WO2015146469A1 - 中空糸膜、及び中空糸膜の製造方法 - Google Patents

中空糸膜、及び中空糸膜の製造方法 Download PDF

Info

Publication number
WO2015146469A1
WO2015146469A1 PCT/JP2015/055686 JP2015055686W WO2015146469A1 WO 2015146469 A1 WO2015146469 A1 WO 2015146469A1 JP 2015055686 W JP2015055686 W JP 2015055686W WO 2015146469 A1 WO2015146469 A1 WO 2015146469A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane
resin
stock solution
Prior art date
Application number
PCT/JP2015/055686
Other languages
English (en)
French (fr)
Inventor
洋平 薮野
司 吉利
祐介 林
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US15/128,385 priority Critical patent/US10744467B2/en
Priority to CN201580016494.5A priority patent/CN106132521A/zh
Priority to JP2016510166A priority patent/JP6644674B2/ja
Priority to KR1020167029628A priority patent/KR101930147B1/ko
Priority to AU2015235572A priority patent/AU2015235572C1/en
Priority to EP15769046.2A priority patent/EP3103546B1/en
Priority to SG11201607405TA priority patent/SG11201607405TA/en
Publication of WO2015146469A1 publication Critical patent/WO2015146469A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Definitions

  • the present invention relates to a hollow fiber membrane and a method for producing the hollow fiber membrane.
  • Separation technology using hollow fiber membranes has advantages such as downsizing of the apparatus, so various fields, for example, water treatment fields such as water purification treatment, drinking water production, industrial water production and wastewater treatment, food industry field, Widely used in the pharmaceutical manufacturing field.
  • water treatment fields such as water purification treatment, drinking water production, industrial water production and wastewater treatment, food industry field, Widely used in the pharmaceutical manufacturing field.
  • the hollow fiber membrane used for such a separation technique is required to further improve permeation performance, fractionation characteristics, and the like. Specifically, if the permeation performance of the hollow fiber membrane is increased, the required membrane area is reduced, and the apparatus for realizing the separation technique using the hollow fiber membrane can be further downsized. For this reason, equipment costs and membrane replacement costs can be reduced, which is advantageous in terms of cost. Further, the hollow fiber membrane has an advantage that the removal object is widened if the fractionation characteristics can be enhanced.
  • a separation membrane such as a hollow fiber membrane generally has a permeation performance and a separation performance such that if the permeation performance increases, the fractionation characteristics deteriorate, and if the fractionation characteristics increase, the permeation performance decreases.
  • the image characteristics tend to be in a so-called trade-off relationship. For this reason, it is difficult for the hollow fiber membrane to improve both the permeation performance and the fractionation characteristics.
  • a separation membrane using a fluorine-based material such as a vinylidene fluoride resin has been attracting attention because of its high chemical durability and physical durability.
  • Examples of the separation membrane using such a fluorine-based material include hollow fiber membranes described in Patent Documents 1 to 3.
  • Patent Document 1 discloses a sponge structure filtration region including pores having an average diameter of 0.01 ⁇ m to 0.5 ⁇ m, a support region having a sponge structure including pores having an average diameter of 0.5 ⁇ m to 5 ⁇ m, and an average diameter of 2 ⁇ m to 10 ⁇ m.
  • a fluorine-containing hollow fiber membrane comprising a backwash region having a sponge structure including pores, wherein the filtration region, the support region, and the backwash region are sequentially formed from an outer surface to an inner surface.
  • Patent Document 1 it is disclosed that excellent backwash performance and filtration performance can be exhibited while having excellent mechanical strength.
  • Patent Document 2 discloses a porous film for producing a porous film by a non-solvent induced phase separation method by discharging a film-forming stock solution containing at least a polyvinylidene fluoride resin and a solvent and bringing it into contact with a coagulating liquid containing at least a non-solvent. A method for manufacturing the membrane is described. Patent Document 2 discloses that, in this production method, the discharge temperature of the film-forming stock solution is equal to or higher than the melting point of the polyvinylidene fluoride resin and lower than the decomposition temperature of the polyvinylidene fluoride resin, and the temperature of the coagulation liquid. Is higher than the porous structure formation start temperature of the film-forming stock solution.
  • Patent Document 2 it is disclosed that a porous membrane capable of sufficiently removing micropathogens stably for a long period of time can be manufactured, as well as being excellent in water permeability and blocking performance against micropathogens and having extremely high chemical resistance. Yes.
  • Patent Document 3 discloses a fluororesin polymer separation membrane having both a three-dimensional network structure and a spherical structure, wherein the three-dimensional network structure is selected from cellulose ester, fatty acid vinyl ester, vinyl pyrrolidone, ethylene oxide, and propylene oxide.
  • a polymer separation membrane containing a hydrophilic polymer having at least one kind is described.
  • Patent Document 3 it is disclosed that various performances such as separation characteristics, water permeability, chemical strength (chemical resistance), physical strength, and dirt resistance can be increased.
  • An object of the present invention is to provide a hollow fiber membrane which is excellent in both permeation performance and fractionation characteristics and excellent in strength.
  • the hollow fiber membrane according to one aspect of the present invention is a porous hollow fiber membrane containing a vinylidene fluoride resin, and the pore diameter in the hollow fiber membrane is on at least one side of the inner and outer peripheral surfaces.
  • the hollow fiber membrane is hydrophilized by having an inclined structure that gradually decreases toward the bottom and containing a crosslinked product of polyvinylpyrrolidone resin.
  • FIG. 1 is a partial perspective view of a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of a hollow fiber molding nozzle used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an example of a membrane filtration device including a hollow fiber membrane according to an embodiment of the present invention.
  • 4 is a view showing a scanning electron micrograph of a cross section of the hollow fiber membrane according to Example 1.
  • FIG. 5 is a view showing a scanning electron micrograph of the vicinity of the outer peripheral surface in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 6 is a view showing a scanning electron micrograph near the center in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 1 is a partial perspective view of a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of a hollow fiber molding nozzle used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 7 is a view showing a scanning electron micrograph of the vicinity of the inner peripheral surface in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 8 is a view showing a scanning electron micrograph of the outer peripheral surface of the hollow fiber membrane according to Example 1.
  • FIG. 9 is a view showing a scanning electron micrograph of the inner peripheral surface of the hollow fiber membrane according to Example 1.
  • FIG. 10 is a diagram showing the hydrophilicity evaluation results of the hollow fiber membranes according to Example 1 and Comparative Example 1.
  • the hollow fiber membrane described in Patent Document 1 and the porous membrane described in Patent Document 2 do not have sufficiently high permeation performance with respect to fractionation characteristics, and further improvement in permeation performance is necessary. It is believed that there is.
  • the separation membrane described in Patent Document 3 sufficiently causes the separation between the three-dimensional network structure layer and the spherical structure layer and the unevenness of the thickness of the three-dimensional network structure layer. In some cases, it was not possible to suppress it. In addition, in the separation membrane described in Patent Document 3, the thickness unevenness of the three-dimensional network structure layer is large, and a minute hole may be formed in the three-dimensional network structure layer. For example, the following can be considered.
  • Patent Document 3 discloses that the fluororesin polymer solution containing the hydrophilic polymer is applied to the surface of the spherical structure layer, and the spherical structure layer is formed into a three-dimensional network structure.
  • a method of coating with a layer is described.
  • the polymer solution for forming a three-dimensional network structure layer is apply
  • such a manufacturing method requires separate formation of a three-dimensional network structure layer and a spherical structure layer, which is disadvantageous in terms of manufacturing cost.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a hollow fiber membrane excellent in both permeation performance and fractionation characteristics and excellent in strength and a method for producing the same.
  • porous hollow fiber membranes are known as hollow fiber membranes excellent in permeation performance and fractionation characteristics.
  • a method for producing such a porous hollow fiber membrane a method utilizing phase separation is known.
  • the method for producing a hollow fiber membrane using this phase separation include a non-solvent induced phase separation method (Nonvent Induced Phase Separation: NIPS method) and a thermally induced phase separation method (Thermally Induced Phase Separation: TIPS method). Can be mentioned.
  • the NIPS method refers to a polymer stock solution solvent in which a uniform polymer stock solution in which a polymer is dissolved in a solvent is brought into contact with a non-solvent that does not dissolve the polymer, and the concentration difference between the polymer stock solution and the non-solvent is a driving force. This is a method of causing a phase separation phenomenon by substitution with a non-solvent.
  • the pore diameter of the formed pores generally changes depending on the solvent exchange rate. Specifically, the slower the solvent exchange rate, the larger the pore size.
  • the solvent exchange rate is the fastest at the contact surface with the non-solvent, and becomes slower as it goes into the membrane.
  • the hollow fiber membrane produced by the NIPS method is dense in the vicinity of the contact surface with the non-solvent and has an asymmetric structure in which pores are gradually coarsened toward the inside of the membrane.
  • the solvent exchange rate becomes too slow, and coarse pores called macrovoids are formed, which tends to lower strength and chemical resistance.
  • the TIPS method causes a phase separation phenomenon by dissolving a polymer in a poor solvent that can be dissolved at a high temperature but cannot be dissolved at a low temperature, and cooling the solution. It is a method to make it. Since the heat exchange rate is generally faster than the solvent exchange rate in the NIPS method and it is difficult to control the rate, the TIPS method tends to form uniform pores in the film thickness direction.
  • the hollow fiber membrane changes in permeation performance and fractionation characteristics depending on the number, shape, size, and the like of the pores formed in the membrane, and the present inventors paid attention to this point. Specifically, in order to enhance the fractionation characteristics, attention was paid to the point that the film could be made dense. On the other hand, attention was paid to the point that the permeation performance is considered to decrease when the entire membrane is made dense.
  • the inventors first of all, a dense layered portion that exhibits fractionation characteristics in the film thickness direction, That is, it was inferred that it is important to make the separation layer directly involved in the separation thinner. And by making a hollow fiber membrane having an asymmetric structure with a coarse porous body in a portion necessary for maintaining the strength of the hollow fiber membrane, that is, the portion other than the separation layer, the permeation performance and the fractionation characteristics It was inferred that both could be improved.
  • the inventors of the present invention have inferred that the permeation performance and the fractionation characteristics can be controlled by controlling the structure in the membrane as described above after examining the membrane material.
  • the hollow fiber membrane according to one aspect of the present invention is a porous hollow fiber membrane containing a vinylidene fluoride resin, and the pore diameter in the hollow fiber membrane is on at least one side of the inner and outer peripheral surfaces. It has an inclined structure that gradually becomes smaller. That is, the hollow fiber membrane according to the present embodiment is a hollow fiber membrane having an asymmetric structure in the film thickness direction. From this, this hollow fiber membrane has an inclined structure in which the pore diameter of the pores in the membrane gradually decreases toward at least one side of the inner and outer peripheral surfaces, so that it is considered to be involved in the fractionation characteristics. It is considered that the layered portion and other portions having relatively large pores (pores) are formed.
  • a dense layered portion that is considered to be involved in fractionation characteristics is formed on the surface, etc., and the other portions have relatively large pores (pores) formed in the portion, so that the permeation performance It is thought that the decrease of the is suppressed.
  • the hollow fiber membrane according to the present embodiment includes a cross-linked product of polyvinyl pyrrolidone resin, so that the hollow fiber membrane is hydrophilized.
  • the hollow fiber membrane which concerns on this embodiment contains vinylidene fluoride resin, it is thought that there exists a tendency for hydrophobicity to become comparatively high. Even in such a hollow fiber membrane, it is considered that hydrophilicity can be enhanced by including a crosslinked product of polyvinylpyrrolidone resin.
  • the hollow fiber membrane according to the present embodiment is considered to be a hollow fiber membrane that is excellent in both permeation performance and fractionation characteristics and excellent in strength. Moreover, it is thought that the hollow fiber membrane which concerns on this embodiment can also improve contamination resistance by improving hydrophilicity.
  • the hollow fiber membrane has an inclined structure in which the pore diameter of the pores in the membrane gradually decreases toward at least one side of the inner and outer peripheral surfaces.
  • the diameter of the pores formed on the outer peripheral surface of the hollow fiber membrane is smaller than the diameter of the pores formed on the inner peripheral surface (inner peripheral side pore diameter)
  • the outer peripheral side pore diameter is preferably 0.01 to 1 ⁇ m, more preferably 0.1 to 0.5 ⁇ m, and further preferably 0.1 to 0.3 ⁇ m. .
  • the inner peripheral pore diameter is not particularly limited, but specifically, it is preferably 1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m, and preferably 2 to 8 ⁇ m.
  • the ratio of the inner peripheral pore diameter to the outer peripheral pore diameter is greater than 1 and is preferably 10 to 100, and preferably 20 to 50. Preferably, it is 30-50.
  • the hollow fiber membrane has a pore size (pore diameter) in the membrane from the inner peripheral surface side toward the outer peripheral surface side so as to satisfy the outer peripheral pore diameter and the inner peripheral pore diameter.
  • the diameter is an average value of the diameters, and examples thereof include an arithmetic average value of the diameters.
  • the vinylidene fluoride resin contained in the hollow fiber membrane is a main component of the hollow fiber membrane, specifically, it is preferably 85% by mass or more, and preferably 90 to 99.9% by mass. .
  • the vinylidene fluoride resin is not particularly limited as long as it is a vinylidene fluoride resin that can form a hollow fiber membrane.
  • Specific examples of the vinylidene fluoride resin include a homopolymer of vinylidene fluoride, a vinylidene fluoride copolymer, and the like.
  • the vinylidene fluoride copolymer is not particularly limited as long as it is a copolymer having a repeating unit based on vinylidene fluoride.
  • the vinylidene fluoride copolymer examples include a copolymer of vinylidene fluoride and at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluorochloroethylene. Examples include coalescence.
  • the vinylidene fluoride-based resin among the above examples, polyvinylidene fluoride which is a homopolymer of vinylidene fluoride is preferable. Further, as the vinylidene fluoride resin, the above-exemplified resins may be used alone or in combination of two or more.
  • the molecular weight of the vinylidene fluoride-based resin varies depending on the use of the hollow fiber membrane, but is preferably, for example, 50,000 to 1,000,000 in terms of weight average molecular weight.
  • the weight average molecular weight of the vinylidene fluoride resin contained in the hollow fiber membrane is preferably 100,000 to 900,000, more preferably 150,000 to 800,000.
  • the hollow fiber membrane is hydrophilized by including not only the vinylidene fluoride resin but also a crosslinked product of polyvinylpyrrolidone resin as described above.
  • the polyvinyl pyrrolidone resin is not particularly limited as long as it is a resin containing vinyl pyrrolidone in the molecule.
  • Specific examples of the polyvinyl pyrrolidone resin include polyvinyl pyrrolidone, a copolymer of vinyl pyrrolidone and vinyl acetate, a copolymer of vinyl pyrrolidone and vinyl caprolactam, and the like.
  • polyvinyl pyrrolidone is preferable as the polyvinyl pyrrolidone resin.
  • the resin of the said illustration may be used independently, and may be used in combination of 2 or more type.
  • the cross-linking degree of the cross-linked polyvinyl pyrrolidone resin is not particularly limited.
  • the degree of crosslinking include a degree of crosslinking such that polyvinyl pyrrolidone-based resin is not detected from the filtrate when water is passed through the obtained hollow fiber membrane.
  • the degree that the polyvinylpyrrolidone-based resin is not detected is as follows.
  • the concentration of the polyvinylpyrrolidone resin in the circulated ethanol aqueous solution is measured. From the polyvinyl pyrrolidone resin concentration and the membrane area of the used hollow fiber membrane, the extraction amount of the polyvinyl pyrrolidone resin per 1 m 2 of the membrane area is calculated.
  • the calculated extraction amount per 1 m 2 of membrane area is preferably 300 mg or less, more preferably 100 mg or less, and even more preferably 10 mg or less.
  • the content of the crosslinked product of the polyvinylpyrrolidone-based resin is such that the effect of containing the crosslinked product of the polyvinylpyrrolidone-based resin can be sufficiently exerted, that is, the hollow fiber membrane containing the vinylidene fluoride-based resin can be suitably hydrophilized.
  • the amount is not particularly limited.
  • the content of the crosslinked product of the polyvinylpyrrolidone-based resin is preferably 0.1% by mass or more and less than 15% by mass with respect to the mass of the hollow fiber membrane, and is 0.1 to 10% by mass. More preferably, it is more preferably 0.5 to 5% by mass. When the content is too small, the hydrophilicity of the hollow fiber membrane tends not to be sufficiently increased.
  • the stain resistance is not sufficiently increased, and suitable pores (pores) cannot be formed in the hollow fiber membrane, and the permeability to a liquid containing water cannot be sufficiently increased. is there.
  • the permeability to a liquid containing water cannot be sufficiently increased. is there.
  • transmission performance to fall. This is presumably because the moldability of the hollow fiber membrane is lowered and it is difficult to form a suitable hollow fiber membrane.
  • the hollow fiber membrane is likely to cause a decrease in water permeability due to swelling of the pores of the membrane due to swelling of the polyvinylpyrrolidone resin in the membrane.
  • the hollow fiber membrane containing the vinylidene fluoride resin can be appropriately hydrophilized, and the pores of the membrane It is considered that the hydrophilicity can be enhanced while suppressing the occurrence of a decrease in water permeability due to blockage or the like. For this reason, it is considered that a hollow fiber membrane excellent in permeation performance and excellent in stain resistance can be obtained while maintaining excellent fractionation characteristics.
  • the measuring method of content of the crosslinked body of polyvinylpyrrolidone-type resin is not specifically limited, For example, it can measure as follows. Specifically, the obtained hollow fiber membrane can be analyzed from a trace amount of nitrogen and measured from the abundance of nitrogen (N). More specifically, first, the obtained hollow fiber membrane and the polyvinyl pyrrolidone-based resin alone are each analyzed for a small amount of nitrogen, and the abundance of nitrogen (N) is measured. From this abundance, the content of the crosslinked product of the polyvinylpyrrolidone resin is calculated.
  • the polyvinyl pyrrolidone resin preferably has a K value of 30 to 120, more preferably 50 to 120, and still more preferably 60 to 120.
  • the K value of this polyvinyl pyrrolidone resin is the K value of the polyvinyl pyrrolidone resin before crosslinking.
  • the K value is a viscosity characteristic value that correlates with the molecular weight.
  • the K value can be calculated from, for example, the description of a catalog or the like, but can be calculated by using, for example, the Fikentscher equation.
  • the K value can be calculated, for example, by applying a relative viscosity value at 25 ° C. measured by a capillary viscometer to the following Fikenscher equation.
  • K value (1.5 log ⁇ rel ⁇ 1) / (0.15 + 0.003c) + (300 clog ⁇ rel + (c + 1.5 clog ⁇ rel ) 2 ) 1/2 /(0.15c+0.003c 2 )
  • ⁇ rel indicates the relative viscosity of the aqueous solution of the polyvinyl pyrrolidone resin that is the measurement object to water
  • c is the concentration (mass) of the aqueous solution of the polyvinyl pyrrolidone resin that is the measurement object. %).
  • the K value of the polyvinyl pyrrolidone resin is too small, even if the polyvinyl pyrrolidone resin is cross-linked, it hardly remains in the hollow fiber membrane containing the vinylidene fluoride resin, and the hydrophilicity of the hollow fiber membrane is suitably maintained. It tends to be difficult. Moreover, when K value of polyvinylpyrrolidone-type resin is too large, there exists a tendency for film forming property to fall and it becomes difficult to manufacture a suitable hollow fiber membrane.
  • polyvinyl pyrrolidone resins having such a K value are likely to remain moderately in hollow fiber membranes containing vinylidene fluoride-based resins, and make the hollow fiber membranes moderately hydrophilic. It is thought that you can. For this reason, it is considered that the permeability of a liquid containing water can be improved because the hydrophilicity can be enhanced while suppressing the occurrence of a decrease in water permeability due to the blocking of the pores of the membrane. Therefore, it is considered that a hollow fiber membrane having excellent permeation performance and excellent stain resistance can be obtained while maintaining excellent fractionation characteristics.
  • the hollow fiber membrane preferably has a pure water permeability coefficient K of 1 ⁇ 10 ⁇ 15 m 2 or more and 22 ⁇ 10 ⁇ 15 m 2 or less.
  • the pure water permeability coefficient K is a permeability coefficient when allowing pure water to pass through the hollow fiber membrane, and is calculated using the following equation (1) according to Darcy's law. (Dalcy's transmission coefficient).
  • K ( ⁇ ⁇ T ⁇ Q) / ( ⁇ P ⁇ A) (1)
  • K represents a transmission coefficient (m 2 ).
  • represents a viscosity (Pa ⁇ sec), and here represents a viscosity of pure water (Pa ⁇ sec).
  • T shows a film thickness (m) and shows the thickness (m) of a hollow fiber membrane here.
  • Q represents a flow rate (m 3 / second), and here represents a water flow rate (m 3 / second).
  • ⁇ P represents the transmembrane pressure difference (Pa).
  • A represents the film area (m 2 ).
  • the pure water permeability coefficient K is not particularly limited as long as it can be calculated by the above formula (1).
  • examples of the method for measuring the pure water permeability coefficient K include the following measuring methods.
  • a hollow fiber membrane as a measurement object is immersed in a 50% by mass aqueous solution of ethanol for 15 minutes, and then subjected to a wet treatment such as washing with pure water for 15 minutes.
  • a porous hollow fiber membrane module in which one end of this wet treated hollow fiber membrane is sealed, pure water is used as raw water, external pressure filtration is performed at a filtration pressure of 100 kPa and a temperature of 25 ° C.
  • Measure the water permeability From the measured water permeability, converted into water permeability per unit membrane area, unit time, and unit pressure, each of the effective lengths of 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm at a transmembrane differential pressure of 0.1 MPa. (L / m 2 / hour) is obtained. From the obtained measurement data of water permeability, it is substituted into the Darcy equation, and Darcy's permeability coefficient K at each effective length is calculated.
  • the effective length is plotted on the horizontal axis and the Darcy transmission coefficient K is plotted on the vertical axis, and the Darcy transmission coefficient K at an effective length of 0 cm is calculated from the extrapolated value of the obtained plot.
  • the coefficient is K.
  • the pure water permeability coefficient K is a coefficient of passage resistance when pure water passes through the hollow fiber membrane. That is, it is suggested that the larger the calculated pure water permeability coefficient K, the smaller the pure water passage resistance of the hollow fiber membrane and the easier the water flows. On the other hand, it is suggested that the smaller the calculated pure water permeability coefficient K is, the higher the pure water passage resistance of the hollow fiber membrane is, and the structure in which water does not flow easily. More specifically, when the hollow fiber membrane is a structure in which each of the pores existing in the membrane is large and the porosity is large and the pressure loss is small, the pure water permeability coefficient K is large. . On the other hand, when the hollow fiber membrane is a dense structure with small pores and small porosity, the pure water permeability coefficient K is small.
  • the pure water permeability coefficient K is independent of the pressure fluctuation during measurement and the length (film thickness) of the passage part of the hollow fiber membrane. It becomes a constant value.
  • the fact that the pure water permeability coefficient K varies depending on the film thickness suggests that the structure of the hollow fiber membrane, for example, the porosity, the pore diameter, the pore shape, etc. are changing in the film thickness direction. is doing.
  • the pure water permeability coefficient K of the hollow fiber membrane having an asymmetric structure that changes in the film thickness direction from a region where the pure water permeability coefficient K is small to a region where the pure water permeability coefficient K is large is as follows: Obtain. First, K in a region where the pure water permeability coefficient K is small is Ks, and K in a region where the pure water permeability coefficient K is large is Kl. The thickness of the region where the pure water permeability coefficient K is small is Ts, the thickness of the region where the pure water permeability coefficient K is large is T1, and the thickness (film thickness) of the entire hollow fiber membrane is T. In such a case, the pure water permeability coefficient K of the hollow fiber membrane is defined as the following formula (2).
  • T / K Ts / Ks + Tl / Kl (2)
  • the pure water permeability coefficient K of the hollow fiber membrane having an asymmetric structure is determined depending on the size. That is, the pure water permeability coefficient K of the hollow fiber membrane varies depending on the degree of asymmetry of the hollow fiber membrane. Specifically, when the degree of asymmetry is small, the pure water permeability coefficient K of the hollow fiber membrane tends to be small. Further, when the degree of asymmetry is large, the pure water permeability coefficient K of the hollow fiber membrane tends to increase.
  • the pure water permeation performance and the degree of asymmetry of the hollow fiber membrane can be evaluated. Specifically, it can be said that when the pure water permeability coefficient K of the hollow fiber membrane is large, the pure water permeability is high, and when the pure water permeability coefficient K of the hollow fiber membrane varies, the degree of asymmetry changes.
  • the pure water permeability coefficient K of the hollow fiber membrane according to the present embodiment is a value contributing to the membrane structure as described above.
  • the pure water permeability coefficient K contributing to this membrane structure is preferably 1 ⁇ 10 ⁇ 15 m 2 or more and 22 ⁇ 10 ⁇ 15 m 2 or less, and preferably 2 ⁇ 10 ⁇ 15 m 2 or more and 17 ⁇ 10 ⁇ 15 m 2. More preferably, it is 2.3 ⁇ 10 ⁇ 15 m 2 or more and 10 ⁇ 10 ⁇ 15 m 2 or less.
  • the hollow fiber membrane according to the present embodiment preferably has a fractional particle diameter of 0.5 ⁇ m or less.
  • This fractionated particle size refers to the particle size of the smallest particle that can prevent passage of the hollow fiber membrane, and specifically includes, for example, a particle size that provides a blocking rate of 90% by the hollow fiber membrane.
  • Such a fractional particle size is preferably as small as possible, but in order to maintain excellent transmission performance, the limit is about 0.001 ⁇ m. For this reason, the minimum value of the fractional particle diameter is about 0.001 ⁇ m, and is preferably about 0.01 ⁇ m from the viewpoint of transmission performance.
  • the fractional particle size is preferably 0.5 ⁇ m or less, more preferably 0.001 to 0.5 ⁇ m, still more preferably 0.01 to 0.5 ⁇ m, and 0 A thickness of 0.02 to 0.1 ⁇ m is particularly preferable.
  • the fractional particle diameter of the hollow fiber membrane is too large, even if the permeation performance is increased, the fractionation characteristics are lowered, and the application range to be removed tends to be narrowed. From this, when the particle diameter of the hollow fiber membrane is within the above range, excellent fractionation characteristics can be exhibited while suppressing a decrease in permeation performance.
  • the hollow fiber membrane has a different application range for removal depending on the fractional particle size. Specifically, if the fractional particle size is 0.05 to 0.1 ⁇ m, it can be applied to the removal of microorganisms and viruses as a microfiltration membrane. In addition, if the fractional particle size is 0.001 to 0.01 ⁇ m, it can be applied to the removal of micropathogenic bacteria and proteins as an ultrafiltration membrane. Moreover, if a fraction particle diameter is 0.002 micrometer or less, it can apply to desalination etc. as a reverse osmosis membrane.
  • the hollow fiber membrane according to the present embodiment has excellent fractionation characteristics that can be applied to the removal of microorganisms and viruses as a microfiltration membrane when the fractional particle diameter is within the above range.
  • excellent transmission performance can be exhibited even at a film thickness that can achieve the required strength.
  • the water permeability at a transmembrane pressure difference of 0.1 MPa is preferably 1000 to 40000 L / m 2 / hour, and preferably 3000 to 30000 L / m 2 / hour. More preferably, it is 3500 to 20000 L / m 2 / hour. If the water permeation amount is too small, the permeation performance tends to be inferior, and if the water permeation amount is too large, the fractionation characteristics tend to deteriorate. From this, if the amount of water permeation is within the above range, a hollow fiber membrane having better permeation performance and fractionation characteristics can be obtained.
  • the amount of water permeation at a transmembrane differential pressure of 0.1 MPa corresponds to a pure water permeation rate (FW) at a transmembrane differential pressure of 0.1 MPa in a wet state, which will be described later.
  • the hollow fiber membrane according to this embodiment has a pure water permeability coefficient of 0.4 ⁇ 10 ⁇ 11 ⁇ L (m 2 ) or more and 6 ⁇ 10 ⁇ 11 when the thickness of the hollow fiber membrane is L (m). it is preferably ⁇ L (m 2) or less, more preferably 0.8 ⁇ 10 -11 ⁇ L (m 2) or more 4 ⁇ 10 -11 ⁇ L (m 2) or less, 1 ⁇ 10 - More preferably, it is 11 ⁇ L (m 2 ) or more and 3 ⁇ 10 ⁇ 11 ⁇ L (m 2 ) or less.
  • the gradient when the horizontal axis is the film thickness L (m) and the vertical axis is the pure water permeability coefficient K (m 2 ) is 0.4 ⁇ 10 ⁇ 11 to 6 ⁇ 10 ⁇ 11.
  • the following is preferable, 0.8 ⁇ 10 ⁇ 11 to 4 ⁇ 10 ⁇ 11 is more preferable, and 1 ⁇ 10 ⁇ 11 to 3 ⁇ 10 ⁇ 11 is further preferable.
  • the pure water permeability coefficient K is a value that depends on the in-membrane structure of the hollow fiber membrane. If the in-membrane structure of the hollow fiber membrane is homogeneous in the film thickness direction, the film thickness varies. Even if it is a value that does not change. It is considered that the structure of the hollow fiber membrane is preferably asymmetric when the inclination is within the above range. That is, there is a dense layered part that is thought to be involved in the fractionation characteristics near one surface, etc., and the other part hardly contributes to the decrease in permeability, and the pores formed in that part are compared. It is thought that it is a big thing.
  • this dense layered portion functions as a separation layer, and the other portion functions as a support layer.
  • This support layer is considered to have a so-called three-dimensional network structure in which coarse pores called macrovoids do not exist in the cross section of the membrane, and communication holes exist in any of the three-dimensional directions. Further, if the inclination is within the above range, even if the thickness of the entire hollow fiber membrane is changed, the thickness of the dense layer portion that functions as the separation layer is hardly changed, and the thickness of the portion that functions as the support is It will change.
  • the inclination is within the above range because the ratio of the separation layer to the entire thickness of the hollow fiber membrane tends to decrease even when the thickness of the hollow fiber membrane is increased. From these facts, if the inclination is too small, the degree of asymmetry of pores in the film thickness direction is not sufficiently high, and if the entire thickness of the hollow fiber membrane is increased, sufficient permeation performance tends not to be exhibited.
  • the inclination is too large, the degree of asymmetry becomes too large, and a portion that should function as a support layer tends not to function sufficiently as a support layer due to occurrence of macrovoids or the like in a portion that functions as a support layer. . That is, the strength of the hollow fiber membrane tends to decrease, and in some cases, the hollow fiber membrane tends to be difficult to manufacture suitably. Therefore, if the inclination is within the above range, it is considered that a hollow fiber membrane having superior permeation performance can be obtained while maintaining excellent fractionation characteristics.
  • the hollow fiber membrane according to this embodiment is preferably composed of a single layer. That is, as described above, even if the hollow fiber membrane has an asymmetric structure in which the size of the pores and the like are different in the film thickness direction, the material is preferably composed of the same layer. More specifically, the hollow fiber membrane is preferably formed of a single layer, rather than a separate layer and a support layer as described above, which are laminated. By doing so, it is possible to obtain a hollow fiber membrane which is excellent in permeation performance and fractionation characteristics and hardly causes damage such as peeling in the membrane.
  • a dense layered portion considered to be involved in the fractionation characteristics as described above is considered thin when the permeation performance is high as in the hollow fiber membrane according to the present embodiment. In such a case, if such a dense layer is separately prepared, it may not be formed suitably. On the other hand, it is considered that when the dense layered portion and other portions are formed of the same layer, that is, a single layer, the dense layered portion can be uniformly formed in the surface direction. Further, if the dense layered portion and the other portion are a single layer, it is considered that the occurrence of peeling or the like at the interface can be sufficiently suppressed.
  • the strength of the hollow fiber membrane is not particularly limited as long as it can be used as a hollow fiber membrane.
  • Strength of the hollow fiber membrane specifically, a tensile strength is preferably 3 ⁇ 15N / mm 2, more preferably 3 ⁇ 10N / mm 2, is 3 ⁇ 7N / mm 2 More preferably.
  • the strength of the hollow fiber membrane is specifically preferably 30 to 250% in terms of tensile elongation, more preferably 50 to 200%, and even more preferably 70 to 200%. preferable.
  • the strength of the hollow fiber membrane if the tensile strength or tensile elongation is within the above range, it can be suitably used as a hollow fiber membrane.
  • the tensile strength is obtained from the load when the hollow fiber membrane cut to a predetermined size is pulled at a predetermined speed and the hollow fiber membrane breaks, and the tensile elongation is the value when the fracture occurs. It represents the elongation of the hollow fiber membrane.
  • the hollow fiber membrane according to the present embodiment includes a cross-linked product of polyvinyl pyrrolidone resin so that the hollow fiber membrane is hydrophilized.
  • This hollow fiber membrane is preferably manufactured by a manufacturing method described later. That is, this hollow fiber membrane is preferably obtained by crosslinking the polyvinylpyrrolidone resin contained in the hollow fiber membrane before crosslinking when the crosslinked body forms the hollow fiber membrane before crosslinking.
  • the crosslinked product is preferably a crosslinked product of a polyvinylpyrrolidone resin kneaded in the hollow fiber membrane before crosslinking.
  • the polyvinyl pyrrolidone resin which is a hydrophilic resin
  • the polyvinyl pyrrolidone resin is kneaded into the raw material of the hollow fiber membrane together with the vinylidene fluoride resin, thereby making it more flexible and stretchable. Can be obtained. This is considered to be due to the fact that the hydrophilic resin kneaded into the raw material acts as a plasticizer when the hollow fiber membrane before crosslinking is formed.
  • the resulting hollow fiber membrane may have poor flexibility unless the raw material contains a hydrophilic resin.
  • the hollow fiber membrane before crosslinking is formed as the hollow fiber membrane
  • the hollow fiber membrane is excellent in flexibility when it contains a crosslinked product obtained by crosslinking the polyvinylpyrrolidone resin contained in the hollow fiber membrane before crosslinking. Therefore, since the strength is within the above range, even if the hollow fiber membrane itself is bent or deformed, liquid leakage due to breakage or the like, so-called yarn leakage, can be sufficiently suppressed, so that it is highly practical. Strength can be realized. Also from this point, it is preferable to include a crosslinked product obtained by crosslinking a polyvinylpyrrolidone-based resin contained in the hollow fiber membrane before crosslinking when the hollow fiber membrane before crosslinking is formed. From these facts, the hollow fiber membrane according to this embodiment becomes a hollow fiber membrane having not only high tensile strength but also high tensile elongation and excellent strength by including the crosslinked body. It can be suitably used as a hollow fiber membrane.
  • the hollow fiber membrane preferably has a pure water permeation rate in a dry state satisfying the following relationship.
  • the hollow fiber membrane includes a crosslinked product obtained by crosslinking the polyvinyl pyrrolidone-based resin contained in the hollow fiber membrane before crosslinking when forming the hollow fiber membrane before crosslinking, permeation of pure water in a dry state
  • the speed satisfies the following relationship, and also from this point, a crosslinked product obtained by crosslinking the polyvinylpyrrolidone-based resin contained in the hollow fiber membrane before crosslinking when the hollow fiber membrane before crosslinking is formed is included. It is preferable.
  • the transmission rate (FD) of pure water at a transmembrane differential pressure of 0.1 MPa in a dry state with respect to the permeation rate (FW) of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state is preferably 40% or more, more preferably 60% or more, and further preferably 80% or more.
  • the permeation rate (FD) of pure water at a transmembrane differential pressure of 0.1 MPa in a dry state and the permeation rate (FW) of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state are the values of the hollow fiber membrane. Whether the state is a wet state or a dry state is different, and other conditions are permeation rates measured under similar conditions.
  • Examples of the permeation rate (FD) of pure water at a transmembrane pressure difference of 0.1 MPa in a dry state include permeation rates measured by the following method.
  • the hollow fiber membrane which is a measurement object is dried.
  • the drying is not particularly limited as long as the hollow fiber membrane can be dried, and examples thereof include drying for 24 hours or more in a blast constant temperature dryer at 60 ° C. More specifically, examples of the hollow fiber membrane in a dry state include a hollow fiber membrane in which the moisture of the hollow fiber membrane has sufficiently reached equilibrium with 60 ° C. air in the dryer.
  • pure water is used as raw water, and filtered under an external pressure under conditions of a filtration pressure of 0.1 MPa and a temperature of 25 ° C., and a water permeation amount for 1 minute is measured. From the measured water permeation amount, the permeation rate of pure water (L / m 2 / hour: LMH) is obtained in terms of the permeation amount per unit membrane area, unit time, and unit pressure.
  • the permeation rate (FW) of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state is the same as the FD measurement method except that a wet hollow fiber membrane is used instead of a dry hollow fiber membrane. It measures by the method of.
  • the wetting treatment for bringing the hollow fiber membrane into a wet state is not particularly limited, and examples thereof include a treatment of immersing the hollow fiber membrane in a 50% by mass aqueous solution of ethanol for 20 minutes and then washing with pure water for 20 minutes. It is done.
  • the permeation rate of pure water (FD10) at a transmembrane pressure difference of 0.1 MPa in the dry state after the wet state and the dry state are alternately repeated 10 times each is the ratio of FD10 to FW (FD10 / FW).
  • FD10 / FW The ratio of FD10 to FW (FD10 / FW) is preferably 40% or more, more preferably 60% or more, and further preferably 80% or more.
  • not only the surface of the hollow fiber membrane but also the inside of the micropores of the hollow fiber membrane are hydrophilized, that is, the entire hollow fiber membrane is hydrophilized, and the entire hollow fiber membrane is hydrophilic.
  • FD / FW and FD10 / FW are almost 100%. In such a case, FD / FW and FD10 / FW may exceed 100% due to various factors such as measurement errors. And, if there is a place where the polyvinyl pyrrolidone-based resin that is a hydrophilic resin is peeled, or a place that is not sufficiently hydrophilic, because those places become water resistance, according to the ratio of those places, The pure water permeation rate (FW10) at a transmembrane pressure difference of 0.1 MPa in the wet state after FW, and the wet state and the dry state are alternately repeated 10 times each decreases.
  • FW10 pure water permeation rate
  • FD / FW and FD10 / FW decrease and become lower than 100%.
  • the dry state after alternately repeating the wet state and the dry state 10 times specifically, the wet state hollow fiber membrane is set to the dry state, and then the wet state again.
  • the operation of making the wet state hollow fiber membrane into a dry state ie, making the hollow fiber membrane in a dry state into a dry state, is repeated 10 times.
  • hollow fiber membranes obtained by a conventional hydrophilization method such as the dipping method described in JP-A-9-512857
  • the wet state and the dry state are alternately repeated 10 times each.
  • the permeation rate of pure water (FD10) at a transmembrane pressure difference of 0.1 MPa in a dry state is lowered.
  • FD10 pure water
  • a hydrophilic resin is applied only to the surface of the hollow fiber membrane and crosslinked. For this reason, it is considered that the hydrophilic resin does not easily enter the fine pores of the hollow fiber membrane, and the anchor effect between the hollow fiber membrane and the crosslinked body of the hydrophilic resin is likely to be low.
  • the permeation rate of pure water tends to be lower than that before drying. That is, FD tends to be smaller than FW.
  • FD10 tends to decrease.
  • the hollow fiber membranes are subjected to moisture retention treatment, protection treatment, etc. before drying. There are many cases.
  • the hollow fiber membrane according to the present embodiment when the hollow fiber membrane before crosslinking is formed as the hollow fiber membrane, the polyvinylpyrrolidone resin contained in the hollow fiber membrane before crosslinking is crosslinked. In the case where the crosslinked body is included, the decrease in FD and FD10 can be suppressed without performing such treatment.
  • the shape of the hollow fiber membrane according to the present embodiment is not particularly limited.
  • the hollow fiber membrane has a hollow fiber shape, and one side in the longitudinal direction may be open, and the other side may be open or closed.
  • Examples of the shape of the hollow fiber membrane include a hollow fiber shape in which one side in the longitudinal direction is left open and the other side is closed.
  • release side of a hollow fiber membrane the case where it is a shape as shown in FIG. 1, etc. are mentioned, for example.
  • FIG. 1 is a partial perspective view of a hollow fiber membrane according to an embodiment of the present invention.
  • the outer diameter R1 of the hollow fiber membrane is preferably 0.5 to 7 mm, more preferably 1 to 2.5 mm, and still more preferably 1 to 2 mm. Such an outer diameter is a suitable size as a hollow fiber membrane provided in an apparatus for realizing a separation technique using a hollow fiber membrane.
  • the inner diameter R2 of the hollow fiber membrane is preferably 0.4 to 3 mm, more preferably 0.6 to 2 mm, and further preferably 0.6 to 1.2 mm.
  • the permeate resistance pressure loss in the tube
  • the shape of the hollow fiber membrane cannot be maintained, and the membrane tends to be crushed or distorted.
  • the film thickness T of the hollow fiber membrane is 0.2 to 1 mm, more preferably 0.25 to 0.5 mm, and further preferably 0.25 to 0.4 mm.
  • the hollow fiber membrane is too thin, deformation such as distortion tends to occur due to insufficient strength.
  • the film thickness is too thick, it is difficult to obtain a suitable film structure, for example, it is difficult to suppress the generation of macrovoids. In some cases, the strength may decrease.
  • the hollow fiber membrane according to the present embodiment can maintain high water permeability even if the film thickness is changed, from the viewpoint of strength, the hollow fiber having a relatively thick film thickness depending on the use environment such as a module. It is also possible to form a film.
  • the hollow fiber membrane has a suitable size as a hollow fiber membrane provided in a device that realizes a separation technique using a hollow fiber membrane.
  • the apparatus can be miniaturized.
  • the manufacturing method of the hollow fiber membrane according to the present embodiment is not particularly limited as long as the above-described hollow fiber membrane can be manufactured.
  • this manufacturing method the following manufacturing methods are mentioned, for example.
  • a step of preparing a film-forming stock solution containing a vinylidene fluoride resin, a polyvinylpyrrolidone-based resin, and a solvent preparation step
  • a step of extruding the film-forming stock solution into a hollow fiber shape extruding the film-forming stock solution into a hollow fiber shape
  • the hollow fiber membrane can be suitably produced. That is, a hollow fiber membrane containing a crosslinked product of polyvinylpyrrolidone resin can be suitably produced.
  • the preparation process in the manufacturing method according to the present embodiment is not particularly limited as long as a film-forming stock solution containing the vinylidene fluoride resin, the polyvinylpyrrolidone resin, and the poor solvent can be prepared.
  • a preparation process the method etc. which heat-stir the raw material of film forming undiluted
  • a membrane-forming stock solution in which each component that is a raw material of the membrane-forming stock solution is uniformly dispersed is obtained, and a hollow fiber membrane can be suitably produced.
  • a biaxial kneading equipment, a kneader, a mixer, etc. can be used, for example.
  • the solvent used here is preferably a poor solvent for the vinylidene fluoride resin.
  • the poor solvent for the vinylidene fluoride-based resin is, for example, a solvent that is compatible with the vinylidene fluoride-based resin at a specific temperature or more to be in a one-phase state, and can cause phase separation due to a compatibility decrease due to a temperature decrease. Is mentioned.
  • the preparation step is performed below the melting point of the vinylidene fluoride resin. That is. It is preferable that the temperature at the time of preparation of this film-forming stock solution is lower than the melting point of the vinylidene fluoride resin. Further, when the poor solvent of the vinylidene fluoride resin is used as the solvent, the preparation step is less than the melting point of the vinylidene fluoride resin and higher than the temperature at which phase separation due to the temperature decrease starts. It is preferable to carry out at temperature. That is. It is preferable that the temperature at the time of preparation of the membrane forming stock solution is lower than the melting point of the vinylidene fluoride resin and higher than the temperature at which phase separation starts due to the temperature decrease.
  • the temperature at the time of preparing this film-forming stock solution is more preferably 60 ° C. or higher and lower than the melting point of the vinylidene fluoride resin, and more preferably 90 to 140 ° C. If this temperature is too low, the viscosity of the membrane-forming stock solution increases, and there is a tendency that a hollow fiber membrane having a suitable membrane structure cannot be obtained. Specifically, a suitable three-dimensional network structure cannot be formed in the layer serving as the support layer of the hollow fiber membrane, and spherulites and macrovoids are easily formed in the layer, and the strength of the obtained hollow fiber membrane Tends to decrease. Moreover, even if this temperature is too high, there is a tendency that a hollow fiber membrane having a suitable membrane structure cannot be obtained.
  • the membrane-forming stock solution obtained here is used for the production of hollow fiber membranes. At that time, it is preferable that the obtained film-forming stock solution is sufficiently deaerated. And after measuring with metering pumps, such as a gear pump, it is used for manufacture of the hollow fiber membrane mentioned later.
  • the above-mentioned resins can be used as the vinylidene fluoride resin and the polyvinyl pyrrolidone resin.
  • the solvent is not particularly limited as long as it is a solvent that can be used as a solvent contained in a membrane-forming stock solution used when producing a hollow fiber membrane. Further, as described above, the solvent is preferably a poor solvent for the vinylidene fluoride resin.
  • the poor solvent is not particularly limited as long as it is a solvent that is compatible with the vinylidene fluoride resin at a specific temperature or higher to be in a one-phase state and can cause phase separation due to a temperature drop.
  • the poor solvent is preferably a water-soluble solvent. If it is a water-soluble solvent, it is possible to use water when extracting the solvent from the hollow fiber membrane after film formation, and the extracted solvent can be disposed of by biological treatment or the like.
  • the poor solvent examples include ⁇ -butyrolactone, ⁇ -caprolactone, methanol, acetone, and caprolactone.
  • the poor solvent among the exemplified solvents, ⁇ -butyrolactone is preferable from the viewpoints of environmental load, safety, cost, and the like.
  • the solvent resin of the said illustration may be used independently, and may be used in combination of 2 or more type.
  • the content of the vinylidene fluoride resin is 20 to 35 parts by mass with respect to the total mass of the vinylidene fluoride resin, the poor solvent, and the polyvinylpyrrolidone resin, and 20 to 30 parts by mass. It is more preferable that The content of the poor solvent is 45 to 70 parts by mass, more preferably 50 to 70 parts by mass, and still more preferably 55 to 65 parts by mass with respect to the total mass.
  • the content of the polyvinyl pyrrolidone-based resin is 5 to 20 parts by mass, more preferably 8 to 20 parts by mass, and further preferably 10 to 15 parts by mass with respect to the total mass.
  • the content of the vinylidene fluoride resin is preferably 1.54 to 4.38 in terms of mass ratio with respect to the content of the polyvinylpyrrolidone resin, and is preferably 1.6 to 3.91. More preferably, it is more preferably 1.67 to 3.13. As long as the content of each component in the membrane-forming stock solution is the above-mentioned content, a hollow fiber membrane with a more preferable content of the crosslinked product of the polyvinylpyrrolidone resin can be preferably produced.
  • the film-forming stock solution only needs to contain the vinylidene fluoride-based resin, the polyvinylpyrrolidone-based resin, and the solvent, and may consist of these.
  • the film-forming stock solution may contain other components. Examples of other components include surfactants, antioxidants, ultraviolet absorbers, lubricants, antiblocking agents, dyes, and various additives such as additives that promote phase separation of the film-forming stock solution. .
  • Examples of the additive that promotes phase separation of the membrane forming stock solution include solvents other than the above poor solvents such as glycerin, ethylene glycol, tetraethylene glycol, water, ethanol, methanol, and polyethylene glycol, polyethylene oxide, polyvinyl Examples thereof include resins such as alcohol, polymethyl methacrylate, and polymethyl acrylate. This resin may be a copolymer of each of the above resins.
  • the compound of the said illustration may be used independently, and may be used in combination of 2 or more type.
  • the extrusion step in the production method according to the present embodiment is not particularly limited as long as it is a step of extruding the film-forming stock solution into a hollow fiber shape.
  • Examples of the extrusion step include a step of extruding the film-forming stock solution from a hollow fiber molding nozzle shown in FIG.
  • FIG. 2 is a schematic view showing an example of a hollow fiber molding nozzle used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 2A is a cross-sectional view
  • FIG. 2B is a plan view showing a discharge port side of a hollow fiber molding nozzle for discharging a film-forming stock solution.
  • the hollow fiber molding nozzle 21 here includes an annular outer discharge port 26 and a circular or annular inner discharge port 27 arranged inside the outer discharge port 26.
  • the hollow fiber molding nozzle 21 is provided at the end of the flow pipe 24 through which the film-forming stock solution is circulated, and the film-forming stock solution flowing in the flow pipe 24 is discharged outside through the flow path 22 in the nozzle. Discharge from the outlet 26.
  • the hollow fiber molding nozzle 21 causes the internal coagulating liquid to flow through the flow pipe 25 at the same time as the film-forming stock solution is discharged from the outer discharge port 26, and passes through the flow path 23 in the nozzle. Discharge from the outlet 27. By doing so, the hollow fiber-shaped film-forming stock solution extruded from the hollow fiber molding nozzle 21 is brought into contact with the internal coagulation liquid.
  • the solubility parameter distance (HSP distance) with the film-forming stock solution is preferably 5 to 200 (MPa) 1/2 , and preferably 50 to 200 (MPa) 1/2 . More preferred is 100 to 180 (MPa) 1/2 .
  • HSP distance solubility parameter distance
  • the hollow fiber-shaped film-forming stock solution extruded from the hollow fiber molding nozzle can be suitably coagulated from the inner peripheral surface.
  • the solvent exchange between the inner peripheral surface side of the hollow fiber-shaped film forming stock solution extruded from the hollow fiber molding nozzle and the internal coagulating liquid is performed at a suitable speed.
  • a hollow fiber membrane having a structure near the inner peripheral surface side can be obtained, and the hollow fiber membrane excellent in both permeation performance and fractionation characteristics can be produced more suitably. Therefore, the said hollow fiber membrane excellent in both the permeation
  • the HSP distance is a parameter for evaluating the affinity between one substance and another substance, and is defined by the following formula using Hansen's three-dimensional solubility parameters (dD, dP, dH) (details) Is a non-patent document: Hansen, Charles (2007). See Hansen Solubility Parameters: A user's handbook, Second Edition. Boca Raton, Fla: CRC Press.).
  • HSP distance [4 ⁇ (dD stock solution ⁇ dD solvent) 2 + (dP stock solution ⁇ dP solvent) 2 + (dH stock solution ⁇ dH solvent) 2 ] 0.5
  • dD van der Waals force
  • dP dipole moment force
  • dH hydrogen bond force
  • solubility parameter used in this specification is a Hansen parameter
  • a Hoy parameter can be used for those not described in the Hansen parameter. Those not described in both can be estimated by Hansen's parameter formula (see Allan FM Barton, “CRC Handbook” of solidity “parameters” and “other” cohesion “parameters” “CRC Corp. 1991).
  • Hansen's parameter formula see Allan FM Barton, “CRC Handbook” of solidity “parameters” and “other” cohesion “parameters” “CRC Corp. 1991.
  • parameters obtained by calculating each solubility parameter based on its mass according to the additive law are used.
  • the internal coagulation liquid may be composed of a single solvent, or may be used in combination of two or more solvents.
  • a film-forming stock solution and a solvent with a long HSP distance are mixed at an arbitrary ratio with a film-forming stock solution and a solvent with a short HSP distance, Examples thereof include a mixed solvent in which the HSP distance from the membrane stock solution is adjusted.
  • the solvent having a long HSP distance from the film-forming stock solution include water and glycerin.
  • the solvent having a HSP distance close to that of the film forming stock solution include ⁇ -butyrolactone and dimethylacetamide.
  • Examples of the mixed solvent used as the internal coagulation liquid include a mixed solvent of dimethylacetamide and glycerin, a mixed solvent of ⁇ -butyrolactone and glycerin, a mixed solvent of ⁇ -butyrolactone and ethylene glycol, and a mixed solvent of ⁇ -butyrolactone and water.
  • Examples thereof include a mixed solvent, a mixed solvent of dimethylacetamide and water, a mixed solvent of dimethylacetamide and ethylene glycol, and a mixed solvent of dimethylformamide and water.
  • a mixed solvent of ⁇ -butyrolactone and glycerin and a mixed solvent of dimethylacetamide and water are preferable from the viewpoint of good moldability of the hollow fiber membrane.
  • the temperature of the internal coagulation liquid is preferably 40 to 170 ° C. from the viewpoint of ensuring the uniformity of the internal coagulation liquid. That is, the temperature of the internal coagulation liquid is preferably adjusted between 40 and 170 ° C.
  • the forming step in the production method according to the present embodiment is not particularly limited as long as it is a step capable of coagulating the extruded hollow fiber-shaped film forming stock solution to form a hollow fiber membrane.
  • Specific examples of the forming step include a step of forming a hollow fiber membrane by bringing an extruded hollow fiber-shaped membrane-forming stock solution into contact with an external coagulation liquid. More specifically, the forming step includes a step of immersing the hollow fiber-shaped film forming stock solution extruded in the extrusion step in an external coagulation liquid stored in an external coagulation bath.
  • the external coagulation liquid is not particularly limited as long as it can coagulate the extruded hollow fiber-shaped film-forming stock solution by contacting with the extruded hollow-fiber film-forming stock solution.
  • Specific examples of the external coagulation liquid include water and aqueous solutions containing salts or solvents.
  • the salts here include various salts such as sulfates, chlorides, nitrates, and acetates. Among these, sodium sulfate is preferable.
  • the aqueous solution containing salts preferably has a salt concentration of 30 to 300 g / L, more preferably 50 to 300 g / L, and still more preferably 100 to 280 g / L.
  • this concentration is too low or too high, a hollow fiber membrane having a suitable membrane structure tends to be difficult to obtain. Specifically, if the concentration is too low, the solvent exchange rate in the forming step is increased, the densification of the obtained hollow fiber membrane proceeds too much, and the permeation performance tends to be reduced. Moreover, when this density
  • the temperature of the external coagulation liquid is not particularly limited as long as it is a temperature at which the extruded hollow fiber-shaped film-forming stock solution can be coagulated by contact with the extruded hollow-fiber-shaped film-forming stock solution.
  • the temperature of the external coagulation liquid is preferably higher than the temperature at which phase separation due to temperature change starts when a poor solvent of the vinylidene fluoride resin is used as the solvent. If the temperature of the external coagulation liquid is such a temperature, it is considered that a hollow fiber membrane excellent in both permeation performance and fractionation characteristics can be preferably produced. This is considered to be due to the following.
  • a good solvent for vinylidene fluoride resin is not used, but a poor solvent for vinylidene fluoride resin as described above is used, and phase separation due to the temperature change does not occur.
  • the hollow fiber-shaped film-forming stock solution is brought into contact with the external coagulation liquid.
  • solvent exchange between the solvent in the film-forming stock solution and the external coagulation liquid occurs, and the resin in the film-forming stock solution is solidified.
  • the good solvent is used, the speed of the solvent exchange is considered to be more preferable than the so-called conventional NIPS method. Therefore, it is considered that a hollow fiber membrane excellent in both permeation performance and fractionation characteristics can be preferably produced.
  • the temperature of the external coagulation liquid is preferably higher than the temperature at which phase separation due to the temperature change starts, specifically 45 ° C. or higher, and more preferably 50 ° C. or higher. Further, the temperature of the external coagulation liquid is preferably not more than the boiling point of the external coagulation liquid, more preferably 90 ° C. or less, and further preferably 85 ° C. or less. When the temperature of the external coagulation liquid is too low, the obtained hollow fiber membrane tends to be dense and it is difficult to form an asymmetric structure. Further, when the temperature of the external coagulation liquid is equal to or lower than the temperature at which phase separation due to the temperature change starts, the TIPS method is used, and it is difficult to form a suitable hollow fiber membrane.
  • the temperature of the external coagulation liquid is too high, the viscosity of the film-forming stock solution is lowered, so that the fractionation characteristics are lowered, and the water permeability performance tends to be too high. Furthermore, when the temperature of the external coagulation liquid is equal to or higher than the boiling point thereof, the external coagulation liquid boils and vibrates, so that the production of the hollow fiber membrane tends to be unstable.
  • the temperature at which phase separation starts is a temperature at which phase separation starts by lowering the temperature of a solution containing the vinylidene fluoride resin, the poor solvent, and the polyvinylpyrrolidone resin, for example, the film-forming stock solution. It is. Specifically, the temperature at which phase separation starts is measured as follows (for details, see Non-Patent Documents; Structure and property control of polymer alloys and the latest technology, Toshiaki Ogizawa, Noriyuki Sewa, Akio Imai, reference). First, a slide glass and a cover glass are placed on a stage of an optical microscope with a temperature controller, and the slide glass and the cover glass are heated to 120 ° C.
  • a uniform film-forming stock solution is sandwiched between the heated slide glass and the cover glass. Then, the temperature of the slide glass and the cover glass is gradually decreased or increased, for example, by 3 ° C., and the white turbidity (due to the difference in refractive index between the two phases) generated by phase separation is visually observed. Confirm the temperature and measure the temperature.
  • This temperature is a temperature at which phase separation starts. That is, in this measurement method, if the film-forming stock solution is transparent, it is in a homogeneous phase state, and if it is cloudy, it is in a phase-separated state, and phase separation starts at the temperature at which partial cloudiness is confirmed. This is a method of measuring the temperature (phase separation start temperature).
  • the extruded hollow fiber-shaped film-forming stock solution may be run in a gas, usually in the air, before being brought into contact with the external coagulation liquid. That is, in the forming step, the hollow fiber-shaped film-forming stock solution extruded in the extruding step may be brought into contact with an external coagulation liquid after traveling in gas.
  • the distance traveled in the gas is not particularly limited, and is preferably 5 to 300 mm, for example. Traveling in this gas can suitably perform solvent exchange between the extruded hollow fiber-shaped film-forming stock solution and the internal coagulation liquid, and the hollow fiber shape is stabilized and the spinnability is improved. In the manufacturing method according to this embodiment, traveling in the gas may not be performed.
  • the hollow fiber membrane formed by the forming step may be stretched in the longitudinal direction.
  • stretching method is not specifically limited, For example, the extending
  • stretching if the force concerning extending
  • the permeation performance of the hollow fiber membrane is improved. This is considered that an independent hole existing in the membrane is cleaved to become a communication hole, the communication in the membrane is improved, and the permeation performance is improved.
  • when such stretching and shrinking are performed there is an advantage that the direction of the fibers of the hollow fiber membrane is homogenized and the strength is improved. In the manufacturing method according to the present embodiment, this stretching and shrinking need not be performed.
  • the manufacturing method according to the present embodiment may clean the hollow fiber membrane formed by the forming step.
  • the washing method include a method of washing the hollow fiber membrane with hot water in a water bath at 80 ° C. or higher. This hot water cleaning suitably improves the hydrophilicity of the hollow fiber membrane. This is considered to be due to the diffusion of the polyvinylpyrrolidone resin in the hollow fiber membrane within the membrane by this hot water cleaning.
  • the crosslinking step in the production method according to the present embodiment is not particularly limited as long as the polyvinyl pyrrolidone resin contained in the hollow fiber membrane can be crosslinked.
  • the crosslinking step include a step of immersing the hollow fiber membrane (hollow fiber membrane before crosslinking) in an aqueous solution containing a radical initiator, a step of immersing the hollow fiber membrane in a strong acid or strong alkali, and heat treating the hollow fiber membrane. And a step of performing radiation treatment on the hollow fiber membrane.
  • the crosslinking step is preferably a step of immersing the hollow fiber membrane in an aqueous solution containing a radical initiator from the viewpoint that the deterioration of the vinylidene fluoride resin can be suppressed and the handling is easy.
  • the aqueous solution containing the radical initiator may be an aqueous solution containing a radical initiator capable of initiating the crosslinking reaction of the polyvinylpyrrolidone resin, and examples thereof include a 1% by mass aqueous solution of the radical initiator.
  • the radical initiator include sodium persulfate, ammonium persulfate, and hydrogen peroxide. Among these, hydrogen peroxide is preferable because a hollow fiber membrane having high permeation performance is easily obtained.
  • the heating temperature in the heat treatment step may be any temperature that can initiate the crosslinking reaction of the polyvinylpyrrolidone resin, and is preferably about 170 to 200 ° C., for example.
  • the hollow fiber membrane according to the present embodiment can be subjected to membrane filtration.
  • a hollow fiber membrane is used to be modularized as follows, and this modularized product can be used for membrane filtration. More specifically, a predetermined number of hollow fiber membranes according to this embodiment are bundled, cut into a predetermined length, and filled into a casing having a predetermined shape, and the end of the hollow fiber bundle is a polyurethane resin or an epoxy resin. It is fixed to the casing by a thermosetting resin such as a module to form a module.
  • this module there are various types such as a type in which both ends of the hollow fiber membrane are fixed open, one end of the hollow fiber membrane is fixed open and the other end is sealed, but the type is not fixed.
  • a structure having a known structure is known, and the hollow fiber membrane according to this embodiment can be used in any module structure.
  • FIG. 3 is a schematic view showing an example of a membrane filtration device provided with a hollow fiber membrane according to an embodiment of the present invention.
  • the membrane filtration device 31 includes the membrane module 32 obtained by modularizing the hollow fiber membrane as described above. And as for this membrane module 32, what has opened the hollow part in the upper end part 33 of a hollow fiber membrane, and the lower end part 34 has sealed the hollow part with the epoxy resin, for example.
  • Examples of the membrane module 32 include those made of 70 hollow fiber membranes having an effective membrane length of 100 cm.
  • the liquid that is the object to be treated is filtered from the introduction port 35, and the liquid (filtrated water) that has been filtered by the membrane module 32 is discharged from the outlet port 36. By doing so, filtration using a hollow fiber membrane is implemented.
  • the air introduced into the membrane filtration device 31 is discharged from the air vent 37.
  • the hollow fiber membrane according to the present embodiment is modularized in this way and used for various applications such as water purification treatment, drinking water production, industrial water production, and wastewater treatment.
  • the hollow fiber membrane according to one aspect of the present invention is a porous hollow fiber membrane containing a vinylidene fluoride resin, and the pore diameter in the hollow fiber membrane is on at least one side of the inner and outer peripheral surfaces.
  • the hollow fiber membrane is hydrophilized by having an inclined structure that gradually decreases toward the bottom and containing a crosslinked product of polyvinylpyrrolidone resin.
  • this hollow fiber membrane has a slanted structure in which the pore diameter of the pores in the membrane gradually decreases toward at least one side of the inner and outer peripheral surfaces, so that it is a dense layered shape that is considered to be involved in fractionation characteristics. It is considered that the portion and other portions having relatively large pores (pores) are formed. For example, a dense layered portion that is considered to be involved in fractionation characteristics is formed on the surface, etc., and the other portions have relatively large pores (pores) formed in the portion, so that the permeation performance It is thought that the decrease of the is suppressed.
  • such a hollow fiber membrane contains a vinylidene fluoride resin, it is considered that the hydrophobicity tends to be relatively high. Even in such a hollow fiber membrane, it is considered that hydrophilicity can be enhanced by including a crosslinked product of polyvinylpyrrolidone resin. In addition, it is considered that not including polyvinyl pyrrolidone-based resin, but including a cross-linked product of polyvinyl pyrrolidone-based resin, the dropping of polyvinyl pyrrolidone-based resin is suppressed and the effect of enhancing hydrophilicity can be maintained. .
  • the hollow fiber membrane contains a vinylidene fluoride resin, an excellent strength can be obtained.
  • the content of the crosslinked body is preferably 0.1% by mass or more and less than 15% by mass.
  • a hollow fiber membrane excellent in permeation performance and excellent in stain resistance can be obtained while maintaining excellent fractionation characteristics.
  • the hollow fiber membrane containing the vinylidene fluoride resin can be appropriately hydrophilized, and the hydrophilicity can be increased while suppressing the occurrence of a decrease in water permeability due to blockage of the pores of the membrane. This is considered to be possible.
  • the polyvinyl pyrrolidone resin preferably has a K value of 30 to 120.
  • a hollow fiber membrane excellent in permeation performance and excellent in stain resistance can be obtained while maintaining excellent fractionation characteristics.
  • a polyvinyl pyrrolidone-based resin having such a K value is likely to remain moderately in a hollow fiber membrane containing a vinylidene fluoride-based resin, and the hollow fiber membrane can be appropriately hydrophilized. .
  • the permeability of a liquid containing water can be improved because the hydrophilicity can be enhanced while suppressing the occurrence of a decrease in water permeability due to the blocking of the pores of the membrane.
  • the water permeation amount at a transmembrane pressure difference of 0.1 MPa is preferably 1000 to 40000 L / m 2 / hour, and the fractional particle size is preferably 0.001 to 0.5 ⁇ m.
  • the hollow fiber membrane is preferably composed of a single layer.
  • the dense layered portion considered to be involved in the fractionation characteristics as described above is considered thin when the permeation performance is high as in the hollow fiber membrane according to one embodiment of the present invention. In such a case, if such a dense layer is separately prepared, it may not be formed suitably. On the other hand, it is considered that when the dense layered portion and other portions are formed of the same layer, that is, a single layer, the dense layered portion can be uniformly formed in the surface direction. Further, if the dense layered portion and the other portion are a single layer, it is considered that the occurrence of peeling or the like at the interface can be sufficiently suppressed.
  • the crosslinked body is obtained by crosslinking a polyvinylpyrrolidone-based resin included in the hollow fiber membrane before crosslinking when the hollow fiber membrane before crosslinking is formed.
  • a hollow fiber membrane excellent in permeation performance and fractionation characteristics and excellent in strength not only in tensile strength but also in tensile elongation can be obtained.
  • the method for producing a hollow fiber membrane is a method for producing the hollow fiber membrane, wherein the membrane forming stock solution contains a vinylidene fluoride resin, a polyvinylpyrrolidone resin, and a solvent.
  • a crosslinking step of crosslinking the polyvinylpyrrolidone resin in the membrane is a method for producing the hollow fiber membrane, wherein the membrane forming stock solution contains a vinylidene fluoride resin, a polyvinylpyrrolidone resin, and a solvent.
  • the hollow fiber membrane can be suitably manufactured.
  • the membrane forming stock solution has a content of the vinylidene fluoride resin in a mass ratio of 1.54 to 4.4 with respect to the content of the polyvinyl pyrrolidone resin. 38 is preferred.
  • a hollow fiber membrane in which the content of the crosslinked product of the polyvinylpyrrolidone resin is more suitable can be suitably produced.
  • the crosslinking step is preferably a step of immersing the hollow fiber membrane before crosslinking in an aqueous solution containing a radical initiator.
  • the polyvinyl pyrrolidone resin contained in the hollow fiber membrane before crosslinking can be easily crosslinked. Therefore, the hollow fiber membrane can be manufactured more easily.
  • Example 1 First, as a vinylidene fluoride-based resin, polyvinylidene fluoride (hereinafter sometimes abbreviated as PVDF) (Kynar 741 manufactured by Arkema Co., Ltd.), and ⁇ -butyrolactone (GBL manufactured by Mitsubishi Chemical Corporation) as a solvent, As a polyvinyl pyrrolidone-based resin, a mixture of polyvinyl pyrrolidone (BASF Japan K.K. 90P, K value: 90) was prepared in a mass ratio of 25:62:13. Note that ⁇ -butyrolactone is a poor solvent for polyvinylidene fluoride. In addition, content with respect to polyvinylpyrrolidone of polyvinylidene fluoride is 25/13, and is about 1.92.
  • PVDF polyvinylidene fluoride
  • ⁇ -butyrolactone GBL manufactured by Mitsubishi Chemical Corporation
  • the film-forming stock solution extruded together with this internal coagulation liquid was immersed in an external coagulation liquid at 60 ° C. composed of a 180 g / L sodium sulfate aqueous solution through an idle running distance of 40 mm. By doing so, the membrane-forming stock solution is solidified and a hollow fiber membrane is obtained.
  • This external coagulation liquid is a non-solvent for polyvinylidene fluoride.
  • the obtained hollow fiber membrane was stretched and contracted, and then washed with hot water at 90 ° C. for 2 hours.
  • the solvent ( ⁇ -butyrolactone) and the polyvinylpyrrolidone resin (polyvinylpyrrolidone) are extracted and removed from the hollow fiber membrane.
  • the obtained hollow fiber membrane was subjected to crosslinking treatment (crosslinking insolubilization treatment) by heating polyvinylpyrrolidone in a 1% hydrogen peroxide solution.
  • crosslinking treatment crosslinking insolubilization treatment
  • the outer diameter of the hollow fiber membrane thus obtained was 1.3 mm, the inner diameter was 0.8 mm, and the film thickness was 0.25 mm.
  • Example 1 Further, the membrane structure of the hollow fiber membrane according to Example 1 was confirmed using a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.). The results are shown in FIGS.
  • FIG. 4 is a view showing a scanning electron micrograph of a cross section of the hollow fiber membrane according to Example 1.
  • FIG. 5 is a view showing a scanning electron micrograph of the vicinity of the outer peripheral surface in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 6 is a view showing a scanning electron micrograph of the vicinity of the central portion in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 7 is a view showing a scanning electron micrograph of the vicinity of the inner peripheral surface in the cross section of the hollow fiber membrane according to Example 1.
  • FIG. 5 is an enlarged view of the surrounding line 61 shown in FIG.
  • FIG. 6 is an enlarged view of the surrounding line 62 shown in FIG.
  • FIG. 7 is an enlarged view of the enclosing line 63 shown in FIG.
  • the hollow fiber membrane according to Example 1 is a porous hollow fiber membrane, and the pore diameter of the hollow fiber membrane gradually increases toward at least one side of the inner and outer peripheral surfaces. It turns out that it has the inclination structure which becomes small. That is, it can be seen that the pore sizes in the hollow fiber membrane are sequentially different in the thickness direction. Moreover, it turns out that the dense layered part is formed in the outer peripheral surface vicinity, and a part sparser than it is formed in the other part. Specifically, the porosity near the outer peripheral surface shown in FIG.
  • FIG. 8 is a view showing a scanning electron micrograph of the outer peripheral surface of the hollow fiber membrane according to Example 1.
  • FIG. 9 is a figure which shows the scanning electron micrograph of the internal peripheral surface of the hollow fiber membrane which concerns on Example 1.
  • the water permeation amount of the obtained hollow fiber membrane was calculated from the obtained amount and the membrane area by measuring the amount of filtrate per unit time in the following operation using the hollow fiber membrane. .
  • a membrane filtration device 31 as shown in FIG. 3 was produced.
  • the membrane module 32 loaded in the membrane filtration device 31 has an effective membrane length of 20 cm and 20 hollow fibers, and the upper end portion 33 is sealed with an epoxy resin.
  • the upper end portion 33 has an open hollow portion of the hollow fiber membrane, and the lower end portion 34 has the hollow portion of the hollow fiber membrane sealed with an epoxy resin.
  • This membrane filtration device 31 filtered pure water from the outer peripheral surface side of the hollow fiber membrane through the inlet port 35 and obtained filtered water from the outlet port 36 on the inner peripheral surface side of the upper end portion. At this time, the pressure difference between the membranes was adjusted to 0.1 MPa.
  • the water permeation amount obtained by this measuring method was 5000 L / m 2 / hour.
  • the hollow fiber membrane used in the measurement here is a hollow fiber membrane in a swollen state, and the water permeation here is the permeation rate (FW) of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state. It corresponds to.
  • a hollow fiber membrane to be used a dry state hollow fiber membrane or a dry state hollow fiber membrane after alternately repeating a wet state and a dry state 10 times, respectively, also measures FD and FD10, respectively. did.
  • fractional particle diameter of the obtained hollow fiber membrane was measured by the following method.
  • the fractional particle size obtained by this measurement method was 0.02 ⁇ m.
  • the pure water permeability coefficient K of the obtained hollow fiber membrane was calculated by the above method and found to be 4 ⁇ 10 ⁇ 15 m 2 .
  • a plurality of hollow fiber membranes having different film thicknesses were produced in the same manner except that the amount of the membrane-forming stock solution was changed, and the pure water permeability coefficient K was calculated for each. Then, the change of the pure water permeability coefficient K with respect to the film thickness change was plotted, and the slope at that time was calculated. The inclination was 2.29 ⁇ 10 ⁇ 11 .
  • the strength of the obtained hollow fiber membrane was measured. Specifically, the tensile strength and tensile elongation of the hollow fiber membrane were measured.
  • the tensile strength of the hollow fiber membrane was measured as follows.
  • the obtained hollow fiber membrane was cut to a length of 5 cm.
  • the cut hollow fiber membrane was used as a test piece for measuring strength.
  • the tensile strength obtained by this measuring method was 5.2 N / mm 2 .
  • the tensile elongation of the hollow fiber membrane was measured as follows.
  • the tensile elongation was determined from the elongation of the test piece when it broke.
  • the tensile elongation obtained by this measurement method was 180%.
  • the hollow fiber membrane according to Example 1 was a hollow fiber membrane that was excellent in both permeation performance and fractionation characteristics and excellent in strength.
  • hydrophilicity of the hollow fiber membrane was evaluated by conducting a protein adsorption test as follows.
  • the resulting hollow fiber membrane was dried and cut to a weight of 2 g in a dry state.
  • the cut hollow fiber membrane was wet-treated, and then immersed in 1000 ppm bovine serum albumin (Sigma Aldrich A7906-10G) phosphate buffer for 24 hours.
  • the concentration of bovine serum albumin (protein concentration) in the phosphate buffer after soaking for 24 hours was measured. From this measurement result, a decrease in protein concentration due to immersion of the hollow fiber membrane was calculated, and from this decrease, the amount of protein adhering to the hollow fiber membrane (protein adhesion amount: mg / g) was calculated.
  • This hollow fiber membrane in which bovine serum albumin was adsorbed was immersed in a phosphate buffer solution not containing bovine serum albumin for 24 hours, and the concentration of bovine serum albumin eluted in this phosphate buffer solution was measured. From this measurement result, the amount of eluted protein (protein elution amount: mg / g) was calculated. The amount of bovine serum albumin adsorbed on the hollow fiber membrane (protein adsorption amount: mg / g) was calculated from the difference between the protein adhesion amount and the protein elution amount. The result is shown in FIG. In addition, the same evaluation was performed also with respect to the hollow fiber membrane which concerns on the comparative example 1 mentioned later, and it shows in FIG. 10 collectively.
  • FIG. 10 is a figure which shows the hydrophilicity evaluation result of each hollow fiber membrane which concerns on Example 1 and Comparative Example 1.
  • FIG. The vertical axis indicates the protein adsorption amount (mg / g).
  • Example 2 A hollow fiber membrane was obtained in the same manner as in Example 1 except that polyvinylpyrrolidone (PVP K-120 manufactured by ISP Japan Co., Ltd., K value: 120) was used as the polyvinylpyrrolidone resin.
  • the content of the crosslinked product of polyvinyl pyrrolidone in the obtained hollow fiber membrane was 4.9% by mass.
  • the obtained hollow fiber membrane has an outer peripheral pore diameter, an inner peripheral pore diameter, a ratio of an inner peripheral pore diameter to an outer peripheral pore diameter, a water permeability (FW) at a transmembrane differential pressure of 0.1 MPa, FD, FD10
  • the gradient, the fractional particle diameter, the tensile strength, and the tensile elongation when the pure water permeability coefficient K and the change in the pure water permeability coefficient K with respect to the film thickness are plotted are measured by the same method as in Example 1 above. And shown in Table 1. It was found that the obtained hollow fiber membrane was a hollow fiber membrane that was excellent in both permeation performance and fractionation characteristics and excellent in strength as in Example 1.
  • Example 3 A hollow fiber membrane was obtained in the same manner as in Example 1 except that polyvinyl pyrrolidone (PVP K-60 manufactured by ISP Japan Co., Ltd., K value: 60) was used as the polyvinyl pyrrolidone resin.
  • the content of the crosslinked product of polyvinylpyrrolidone in the obtained hollow fiber membrane was 0.6% by mass.
  • the obtained hollow fiber membrane has an outer peripheral pore diameter, an inner peripheral pore diameter, a ratio of an inner peripheral pore diameter to an outer peripheral pore diameter, a water permeability (FW) at a transmembrane differential pressure of 0.1 MPa, FD, FD10
  • the gradient, the fractional particle diameter, the tensile strength, and the tensile elongation when the pure water permeability coefficient K and the change in the pure water permeability coefficient K with respect to the film thickness are plotted are measured by the same method as in Example 1 above. And shown in Table 1. It was found that the obtained hollow fiber membrane was a hollow fiber membrane that was excellent in both permeation performance and fractionation characteristics and excellent in strength as in Example 1.
  • Example 4 A hollow fiber membrane was obtained in the same manner as in Example 1 except that the washing time with hot water applied after the hollow fiber membrane was stretched and contracted was changed to 20 minutes.
  • this Example 4 is an Example which intends that the residual amount of the crosslinked body of polyvinylpyrrolidone becomes larger than the hollow fiber membrane obtained in Example 1 because the washing time is shorter than that in Example 1.
  • the content of the crosslinked product of polyvinylpyrrolidone in the obtained hollow fiber membrane was 9.2% by mass.
  • the obtained hollow fiber membrane has an outer peripheral pore diameter, an inner peripheral pore diameter, a ratio of an inner peripheral pore diameter to an outer peripheral pore diameter, a water permeability (FW) at a transmembrane differential pressure of 0.1 MPa, FD, FD10
  • the gradient, the fractional particle diameter, the tensile strength, and the tensile elongation when the pure water permeability coefficient K and the change in the pure water permeability coefficient K with respect to the film thickness are plotted are measured by the same method as in Example 1 above. And shown in Table 1. It was found that the obtained hollow fiber membrane was a hollow fiber membrane that was excellent in both permeation performance and fractionation characteristics and excellent in strength as in Example 1.
  • Example 5 By washing the hollow fiber membrane before crosslinking in Example 1, the polyvinylpyrrolidone contained in the membrane was removed until the content of polyvinylpyrrolidone contained in the membrane was less than 0.1% by mass.
  • the hollow fiber membrane from which the polyvinyl pyrrolidone was removed was completely dried. Thereafter, the dried hollow fiber membrane was wetted by immersing it in a 50% by mass aqueous solution of ethanol. And this wet hollow fiber membrane was immersed in pure water for 24 hours. By doing so, it became the state in which water was contained in the whole hollow fiber membrane.
  • the hollow fiber membrane in this state was immersed in a 1% by mass aqueous solution of polyvinylpyrrolidone (BASF Japan K.K.
  • the hollow fiber membrane soaked in polyvinylpyrrolidone was crosslinked by the same method as in Example 1 to obtain a hollow fiber membrane containing a crosslinked product of polyvinylpyrrolidone.
  • the obtained hollow fiber membrane has an outer peripheral pore diameter, an inner peripheral pore diameter, a ratio of an inner peripheral pore diameter to an outer peripheral pore diameter, a water permeability (FW) at a transmembrane differential pressure of 0.1 MPa, FD, FD10
  • the gradient, the fractional particle diameter, the tensile strength, and the tensile elongation when the pure water permeability coefficient K and the change in the pure water permeability coefficient K with respect to the film thickness are plotted are measured by the same method as in Example 1 above. And shown in Table 1.
  • Example 1 A hollow fiber membrane was obtained in the same manner as in Example 1 except that the polyvinyl pyrrolidone in the hollow fiber membrane was washed as much as possible, and the crosslinking insolubilization treatment for polyvinyl pyrrolidone was not performed.
  • the obtained hollow fiber membrane was not hydrophilized, the permeation resistance increased, and sufficient permeation performance could not be obtained.
  • the content of the polyvinyl pyrrolidone crosslinked product in the obtained hollow fiber membrane is 0% by mass because it is not subjected to crosslinking insolubilization treatment. Further, the content of polyvinylpyrrolidone in the obtained hollow fiber membrane was less than 0.1% by mass.
  • the hollow fiber membrane according to Example 1 containing polyvinylpyrrolidone in the membrane and subjected to crosslinking insolubilization treatment has a protein adsorption amount as compared with Comparative Example 1 not subjected to crosslinking insolubilization treatment. I understand that there are few. From this, it can be seen that the hollow fiber membrane according to Example 1 includes the crosslinked product of the polyvinylpyrrolidone-based resin, so that the obtained hollow fiber membrane becomes hydrophilic.
  • Example 2 Example in which polyvinyl alcohol (PVA-205 manufactured by Kuraray Co., Ltd.) was used in place of polyvinyl pyrrolidone resin, and 1% glutaraldehyde sulfuric acid aqueous solution was used as the crosslinking treatment solution during the crosslinking insolubilization treatment.
  • a hollow fiber membrane was obtained.
  • the content of the crosslinked product of polyvinyl alcohol in the obtained hollow fiber membrane was 3.0% by mass. This content was calculated by dissolving the obtained hollow fiber membrane with N-methylpyrrolidone, which is a good solvent for vinylidene fluoride resin, and measuring the weight of the remaining crosslinked product.
  • the obtained hollow fiber membrane could not obtain sufficient permeation performance.
  • Table 2 below shows the conditions, pure water permeability coefficient, and the like in the above examples and comparative examples.
  • the resin in the table is a resin to be contained together with the vinylidene fluoride resin, “PVP” is polyvinylpyrrolidone, and “PVA” is polyvinyl alcohol.
  • content of the crosslinked body in the comparative example 2 shows content of the crosslinked body of PVA, and content of the other crosslinking pair shows content of the crosslinked body of PVP.
  • Examples 1 to 5 are superior in transmission performance and fractionation characteristics and in strength as compared with Comparative Examples 1 and 2.
  • the polyvinylpyrrolidone aqueous solution is immersed in the hollow fiber membrane before crosslinking, and then the polyvinylpyrrolidone is crosslinked. It can be seen that the elongation is higher than that in Example 5 (Example 5).
  • a hollow fiber membrane excellent in both permeation performance and fractionation characteristics and excellent in strength and a method for producing the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

 本発明の一局面は、フッ化ビニリデン系樹脂を含む多孔性の中空糸膜であって、前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有し、ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されていることを特徴とする中空糸膜である。

Description

中空糸膜、及び中空糸膜の製造方法
 本発明は、中空糸膜、及び中空糸膜の製造方法に関する。
 中空糸膜を用いた分離技術は、装置の小型化等の利点があるため、様々な分野、例えば、浄水処理、飲料水製造、工業用水製造及び廃水処理等の水処理分野、食品工業分野、医薬品製造分野等で広く用いられている。
 このような分離技術に用いられる中空糸膜は、透過性能や分画特性等のさらなる向上が求められている。具体的には、中空糸膜の透過性能が高まれば、必要な膜面積が小さくなり、中空糸膜を用いた分離技術を実現する装置をさらに小型化することができる。このため、設備費や膜交換費を低廉にでき、コスト面でも有利になる。また、中空糸膜は、その分画特性を高めることが可能であれば、除去対象が広がるという利点等がある。
 しかしながら、中空糸膜等の分離膜は、一般的に、透過性能が高まれば、分画特性が低下し、また、分画特性が高まれば、透過性能が低下するといったような、透過性能と分画特性とが、いわゆるトレードオフの関係になりやすいものである。このため、中空糸膜は、透過性能と分画特性とをともに向上させることは困難である。
 一方、フッ化ビニリデン系樹脂等のフッ素系の素材を用いた分離膜が、化学的耐久性や物理的耐久性等の高さから、注目されている。このようなフッ素系の素材を用いた分離膜としては、例えば、特許文献1~3に記載された中空糸膜等が挙げられる。
 特許文献1には、平均直径0.01μm~0.5μmの気孔を含むスポンジ構造の濾過領域と、平均直径0.5μm~5μmの気孔を含むスポンジ構造の支持領域と、平均直径2μm~10μmの気孔を含むスポンジ構造の逆洗領域とを含んでなり、前記濾過領域、前記支持領域および前記逆洗領域が外表面から内表面の方向に順次形成されているフッ素系中空糸膜が記載されている。
 特許文献1によれば、卓越した機械的強度を有しながらも、優れた逆洗性能及びろ過性能を示すことができる旨が開示されている。
 また、特許文献2には、ポリフッ化ビニリデン樹脂及び溶媒を少なくとも含む製膜原液を吐出して非溶媒を少なくとも含む凝固液に接触させて非溶媒誘起相分離法により多孔質膜を製造する多孔質膜の製造方法が記載されている。そして、特許文献2には、この製造方法において、前記製膜原液の吐出温度が、前記ポリフッ化ビニリデン樹脂の融点以上、前記ポリフッ化ビニリデン樹脂の分解温度未満であり、且つ、前記凝固液の温度が、前記製膜原液の多孔構造形成開始温度より高いことが記載されている。
 特許文献2によれば、透水性及び微小病原体に対する阻止性能に優れ、極めて薬品耐性が高いのみならず、微小病原体を長期間安定して充分に除去可能な多孔膜を製造できる旨が開示されている。
 また、特許文献3は、三次元網目構造と球状構造の両方を有するフッ素樹脂系高分子分離膜において、前記三次元網目構造がセルロースエステル、脂肪酸ビニルエステル、ビニルピロリドン、エチレンオキサイド、プロピレンオキサイドから選ばれる少なくとも1種を有する親水性高分子を含有してなる高分子分離膜が記載されている。
 特許文献3によれば、分離特性、透水性能、化学的強度(耐薬品性)、物理的強度、耐汚れ性の諸性能を高くすることが可能である旨が開示されている。
特表2012-525966号公報 特開2013-202461号公報 特開2006-239680号公報
 本発明は、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜を提供することを目的とする。
 本発明の一態様に係る中空糸膜は、フッ化ビニリデン系樹脂を含む多孔性の中空糸膜であって、前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有し、ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されていることを特徴とする。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載から明らかになるだろう。
図1は、本発明の実施形態に係る中空糸膜の部分斜視図である。 図2は、本発明の実施形態に係る製造方法で用いる中空糸成型用ノズルの一例を示す概略図である。 図3は、本発明の実施形態に係る中空糸膜を備えた膜ろ過装置の一例を示す概略図である。 図4は、実施例1に係る中空糸膜の断面の走査型電子顕微鏡写真を示す図である。 図5は、実施例1に係る中空糸膜の断面における外周面付近の走査型電子顕微鏡写真を示す図である。 図6は、実施例1に係る中空糸膜の断面における中央部付近の走査型電子顕微鏡写真を示す図である。 図7は、実施例1に係る中空糸膜の断面における内周面付近の走査型電子顕微鏡写真を示す図である。 図8は、実施例1に係る中空糸膜の外周面の走査型電子顕微鏡写真を示す図である。 図9は、実施例1に係る中空糸膜の内周面の走査型電子顕微鏡写真を示す図である。 図10は、実施例1及び比較例1に係る各中空糸膜の親水性の評価結果を示す図である。
 本発明者等の検討によれば、特許文献1に記載の中空糸膜及び特許文献2に記載の多孔膜では、分画特性に対する透過性能が充分に高くなく、透過性能のさらなる向上が必要であると考えられる。
 また、本発明者等の検討によれば、特許文献3に記載の分離膜では、三次元網目構造層と球状構造層との剥離、及び三次元網目構造層の厚みむら等の発生を充分に抑制できない場合があった。また、特許文献3に記載の分離膜では、三次元網目構造層の厚みむらが大きく、三次元網目構造層に微小な穴が形成される場合があった。このことは、例えば、以下のことが考えられる。この高分子分離膜を製造する方法として、特許文献3には、前記親水性高分子を含むフッ素樹脂系高分子溶液を、球状構造層の表面に塗布して、球状構造層を三次元網目構造層で被覆する方法が記載されている。このような製造方法では、球状構造層の表面上に、三次元網目構造層を形成するための高分子溶液を塗布した際、均一に塗布できないことが考えられる。このことは、三次元網目構造層を薄膜化しようとすれば、顕著に発生すると考えられる。これらのことから、三次元網目構造層に微小な穴が形成される場合があると考えられる。また、このような製造方法は、三次元網目構造層と球状構造層とを別途形成する必要があり、製造コストの面でも不利である。
 本発明は、かかる事情に鑑みてなされたものであって、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜及びその製造方法を提供することを目的とする。
 また、透過性能と分画特性とに優れた中空糸膜としては、多孔性の中空糸膜が知られている。また、このような多孔性の中空糸膜の製造方法としては、相分離を利用する方法が知られている。この相分離を利用する中空糸膜の製造方法としては、例えば、非溶剤誘起相分離法(Nonsolvent Induced Phase Separation:NIPS法)や、熱誘起相分離法(Thermally Induced Phase Separation:TIPS法)等が挙げられる。
 NIPS法とは、ポリマーを溶剤に溶解させた均一なポリマー原液を、ポリマーを溶解させない非溶剤と接触させることで、ポリマー原液と非溶剤との濃度差を駆動力とした、ポリマー原液の溶剤と非溶剤との置換により、相分離現象を起こさせる方法である。NIPS法は、一般的に、溶剤交換速度によって、形成される細孔の孔径が変化する。具体的には、溶剤交換速度が遅いほど、細孔が粗大化する傾向がある。また、溶剤交換速度は、中空糸膜の製造においては、非溶剤との接触面が最も速く、膜内部に向かうにしたがって、遅くなる。このため、NIPS法で製造した中空糸膜は、非溶剤との接触面付近は緻密であって、膜内部に向かって、徐々に細孔を粗大化した非対称構造を有するものが得られる。しかしながら、接触面から遠く離れた部分では、溶剤の交換速度が遅くなりすぎ、マクロボイドと呼ばれる粗大孔が形成され、強度や耐薬品性が低下する傾向がある。
 一方、TIPS法とは、ポリマーを、高温下では溶解させることができるが、温度が低下すると溶解できなくなる貧溶媒に、高温下で溶解させ、その溶液を冷却することにより、相分離現象を起こさせる方法である。熱交換速度は、一般的に、NIPS法における溶剤交換速度より速く、速度の制御が困難であるため、TIPS法は、膜厚方向に対して、均一な細孔が形成されやすい。
 また、中空糸膜は、膜内に形成される細孔の数、形状、及び大きさ等によって、透過性能及び分画特性が変わると考えられ、本発明者等は、その点について着目した。具体的には、分画特性を高めるためには、膜を緻密にすることが考えられる点に着目した。一方で、膜全体を緻密にすると、透過性能が低下すると考えられる点に着目した。
 そこで、本発明者等は、透過性能と分画特性とをともに優れた中空糸膜を得るためには、まず、膜厚方向に対して分画特性を発現するような緻密な層状の部分、すなわち、分離に直接関与する分離層を薄層化することが重要であると推察した。そして、中空糸膜の強度等を維持するため等に必要な部分、すなわち分離層以外の部分を粗大な多孔体とした非対称構造とした中空糸膜にすることにより、透過性能と分画特性とをともに向上させることができると推察した。そして、本発明者等は、膜素材を検討した上で、膜内の構造を、上記のように制御することで、透過性能及び分画特性を制御できると推察した。
 本発明者等は、種々検討した結果、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜を得るという上記目的は、以下の本発明により達成されることを見出した。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 本発明の一態様に係る中空糸膜は、フッ化ビニリデン系樹脂を含む多孔性の中空糸膜であって、前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有する。すなわち、本実施形態に係る中空糸膜は、膜厚方向に非対称な構造を有する中空糸膜である。このことから、この中空糸膜は、膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有するので、分画特性に関与すると考えられる緻密な層状部分、及びその他の比較的大きい気孔(細孔)が形成された部分と等が形成されたものであると考えられる。例えば、分画特性に関与すると考えられる緻密な層状部分が、表面等に形成され、その他の部分は、その部分内に形成される気孔(細孔)が比較的大きいものであるので、透過性能の低下が抑制されるものであると考えられる。
 また、本実施形態に係る中空糸膜は、ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されている。まず、本実施形態に係る中空糸膜は、フッ化ビニリデン系樹脂を含むので、疎水性が比較的高くなる傾向があると考えられる。このような中空糸膜であっても、ポリビニルピロリドン系樹脂の架橋体を含むことによって、親水性を高めることができると考えられる。また、ポリビニルピロリドン系樹脂を単に含むのではなく、ポリビニルピロリドン系樹脂の架橋体を含むことによって、ポリビニルピロリドン系樹脂の脱落が抑制され、親水性を高めた効果を維持することができると考えられる。このように親水性を高めることによって、中空糸膜に、上述したような好適な気孔を形成することができ、水を含む液体に対する透過性をより高めることができると考えられる。また、中空糸膜は、フッ化ビニリデン系樹脂を含むので、強度の優れたものが得られる。
 以上のことから、本実施形態に係る中空糸膜は、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜であると考えられる。また、本実施形態に係る中空糸膜は、親水性を高めることによって、耐汚染性も高めることができると考えられる。
 また、前記中空糸膜は、上述したように、膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有する。具体的には、前記中空糸膜の外周面に形成された細孔の直径(外周側細孔径)は、内周面に形成された細孔の直径(内周側細孔径)より小さければ、特に限定されない。前記外周側細孔径は、具体的には、0.01~1μmであることが好ましく、0.1~0.5μmであることがより好ましく、0.1~0.3μmであることがさらに好ましい。また、前記内周側細孔径も、特には限定されないが、具体的には、1~20μmであることが好ましく、1~10μmであることがより好ましく、2~8μmであることが好ましい。また、前記外周側細孔径に対する前記内周側細孔径の比(内周側細孔径/外周側細孔径)は、1より大きく、10~100であることが好ましく、20~50であることが好ましく、30~50であることが好ましい。これらのことから、前記中空糸膜は、前記外周側細孔径や前記内周側細孔径を満たすように、内周面側から外周面側に向かって、膜内の気孔の大きさ(孔径)が厚み方向で漸次的に小さくなっていく傾斜構造を有するものである。なお、ここでの直径は、直径の平均値であり、例えば、直径の算術平均値等が挙げられる。
 前記中空糸膜に含まれるフッ化ビニリデン系樹脂は、中空糸膜の主成分であり、具体的には、85質量%以上であることが好ましく、90~99.9質量%であることが好ましい。
 このフッ化ビニリデン系樹脂は、中空糸膜を構成することができるフッ化ビニリデン系樹脂であれば、特に限定されない。このフッ化ビニリデン系樹脂としては、具体的には、フッ化ビニリデンのホモポリマーや、フッ化ビニリデン共重合体等が挙げられる。このフッ化ビニリデン共重合体は、フッ化ビニリデンに基づく繰り返し単位を有する共重合体であれば、特に限定されない。フッ化ビニリデン共重合体としては、具体的には、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンからなる群から選ばれる少なくとも1種とフッ化ビニリデンとの共重合体等が挙げられる。フッ化ビニリデン系樹脂としては、上記例示の中でも、フッ化ビニリデンのホモポリマーであるポリフッ化ビニリデンが好ましい。また、フッ化ビニリデン系樹脂としては、上記例示の樹脂を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 フッ化ビニリデン系樹脂の分子量は、中空糸膜の用途等によって異なるが、例えば、重量平均分子量で、50,000~1,000,000であることが好ましい。分子量が小さすぎると、中空糸膜の強度が低下する傾向がある。また、分子量が大きすぎると、中空糸膜の製膜性が低下する傾向がある。また、薬液洗浄に晒される水処理用途に、中空糸膜が用いられる場合、その中空糸膜は、より高い性能が求められるので、強度に優れ、さらに、好適な中空糸膜を得るために、その製膜性に優れていることが求められる。このため、中空糸膜に含まれるフッ化ビニリデン系樹脂の重量平均分子量は、100,000~900,000であることが好ましく、150,000~800,000であることがより好ましい。
 前記中空糸膜は、前記フッ化ビニリデン系樹脂だけではなく、上述したように、ポリビニルピロリドン系樹脂の架橋体を含むことによって、親水化されている。このポリビニルピロリドン系樹脂は、ビニルピロリドンを分子内に含む樹脂であれば、特に限定されない。このポリビニルピロリドン系樹脂としては、具体的には、ポリビニルピロリドン、ビニルピロリドンとビニルアセテートとの共重合体、ビニルピロリドンとビニルカプロラクタムとの共重合体等が挙げられる。ポリビニルピロリドン系樹脂としては、上記例示の中でも、ポリビニルピロリドンが好ましい。また、ポリビニルピロリドン系樹脂としては、上記例示の樹脂を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリビニルピロリドン系樹脂の架橋体の架橋度は、特に限定されない。架橋度としては、例えば、得られた中空糸膜に通水した場合のろ液からポリビニルピロリドン系樹脂が検出されない程度の架橋度等が挙げられる。ポリビニルピロリドン系樹脂が検出されない程度とは、具体的には、以下のような程度である。
 まず、中空糸膜に純水を流して、フラッシング洗浄をした後に、この洗浄をした中空糸膜に、40体積%のエタノール水溶液を40℃で1時間循環させる。この循環させたエタノール水溶液の、ポリビニルピロリドン系樹脂濃度を測定する。このポリビニルピロリドン系樹脂濃度と、使用した中空糸膜の膜面積とから、膜面積1m当たりのポリビニルピロリドン系樹脂の抽出量を算出する。この算出した、膜面積1m当たりの抽出量が、300mg以下であることが好ましく、100mg以下であることがより好ましく、10mg以下であることがさらに好ましい。
 ポリビニルピロリドン系樹脂の架橋体の含有量は、ポリビニルピロリドン系樹脂の架橋体を含有することによる効果が充分に発揮できる量、すなわち、フッ化ビニリデン系樹脂を含む中空糸膜を好適に親水化できる量であれば、特に限定されない。具体的には、ポリビニルピロリドン系樹脂の架橋体の含有量は、中空糸膜の質量に対して、0.1質量%以上15質量%未満であることが好ましく、0.1~10質量%であることがより好ましく、0.5~5質量%であることがさらに好ましい。前記含有量が少なすぎると、中空糸膜の親水性が充分に高まらない傾向がある。このため、耐汚染性が充分に高まらず、また、中空糸膜に、好適な気孔(細孔)を形成することができず、水を含む液体に対する透過性を充分に高めることができない傾向がある。また、前記含有量が多すぎると、透過性能が低下する傾向がある。これは、まず、中空糸膜の成型性が低下し、好適な中空糸膜が形成できにくい傾向があることによると考えられる。また、中空糸膜が、膜内のポリビニルピロリドン系樹脂が膨潤して、膜の細孔の閉塞等による透水性の低下が発生しやすくなるためと考えられる。これらのことから、ポリビニルピロリドン系樹脂の架橋体の含有量が、前記範囲内であれば、フッ化ビニリデン系樹脂を含む中空糸膜を、適度に親水化させることができ、膜の細孔の閉塞等による透水性の低下の発生を抑制しつつ、親水性を高めることができると考えられる。このため、優れた分画特性を維持しつつ、透過性能により優れ、さらに耐汚染性に優れた中空糸膜が得られると考えられる。
 ポリビニルピロリドン系樹脂の架橋体の含有量の測定方法は、特に限定されないが、例えば、以下のように測定することができる。具体的には、得られた中空糸膜を微量窒素分析し、窒素(N)の存在量から測定することができる。より具体的には、まず、得られた中空糸膜と、ポリビニルピロリドン系樹脂単体とをそれぞれ微量窒素分析し、窒素(N)の存在量を測定する。この存在量から、ポリビニルピロリドン系樹脂の架橋体の含有量を算出する。
 ポリビニルピロリドン系樹脂は、そのK値が、30~120であることが好ましく、50~120であることがより好ましく、60~120であることがさらに好ましい。なお、このポリビニルピロリドン系樹脂のK値は、架橋前のポリビニルピロリドン系樹脂のK値である。また、K値は、分子量と相関する粘性特性値である。このK値は、例えば、カタログ等の記載からもわかるが、例えば、Fikentscherの式を用いて算出することができる。このK値は、例えば、毛細管粘度計により測定される、25℃における相対粘度値を下記のFikentscherの式に適用して算出することができる。
 K値=(1.5logηrel-1)/(0.15+0.003c)+(300clogηrel +(c+1.5clogηrel )1/2/(0.15c+0.003c
 式中、ηrelは、測定対象物であるポリビニルピロリドン系樹脂の水溶液の、水に対する相対粘度を示し、cは、測定対象物であるポリビニルピロリドン系樹脂の水溶液の、測定対象物の濃度(質量%)を示す。
 ポリビニルピロリドン系樹脂のK値が小さすぎると、ポリビニルピロリドン系樹脂を架橋しても、フッ化ビニリデン系樹脂を含む中空糸膜内に、残存しにくく、中空糸膜の親水性を好適に維持しにくい傾向がある。また、ポリビニルピロリドン系樹脂のK値が大きすぎると、製膜性が低下し、好適な中空糸膜を製造しにくくなる傾向がある。これらのことから、このようなK値を有するポリビニルピロリドン系樹脂であれば、フッ化ビニリデン系樹脂を含む中空糸膜内に、適度に残存しやすく、中空糸膜を、適度に親水化させることができると考えられる。このため、膜の細孔の閉塞等による透水性の低下の発生を抑制しつつ、親水性を高めることができるため、水を含む液体の透過性を向上させることができると考えられる。よって、優れた分画特性を維持しつつ、透過性能により優れ、さらに耐汚染性に優れた中空糸膜が得られると考えられる。
 また、前記中空糸膜は、純水透過係数Kが、1×10-15以上22×10-15以下であることが好ましい。ここで、純水透過係数Kは、中空糸膜に純水を通過させる際の透過係数であって、ダルシー(Darcy)の法則に従った、下記式(1)を用いて算出される透過係数(ダルシーの透過係数)である。
  K=(μ・T・Q)/(ΔP・A)   (1)
 式(1)中、Kは、透過係数(m)を示す。また、μは、粘度(Pa・秒)を示し、ここでは、純水の粘度(Pa・秒)を示す。また、Tは、膜厚(m)を示し、ここでは、中空糸膜の厚み(m)を示す。また、Qは、流量(m/秒)を示し、ここでは、透水流量(m/秒)を示す。また、ΔPは、膜間差圧(Pa)を示す。また、Aは、膜面積(m)を示す。
 次に、純水透過係数Kの測定方法について説明する。
 純水透過係数Kは、上記式(1)により算出可能なものであれば、その測定方法は、特に限定されない。具体的には、純水透過係数Kの測定方法は、例えば、以下のような測定方法等が挙げられる。
 まず、測定対象物である中空糸膜を、エタノール50質量%水溶液に15分間浸漬させ、その後、15分間純水で洗浄するといった湿潤処理を施す。この湿潤処理を施した中空糸膜の一端を封止した多孔中空糸膜モジュールを用い、原水として純水を利用し、ろ過圧力が100kPa、温度が25℃の条件で外圧濾過して、時間当たりの透水量を測定する。この測定した透水量から、単位膜面積、単位時間、単位圧力当たりの透水量に換算して、有効長10cm、15cm、20cm、25cm、30cmのそれぞれの、膜間差圧0.1MPaにおける透水量(L/m/時)を得る。この得られた透水量の測定データから、Darcyの式に代入し、各有効長におけるダルシーの透過係数Kを算出する。
 その後、横軸に有効長、縦軸にダルシーの透過係数Kをプロットし、得られたプロットの外挿値から有効長0cmにおけるダルシーの透過係数Kを算出し、これを本発明における純水透過係数Kとする。
 次に、この純水透過係数Kについて説明する。
 純水透過係数Kは、中空糸膜を純水が通過する時の通過抵抗の係数である。すなわち、算出した純水透過係数Kが大きいほど、中空糸膜の純水通過抵抗が小さく、水が流れやすい構造であることを示唆している。一方で、算出した純水透過係数Kが小さいほど、中空糸膜の純水通過抵抗が大きく、水が流れにくい構造であることを示唆している。より具体的には、中空糸膜が、その膜内に存在する細孔の1つ1つが大きく、空隙率が大きい圧力損失の少ない構造体である場合には、純水透過係数Kは大きくなる。一方で、中空糸膜が、その膜内に存在する細孔の1つ1つが小さく、空隙率の小さい緻密な構造体である場合には、純水透過係数Kは小さくなる。
 純水透過係数Kは、中空糸膜の構造、特に、膜厚方向の構造が均一であれば、測定時の圧力の変動や、中空糸膜の通過部分の長さ(膜厚)によらず、一定値になる。一方で、純水透過係数Kが、膜厚によって変動するということは、中空糸膜の構造、例えば、空隙率、細孔径、細孔の形状等が膜厚方向に変化していることを示唆している。
 具体的には、純水透過係数Kの小さい領域から純水透過係数Kの大きい領域に、膜厚方向に変化する非対称な構造を有する中空糸膜の純水透過係数Kは、以下のようになる。まず、純水透過係数Kの小さい領域のKを、Ksと、純水透過係数Kの大きい領域のKをKlとする。そして、純水透過係数Kの小さい領域の厚みを、Tsとし、純水透過係数Kの大きい領域の厚みを、Tlとし、中空糸膜全体の厚み(膜厚)を、Tとする。このような場合、中空糸膜の純水透過係数Kは、下記式(2)のように定義される。
  T/K=Ts/Ks+Tl/Kl   (2)
 このことから、中空糸膜全体の膜厚に対して、純水透過係数Kの小さい領域と純水透過係数Kの大きい領域とのそれぞれが占める割合と、KsとKlとの絶対値の差の大きさによって、非対称構造の中空糸膜の純水透過係数Kが決定される。つまり、中空糸膜の純水透過係数Kは、中空糸膜の非対称度によって、変動する。具体的には、非対称度が小さい場合には、中空糸膜の純水透過係数Kは小さくなる傾向がある。また、非対称度が大きい場合には、中空糸膜の純水透過係数Kは大きくなる傾向がある。このように、中空糸膜の純水透過係数Kを求めることで、中空糸膜の純水透過性能や非対称度を評価することができる。具体的には、中空糸膜の純水透過係数Kが大きいと、純水透過性能が高く、中空糸膜の純水透過係数Kが変動すると、非対称度が変化したということができる。
 ここで、本実施形態に係る中空糸膜の純水透過係数Kは、上述したように、膜構造に寄与する値である。この膜構造に寄与する純水透過係数Kは、1×10-15以上22×10-15以下であることが好ましく、2×10-15以上17×10-15以下であることがより好ましく、2.3×10-15以上10×10-15以下であることがさらに好ましい。この純水透過係数Kが小さすぎる場合は、上述したように、純水の通過抵抗が大きくなり、充分な透過性能を発揮しにくくなる傾向がある。また、純水透過係数Kが大きすぎる場合は、優れた透過性能は発揮できるものの、分画特性が低下しすぎる傾向がある。これらのことから、純水透過係数Kが、上記範囲内であることによって、分画特性の低下を抑制しつつ、水を含む液体に対する透過性能が優れたものにすることができると考えられる。
 本実施形態に係る中空糸膜は、分画粒子径が、0.5μm以下であることが好ましい。この分画粒子径は、中空糸膜の通過を阻止できる最小粒子の粒子径のことをいい、具体的には、例えば、中空糸膜による阻止率が90%となる粒子径等が挙げられる。このような分画粒子径は、小さければ小さいほど好ましいが、優れた透過性能を維持するためには、0.001μm程度が限度である。このため、分画粒子径の最小値は、0.001μm程度であり、透過性能の点から、0.01μm程度であることが好ましい。これらのことから、分画粒子径が、0.5μm以下であることが好ましく、0.001~0.5μmであることがより好ましく、0.01~0.5μmであることがさらに好ましく、0.02~0.1μmであることが特に好ましい。中空糸膜の分画粒子径が、大きすぎると、透過性能が高まったとしても、分画特性が低下してしまい、除去対象の適用範囲が狭くなってしまう傾向がある。このことから、中空糸膜の分画粒子径が、上記範囲内であれば、透過性能の低下を抑制しつつ、優れた分画特性を発揮できる。
 中空糸膜は、分画粒子径によって、除去対象の適用範囲が異なる。具体的には、分画粒子径が0.05~0.1μmであれば、精密ろ過膜として、微生物やウィルスの除去に適用できる。また、分画粒子径が0.001~0.01μmであれば、限外ろ過膜として、微小病原菌やタンパク質の除去に適用できる。また、分画粒子径が0.002μm以下であれば、逆浸透膜として脱塩等に適用できる。
 以上のことから、本実施形態に係る中空糸膜は、分画粒子径が上記範囲内であることによって、精密ろ過膜として微生物やウィルスの除去にも適用できるような優れた分画特性を有しつつ、求められる強度を実現できる膜厚においても優れた透過性能を発揮できる。
 また、本実施形態に係る中空糸膜は、膜間差圧0.1MPaにおける透水量が、1000~40000L/m/時であることが好ましく、3000~30000L/m/時であることがより好ましく、3500~20000L/m/時であることがさらに好ましい。透水量が少なすぎると、透過性能が劣る傾向があり、透水量が多すぎると、分画特性が低下する傾向がある。このことから、透水量が上記範囲内であれば、透過性能及び分画特性により優れた中空糸膜が得られる。なお、膜間差圧0.1MPaにおける透水量は、後述する、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)に相当する。
 本実施形態に係る中空糸膜は、純水透過係数が、前記中空糸膜の厚みがL(m)であるとき、0.4×10-11×L(m)以上6×10-11×L(m)以下であることが好ましく、0.8×10-11×L(m)以上4×10-11×L(m)以下であることがより好ましく、1×10-11×L(m)以上3×10-11×L(m)以下であることがさらに好ましい。すなわち、中空糸膜において、横軸に膜厚L(m)とし、縦軸に純水透過係数K(m)としたときの傾きが、0.4×10-11~6×10-11以下であることが好ましく、0.8×10-11~4×10-11であることがより好ましく、1×10-11~3×10-11であることがさらに好ましい。
 純水透過係数Kは、上述したように、中空糸膜の膜内構造に依存する値であり、中空糸膜の膜内構造が、膜厚方向に対して均質であれば、膜厚が変動しても、変化しない値である。前記傾きが、上記範囲内であると、中空糸膜の構造が、好適に非対称になっていると考えられる。すなわち、一方の表面付近等に、分画特性に関与すると考えられる緻密な層状部分が存在し、その他の部分が、透過性の低下に寄与しにくい、その部分内に形成される細孔が比較的大きいものであると考えられる。この緻密な層状部分が、分離層として働き、その他の部分が支持層として働くと考えられる。そして、この支持層は、膜断面にマクロボイドと呼ばれる粗大な孔が存在せず、三次元どちらの方向に対しても、連通孔が存在する、いわゆる三次元網目構造であると考えられる。また、前記傾きが、上記範囲内であると、中空糸膜全体の厚みが変化しても、前記分離層として働く緻密な層状部分の厚みはほとんど変化せず、支持体として働く部分の厚みが変化すると考えられる。このため、中空糸膜の厚みが増しても、分画特性に関与すると考えられる緻密な層状部分は、厚くならずに、優れた分画特性を維持しつつ、透過性能により優れた中空糸膜を実現できると考えられる。すなわち、前記傾きが、上記範囲内であるということは、中空糸膜の厚みを増しても、中空糸膜全体の厚みに対する分離層の占める割合が低下する傾向にあるためであると考えられる。これらのことから、前記傾きが小さすぎると、膜厚方向における細孔等の非対称度が充分に高くなく、中空糸膜全体の厚みが厚くなると、充分な透過性能を発揮できない傾向がある。また、前記傾きが大きすぎると、前記非対称度が大きくなりすぎ、支持層として働く部分への、マクロボイド等の発生により、支持層として機能すべき部分が支持層として充分に機能しない傾向がある。すなわち、中空糸膜の強度が低下する傾向があり、場合によっては、中空糸膜を好適に製造しにくくなる傾向がある。よって、前記傾きが上記範囲内であれば、優れた分画特性を維持しつつ、透過性能により優れた中空糸膜が得られると考えられる。
 本実施形態に係る中空糸膜は、単一層からなることが好ましい。すなわち、中空糸膜は、上述したように、膜厚方向に、細孔の大きさ等が異なる、非対称な構造であっても、その素材は、同一な層からなることが好ましい。より具体的には、前記中空糸膜は、前記のような分離層と支持層とを別々に形成し、それらを積層したものではなく、単一層からなることが好ましい。そうすることによって、透過性能及び分画特性により優れ、膜内に剥離等の損傷が発生しにくい中空糸膜が得られる。
 このことは、以下のことによると考えられる。
 上述したような分画特性に関与すると考えられる緻密な層状部分が、本実施形態に係る中空糸膜のように、透過性能が高い場合、薄いと考えられる。このような場合、このような緻密な層を別途作製しようとすると、好適に形成できない場合がある。これに対して、緻密な層状部分と、それ以外の部分とを同一の層、すなわち単一層で形成すると、緻密な層状部分を面方向に均一に形成できると考えられる。また、緻密な層状部分と、それ以外の部分とが単一層であれば、その界面での剥離等の発生を充分に抑制できると考えられる。
 これらのことから、透過性能及び分画特性により優れ、膜内に剥離等の損傷が発生しにくい中空糸膜が得られると考えられる。
 前記中空糸膜の強度は、中空糸膜として使用できれば、特に限定されない。前記中空糸膜の強度は、具体的には、引張強度で、3~15N/mmであることが好ましく、3~10N/mmであることがより好ましく、3~7N/mmであることがさらに好ましい。また、前記中空糸膜の強度は、具体的には、引張伸度で、30~250%であることが好ましく、50~200%であることがより好ましく、70~200%であることがさらに好ましい。前記中空糸膜の強度として、引張強度や引張伸度が、上記範囲内であれば、中空糸膜として好適に使用することができる。なお、引張強度は、所定の大きさに切った中空糸膜を、所定の速度で引っ張り、中空糸膜が破断したときの荷重から求められるものであり、引張伸度は、その破断したときの、中空糸膜の伸びを表したものである。
 本実施形態に係る中空糸膜は、上述したように、ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されている。この中空糸膜は、後述する製造方法で製造されたものであることが好ましい。すなわち、この中空糸膜は、前記架橋体が、架橋前の中空糸膜を形成する際に、前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋したものであることが好ましい。この架橋体としては、架橋前の中空糸膜に練り込まれたポリビニルピロリドン系樹脂を架橋させたものであることが好ましい。このように、架橋前の中空糸膜を形成する際に、中空糸膜の原料に、フッ化ビニリデン系樹脂とともに、親水性樹脂であるポリビニルピロリドン系樹脂を練り込むことによって、より柔軟で伸縮性に優れた中空糸膜が得られる。このことは、架橋前の中空糸膜を形成する際に、その原料に親水性樹脂を練り込むことで、練り込まれた親水性樹脂が可塑剤として働くことによると考えられる。これに対して、架橋前の中空糸膜を形成する際に、その原料に親水性樹脂を含有させないと、得られた中空糸膜が柔軟性に乏しいものとなる場合がある。
 前記中空糸膜として、架橋前の中空糸膜を形成する際に、前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋した架橋体を含む場合、中空糸膜が柔軟性に優れるために、さらに、強度が上記範囲内にあることによって、中空糸膜自体に曲げや変形等が発生しても、破断等による液漏れ、いわゆる糸リークの発生を充分に抑制できる実用性の高い強度が実現できる。この点からも、架橋前の中空糸膜を形成する際に前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋した架橋体を含むことが好ましい。これらのことから、本実施形態に係る中空糸膜は、前記架橋体を含むことによって、上記のような、引張強度が高いだけではなく、引張伸度も高い、強度に優れた中空糸膜となり、中空糸膜として、好適に使用することができる。
 前記中空糸膜は、乾燥状態での純水の透過速度が、以下の関係を満たすことが好ましい。また、前記中空糸膜として、架橋前の中空糸膜を形成する際に架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋した架橋体を含む場合、乾燥状態での純水の透過速度が、以下の関係を満たすことが多く、この点からも、架橋前の中空糸膜を形成する際に前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋した架橋体を含むことが好ましい。
 具体的には、まず、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)に対する、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)の比率(FD/FW)が、40%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることがさらに好ましい。
 なお、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)と湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)とは、中空糸膜の状態が湿潤状態であるか乾燥状態であるかが異なり、他の条件は同様の条件で測定した透過速度である。
 乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)としては、例えば、以下の方法により測定される透過速度等が挙げられる。まず、測定対象物である中空糸膜を乾燥させる。この乾燥は、中空糸膜を乾燥できれば、特に限定されないが、例えば、60℃の送風定温乾燥器での24時間以上の乾燥等が挙げられる。より具体的には、乾燥状態の中空糸膜は、このような乾燥により、中空糸膜の水分が、乾燥機内60℃空気と充分に平衡状態に達した状態の中空糸膜等が挙げられる。この乾燥状態の中空糸膜を用い、原水として純水を利用して、ろ過圧力0.1MPa、温度25℃の条件で外圧ろ過して、1分間の透水量を測定する。この測定した透水量から、単位膜面積、単位時間、及び単位圧力当たりの透水量に換算して、純水の透過速度(L/m/時:LMH)を得る。
 湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)としては、乾燥状態の中空糸膜の代わりに、湿潤状態の中空糸膜を用いること以外、FDの測定方法と同様の方法により測定する。中空糸膜を湿潤状態にする湿潤処理としては、特に限定されないが、例えば、中空糸膜を、エタノール50質量%水溶液に20分間浸漬させ、その後、20分間純水で洗浄するという処理等が挙げられる。
 上記湿潤状態と乾燥状態とを交互にそれぞれ10回ずつ繰り返した後の乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD10)は、FWに対するFD10の比率(FD10/FW)が、FD/FWと同等であることが好ましい。具体的には、FWに対するFD10の比率(FD10/FW)が、40%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることがさらに好ましい。また、中空糸膜の表面だけではなく、中空糸膜の微細孔内も親水化されている、すなわち、中空糸膜全体が親水化されている場合であって、その中空糸膜全体の親水性の高さが測定時に担保されている場合は、FD/FWやFD10/FWが、ほぼ100%となる。なお、このような場合は、FD/FWやFD10/FWが、測定誤差等の種々の要因により、100%を超えることもある。そして、親水性樹脂であるポリビニルピロリドン系樹脂が剥離された箇所や、充分に親水化されていない箇所があると、それらの箇所が通水抵抗になるので、それらの箇所の割合に応じて、FWや、湿潤状態と乾燥状態とを交互にそれぞれ10回ずつ繰り返した後の湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW10)が低下する。よって、FD/FWやFD10/FWが低下し、100%より低くなる。なお、前記湿潤状態と前記乾燥状態とを交互にそれぞれ10回ずつ繰り返した後の乾燥状態とは、具体的には、上記湿潤状態の中空糸膜を上記乾燥状態とし、その後、再び、上記湿潤状態とした中空糸膜を乾燥状態とする、という湿潤状態の中空糸膜を乾燥状態とする操作を10回繰り返すことである。
 特表平9-512857号公報に記載の浸漬法等の従来の親水化方法で得られた中空糸膜では、一般的に、湿潤状態と乾燥状態とを交互にそれぞれ10回ずつ繰り返した後の乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD10)が低下する傾向がある。このことは、以下のことによると考えられる。まず、浸漬法等の従来の親水化方法では、中空糸膜の表面のみに親水性樹脂が塗布され、架橋される。このため、中空糸膜の微細孔内部にまで親水性樹脂が入り込みにくく、中空糸膜と親水性樹脂の架橋体とのアンカー効果が低くなりやすいと考えられる。このことにより、親水性樹脂の架橋体が剥離しやすく、湿潤状態と乾燥状態とを10回程度繰り返すと、親水性樹脂の架橋体の剥離が進行すると考えられる。このため、FD10が、低下しやすいと考えられる。
 さらに、中空糸膜は、一般的に、乾燥すると、純水の透過速度が、乾燥前に比べて低下する傾向がある。すなわち、FDは、FWより小さい傾向がある。また、上述したように、従来の親水化方法で得られた中空糸膜では、FD10が、低下しやすい傾向がある。これらのことから、従来の親水化方法で得られた中空糸膜の場合、これらの透過速度の低下を抑制するために、乾燥させる前に、中空糸膜に、保湿処理や保護処理等を行うことが多い。これに対して、本実施形態に係る中空糸膜において、前記中空糸膜として、架橋前の中空糸膜を形成する際に、前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋した架橋体を含む場合は、このような処理をすることなく、FDやFD10の低下を抑制できる。
 本実施形態に係る中空糸膜の形状は、特に限定されない。中空糸膜は、中空糸状であって、長手方向の一方側は開放し、他方側は、開放していても閉じていてもよい。中空糸膜の形状としては、例えば、中空糸状であって、長手方向の一方側を開放したままで、他方側を閉じた形状等が挙げられる。また、中空糸膜の開放した側の形状としては、例えば、図1に示すような形状である場合等が挙げられる。なお、図1は、本発明の実施形態に係る中空糸膜の部分斜視図である。
 前記中空糸膜の外径R1は、0.5~7mmであることが好ましく、1~2.5mmであることがより好ましく、1~2mmであることがさらに好ましい。このような外径であれば、中空糸膜を用いた分離技術を実現する装置に備える中空糸膜として、好適な大きさである。
 前記中空糸膜の内径R2は、0.4~3mmであることが好ましく、0.6~2mmであることが好ましく、0.6~1.2mmであることがさらに好ましい。中空糸膜の内径が小さすぎると、透過液の抵抗(管内圧損)が大きくなり、流れが不良になる傾向がある。また、中空糸膜の内径が大きすぎると、中空糸膜の形状を維持できず、膜の潰れやゆがみ等が発生しやすくなる傾向がある。
 前記中空糸膜の膜厚Tは、0.2~1mmであり、0.25~0.5mmであることがより好ましく、0.25~0.4mmであることがさらに好ましい。中空糸膜の膜厚が薄すぎると、強度不足により、ゆがみ等の変形が発生しやすくなる傾向がある。また、前記膜厚が厚すぎると、マクロボイドの発生の抑制が困難になる等、好適な膜構造を得ることが困難になる傾向がある。場合によっては、強度が低下する場合もある。一方で、本実施形態に係る中空糸膜は、膜厚を変更しても、高い透水性を維持できるので、強度の観点から、モジュール等の使用環境に応じて比較的厚い膜厚の中空糸膜にすることも可能である。
 前記中空糸膜の外径R1、内径R2、及び膜厚Tが、それぞれ上記範囲内であれば、中空糸膜を用いた分離技術を実現する装置に備える中空糸膜として、好適な大きさであり、前記装置の小型化が図れる。
 また、本実施形態に係る中空糸膜の製造方法は、上述の中空糸膜を製造することができれば、特に限定されない。この製造方法としては、例えば、以下のような製造方法が挙げられる。この製造方法としては、フッ化ビニリデン系樹脂と、ポリビニルピロリドン系樹脂と、溶剤とを含む製膜原液を調製する工程(調製工程)と、前記製膜原液を中空糸状に押し出す工程(押出工程)と、中空糸状に押し出された製膜原液を凝固させて、架橋前の中空糸膜を形成する工程(形成工程)と、前記架橋前の中空糸膜内のポリビニルピロリドン系樹脂を架橋させる架橋工程とを備える方法等が挙げられる。このような製造方法は、中空糸膜内のポリビニルピロリドン系樹脂を架橋させる架橋工程を備えるので、前記中空糸膜を好適に製造することができる。すなわち、ポリビニルピロリドン系樹脂の架橋体を含む中空糸膜を好適に製造することができる。
 まず、本実施形態に係る製造方法における調製工程は、前記フッ化ビニリデン系樹脂と、前記ポリビニルピロリドン系樹脂と、前記貧溶剤とを含む製膜原液を調製することができれば、特に限定されない。調製工程としては、具体的には、例えば、製膜原液の原料を、加熱攪拌する方法等が挙げられる。また、加熱攪拌時に、混練することが好ましい。すなわち、製膜原液の原料である、前記フッ化ビニリデン系樹脂、前記ポリビニルピロリドン系樹脂、及び前記溶剤を所定の比率になるように混合し、加熱状態で混練する方法が好ましい。そうすることによって、製膜原液の原料である各成分が均一に分散された製膜原液が得られ、中空糸膜を好適に製造できると考えられる。また、混練の際に、例えば、二軸混練設備、ニーダー、及びミキサー等を用いることができる。
 ここで用いる溶剤としては、前記フッ化ビニリデン系樹脂の貧溶剤であることが好ましい。前記フッ化ビニリデン系樹脂の貧溶剤とは、例えば、前記フッ化ビニリデン系樹脂と特定の温度以上で相溶して一相状態となり、かつ、温度低下による相溶性低下により相分離を起こしうる溶剤が挙げられる。
 前記調製工程が、前記フッ化ビニリデン系樹脂の融点未満で行うことが好ましい。すなわち。この製膜原液の調製時の温度が、前記フッ化ビニリデン系樹脂の融点未満であることが好ましい。また、前記溶剤として、前記フッ化ビニリデン系樹脂の貧溶剤を用いる場合、前記調製工程が、前記フッ化ビニリデン系樹脂の融点未満であり、かつ、前記温度低下による相分離が開始する温度より高い温度で行うことが好ましい。すなわち。この製膜原液の調製時の温度が、前記フッ化ビニリデン系樹脂の融点未満であり、かつ、前記温度低下による相分離が開始する温度より高い温度で行うことが好ましい。さらに、この製膜原液の調製時の温度としては、60℃以上前記フッ化ビニリデン系樹脂の融点未満であることがより好ましく、90~140℃であることがさらに好ましい。この温度が低すぎると、製膜原液の粘度が増大し、好適な膜構造を有する中空糸膜が得られない傾向がある。具体的には、中空糸膜の支持層として働く層に、好適な三次元網目構造が形成できず、その層内に、球晶やマクロボイドが形成されやすく、得られた中空糸膜の強度が低下する傾向がある。また、この温度が高すぎても、好適な膜構造を有する中空糸膜が得られない傾向がある。具体的には、ポリビニルピロリドン系樹脂の熱劣化により、中空糸膜の支持層として働く層に、好適な三次元網目構造が形成できず、その層内に、マクロボイドが形成されやすかったり、反対に、緻密な層になってしまったりする傾向がある。その結果として、分画特性及び透過性能にともに優れた中空糸膜が得られにくい傾向がある。これらのことから、調製工程時の温度が、上記範囲内であれば、前記フッ化ビニリデン系樹脂と、前記貧溶剤と、前記ポリビニルピロリドン系樹脂とを含む製膜原液を、前記ポリビニルピロリドン系樹脂の、熱による損傷等の発生を抑制しつつ、好適に得ることができると考えられる。このため、好適な製膜原液が得られるので、透過性能及び分画特性に優れ、強度にも優れた中空糸膜を製造することができると考えられる。
 ここで得られた製膜原液は、中空糸膜の製造に用いられる。その際、得られた製膜原液は、充分に脱気することが好ましい。そして、ギアポンプ等の計量ポンプで計量した後に、後述する中空糸膜の製造に用いられる。
 前記フッ化ビニリデン系樹脂及び前記ポリビニルピロリドン系樹脂は、上述した樹脂を用いることができる。
 前記溶剤は、中空糸膜を製造する際に用いる製膜原液に含まれる溶剤として用いることができる溶剤であれば、特に限定されない。また、前記溶媒としては、上述したように、前記フッ化ビニリデン系樹脂の貧溶剤であることが好ましい。また、この貧溶剤は、前記フッ化ビニリデン系樹脂と特定の温度以上で相溶して一相状態となり、かつ、温度低下による相分離を起こしうる溶剤であれば、特に限定されない。また、前記貧溶剤としては、水溶性溶剤であることが好ましい。水溶性溶剤であれば、製膜後、中空糸膜から溶剤を抽出する際に、水を使用することが可能であり、抽出した溶剤は、生物処理等によって処分することが可能である。また、前記貧溶剤としては、例えば、γ-ブチロラクトン、ε-カプロラクトン、メタノール、アセトン、及びカプロラクトン等が挙げられる。前記貧溶剤としては、前記例示の溶剤の中でも、環境負荷、安全面、及びコスト面等の観点からγ-ブチロラクトンが好ましい。また、前記貧溶剤としては、上記例示の溶剤樹脂を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記製膜原液における各成分の含有量としては、以下のようなものが挙げられる。まず、前記フッ化ビニリデン系樹脂の含有量は、前記フッ化ビニリデン系樹脂と前記貧溶剤と前記ポリビニルピロリドン系樹脂との合計質量に対して、20~35質量部であり、20~30質量部であることがより好ましい。前記貧溶剤の含有量は、前記合計質量に対して、45~70質量部であり、50~70質量部であることがより好ましく、55~65質量部であることがさらに好ましい。前記ポリビニルピロリドン系樹脂の含有量は、前記合計質量に対して、5~20質量部であり、8~20質量部であることがより好ましく、10~15質量部であることがさらに好ましい。また、前記フッ化ビニリデン系樹脂の含有量は、前記ポリビニルピロリドン系樹脂の含有量に対して、質量比で、1.54~4.38であることが好ましく、1.6~3.91であることがより好ましく、1.67~3.13であることがさらに好ましい。前記製膜原液における各成分の含有量として、上記含有量のものであれば、前記ポリビニルピロリドン系樹脂の架橋体の含有量がより好適な中空糸膜を好適に製造することができる。
 前記製膜原液は、前記フッ化ビニリデン系樹脂と前記ポリビニルピロリドン系樹脂と前記溶剤とを含んでいればよく、これらからなるものであってもよい。また、前記製膜原液としては、これらの3成分以外にも、他の成分を含んでいてもよい。この他の成分としては、例えば、界面活性剤、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、染料、及び製膜原液の相分離を促進する添加剤等の各種添加剤等が挙げられる。また、製膜原液の相分離を促進する添加剤としては、例えば、グリセリン、エチレングリコール、テトラエチレングリコール、水、エタノール、メタノール等の、前記貧溶媒以外の溶媒、及びポリエチレングリコール、ポリエチレンオキサイド、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸メチル等の樹脂等が挙げられる。この樹脂としては、上記各樹脂の共重合体であってもよい。また、製膜原液の相分離を促進する添加剤としては、上記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る製造方法における押出工程は、前記製膜原液を中空糸状に押し出す工程であれば、特に限定されない。前記押出工程としては、図2に示す中空糸成型用ノズルから前記製膜原液を押し出す工程等が挙げられる。なお、図2は、本発明の実施形態に係る製造方法で用いる中空糸成型用ノズルの一例を示す概略図である。また、図2(a)には、その断面図を示し、図2(b)には、中空糸成型用ノズルの、製膜原液を吐出する吐出口側を示す平面図である。具体的には、ここでの中空糸成型用ノズル21は、円環状の外側吐出口26と、前記外側吐出口26の内側に配置する円状又は円環状の内側吐出口27とを備える。そして、この中空糸成型用ノズル21は、製膜原液を流通させる流通管24の末端に備え、流通管24内を流動してきた製膜原液を、ノズル内の流路22を介して、外側吐出口26から吐出する。また、この中空糸成型用ノズル21は、この外側吐出口26からの製膜原液の吐出と同時に、内部凝固液を、流通管25に流通させ、ノズル内の流路23を介して、内側吐出口27から吐出する。そうすることによって、中空糸成型用ノズル21から押し出された中空糸状の前記製膜原液を前記内部凝固液と接触させる。
 そして、この内部凝固液としては、フッ化ビニリデン系樹脂を含む中空糸膜を製造する際に用いることができる凝固液であれば、特に限定されない。内部凝固液としては、例えば、前記製膜原液との溶解度パラメータの距離(HSP距離)が、5~200(MPa)1/2であることが好ましく、50~200(MPa)1/2であることがより好ましく、100~180(MPa)1/2であることがさらに好ましい。このようなHSP距離を有する内部凝固液を用いることによって、中空糸成型用ノズルから押し出された中空糸状の前記製膜原液の内周面からの凝固を好適に行うことができる。すなわち、中空糸成型用ノズルから押し出された中空糸状の製膜原液の内周面側と、内部凝固液との溶剤交換が、好適な速度で行われると考えられる。このため、内周面側付近の構造が好適な中空糸膜が得られ、透過性能及び分画特性にともに優れた前記中空糸膜をより好適に製造できると考えられる。よって、透過性能及び分画特性にともに優れた前記中空糸膜をより好適に製造できる。
 ここで、HSP距離とは、ある物質と別の物質と親和性を評価するパラメータであり、Hansenの三次元溶解性パラメータ(dD,dP,dH)を用いて、下記式で定義される(詳しくは、非特許文献:Hansen,Charles(2007).Hansen Solubility Parameters: A user‘s handbook,Second Edition.Boca Raton,Fla:CRC Press.を参照)。
 HSP距離=[4×(dD原液-dD溶剤)+(dP原液-dP溶剤)+(dH原液-dH溶剤)0.5
 ここで、dDはファンデルワールス力、dPはダイポールモーメントの力、dHは水素結合力とされており、上記定義式によって計算される3次元座標上におけるHSP距離が0に近づくほど、その2つの成分は相溶性が高いと判断され、NIPS法における溶剤交換速度が遅くなり、接触面の細孔径は粗大化する。
 なお、本明細書で用いている溶解性パラメータは、Hansenのパラメータであるが、Hansenのパラメータに記載されていないものについては、Hoyのパラメータを使用することができる。両方に記載されていないものは、Hansenのパラメータ式で推算することができる(Allan F.M.barton,”CRC Handbook of solubility parameters and other cohesion parameters” CRCCorp.1991を参照)。混合溶剤の場合には、各溶解性パラメータをその質量に基づいて加成法則により計算したパラメータを使用する。
 また、溶解性パラメータの一例を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本実施形態においては、上記HSP距離を満足するように、製膜原液に含まれる溶剤、ポリビニルピロリドン系樹脂、及び内部凝固液を選択することが好ましい。また、内部凝固液は、単一の溶剤からなるものであってもよいし、2種以上の溶剤を組み合わせて用いてもよい。2種以上の溶剤を組み合わせて用いる場合は、例えば、その内部凝固液として、製膜原液とHSP距離の遠い溶剤と、製膜原液とHSP距離の近い溶剤とを任意の比率で混合し、製膜原液とのHSP距離を調節した混合溶剤等が挙げられる。その際に混合する溶剤の種類や数に特に制限はない。なお、製膜原液とHSP距離の遠い溶剤としては、例えば、水やグリセリン等が挙げられる。また、製膜原液とHSP距離の近い溶剤としては、例えば、γ-ブチロラクトンやジメチルアセトアミド等が挙げられる。
 内部凝固液として用いられる混合溶剤としては、例えば、ジメチルアセトアミドとグリセリンとの混合溶剤、γ-ブチロラクトンとグリセリンとの混合溶剤、γ-ブチロラクトンとエチレングリコールとの混合溶剤、γ-ブチロラクトンと水との混合溶剤、ジメチルアセトアミドと水との混合溶剤、ジメチルアセトアミドとエチレングリコールとの混合溶剤、ジメチルホルムアミドと水との混合溶剤等が挙げられる。この中でも、γ-ブチロラクトンとグリセリンとの混合溶剤やジメチルアセトアミドと水との混合溶剤が、中空糸膜の成形性が良いという点から好ましい。
 内部凝固液の温度は、内部凝固液の均一性を確保するという観点から、40~170℃であることが好ましい。すなわち、内部凝固液の温度としては、40~170℃の間で調整されることが好ましい。
 本実施形態に係る製造方法における形成工程は、押し出された中空糸状の製膜原液を凝固させて、中空糸膜を形成することができる工程であれば、特に限定されない。この形成工程としては、具体的には、例えば、押し出された中空糸状の製膜原液を、外部凝固液と接触させて、中空糸膜を形成する工程等が挙げられる。この形成工程は、より具体的には、前記押出工程で押し出された中空糸状の製膜原液を、外部凝固浴に貯留した外部凝固液に浸漬させる工程等が挙げられる。
 前記外部凝固液は、押し出された中空糸状の製膜原液と接触することで、押し出された中空糸状の製膜原液を凝固させることができるものであれば、特に限定されない。前記外部凝固液としては、具体的には、水や、塩類又は溶剤を含有した水溶液等が挙げられる。ここでの塩類としては、例えば、硫酸塩、塩化物、硝酸塩、酢酸塩等の各種の塩類が挙げられる。この中でも、硫酸ナトリウムが好ましい。また、塩類を含有した水溶液は、その塩類濃度が、30~300g/Lであることが好ましく、50~300g/Lであることがより好ましく、100~280g/Lであることがさらに好ましい。この濃度は、低すぎても、高すぎても、好適な膜構造の中空糸膜が得られにくくなる傾向がある。具体的には、この濃度が低すぎると、形成工程における溶剤交換速度が速くなり、得られた中空糸膜の緻密化が進みすぎて、透過性能が低下する傾向がある。また、この濃度が高すぎると、形成工程における溶剤交換速度が遅くなり、得られた中空糸膜の分画特性が低下する傾向がある。
 前記外部凝固液の温度は、押し出された中空糸状の製膜原液と接触することで、押し出された中空糸状の製膜原液を凝固させることができる温度であれば、特に限定されない。この外部凝固液の温度としては、前記溶剤として、前記フッ化ビニリデン系樹脂の貧溶媒を用いた場合、前記温度変化による相分離が開始する温度よりも高いことが好ましい。外部凝固液の温度を、このような温度で行うと、透過性能及び分画特性にともに優れた中空糸膜を、好適に製造することができると考えられる。このことは、以下のことによると考えられる。まず、製膜原液を製造する際、フッ化ビニリデン系樹脂に対する良溶剤を用いるのではなく、上記のような、フッ化ビニリデン系樹脂に対する貧溶剤を用い、前記温度変化による相分離が起こらない状態で、中空糸状の製膜原液を外部凝固液と接触させる。そうすることで、製膜原液内の溶剤と外部凝固液との溶剤交換が起こり、製膜原液内の樹脂を凝固させる。このため、溶剤交換の速度が、良溶剤を用いた場合、いわゆる、従来のNIPS法より、好適な速度になると考えられる。よって、透過性能及び分画特性にともに優れた中空糸膜を、好適に製造することができると考えられる。
 前記外部凝固液の温度は、前記温度変化による相分離が開始する温度より高いことが好ましく、具体的には、45℃以上であることが好ましく、50℃以上であることがより好ましい。また、前記外部凝固液の温度は、外部凝固液の沸点以下であることが好ましく、90℃以下であることがより好ましく、85℃以下であることがさらに好ましい。前記外部凝固液の温度が低すぎると、得られた中空糸膜が緻密化し、非対称な構造が形成されにくくなる傾向がある。また、前記外部凝固液の温度は、前記温度変化による相分離が開始する温度以下になると、TIPS法になり、好適な中空糸膜が形成されにくくなる。また、前記外部凝固液の温度が高すぎると、製膜原液の粘度が低下することによって、分画特性が低下し、また、透水性能が高まりすぎてしまう傾向がある。さらに、前記外部凝固液の温度が、その沸点以上であると、外部凝固液が沸騰して振動するため、中空糸膜の製造が安定しない傾向がある。
 相分離が開始する温度は、前記フッ化ビニリデン系樹脂と前記貧溶剤と前記ポリビニルピロリドン系樹脂とを含む溶液、例えば、前記製膜原液を、その温度を低下させて、相分離が開始する温度である。相分離が開始する温度としては、具体的には、以下のように測定する(詳しくは非特許文献;ポリマーアロイの構造・物性制御と最新技術, 扇澤敏明・瀬和則・今井昭夫,情報機構を参照)。まず、温度コントローラ付きの光学顕微鏡のステージ上にスライドガラスとカバーガラスとを置き、そのスライドガラスとカバーガラスとが120℃になるように加熱する。この加熱したスライドガラスとカバーガラスとの間に、均一相状態の製膜原液を挟み込む。そして、このスライドガラスとカバーガラスとの温度を、少しずつ降温又は昇温、例えば、3℃ずつの降温を行い、相分離した際に生じる白濁(2相の屈折率の差に起因)を目視で確認し、その確認した温度を測定する。この温度を、相分離が開始する温度とする。すなわち、この測定方法は、製膜原液が透明であれば均一相状態であり、白濁していれば相分離状態であるとし、部分的にでも白濁を確認した時点の温度を相分離が開始する温度(相分離開始温度)として、測定する方法である。
 前記形成工程は、押し出された中空糸状の製膜原液を、外部凝固液に接触させる前に、気体、通常、空気中を走行してもよい。すなわち、前記形成工程は、前記押出工程で押し出された中空糸状の製膜原液を、気体中を走行した後、外部凝固液に接触させてもよい。気体中を走行する距離は、特に限定されず、例えば、5~300mmであることが好ましい。この気体中の走行は、押し出された中空糸状の製膜原液と内部凝固液との溶剤交換を好適に行うことができ、中空糸形状が安定化し、紡糸性が向上する。なお、本実施形態に係る製造方法では、この気体中の走行を行わなくてもよい。
 本実施形態に係る製造方法は、前記形成工程により形成された中空糸膜を、長手方向に延伸してもよい。この延伸方法は、特に限定されないが、例えば、水浴中、例えば、加温した水浴中での延伸処理等が挙げられる。なお、延伸後、延伸にかかる力を開放すると、長手方向に収縮する。このような延伸及び収縮を施すと、中空糸膜は、透過性能が向上する。このことは、膜内に存在する独立孔が開裂し、連通孔となり、膜内の連通性が向上し、透過性能が向上すると考えられる。さらに、このような延伸及び収縮を施すと、中空糸膜の繊維の方向が均質化し、強度が向上するという利点もある。なお、本実施形態に係る製造方法では、この延伸及び収縮を行わなくてもよい。
 本実施形態に係る製造方法は、前記形成工程により形成された中空糸膜を、洗浄してもよい。洗浄方法としては、例えば、中空糸膜を、80℃以上の水浴中にて熱水洗浄する方法などが挙げられる。この熱水洗浄により、中空糸膜の親水性が好適に向上する。このことは、この熱水洗浄により、中空糸膜内のポリビニルピロリドン系樹脂が、膜内で拡散することによると考えられる。
 本実施形態に係る製造方法における架橋工程は、前記中空糸膜に含まれるポリビニルピロリドン系樹脂を架橋させることができれば、特に限定されない。この架橋工程としては、例えば、中空糸膜(架橋前の中空糸膜)を、ラジカル開始剤を含む水溶液に浸漬させる工程、中空糸膜を強酸や強アルカリに浸漬させる工程、中空糸膜を熱処理する工程、及び中空糸膜に対して放射線処理する工程等が挙げられる。架橋工程としては、上記各工程の中でも、フッ化ビニリデン系樹脂の劣化を抑制でき、かつ、取り扱いが容易である点から、中空糸膜を、ラジカル開始剤を含む水溶液に浸漬させる工程が好ましい。
 ラジカル開始剤を含む水溶液に浸漬させる工程は、その浸漬の際に、又は、浸漬後に、加熱処理をすることが好ましい。また、ラジカル開始剤を含む水溶液としては、ポリビニルピロリドン系樹脂の架橋反応を開始させることができるラジカル開始剤を含む水溶液であればよく、例えば、ラジカル開始剤の1質量%水溶液等が挙げられる。ラジカル開始剤としては、例えば、過硫酸ナトリウム、過硫酸アンモニウム、及び過酸化水素等が挙げられる。この中でも、透過性能の高い中空糸膜が得られやすいという点で、過酸化水素が好ましい。
 熱処理する工程における加熱温度は、ポリビニルピロリドン系樹脂の架橋反応を開始させることができる温度であればよく、例えば、170~200℃程度であることが好ましい。
 また、本実施形態に係る中空糸膜は、膜ろ過に供することができる。具体的には、例えば、中空糸膜を用いて、以下のようにモジュール化し、このモジュール化されたものを用いて、膜ろ過に用いることができる。より具体的には、本実施形態に係る中空糸膜は、所定本数束ねられ、所定長さに切断されて、所定形状のケーシングに充填され、中空糸束の端部はポリウレタン樹脂やエポキシ系樹脂等の熱硬化性樹脂によりケーシングに固定されて、モジュールとなる。なお、このモジュールの構造としては、中空糸膜の両端が開口固定されているタイプ、中空糸膜の一端が開口固定され、他端が密封されているが、固定されていないタイプ等、種々の構造のものが知られており、本実施形態に係る中空糸膜は、いずれのモジュールの構造においても使用可能である。
 本実施形態に係る中空糸膜は、上記のようにモジュール化され、例えば、図3に示すような膜ろ過装置に組み込むことができる。なお、図3は、本発明の実施形態に係る中空糸膜を備えた膜ろ過装置の一例を示す概略図である。膜ろ過装置31は、上記のように中空糸膜をモジュール化した膜モジュール32を備える。そして、この膜モジュール32は、例えば、中空糸膜の上端部33は中空部を開口しており、下端部34は中空部をエポキシ系樹脂にて封止しているものが挙げられる。また、膜モジュール32は、例えば、有効膜長さ100cmの中空糸膜を70本用いてなるもの等が挙げられる。そして、この膜ろ過装置31は、導入口35から、処理対象物である液体を、膜モジュール32によるろ過が施された液体(ろ過水)等が導出口36から排出される。そうすることによって、中空糸膜を用いたろ過が実施される。なお、膜ろ過装置31に導入された空気は、空気抜き口37から排出される。
 本実施形態に係る中空糸膜は、このようにモジュール化されて、浄水処理、飲料水製造、工業水製造、排水処理等の各種用途に用いられる。
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係る中空糸膜は、フッ化ビニリデン系樹脂を含む多孔性の中空糸膜であって、前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有し、ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されていることを特徴とする。
 このような構成によれば、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜が得られる。
 このことは、以下のことによると考えられる。
 まず、この中空糸膜は、膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有するので、分画特性に関与すると考えられる緻密な層状部分、及びその他の比較的大きい気孔(細孔)が形成された部分と等が形成されたものであると考えられる。例えば、分画特性に関与すると考えられる緻密な層状部分が、表面等に形成され、その他の部分は、その部分内に形成される気孔(細孔)が比較的大きいものであるので、透過性能の低下が抑制されるものであると考えられる。
 そして、このような中空糸膜は、フッ化ビニリデン系樹脂を含むので、疎水性が比較的高くなる傾向があると考えられる。このような中空糸膜であっても、ポリビニルピロリドン系樹脂の架橋体を含むことによって、親水性を高めることができると考えられる。また、ポリビニルピロリドン系樹脂を単に含むのではなく、ポリビニルピロリドン系樹脂の架橋体を含むことによって、ポリビニルピロリドン系樹脂の脱落が抑制され、親水性を高めた効果を維持することができると考えられる。このように親水性を高めることによって、中空糸膜に、上述したような好適な気孔を形成することができ、水を含む液体に対する透過性をより高めることができると考えられる。また、中空糸膜は、フッ化ビニリデン系樹脂を含むので、強度の優れたものが得られる。
 これらのことから、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜が得られると考えられる。また、親水性を高めることによって、耐汚染性も高めることができると考えられる。
 また、前記中空糸膜において、前記架橋体の含有量が、0.1質量%以上15質量%未満であることが好ましい。
 このような構成によれば、優れた分画特性を維持しつつ、透過性能により優れ、さらに耐汚染性に優れた中空糸膜が得られる。
 このことは、フッ化ビニリデン系樹脂を含む中空糸膜を、適度に親水化させることができ、膜の細孔の閉塞等による透水性の低下の発生を抑制しつつ、親水性を高めることができるためであると考えられる。
 また、前記中空糸膜において、前記ポリビニルピロリドン系樹脂のK値が、30~120であることが好ましい。
 このような構成によれば、優れた分画特性を維持しつつ、透過性能により優れ、さらに耐汚染性に優れた中空糸膜が得られる。
 このことは、以下のことによると考えられる。このようなK値を有するポリビニルピロリドン系樹脂であれば、フッ化ビニリデン系樹脂を含む中空糸膜内に、適度に残存しやすく、中空糸膜を、適度に親水化させることができると考えられる。このため、膜の細孔の閉塞等による透水性の低下の発生を抑制しつつ、親水性を高めることができるため、水を含む液体の透過性を向上させることができると考えられる。
 これらのことから、優れた分画特性を維持しつつ、透過性能により優れ、さらに耐汚染性に優れた中空糸膜が得られると考えられる。
 また、前記中空糸膜において、膜間差圧0.1MPaにおける透水量が、1000~40000L/m/時であり、分画粒子径が、0.001~0.5μmであることが好ましい。
 このような構成によれば、透過性能及び分画特性により優れた中空糸膜が得られる。
 また、前記中空糸膜において、単一層からなることが好ましい。
 このような構成によれば、透過性能及び分画特性により優れ、膜内に剥離等の損傷が発生しにくい中空糸膜が得られる。
 このことは、以下のことによると考えられる。
 上述したような分画特性に関与すると考えられる緻密な層状部分が、本発明の一態様に係る中空糸膜のように、透過性能が高い場合、薄いと考えられる。このような場合、このような緻密な層を別途作製しようとすると、好適に形成できない場合がある。これに対して、緻密な層状部分と、それ以外の部分とを同一の層、すなわち単一層で形成すると、緻密な層状部分を面方向に均一に形成できると考えられる。また、緻密な層状部分と、それ以外の部分とが単一層であれば、その界面での剥離等の発生を充分に抑制できると考えられる。
 これらのことから、透過性能及び分画特性により優れ、膜内に剥離等の損傷が発生しにくい中空糸膜が得られると考えられる。
 また、前記中空糸膜において、前記架橋体が、架橋前の中空糸膜を形成する際に前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋したものであることが好ましい。
 このような構成によれば、透過性能及び分画特性により優れ、さらに、引張強度だけではなく、引張伸度も高い、強度に優れた中空糸膜が得られる。
 また、本発明の他の一態様に係る中空糸膜の製造方法は、前記中空糸膜の製造方法であって、フッ化ビニリデン系樹脂と、ポリビニルピロリドン系樹脂と、溶剤とを含む製膜原液を調製する工程と、前記製膜原液を中空糸状に押し出す工程と、中空糸状に押し出された製膜原液を凝固させて、架橋前の中空糸膜を形成する工程と、前記架橋前の中空糸膜内のポリビニルピロリドン系樹脂を架橋させる架橋工程とを備えることを特徴とする。
 このような構成によれば、前記中空糸膜を好適に製造できる。
 また、前記中空糸膜の製造方法において、前記製膜原液は、前記フッ化ビニリデン系樹脂の含有量が、前記ポリビニルピロリドン系樹脂の含有量に対して、質量比で、1.54~4.38であることが好ましい。
 このような構成によれば、前記ポリビニルピロリドン系樹脂の架橋体の含有量がより好適な中空糸膜を好適に製造することができる。
 また、前記中空糸膜の製造方法において、前記架橋工程が、前記架橋前の中空糸膜を、ラジカル開始剤を含む水溶液に浸漬させる工程であることが好ましい。
 このような構成によれば、架橋前の中空糸膜に含まれるポリビニルピロリドン系樹脂を、簡便に架橋させることができる。よって、前記中空糸膜をより容易に製造できる。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 [実施例1]
 まず、フッ化ビニリデン系樹脂として、ポリフッ化ビニリデン(以下、PVDFと略することがある)(アルケマ株式会社製のKynar741)と、溶剤として、γ-ブチロラクトン(三菱化学株式会社製のGBL)と、ポリビニルピロリドン系樹脂として、ポリビニルピロリドン(BASFジャパン株式会社製のソカランK-90P、K値:90)とを、質量比25:62:13になるように混合物を調製した。なお、γ-ブチロラクトンは、ポリフッ化ビニリデンに対する貧溶剤である。なお、ポリフッ化ビニリデンの、ポリビニルピロリドンに対する含有量は、25/13であり、約1.92である。
 上記混合物を95℃の恒温下で溶解タンク内にて溶解して得られた製膜原液を、混練した後に、図2に示すような、外径1.6mm、内径0.8mmの二重環構造のノズル(中空糸膜形成用ノズル)から押し出した。このとき、内部凝固液として、γ-ブチロラクトン(三菱化学株式会社製のGBL)とグリセリン(花王株式会社製の精製グリセリン)とを65℃の恒温下で質量比15:85になるように混合し、製膜原液と同時吐出した。この内部凝固液は、製膜原液とのHSP距離は、163(MPa)1/2である。
 この内部凝固液とともに押し出した製膜原液を、40mmの空走距離を経て、180g/Lの硫酸ナトリウム水溶液からなる60℃の外部凝固液中に浸漬させた。そうすることによって、製膜原液が固化され、中空糸膜が得られる。なお、この外部凝固液は、ポリフッ化ビニリデンに対する非溶剤である。
 次いで、得られた中空糸膜を、延伸、収縮処理をした後に、90℃の熱水で2時間洗浄した。そうすることによって、溶剤(γ-ブチロラクトン)とポリビニルピロリドン系樹脂(ポリビニルピロリドン)とが、中空糸膜から抽出除去される。その後、得られた中空糸膜(架橋前の中空糸膜)を、ポリビニルピロリドンを1%過酸化水素溶液中で加熱することによって、架橋化処理(架橋不溶化処理)を施した。このときのポリビニルピロリドンの架橋体の含有量は、1.9質量%であった。
 このようにして得られた中空糸膜の外径は、1.3mm、内径は0.8mmであり、膜厚が、0.25mmであった。
 また、実施例1に係る中空糸膜の膜構造を、走査型電子顕微鏡(株式会社日立製作所製のS-3000N)を用いて確認した。その結果を、図4~9に示す。
 まず、図4は、実施例1に係る中空糸膜の断面の走査型電子顕微鏡写真を示す図である。次に、図5は、実施例1に係る中空糸膜の断面における外周面付近の走査型電子顕微鏡写真を示す図である。また、図6は、実施例1に係る中空糸膜の断面における中央部付近の走査型電子顕微鏡写真を示す図である。また、図7は、実施例1に係る中空糸膜の断面における内周面付近の走査型電子顕微鏡写真を示す図である。具体的には、図5は、図4に示す囲み線61を拡大して示す図である。図6は、図4に示す囲み線62を拡大して示す図である。図7は、図4に示す囲み線63を拡大して示す図である。
 これらの図から、実施例1に係る中空糸膜が、多孔性の中空糸膜であって、前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有することがわかる。すなわち、前記中空糸膜内の気孔の大きさが厚み方向で順次異なることがわかる。また、外周面付近には、緻密な層状部分が形成されており、それ以外の部分は、それより疎な部分が形成されていることがわかる。具体的には、図5に示す外周面付近の写真を、画像計測ソフト(株式会社プラネトロン製のImage-Pro Plus)を用いて二値化し、大津方式で閾値を決定して算出した空隙率が34%で、閾値210で算出した空隙率が67%であった。また、図7に示す内周面付近の写真を、同様に画像計測ソフト(株式会社プラネトロン製のImage-Pro Plus)を用いて二値化し、大津方式で閾値を決定して算出した空隙率が50%で、閾値210で算出した空隙率が78%であった。
 図8は、実施例1に係る中空糸膜の外周面の走査型電子顕微鏡写真を示す図である。また、図9は、実施例1に係る中空糸膜の内周面の走査型電子顕微鏡写真を示す図である。これらの図からも、外周面付近には、緻密な層状部分が形成されており、それ以外の部分は、それより疎な部分が形成されていることがわかる。
 図8に示す外周面の写真を、画像計測ソフト(株式会社プラネトロン製のImage-Pro Plus)を用いて二値化し、大津方式で閾値を決定して算出した、外周面に形成されている孔の直径の算術平均値(外周側細孔径)は、0.13μmであった。また、図9に示す内周面の写真を、画像計測ソフト(株式会社プラネトロン製のImage-Pro Plus)を用いて二値化し、大津方式で閾値を決定して算出した、内周面に形成されている孔の直径の算術平均値(内周側細孔径)は、5μmであった。また、外周側細孔径に対する内周側細孔径の比(内周側細孔径/外周側細孔径)は、38倍であった。
 得られた中空糸膜の透水量は、中空糸膜を用いた、以下のような操作における、単位時間当たりのろ過液の量を測定し、この得られた量と、膜面積とから算出した。
 この中空糸膜を用いて図3に示すような膜ろ過装置31を作製した。膜ろ過装置31に装填されている膜モジュール32は、有効膜長さ20cm、中空糸本数20本からなり、上端部33をエポキシ系樹脂で封止されている。上端部33は中空糸膜の中空部が開口しており、下端部34は中空糸膜の中空部をエポキシ系樹脂にて封止されている。この膜ろ過装置31は、導入口35を経て、中空糸膜の外周面側より、純水をろ過し、上端部の内周面側にある導出口36よりろ過水を得た。この際、膜間差圧0.1MPaになるように調整した。
 この測定方法により得られた透水量、すなわち、膜間差圧0.1MPaにおける透水量は、5000L/m/時であった。なお、ここでの測定で用いた中空糸膜は、膨潤状態の中空糸膜であり、ここでの透水量は、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)に相当する。また、用いる中空糸膜として、乾燥状態の中空糸膜や、湿潤状態と乾燥状態とを交互にそれぞれ10回ずつ繰り返した後の乾燥状態の中空糸膜を用いて、それぞれ、FDやFD10も測定した。
 また、得られた中空糸膜の分画粒子径を、以下の方法で測定した。
 異なる粒子径を有する少なくとも2種類の粒子(日揮触媒化成株式会社製の、カタロイドSI-550、カタロイドSI-45P、カタロイドSI-80P等)の阻止率を測定し、その測定値を元にして、下記の近似式において、Rが90となるSの値を求め、これを分画粒子径とした。
  R=100/(1-m×exp(-a×log(S)))
 上記式中のaおよびmは、中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。なお、限外濾過膜領域については、90%以上除去することが可能であった標準ポリエチレンオキシド(トーソー株式会社製、TSKgel)の分子量(重量平均分子量)を記載した。
 この測定方法により得られた分画粒子径が、0.02μmであった。
 得られた中空糸膜の純水透過係数Kを、上記の方法によって算出したところ、4×10-15であった。
 製膜原液の吐出量を変更した以外は、同様にして、膜厚を変更した複数の中空糸膜を製造し、それぞれについて純水透過係数Kを算出した。その後、膜厚変化に対する純水透過係数Kの変化をプロットし、そのときの傾きを算出した。その傾きが、2.29×10-11であった。
 得られた中空糸膜の強度を測定した。具体的には、中空糸膜の引張強度と引張伸度とを測定した。
 中空糸膜の引張強度は、以下のように測定した。
 まず、得られた中空糸膜を、長さ5cmになるように切断した。この切断した中空糸膜を、強度を測定する試験片とした。
 次に、オートグラフ(株式会社島津製作所製のAG-Xplus)を用いて、25℃の水中で、試験片を100mm/分の速度で引っ張る引張試験を行った。その際、破断したときの荷重から、引張強度を求めた。
 この測定方法により得られた引張強度が、5.2N/mmであった。
 また、中空糸膜の引張伸度は、以下のように測定した。
 上記引張試験において、破断したときの、試験片の伸びから、引張伸度を求めた。
 この測定方法により得られた引張伸度が、180%であった。
 これらのことから、実施例1に係る中空糸膜は、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜であることがわかった。
 また、中空糸膜の親水性を、以下のような、タンパク質吸着試験を行い、評価した。
 得られた中空糸膜を乾燥させ、乾燥状態の重量で2gになるように切断した。この切断した中空糸膜を湿潤処理した後、1000ppmのウシ血清アルブミン(シグマアルドリッチ社製のA7906-10G)リン酸緩衝液に24時間浸漬させた。24時間浸漬させた後のリン酸緩衝液中のウシ血清アルブミンの濃度(タンパク質の濃度)を測定した。この測定結果から、中空糸膜の浸漬による、タンパク質の濃度の低下分を算出し、この低下分から、中空糸膜に付着したタンパク質の量(タンパク質付着量:mg/g)を算出した。このウシ血清アルブミンを吸着させた状態の中空糸膜を、ウシ血清アルブミンが含有されていないリン酸緩衝液に24時間浸漬させ、このリン酸緩衝液に溶出するウシ血清アルブミンの濃度を測定した。この測定結果から、溶出したタンパク質の量(タンパク質溶出量:mg/g)を算出した。そして、このタンパク質付着量とタンパク質溶出量との差分から、中空糸膜に吸着したウシ血清アルブミンの量(タンパク質吸着量:mg/g)を算出した。その結果を、図10に示す。なお、後述する比較例1に係る中空糸膜に対しても、同様の評価を行い、合わせて、図10に示す。
 なお、図10は、実施例1及び比較例1に係る各中空糸膜の親水性の評価結果を示す図である。また、縦軸に、上記タンパク質吸着量(mg/g)を示す。
 [実施例2]
 ポリビニルピロリドン系樹脂として、ポリビニルピロリドン(ISPジャパン株式会社製のPVP K-120、K値:120)を用いたこと以外は、実施例1と同様にして中空糸膜を得た。得られた中空糸膜のポリビニルピロリドンの架橋体の含有量は、4.9質量%であった。この得られた中空糸膜の、外周側細孔径、内周側細孔径、外周側細孔径に対する内周側細孔径の比、膜間差圧0.1MPaにおける透水量(FW)、FD、FD10、純水透過係数K、膜厚変化に対する純水透過係数Kの変化をプロットしたときの傾き、分画粒子径、引張強度、及び引張伸度は、上記実施例1と同様の方法により、測定し、表1に示す。この得られた中空糸膜は、実施例1と同様、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜であることがわかった。
 [実施例3]
 ポリビニルピロリドン系樹脂として、ポリビニルピロリドン(ISPジャパン株式会社製のPVP K-60、K値:60)を用いたこと以外は、実施例1と同様にして中空糸膜を得た。得られた中空糸膜のポリビニルピロリドンの架橋体の含有量は、0.6質量%であった。この得られた中空糸膜の、外周側細孔径、内周側細孔径、外周側細孔径に対する内周側細孔径の比、膜間差圧0.1MPaにおける透水量(FW)、FD、FD10、純水透過係数K、膜厚変化に対する純水透過係数Kの変化をプロットしたときの傾き、分画粒子径、引張強度、及び引張伸度は、上記実施例1と同様の方法により、測定し、表1に示す。この得られた中空糸膜は、実施例1と同様、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜であることがわかった。
 [実施例4]
 中空糸膜に延伸、収縮処理をした後に施す、熱水による洗浄時間を、20分間に変更したこと以外、実施例1と同様にして中空糸膜を得た。なお、この実施例4は、洗浄時間が実施例1より短いので、実施例1で得られた中空糸膜より、ポリビニルピロリドンの架橋体の残存量が多くなることを意図した実施例である。得られた中空糸膜のポリビニルピロリドンの架橋体の含有量は、9.2質量%であった。この得られた中空糸膜の、外周側細孔径、内周側細孔径、外周側細孔径に対する内周側細孔径の比、膜間差圧0.1MPaにおける透水量(FW)、FD、FD10、純水透過係数K、膜厚変化に対する純水透過係数Kの変化をプロットしたときの傾き、分画粒子径、引張強度、及び引張伸度は、上記実施例1と同様の方法により、測定し、表1に示す。この得られた中空糸膜は、実施例1と同様、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜であることがわかった。
 [実施例5]
 実施例1における架橋前の中空糸膜を洗浄することにより、膜内に含まれるポリビニルピロリドンの含有量が0.1質量%未満となるまで、膜内に含まれるポリビニルピロリドンを除去した。このポリビニルピロリドンを除去した中空糸膜を完全に乾燥した。その後、この乾燥した中空糸膜を、エタノール50質量%水溶液に浸漬させることによって、濡らした。そして、この濡らした中空糸膜を、純水に24時間浸漬させた。そうすることによって、中空糸膜全体に水が含まれた状態になった。この状態の中空糸膜を、ポリビニルピロリドン(BASFジャパン株式会社製のソカランK-90P、K値:90)の1質量%水溶液に浸漬させた。このポリビニルピロリドンに浸漬させた中空糸膜を、実施例1と同様の方法により架橋させることによって、ポリビニルピロリドンの架橋体を含む中空糸膜が得られた。この得られた中空糸膜の、外周側細孔径、内周側細孔径、外周側細孔径に対する内周側細孔径の比、膜間差圧0.1MPaにおける透水量(FW)、FD、FD10、純水透過係数K、膜厚変化に対する純水透過係数Kの変化をプロットしたときの傾き、分画粒子径、引張強度、及び引張伸度は、上記実施例1と同様の方法により、測定し、表1に示す。
 [比較例1]
 中空糸膜内のポリビニルピロリドンを可能な限り洗浄し、ポリビニルピロリドンに対する架橋不溶化処理を行わなかったこと以外は、実施例1と同様にして中空糸膜を得た。
 得られた中空糸膜が親水化されておらず、透過抵抗が大きくなり、十分な透過性能を得られなかった。得られた中空糸膜のポリビニルピロリドンの架橋体の含有量は、架橋不溶化処理をしていないので、0質量%である。また、得られた中空糸膜のポリビニルピロリドンの含有量は、0.1質量%未満であった。
 なお、上述したように、この比較例1で得られた中空糸膜の親水性を、実施例1の方法と同様の方法により、評価した。その結果を、図10に示す。
 また、図10から、膜内に、ポリビニルピロリドンを含み、架橋不溶化処理を施した実施例1に係る中空糸膜は、架橋不溶化処理を施していない比較例1と比較して、タンパク質吸着量が少ないことがわかる。このことから、実施例1に係る中空糸膜は、ポリビニルピロリドン系樹脂の架橋体を含むことによって、得られた中空糸膜が親水化することがわかる。
 [比較例2]
 ポリビニルピロリドン系樹脂の代わりに、ポリビニルアルコール(株式会社クラレ製のPVA-205)を用い、架橋不溶化処理の際、架橋処理液として、1%グルタルアルデヒドの硫酸酸性水溶液を用いたこと以外、実施例1と同様にして中空糸膜を得た。得られた中空糸膜のポリビニルアルコールの架橋体の含有量は、3.0質量%であった。なお、この含有量は、フッ化ビニリデン系樹脂の良溶剤であるN-メチルピロリドンで、得られた中空糸膜を溶解し、残存した架橋物の重量を測定することで、算出した。得られた中空糸膜は、充分な透過性能を得られなかった。
 以上の各実施例、及び比較例における条件や純水透過係数等を下記表2に示す。なお、表中の樹脂は、フッ化ビニリデン系樹脂とともに含有させる樹脂であって、「PVP」はポリビニルピロリドンであり、「PVA」は、ポリビニルアルコールである。なお、比較例2における架橋体の含有量は、PVAの架橋体の含有量を示し、それ以外の架橋対の含有量は、PVPの架橋体の含有量を示す。
Figure JPOXMLDOC01-appb-T000002
 表2と上記の記載からわかるように、実施例1~5は、比較例1、2と比較して、透過性能及び分画特性に優れ、強度にも優れたものであることがわかる。また、架橋前の中空糸膜に練り込まれたポリビニルピロリドンを架橋させた場合(実施例1~4)は、架橋前の中空糸膜にポリビニルピロリドン水溶液を浸漬させた後に、このポリビニルピロリドンを架橋させた場合(実施例5)より、伸度が高いことがわかる。
 この出願は、2014年3月26日に出願された日本国特許出願特願2014-063791号を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を逸脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、透過性能及び分画特性にともに優れ、強度にも優れた中空糸膜及びその製造方法が提供される。
 21 中空糸成型用ノズル
 22,23 流路
 24、25 流通管
 26 外側吐出口
 27 内側吐出口
 31 膜ろ過装置
 32 膜モジュール
 33 上端部
 34 下端部
 35 導入口
 36 導出口
 37 空気抜き口

Claims (9)

  1.  フッ化ビニリデン系樹脂を含む多孔性の中空糸膜であって、
     前記中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有し、
     ポリビニルピロリドン系樹脂の架橋体を含むことによって、前記中空糸膜が親水化されていることを特徴とする中空糸膜。
  2.  前記架橋体の含有量が、0.1質量%以上15質量%未満である請求項1に記載の中空糸膜。
  3.  前記ポリビニルピロリドン系樹脂のK値が、30~120である請求項1又は請求項2に記載の中空糸膜。
  4.  膜間差圧0.1MPaにおける透水量が、1000~40000L/m/時であり、
     分画粒子径が、0.001~0.5μmである請求項1~3のいずれか1項に記載の中空糸膜。
  5.  単一層からなる請求項1~4のいずれか1項に記載の中空糸膜。
  6.  前記架橋体が、架橋前の中空糸膜を形成する際に前記架橋前の中空糸膜に含ませたポリビニルピロリドン系樹脂を架橋したものである請求項1~5のいずれか1項に記載の中空糸膜。
  7.  請求項1~6のいずれか1項に記載の中空糸膜の製造方法であって、
     フッ化ビニリデン系樹脂と、ポリビニルピロリドン系樹脂と、溶剤とを含む製膜原液を調製する工程と、
     前記製膜原液を中空糸状に押し出す工程と、
     中空糸状に押し出された製膜原液を凝固させて、架橋前の中空糸膜を形成する工程と、
     前記架橋前の中空糸膜内のポリビニルピロリドン系樹脂を架橋させる架橋工程とを備えることを特徴とする中空糸膜の製造方法。
  8.  前記製膜原液は、前記フッ化ビニリデン系樹脂の含有量が、前記ポリビニルピロリドン系樹脂の含有量に対して、質量比で、1.54~4.38である請求項7に記載の中空糸膜の製造方法。
  9.  前記架橋工程が、前記架橋前の中空糸膜を、ラジカル開始剤を含む水溶液に浸漬させる工程である請求項7又は請求項8に記載の中空糸膜の製造方法。
PCT/JP2015/055686 2014-03-26 2015-02-26 中空糸膜、及び中空糸膜の製造方法 WO2015146469A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/128,385 US10744467B2 (en) 2014-03-26 2015-02-26 Hollow fiber membrane, and method for producing hollow fiber membrane
CN201580016494.5A CN106132521A (zh) 2014-03-26 2015-02-26 中空纤维膜以及中空纤维膜的制造方法
JP2016510166A JP6644674B2 (ja) 2014-03-26 2015-02-26 中空糸膜、及び中空糸膜の製造方法
KR1020167029628A KR101930147B1 (ko) 2014-03-26 2015-02-26 중공사막, 및 중공사막의 제조 방법
AU2015235572A AU2015235572C1 (en) 2014-03-26 2015-02-26 Hollow fiber membrane, and method for producing hollow fiber membrane
EP15769046.2A EP3103546B1 (en) 2014-03-26 2015-02-26 Hollow fiber membrane, and method for producing hollow fiber membrane
SG11201607405TA SG11201607405TA (en) 2014-03-26 2015-02-26 Hollow fiber membrane, and method for producing hollow fiber membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063791 2014-03-26
JP2014063791 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146469A1 true WO2015146469A1 (ja) 2015-10-01

Family

ID=54195000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055686 WO2015146469A1 (ja) 2014-03-26 2015-02-26 中空糸膜、及び中空糸膜の製造方法

Country Status (8)

Country Link
US (1) US10744467B2 (ja)
EP (1) EP3103546B1 (ja)
JP (1) JP6644674B2 (ja)
KR (1) KR101930147B1 (ja)
CN (2) CN106132521A (ja)
AU (1) AU2015235572C1 (ja)
SG (1) SG11201607405TA (ja)
WO (1) WO2015146469A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059397A1 (ja) * 2017-09-25 2019-03-28 三菱ケミカル株式会社 中空糸膜
CN109806777A (zh) * 2017-11-22 2019-05-28 乐清腾祥膜技术有限公司 一种增强型聚偏氟乙烯中空纤维膜的制备方法
WO2019131304A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
CN110368718A (zh) * 2019-06-28 2019-10-25 天津大学 一种三维打印的超亲水及水下超疏油网膜及其制备方法
WO2020059344A1 (ja) * 2018-09-20 2020-03-26 住友電気工業株式会社 中空糸膜
WO2022231002A1 (ja) 2021-04-28 2022-11-03 東レ株式会社 中空糸膜およびその製造方法
JP7409072B2 (ja) 2018-12-26 2024-01-09 東レ株式会社 多孔質膜、複合膜及び多孔質膜の製造方法
JP7456803B2 (ja) 2020-03-03 2024-03-27 日東電工株式会社 中空糸膜モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012299311B2 (en) 2011-08-11 2016-03-03 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9168131B2 (en) 2011-12-09 2015-10-27 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
WO2017217446A1 (ja) * 2016-06-17 2017-12-21 旭化成株式会社 多孔質膜、及び多孔質膜の製造方法
CN113926316B (zh) * 2021-11-23 2024-01-26 江苏巨澜纳米科技有限公司 一种防漏增湿复合中空纤维膜、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062226A (ja) * 2006-08-10 2008-03-21 Kuraray Co Ltd フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
JP2009039716A (ja) * 1998-05-18 2009-02-26 Pall Corp 高多孔性のポリ二弗化ビニリデン膜
JP2013094692A (ja) * 2011-10-28 2013-05-20 Nok Corp 多孔質膜の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69520042T2 (de) 1994-07-28 2001-07-19 Millipore Corp Porösesverbundmembran und verfahren
US5834107A (en) * 1996-01-22 1998-11-10 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
US5985140A (en) * 1998-08-21 1999-11-16 Bio-Rad Laboratories, Inc. Reduction in back pressure buildup in chromatography by use of graded filter media
JP2008505197A (ja) * 2004-07-05 2008-02-21 シーメンス・ウォーター・テクノロジーズ・コーポレーション 親水性膜
CA2588675A1 (en) * 2004-12-03 2006-06-08 Siemens Water Technologies Corp. Membrane post treatment
JP5066810B2 (ja) 2005-02-04 2012-11-07 東レ株式会社 高分子分離膜及びその製造方法
CN101203554A (zh) * 2005-06-20 2008-06-18 西门子水技术公司 聚合物膜的交联处理
JP2009500169A (ja) * 2005-07-14 2009-01-08 シーメンス・ウォーター・テクノロジーズ・コーポレーション 膜のモノ過硫酸塩処理
JP2007245107A (ja) * 2006-03-20 2007-09-27 Daicel Chem Ind Ltd 中空糸多孔質膜
CN101472671B (zh) * 2006-06-27 2012-05-23 东丽株式会社 聚合物分离膜及其制备方法
WO2008018181A1 (ja) * 2006-08-10 2008-02-14 Kuraray Co., Ltd. フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
US7922666B2 (en) * 2006-09-21 2011-04-12 Starr Life Sciences Corporation Pulse oximeter based techniques for controlling anesthesia levels and ventilation levels in subjects
KR101199826B1 (ko) 2006-12-14 2012-11-09 에스케이이노베이션 주식회사 효율적인 압출에 따른 폴리올레핀 미세다공막 제조방법
JP5371867B2 (ja) * 2009-03-31 2013-12-18 旭化成メディカル株式会社 中空糸膜及びその製造方法
KR101657307B1 (ko) 2009-09-25 2016-09-19 엘지전자 주식회사 불소계 중공사막 및 그 제조 방법
CN102918094A (zh) * 2010-04-05 2013-02-06 三菱丽阳株式会社 多孔膜的制造方法
JP5856887B2 (ja) 2012-03-27 2016-02-10 旭化成ケミカルズ株式会社 多孔質膜の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039716A (ja) * 1998-05-18 2009-02-26 Pall Corp 高多孔性のポリ二弗化ビニリデン膜
JP2008062226A (ja) * 2006-08-10 2008-03-21 Kuraray Co Ltd フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
JP2013094692A (ja) * 2011-10-28 2013-05-20 Nok Corp 多孔質膜の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099467B2 (ja) 2017-09-25 2022-07-12 三菱ケミカル株式会社 中空糸膜
WO2019059397A1 (ja) * 2017-09-25 2019-03-28 三菱ケミカル株式会社 中空糸膜
JPWO2019059397A1 (ja) * 2017-09-25 2020-11-05 三菱ケミカル株式会社 中空糸膜
CN109806777A (zh) * 2017-11-22 2019-05-28 乐清腾祥膜技术有限公司 一种增强型聚偏氟乙烯中空纤维膜的制备方法
JP7064510B2 (ja) 2017-12-27 2022-05-10 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JPWO2019131304A1 (ja) * 2017-12-27 2020-10-22 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
WO2019131304A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
WO2020059344A1 (ja) * 2018-09-20 2020-03-26 住友電気工業株式会社 中空糸膜
JP7409072B2 (ja) 2018-12-26 2024-01-09 東レ株式会社 多孔質膜、複合膜及び多孔質膜の製造方法
CN110368718A (zh) * 2019-06-28 2019-10-25 天津大学 一种三维打印的超亲水及水下超疏油网膜及其制备方法
CN110368718B (zh) * 2019-06-28 2021-10-22 天津大学 一种三维打印的超亲水及水下超疏油网膜及其制备方法
JP7456803B2 (ja) 2020-03-03 2024-03-27 日東電工株式会社 中空糸膜モジュール
WO2022231002A1 (ja) 2021-04-28 2022-11-03 東レ株式会社 中空糸膜およびその製造方法
KR20230174230A (ko) 2021-04-28 2023-12-27 도레이 카부시키가이샤 중공사막 및 그 제조 방법

Also Published As

Publication number Publication date
US20180169590A1 (en) 2018-06-21
US10744467B2 (en) 2020-08-18
EP3103546B1 (en) 2022-09-21
AU2015235572A1 (en) 2016-09-29
KR101930147B1 (ko) 2018-12-17
AU2015235572C1 (en) 2018-04-26
CN113731188A (zh) 2021-12-03
SG11201607405TA (en) 2016-10-28
EP3103546A4 (en) 2017-11-01
EP3103546A1 (en) 2016-12-14
AU2015235572B2 (en) 2017-04-13
KR20160136430A (ko) 2016-11-29
CN106132521A (zh) 2016-11-16
JPWO2015146469A1 (ja) 2017-04-13
JP6644674B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6644674B2 (ja) 中空糸膜、及び中空糸膜の製造方法
JP5504560B2 (ja) 液体処理用の中空糸膜
KR101462939B1 (ko) 친수성 폴리불화비닐리덴계 중공사 분리막 및 이의 제조방법
JP6577781B2 (ja) 中空糸膜、及び中空糸膜の製造方法
JP6226795B2 (ja) 中空糸膜の製造方法
KR20150054918A (ko) 막을 위한 중합체 블렌드
JP6599818B2 (ja) 多孔質膜の製造方法
JP6419917B2 (ja) 中空糸膜の製造方法
KR20120059755A (ko) 셀룰로오스계 수지를 이용한 수처리용 중공사막의 제조방법
JP6374291B2 (ja) 中空糸膜モジュール
JP6277097B2 (ja) 中空糸膜、中空糸膜の製造方法、及び液体処理方法
KR101025755B1 (ko) 투수도 및 기계적 강도가 개선된 한외여과막 및 그의 제조방법
JP2008178869A (ja) 繊維強化型中空糸膜
JP2008168224A (ja) 中空糸多孔質膜及びその製造方法
WO2009119373A1 (ja) 中空糸膜およびその製造方法
JP7351822B2 (ja) 中空糸膜、及び中空糸膜の製造方法
WO1998058728A1 (fr) Membrane filtrante de fibres creuses a base de polyacrylonitrile
JP6155908B2 (ja) 中空糸膜の製造方法
JPWO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
KR102426676B1 (ko) 미세섬유 기반의 멤브레인 및 이의 제조방법
KR101982909B1 (ko) 중공사막 및 이의 제조방법
JP2005205358A (ja) 多孔質中空糸膜の製造方法
JP2008006327A (ja) 中空糸多孔質膜および製膜組成物
JP2018158275A (ja) エンドトキシン捕捉フィルター用中空糸膜
JP2018177927A (ja) 多孔質膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510166

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015769046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15128385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015235572

Country of ref document: AU

Date of ref document: 20150226

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201607114

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167029628

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016020828

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016020828

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160909