WO2015146614A1 - Sims analysis method and sims analysis device - Google Patents

Sims analysis method and sims analysis device Download PDF

Info

Publication number
WO2015146614A1
WO2015146614A1 PCT/JP2015/057400 JP2015057400W WO2015146614A1 WO 2015146614 A1 WO2015146614 A1 WO 2015146614A1 JP 2015057400 W JP2015057400 W JP 2015057400W WO 2015146614 A1 WO2015146614 A1 WO 2015146614A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid sample
fixing member
carbon nanotubes
fibrous columnar
sims
Prior art date
Application number
PCT/JP2015/057400
Other languages
French (fr)
Japanese (ja)
Inventor
前野 洋平
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015146614A1 publication Critical patent/WO2015146614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Definitions

  • the present invention relates to a SIMS analysis method and a SIMS analysis apparatus. Specifically, the present invention relates to a method for analyzing a measurement target sample in SIMS (Secondary Ion Mass Spectrometry) and an apparatus for analyzing the measurement target sample in SIMS.
  • SIMS Single Ion Mass Spectrometry
  • SIMS Secondary Ion Mass Spectrometry: secondary ion mass spectrometry
  • components atoms, molecules
  • SIMS can be applied to elemental analysis of organic matter and inorganic matter, and isotope analysis is also possible (see, for example, Patent Document 1).
  • the SIMS analysis method of the present invention comprises: A method for analyzing a solid sample by SIMS, comprising: As a fixing member for fixing the solid sample, a fixing member having a fibrous columnar structure including a plurality of fibrous columnar objects having a length of 200 ⁇ m or more on the surface is used.
  • the shear adhesive force with respect to the glass surface in the room temperature of the said fibrous columnar structure is 10 N / cm ⁇ 2 > or more.
  • the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the SIMS analyzer of the present invention is An apparatus for analyzing a solid sample by SIMS, A fixing member for fixing the solid sample;
  • the fixing member is a fixing member having a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more on the surface.
  • the shear adhesive force with respect to the glass surface in the room temperature of the said fibrous columnar structure is 10 N / cm ⁇ 2 > or more.
  • the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the SIMS analyzer for analyzing a solid sample in such a SIMS analysis method can be provided.
  • FIG. 4 is a photographic diagram showing SIMS analysis results in Example 1.
  • the SIMS analysis method of the present invention is a method for analyzing a solid sample by SIMS, and a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more is provided on the surface as a fixing member for fixing the solid sample.
  • the fixing member which has is used.
  • a fixing member for fixing a solid sample by using a fixing member having a fibrous columnar structure having a plurality of fibrous columnar bodies having a length of 200 ⁇ m or more on the surface, a solid that is a measurement target Contamination of the sample can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
  • the SIMS analyzer of the present invention is an apparatus for analyzing a solid sample by SIMS, and includes a fixing member for fixing the solid sample, and the fixing member includes a fibrous column having a plurality of fibrous columnar members having a length of 200 ⁇ m or more.
  • the fixing member for fixing the solid sample is a fixing member having a fibrous columnar structure having a plurality of fibrous columnar bodies having a length of 200 ⁇ m or more on the surface, so that the solid to be measured Contamination of the sample can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
  • any configuration other than the fixed member in the SIMS analyzer of the present invention may be adopted depending on the purpose. That is, for example, a fixing member portion of a commercially available SIMS analyzer is changed to a special fixing member in the SIMS analyzer of the present invention, and various changes necessary for the change are made in the present invention. SIMS analyzer.
  • the fixing member is a member for fixing a solid sample, and its size and shape can be appropriately selected according to the type of SIMS analyzer to be used.
  • the fixing member is a fixing member having a fibrous columnar structure on the surface
  • the fixing member may be a fixing member made only of the fibrous columnar structure, or a fixing member made of the fibrous columnar structure and any appropriate member. It may be a member. Examples of such an appropriate member include a base material.
  • the fibrous columnar structure includes a plurality of fibrous columnar objects having a length of 200 ⁇ m or more.
  • the length of the fibrous columnar material is preferably 200 ⁇ m to 2000 ⁇ m, more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, particularly preferably 500 ⁇ m to 1000 ⁇ m, and most preferably 600 ⁇ m to 1000 ⁇ m. It is.
  • the length of the fibrous columnar body is within the above range, contamination of the solid sample to be measured can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
  • FIG. 1 shows a schematic cross-sectional view of an example of a fixing member used in a SIMS analysis method in a preferred embodiment of the present invention or provided in a SIMS analysis apparatus in a preferred embodiment of the present invention.
  • a fibrous columnar structure 10 includes a base material 1 and a plurality of fibrous columnar objects 2. One end 2 a of the fibrous columnar object 2 is fixed to the substrate 1.
  • the fibrous columnar body 2 is oriented in the direction of the length L.
  • the fibrous columnar body 2 is preferably oriented in a substantially vertical direction with respect to the substrate 1.
  • the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 1 is preferably 90 ° ⁇ 20 °, more preferably 90 ° ⁇ 15 °, and further preferably 90 ° ⁇ 10 °. And particularly preferably 90 ° ⁇ 5 °.
  • the fibrous columnar structure 10 may be an aggregate including only the plurality of fibrous columns 2. That is, the fibrous columnar structure 10 may not include the base material 1.
  • the plurality of fibrous columnar objects 2 can exist as an aggregate with each other, for example, by van der Waals force.
  • the shear adhesive force of the fibrous columnar structure to the glass surface at room temperature is preferably 10 N / cm 2 or more, more preferably 10 N / cm 2 to 200 N / cm 2 , and further preferably 15 N / cm 2.
  • any appropriate material can be adopted as the material for the fibrous columnar material.
  • examples thereof include metals such as aluminum and iron; inorganic materials such as silicon; carbon materials such as carbon nanofibers and carbon nanotubes; and high modulus resins such as engineering plastics and super engineering plastics.
  • Specific examples of the resin include polystyrene, polyethylene, polypropylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polyimide, polyamide, and the like.
  • Any appropriate physical properties can be adopted as the physical properties such as the molecular weight of the resin as long as the object of the present invention can be achieved.
  • any appropriate base material can be adopted depending on the purpose.
  • metals such as aluminum, quartz glass, silicon (silicon wafer, etc.), engineering plastic, super engineering plastic, and the like can be given.
  • engineering plastics and super engineering plastics include polyimide, polyethylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polypropylene, and polyamide. Any appropriate physical properties can be adopted as the physical properties such as molecular weight of these base materials within a range in which the object of the present invention can be achieved.
  • the thickness of the substrate can be set to any appropriate value depending on the purpose.
  • the surface of the substrate is chemically treated with conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage strike exposure, ionizing radiation treatment, etc., in order to improve adhesion and retention with adjacent layers.
  • conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage strike exposure, ionizing radiation treatment, etc.
  • a physical treatment or a coating treatment with a primer may be performed.
  • the substrate may be a single layer or a multilayer body.
  • the diameter of the fibrous columnar material is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, still more preferably 2 nm to 500 nm, particularly preferably 2 nm to 200 nm, and most preferably 2 nm to 100 nm.
  • the diameter of the fibrous columnar body is within the above range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be expressed.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the fibrous columnar product is preferably a carbon nanotube.
  • the fixing member is preferably a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 ⁇ m or more on the surface.
  • the fixing member is a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 ⁇ m or more on the surface, contamination of the solid sample to be measured can be further prevented, and the solid sample can be more stable. It can be fixed and better contrast can be expressed.
  • the fixing member is a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 ⁇ m or more on the surface
  • the fixing member is a fixing member having a carbon nanotube aggregate on the surface. It may be a fixing member made only of a body, or a fixing member made of a carbon nanotube aggregate and any appropriate member. Examples of such an appropriate member include a base material.
  • the fixing member is a fixing member made of a carbon nanotube aggregate and any appropriate member
  • one end of the carbon nanotube may be fixed to the arbitrary appropriate member.
  • a suitable member preferably includes a substrate.
  • the substrate used for the production of the carbon nanotube aggregate may be used as it is as a base material.
  • an adhesive layer may be provided on the substrate to bond and fix the carbon nanotubes.
  • the base material is a thermosetting resin
  • a thin film may be prepared in a state before the reaction, and one end of the carbon nanotube may be pressure-bonded to the thin film layer, and then cured and fixed.
  • the base material is a thermoplastic resin or metal
  • One preferred embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes having a plurality of layers, and the carbon nanotube layer.
  • the distribution width of the number distribution is 10 layers or more, and the relative frequency of the mode value of the layer number distribution is 25% or less.
  • the distribution width of the number distribution of the carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, particularly
  • the number of layers is preferably 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers.
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, Furthermore, the carbon nanotube can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the relative frequency of the mode value of the number distribution of carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and even more preferably 5% to 25%. Particularly preferred is 10% to 25%, and most preferred is 15% to 25%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the mode of the number distribution of the carbon nanotubes is preferably present from 2 layers to 10 layers, more preferably from 3 layers to 10 layers. .
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the carbon nanotubes may have any appropriate shape in cross section.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, particularly
  • the thickness is preferably 500 ⁇ m to 1000 ⁇ m, and most preferably 600 ⁇ m to 1000 ⁇ m.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • Another preferred embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes having a plurality of layers, and the carbon nanotubes.
  • the mode value of the number distribution of layers exists in 10 layers or less, and the relative frequency of the mode value is 30% or more.
  • the distribution width of the number distribution of the carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, further preferably 2 to 8 layers, particularly Three to eight layers are preferred.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and furthermore, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers. .
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, Furthermore, the carbon nanotube can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferred is 30% to 80%, and most preferred is 30% to 70%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the mode value of the number distribution of the carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably The number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the shape of the carbon nanotube it is sufficient that its cross section has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotubes is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, even more preferably 300 ⁇ m to 1500 ⁇ m, even more preferably 400 ⁇ m to 1000 ⁇ m, and particularly
  • the thickness is preferably 500 ⁇ m to 1000 ⁇ m, and most preferably 600 ⁇ m to 1000 ⁇ m.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
  • a method for producing a carbon nanotube aggregate for example, a catalyst layer is formed on a smooth substrate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown.
  • a method of producing an aggregate of carbon nanotubes oriented almost vertically from a substrate by a vapor deposition method (Chemical Vapor Deposition: CVD method).
  • CVD method Chemical Vapor Deposition: CVD method
  • any appropriate substrate can be adopted as the substrate that can be used in the method for producing a carbon nanotube aggregate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • the substrate can be used as it is in the SIMS analysis method of the present invention, or as a base material that can be included in a carbon nanotube aggregate that can be included in a fixing member included in the SIMS analysis device of the present invention.
  • any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate.
  • a thermal CVD apparatus as shown in FIG. 2, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace can be cited.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate.
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the substrate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a substrate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is deposited and heated to 450 ° C. and oxidized without forming a hydrophilic film on the substrate, Al 2 O 3 surfaces having different particle diameters may not be formed easily.
  • a hydrophilic film is prepared on a substrate and Al 2 O 3 is directly deposited, it is difficult to form Al 2 O 3 surfaces having different particle diameters.
  • the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles.
  • the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
  • Any appropriate method can be adopted as a method for forming the catalyst layer.
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a substrate, and the like can be mentioned.
  • any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • Arbitrary appropriate temperature can be employ
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • a fibrous columnar structure having a thickness of 700 ⁇ m is placed on a conductive aluminum sample stage (EM 301, G301), and compressed by a mirror surface of a silicon wafer so that the thickness becomes half (350 ⁇ m). It was. Particles obtained by pulverizing rock as an analysis sample are sprinkled on the surface of the fibrous columnar structure of the obtained fixing member (with the fibrous columnar structure disposed on the sample stage), and a silicon wafer is sprinkled from above the particles. The particles were brought into close contact with the surface of the fibrous columnar structure by the dead weight of the silicon wafer.
  • Example 1 An alumina thin film (thickness 20 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this alumina thin film, an Fe thin film (thickness: 2.0 nm) was further vapor-deposited with a sputtering apparatus (ULVAC, RFS-200). Thereafter, the substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 105/80 sccm
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (90/80/15 sccm, moisture content 600 ppm) and left standing for 35 minutes to grow carbon nanotubes on the substrate.
  • a mixed gas of helium / hydrogen / ethylene 90/80/15 sccm, moisture content 600 ppm
  • the length of the carbon nanotubes provided in the carbon nanotube aggregate (1) was 700 ⁇ m.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (1) as a sample fixing member (1) for a SIMS analyzer.
  • the shear bonding strength of the sample fixing member (1) for SIMS analyzer was 20.7 N / cm 2 .
  • the results of SIMS analysis are shown in FIG.
  • FIG. 3 according to the SIMS analysis method of the present invention and according to the SIMS analysis apparatus of the present invention, 16 O is confirmed only from particles without charging and drifting of the sample. It was found that the effect of obtaining an image having a clear interface can be expressed.
  • the analysis field of view was set to 25 ⁇ m per side, and an image was obtained with 16 O (oxygen). It should be noted that charging during measurement was not generated without neutralization by E-gun.
  • SIMS analysis method of the present invention By using the SIMS analysis method of the present invention or the SIMS analysis apparatus of the present invention, it is possible to prevent contamination of the solid sample to be measured, to stably fix the solid sample, and to exhibit good contrast. SIMS analysis Is possible.

Abstract

Provided is an SIMS analysis method with which contamination of a solid sample to be measured can be prevented, the solid sample can be stably fixed, and good contrast can be exhibited. Further provided is an SIMS analysis device for analysing a solid sample in such an SIMS analysis method. In this SIMS analysis method for analysing a solid sample using SIMS, a fixing member having, on the surface, a fibrous columnar structure comprising a plurality of fibrous columnar objects having a length of 200 µm or more is used as a fixing member for fixing the solid sample. This SIMS analysis device for analysing a solid sample using SIMS is provided with a fixing member for fixing the solid sample, said fixing member having, on the surface, a fibrous columnar structure comprising a plurality of fibrous columnar objects having a length of 200 µm or more.

Description

SIMS分析方法およびSIMS分析装置SIMS analysis method and SIMS analysis apparatus
 本発明は、SIMS分析方法およびSIMS分析装置に関する。詳細には、SIMS(Secondary Ion Mass Spectrometry)において測定対象試料を分析する方法、および、SIMSにおいて測定対象試料を分析する装置に関する。 The present invention relates to a SIMS analysis method and a SIMS analysis apparatus. Specifically, the present invention relates to a method for analyzing a measurement target sample in SIMS (Secondary Ion Mass Spectrometry) and an apparatus for analyzing the measurement target sample in SIMS.
 SIMS(Secondary Ion Mass Spectrometry:二次イオン質量分析)は、固体試料の表面に存在する成分(原子、分子)を検出することが可能な組成分析であり、極微量成分でも検出することができる。このため、SIMSは、有機物や無機物の元素分析に適用でき、同位体分析も可能である(例えば、特許文献1参照)。 SIMS (Secondary Ion Mass Spectrometry: secondary ion mass spectrometry) is a composition analysis that can detect components (atoms, molecules) present on the surface of a solid sample, and can detect even trace components. For this reason, SIMS can be applied to elemental analysis of organic matter and inorganic matter, and isotope analysis is also possible (see, for example, Patent Document 1).
 SIMS分析においては、一般に、測定対象となる固体試料を粘着剤や接着剤などの固定部材に固定させて測定を行う。しかし、従来の粘着剤や接着剤などの固定部材を用いた場合、それに由来する有機成分が固体試料に付着してしまい、固体試料の汚染が生じるという問題がある。 In SIMS analysis, measurement is generally performed by fixing a solid sample to be measured to a fixing member such as an adhesive or an adhesive. However, when a conventional fixing member such as a pressure-sensitive adhesive or adhesive is used, there is a problem that organic components derived therefrom adhere to the solid sample and the solid sample is contaminated.
 このような汚染の問題を回避するため、AuやInを固定部材とし、固体試料をAuやInの表面に吸着させたり埋め込んだりすることで、固体試料を固定させる方法が提案されている(例えば、特許文献2参照)。 In order to avoid such a problem of contamination, a method of fixing a solid sample by using Au or In as a fixing member and adsorbing or embedding the solid sample on the surface of Au or In has been proposed (for example, , See Patent Document 2).
 しかし、このような固定方法においては、Auの表面への固体試料の吸着が不十分でないという問題や、Inの表面への固体試料の埋め込みの際に該固体試料が破壊されてしまうという問題がある。そして、このような問題により、特に、固体試料の正確な組成分析において重要なコントラストが損なわれるという重大な問題が生じる。 However, in such a fixing method, there is a problem that the solid sample is not sufficiently adsorbed on the surface of Au, and that the solid sample is destroyed when the solid sample is embedded in the surface of In. is there. And such a problem causes a serious problem that particularly important contrast is lost in accurate composition analysis of a solid sample.
特開2008-175654号公報JP 2008-175654 A 特開2008-205940号公報JP 2008-205940 A
 本発明の課題は、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる、SIMS分析方法を提供することにある。また、そのようなSIMS分析方法において固体試料を分析するためのSIMS分析装置を提供することにある。 An object of the present invention is to provide a SIMS analysis method that can prevent contamination of a solid sample to be measured, can stably fix the solid sample, and can exhibit good contrast. Another object of the present invention is to provide a SIMS analyzer for analyzing a solid sample in such a SIMS analysis method.
 本発明のSIMS分析方法は、
 SIMSによって固体試料を分析する方法であって、
 該固体試料を固定する固定部材として、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材を用いる。
The SIMS analysis method of the present invention comprises:
A method for analyzing a solid sample by SIMS, comprising:
As a fixing member for fixing the solid sample, a fixing member having a fibrous columnar structure including a plurality of fibrous columnar objects having a length of 200 μm or more on the surface is used.
 好ましい実施形態においては、上記繊維状柱状構造体の室温におけるガラス面に対するせん断接着力が10N/cm以上である。 In preferable embodiment, the shear adhesive force with respect to the glass surface in the room temperature of the said fibrous columnar structure is 10 N / cm < 2 > or more.
 好ましい実施形態においては、上記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。 In a preferred embodiment, the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
 本発明のSIMS分析装置は、
 SIMSによって固体試料を分析する装置であって、
 該固体試料を固定する固定部材を備え、
 該固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材である。
The SIMS analyzer of the present invention is
An apparatus for analyzing a solid sample by SIMS,
A fixing member for fixing the solid sample;
The fixing member is a fixing member having a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 μm or more on the surface.
 好ましい実施形態においては、上記繊維状柱状構造体の室温におけるガラス面に対するせん断接着力が10N/cm以上である。 In preferable embodiment, the shear adhesive force with respect to the glass surface in the room temperature of the said fibrous columnar structure is 10 N / cm < 2 > or more.
 好ましい実施形態においては、上記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。 In a preferred embodiment, the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
 本発明によれば、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる、SIMS分析方法を提供することができる。また、そのようなSIMS分析方法において固体試料を分析するためのSIMS分析装置を提供することができる。 According to the present invention, it is possible to provide a SIMS analysis method that can prevent contamination of a solid sample to be measured, can stably fix the solid sample, and can exhibit good contrast. Moreover, the SIMS analyzer for analyzing a solid sample in such a SIMS analysis method can be provided.
本発明の好ましい実施形態におけるSIMS分析方法に用いる、あるいは、本発明の好ましい実施形態におけるSIMS分析装置が備える固定部材の一例の概略断面図である。It is a schematic sectional drawing of an example of the fixing member used for the SIMS analysis method in preferable embodiment of this invention, or with the SIMS analyzer in preferable embodiment of this invention. 本発明の好ましい実施形態におけるSIMS分析方法に用いる、あるいは、本発明の好ましい実施形態におけるSIMS分析装置が備える固定部材がカーボンナノチューブ集合体を含む場合の該カーボンナノチューブ集合体の製造装置の概略断面図である。Schematic sectional view of an apparatus for producing a carbon nanotube aggregate when the fixing member used in the SIMS analysis method in the preferred embodiment of the present invention or the fixing member provided in the SIMS analysis apparatus in the preferred embodiment of the present invention includes the carbon nanotube aggregate. It is. 実施例1におけるSIMS分析結果を示す写真図である。FIG. 4 is a photographic diagram showing SIMS analysis results in Example 1.
 本発明のSIMS分析方法は、SIMSによって固体試料を分析する方法であって、該固体試料を固定する固定部材として、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材を用いる。 The SIMS analysis method of the present invention is a method for analyzing a solid sample by SIMS, and a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 μm or more is provided on the surface as a fixing member for fixing the solid sample. The fixing member which has is used.
 本発明のSIMS分析方法において、固体試料を固定する固定部材として、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材を用いることにより、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる。 In the SIMS analysis method of the present invention, as a fixing member for fixing a solid sample, by using a fixing member having a fibrous columnar structure having a plurality of fibrous columnar bodies having a length of 200 μm or more on the surface, a solid that is a measurement target Contamination of the sample can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
 本発明のSIMS分析装置は、SIMSによって固体試料を分析する装置であって、該固体試料を固定する固定部材を備え、該固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材である。 The SIMS analyzer of the present invention is an apparatus for analyzing a solid sample by SIMS, and includes a fixing member for fixing the solid sample, and the fixing member includes a fibrous column having a plurality of fibrous columnar members having a length of 200 μm or more. A fixing member having a columnar structure on its surface.
 本発明のSIMS分析装置において、固体試料を固定する固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材であることにより、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる。 In the SIMS analyzer of the present invention, the fixing member for fixing the solid sample is a fixing member having a fibrous columnar structure having a plurality of fibrous columnar bodies having a length of 200 μm or more on the surface, so that the solid to be measured Contamination of the sample can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
 本発明のSIMS分析装置における固定部材以外の構成は、目的に応じて、任意の適切な構成を採用し得る。すなわち、例えば、市販されているSIMS分析装置の固定部材部分を、本発明のSIMS分析装置における特殊な固定部材に変更し、その変更に伴って必要となる各種変更を施したものを、本発明のSIMS分析装置とすることができる。 Any configuration other than the fixed member in the SIMS analyzer of the present invention may be adopted depending on the purpose. That is, for example, a fixing member portion of a commercially available SIMS analyzer is changed to a special fixing member in the SIMS analyzer of the present invention, and various changes necessary for the change are made in the present invention. SIMS analyzer.
 固定部材は、固体試料を固定させるための部材であり、その大きさや形状は、使用するSIMS分析装置の種類に応じて、適宜選択し得る。 The fixing member is a member for fixing a solid sample, and its size and shape can be appropriately selected according to the type of SIMS analyzer to be used.
 固定部材は、繊維状柱状構造体を表面に有する固定部材であれば、繊維状柱状構造体のみからなる固定部材であっても良いし、繊維状柱状構造体と任意の適切な部材からなる固定部材であっても良い。このような任意の適切な部材としては、例えば、基材が挙げられる。 As long as the fixing member is a fixing member having a fibrous columnar structure on the surface, the fixing member may be a fixing member made only of the fibrous columnar structure, or a fixing member made of the fibrous columnar structure and any appropriate member. It may be a member. Examples of such an appropriate member include a base material.
 繊維状柱状構造体は、長さ200μm以上の繊維状柱状物を複数備える。繊維状柱状物の長さは、好ましくは200μm~2000μmであり、より好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。繊維状柱状物の長さが上記範囲内に収まることにより、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる。 The fibrous columnar structure includes a plurality of fibrous columnar objects having a length of 200 μm or more. The length of the fibrous columnar material is preferably 200 μm to 2000 μm, more preferably 300 μm to 1500 μm, still more preferably 400 μm to 1000 μm, particularly preferably 500 μm to 1000 μm, and most preferably 600 μm to 1000 μm. It is. When the length of the fibrous columnar body is within the above range, contamination of the solid sample to be measured can be prevented, the solid sample can be stably fixed, and good contrast can be expressed.
 図1に、本発明の好ましい実施形態におけるSIMS分析方法に用いる、あるいは、本発明の好ましい実施形態におけるSIMS分析装置が備える固定部材の一例の概略断面図を示す。 FIG. 1 shows a schematic cross-sectional view of an example of a fixing member used in a SIMS analysis method in a preferred embodiment of the present invention or provided in a SIMS analysis apparatus in a preferred embodiment of the present invention.
 図1において、繊維状柱状構造体10は、基材1と、複数の繊維状柱状物2を備える。繊維状柱状物2の片端2aは、基材1に固定されている。繊維状柱状物2は、長さLの方向に配向している。繊維状柱状物2は、好ましくは、基材1に対して略垂直方向に配向している。ここで、「略垂直方向」とは、基材1の面に対する角度が、好ましくは90°±20°であり、より好ましくは90°±15°であり、さらに好ましくは90°±10°であり、特に好ましくは90°±5°である。なお、本図示例とは異なり、繊維状柱状構造体10は複数の繊維状柱状物2のみからなる集合体であっても良い。すなわち、繊維状柱状構造体10は基材1を備えていなくても良い。この場合、複数の繊維状柱状物2は、互いに、例えば、ファンデルワールス力によって集合体として存在し得る。 1, a fibrous columnar structure 10 includes a base material 1 and a plurality of fibrous columnar objects 2. One end 2 a of the fibrous columnar object 2 is fixed to the substrate 1. The fibrous columnar body 2 is oriented in the direction of the length L. The fibrous columnar body 2 is preferably oriented in a substantially vertical direction with respect to the substrate 1. Here, the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 1 is preferably 90 ° ± 20 °, more preferably 90 ° ± 15 °, and further preferably 90 ° ± 10 °. And particularly preferably 90 ° ± 5 °. Unlike the illustrated example, the fibrous columnar structure 10 may be an aggregate including only the plurality of fibrous columns 2. That is, the fibrous columnar structure 10 may not include the base material 1. In this case, the plurality of fibrous columnar objects 2 can exist as an aggregate with each other, for example, by van der Waals force.
 固定部材において、繊維状柱状構造体の室温におけるガラス面に対するせん断接着力は、好ましくは10N/cm以上であり、より好ましくは10N/cm~200N/cmであり、さらに好ましくは15N/cm~200N/cmであり、特に好ましくは20N/cm~200N/cmであり、最も好ましくは25N/cm~200N/cmである。繊維状柱状構造体の室温におけるガラス面に対するせん断接着力が上記範囲内に収まることにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the fixing member, the shear adhesive force of the fibrous columnar structure to the glass surface at room temperature is preferably 10 N / cm 2 or more, more preferably 10 N / cm 2 to 200 N / cm 2 , and further preferably 15 N / cm 2. a cm 2 ~ 200N / cm 2, particularly preferably 20N / cm 2 ~ 200N / cm 2, and most preferably 25N / cm 2 ~ 200N / cm 2. When the shear adhesion force of the fibrous columnar structure to the glass surface at room temperature is within the above range, contamination of the solid sample as a measurement target can be further prevented, the solid sample can be fixed more stably, and the better Contrast can be expressed.
 繊維状柱状物の材料としては、任意の適切な材料を採用し得る。例えば、アルミ、鉄などの金属;シリコンなどの無機材料;カーボンナノファイバー、カーボンナノチューブなどのカーボン材料;エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどの高モジュラスの樹脂;などが挙げられる。樹脂の具体例としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリイミド、ポリアミドなどが挙げられる。樹脂の分子量などの諸物性は、本発明の目的を達成しうる範囲において、任意の適切な物性を採用し得る。 Any appropriate material can be adopted as the material for the fibrous columnar material. Examples thereof include metals such as aluminum and iron; inorganic materials such as silicon; carbon materials such as carbon nanofibers and carbon nanotubes; and high modulus resins such as engineering plastics and super engineering plastics. Specific examples of the resin include polystyrene, polyethylene, polypropylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polyimide, polyamide, and the like. Any appropriate physical properties can be adopted as the physical properties such as the molecular weight of the resin as long as the object of the present invention can be achieved.
 基材としては、目的に応じて、任意の適切な基材を採用し得る。例えば、アルミ等の金属、石英ガラス、シリコン(シリコンウェハなど)、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどが挙げられる。エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックの具体例としては、ポリイミド、ポリエチレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリプロピレン、ポリアミドなどが挙げられる。これらの基材の分子量などの諸物性は、本発明の目的を達成し得る範囲において、任意の適切な物性を採用し得る。 As the base material, any appropriate base material can be adopted depending on the purpose. For example, metals such as aluminum, quartz glass, silicon (silicon wafer, etc.), engineering plastic, super engineering plastic, and the like can be given. Specific examples of engineering plastics and super engineering plastics include polyimide, polyethylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polypropylene, and polyamide. Any appropriate physical properties can be adopted as the physical properties such as molecular weight of these base materials within a range in which the object of the present invention can be achieved.
 基材の厚みは、目的に応じて、任意の適切な値に設定され得る。 The thickness of the substrate can be set to any appropriate value depending on the purpose.
 基材の表面は、隣接する層との密着性,保持性などを高めるために、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的または物理的処理,下塗剤(例えば、上記粘着性物質)によるコーティング処理が施されていてもよい。 The surface of the substrate is chemically treated with conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage strike exposure, ionizing radiation treatment, etc., in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, the above-mentioned adhesive substance) may be performed.
 基材は単層であっても良いし、多層体であっても良い。 The substrate may be a single layer or a multilayer body.
 繊維状柱状物の直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmであり、特に好ましくは2nm~200nmであり、最も好ましくは2nm~100nmである。繊維状柱状物の直径が上記範囲内に収まることにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 The diameter of the fibrous columnar material is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, still more preferably 2 nm to 500 nm, particularly preferably 2 nm to 200 nm, and most preferably 2 nm to 100 nm. When the diameter of the fibrous columnar body is within the above range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be expressed.
 繊維状柱状構造体は、好ましくは、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。この場合、繊維状柱状物は、好ましくは、カーボンナノチューブである。すなわち、固定部材は、好ましくは、長さ200μm以上のカーボンナノチューブを複数備えるカーボンナノチューブ集合体を表面に有する固定部材である。 The fibrous columnar structure is preferably a carbon nanotube aggregate including a plurality of carbon nanotubes. In this case, the fibrous columnar product is preferably a carbon nanotube. That is, the fixing member is preferably a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 μm or more on the surface.
 固定部材が、長さ200μm以上のカーボンナノチューブを複数備えるカーボンナノチューブ集合体を表面に有する固定部材であることにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 Since the fixing member is a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 μm or more on the surface, contamination of the solid sample to be measured can be further prevented, and the solid sample can be more stable. It can be fixed and better contrast can be expressed.
 固定部材が、長さ200μm以上のカーボンナノチューブを複数備えるカーボンナノチューブ集合体を表面に有する固定部材である場合、該固定部材は、カーボンナノチューブ集合体を表面に有する固定部材であれば、カーボンナノチューブ集合体のみからなる固定部材であっても良いし、カーボンナノチューブ集合体と任意の適切な部材からなる固定部材であっても良い。このような任意の適切な部材としては、例えば、基材が挙げられる。 When the fixing member is a fixing member having a carbon nanotube aggregate including a plurality of carbon nanotubes having a length of 200 μm or more on the surface, the fixing member is a fixing member having a carbon nanotube aggregate on the surface. It may be a fixing member made only of a body, or a fixing member made of a carbon nanotube aggregate and any appropriate member. Examples of such an appropriate member include a base material.
 固定部材が、カーボンナノチューブ集合体と任意の適切な部材からなる固定部材である場合、カーボンナノチューブの片端が該任意の適切な部材に固定されていても良い。このような任意の適切な部材としては、好ましくは、基材が挙げられる。 When the fixing member is a fixing member made of a carbon nanotube aggregate and any appropriate member, one end of the carbon nanotube may be fixed to the arbitrary appropriate member. Such a suitable member preferably includes a substrate.
 カーボンナノチューブの片端を基材に固定する方法としては、任意の適切な方法を採用し得る。例えば、カーボンナノチューブ集合体の製造に使用した基板を基材としてそのまま用いても良い。また、基材に接着剤層を設けてカーボンナノチューブを接着固定してもよい。さらに、基材が熱硬化性樹脂の場合は、反応前の状態で薄膜を作製し、カーボンナノチューブの一端を薄膜層に圧着させた後、硬化処理を行って固定しても良い。また、基材が熱可塑性樹脂や金属などの場合は、溶融した状態で繊維状柱状構造体の一端を圧着させた後、室温まで冷却して固定しても良い。あるいは、基材にカーボンナノチューブの片端を単に圧着することによって固定しても良い。 Any appropriate method can be adopted as a method of fixing one end of the carbon nanotube to the base material. For example, the substrate used for the production of the carbon nanotube aggregate may be used as it is as a base material. Alternatively, an adhesive layer may be provided on the substrate to bond and fix the carbon nanotubes. Further, when the base material is a thermosetting resin, a thin film may be prepared in a state before the reaction, and one end of the carbon nanotube may be pressure-bonded to the thin film layer, and then cured and fixed. Moreover, when the base material is a thermoplastic resin or metal, after crimping one end of the fibrous columnar structure in a molten state, the substrate may be cooled and fixed to room temperature. Or you may fix by simply crimping | bonding one end of a carbon nanotube to a base material.
 カーボンナノチューブ集合体としては、本発明の効果がより効果的に発現する点で、好ましくは、2つの好ましい実施形態を採り得る。 As the aggregate of carbon nanotubes, two preferred embodiments can be preferably employed from the viewpoint that the effects of the present invention are more effectively exhibited.
 カーボンナノチューブ集合体の好ましい実施形態の1つ(以下、第1の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。カーボンナノチューブ集合体がこのような構成を採ることにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 One preferred embodiment of the aggregate of carbon nanotubes (hereinafter sometimes referred to as a first preferred embodiment) includes a plurality of carbon nanotubes, the carbon nanotubes having a plurality of layers, and the carbon nanotube layer. The distribution width of the number distribution is 10 layers or more, and the relative frequency of the mode value of the layer number distribution is 25% or less. By adopting such a configuration of the carbon nanotube aggregate, contamination of the solid sample as a measurement target can be further prevented, the solid sample can be more stably fixed, and better contrast can be expressed.
 第1の好ましい実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは10層以上であり、より好ましくは10層~30層であり、さらに好ましくは10層~25層であり、特に好ましくは10層~20層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the distribution width of the number distribution of the carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, particularly The number of layers is preferably 10 to 20 layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 The “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。 The number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
 第1の好ましい実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers. By adjusting the maximum number of carbon nanotube layers within this range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 第1の好ましい実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers. By adjusting the minimum number of carbon nanotube layers within this range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 第1の好ましい実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, by adjusting the maximum number of layers and the minimum number of layers of carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, Furthermore, the carbon nanotube can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第1の好ましい実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは25%以下であり、より好ましくは1%~25%であり、さらに好ましくは5%~25%であり、特に好ましくは10%~25%であり、最も好ましくは15%~25%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the relative frequency of the mode value of the number distribution of carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and even more preferably 5% to 25%. Particularly preferred is 10% to 25%, and most preferred is 15% to 25%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第1の好ましい実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the mode of the number distribution of the carbon nanotubes is preferably present from 2 layers to 10 layers, more preferably from 3 layers to 10 layers. . By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第1の好ましい実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the first preferred embodiment, the carbon nanotubes may have any appropriate shape in cross section. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第1の好ましい実施形態において、カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the length of the carbon nanotube is preferably 200 μm or more, more preferably 200 μm to 2000 μm, still more preferably 300 μm to 1500 μm, still more preferably 400 μm to 1000 μm, particularly The thickness is preferably 500 μm to 1000 μm, and most preferably 600 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第1の好ましい実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the first preferred embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第1の好ましい実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the first preferred embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 カーボンナノチューブ集合体の好ましい実施形態の別の1つ(以下、第2の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。カーボンナノチューブ集合体がこのような構成を採ることにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 Another preferred embodiment of the aggregate of carbon nanotubes (hereinafter sometimes referred to as a second preferred embodiment) includes a plurality of carbon nanotubes, the carbon nanotubes having a plurality of layers, and the carbon nanotubes. The mode value of the number distribution of layers exists in 10 layers or less, and the relative frequency of the mode value is 30% or more. By adopting such a configuration of the carbon nanotube aggregate, contamination of the solid sample as a measurement target can be further prevented, the solid sample can be more stably fixed, and better contrast can be expressed.
 第2の好ましい実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the distribution width of the number distribution of the carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, further preferably 2 to 8 layers, particularly Three to eight layers are preferred. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 The “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and furthermore, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。 The number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
 第2の好ましい実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers. . By adjusting the maximum number of carbon nanotube layers within this range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 第2の好ましい実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers. By adjusting the minimum number of carbon nanotube layers within this range, contamination of the solid sample to be measured can be further prevented, the solid sample can be fixed more stably, and a better contrast can be obtained. It can be expressed.
 第2の好ましい実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, by adjusting the maximum number and the minimum number of the carbon nanotube layers within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, Furthermore, the carbon nanotube can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第2の好ましい実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは30%以上であり、より好ましくは30%~100%であり、さらに好ましくは30%~90%であり、特に好ましくは30%~80%であり、最も好ましくは30%~70%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferred is 30% to 80%, and most preferred is 30% to 70%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第2の好ましい実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数10層以下に存在し、より好ましくは層数1層から層数10層に存在し、さらに好ましくは層数2層から層数8層に存在し、特に好ましくは層数2層から層数6層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the mode value of the number distribution of the carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably The number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers. By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第2の好ましい実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the second preferred embodiment, as the shape of the carbon nanotube, it is sufficient that its cross section has any appropriate shape. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第2の好ましい実施形態において、カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In a second preferred embodiment, the length of the carbon nanotubes is preferably 200 μm or more, more preferably 200 μm to 2000 μm, even more preferably 300 μm to 1500 μm, even more preferably 400 μm to 1000 μm, and particularly The thickness is preferably 500 μm to 1000 μm, and most preferably 600 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第2の好ましい実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 In the second preferred embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 第2の好ましい実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the second preferred embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 カーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。 Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
 カーボンナノチューブ集合体の製造方法としては、例えば、平滑な基板の上に触媒層を構成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、基板からほぼ垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。この場合、例えば、基板を取り除けば、長さ方向に配向しているカーボンナノチューブ集合体が得られる。 As a method for producing a carbon nanotube aggregate, for example, a catalyst layer is formed on a smooth substrate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown. There is a method of producing an aggregate of carbon nanotubes oriented almost vertically from a substrate by a vapor deposition method (Chemical Vapor Deposition: CVD method). In this case, for example, if the substrate is removed, an aggregate of carbon nanotubes oriented in the length direction can be obtained.
 カーボンナノチューブ集合体の製造方法で用い得る基板としては、任意の適切な基板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。上記基板は、そのまま、本発明のSIMS分析方法に用いる、あるいは、本発明のSIMS分析装置が備える固定部材が含み得るカーボンナノチューブ集合体が備え得る基材として用いることができる。 Any appropriate substrate can be adopted as the substrate that can be used in the method for producing a carbon nanotube aggregate. For example, the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned. Examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum. The substrate can be used as it is in the SIMS analysis method of the present invention, or as a base material that can be included in a carbon nanotube aggregate that can be included in a fixing member included in the SIMS analysis device of the present invention.
 カーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図2に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。 Any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate. For example, as a thermal CVD apparatus, as shown in FIG. 2, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace can be cited. In that case, for example, a heat-resistant quartz tube is preferably used as the reaction vessel.
 カーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。 Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate. For example, metal catalysts, such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
 カーボンナノチューブ集合体を製造する際、必要に応じて、基板と触媒層の中間にアルミナ/親水性膜を設けても良い。 When producing the carbon nanotube aggregate, an alumina / hydrophilic film may be provided between the substrate and the catalyst layer as necessary.
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、基板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。基板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、基板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。 Any appropriate method can be adopted as a method for producing the alumina / hydrophilic film. For example, it can be obtained by forming a SiO 2 film on a substrate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C. According to such a manufacturing method, Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed. Even if Al is deposited and heated to 450 ° C. and oxidized without forming a hydrophilic film on the substrate, Al 2 O 3 surfaces having different particle diameters may not be formed easily. Moreover, even if a hydrophilic film is prepared on a substrate and Al 2 O 3 is directly deposited, it is difficult to form Al 2 O 3 surfaces having different particle diameters.
 カーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。カーボンナノチューブ集合体の製造に用い得る触媒層の厚みを上記範囲内に調整することにより、形成するカーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を有する固定部材は、測定対象である固体試料の汚染をより防止でき、該固体試料をより安定的に固定でき、より良好なコントラストを発現できる。 The thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles. By adjusting the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate within the above range, the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties. Therefore, the fixing member having such an aggregate of carbon nanotubes can further prevent contamination of the solid sample to be measured, can fix the solid sample more stably, and can exhibit better contrast.
 触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を基板上に塗布する方法などが挙げられる。 Any appropriate method can be adopted as a method for forming the catalyst layer. For example, a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a substrate, and the like can be mentioned.
 カーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。 Any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate. For example, hydrocarbons such as methane, ethylene, acetylene, and benzene; alcohols such as methanol and ethanol;
 カーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。 Arbitrary appropriate temperature can be employ | adopted as manufacturing temperature in manufacture of a carbon nanotube aggregate. For example, in order to form catalyst particles that can sufficiently exhibit the effects of the present invention, the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、各種評価や測定は、以下の方法により行った。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. Various evaluations and measurements were performed by the following methods.
<繊維状柱状物の長さLの測定>
 繊維状柱状物の長さLは、走査型電子顕微鏡(SEM)によって測定した。
<Measurement of length L of fibrous columnar>
The length L of the fibrous columnar object was measured with a scanning electron microscope (SEM).
<固定部材のせん断接着力の測定>
 ガラス(MATSUNAMI スライドガラス27mm×56mm)に、1cm単位面積に切り出した固定部材の先端(固定部材がカーボンナノチューブ集合体を含む場合は、カーボンナノチューブの先端)が接触するように載置し、5kgのローラーを一往復させて飛行時間型二次イオン質量分析装置用試料固定部材の先端をガラスに圧着した。その後、30分間放置した。引張り試験機(Instro Tensil Tester)で引張速度50mm/minにて、室温(25℃)にてせん断試験を行い、得られたピークをせん断接着力とした。
<Measurement of shear adhesive strength of fixing member>
Placed on glass (MATUNAMI slide glass 27 mm x 56 mm) so that the tip of the fixing member cut out in a unit area of 1 cm 2 (the tip of the carbon nanotube when the fixing member includes an aggregate of carbon nanotubes) is in contact with 5 kg The tip of the sample fixing member for a time-of-flight secondary ion mass spectrometer was pressure-bonded to the glass by reciprocating the roller. Then, it was left for 30 minutes. A shear test was performed at room temperature (25 ° C.) at a tensile speed of 50 mm / min with a tensile tester (Instro Tensil Tester), and the resulting peak was defined as shear adhesive strength.
<SIMS分析>
 導電性のアルミ製試料台(EM JAPAN社製、G301)上に厚みを700μmとした繊維状柱状構造体を配置させ、該厚みが半分(350μm)になるように、シリコンウェハの鏡面によって圧縮させた。
 得られた固定部材(試料台上に繊維状柱状構造体が配置されたもの)の繊維状柱状構造体の表面に、分析試料として、岩石を粉砕した粒子を振りかけ、該粒子の上部からシリコンウェハの鏡面を押し当て、該シリコンウェハの自重によって該粒子を該繊維状柱状構造体の表面に密着させた。
 エアーブローによって、繊維状柱状構造体の表面に密着していない粒子(例えば、粒子の上に重なって付着した粒子など)を除去した。
 得られた分析試料付固定部材を、SIMS分析装置(CAMECA製、NanoSIMS50L)内に設置し、下記測定条件によって分析した。
 一次イオン種:Cs
 加速電圧:16kV
 イオン電流:2pA
 ビームスポット:200nm
<SIMS analysis>
A fibrous columnar structure having a thickness of 700 μm is placed on a conductive aluminum sample stage (EM 301, G301), and compressed by a mirror surface of a silicon wafer so that the thickness becomes half (350 μm). It was.
Particles obtained by pulverizing rock as an analysis sample are sprinkled on the surface of the fibrous columnar structure of the obtained fixing member (with the fibrous columnar structure disposed on the sample stage), and a silicon wafer is sprinkled from above the particles. The particles were brought into close contact with the surface of the fibrous columnar structure by the dead weight of the silicon wafer.
Air blow was used to remove particles that were not in close contact with the surface of the fibrous columnar structure (for example, particles that overlapped and adhered to the particles).
The obtained fixing member with an analytical sample was installed in a SIMS analyzer (Canoca, NanoSIMS50L), and analyzed under the following measurement conditions.
Primary ion species: Cs +
Acceleration voltage: 16 kV
Ion current: 2 pA
Beam spot: 200nm
〔実施例1〕
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、アルミナ薄膜(厚み20nm)を形成した。このアルミナ薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2.0nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(105/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(90/80/15sccm、水分率600ppm)混合ガスを管内に充填させ、35分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(1)を得た。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの長さは700μmであった。
 得られたカーボンナノチューブ集合体(1)をSIMS分析装置用試料固定部材(1)として、各種評価を行った。
 SIMS分析装置用試料固定部材(1)のせん断接着力は、20.7N/cmであった。
 また、SIMS分析を行った結果を図3に示した。
 図3に示すように、本発明のSIMS分析方法によれば、また、本発明のSIMS分析装置によれば、帯電および試料がドリフトすることなく、粒子のみから16Oが確認され、粒子と背景に明瞭な界面があるイメージを得るという効果が発現できることが判った。なお、図3に示すSIMS分析結果を得るにあたっては、分析視野を1辺25μmとし、16O(酸素)でイメージを取得した。なお、E-ガンによる帯電中和なしで測定中の帯電は発生していない。
[Example 1]
An alumina thin film (thickness 20 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this alumina thin film, an Fe thin film (thickness: 2.0 nm) was further vapor-deposited with a sputtering apparatus (ULVAC, RFS-200).
Thereafter, the substrate was placed in a 30 mmφ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube. Thereafter, the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (90/80/15 sccm, moisture content 600 ppm) and left standing for 35 minutes to grow carbon nanotubes on the substrate. As a result, an aggregate of carbon nanotubes (1) in which is oriented in the length direction was obtained.
The length of the carbon nanotubes provided in the carbon nanotube aggregate (1) was 700 μm.
Various evaluations were performed using the obtained carbon nanotube aggregate (1) as a sample fixing member (1) for a SIMS analyzer.
The shear bonding strength of the sample fixing member (1) for SIMS analyzer was 20.7 N / cm 2 .
The results of SIMS analysis are shown in FIG.
As shown in FIG. 3, according to the SIMS analysis method of the present invention and according to the SIMS analysis apparatus of the present invention, 16 O is confirmed only from particles without charging and drifting of the sample. It was found that the effect of obtaining an image having a clear interface can be expressed. In order to obtain the SIMS analysis result shown in FIG. 3, the analysis field of view was set to 25 μm per side, and an image was obtained with 16 O (oxygen). It should be noted that charging during measurement was not generated without neutralization by E-gun.
 本発明のSIMS分析方法、あるいは、本発明のSIMS分析装置を用いれば、測定対象である固体試料の汚染を防止でき、該固体試料を安定的に固定でき、良好なコントラストを発現できる、SIMS分析が可能となる。 By using the SIMS analysis method of the present invention or the SIMS analysis apparatus of the present invention, it is possible to prevent contamination of the solid sample to be measured, to stably fix the solid sample, and to exhibit good contrast. SIMS analysis Is possible.
10    繊維状柱状構造体
1     基材
2     繊維状柱状物
2a    繊維状柱状物の片端
10 Fibrous Columnar Structure 1 Base Material 2 Fibrous Columnar 2a One End of Fibrous Columnar

Claims (6)

  1.  SIMSによって固体試料を分析する方法であって、
     該固体試料を固定する固定部材として、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材を用いる、
     SIMS分析方法。
    A method for analyzing a solid sample by SIMS, comprising:
    As a fixing member for fixing the solid sample, a fixing member having a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 μm or more on the surface is used.
    SIMS analysis method.
  2.  前記繊維状柱状構造体の室温におけるガラス面に対するせん断接着力が10N/cm以上である、請求項1に記載のSIMS分析方法。 The SIMS analysis method according to claim 1, wherein the fibrous columnar structure has a shear adhesive force of 10 N / cm 2 or more to a glass surface at room temperature.
  3.  前記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である、請求項1または2に記載のSIMS分析方法。 The SIMS analysis method according to claim 1 or 2, wherein the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  4.  SIMSによって固体試料を分析する装置であって、
     該固体試料を固定する固定部材を備え、
     該固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を表面に有する固定部材である、
     SIMS分析装置。
    An apparatus for analyzing a solid sample by SIMS,
    A fixing member for fixing the solid sample;
    The fixing member is a fixing member having a fibrous columnar structure including a plurality of fibrous columnar objects having a length of 200 μm or more on the surface.
    SIMS analyzer.
  5.  前記繊維状柱状構造体の室温におけるガラス面に対するせん断接着力が10N/cm以上である、請求項4に記載のSIMS分析装置。 The SIMS analyzer according to claim 4, wherein the fibrous columnar structure has a shear adhesive strength to a glass surface at room temperature of 10 N / cm 2 or more.
  6.  前記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である、請求項4または5に記載のSIMS分析装置。 The SIMS analyzer according to claim 4 or 5, wherein the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
PCT/JP2015/057400 2014-03-24 2015-03-13 Sims analysis method and sims analysis device WO2015146614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014059490A JP2015184084A (en) 2014-03-24 2014-03-24 Sims analysis method and sims analysis device
JP2014-059490 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146614A1 true WO2015146614A1 (en) 2015-10-01

Family

ID=54195137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057400 WO2015146614A1 (en) 2014-03-24 2015-03-13 Sims analysis method and sims analysis device

Country Status (2)

Country Link
JP (1) JP2015184084A (en)
WO (1) WO2015146614A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175126A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Conveying fixing jig

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281025B1 (en) * 1999-09-30 2001-08-28 Advanced Micro Devices, Inc. Substrate removal as a function of SIMS analysis
JP2005300502A (en) * 2004-04-16 2005-10-27 Hitachi High-Technologies Corp Method for preparing analytical sample
JP2013160588A (en) * 2012-02-03 2013-08-19 Nitto Denko Corp Sample fixing member for time-of-flight secondary ion mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281025B1 (en) * 1999-09-30 2001-08-28 Advanced Micro Devices, Inc. Substrate removal as a function of SIMS analysis
JP2005300502A (en) * 2004-04-16 2005-10-27 Hitachi High-Technologies Corp Method for preparing analytical sample
JP2013160588A (en) * 2012-02-03 2013-08-19 Nitto Denko Corp Sample fixing member for time-of-flight secondary ion mass spectrometer

Also Published As

Publication number Publication date
JP2015184084A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2009128343A1 (en) Fibrous rod-like structure aggregates and adhesive members wherein same are used
WO2009128342A1 (en) Aggregate of fibrous columnar structures and pressure-sensitive adhesive member using the same
JP5714928B2 (en) Fibrous columnar structure aggregate and heat dissipation member
JP5199753B2 (en) Method for producing aggregate of carbon nanotubes
WO2013115145A1 (en) Sample fixing member for time-of-flight secondary ion mass spectrometer
JP2014153183A (en) Ionization support member for surface-assisted laser desorption/ionization time-of-flight mass spectrometer
US20150153386A1 (en) Discharge member for analysis
WO2015146614A1 (en) Sims analysis method and sims analysis device
WO2013115144A1 (en) Sample fixing member for atomic force microscope
WO2013115146A1 (en) Sample fixing member for nano indenter
JP2014126470A (en) Sample fixing member for auger electron spectroscopic analyzer
JP5893374B2 (en) Carbon nanotube aggregate and viscoelastic body using the same
WO2013084581A1 (en) Viscoelastic body
WO2016031617A1 (en) Sample sampling material for gas chromatography-mass spectrometry
JP2014200769A (en) Adsorbing material
WO2016031616A1 (en) Sample sampling material for high-performance liquid chromatography
JP5892777B2 (en) Low outgas viscoelastic body
JP2014215272A (en) Fine particle separation member
WO2016031618A1 (en) Cleaning member
JP5892778B2 (en) Viscoelastic body for wide temperature range
JP2014145699A (en) Sample fixing member for ir spectroscopic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769725

Country of ref document: EP

Kind code of ref document: A1