method), a pyridine method, or a transesterification method can be used. Especially in the case of the interfacial polymerization method, the separation process between the organic phase containing the PC-POS copolymer and the aqueous phase containing unreacted substances, catalyst residues, etc. becomes easy, and each washing by alkali washing, acid washing and pure water washing Separation of the organic phase containing the PC-POS copolymer and the aqueous phase in the process becomes easy, and the PC-POS copolymer can be obtained efficiently.

PC−POS共重合体の製造方法に特に制限はなく、公知のPC−POS共重合体の製造方法、例えば、特開2010−241943号公報等に記載の方法を参照して製造することができる。
具体的には、予め製造された芳香族ポリカーボネートオリゴマーと、上記ポリオルガノシロキサンとを、非水溶性有機溶媒(塩化メチレン等)に溶解させ、二価フェノール(ビスフェノールA等)のアルカリ性化合物水溶液(水酸化ナトリウム水溶液等)を加え、重合触媒として第三級アミン(トリエチルアミン等)や第四級アンモニウム塩(トリメチルベンジルアンモニウムクロライド等)を用い、末端停止剤(p−t−ブチルフェノール等の1価フェノール)の存在下、界面重縮合反応させることにより製造できる。また、PC−POS共重合体は、ポリオルガノシロキサンと、二価フェノールと、ホスゲン、炭酸エステル又はクロロホーメートとを共重合させることによっても製造できる。
There is no particular limitation on the method for producing the PC-POS copolymer, and it can be produced by referring to a known method for producing a PC-POS copolymer, for example, the method described in JP 2010-241943 A. .
Specifically, an aromatic polycarbonate oligomer produced in advance and the above polyorganosiloxane are dissolved in a water-insoluble organic solvent (such as methylene chloride), and an aqueous alkaline compound solution of dihydric phenol (such as bisphenol A) (water). Sodium oxide aqueous solution, etc.), and a tertiary amine (triethylamine, etc.) or a quaternary ammonium salt (trimethylbenzylammonium chloride, etc.) as a polymerization catalyst, and a terminal terminator (monovalent phenol such as pt-butylphenol) In the presence of an interfacial polycondensation reaction. The PC-POS copolymer can also be produced by copolymerizing polyorganosiloxane, dihydric phenol, phosgene, carbonate ester or chloroformate.

原料ポリオルガノシロキサンとしては、上述した通り、ポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%であるポリオルガノシロキサンを用いる。
また、上記原料ポリオルガノシロキサンが上記dw/dlog(M)の値が3.3≦log(M)≦3.9の範囲で最大値をとり得ること、平均鎖長、ポリオルガノシロキサンの具体的な一般式、具体例及び製法は上記した通りである。
As described above, the raw material polyorganosiloxane is obtained by measurement by gel permeation chromatography using polystyrene as a conversion standard. The horizontal axis is a logarithmic value log (M) of molecular weight M, and the vertical axis is a concentration fraction w. In the differential molecular weight distribution curve dw / dlog (M) obtained by differentiating the logarithm of logarithm of the molecular weight log (M), the dw / dlog (M) value is integrated in the range of 2.5 ≦ log (M) ≦ 3.1. A polyorganosiloxane having a value of 0 to 10% with respect to a value obtained by integrating dw / dlog (M) values in the entire range of log (M) is used.
Further, the raw material polyorganosiloxane can take the maximum value in the range of dw / dlog (M) 3.3 ≦ log (M) ≦ 3.9, the average chain length, and the specific polyorganosiloxane. The general formulas, specific examples and production methods are as described above.

ポリカーボネートオリゴマーは、塩化メチレン、クロロベンゼン、クロロホルム等の有機溶剤中で、二価フェノールとホスゲンやトリホスゲンのようなカーボネート前駆体との反応によって製造することができる。なお、エステル交換法を用いてポリカーボネートオリゴマーを製造する際には、二価フェノールとジフェニルカーボネートのようなカーボネート前駆体との反応によって製造することもできる。
二価フェノールとしては、下記一般式(a)で表される二価フェノールを用いることが好ましい。
The polycarbonate oligomer can be produced by reacting a dihydric phenol with a carbonate precursor such as phosgene or triphosgene in an organic solvent such as methylene chloride, chlorobenzene, or chloroform. In addition, when manufacturing a polycarbonate oligomer using a transesterification method, it can also manufacture by reaction with carbonate precursor like dihydric phenol and diphenyl carbonate.
As the dihydric phenol, it is preferable to use a dihydric phenol represented by the following general formula (a).


[式中、R9及びR10は、それぞれ独立に、ハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Xは、単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、フルオレンジイル基、炭素数7〜15のアリールアルキレン基、炭素数7〜15のアリールアルキリデン基、−S−、−SO−、−SO2−、−O−又は−CO−を示す。a及びbは、それぞれ独立に、0〜4の整数を示す。]

[In formula, R < 9 > and R < 10 > shows a halogen atom, a C1-C6 alkyl group, or a C1-C6 alkoxy group each independently. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon An arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—; a and b each independently represent an integer of 0 to 4. ]

上記一般式(a)中、R9及びR10がそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
9及びR10がそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R9及びR10がそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。
Xが表すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1〜6のアルキレン基が好ましい。Xが表すアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Xが表すシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5〜10のシクロアルキレン基が好ましい。Xが表すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5−トリメチルシクロヘキシリデン基、2−アダマンチリデン基等が挙げられ、炭素数5〜10のシクロアルキリデン基が好ましく、炭素数5〜8のシクロアルキリデン基がより好ましい。Xが表すアリールアルキレン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6〜14のアリール基が挙げられる。Xが表すアリールアルキリデン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6〜14のアリール基が挙げられる。
In the general formula (a), examples of the halogen atom independently represented by R 9 and R 10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkyl group independently represented by R 9 and R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, and various hexyl groups. Examples of the alkoxy group independently represented by R 9 and R 10 include a case where the alkyl group moiety is the alkyl group.
Examples of the alkylene group represented by X include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 6 carbon atoms is preferable. Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group. Examples of the cycloalkylene group represented by X include a cyclopentanediyl group, a cyclohexanediyl group, and a cyclooctanediyl group, and a cycloalkylene group having 5 to 10 carbon atoms is preferable. Examples of the cycloalkylidene group represented by X include a cyclohexylidene group, 3,5,5-trimethylcyclohexylidene group, 2-adamantylidene group and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferable. A cycloalkylidene group having 5 to 8 carbon atoms is more preferable. Examples of the aryl moiety of the arylalkylene group represented by X include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group. Examples of the aryl moiety of the arylalkylidene group represented by X include aryl groups having 6 to 14 ring carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group, and an anthryl group.

a及びbは、それぞれ独立に0〜4の整数を示し、好ましくは0〜2、より好ましくは0又は1である。
中でも、aおよびbが0であり、Xが単結合または炭素数1〜8のアルキレン基であるもの、またはaおよびbが0であり、Xが炭素数3のアルキレン基、特にイソプロピリデン基であるものが好適である。
a and b each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.
Among them, a and b are 0 and X is a single bond or an alkylene group having 1 to 8 carbon atoms, or a and b are 0 and X is an alkylene group having 3 carbon atoms, particularly an isopropylidene group. Some are preferred.

上記一般式(a)で表される二価フェノールとしては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン等のビス(ヒドロキシフェニル)アルカン系、4,4'−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)シクロアルカン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)ケトン等が挙げられる。これらの二価フェノールは、1種を単独で使用してもよいし、2種以上を混合して用いてもよい。
これらの中でも、ビス(ヒドロキシフェニル)アルカン系二価フェノールが好ましく、ビスフェノールAがより好ましい。二価フェノールとしてビスフェノールAを用いた場合、上記一般式(a)において、Xがイソプロピリデン基であり、且つa=b=0のPC−POS共重合体となる。
Examples of the dihydric phenol represented by the general formula (a) include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) And cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. It is done. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
Among these, bis (hydroxyphenyl) alkane dihydric phenol is preferable, and bisphenol A is more preferable. When bisphenol A is used as the dihydric phenol, in the general formula (a), X is an isopropylidene group and a PC-POS copolymer in which a = b = 0 is obtained.

ビスフェノールA以外の二価フェノールとしては、例えば、ビス(ヒドロキシアリール)アルカン類、ビス(ヒドロキシアリール)シクロアルカン類、ジヒドロキシアリールエーテル類、ジヒドロキシジアリールスルフィド類、ジヒドロキシジアリールスルホキシド類、ジヒドロキシジアリールスルホン類、ジヒドロキシジフェニル類、ジヒドロキシジアリールフルオレン類、ジヒドロキシジアリールアダマンタン類等が挙げられる。これらの二価フェノールは、1種を単独で使用してもよいし、2種以上を混合して用いてもよい。   Examples of dihydric phenols other than bisphenol A include bis (hydroxyaryl) alkanes, bis (hydroxyaryl) cycloalkanes, dihydroxyaryl ethers, dihydroxydiaryl sulfides, dihydroxydiaryl sulfoxides, dihydroxydiaryl sulfones, and dihydroxy. Examples include diphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes and the like. These dihydric phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.

ビス(ヒドロキシアリール)アルカン類としては、例えばビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)ナフチルメタン、1,1−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−クロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン等が挙げられる。   Examples of bis (hydroxyaryl) alkanes include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, and 2,2- Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxy Phenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy) -3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chloropheny) ) Propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane.

ビス(ヒドロキシアリール)シクロアルカン類としては、例えば1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,5,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ノルボルナン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン等が挙げられる。ジヒドロキシアリールエーテル類としては、例えば4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル等が挙げられる。   Examples of bis (hydroxyaryl) cycloalkanes include 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane and the like. Examples of dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.

ジヒドロキシジアリールスルフィド類としては、例えば4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等が挙げられる。ジヒドロキシジアリールスルホキシド類としては、例えば4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等が挙げられる。ジヒドロキシジアリールスルホン類としては、例えば4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等が挙げられる。   Examples of dihydroxydiaryl sulfides include 4,4'-dihydroxydiphenyl sulfide and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide. Examples of dihydroxydiaryl sulfoxides include 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, and the like. Examples of the dihydroxydiaryl sulfones include 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone.

ジヒドロキシジフェニル類としては、例えば4,4’−ジヒドロキシジフェニル等が挙げられる。ジヒドロキシジアリールフルオレン類としては、例えば9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等が挙げられる。ジヒドロキシジアリールアダマンタン類としては、例えば1,3−ビス(4−ヒドロキシフェニル)アダマンタン、2,2−ビス(4−ヒドロキシフェニル)アダマンタン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。   Examples of dihydroxydiphenyls include 4,4'-dihydroxydiphenyl. Examples of dihydroxydiarylfluorenes include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. Examples of the dihydroxydiaryladamantanes include 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7- Examples thereof include dimethyladamantane.

上記以外の二価フェノールとしては、例えば4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノール、10,10−ビス(4−ヒドロキシフェニル)−9−アントロン、1,5−ビス(4−ヒドロキシフェニルチオ)−2,3−ジオキサペンタン等が挙げられる。   As other dihydric phenols, for example, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5 -Bis (4-hydroxyphenylthio) -2,3-dioxapentane and the like.

上記PC−POS共重合体の製法において、得られるPC−POS共重合体の分子量を調整するために、分子量調節剤(末端停止剤)を使用することができる。分子量調節剤としては、例えば、フェノール、p−クレゾール、p−tert−ブチルフェノール、p−tert−オクチルフェノール、p−クミルフェノール、p−ノニルフェノール、m−ペンタデシルフェノール及びp−tert−アミルフェノール等の一価フェノールを挙げることができる。これら一価フェノールは、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記分子量調整剤等を用いることにより、PC−POSの粘度平均分子量が、使用される用途や製品により、適宜、目的の分子量となるように製造することができる。
In the process for producing the PC-POS copolymer, a molecular weight modifier (terminal stopper) can be used to adjust the molecular weight of the obtained PC-POS copolymer. Examples of the molecular weight regulator include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, m-pentadecylphenol and p-tert-amylphenol. Mention may be made of monohydric phenols. These monohydric phenols may be used individually by 1 type, and may be used in combination of 2 or more type.
By using the above-mentioned molecular weight modifier and the like, the viscosity average molecular weight of PC-POS can be appropriately produced according to the intended use and product.

上記界面重縮合反応後、適宜静置して水相と有機溶媒相とに分離し[分離工程]、有機溶媒相を洗浄(好ましくは塩基性水溶液、酸性水溶液、水の順に洗浄)し[洗浄工程]、得られた有機相を濃縮[濃縮工程]、及び乾燥[乾燥工程]することによって、PC−POS共重合体を得ることができる。   After the above interfacial polycondensation reaction, the mixture is allowed to stand to separate into an aqueous phase and an organic solvent phase [separation step], and the organic solvent phase is washed (preferably washed in the order of basic aqueous solution, acidic aqueous solution, and water) [washing Step], the PC-POS copolymer can be obtained by concentrating [concentration step] and drying [drying step] the obtained organic phase.

本発明は、下記一般式(I)で表される繰り返し単位からなるポリカーボネートブロック(A)及び下記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(B)を含むポリカーボネート−ポリオルガノシロキサン共重合体であって、
前記ポリオルガノシロキサンブロック(B)のポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%である、ポリカーボネート−ポリオルガノシロキサン共重合体に関する。
The present invention relates to a polycarbonate-polycarbonate containing a polycarbonate block (A) comprising a repeating unit represented by the following general formula (I) and a polyorganosiloxane block (B) comprising a repeating unit represented by the following general formula (II). An organosiloxane copolymer,
The horizontal axis is the logarithmic value log (M) of the molecular weight M, and the vertical axis is the concentration fraction w obtained from the measurement by gel permeation chromatography using the polystyrene of the polyorganosiloxane block (B) as a conversion standard. In the differential molecular weight distribution curve which is dw / dlog (M) differentiated by the logarithmic value log (M), the value obtained by integrating the dw / dlog (M) value in the range of 2.5 ≦ log (M) ≦ 3.1 Relates to a polycarbonate-polyorganosiloxane copolymer, which is 0 to 10% with respect to a value obtained by integrating dw / dlog (M) values in the entire range of log (M).

上記一般式(I)中、R9、R10、X、a及びbについては上記した通りであり、好ましい範囲も同じである。上記一般式(II)におけるR1およびR2についても上記した通りであり、好ましい範囲も同じである。 In the general formula (I), R 9 , R 10 , X, a and b are as described above, and preferred ranges are also the same. R 1 and R 2 in the general formula (II) are also as described above, and preferred ranges are also the same.

本発明のPC−POS共重合体におけるポリオルガノシロキサンブロックは、上記微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%であり、好ましくは0〜9%である。上記割合が10%を超えると、ポリオルガノシロキサンの黄色味が増加する傾向にあるため、全体としてPC−POS共重合体の黄色味も増加する傾向がある。   The polyorganosiloxane block in the PC-POS copolymer of the present invention has a value obtained by integrating dw / dlog (M) value in the range of 2.5 ≦ log (M) ≦ 3.1 in the differential molecular weight distribution curve. , Log (M), 0 to 10%, preferably 0 to 9% of the integrated value of dw / dlog (M) over the entire range. If the ratio exceeds 10%, the yellowness of the polyorganosiloxane tends to increase, and therefore the yellowness of the PC-POS copolymer tends to increase as a whole.

なお、PC−POS共重合体中のポリオルガノシロキサンブロックの上記微分分子量分布曲線は、PC−POS共重合体を水酸化ナトリウムのメタノール溶液のような強アルカリ性の水溶液を用いることによって分解した後にポリオルガノシロキサンを抽出した後、ポリスチレンを換算基準としたゲル浸透クロマトグラフ法による上記測定によって確認することができる。ポリオルガノシロキサンの分子量/分子量分布測定値を得るためのGPC装置としては、上述したものを用いることができる。   The differential molecular weight distribution curve of the polyorganosiloxane block in the PC-POS copolymer is obtained by decomposing the PC-POS copolymer by using a strong alkaline aqueous solution such as a sodium hydroxide methanol solution. After extracting the organosiloxane, it can be confirmed by the above-described measurement by gel permeation chromatography using polystyrene as a conversion standard. As the GPC apparatus for obtaining the molecular weight / molecular weight distribution measurement value of the polyorganosiloxane, the above-described apparatus can be used.

本発明のPC−POS共重合体におけるポリオルガノシロキサンブロックは、また、上記dw/dlog(M)の値が3.3≦log(M)≦3.9の範囲で最大値をとり得る。微分分子量分布曲線においてdw/dlog(M)の値が最大値をとるときのlog(M)が3.3未満であるとPC−POS共重合体の低温耐衝撃性に劣る結果となり、3.9を超えるとPC−POS共重合体の透明性が低下する傾向にある。   The polyorganosiloxane block in the PC-POS copolymer of the present invention can also take a maximum value when the value of dw / dlog (M) is in the range of 3.3 ≦ log (M) ≦ 3.9. When the log (M) when the value of dw / dlog (M) takes the maximum value in the differential molecular weight distribution curve is less than 3.3, the PC-POS copolymer is inferior in low-temperature impact resistance. If it exceeds 9, the transparency of the PC-POS copolymer tends to decrease.

本発明のPC−POS共重合体におけるポリオルガノシロキサンブロック(II)の平均鎖長nは、好ましくは20〜50、より好ましくは30〜45、さらに好ましくは35〜45である。該平均鎖長は核磁気共鳴(NMR)測定により算出される。平均鎖長nが20以上であれば低温における耐衝撃性が十分に得られる。また、平均鎖長nが50以下であれば、透明性に優れる共重合体を得ることができる。   The average chain length n of the polyorganosiloxane block (II) in the PC-POS copolymer of the present invention is preferably 20 to 50, more preferably 30 to 45, and still more preferably 35 to 45. The average chain length is calculated by nuclear magnetic resonance (NMR) measurement. If the average chain length n is 20 or more, sufficient impact resistance at low temperatures can be obtained. Moreover, if average chain length n is 50 or less, the copolymer excellent in transparency can be obtained.

本発明においては、PC−POS共重合体中の一般式(II)で表されるポリオルガノシロキサンブロック(B)の含有量は、0.5〜20質量%であることが好ましく、より好ましくは0.5〜10質量%である。PC−POS共重合体中のポリオルガノシロキサンブロック(B)の含有量は、核磁気共鳴(NMR)測定により算出された値である。
ポリオルガノシロキサンブロック(B)の含有量が0.5質量%未満であると、低温時(−20℃程度)での耐衝撃性が低下するとともに、アイゾット衝撃強度が低下する傾向にあるので好ましくない。また、ポリオルガノシロキサンブロック(B)の含有量が20質量%を超えると、常温時(23℃程度)の耐衝撃性が低下する。
In the present invention, the content of the polyorganosiloxane block (B) represented by the general formula (II) in the PC-POS copolymer is preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass. The content of the polyorganosiloxane block (B) in the PC-POS copolymer is a value calculated by nuclear magnetic resonance (NMR) measurement.
When the content of the polyorganosiloxane block (B) is less than 0.5% by mass, the impact resistance at low temperatures (about −20 ° C.) is decreased and the Izod impact strength tends to be decreased. Absent. Moreover, when content of a polyorganosiloxane block (B) exceeds 20 mass%, the impact resistance at normal temperature (about 23 degreeC) will fall.

本発明のPC−POS共重合体の粘度平均分子量は、通常は、12,000〜40,000、好ましくは13,000〜30,000程度の範囲にある。粘度平均分子量が12,000未満であると本発明のPC−POS共重合体を用いて製造された成形品の強度が十分とならない。また、粘度平均分子量が40,000を超えると共重合体の粘度が大きくなるため、射出成形や押出成形時の温度を高くする必要があり、熱劣化により透明性が低下し易くなる。
成形温度を上げることによりPC−POS共重合体の粘度を下げることも可能であるが、その場合、成形サイクルが長くなり経済性に劣るほか、温度を上げすぎるとPC−POS共重合体の熱劣化により透明性が低下する傾向がある。
なお、粘度平均分子量(Mv)は、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、Schnellの式(〔η〕=1.23×10-5×Mv0.83)より算出した値である。
The viscosity average molecular weight of the PC-POS copolymer of the present invention is usually in the range of about 12,000 to 40,000, preferably about 13,000 to 30,000. When the viscosity average molecular weight is less than 12,000, the strength of the molded product produced using the PC-POS copolymer of the present invention is not sufficient. On the other hand, if the viscosity average molecular weight exceeds 40,000, the viscosity of the copolymer increases, so that it is necessary to increase the temperature during injection molding or extrusion molding, and the transparency tends to decrease due to thermal degradation.
Although it is possible to lower the viscosity of the PC-POS copolymer by raising the molding temperature, in that case, the molding cycle becomes longer and less economical, and if the temperature is raised too much, the heat of the PC-POS copolymer Transparency tends to decrease due to deterioration.
The viscosity average molecular weight (Mv) is a value calculated from Schnell's formula ([η] = 1.23 × 10 −5 × Mv 0.83 ) by measuring the intrinsic viscosity [η] of the methylene chloride solution at 20 ° C. is there.

本発明のPC−POS共重合体には、所望に応じて、ポリカーボネート樹脂組成物に公知の種々の添加剤類が配合可能であり、これらとしては補強材、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、染料、顔料、その他の難燃剤などが挙げられる。   In the PC-POS copolymer of the present invention, various known additives can be blended in the polycarbonate resin composition as desired, and these include reinforcing materials, stabilizers, antioxidants, UV absorption. Agents, antistatic agents, lubricants, mold release agents, dyes, pigments, and other flame retardants.

本発明のPC−POS共重合体に必要に応じて公知の添加剤類を配合し、混練することによってPC樹脂組成物とすることができる。
上記配合、混練は、通常、用いられている方法、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法により行うことができる。
なお、混練に際しての加熱温度は、通常、250〜320℃の範囲で選ばれる。
The PC-POS copolymer of the present invention can be made into a PC resin composition by blending and kneading known additives as necessary.
The above blending and kneading are usually performed using, for example, a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder or the like. It can be done by a method.
The heating temperature for kneading is usually selected in the range of 250 to 320 ° C.

本発明は、上述したPC−POS共重合体を成形してなる成形体にも関する。
得られたPC樹脂組成物の成形には、従来公知の各種成形方法、例えば、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法などを用いることができるが、金型温度60℃以上、好ましくは80〜120℃で射出成形することが好ましい。
この際、射出成形における樹脂温度は、通常、280〜360℃程度、好ましくは280〜330℃である。
本発明の成形体は、携帯電話、スマートフォン、モバイルパソコン、タブレット、携帯用端末等の筐体、照明カバー、建材、デジタルカメラ、ビデオカメラ等の視認性を要する電子機器筐体、及び警察盾、ヘルメットバイザー、スポーツ用保護具等のその他の日用品等の用途において用いることができる。
The present invention also relates to a molded body formed by molding the above-described PC-POS copolymer.
For molding the obtained PC resin composition, various conventionally known molding methods such as injection molding, injection compression molding, extrusion molding, blow molding, press molding, vacuum molding, foam molding, etc. However, it is preferable to perform injection molding at a mold temperature of 60 ° C. or higher, preferably 80 to 120 ° C.
Under the present circumstances, the resin temperature in injection molding is about 280-360 degreeC normally, Preferably it is 280-330 degreeC.
The molded body of the present invention includes a mobile phone, a smartphone, a mobile personal computer, a tablet, a portable terminal and other casings, a lighting cover, a building material, a digital camera, a video camera and other electronic equipment casings that require visibility, and a police shield, It can be used in other daily necessities such as helmet visors and sports equipment.

次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの例により何ら限定されるものではない。なお、各例における特性値、評価結果は、以下の要領に従って求めた。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these examples. In addition, the characteristic value in each example and the evaluation result were calculated | required according to the following procedures.

(1)ゲル浸透クロマトグラフィー(GPC)
ポリオルガノシロキサンのGPC測定は以下の条件で行った。
試験機器:TOSOH HLC 8220
測定条件:TOSOH TSK−GEL GHXL−L,G4000HXL,G2000HXL
溶媒:テトラヒドロフラン(THF)
カラム温度:40℃
流速:1.0ml/分
検出器:RI
注入濃度:0.2w/v%
注入量:0.1ml
検量線の作製には、東ソー株式会社製の標準ポリスチレンを用いた。
なお、ポリカーボネート−ポリジメチルシロキサン(PC−PDMS)中のポリオルガノシロキサンの分子量分布測定は以下の通りに行った。得られたPC−PDMS共重合体のフレーク3.9gをメチレンクロライドに10質量%溶液となるように加え、フレークを完全に溶解した。マグネチックスターラーで撹拌しながら、48質量%の水酸化ナトリウム水溶液とメタノールの1:9(体積比)の混合水溶液30mlを加え、3時間撹拌した。その後、メチレンクロライドを30ml追加したのち、析出した結晶(主成分:ビスフェノールA)をひだ折りろ紙にてろ過し、結晶をメチレンクロライドで洗浄した。ろ液のメチレンクロライド溶液を15容積%の0.03mol/LのNaOH水溶液で二度洗浄した後、15容積%の0.2NのHClで洗浄後、15容積%の純水で洗浄した。得られたメチレンクロライド溶液を乾燥機にて乾燥し、得られた粘調な液体(主成分:PDMS)をGPCにて測定し、用いたポリオルガノシロキサンと同様の分子量分布であることを確認した。
(1) Gel permeation chromatography (GPC)
The GPC measurement of the polyorganosiloxane was performed under the following conditions.
Test equipment: TOSOH HLC 8220
Measurement conditions: TOSOH TSK-GEL GHXL-L, G4000HXL, G2000HXL
Solvent: tetrahydrofuran (THF)
Column temperature: 40 ° C
Flow rate: 1.0 ml / min Detector: RI
Injection concentration: 0.2 w / v%
Injection volume: 0.1ml
Standard polystyrene made by Tosoh Corporation was used for the production of the calibration curve.
The molecular weight distribution of polyorganosiloxane in polycarbonate-polydimethylsiloxane (PC-PDMS) was measured as follows. The obtained PC-PDMS copolymer flakes (3.9 g) were added to methylene chloride to form a 10% by mass solution, and the flakes were completely dissolved. While stirring with a magnetic stirrer, 30 ml of a mixed aqueous solution of 48 mass% sodium hydroxide aqueous solution and methanol 1: 9 (volume ratio) was added and stirred for 3 hours. Thereafter, 30 ml of methylene chloride was added, and the precipitated crystals (main component: bisphenol A) were filtered with fold filter paper, and the crystals were washed with methylene chloride. The methylene chloride solution in the filtrate was washed twice with 15% by volume of 0.03 mol / L NaOH aqueous solution, then with 15% by volume of 0.2N HCl, and then with 15% by volume of pure water. The obtained methylene chloride solution was dried with a dryer, and the resulting viscous liquid (main component: PDMS) was measured by GPC to confirm that the molecular weight distribution was the same as that of the polyorganosiloxane used. .

微分分子量分布曲線は、次のような方法で得ることが出来る。まず、RI検出計において検出される強度分布の時間曲線(溶出曲線)を、検量線を用いて分子量の対数値(log(M))に対する分子量分布曲線とした。次に、分布曲線の全面積を100%とした場合のlog(M)に対する積分分子量分布曲線を得た後、この積分分子量分布曲線をlog(M)で、微分することによってlog(M)に対する微分分子量分布曲線を得ることが出来る。なお、微分分子量分布曲線を得るまでの一連の操作は、通常、GPC測定装置に内蔵の解析ソフトウェアを用いて行うことが出来る。   The differential molecular weight distribution curve can be obtained by the following method. First, a time curve (elution curve) of the intensity distribution detected by the RI detector was used as a molecular weight distribution curve with respect to a logarithmic value of the molecular weight (log (M)) using a calibration curve. Next, after obtaining an integral molecular weight distribution curve with respect to log (M) when the total area of the distribution curve is 100%, the integral molecular weight distribution curve is differentiated with log (M) to obtain log (M). A differential molecular weight distribution curve can be obtained. In addition, a series of operations until obtaining the differential molecular weight distribution curve can be usually performed using analysis software built in the GPC measurement apparatus.

(2)ポリジメチルシロキサン含有量
NMR測定によって、ポリジメチルシロキサンのメチル基の積分値比により算出した。
(2) Polydimethylsiloxane content It was calculated by the integral value ratio of methyl groups of polydimethylsiloxane by NMR measurement.

(3)ポリカーボネート−ポリオルガノシロキサン共重合体の粘度平均分子量
粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式(Schnell式)にて算出した。
[η]=1.23×10-5×Mv0.83
(3) Viscosity average molecular weight of polycarbonate-polyorganosiloxane copolymer Viscosity average molecular weight (Mv) was determined by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer. Was calculated by the following formula (Schnell formula).
[Η] = 1.23 × 10 −5 × Mv 0.83

<ポリカーボネートオリゴマー>
ポリカーボネートオリゴマーとして、濃度318g/L、クロロホーメート基濃度0.75mol/L、重量平均分子量(Mw)=3,100、NMRより求めた末端基モル分率がp−t−ブチルフェノール(PTBP):OH:クロロホーメート(CF)=3.3:7.7:89.0のポリカーボネートオリゴマーの塩化メチレン溶液を原料に使用した。
なお、重量平均分子量(Mw)は、展開溶媒としてテトラヒドロフランを用い、GPC[カラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI]にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
<Polycarbonate oligomer>
As the polycarbonate oligomer, the concentration was 318 g / L, the chloroformate group concentration was 0.75 mol / L, the weight average molecular weight (Mw) was 3,100, and the end group molar fraction determined from NMR was pt-butylphenol (PTBP): A methylene chloride solution of a polycarbonate oligomer of OH: chloroformate (CF) = 3.3: 7.7: 89.0 was used as a raw material.
The weight average molecular weight (Mw) is GPC [column: TOSOH TSK-GEL MULTIPORE HXL-M (2) + Shodex KF801 (1)] using tetrahydrofuran as a developing solvent, temperature 40 ° C., flow rate 1.0 ml / min. , Detector: RI], and measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw).

実施例1
邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に上記の原料のポリカーボネートオリゴマー溶液15L、塩化メチレン8.3L、[平均鎖長n=36;log(M)2.5〜3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して(以下、実施例においてはlog(M)2.5〜3.1の割合と呼ぶことがある)7.6%;dw/dlog(M)が最大値となるlog(M)が3.6]であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393g、及びトリエチルアミン5.8mLを仕込み、攪拌下でここに6.4質量%の水酸化ナトリウム水溶液1496gを加え、10分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応を行った。
この重合液に、p−t−ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP70gを塩化メチレン2.0Lに溶解したもの)、BPAの水酸化ナトリウム水溶液(NaOH648gと亜二チオン酸ナトリウム2.0gとを水9.5Lに溶解した水溶液にBPA1099gを溶解させたもの)を添加し50分間重合反応を実施した。
希釈のため塩化メチレン10Lを加え10分間攪拌した後、ポリカーボネートを含む有機相と過剰のBPA及びNaOHを含む水相に分離し、有機相を単離した。
こうして得られたPC−PDMSの塩化メチレン溶液を、その溶液に対して、15容積%の0.03mol/LNaOH水溶液、0.2N塩酸で順次洗浄し、次いで洗浄後の水相中の電気伝導度が1mS/m以下になるまで純水で洗浄を繰り返した。
洗浄により得られたポリカーボネートの塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。PDMS量は6.0質量%、ISO1628−4(1999)に準拠して測定した粘度数は46.9、粘度平均分子量Mv=17400であった。
得られたPC−PDMS共重合体のフレーク100質量部、酸化防止剤としてIRGAFOS168(商品名:BASF社製)を0.1質量部混合し、ベント式単軸押出成形機に供給し、樹脂温度280℃にて溶融混練し、評価用ペレットサンプルを得た。この評価用ペレットサンプルを120℃で8時間乾燥させた後、射出成形機を用いて、成形樹脂温度280℃、金型温度80℃にて、射出成形して各試験を行うための試験片を作成し、以下の試験を行った。
また、PC−PDMS中のPDMSのGPC測定により、用いたPDMSと同様の分子量分布であることを確認した。
Example 1
In a 50 L tank reactor equipped with a baffle plate, paddle type stirring blade and cooling jacket, 15 L of the above polycarbonate oligomer solution of raw material, 8.3 L of methylene chloride, [average chain length n = 36; log (M) 2.5 The value obtained by integrating the dw / dlog (M) value in the range of ˜3.1 is compared to the value obtained by integrating the dw / dlog (M) value in the entire range of log (M) (hereinafter, log in the examples). (M) may be referred to as a ratio of 2.5 to 3.1) 7.6%; allylphenol terminal-modified poly having a log (M) of 3.6] with a maximum value of dw / dlog (M) Charge 393 g of dimethylsiloxane (PDMS) and 5.8 mL of triethylamine, add 1496 g of a 6.4% by mass aqueous sodium hydroxide solution with stirring, and add polycarbonate oligomer and allylphenol for 10 minutes. The reaction was conducted in Le terminal-modified PDMS.
To this polymerization solution, a methylene chloride solution of pt-butylphenol (PTBP) (70 g of PTBP dissolved in 2.0 L of methylene chloride), an aqueous solution of sodium hydroxide of BPA (648 g of NaOH and 2.0 g of sodium dithionite) A solution prepared by dissolving 1099 g of BPA in an aqueous solution dissolved in 9.5 L of water) was added, and the polymerization reaction was carried out for 50 minutes.
For dilution, 10 L of methylene chloride was added and stirred for 10 minutes, and then the organic phase was separated into an organic phase containing polycarbonate and an aqueous phase containing excess BPA and NaOH, and the organic phase was isolated.
The methylene chloride solution of PC-PDMS thus obtained was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2N hydrochloric acid, and then the electric conductivity in the aqueous phase after washing. Washing with pure water was repeated until the value became 1 mS / m or less.
The methylene chloride solution of polycarbonate obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure. The amount of PDMS was 6.0% by mass, the viscosity number measured according to ISO 1628-4 (1999) was 46.9, and the viscosity average molecular weight Mv = 17400.
100 parts by mass of the obtained PC-PDMS copolymer flakes and 0.1 part by mass of IRGAFOS168 (trade name: manufactured by BASF) as an antioxidant are mixed and supplied to a vent type single screw extruder, and the resin temperature Melt kneading was performed at 280 ° C. to obtain a pellet sample for evaluation. After this pellet sample for evaluation was dried at 120 ° C. for 8 hours, using an injection molding machine, a test piece for injection molding and performing each test at a molding resin temperature of 280 ° C. and a mold temperature of 80 ° C. The following tests were made.
Moreover, it confirmed that it was the same molecular weight distribution as used PDMS by GPC measurement of PDMS in PC-PDMS.

(1)引張特性:破断強度、破断伸び
実施例1で得られた肉厚3.2mmの試験片を用いて、ASTM D638に準拠して、50mm/分の条件で破断強度及び破断伸びを測定した。数値が大きいほど、引張特性が良好であることを示す。
(2)曲げ特性:曲げ強さ、曲げ弾性率
実施例1で得られた肉厚4.0mmの試験片を用いて、ISO178に準拠して、2mm/分の条件で曲げ強さ及び曲げ弾性率を測定した。数値が大きいほど、曲げ特性が良好であることを示す。
(3)荷重たわみ温度(HDT)
実施例1で得られた肉厚3.2mmの試験片を用いて、ASTM D648に準拠して、1.83MPaの荷重で測定した。
(4)全光線透過率及びヘーズ値
厚み2mmの試験片について、全光線透過率についてはISO13468に基づいて3回測定し、ヘーズ値についてはISO14782に基づいて3回測定し、それぞれその平均を求めた。結果を表1に示す。
(5)YI値の測定
厚み2mmの試験片について、分光光度計「U−4100」(日立ハイテクノロジーズ(株)製)を用い、C光源、2度視野の条件でYI値を測定した。
(6)アイゾット衝撃強度
射出成形機で作製した厚さ3.2mm(約1/8インチ)の試験片を用いて、ASTM規格D−256に準拠して、測定温度23℃および−20℃におけるノッチ付きアイゾット衝撃強度を測定した。結果を表1に示す。
また、後述する実施例2〜3についても各実施例で得られたPC−PDMS共重合体のフレークを用いて同様に試験片を作成し、上記(1)〜(5)について測定した。結果を表1に共に示す。
(1) Tensile properties: breaking strength, breaking elongation Using the test piece having a thickness of 3.2 mm obtained in Example 1, the breaking strength and breaking elongation were measured under conditions of 50 mm / min in accordance with ASTM D638. did. It shows that a tensile characteristic is so favorable that a numerical value is large.
(2) Flexural properties: flexural strength, flexural modulus Using the test piece having a wall thickness of 4.0 mm obtained in Example 1, the flexural strength and flexural elasticity under the condition of 2 mm / min according to ISO178. The rate was measured. It shows that a bending characteristic is so favorable that a numerical value is large.
(3) Deflection temperature under load (HDT)
Using a test piece having a thickness of 3.2 mm obtained in Example 1, measurement was performed at a load of 1.83 MPa in accordance with ASTM D648.
(4) Total light transmittance and haze value For a test piece having a thickness of 2 mm, the total light transmittance was measured three times based on ISO13468, and the haze value was measured three times based on ISO14782, and the average was obtained for each. It was. The results are shown in Table 1.
(5) Measurement of YI value Using a spectrophotometer "U-4100" (manufactured by Hitachi High-Technologies Corporation), a YI value was measured for a test piece having a thickness of 2 mm under the conditions of a C light source and a 2-degree visual field.
(6) Izod impact strength Using test pieces with a thickness of 3.2 mm (about 1/8 inch) produced by an injection molding machine, in accordance with ASTM standard D-256, at measurement temperatures of 23 ° C. and −20 ° C. The notched Izod impact strength was measured. The results are shown in Table 1.
Moreover, also about Examples 2-3 mentioned later, the test piece was similarly created using the flakes of the PC-PDMS copolymer obtained in each Example, and it measured about said (1)-(5). The results are shown together in Table 1.

実施例2
実施例1において用いたアリルフェノール末端変性PDMSを、[平均鎖長n=40;log(M)2.5〜3.1の割合が7.2%;dw/dlog(M)が最大値となるときのlog(M)が3.6]のアリルフェノール末端変性PDMSに変えた以外は実施例1と同様に行った。得られたフレークのPDMS量は6.0質量%、ISO1628−4(1999)に準拠して測定した粘度数は46.2、粘度平均分子量Mv=17100であった。結果を表1に示す。
Example 2
The allylphenol-end-modified PDMS used in Example 1 is [average chain length n = 40; log (M) 2.5 to 3.1 is 7.2%; dw / dlog (M) is the maximum value. This was performed in the same manner as in Example 1 except that the allylphenol-terminated PDMS having a log (M) of 3.6] was changed. The PDMS amount of the obtained flakes was 6.0% by mass, the viscosity number measured according to ISO 1628-4 (1999) was 46.2, and the viscosity average molecular weight Mv = 17100. The results are shown in Table 1.

比較例1
実施例1において用いたアリルフェノール末端変性PDMSを、平均鎖長n=37,log(M)2.5〜3.1の割合が14.8%,dw/dlog(M)が最大値を取るときのlog(M)が3.6のアリルフェノール末端変性PDMSに変えた以外は実施例1と同様に行った。得られたフレークのPDMS量は6.0質量%、ISO1628−4(1999)に準拠して測定した粘度数は47.4、粘度平均分子量は17700であった。また、得られたPC−PDMS共重合体のフレークを用いて、実施例1と同様に試験片を作成し、実施例1と同様に(1)〜(5)についての測定を行った。結果を表1に共に示す。また、後述する比較例2についても得られたPC−PDMS共重合体のフレークを用いて実施例1と同様に試験片を作成し、(1)〜(5)についての測定を行った。結果を表1に共に示す。
Comparative Example 1
In the allylphenol terminal-modified PDMS used in Example 1, the average chain length n = 37, the ratio of log (M) 2.5 to 3.1 is 14.8%, and dw / dlog (M) takes the maximum value. The same procedure as in Example 1 was conducted except that the log (M) was changed to an allylphenol-end-modified PDMS having a log (M) of 3.6. The PDMS amount of the obtained flakes was 6.0% by mass, the viscosity number measured according to ISO 1628-4 (1999) was 47.4, and the viscosity average molecular weight was 17700. Moreover, the test piece was created similarly to Example 1 using the obtained PC-PDMS copolymer flakes, and (1) to (5) were measured in the same manner as in Example 1. The results are shown together in Table 1. Moreover, the test piece was created similarly to Example 1 using the obtained PC-PDMS copolymer flake also about the comparative example 2 mentioned later, and the measurement about (1)-(5) was performed. The results are shown together in Table 1.

比較例2
比較例1において用いたアリルフェノール末端変性PDMSを、平均鎖長n=40,log(M)2.5〜3.1の割合が14.6%,dw/dlog(M)が最大値を取るときのlog(M)が3.7のアリルフェノール末端変性PDMSに変えた以外は比較例1と同様に行った。得られたフレークのPDMS量は6.0質量%、ISO1628−4(1999)に準拠して測定した粘度数は47.3、粘度平均分子量は17600であった。
Comparative Example 2
The average chain length n = 40, the ratio of log (M) 2.5 to 3.1 is 14.6%, and dw / dlog (M) takes the maximum value for the allylphenol-terminated PDMS used in Comparative Example 1. The same procedure as in Comparative Example 1 was conducted except that the log (M) was changed to an allylphenol-end-modified PDMS with 3.7. The PDMS amount of the obtained flakes was 6.0% by mass, the viscosity number measured according to ISO 1628-4 (1999) was 47.3, and the viscosity average molecular weight was 17,600.

表から明らかなように、PDMSの分子量分布において、log(M)が2.5〜3.1の成分の割合がPDMS全体の10%以下であるPDMSを用いた実施例1〜3においては、機械特性を低下させることなく、透明性に優れ且つ黄色味(YI)の低い効果が得られる。一方、log(M)が2.5〜3.1の成分の割合がPDMS全体の10%を超える比較例1及び2においては、黄色味(YI)が実施例のYI値と比べて有意に高くなっていて、黄色味が改善されていないことがわかる。
図1は、実施例1及び比較例1にて得られる微分分布曲線を示すグラフであり、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0以上10%以下である実施例1においては2.5≦log(M)≦3.1の範囲の曲線の立ち上がりがシャープであるのに対し、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して10%を超える比較例1においては、2.5≦log(M)≦3.1の範囲の曲線の立ち上がりがゆるやかであることが分かる。
As is clear from the table, in Examples 1 to 3 using PDMS in which the ratio of components having a log (M) of 2.5 to 3.1 in the molecular weight distribution of PDMS is 10% or less of the entire PDMS, An effect of excellent transparency and low yellowness (YI) can be obtained without deteriorating mechanical properties. On the other hand, in Comparative Examples 1 and 2 in which the proportion of the component having a log (M) of 2.5 to 3.1 exceeds 10% of the whole PDMS, the yellowness (YI) is significantly higher than the YI value of the examples. It is high and it turns out that yellowishness is not improved.
FIG. 1 is a graph showing differential distribution curves obtained in Example 1 and Comparative Example 1, and is a value obtained by integrating dw / dlog (M) values in a range of 2.5 ≦ log (M) ≦ 3.1. Is in the range of 2.5 ≦ log (M) ≦ 3.1 in the first embodiment in which dw / dlog (M) value is 0 to 10% with respect to the integrated value of dw / dlog (M) in the entire range of log (M) The curve rises sharply, whereas the integrated value of dw / dlog (M) in the range of 2.5 ≦ log (M) ≦ 3.1 is dw / d in the entire range of log (M). In Comparative Example 1, which exceeds 10% of the value obtained by integrating the dlog (M) value, it can be seen that the rise of the curve in the range of 2.5 ≦ log (M) ≦ 3.1 is gradual.

本発明によれば、ポリカーボネート−ポリオルガノシロキサン共重合体中のポリオルガノシロキサンの分子量分布を制御し、鎖長分布を制御することにより、機械的強度を低下させることなく、透明性に優れ且つ黄色味の少ないポリカーボネート−ポリオルガノシロキサン共重合体を得ることが出来る。   According to the present invention, the molecular weight distribution of the polyorganosiloxane in the polycarbonate-polyorganosiloxane copolymer is controlled, and the chain length distribution is controlled, thereby reducing the mechanical strength and improving the transparency. A polycarbonate-polyorganosiloxane copolymer with little taste can be obtained.

Claims (6)

ポリスチレンを換算基準としたゲル浸透クロマトグラフ法による測定から得られる、横軸が分子量Mの対数値log(M)であり、縦軸が濃度分率wを分子量の対数値log(M)で微分したdw/dlog(M)である微分分子量分布曲線において、2.5≦log(M)≦3.1の範囲でdw/dlog(M)値を積分した値が、log(M)の全範囲でdw/dlog(M)値を積分した値に対して0〜10%であるポリオルガノシロキサンを原料として用いる、ポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。   Obtained from measurement by gel permeation chromatography using polystyrene as a conversion standard, the horizontal axis is a logarithmic value log (M) of molecular weight M, and the vertical axis is a derivative of concentration fraction w by logarithmic value log (M) of molecular weight. In the differential molecular weight distribution curve of dw / dlog (M), the integrated value of dw / dlog (M) in the range of 2.5 ≦ log (M) ≦ 3.1 is the entire range of log (M) A process for producing a polycarbonate-polyorganosiloxane copolymer using, as a raw material, a polyorganosiloxane that is 0 to 10% with respect to a value obtained by integrating dw / dlog (M) values. 前記原料ポリオルガノシロキサンの微分分子量分布曲線において、dw/dlog(M)の値が、3.3≦log(M)≦3.9の範囲で最大となる、請求項1に記載のポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。   The polycarbonate-poly of claim 1, wherein in the differential molecular weight distribution curve of the raw material polyorganosiloxane, the value of dw / dlog (M) is maximum in the range of 3.3≤log (M) ≤3.9. A method for producing an organosiloxane copolymer. 前記ポリオルガノシロキサンが、下記一般式(1)又は(2)に示す構造を有する、請求項1または2に記載のポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。

[式中、R1〜R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を示す。Yは、−R5O−、−R5COO−、−R5NH−、−R5NHR6−、−COO−、−S−、−R5COO−R7−O−、または−R5O−R8−O−を示す。前記R5は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、アリーレン基、またはジアリーレン基を示す。R6は、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。R7は、ジアリーレン基を示す。R8は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。Zは、水素原子又はハロゲン原子を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。pとqの和はnであり、nは平均繰り返し数を示す。]
The method for producing a polycarbonate-polyorganosiloxane copolymer according to claim 1 or 2, wherein the polyorganosiloxane has a structure represented by the following general formula (1) or (2).

[Wherein, R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Y is, -R 5 O -, - R 5 COO -, - R 5 NH -, - R 5 NHR 6 -, - COO -, - S -, - R 5 COO-R 7 -O-, or -R 5 O—R 8 —O— is shown. R 5 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, an arylene group, or a diarylene group. R 6 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 7 represents a diarylene group. R 8 represents a linear, branched or cyclic alkylene group, or a diarylene group. Z represents a hydrogen atom or a halogen atom. β represents a divalent group derived from a diisocyanate compound or a divalent group derived from dicarboxylic acid or a halide of dicarboxylic acid. The sum of p and q is n, and n indicates the average number of repetitions. ]
前記ポリオルガノシロキサンと、ポリカーボネートオリゴマーとを有機溶媒中で反応させる工程を有する、請求項1〜3のいずれか一項に記載のポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。   The manufacturing method of the polycarbonate polyorganosiloxane copolymer as described in any one of Claims 1-3 which has the process of making the said polyorganosiloxane and a polycarbonate oligomer react in an organic solvent. 二価フェノールをさらに添加する工程を有する、請求項4に記載のポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。   The manufacturing method of the polycarbonate polyorganosiloxane copolymer of Claim 4 which has the process of further adding dihydric phenol. 得られるポリカーボネート−ポリオルガノシロキサン共重合体の粘度平均分子量が12,000〜40,000である、請求項1〜5のいずれか一項に記載のポリカーボネート−ポリオルガノシロキサン共重合体の製造方法。   The manufacturing method of the polycarbonate polyorganosiloxane copolymer as described in any one of Claims 1-5 whose viscosity average molecular weights of the obtained polycarbonate polyorganosiloxane copolymer are 12,000-40,000.
JP2018111857A 2018-06-12 2018-06-12 Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same Active JP6589248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018111857A JP6589248B2 (en) 2018-06-12 2018-06-12 Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111857A JP6589248B2 (en) 2018-06-12 2018-06-12 Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014073411A Division JP6355951B2 (en) 2014-03-31 2014-03-31 Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018135540A JP2018135540A (en) 2018-08-30
JP6589248B2 true JP6589248B2 (en) 2019-10-16

Family

ID=63365979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111857A Active JP6589248B2 (en) 2018-06-12 2018-06-12 Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP6589248B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071196A4 (en) * 2019-12-06 2023-09-13 Idemitsu Kosan Co., Ltd. Polycarbonate/polyorganosiloxane copolymer and resin composition including said copolymer
CN114746474A (en) * 2019-12-06 2022-07-12 出光兴产株式会社 Polycarbonate-polyorganosiloxane copolymer and resin composition comprising the same
TW202400684A (en) * 2022-06-13 2024-01-01 日商出光興產股份有限公司 Polycarbonate-polyorganosiloxane copolymer

Also Published As

Publication number Publication date
JP2018135540A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6355951B2 (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same
JP6457384B2 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing the same
JP7081883B2 (en) Polycarbonate resin composition and its molded product
JP6913028B2 (en) Polycarbonate resin composition
JP6699860B2 (en) Polycarbonate resin composition and molded article thereof
JP2020172665A (en) Polycarbonate-based resin composition and molding of the same
JP6699859B2 (en) Polycarbonate resin composition and molded article thereof
WO2018159790A1 (en) Polycarbonate–polyorganosiloxane copolymer, polycarbonate resin composition including same, and molded product thereof
JP6589248B2 (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same
CN107429049B (en) Polycarbonate resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190830

R150 Certificate of patent or registration of utility model

Ref document number: 6589248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150