WO2015149385A1 - 一种通过石墨烯增强金属材料的方法 - Google Patents

一种通过石墨烯增强金属材料的方法 Download PDF

Info

Publication number
WO2015149385A1
WO2015149385A1 PCT/CN2014/075219 CN2014075219W WO2015149385A1 WO 2015149385 A1 WO2015149385 A1 WO 2015149385A1 CN 2014075219 W CN2014075219 W CN 2014075219W WO 2015149385 A1 WO2015149385 A1 WO 2015149385A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
metal
powder
metal composite
ball milling
Prior art date
Application number
PCT/CN2014/075219
Other languages
English (en)
French (fr)
Inventor
燕绍九
杨程
洪起虎
刘大博
戴圣龙
***
Original Assignee
中国航空工业集团公司北京航空材料研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航空工业集团公司北京航空材料研究院 filed Critical 中国航空工业集团公司北京航空材料研究院
Priority to GB1618615.7A priority Critical patent/GB2539861B/en
Publication of WO2015149385A1 publication Critical patent/WO2015149385A1/zh
Priority to US15/281,949 priority patent/US10926331B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention is a method for reinforcing a metal material by graphene, and belongs to the technical field of composite materials.
  • graphene also has excellent properties such as ultra-high electron mobility (200000cm2/V ⁇ S), electrical conductivity, thermal conductivity (5000W/m ⁇ K), Young's modulus (l lOOGPa), etc.
  • metal materials such as aluminum, titanium, and magnesium, it is expected that a composite material having a light weight, high strength, and a combination of structural functions such as electrical conductivity and heat conduction can be obtained.
  • the existing method of adding graphene to a metal matrix for strengthening is to use a mixture of graphene oxide and a metal powder, and obtain a pure graphene by a reduction treatment, and then pass cold pressing,
  • the metal matrix composite material is prepared by sintering or the like in combination with hot extrusion or hot pressing.
  • the above preparation method has the following disadvantages: (1) The addition of graphene oxide is adopted, and then pure graphene is obtained by reduction treatment, and the amount of graphene added is not easily controlled; (2) for easily oxidized metal powder, cold pressing, The method of sintering and the like does not completely remove oxygen, and the surface of the metal particles is easily oxidized to form an oxide film, which is not conducive to the good combination of graphene and metal particles, and affects the performance of the composite material.
  • the present invention provides a method for reinforcing a metal material by graphene in view of the deficiencies in the prior art described above.
  • the method firstly prepares a monodisperse graphene solution by ultrasonic vibration, and monodisperse graphene.
  • the solution is mixed with the metal powder and then ball-milled, so that the graphene is uniformly embedded on the surface of the metal particles by ball milling, and then densified by a powder metallurgy process, and finally a hot extrusion process is used to obtain a graphene-reinforced metal bar or Plate.
  • a specific step of the method of reinforcing a metal material by graphene is:
  • step (2) 1000g of metal powder is uniformly mixed with 100ml ⁇ 2000ml graphene solution prepared in step (1), mixed and then loaded into a ball mill for mechanical ball milling, and the ball milling time exceeds 24 hours;
  • the flake-shaped graphene is embedded on the surface of the metal powder particles by ball milling to form a better bond, so that the graphene and the metal powder are more uniformly mixed, and the graphene can be more uniformly dispersed into the surface of the substrate, and the ball milling process can also make Grain refinement improves the performance of the metal;
  • the graphene-reinforced metal composite material is subjected to hot extrusion molding to prepare a graphene-reinforced metal bar or plate.
  • the present invention directly uses pure graphene powder to facilitate precise control of graphite.
  • the method adopts ultrasonic vibration to prepare a monodisperse graphene uniform solution, and the monodisperse graphene uniform solution is easy to be uniformly compounded with the metal powder;
  • the present invention combines graphene with metal powder by ball milling, inserts flake-shaped pure graphene into the surface of the metal powder particles through high-speed ball grinding beads to form a relatively good combination, and simultaneously forms graphene by high-speed ball milling. More uniform mixing with metal powder, graphene dispersion can be guaranteed;
  • the graphene is dispersed by a hot extrusion to form a oriented texture, which is advantageous for exerting the reinforcing effect of the graphene;
  • the graphene/metal composite powder is charged into the jacket, and the jacket is heated while being vacuumed to remove steam, inclusion gas, etc. in the graphene/metal composite powder, so that the metal particles are less likely to form an oxide film, graphene and metal.
  • the particles form a good bond;
  • the invention has simple process, is easy to realize preparation of large-scale and large-sized graphene reinforcing materials, reduces production cost, and has excellent engineering application prospect. detailed description
  • Embodiment 1 Embodiment 1
  • step (2) 1000g of aluminum alloy powder is uniformly mixed with 500ml ⁇ 1000ml graphene solution prepared in step (1), mixed and filled into the ball mill, and an appropriate amount of alcohol is added to the ball mill tank to make the volume of the mixed solution reach 2/3 of the ball mill, then mechanical ball milling, ball milling time of more than 24 hours;
  • Vacuuming the jacket, heating while vacuuming, heating temperature is 480 ° C, when the vacuum degree reaches 1.0 X 10 - 3 Pa, the sleeve is welded and sealed;
  • the isothermally isostatically treated jacket is used to form the graphene/aluminum alloy composite powder in the jacket to obtain a dense graphene reinforced aluminum alloy composite material.
  • the temperature of the hot isostatic pressing is 480 ° C, and the pressure is l lOMpa, the time is 2 hours;
  • the sheath is removed by wire cutting, machining, etc., and the graphene reinforced aluminum alloy composite material is subjected to hot extrusion molding to prepare a graphene-reinforced aluminum alloy bar, and the extrusion temperature is From 440 ° C to 480 ° C, a graphene-reinforced aluminum alloy rod of ⁇ 12 mm was prepared.
  • the method of the invention solves the problem that the graphene and the metal matrix are difficult to be combined, and the addition amount of graphene can be controlled more accurately by the process, and the graphene is dispersed into the group by extrusion deformation. And form an oriented texture, alloy The strength is significantly improved.
  • the process is simple, and it is easy to realize the preparation of a large number of large-sized graphene reinforced metal matrix composite materials.

Abstract

一种通过石墨烯增强金属材料的方法,首先将单分散的石墨烯溶液与金属粉末混合后进行球磨,然后将混合粉末装入包套并密封,随后进行热等静压,最后通过热挤压得到石墨烯增强的金属棒材或板材。

Description

一种通过石墨烯增强金属材料的方法 技术领域
本发明是一种通过石墨烯增强金属材料的方法,属于复合材料技 术领域。
技术背景
石墨烯是一种新型二维纳米材料, 其强度高达 1. OlTpa, 是结构 钢的 100倍, 而密度却是结构钢的 1/5。在传统的工艺方法已很难提 高金属材料强度的背景下, 石墨烯成为了增强金属材料的又一重要 方向, 石墨烯为单分子层或几个分子层的片状结构,长度范围在 20μηι〜50μηι之间,主要的制备方法有物理法和化学法,目前市场上普 遍采用化学法制备大批量的石墨烯。 由于石墨烯密度小, 提高金属 材料强度的同时还能降低材料的密度。 同时石墨烯还具有超高的电 子迁移率 (200000cm2/V · S ) 、 电导率、 热导率(5000W/m · K)、 杨 氏模量 (l lOOGPa) 等优异性能, 因此将石墨烯复合到铝、 钛、 镁等 金属材料中, 预期可以得到轻质高强、 兼备导电、 导热等功能特性 的结构功能一体化的复合材料。
与碳纳米管相比,具更大的比强度、比表面积和更低的生产成本, 有人预言石墨烯膜可能成为下一代的电子材料, 同时有望代替碳纳 米管成为未来复合材料中最理想的填料和增强体。 因此, 基于石墨 烯的复合材料研发是石墨烯迈向实际应用的一个重要方向。
由于石墨烯与金属材料之间的性质差异很大,导致石墨烯与金属 基体材料很难复合成型, 目前有关于石墨烯增强金属基复合材料的 研究还比较少, 如何将石墨烯较精确并均匀的添加到金属基体中起 到强化的效果一直是困扰众多研究者的难题。
现有将石墨烯添加到金属基体中进行强化的方法是采用氧化石 墨烯与金属粉末混合, 通过还原处理得到纯石墨烯, 之后通过冷压、 烧结等方式配合热挤或热压工艺制备出金属基复合材料。 上述制备 方法存在以下不足之处: (1 ) 采用的是氧化石墨烯添加, 之后通过 还原处理得到纯石墨烯, 石墨烯的添加量不易控制; (2 ) 对于易 氧化的金属粉末, 冷压、 烧结等方式没能完全除去氧气, 金属颗粒 表面易氧化形成氧化膜, 不利于石墨烯与金属颗粒的良好结合, 影 响复合材料的性能。
发明内容
本发明正是针对上述现有技术中存在的不足而设计提供了一种 通过石墨烯增强金属材料的方法, 该方法首先通过超声振荡的方式 制备出单分散石墨烯溶液, 将单分散的石墨烯溶液与金属粉末混合 后进行球磨, 使石墨烯通过球磨的方式均匀的镶嵌到金属颗粒表面, 然后经粉末冶金工艺进行致密化处理, 最后采用热挤压工艺, 得到 石墨烯增强的金属棒材或板材。
该种通过石墨烯增强金属材料的方法的具体歩骤是:
(1) 将 5g的石墨烯加入到 495ml酒精溶液中,利用超声细胞粉碎 仪制备出石墨烯溶液, 超声细胞粉碎仪的工作时间超过 30分钟;
(2) 将 1000g的金属粉末与歩骤 (1)配制的 100ml〜2000ml石墨烯 溶液均匀混合, 混合后装入到球磨灌中, 进行机械球磨, 球磨时间 超过 24小时;
通过球磨将片状的石墨烯嵌入到金属粉末颗粒的表面,形成比较 好的结合, 使石墨烯与金属粉末更均匀的混合, 石墨烯能更均匀的 分散到基体表面中, 球磨工艺还可以使晶粒细化, 提高了金属的性 能;
(3) 球磨结束后将混合物取出, 装入到烧杯并放入烘箱中烘干, 得到石墨烯 /金属复合粉末; (4) 将石墨烯 /金属复合粉末装入到包套中,装入粉末的同时进行 振荡, 提高松装密度;
(5) 对包套抽真空处理, 抽真空的同时进行加热, 除去石墨烯 / 金属复合粉末中的蒸汽、 夹杂气体等, 避免金属粉末氧化不易成型, 当真空度达到 1. 0 X 10— 3Pa时, 然后将包套焊接密封;
(6) 将包套进行热等静压处理,使包套中的石墨烯 /金属复合粉末 成型, 得到密实的石墨烯增强金属复合材料;
(7) 将石墨烯增强金属复合材料料进行热挤压成型, 制备出石墨 烯增强的金属棒材或板材。
本发明具有的优点和有益效果是:
第一,大多数研究者添加的是氧化石墨烯,制备过程中还需进行 还原处理, 因此石墨烯的添加量很难得到精确控制, 本发明直接使 用纯石墨烯粉末添加, 有利于精确控制石墨烯的添加量;
第二, 本方法采用超声振荡的方式制备出单分散石墨烯均匀溶 液, 单分散石墨烯均匀溶液易于与金属粉末均匀复合;
第三,本发明采用球磨的方式将石墨烯与金属粉末复合,通过高 速的球磨珠将片状的纯石墨烯嵌入到金属粉末颗粒的表面, 形成比 较好的结合, 同时通过高速球磨使石墨烯与金属粉末更均匀的混合, 石墨烯分散性可以得到保证;
第四,本发明通过热挤压成型,使石墨烯进一歩分散并形成有取 向的织构, 有利于发挥石墨烯的增强效果;
第五, 将石墨烯 /金属复合粉末装入包套, 包套抽真空的同时加 热, 除去石墨烯 /金属复合粉末中的蒸汽、 夹杂气体等, 使金属颗粒 不易形成氧化膜, 石墨烯与金属颗粒形成良好的结合;
第六,本发明工艺简单,易于实现大批量大尺寸的石墨烯增强材 料的制备, 降低生产成本, 具有优异的工程应用前景。 具体实施方式
以下将结合实施例对本发明技术方案作进一歩地详述: 实施例 1
该种通过石墨烯增强金属材料的方法的歩骤是:
(1) 将 5g的石墨烯加入到 495ml酒精溶液中,利用超声细胞粉碎 仪制备出石墨烯溶液, 超声细胞粉碎仪的工作时间超过 30分钟;
(2) 将 1000g的铝合金粉末与歩骤 (1)配制的 500ml〜 1000ml石墨 烯溶液均匀混合, 混合后装入到球磨灌中, 并向球磨罐中加入适量 的酒精, 使混合溶液体积达到球磨罐的 2/3, 然后进行机械球磨, 球 磨时间超过 24小时;
(3) 球磨结束后将混合溶液取出,装入到烧杯并放入烘箱中烘干, 得到石墨烯 /铝合金复合粉末;
(4) 将石墨烯 /铝合金复合粉末装入到纯铝包套中,包套尺寸为 Φ 70mm X 80mm, 装入粉末的同时进行振荡, 松装量不低于 1. 6g/cm3;
(5) 对包套抽真空处理, 抽真空的同时进行加热, 加热温度为 480°C, 当真空度达到 1. 0 X 10— 3Pa时, 将包套焊接密封;
(6) 将包套进行热等静压处理,使包套中的石墨烯 /铝合金复合粉 末成型, 得到密实的石墨烯增强铝合金复合材料, 热等静压的温度 为 480°C, 压力为 l lOMpa, 时间为 2小时;
(7) 热等静压后使用线切割、 车加工等方式去除包套, 将石墨烯 增强铝合金复合材料料进行热挤压成型, 制备出石墨烯增强的铝合 金棒材, 挤压温度为 440°C〜480°C, 制备出 Φ 12mm的石墨烯增强的 铝合金棒材。
与现有技术相比,本发明方法解决了石墨烯与金属基体难以结合 的问题, 通过本工艺可以较精确的控制石墨烯的添加量, 同时通过 挤压变形使石墨烯进一歩分散到集体中并形成有取向的织构, 合金 强度显著提高。 本工艺简单, 易于实现大批量大尺寸的石墨烯增强 金属基复合材料的制备。

Claims

权 利 要 求 书
1. 一种通过石墨烯增强金属材料的方法, 其特征在于: 该方法 的歩骤是:
(1) 将 5g的石墨烯加入到 495ml酒精溶液中,利用超声细胞粉碎 仪制备出石墨烯溶液, 超声细胞粉碎仪的工作时间超过 30分钟;
(2) 将 1000g的金属粉末与歩骤 (1)配制的 100ml〜2000ml石墨烯 溶液均匀混合, 混合后装入到球磨灌中, 进行机械球磨, 球磨时间 超过 24小时;
(3) 球磨结束后将混合物取出, 装入到烧杯并放入烘箱中烘干, 得到石墨烯 /金属复合粉末;
(4) 将石墨烯 /金属复合粉末装入到包套中,装入粉末的同时进行 振荡, 提高松装密度;
(5) 对包套抽真空处理, 抽真空的同时进行加热, 当真空度达到 1. 0 X 10— 3Pa时, 将包套焊接密封;
(6) 将包套进行热等静压处理,使包套中的石墨烯 /金属复合粉末 成型, 得到密实的石墨烯增强金属复合材料;
(7) 将石墨烯增强金属复合材料料进行热挤压成型, 制备出石墨 烯增强的金属棒材或板材。
PCT/CN2014/075219 2014-04-04 2014-04-11 一种通过石墨烯增强金属材料的方法 WO2015149385A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1618615.7A GB2539861B (en) 2014-04-04 2014-04-11 Method for reinforcing metal material by means of graphene
US15/281,949 US10926331B2 (en) 2014-04-04 2016-09-30 Method for reinforcing metal material by means of graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410136468.3A CN103993192A (zh) 2014-04-04 2014-04-04 一种通过石墨烯增强金属材料的方法
CN201410136468.3 2014-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/281,949 Continuation US10926331B2 (en) 2014-04-04 2016-09-30 Method for reinforcing metal material by means of graphene

Publications (1)

Publication Number Publication Date
WO2015149385A1 true WO2015149385A1 (zh) 2015-10-08

Family

ID=51307518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075219 WO2015149385A1 (zh) 2014-04-04 2014-04-11 一种通过石墨烯增强金属材料的方法

Country Status (4)

Country Link
US (1) US10926331B2 (zh)
CN (1) CN103993192A (zh)
GB (1) GB2539861B (zh)
WO (1) WO2015149385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959359A (zh) * 2022-05-11 2022-08-30 河南科技大学 高致密化定向排列Ti2AlC/TiAl仿生复合材料及其制备方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561629B (zh) * 2015-01-20 2017-06-06 哈尔滨工业大学 添加石墨烯改善TiAl合金性能的方法
CN104846227B (zh) * 2015-02-16 2017-01-25 苏州大学 石墨烯增强钛基复合材料及其制备方法
CN104894419B (zh) * 2015-02-26 2017-01-04 南昌大学 一种用包覆氧化镁石墨烯增强镁基复合材料的方法
CN104805323B (zh) * 2015-03-23 2017-08-29 武汉理工大学 一种石墨烯/钛复合材料及其制备方法
CN105063401A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铝基烯合金的制备方法
CN105063402A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铝基烯合金的制备方法
CN105108133A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种石墨烯和金属混合粉体及其制备方法
CN105112701A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种石墨烯/铝复合材料的制备方法
CN105063403A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金的制备方法
CN105112700A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种石墨烯/铝复合材料
CN105112694A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种镁基烯合金的制备方法
CN105063405A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铜基烯合金的制备方法
CN105063404A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种钛基烯合金的制备方法
CN105112704A (zh) * 2015-06-25 2015-12-02 中国航空工业集团公司北京航空材料研究院 一种石墨烯/铝合金复合材料的制备方法
CN105176584B (zh) * 2015-10-10 2017-10-17 程礼华 高铝煤igcc发电石墨烯合金联产装置及其工艺
CN105132742B (zh) * 2015-10-20 2017-06-16 北京理工大学 一种石墨烯增强钛基复合材料及其制备方法
CN105397091B (zh) * 2015-10-30 2017-08-11 苏州大学 激光烧结的多孔石墨烯增强钛基纳米复合材料的制备方法
CN105458274B (zh) * 2015-12-30 2020-02-07 中国航空工业集团公司北京航空材料研究院 一种镍基高温烯合金粉末球磨制备方法
CN105834435B (zh) * 2015-12-30 2020-01-21 中国航空工业集团公司北京航空材料研究院 一种镍基高温烯合金粉末湿混制备方法
CN105779823A (zh) * 2015-12-30 2016-07-20 中国航空工业集团公司北京航空材料研究院 一种镍基粉末高温烯合金的制备方法
CN105728719A (zh) * 2016-03-18 2016-07-06 北京科技大学 一种高导热铜基电子封装基板的制备方法
CN106367683B (zh) * 2016-09-14 2018-03-16 西安工业大学 一种轻质高热导率Fe‑Al基合金及其制备方法
CN106623892A (zh) * 2016-11-08 2017-05-10 中航装甲科技有限公司 一种复合装甲材料
CN106756161A (zh) * 2016-11-21 2017-05-31 贵州大学 一种海绵钛添加石墨烯复合材料及其制备方法
CN106636711B (zh) * 2016-12-15 2018-06-29 中国航空工业集团公司北京航空材料研究院 一种石墨烯增强蒙乃尔合金的制备方法
CN107058786B (zh) * 2017-04-19 2018-06-19 哈尔滨理工大学 一种镁基石墨烯复合材料的制备方法
CN107058832A (zh) * 2017-05-08 2017-08-18 哈尔滨理工大学 一种石墨烯增强镁基复合材料的制备方法
CN107598175B (zh) * 2017-07-27 2019-06-28 中国航发北京航空材料研究院 一种石墨烯和钛合金复合粉末球磨制备方法
CN108326312B (zh) * 2017-12-25 2021-10-08 新疆烯金石墨烯科技有限公司 一种用于制备石墨烯铝导线的连续挤压设备
CN108330311A (zh) * 2017-12-25 2018-07-27 新疆烯金石墨烯科技有限公司 一种石墨烯复合材料的制备方法
CN108326311B (zh) * 2017-12-25 2021-10-08 新疆烯金石墨烯科技有限公司 一种石墨烯铝合金导线的连续挤压制备方法
CN108746580A (zh) * 2018-04-04 2018-11-06 北京石墨烯技术研究院有限公司 一种氧化石墨烯在金属粉末中的分散方法
US11512390B2 (en) 2018-07-16 2022-11-29 Rochester Institute Of Technology Method of site-specific deposition onto a free-standing carbon article
CN109706371B (zh) * 2018-11-23 2020-10-30 北京石墨烯技术研究院有限公司 石墨烯钢复合材料的制备方法
CN109732093B (zh) * 2018-11-27 2022-04-08 苏州鼎烯聚材纳米科技有限公司 一种石墨烯/铝合金复合材料的制备方法
CN109182817A (zh) * 2018-11-29 2019-01-11 北京石墨烯技术研究院有限公司 一种石墨烯增强钴基复合材料的制备方法
CN109234563A (zh) * 2018-11-29 2019-01-18 北京圣盟科技有限公司 一种新型石墨烯-金属基复合材料的制备方法
CN109338136A (zh) * 2018-11-29 2019-02-15 北京石墨烯技术研究院有限公司 一种石墨烯增强钴基高温合金的复合材料的制备方法
CN110373597B (zh) * 2019-07-16 2022-07-15 东华大学 石墨烯增强高性能轻量化汽车用铁基粉末材料制备方法
CN110453059A (zh) * 2019-09-11 2019-11-15 江西省科学院应用物理研究所 一种纳米尺度石墨增强铜基复合材料及其制备方法
CN110666179B (zh) * 2019-11-11 2022-11-29 沈阳航空航天大学 用于激光沉积制造的石墨烯铝基复合粉末及其制法和应用
CN110789060A (zh) * 2019-11-12 2020-02-14 泉州市康电光电科技有限公司 一种石墨烯超导体及其制备工艺
CN111763849A (zh) * 2020-06-03 2020-10-13 西北工业大学 一种高热导率钛基复合材料的制备方法
CN114717431A (zh) * 2020-06-09 2022-07-08 姜春辉 一类石墨烯金属基复合材料及其快速制备方法
CN112143929B (zh) * 2020-08-07 2022-07-12 百色学院 一种Al-Mg合金线的石墨烯负载晶粒细化材料及其制备方法
CN113206353A (zh) * 2021-04-29 2021-08-03 湖北亿纬动力有限公司 一种电池模组用电芯连接板及其制备方法和用途
CN115464140B (zh) * 2022-09-27 2023-06-27 天蔚蓝电驱动科技(江苏)有限公司 一种电机石墨烯导条及其制备方法和应用
CN115821104A (zh) * 2022-11-30 2023-03-21 国网浙江省电力有限公司湖州供电公司 采用泡沫铝吸附制备碳纳米管改性铝基复合材料的方法
CN117403091A (zh) * 2023-12-13 2024-01-16 电子科技大学 一种石墨烯改性航空铝合金复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850422A (zh) * 2010-04-30 2010-10-06 北京工业大学 热等静压法制备Ni基合金复合基带
CN102218540A (zh) * 2010-04-14 2011-10-19 韩国科学技术院 石墨烯/金属纳米复合物粉末及其制造方法
CN102329976A (zh) * 2011-09-06 2012-01-25 上海交通大学 石墨烯增强金属基复合材料的制备方法
CN102719719A (zh) * 2012-07-17 2012-10-10 王永富 一种石墨烯改性的硬质合金、其制备工艺及应用
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN103334030A (zh) * 2013-06-09 2013-10-02 武汉理工大学 一种含石墨烯钛铝基自润滑复合材料及其制备方法
KR20130110243A (ko) * 2012-03-28 2013-10-10 이성균 Cnt 그래핀이 함유된 합금

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045698B4 (de) * 2005-09-20 2010-11-11 Dentaurum J.P. Winkelstroeter Kg Formkörper aus einer Dentallegierung zur Herstellung von dentalen Teilen
US9643144B2 (en) * 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
CN102581504B (zh) * 2012-03-23 2014-07-30 天津大学 石墨烯增强无铅焊料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218540A (zh) * 2010-04-14 2011-10-19 韩国科学技术院 石墨烯/金属纳米复合物粉末及其制造方法
CN101850422A (zh) * 2010-04-30 2010-10-06 北京工业大学 热等静压法制备Ni基合金复合基带
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN102329976A (zh) * 2011-09-06 2012-01-25 上海交通大学 石墨烯增强金属基复合材料的制备方法
KR20130110243A (ko) * 2012-03-28 2013-10-10 이성균 Cnt 그래핀이 함유된 합금
CN102719719A (zh) * 2012-07-17 2012-10-10 王永富 一种石墨烯改性的硬质合金、其制备工艺及应用
CN103334030A (zh) * 2013-06-09 2013-10-02 武汉理工大学 一种含石墨烯钛铝基自润滑复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959359A (zh) * 2022-05-11 2022-08-30 河南科技大学 高致密化定向排列Ti2AlC/TiAl仿生复合材料及其制备方法
CN114959359B (zh) * 2022-05-11 2023-03-03 河南科技大学 高致密化定向排列Ti2AlC/TiAl仿生复合材料及其制备方法

Also Published As

Publication number Publication date
US10926331B2 (en) 2021-02-23
CN103993192A (zh) 2014-08-20
GB2539861A (en) 2016-12-28
US20170014908A1 (en) 2017-01-19
GB2539861B (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2015149385A1 (zh) 一种通过石墨烯增强金属材料的方法
CN105033254B (zh) 基于CNTs和激光增材制造加工技术制备高性能原位TiC增强钛基复合材料工件的方法
Munir et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites
CN104619637B (zh) 包含碳纳米管的固体碳产物以及其形成方法
CN105081310B (zh) 一种制备石墨烯增强铝基复合材料的方法
WO2015149384A1 (zh) 一种石墨烯/金属复合板材的制备方法
CN105648249B (zh) 一种碳纳米管增强铝基多层复合材料的制备方法
Sun et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites
CN109338148B (zh) 一种石墨烯-铜铬锆合金及其制备方法
CN105108133A (zh) 一种石墨烯和金属混合粉体及其制备方法
CN110157931B (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN108530098B (zh) 一种块体碳增强体/碳复合材料及其制备方法
CN1830602A (zh) 一种制备高导热SiCp/Al电子封装材料的方法
CN108384979B (zh) 一种混杂增强铜基复合材料及其制备方法
Babu et al. Thermal, electrical and mechanical characterization of microwave sintered Copper/carbon nanotubes (CNT) composites against sintering duration, CNT diameter and its concentration
CN104862513A (zh) 一种放电等离子(sps)烧结制备多壁碳纳米管增强金属基复合材料的方法
CN112011705A (zh) 纳米碳增强铜基复合材料批量制备方法
CN108842131A (zh) 一种高导热的三维石墨烯/铜复合材料的制备方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
Dong et al. Effect of reinforcement shape on the stress–strain behavior of aluminum reinforced with SiC nanowire
CN102554215A (zh) 一种纳米级钽粉的热处理方法
Chen et al. Microstructures and mechanical properties of nano-C and in situ Al2O3 reinforced aluminium matrix composites processed by equal-channel angular pressing
Sun et al. Fabrication and mechanical properties of Al2O3–TiC ceramic composites synergistically reinforced with multi-walled carbon nanotubes and graphene nanoplates
CN108580885B (zh) 一种核壳结构石墨烯包覆粉体的制备方法
CN113458400B (zh) 一种Ti-Al3Ti金属间化合物叠层复合板制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201618615

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140411

WWE Wipo information: entry into national phase

Ref document number: 1618615.7

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887903

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14887903

Country of ref document: EP

Kind code of ref document: A1