WO2015144046A1 - 一种磁电阻磁性图像识别传感器 - Google Patents

一种磁电阻磁性图像识别传感器 Download PDF

Info

Publication number
WO2015144046A1
WO2015144046A1 PCT/CN2015/074982 CN2015074982W WO2015144046A1 WO 2015144046 A1 WO2015144046 A1 WO 2015144046A1 CN 2015074982 W CN2015074982 W CN 2015074982W WO 2015144046 A1 WO2015144046 A1 WO 2015144046A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetoresistive
image recognition
pcb
recognition sensor
Prior art date
Application number
PCT/CN2015/074982
Other languages
English (en)
French (fr)
Inventor
薛松生
雷啸锋
张小军
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US15/128,821 priority Critical patent/US10598743B2/en
Priority to JP2016559210A priority patent/JP6535024B2/ja
Priority to EP15770409.9A priority patent/EP3125202A4/en
Publication of WO2015144046A1 publication Critical patent/WO2015144046A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the present invention relates to the field of magnetic sensors, and in particular to a magnetoresistive magnetic image recognition sensor.
  • Magnetic image recognition sensors are mainly used in the financial field, such as for POS, ATM, money detectors, money clearers, and the like.
  • the magnetic stripe of the credit card is a hard magnetic material, and the magnetic field can be directly measured.
  • the image of the surface of the banknote is printed by an ink containing soft magnetic magnetic particles, and the magnetic particles are magnetized under the condition of applying a bias magnetic field, thereby being magnetically
  • the image recognition sensor detects that recognition of credit card information or banknote images is achieved.
  • Magnetic image recognition sensors generally employ an audio head technology or a magnetoresistive head technology.
  • the audio head adopts a coil-wrapped annular structure with a slit, which utilizes the principle of electromagnetic induction to generate a change in magnetic flux when the gap rapidly passes through the magnetic particles, thereby inducing an induced current in the coil, and establishing a magnetic image distribution signal by changing the current.
  • the main problem with this technology is that 1 The sensitivity of the magnetic field is low, and the method of increasing the number of turns is required to obtain an effective signal. The 2 size is large, the size resolution is low, and fast movement is required, and there is no response to the static magnetic field signal. Power consumption is large.
  • Magnetoresistive magnetic heads such as Hall effect sensors, mainly have the following problems: 1) Hall effect sensors have low magnetic field sensitivity.
  • a sufficiently large bias magnetic field is required to generate sufficient magnetization to be detected by the magnetic sensor. Therefore, the volume of the financial head is increased; 2)
  • the Hall effect sensor has low magnetic field sensitivity, and the generated magnetic field output signal is also low, and the power consumption is also high.
  • it is an audio head technology or a magnetoresistive head technology, when a plurality of magnetic sensors are used to detect a large range of magnetic images, they are generally arranged in a matrix, resulting in a missing detection area between adjacent magnetic sensors. Image recognition occurs in the missing area.
  • the present invention proposes a magnetoresistive magnetic recognition sensor, which uses a magnetoresistive sensor, such as a TMR magnetic sensor, to detect a magnetic nanoparticle image of a banknote.
  • a magnetoresistive sensor such as a TMR magnetic sensor
  • the TMR sensor has a high magnetic field sensitivity and a small size. And has the characteristics of low power consumption, and can be overcome by the misalignment or stacking between the chips.
  • a magnetoresistive magnetic image recognition sensor is for detecting a magnetic image, wherein a plane on which the magnetic image is located is a magnetic image detection surface, and includes a side/front detection mode image recognition sensor; the side/front detection The mode image recognition sensors respectively include a plurality of magnetoresistive sensor chips on the PCB; the sides of the plurality of magnetoresistive sensor chips of the side detection mode image recognition sensor are parallel to the magnetic image detection surface; the front detection mode The front surface of the plurality of magnetoresistive sensor chips of the image recognition sensor is parallel to the magnetic image detecting surface; the scanning detection regions adjacent to the scanning direction of the magnetoresistive sensor chip on the magnetic image detecting surface are complementary or intersect.
  • the adjacent magnetoresistive sensor chips corresponding to the front side detection mode image recognition sensor are arranged on the front side of the PCB along the edge of the magnetoresistive sensor chip.
  • the plurality of magnetoresistive sensor chips on the PCB corresponding to the side detection mode image recognition sensor are lifted away from the front side of the PCB, and the other side is obliquely stacked with one side of the adjacent magnetoresistive sensor chip.
  • the side detection mode image recognition sensor is staggered on the adjacent ones of the plurality of magnetoresistive sensor chips on the PCB.
  • a permanent magnet assembly is included, and a magnetic field sensitive direction of the plurality of magnetoresistive sensor chips of the front side detection mode image recognition sensor is parallel to a scanning direction, and the side detection mode image identifies a magnetic field of the plurality of magnetoresistive sensor chips of the sensor The sensitive direction is perpendicular to the magnetic image detecting surface.
  • the permanent magnet assembly includes two permanent magnets having the same magnetization direction, symmetrically located on both sides of the PCB in the scanning direction, and a magnetization direction perpendicular to the front surface of the PCB.
  • the permanent magnet assembly includes two permanent magnets and is symmetrically placed on both sides of the front side of the PCB, and the magnetization directions thereof are perpendicular to the magnetic image detection surface, but the two pieces are permanently The magnets are magnetized in opposite directions.
  • the permanent magnet assembly includes a permanent magnet and a soft magnet respectively located on two sides of the front side of the PCB, and the magnetization direction of the permanent magnet is perpendicular to the front direction of the PCB.
  • the soft magnet is parallel to the front side of the PCB.
  • the permanent magnet assembly includes a structure in which an opening formed by a permanent magnet and an L-shaped soft magnet faces the magnetic image detecting surface, which is located on the same side of the PCB, and
  • the L-shaped soft magnet is located between the permanent magnet and the PCB, and the permanent magnet is located above the bottom of the L-shaped soft magnetic body, and its magnetization direction is perpendicular to the magnetic image detecting surface, the L-shaped soft
  • the side of the magnet is parallel to the PCB.
  • the permanent magnet assembly includes a structure in which an opening formed by a permanent magnet and two soft magnets faces the magnetic image detecting surface, and the permanent magnet magnetization direction is perpendicular to the PCB
  • the front side is located, and the permanent magnet is located at the bottom of the PCB, and the two soft magnets are symmetrically located on both sides of the front side of the PCB and on both ends of the permanent magnet, and are parallel to the PCB.
  • the permanent magnet assembly is a concave permanent magnet, and the grooved surface of the concave permanent magnet faces the back surface of the PCB, and the groove direction is parallel to the magnetic
  • the image detecting surface is perpendicular to the magnetic field sensitive direction, and the magnetization direction of the concave permanent magnet is perpendicular to the PCB direction.
  • the permanent magnet assembly includes a piece located on the PCB a rear permanent magnet of the back surface and two side permanent magnets symmetrically placed on both sides of the PCB in a scanning direction, and the magnetization directions of the back permanent magnet and the two side permanent magnets are perpendicular to the magnetic image detecting surface And the back permanent magnet and the two side permanent magnets have opposite magnetization directions.
  • the magnetic field sensitive direction of the plurality of magnetoresistive sensor chips of the front side detection mode image recognition sensor is parallel or perpendicular to the magnetic image detecting surface direction, and when the magnetic field sensitive directions of the plurality of magnetoresistive sensor chips are parallel When the magnetic image detecting surface is used, the magnetic field sensitive direction is parallel or perpendicular to the scanning direction.
  • the magnetoresistive sensor chip is a half bridge structure, and comprises two, three or four magnetic sensitive units and is respectively arranged in two rows and one column, three rows and one column or two rows and two columns, and magnetic fields of each of the magnetic sensitive units are sensitive.
  • the direction is uniform; when the magnetoresistive magnetic sensor chip comprises two magnetic sensitive units, the two magnetic sensitive units have the same resistance and directly constitute a half bridge; when the magnetoresistive magnetic sensor chip comprises three magnetic sensitive units
  • the resistance of the sensitive unit located in the middle row is half of the resistances of the two sensitive cells located on the two rows, and the two sensitive cells located on the two rows are connected in parallel to form a half with the sensitive component located in the middle row.
  • the magnetoresistive magnetic sensor chip comprises four magnetic sensitive units, the four sensitive units have the same resistance, and two magnetic sensitive units of the same row are connected in parallel, and a half bridge structure is formed in series between the latter two rows;
  • the column direction is perpendicular to the magnetic image detection surface, and the magnetic sensitive unit is located at the time of packaging The film side close to the magnetic detection surface of the image; detection mode in the front face image recognizing sensor, which is a column direction parallel to the scan direction.
  • the magnetoresistive sensor chip is a full-bridge structure, comprising four magnetic sensitive units, and each of the magnetic sensitive units has a magnetic field sensitive direction, and the four magnetic sensitive units are arranged in two rows and two columns to form two of the full bridges.
  • the two sensitive components included in the half bridge are located in two rows and in different columns.
  • the column direction is perpendicular to the magnetic image detection surface, and the sensitive unit is located in the chip near the magnetic
  • the front detecting mode image recognizing sensor the column direction is parallel to the scanning direction.
  • the magnetoresistive sensor chip of the half bridge structure is a single magnetoresistive sensor chip integrating a plurality of sensitive units, or an interconnection combination of a plurality of magnetoresistive sensor chip discrete components integrating one or more sensitive units.
  • the magnetoresistive sensor chip of the full bridge structure is a single magnetoresistive sensor chip integrating a plurality of sensitive units, or an interconnection combination of a plurality of magnetoresistive sensor chip discrete components integrating one or more sensitive units.
  • the magnetoresistive sensor chip adopts a front pad wire bonding or a TSV via hole to a package structure of the back surface pad of the magnetoresistive sensor chip.
  • a housing may also be included, the PCB and the plurality of magnetoresistive sensor chips being placed within the housing; the permanent magnet assembly being partially or fully disposed within the housing or entirely outside the housing.
  • the magnetic sensitive unit in the magnetoresistive magnetic sensor chip is one of AMR, Hall, GMR or TMR type magnetoresistive sensors.
  • the side surface of the magnetoresistive sensor chip corresponding to the side detection mode image recognition sensor is coplanar or parallel to the magnetic image detection surface.
  • Figure 1 is a schematic diagram of a side detection mode image recognition sensor.
  • FIG. 2 is a schematic diagram of a first type of permanent magnet assembly used in a side detection mode image recognition sensor.
  • FIG 3 is a schematic view of a second type of permanent magnet assembly employed by the side detection mode image recognition sensor.
  • FIG. 4 is a schematic view of a third type of permanent magnet assembly employed by the side detection mode image recognition sensor.
  • Figure 5 is a schematic illustration of a fourth permanent magnet assembly employed by the side detection mode image recognition sensor.
  • FIG. 6 is a schematic diagram of a fifth permanent magnet assembly employed by the side detection mode image recognition sensor.
  • Figure 7 is a diagram showing the spacing of the magnetoresistive magnetic sensor chips on the PCB in the side detection mode.
  • FIG. 8 is a top view of the stacked arrangement of the magnetoresistive magnetic sensor chips on the PCB in the side detection mode.
  • FIG. 9 is a second diagram of the stacking arrangement on the magneto-resistive magnetic sensor chip on the PCB in the side detection mode.
  • Figure 10 is a diagram showing the stacking arrangement on the magneto-resistive magnetic sensor chip on the PCB in the side detection mode.
  • Figure 11 is a schematic diagram of an image recognition sensor in a front detection mode.
  • Figure 12 is a schematic illustration of a first permanent magnet assembly employed in a front side detection mode image recognition sensor.
  • Figure 13 is a schematic illustration of a second permanent magnet assembly employed by the front side detection mode image recognition sensor.
  • Figure 14 is a schematic illustration of a third permanent magnet assembly employed by the front side detection mode image recognition sensor.
  • Figure 15 is a diagram showing the arrangement of the magnetic resistance magnetic sensor chips on the PCB in the front side detection mode.
  • Figure 16 is a diagram showing the misalignment arrangement of the magnetoresistive sensor chips on the substrate in the front side detection mode.
  • Figure 17 is a second alignment diagram of the magnetic resistance sensor chip on the substrate in the front side detection mode.
  • Figure 18 is a front elevational view of a magnetoresistive sensor chip slice.
  • Figure 19 is a side view of a magnetoresistive sensor chip slice.
  • Figure 20 is a back view of the magnetoresistive sensor chip slice.
  • 21 is a schematic structural view of a magnetoresistive magnetic sensor: a) a half bridge structure; b) a full bridge structure; c) a double half bridge structure; d) a three-element half bridge structure.
  • Figure 22 is a diagram of the arrangement of sensitive cells on the magnetoresistive sensor chip in the side detection mode: a) half bridge structure; b) full bridge or double half bridge structure; c) Three-element half-bridge structure.
  • Figure 23 is a diagram showing the arrangement of sensitive units of the magnetoresistive sensor chip in the front side detection mode: a) a half bridge structure; b) a full bridge structure or a double half bridge structure; c) a three-element half bridge structure.
  • Figure 1 is a structural view of a side detection mode image recognition sensor, including a PCB 1.
  • a plurality of magnetoresistive sensor chips 2 The larger area on the PCB1 is the front side 1 (2), and the side adjacent to the front side 1 (2) is the side 1 (1).
  • the direction of the front side 1 (2) of the PCB 1 is the PCB 1.
  • the magnetoresistive sensor chip 2 also has its front side and side 2 (1).
  • a plurality of magnetoresistive sensor chips 2 are located on the PCB 1 front side 1 (2), and the PCB where it is located 1
  • the front side 1 (2) is perpendicular to the magnetic image detecting surface 3.
  • the magnetic image detecting surface 3 is a plane on which the image to be scanned is located.
  • the side surface 1(1) of the magnetic image detecting surface 3 close to the magnetic image detecting surface 3 may be either coplanar or non-coplanar, but parallel to and as close as possible to the magnetic image detecting surface 3, and the magnetic field sensitive direction of the plurality of magnetoresistive sensor chips 2 It is perpendicular to the magnetic image detecting surface 3, and 4 in Fig. 1 is the scanning direction.
  • the side detection mode magnetoresistive image recognition sensor of the structure can be directly used for reading of a magnetic image composed of a permanent magnet material, for example, a magnetic head in a POS machine for reading a permanent magnetic strip on a credit card.
  • FIG. 2-6 is a schematic structural view of a side detection mode image recognition sensor applied to a magnetic image formed by a soft magnetic material, and further includes a permanent magnet assembly 5 and a casing 6. Where the outer casing 6 is covered on the PCB 1.
  • the plurality of magnetoresistive magnetic sensor chips 2 are outside, and the permanent magnet assembly 5 may be completely located inside the outer casing 6, or may be partially located inside the outer casing 6 or completely outside the outer casing 6, and FIG. 2-6 is for illustrative purposes only The case where the permanent magnet assembly 5 is completely located inside the outer casing 6 is drawn.
  • the permanent magnet assembly 5 functions to generate a magnetic field to magnetize the soft magnetic material in the magnetic image detecting surface 3 composed of a soft magnetic material so as to be detectable by the plurality of magnetoresistive magnetic sensor chips 2.
  • the function of the outer casing 6 is to protect the magnetoresistive sensor chip 2 and the PCB 1.
  • the permanent magnet assembly 5 is completely or partially located outside of the housing 6 to reduce the volume of the image recognition sensor.
  • the permanent magnet assembly 5 in the side detection mode image recognition sensor shown in FIG. 2 includes two permanent magnets 5(1) and 5(2) symmetrically located on the PCB. Both sides of the front side 1 (2) of 1 have the same magnetization direction, which is perpendicular to the front surface 1 (2) of the PCB 1.
  • the permanent magnet assembly 5 in the side detection mode image recognition sensor shown in FIG. 3 includes two permanent magnets 5(3) and 5(4) symmetrically located on the PCB. Both sides of the front surface 1 (2) of 1 have anti-parallel magnetization directions, and the magnetization directions of the two are parallel to the magnetic field sensitive direction 7 of the plurality of magnetoresistive sensor chips 2, that is, perpendicular to the magnetic image detecting surface 3.
  • the permanent magnet assembly 5 in the side detection mode image recognition sensor shown in FIG. 4 includes a permanent magnet 5 (5) and a soft magnetic body 5 (6), which are respectively located on both sides of the PCB 1, wherein the permanent magnet 5 (5) Magnetization direction perpendicular to the PCB
  • the front side 1 (2) of 1 and the soft magnet 5 (6) are parallel to the front side 1 (2) of the PCB 1.
  • the permanent magnet assembly 5 in the side detection mode image recognition sensor shown in Fig. 5 includes a permanent magnet 5 (7) and an L-shaped soft magnet 5 (8).
  • Permanent magnet 5 (7) and L-shaped soft magnet 5 (8) are located on the PCB On the same side of 1, a gap is formed between the permanent magnet 5 (7) and the L-shaped soft magnetic body 5 (8) toward the magnetic image detecting surface 3.
  • L-shaped soft magnet 5 (8) is located close to the PCB One side of 1 having a side and a bottom that are perpendicular.
  • the side of the L-shaped soft magnet 5 (8) is parallel to the permanent magnet 5 (7), and the bottom of the L-shaped soft magnet 5 (8) is perpendicular to the PCB 1 front side 1 (2).
  • the magnetization direction of the permanent magnet 5 (7) is parallel to the magnetic field sensitive direction 7, and the permanent magnet 5 (7) is located above the bottom of the L-shaped soft magnetic body 5 (8) to form a gap toward the magnetic image detecting surface 3.
  • the permanent magnet assembly 5 in the side detection mode image recognition sensor shown in Fig. 6 includes a permanent magnet 5 (9), soft magnetic bodies 5 (10), and 5 (11).
  • the soft magnets 5 (10) and 5 (11) are located at both ends of the permanent magnet 5 (9) and are symmetrically distributed on the PCB. 1 on both sides of the front 1 (2), and parallel to the PCB 1, the permanent magnet 5 (9) is located on the PCB The bottom of 1.
  • the gap openings formed by the soft magnetic bodies 5 (10) and 5 (11) face the magnetic image detecting surface 3, and the magnetization direction of the permanent magnet 5 (9) is perpendicular to the front surface 1 (2) of the PCB 1.
  • 7-10 are layout views of a plurality of magnetoresistive sensor chips 2 in the side mode image recognition sensor on the PCB 1.
  • the magnetoresistive sensor chip 2 is proposed on the PCB.
  • the new arrangement method on the first that is, the magnetoresistive sensor chip 2 is arranged in such a manner that the scanning detection areas formed by the adjacent magnetoresistive sensor chips 2 on the magnetic image detecting surface 3 in the scanning direction are complemented or intersected.
  • the details are as follows.
  • the first type of magnetoresistive sensor chip 2 that can be used is arranged such that adjacent magnetoresistive sensor chips 2 are interleaved and stacked on one chip. 8 and 9, the side 2(1) of the layer of the magnetoresistive sensor chip 2 in FIG. 7 is along the PCB.
  • a second layer of magnetoresistive sensor chip 2 is added, which is located above the first layer of magnetoresistive sensor chip 2, and each magnetoresistive sensor chip 2 is located on the first layer a region between two adjacent magnetoresistive sensor chips 2, thereby forming a staggered stacked structure such that adjacent two magnetoresistive sensor chips 2 are formed in the scanning direction 4 by scanning detection regions 2 (32) and 2 (33) Complementary or overlapping areas, ensuring that there is no missing area in the detection of magnetic images during scanning.
  • the second type of magnetoresistive sensor chip 2 that can be used is arranged in such a manner that adjacent magnetoresistive sensor chips 2 are stacked on one side.
  • One side of each magnetoresistive sensor chip 2 in FIG. 10 is lifted off the PCB 1 on the front side 1 (1), the other side on the PCB 1 , that is, each of the magnetoresistive sensor chips 2 is obliquely disposed such that the untwisted side of one magnetoresistive sensor chip 2 and the other magnetoresistive sensor chip 2 are tilted in the adjacent magnetoresistive sensor chip 2
  • One side of the edge is obliquely stacked on the edge, thereby ensuring that the scanning detection areas 2 (34) and 2 (35) formed by the adjacent magnetoresistive sensor chip 2 in the scanning direction 4 have overlapping areas, ensuring magnetic images during scanning. There is no missing detection area.
  • Figure 11 is a front detection mode image recognition sensor structure including a PCB 11.
  • the front surface 11 (2) of 11 and its front surface 21 (2) are parallel to the magnetic image detecting surface 3.
  • the magnetic field sensitive direction may be parallel or perpendicular to the magnetic image detecting surface 3, and the magnetic field sensitive direction may be parallel or vertical when parallel to the magnetic image detecting surface 3.
  • the scanning direction 4 When the magnetic image is composed of a hard magnetic body, the magnetic field generated by it will act on the magnetoresistive sensor chip 21, and its magnetic field distribution characteristic in the scanning direction 4 is converted into an electrical signal, thereby realizing reading of the magnetic image.
  • Figure 12-14 shows the application of the front detection mode image recognition sensor in magnetic image detection made of soft magnetic material.
  • the front side detection mode image recognition sensor shown in Figs. 12-14 further includes a permanent magnet assembly 51, a casing 6.
  • PCB 11 and a plurality of magnetoresistive sensor chips 21 are located inside the outer casing 6, and the permanent magnet assembly 51 may be located inside the outer casing 6, or may be partially or completely located outside the outer casing 6, which may facilitate the reduction of the size of the image recognition sensor. small.
  • the magnetic field sensitive direction 71 of the magnetoresistive sensor chip 21 coincides with the scanning direction 4 and is parallel to the magnetic image detecting surface 3.
  • the permanent magnet assembly 51 in the front side detection mode image recognition sensor shown in Fig. 12 is a concave permanent magnet whose geometry is such that a rectangular groove is formed on the upper surface of the square.
  • the face of the front side detection mode image recognition sensor on the PCB 11 opposite to the front surface 11 (2) is the back side.
  • the upper surface of the concave permanent magnet faces the PCB
  • the back side of the 11 is in direct contact with the back side of the PCB 11, and the magnetization direction of the concave permanent magnet is perpendicular to the PCB 11 front side 11 (2), the through direction of the rectangular groove, that is, the groove direction is perpendicular to the scanning direction 4, parallel to the magnetic image detecting surface 3.
  • the permanent magnet assembly 51 in the front side detection mode image recognition sensor shown in FIG. 13 includes two permanent magnets 51(1) and 51(2) which are symmetrically located on both sides of the magnetoresistive sensor chip 21 in the scanning direction 4, respectively.
  • the magnetization direction is perpendicular to the magnetic image detecting surface 3 and the front surface 11 (2) of the PCB 11, and the magnetization directions are the same.
  • the permanent magnet assembly 51 in the front side detection mode image recognition sensor shown in Fig. 14 includes three permanent magnets 51 (3), 51 (4), and 51 (5), of which two permanent magnets 51 (3) and 51 (4) symmetrically distributed on both sides of the magnetoresistive sensor chip 21 in the scanning direction 4, referred to as a side permanent magnet, the magnetization directions of the two are the same, perpendicular to the magnetic image detecting surface 3, and another permanent magnet 51 (5) is located PCB Directly below the eleven, the back side, referred to as the back permanent magnet, has a magnetization direction anti-parallel to the permanent magnets 51(3) and 51(4).
  • 15-17 are layout views of a plurality of magnetoresistive sensor chips 21 in the front side detection mode image recognition sensor on the PCB 11.
  • Figure 15 (a) and (b) are side and front views, respectively, in which the magnetoresistive sensor chip 21 is on the PCB 11 is arranged in a row, and the direction of the line is perpendicular to the scanning direction 4 or the magnetic field sensitive direction 71. Due to the presence of the encapsulating material in the magnetoresistive sensor chip 21, even if the gap of the adjacent magnetoresistive sensor chip 21 is 0, the adjacent magneto-resistance sensor chip 21 scan detection region 21 formed along the scanning direction 4 on the magnetic image detecting surface 3 ( 30) and 21 (31) have no intersection, thus causing a missing detection area on the magnetic image detecting surface 3.
  • FIGS. 16 and 17 improve the arrangement of the magnetoresistive sensor chip 21 on the PCB 11.
  • the magnetoresistive sensor chip 21 that can be used is arranged such that adjacent magnetoresistive sensor chips 21 are arranged at the edges 11 (2) of the PCB 11 so that the edges are offset from each other.
  • 16(a) and (b) are side attempt and front views, respectively, of an arrangement in which the scanning direction 4 and the magnetic field sensitive direction of the magnetoresistive sensor chip 21 are in the same direction, and the magnetoresistive sensor chip 21 is on the PCB.
  • the front surface 11 (2) is placed obliquely, the adjacent magnetoresistive sensor chips 21 are arranged in a staggered manner, and the edges of the magnetoresistive sensor chip 21 are staggered with each other, so that the adjacent magnetoresistive sensor chip 21 is on the magnetic image detecting surface 3 along the scanning direction 4.
  • the formed scan detection areas 21 (32) and 21 (33) can overlap, solving the problem of missed detection.
  • 17(a) and (b) are respectively a side view and a front view of another arrangement by inserting a third magnetoresistive sensor chip 21 at an intermediate position in the row direction of two adjacent magnetoresistive sensor chips 21, and The overlap with the adjacent two magnetoresistive sensor chips 21 at the edges causes the scanning detection areas 21 (34) and 21 (35) of the adjacent magnetoresistive sensor chips 21 to overlap, solving the problem of missed detection.
  • the magnetoresistive sensor chip includes a magnetic sensitive unit 42 on the front side of the Si slice 41, and the signal and power pin 43 can be located on the front side of the Si slice 41, led out by wirebonding, or through the TSV pass.
  • the hole 44 passes through the Si slice 41, and a lead 45 is formed on the back surface of the Si slice 41. That is, the magnetoresistive sensor chip adopts a package structure of a front pad wirebonding or a TSV via hole to a back surface pad of the magnetoresistive sensor chip.
  • the detection distance between the magnetoresistive sensor 21 and the magnetic image detecting surface 3 can be reduced and the magnetic field strength can be increased by using the wire bonding of the TSV rear pin with respect to the front side.
  • FIG. 21 is a structural diagram of the magnetic sensitive unit 42 in the magnetoresistive sensor chip 2 or 21, and FIG. 21(a) is a half bridge structure including two sensitive units of R1 and R2.
  • the two sensitive units R1 and R2 are arranged in two rows and one column, and the two magnetic sensitive units R1 and R2 have the same resistance and directly constitute a half bridge.
  • Figure 21 (b) is a full-bridge structure containing four sensitive units R1, R2, R3 and R4 with two outputs Vout+ and Vout-.
  • the four magnetic sensitive units R1, R2, R3 and R4 are arranged in two rows and two columns.
  • the two sensitive components of the two half-bridges that make up the full bridge are located in two rows and in different columns.
  • Figure 21 (c) is a half bridge structure comprising four sensitive units of R1, R3, R2, and R4 arranged in two rows and two columns, and two magnetic sensitive units in the same row are connected in parallel, and a half bridge structure is formed in series between the latter two rows.
  • the two half-bridges R1, R2 and R3, R4 share the power and ground respectively, but have one output.
  • Figure 21 (d) is a three-sensor half-bridge structure arranged in three rows and one column, comprising three sensitive units R1, R2, R3, wherein two sensitive units R1 and R3 on the two sides have the same resistance, and the resistance is located.
  • the resistance of the sensitive cell R2 in the middle row is twice, the sensitive cells R1 and R3 are connected in parallel, and then the R2 is connected in series to form a half bridge, and the output signal voltage is output from the intermediate common terminal of R1, R2, R3.
  • the magnetoresistive sensing unit may be one of TMR, Hall, AMR, GMR units. The magnetic sensitive directions of the magnetic sensitive units are the same.
  • Figure 22 is a diagram showing the arrangement of sensitive cells in the magnetoresistive sensor chip 2 of the side detection mode image recognition sensor.
  • Fig. 22 (a) is a half bridge structure in which the sensitive units R1 and R2 are arranged in two rows and one column, R1 is located in a row close to the magnetic image detecting surface 3, parallel to the magnetic image detecting surface 3, and R2 is located in another row, and the magnetic field is sensitive.
  • the directions are the same, both are the 71 direction, and the column direction is perpendicular to the magnetic image detecting surface 3, where 4 is the scanning direction.
  • Fig. 22(b) is a full bridge structure or two half bridge structures, and the sensitive units R1-R4 are arranged in two rows and two columns, wherein R1 and R3 are located in a row close to the magnetic image detecting surface 3, and R2 and R4 are located in another row, R1 And R2 constitutes a half bridge, and R3 and R4 form a half bridge.
  • Figure 22 (c) is a three-resistance half-bridge structure comprising three sensing units R1, R2 and R3 arranged in a three-row, one-column structure, wherein R1 is located in a row close to the magnetic image detecting surface 3, and R2 is between R1 and R3
  • the magnetic field sensitive directions of R1, R2 and R3 are 71 directions and are perpendicular to the magnetic image detecting surface 3, where 4 is the scanning direction.
  • the sensitive elements R1, R2, R1-R4 or R1-R3 are located on the side close to the magnetic image detecting surface 3.
  • Figure 23 is a diagram showing the arrangement of sensitive cells of the magnetoresistive sensor chip 21 of the front side detection mode image recognition sensor, wherein Figures 23(a1), 23(a2) and 23(a3) are side views, and Figs. 23(b1), 23(b2) And 23 (b3) are the front view of the chip 21, scanning direction 4.
  • Fig. 23(b1) is a half-bridge structure including two sensitive units R1 and R2 whose arrangement direction is parallel to the sensitive direction 71 and coincides with the scanning direction 4.
  • Figure 23 (b2) is a full bridge structure, R1 and R2 correspond to one of the bridge arms, R3 and R4 correspond to the other bridge arm, and R1, R2 and R3, R4 are arranged in the sensitive direction 71, and Fig.
  • the sensitive units R1, R2, and R3 are arranged in a row along the scanning direction 4, and R2 is between R1 and R3, and the magnetic field sensitive direction of R1-R3 is 71.
  • the shape of the chip 21 in FIG. 23 is parallel to the sensitive component, and the shape of the chip can be rotated by a certain angle with respect to the arrangement of the sensitive components when arranged obliquely.
  • the above-mentioned full-bridge or half-bridge structure magnetoresistive sensor chip may be a single magnetoresistive sensor chip integrating multiple sensitive units, or multiple magnetoresistive sensor chip discrete components may be used instead. In the latter case, the discrete magnetoresistive sensor chip is integrated with one or more sensitive units, and the discrete magnetoresistive sensor chips are interconnected to form a half bridge or full bridge structure.
  • the magnetic field sensitive direction of the sensitive element of the magnetoresistive sensor 21 may be parallel or perpendicular to the magnetic image detecting surface 3, and when parallel, the direction may be parallel or perpendicular to the scanning direction. 4.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

一种磁电阻磁性图像识别传感器,包括PCB(1)、多个磁电阻传感器芯片(2),所述多个磁电阻传感器芯片(2)位于所述PCB(1)上,所述PCB(1)垂直/平行于磁性图像检测面(3),分为侧面检测模式/正面检测模式,所述侧面检测模式中多个磁电阻传感器芯片(2)侧面(2(1))与PCB(1)侧面(1(1))平行或共面,且平行于磁性图像检测面(3),所述多个磁电阻传感器芯片(2)具有相同磁场敏感方向(7),在侧面检测模式中采用相邻磁电阻传感器芯片(2)堆叠排列的方式,在正面检测模式中采用相邻磁电阻传感器芯片(2)错位排列的方式实现磁性图像检测面(3)上的检测区域的连续,所述磁电阻磁性图像识别传感器还可以包括永磁组合体(5)和外壳(6)。该传感器具有识别区连续、信号完整、灵敏度高、低功耗的优点。

Description

一种磁电阻磁性图像识别传感器
技术领域
本发明涉及磁性传感器领域,特别涉及一种磁电阻磁性图像识别传感器。
背景技术
磁性图像识别传感器主要用于金融领域,例如用于POS、ATM、验钞、清钞机等。***的磁条为硬磁材料,可以直接对其磁场进行测量,钞票表面图像由包含软磁磁性粒子的油墨印刷而成,在施加偏置磁场的条件下,使得磁性粒子磁化,从而可以被磁性图像识别传感器检测到,实现对***信息或钞票图像的识别。磁性图像识别传感器一般采用音频磁头技术或磁阻磁头技术。音频磁头采用线圈缠绕带缝隙的环状结构,其利用电磁感应原理,当缝隙快速通过磁性颗粒时产生磁通量的变化,从而在线圈内感应出感应电流,通过对电流的变化建立磁性图像分布信号,该技术存在的主要问题在于,1 磁场灵敏度低,需要增加匝数的方法才能得到有效信号,2 尺寸较大,尺寸分辨率较低,需要快速的移动,对于静止的磁场信号无反应,3 功耗大。磁阻类磁头,如Hall效应传感器,其主要存在如下的问题,1)Hall效应传感器磁场灵敏度低,因此,对于磁性粒子检测需要足够大偏置磁场才能产生足够的磁化强度以被磁性传感器检测到,因此增加了金融磁头的体积;2)Hall效应传感器磁场灵敏度低,而且产生的磁场输出信号也较低,而且功耗也高。此外,无论是音频磁头技术还是磁阻磁头技术,当采用多个磁性传感器实现对大范围磁性图像的检测时,一般采用排列成行列的形式,导致相邻磁性传感器之间存在漏检区域,所得图像识别出现漏检区域。
发明内容
为了解决以上存在的问题,本发明提出了一种磁电阻磁性识别传感器,采用磁电阻传感器,如TMR磁传感器来实现对钞票磁性纳米粒子图像的检测,由于TMR传感器具有高的磁场灵敏度,小尺寸,并且具有低功耗的特点,并可以通过芯片之间错位排列或者堆叠排列,从而克服了上述问题。
本发明所提出的一种磁电阻磁性图像识别传感器,用于检测磁性图像,所述磁性图像所在的平面为磁性图像检测面,其包括侧面/正面检测模式图像识别传感器;所述侧面/正面检测模式图像识别传感器分别包括位于PCB上的多个磁电阻传感器芯片;所述侧面检测模式图像识别传感器的多个所述磁电阻传感器芯片的侧面平行于所述磁性图像检测面;所述正面检测模式图像识别传感器的多个磁电阻传感器芯片的正面平行于所述磁性图像检测面;相邻所述磁电阻传感器芯片在所述磁性图像检测面上沿扫描方向的扫描检测区互补或有交集。
所述正面检测模式图像识别传感器所对应的相邻的所述磁电阻传感器芯片在所述PCB的正面沿所述磁电阻传感器芯片边缘相互错位方式排列。
所述侧面检测模式图像识别传感器所对应的在所述PCB上的所述多个磁电阻传感器芯片一边翘起离开所述PCB正面,另一边与相邻所述磁电阻传感器芯片的一边倾斜堆叠。
所述侧面检测模式图像识别传感器所对应的在所述PCB上的所述多个磁电阻传感器芯片中相邻的所述磁电阻传感器芯片片上交错堆叠。
包括永磁组合体,并且所述正面检测模式图像识别传感器的多个磁电阻传感器芯片的磁场敏感方向为平行于扫描方向,而所述侧面检测模式图像识别传感器的多个磁电阻传感器芯片的磁场敏感方向为垂直于所述磁性图像检测面。
所述永磁组合体包括两块磁化方向相同的永磁体,分别沿扫描方向对称地位于所述PCB两侧,其磁化方向垂直于所述PCB正面。
对于所述侧面检测模式图像识别传感器,所述永磁组合体包括两块永磁体,并在所述PCB正面两侧对称放置,其磁化方向均垂直于磁性图像检测面,但是所述两块永磁体的磁化方向相反。
对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和一块软磁体,分别位于所述PCB正面两侧,所述永磁体的磁化方向垂直于所述PCB正面方向,所述软磁体平行于所述PCB正面。
对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和一块L型软磁体形成的开口朝向所述磁性图像检测面的结构,其位于所述PCB的同一侧,且所述L型软磁***于所述永磁体和所述PCB之间,所述永磁***于所述L型软磁体底部之上,其磁化方向垂直于所述磁性图像检测面,所述L型软磁体侧面平行于所述PCB。
对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和两块软磁体形成的开口朝向所述磁性图像检测面的结构,所述永磁体磁化方向垂直于所述PCB的正面,并且所述永磁***于所述PCB底部,所述两块软磁体对称位于所述PCB正面两侧和所述永磁体两端上,且平行于所述PCB。
对于所述正面检测模式图像识别传感器,所述永磁组合体为凹形永磁体,所述凹形永磁体的开有凹槽的面正对所述PCB背面,开槽方向平行于所述磁性图像检测面,且垂直于磁场敏感方向,所述凹形永磁体的磁化方向为垂直于PCB方向。
对于所述正面检测模式图像识别传感器,所述永磁组合体包括一块位于所述PCB 背面的背面永磁体和两块沿扫描方向对称地放置于所述PCB两侧的侧面永磁体,所述背面永磁体和所述两块侧面永磁体的磁化方向均垂直于所述磁性图像检测面,且所述背面永磁体和所述两块侧面永磁体磁化方向相反。
所述正面检测模式图像识别传感器的所述多个磁电阻传感器芯片的磁场敏感方向为平行于或垂直于所述磁性图像检测面方向,且当所述多个磁电阻传感器芯片的磁场敏感方向平行于所述磁性图像检测面时,所述磁场敏感方向平行或垂直于扫描方向。
所述磁电阻传感器芯片为半桥结构,包含两个、三个或四个磁敏感单元并分别排列成两行一列、三行一列或两行两列,且各所述磁敏感单元的磁场敏感方向一致;当所述磁电阻磁性传感器芯片包含两个磁敏感单元时,所述两个磁敏感单元具有相同电阻,直接构成一个半桥;当所述磁电阻磁性传感器芯片包含三个磁敏感单元时,位于中间行的所述敏感单元电阻为位于两边行的两个所述敏感单元电阻的一半,且所述位于两边行的两个敏感单元并联后与所述位于中间行的敏感元件形成半桥结构;当所述磁电阻磁性传感器芯片包含四个磁敏感单元时,所述四个敏感单元电阻相同,且同一行的两个磁敏感单元并联,而后两行之间串联形成半桥结构;在所述侧面检测模式图像识别传感器中,其列方向垂直于所述磁性图像检测面,且封装时所述磁敏感单元位于芯片中靠近所述磁性图像检测面的一侧;在所述正面检测模式图像识别传感器中,其列方向平行于扫描方向。
所述磁电阻传感器芯片为全桥结构,包含四个磁敏感单元,且各所述磁敏感单元的磁场敏感方向一致,四个所述磁敏感单元排列成两行两列,构成全桥的两个半桥所包含的两个敏感元件分别位于两行中且不同列的位置,在侧面检测模式图像识别传感器中,其列方向垂直于磁性图像检测面,且封装时敏感单元位于芯片中靠近磁性图像检测面的一侧,在正面检测模式图像识别传感器中,其列方向平行于扫描方向。
所述半桥结构的磁电阻传感器芯片为集成多个敏感单元的单个磁电阻传感器芯片,或者为多个集成一个或多个敏感单元的磁电阻传感器芯片分立元件的互联组合。
所述全桥结构的磁电阻传感器芯片为集成多个敏感单元的单个磁电阻传感器芯片,或者为多个集成一个或多个敏感单元的磁电阻传感器芯片分立元件的互联组合。
所述磁电阻传感器芯片采用正面焊盘wirebonding或者TSV通孔到所述磁电阻传感器芯片背面焊盘的封装结构。
还可以包括一个外壳,所述PCB和所述多个磁电阻传感器芯片放置于所述外壳内;所述永磁组合体部分或全部放置于所述外壳内,或者全部位于所述外壳外。
所述磁电阻磁性传感器芯片中的磁敏感单元为AMR,Hall,GMR或者TMR类型的磁电阻传感器中的一种。
所述侧面检测模式图像识别传感器对应的所述磁电阻传感器芯片的侧面与所述PCB侧面共面或平行于所述磁性图像检测面。
附图说明
图1为侧面检测模式图像识别传感器简图。
图2为侧面检测模式图像识别传感器采用的第一种永磁组合体的示意图。
图3为侧面检测模式图像识别传感器采用的第二种永磁组合体的示意图。
图4为侧面检测模式图像识别传感器采用的第三种永磁组合体的示意图。
图5为侧面检测模式图像识别传感器采用的第四种永磁组合体的示意图。
图6为侧面检测模式图像识别传感器采用的第五种永磁组合体的示意图。
图7为侧面检测模式中PCB上磁电阻磁性传感器芯片间隔排布图。
图8为侧面检测模式中PCB上磁电阻磁性传感器芯片片上堆叠排布图一。
图9为侧面检测模式中PCB上磁电阻磁性传感器芯片片上堆叠排布图二。
图10为侧面检测模式中PCB上磁电阻磁性传感器芯片片上堆叠排布图三。
图11为正面检测模式的图像识别传感器简图。
图12为正面检测模式图像识别传感器采用的第一种永磁组合体的示意图。
图13为正面检测模式图像识别传感器采用的第二种永磁组合体的示意图。
图14为正面检测模式图像识别传感器采用的第三种永磁组合体的示意图。
图15为正面检测模式中PCB上磁电阻磁性传感器芯片的间隔排布图。
图16为正面检测模式中基板上磁电阻传感器芯片错位排布图一。
图17为正面检测模式中基板上磁电阻传感器芯片错位排布图二。
图18为磁电阻传感器芯片切片正视图。
图19 为磁电阻传感器芯片切片侧视图。
图20为磁电阻传感器芯片切片背视图。
图21为磁电阻磁性传感器结构示意图:a)半桥结构;b)全桥结构;c)双半桥结构;d)三元件半桥结构。
图22为侧面检测模式中磁电阻传感器芯片上敏感单元排布图: a)半桥结构;b)全桥或双半桥结构; c)三元件半桥结构。
图23为正面检测模式中磁电阻传感器芯片敏感单元排布图:a)半桥结构;b)全桥结构或双半桥结构;c)三元件半桥结构。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为侧面检测模式图像识别传感器结构图,包括PCB 1、多个磁电阻传感器芯片2。PCB1上面积较大的一个面为其正面1(2),而与该正面1(2)相邻的面为其侧面1(1),一般称PCB1的正面1(2)的方向为该PCB1的方向。相类似的,磁电阻传感器芯片2上也具有其正面和侧面2(1)。其中,多个磁电阻传感器芯片2位于PCB 1的正面1(2),且所在的PCB 1正面1(2)垂直于磁性图像检测面3。磁性图像检测面3是所要扫描检测的图像所在的平面。多个磁电阻传感器芯片2的侧面2(1)与PCB 1的靠近磁性图像检测面3的侧面1(1)既可以共面也可以不共面,但其平行于并尽量靠近磁性图像检测面3,且多个磁电阻传感器芯片2的磁场敏感方向7垂直于磁性图像检测面3,图1中4为扫描方向。该结构的侧面检测模式磁电阻图像识别传感器可以直接用于由永磁材料构成的磁性图像的阅读,例如可以用于POS机中的磁头来对***上永磁磁条的阅读。
实施例二
图2-6为侧面检测模式图像识别传感器应用于软磁材料形成的磁性图像阅读时的结构示意图,它还包括永磁组合体5,外壳6。其中外壳6覆盖在PCB 1、多个磁电阻磁性传感器芯片2外面,且永磁组合体5可以完全位于外壳6之内,也可以部分位于外壳6之内或者完全位于外壳6之外,图2-6为了说明,仅画出了永磁组合体5完全位于外壳6之内的情况。永磁组合体5的作用在于产生磁场来磁化软磁材料构成的磁性图像检测面3中的软磁材料,使之能够被多个磁电阻磁性传感器芯片2探测到。外壳6的作用在于保护磁电阻传感器芯片2以及PCB 1。永磁组合体5完全或部分位于外壳6之外可以减小图像识别传感器的体积。
图2所示的侧面检测模式图像识别传感器中的永磁组合体5包括两块永磁体5(1)和5(2),二者对称位于PCB 1的正面1(2)的两侧,且具有相同磁化方向,该磁化方向垂直于PCB 1的正面1(2)。
图3所示的侧面检测模式图像识别传感器中的永磁组合体5包括两块永磁体5(3)和5(4),二者对称位于PCB 1的正面1(2)的两侧,且具有反平行的磁化方向,二者的磁化方向平行于多个磁电阻传感器芯片2的磁场敏感方向7,即垂直于磁性图像检测面3。
图4所示的侧面检测模式图像识别传感器中的永磁组合体5包括永磁体5(5)和软磁体5(6),二者分别位于PCB 1的两侧,其中永磁体5(5)的磁化方向垂直于PCB 1的正面1(2),而软磁体5(6)则平行于PCB 1的正面1(2)。
图5所示的侧面检测模式图像识别传感器中的永磁组合体5包括永磁体5(7)以及L型软磁体5(8)。永磁体5(7)以及L型软磁体5(8)位于PCB 1的同一侧,且永磁体5(7)和L型软磁体5(8)间形成朝向磁性图像检测面3的间隙。L型软磁体5(8)位于靠近PCB 1的一侧,其具有相垂直的侧部和底部。L型软磁体5(8)的侧部平行于永磁体5(7),L型软磁体5(8)的底部垂直于PCB 1的正面1(2)。其中永磁体5(7)磁化方向平行于磁场敏感方向7,该永磁体5(7)位于L型软磁体5(8)的底部之上从而形成了朝向磁性图像检测面3的间隙。
图6所示的侧面检测模式图像识别传感器中的永磁组合体5包括永磁体5(9)、软磁体5(10)和5(11)。软磁体5(10)和5(11)位于永磁体5(9)的两端,对称分布于PCB 1正面1(2)的两侧,并平行于PCB 1,永磁体5(9)位于PCB 1的底部。软磁体5(10)和5(11)形成的间隙开口朝向磁性图像检测面3,且永磁体5(9)的磁化方向垂直于PCB 1的正面1(2)。
实施例三
图7-10为侧面模式图像识别传感器中的多个磁电阻传感器芯片2在PCB 1上的排布图。
图7中所有磁电阻传感器芯片2在PCB 1上排成一行,图7(a)为侧视图,图7(b)为正视图,磁电阻传感器芯片2的侧面2(1)沿着PCB 1的侧面1(1)依次排列,其相互之间具有一定间隙或者该间隙为0。这种排列方式的缺点在于,即使在间隙为0的情况下,由于封装材料的存在,相邻磁电阻传感器芯片2在磁性图像检测面3上沿扫描方向4形成的扫描检测区2(30)和2(31)没有交集,故不可能在扫描方向上形成连续的检测区,因此对于磁性图像的检测存在漏检区域。
图8-10针对图7存在的磁性图像的漏检区域的问题,提出了磁电阻传感器芯片2在PCB 1上的新的排布方式,即磁电阻传感器芯片2其采用了能够使相邻磁电阻传感器芯片2在磁性图像检测面3上沿扫描方向形成的扫描检测区互补或有交集的方式排列设置于PCB1上,具体如下。
第一种可以采用的磁电阻传感器芯片2的排布方式为:相邻的磁电阻传感器芯片2片上交错堆叠。如图8和图9,在图7中的一层磁电阻传感器芯片2的侧面2(1)沿着PCB 1的侧面1(1)依次排列的基础上,增加了第二层磁电阻传感器芯片2,其位于第一层磁电阻传感器芯片2之上,且每个磁电阻传感器芯片2并位于第一层中相邻的两个磁电阻传感器芯片2之间的区域,从而形成交错堆叠的结构,使得相邻两个磁电阻传感器芯片2在扫描方向4形成的扫描检测区2(32)和2(33)互补或具有重叠的区域,从而确保了扫描过程中磁性图像的检测不存在漏检区域。
第二种可以采用的磁电阻传感器芯片2的排布方式为:相邻的磁电阻传感器芯片2片上倾斜堆叠。图10中每个磁电阻传感器芯片2的一侧翘起而离开PCB 1的正面1(1),另一侧则在PCB 1上,即每个磁电阻传感器芯片2均倾斜设置,使得相邻的磁电阻传感器芯片2中,一个磁电阻传感器芯片2的未翘起的一侧与另一个磁电阻传感器芯片2中翘起的一侧在边缘相互倾斜堆叠,从而保证了相邻磁电阻传感器芯片2在扫描方向4形成的扫描检测区2(34)和2(35)具有重叠的区域,确保了扫描过程中磁性图像的检测不存在漏检区域。
实施例四
图11为正面检测模式图像识别传感器结构,包括PCB 11、多个磁电阻传感器芯片21,其中多个磁电阻传感器芯片21位于PCB 11的正面11(2),且其正面21(2)平行于磁性图像检测面3。如果正面检测模式图像识别传感器应用于硬磁体的检测时,其磁场敏感方向可以平行或者垂直于磁性图像检测面3,而磁场敏感方向当平行于磁性图像检测面3时,该方向可以平行或垂直于扫描方向4。当磁性图像由硬磁体组成时,其所产生的磁场将作用于磁电阻传感器芯片21,并且将其沿扫描方向4的磁场分布特征转变成电信号,从而实现对磁性图像的阅读。
实施例五
图12-14为正面检测模式图像识别传感器在软磁材料构成的磁性图像检测中的应用。
图12-14所示的正面检测模式图像识别传感器还包括永磁组合体51,外壳6。其中PCB 11和多个磁电阻传感器芯片21位于外壳6之内,其永磁组合体51可以位于外壳6之内,也可以部分或者全部位于外壳6之外,后者可以有利于图像识别传感器尺寸的减小。在有永磁组合体51存在时,磁电阻传感器芯片21的磁场敏感方向71与扫描方向4一致,并平行于磁性图像检测面3。
图12所示的正面检测模式图像识别传感器中的永磁组合体51为凹形永磁体,其几何结构为方块的上表面开有一个矩形的凹槽。该正面检测模式图像识别传感器的PCB11上与其正面11(2)相对的那个面积较大的面为其背面。凹形永磁体的上表面正对PCB 11的背面且直接与PCB 11的背面接触,凹形永磁体的磁化方向垂直于PCB 11正面11(2),矩形凹槽的贯穿方向,即开槽方向垂直于扫描方向4,平行于磁性图像检测面3。
图13所示的正面检测模式图像识别传感器中的永磁组合体51包含两块永磁体51(1)和51(2),二者分别沿扫描方向4对称位于磁电阻传感器芯片21的两侧,其磁化方向垂直于磁性图像检测面3和PCB11的正面11(2),且磁化方向相同。
图14所示的正面检测模式图像识别传感器中的永磁组合体51包括三块永磁体51(3)、51(4)和51(5),其中的两块永磁体51(3)和51(4)沿扫描方向4对称分布于磁电阻传感器芯片21的两侧,称作侧面永磁体,二者的磁化方向相同,为垂直于磁性图像检测面3,另一块永磁体51(5)位于PCB 11的正下方,即背面,称作背面永磁体,其磁化方向反平行于永磁体51(3)和51(4)。
实施例六
图15-17为正面检测模式图像识别传感器中的多个磁电阻传感器芯片21在PCB 11上的排布图。
图15(a)和(b)分别侧视图和正视图,其中的磁电阻传感器芯片21在PCB 11上排列成一行,且行的方向垂直于扫描方向4或者磁场敏感方向71。由于磁电阻传感器芯片21中封装材料的存在,因此即使相邻磁电阻传感器芯片21间隙为0,相邻磁电阻传感器芯片21在磁性图像检测面3上沿扫描方向4形成的扫描检测区21(30)和21(31)没有交集,因此导致磁性图像检测面3上存在漏检区域。
为了弥补漏检区域的问题,图16和图17对磁电阻传感器芯片21在PCB 11上的排列方式进行了改进。
可以采用的磁电阻传感器芯片21的排布方式为:相邻的磁电阻传感器芯片21在PCB11的正面11(2)以边缘相互错位的方式排列。图16(a)和(b)分别为一种排列方式的侧试图和正视图,其扫描方向4和磁电阻传感器芯片21的磁场敏感方向为71方向一致,磁电阻传感器芯片21在PCB 11正面11(2)采用倾斜放置,相邻磁电阻传感器芯片21错位排列,磁电阻传感器芯片21的边缘相互交错,从而使得相邻磁电阻传感器芯片21沿扫描方向4在磁性图像检测面3上形成的扫描检测区21(32)和21(33)能够重叠,解决了漏检的问题。
图17(a)和(b)分别为另一种排列方式的侧视图和正视图,通过在相邻两个磁电阻传感器芯片21的行方向中间位置***第三个磁电阻传感器芯片21,并与相邻两个磁电阻传感器芯片21在边缘重叠,从而使得相邻磁电阻传感器芯片21的扫描检测区21(34)和21(35)重叠,解决了漏检的问题。
图18-20为以上各实施例中磁电阻传感器芯片的晶圆切片的正视图、侧视图和背视图。可以看出,磁电阻传感器芯片包含磁敏感单元42,磁电阻敏感单元42在Si切片41的正面,且信号及电源引脚43可以位于Si切片41的正面,通过wirebonding引出,也可以通过TSV通孔44穿过Si切片41,在Si切片41的背面形成引脚45。即磁电阻传感器芯片采用正面焊盘wirebonding或者TSV通孔到磁电阻传感器芯片背面焊盘的封装结构。图9中上下两层之间磁电阻传感器芯片2的连接,可以通过wirebonding连接到PCB 1上,也可以通过正面和背面之间的引脚直接连接。采用TSV背面引脚相对于正面的wirebonding,在正面检测模式图像识别传感器中,可以减小磁电阻传感器21和磁性图像检测面3之间的探测距离,增加磁场强度。
图21为磁电阻传感器芯片2或21中的磁敏感单元42的组成结构图,图21(a)中为半桥结构,包含R1和R2两个敏感单元。这两个敏感单元R1和R2排列成两行一列,且两个磁敏感单元R1和R2具有相同电阻,直接构成一个半桥。图21(b)为全桥结构,包含R1,R2,R3和R4四个敏感单元,有两路输出Vout+和Vout-。四个磁敏感单元R1,R2,R3和R4排列成两行两列。构成全桥的两个半桥所包含的两个敏感元件分别位于两行中且不同列的位置。在侧面检测模式图像识别传感器中,其列方向垂直于磁性图像检测面3,且封装时敏感单元位于芯片中靠近磁性图像检测面3的一侧。在正面检测模式图像识别传感器中,其列方向平行于扫描方向4。图21(c)为包含两行两列排列的R1,R3,R2,R4四个敏感单元的半桥结构,且同一行的两个磁敏感单元并联,而后两行之间串联形成半桥结构,两个半桥R1,R2以及R3,R4分别共享电源和接地,但共有一个输出端。图21(d)为排列为三行一列的三敏感元件半桥结构,包含R1,R2,R3三个敏感单元,其中位于两边行的两个敏感单元R1,R3电阻相同,其阻值是位于中间行的敏感单元R2电阻的两倍,敏感单元R1和R3并联,而后和R2串联形成半桥,输出信号电压从R1,R2,R3的中间公共端输出。所述磁电阻敏感单元可以为TMR、Hall、AMR、GMR单元中的一种。各磁敏感单元的磁场敏感方向一致。
图22为侧面检测模式图像识别传感器的磁电阻传感器芯片2中敏感单元排布图。
图22(a)为半桥结构,其中敏感单元R1和R2形成两行一列排布,R1位于靠近磁性图像检测面3的一行,平行于磁性图像检测面3,R2位于另一行,其磁场敏感方向相同,都为71方向,列方向垂直于磁性图像检测面3,其中4为扫描方向。
图22(b)为全桥结构或者两个半桥结构,敏感单元R1-R4排列成两行两列,其中R1和R3位于靠近磁性图像检测面3的一行,R2和R4位于另一行,R1和R2构成一个半桥,R3和R4构成一个半桥。
图22(c)为三电阻半桥结构,包含R1、R2和R3三个敏感单元,排列成三行一列结构,其中R1位于靠近磁性图像检测面3的一行,R2介于R1和R3之间,R1,R2和R3的磁场敏感方向为71方向,并垂直于磁性图像检测面3,其中4为扫描方向。
图22所对应的TMR磁性传感器芯片2或21中,封装时,敏感元件R1,R2、R1-R4或R1-R3位于靠近磁性图像检测面3的一侧。
图23为正面检测模式图像识别传感器的磁电阻传感器芯片21敏感单元排布图,其中图23(a1)、23(a2)和23(a3)为侧视图,图23(b1)、23(b2)和23(b3)为芯片21正视图,扫描方向4。图23(b1)为半桥结构,包括的两个敏感单元R1和R2,其排布方向平行于敏感方向71,并与扫描方向4一致。图23(b2)为全桥结构,R1和R2对应其中一个桥臂,R3和R4对应另一个桥臂,且R1,R2和R3,R4沿敏感方向71排列,图23(b3)为三元件半桥结构,敏感单元R1、R2、R3沿扫描方向4排列成行,且R2介于R1和R3之间,R1-R3的磁场敏感方向为71。其中图23中芯片21的外形相对于敏感元件为平行排列结构,在倾斜叠加排列时,芯片的形状可以相对于敏感元件的排列转动一定角度。
需要指出的是,上述的全桥或半桥结构磁电阻传感器芯片可以为集成多个敏感单元的单个磁电阻传感器芯片,也可以采用多个磁电阻传感器芯片分立元件来代替。对于后一种情况,分立的磁电阻传感器芯片为集成一个或多个敏感单元,且分立磁电阻传感器芯片之间通过互联形成半桥或全桥结构。
此外,图23中在探测硬磁体构成的图像时,其磁电阻传感器21的敏感元件磁场敏感方向可以平行或垂直于磁性图像检测面3,当平行时,其方向可以平行于或者垂直于扫描方向4。

Claims (21)

1. 一种磁电阻磁性图像识别传感器,用于检测磁性图像,所述磁性图像所在的平面为磁性图像检测面,其包括侧面/正面检测模式图像识别传感器;所述侧面/正面检测模式图像识别传感器分别包括位于PCB上的多个磁电阻传感器芯片;所述侧面检测模式图像识别传感器的多个所述磁电阻传感器芯片的侧面平行于所述磁性图像检测面;所述正面检测模式图像识别传感器的多个磁电阻传感器芯片的正面平行于所述磁性图像检测面;其特征在于,相邻所述磁电阻传感器芯片在所述磁性图像检测面上沿扫描方向的扫描检测区互补或有交集。
2. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述正面检测模式图像识别传感器所对应的相邻的所述磁电阻传感器芯片在所述PCB的正面沿所述磁电阻传感器芯片边缘相互错位方式排列。
3. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述侧面检测模式图像识别传感器所对应的在所述PCB上的所述多个磁电阻传感器芯片一边翘起离开所述PCB正面,另一边与相邻所述磁电阻传感器芯片的一边倾斜堆叠。
4. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述侧面检测模式图像识别传感器所对应的在所述PCB上的所述多个磁电阻传感器芯片中相邻的所述磁电阻传感器芯片片上交错堆叠。
5. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,包括永磁组合体,并且所述正面检测模式图像识别传感器的多个磁电阻传感器芯片的磁场敏感方向为平行于扫描方向,而所述侧面检测模式图像识别传感器的多个磁电阻传感器芯片的磁场敏感方向为垂直于所述磁性图像检测面。
6. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,所述永磁组合体包括两块磁化方向相同的永磁体,分别沿扫描方向对称地位于所述PCB两侧,其磁化方向垂直于所述PCB正面。
7. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述侧面检测模式图像识别传感器,所述永磁组合体包括两块永磁体,并在所述PCB正面两侧对称放置,其磁化方向均垂直于磁性图像检测面,但是所述两块永磁体的磁化方向相反。
8. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和一块软磁体,分别位于所述PCB正面两侧,所述永磁体的磁化方向垂直于所述PCB正面方向,所述软磁体平行于所述PCB正面。
9. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和一块L型软磁体形成的开口朝向所述磁性图像检测面的结构,其位于所述PCB的同一侧,且所述L型软磁***于所述永磁体和所述PCB之间,所述永磁***于所述L型软磁体底部之上,其磁化方向垂直于所述磁性图像检测面,所述L型软磁体侧面平行于所述PCB。
10. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述侧面检测模式图像识别传感器,所述的永磁组合体包括一块永磁体和两块软磁体形成的开口朝向所述磁性图像检测面的结构,所述永磁体磁化方向垂直于所述PCB的正面,并且所述永磁***于所述PCB底部,所述两块软磁体对称位于所述PCB正面两侧和所述永磁体两端上,且平行于所述PCB。
11. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述正面检测模式图像识别传感器,所述永磁组合体为凹形永磁体,所述凹形永磁体的开有凹槽的面正对所述PCB背面,开槽方向平行于所述磁性图像检测面,且垂直于磁场敏感方向,所述凹形永磁体的磁化方向为垂直于所述PCB方向。
12. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,对于所述正面检测模式图像识别传感器,所述永磁组合体包括一块位于所述PCB背面的背面永磁体和两块沿扫描方向对称地放置于所述PCB两侧的侧面永磁体,所述背面永磁体和所述两块侧面永磁体的磁化方向均垂直于所述磁性图像检测面,且所述背面永磁体和所述两块侧面永磁体磁化方向相反。
13. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述正面检测模式图像识别传感器的所述多个磁电阻传感器芯片的磁场敏感方向为平行于或垂直于所述磁性图像检测面方向,且当所述多个磁电阻传感器芯片的磁场敏感方向平行于所述磁性图像检测面时,所述磁场敏感方向平行或垂直于扫描方向。
14. 根据权利要求1-13中任一项所述的一种磁电阻磁性图像识别传感器,其特征在于,所述磁电阻传感器芯片为半桥结构,包含两个、三个或四个磁敏感单元并分别排列成两行一列、三行一列或两行两列,且各所述磁敏感单元的磁场敏感方向一致;当所述磁电阻磁性传感器芯片包含两个磁敏感单元时,所述两个磁敏感单元具有相同电阻,直接构成一个半桥;当所述磁电阻磁性传感器芯片包含三个磁敏感单元时,位于中间行的所述敏感单元电阻为位于两边行的两个所述敏感单元电阻的一半,且所述位于两边行的两个敏感单元并联后与所述位于中间行的敏感元件形成半桥结构;当所述磁电阻磁性传感器芯片包含四个磁敏感单元时,所述四个敏感单元电阻相同,且同一行的两个磁敏感单元并联,而后两行之间串联形成半桥结构;在所述侧面检测模式图像识别传感器中,其列方向垂直于所述磁性图像检测面,且封装时所述磁敏感单元位于芯片中靠近所述磁性图像检测面的一侧;在所述正面检测模式图像识别传感器中,其列方向平行于扫描方向。
15. 根据权利要求1-13中任一项所述的一种磁电阻磁性图像识别传感器,其特征在于,所述磁电阻传感器芯片为全桥结构,包含四个磁敏感单元,且各所述磁敏感单元的磁场敏感方向一致,四个所述磁敏感单元排列成两行两列,构成全桥的两个半桥所包含的两个敏感元件分别位于两行中且不同列的位置,在侧面检测模式图像识别传感器中,其列方向垂直于磁性图像检测面,且封装时敏感单元位于芯片中靠近磁性图像检测面的一侧,在正面检测模式图像识别传感器中,其列方向平行于扫描方向。
16. 根据权利要求14所述的一种磁电阻磁性图像识别传感器,其特征在于,所述半桥结构的磁电阻传感器芯片为集成多个敏感单元的单个磁电阻传感器芯片,或者为多个集成一个或多个敏感单元的磁电阻传感器芯片分立元件的互联组合。
17. 根据权利要求15所述的一种磁电阻磁性图像识别传感器,其特征在于,所述全桥结构的磁电阻传感器芯片为集成多个敏感单元的单个磁电阻传感器芯片,或者为多个集成一个或多个敏感单元的磁电阻传感器芯片分立元件的互联组合。
18. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述磁电阻传感器芯片采用正面焊盘wirebonding或者TSV通孔到所述磁电阻传感器芯片背面焊盘的封装结构。
19. 根据权利要求5所述的一种磁电阻磁性图像识别传感器,其特征在于,还可以包括一个外壳,所述PCB和所述多个磁电阻传感器芯片放置于所述外壳内;所述永磁组合体部分或全部放置于所述外壳内,或者全部位于所述外壳外。
20. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述磁电阻磁性传感器芯片中的磁敏感单元为AMR,Hall,GMR或者TMR类型的磁电阻传感器中的一种。
21. 根据权利要求1所述的一种磁电阻磁性图像识别传感器,其特征在于,所述侧面检测模式图像识别传感器对应的所述磁电阻传感器芯片的侧面与所述PCB侧面共面或平行于所述磁性图像检测面。
PCT/CN2015/074982 2014-03-25 2015-03-24 一种磁电阻磁性图像识别传感器 WO2015144046A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/128,821 US10598743B2 (en) 2014-03-25 2015-03-24 Magnetoresistive magnetic imaging sensor
JP2016559210A JP6535024B2 (ja) 2014-03-25 2015-03-24 磁気抵抗式磁気イメージング・センサ
EP15770409.9A EP3125202A4 (en) 2014-03-25 2015-03-24 Magneto resistance sensor for identifying magnetic image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410113778.3A CN103927811B (zh) 2014-03-25 2014-03-25 一种磁电阻磁性图像识别传感器
CN201410113778.3 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015144046A1 true WO2015144046A1 (zh) 2015-10-01

Family

ID=51146021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074982 WO2015144046A1 (zh) 2014-03-25 2015-03-24 一种磁电阻磁性图像识别传感器

Country Status (5)

Country Link
US (1) US10598743B2 (zh)
EP (1) EP3125202A4 (zh)
JP (1) JP6535024B2 (zh)
CN (1) CN103927811B (zh)
WO (1) WO2015144046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598743B2 (en) 2014-03-25 2020-03-24 Multidimension Technology Co., Ltd Magnetoresistive magnetic imaging sensor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201168B (zh) * 2014-09-16 2017-01-25 山东华芯半导体有限公司 一种芯片倾斜堆叠的圆片级封装单元及封装方法
JP6326442B2 (ja) * 2016-03-30 2018-05-16 Kyb株式会社 磁気検出ユニット及びこれを備えるストローク検出装置
JP7172178B2 (ja) * 2018-06-27 2022-11-16 Tdk株式会社 磁気センサ
JP7070532B2 (ja) * 2019-11-19 2022-05-18 Tdk株式会社 磁気センサ
DE102021114943A1 (de) * 2021-06-10 2022-12-15 Infineon Technologies Ag Sensorvorrichtungen mit Weichmagneten und zugehörige Herstellungsverfahren
GB2615816A (en) * 2022-02-21 2023-08-23 The Governor & Company Of The Bank Of England Document recognition device
CN115079061A (zh) * 2022-05-05 2022-09-20 歌尔微电子股份有限公司 微机电***差分磁传感器、传感器单体及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249468A (ja) * 2004-03-02 2005-09-15 Murata Mfg Co Ltd 長尺型磁気センサ
CN201725379U (zh) * 2010-06-24 2011-01-26 深圳市怡化电脑有限公司 Atm机巨磁电阻验钞磁头
CN203038357U (zh) * 2012-10-31 2013-07-03 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头
CN103226865A (zh) * 2013-04-16 2013-07-31 白建民 一种基于磁电阻技术检测磁性图形表面磁场的磁头
CN203217645U (zh) * 2013-04-16 2013-09-25 无锡乐尔科技有限公司 识别磁条上磁性图形的磁矩取向装置
CN103632431A (zh) * 2012-08-21 2014-03-12 北京嘉岳同乐极电子有限公司 磁图像传感器及鉴伪方法
CN103927811A (zh) * 2014-03-25 2014-07-16 江苏多维科技有限公司 一种磁电阻磁性图像识别传感器
CN203812310U (zh) * 2014-03-25 2014-09-03 江苏多维科技有限公司 一种磁电阻磁性图像识别传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722668A (ja) * 1993-06-23 1995-01-24 Nec Corp 磁気抵抗効果素子
JP3651433B2 (ja) * 2001-09-28 2005-05-25 株式会社村田製作所 磁気センサ
US7705586B2 (en) * 2004-09-27 2010-04-27 Nxp B.V. Magnetic sensor for input devices
JP2006171953A (ja) * 2004-12-14 2006-06-29 Laurel Seiki Kk 紙葉類検出装置
JP2006350820A (ja) * 2005-06-17 2006-12-28 Toshiba Corp 紙葉類識別装置
JP5719515B2 (ja) * 2010-02-05 2015-05-20 日本電産サンキョー株式会社 磁気センサ装置
CN104063938B (zh) * 2010-02-05 2016-09-21 日本电产三协株式会社 磁性图案检测装置
JP5195963B2 (ja) * 2010-11-16 2013-05-15 三菱電機株式会社 磁気センサ装置
KR101427543B1 (ko) * 2010-07-30 2014-08-07 미쓰비시덴키 가부시키가이샤 자성체 검출 장치
EP2600164A4 (en) * 2010-07-30 2016-03-30 Mitsubishi Electric Corp MAGNETIC SENSOR DEVICE
CN103443695B (zh) * 2012-03-30 2014-12-31 Dic株式会社 液晶显示元件及其制造方法
CN102968845B (zh) * 2012-10-31 2015-11-25 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头
CN202916902U (zh) * 2012-10-31 2013-05-01 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249468A (ja) * 2004-03-02 2005-09-15 Murata Mfg Co Ltd 長尺型磁気センサ
CN201725379U (zh) * 2010-06-24 2011-01-26 深圳市怡化电脑有限公司 Atm机巨磁电阻验钞磁头
CN103632431A (zh) * 2012-08-21 2014-03-12 北京嘉岳同乐极电子有限公司 磁图像传感器及鉴伪方法
CN203038357U (zh) * 2012-10-31 2013-07-03 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头
CN103226865A (zh) * 2013-04-16 2013-07-31 白建民 一种基于磁电阻技术检测磁性图形表面磁场的磁头
CN203217645U (zh) * 2013-04-16 2013-09-25 无锡乐尔科技有限公司 识别磁条上磁性图形的磁矩取向装置
CN103927811A (zh) * 2014-03-25 2014-07-16 江苏多维科技有限公司 一种磁电阻磁性图像识别传感器
CN203812310U (zh) * 2014-03-25 2014-09-03 江苏多维科技有限公司 一种磁电阻磁性图像识别传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125202A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598743B2 (en) 2014-03-25 2020-03-24 Multidimension Technology Co., Ltd Magnetoresistive magnetic imaging sensor

Also Published As

Publication number Publication date
EP3125202A4 (en) 2017-12-20
US10598743B2 (en) 2020-03-24
CN103927811A (zh) 2014-07-16
EP3125202A1 (en) 2017-02-01
US20170371005A1 (en) 2017-12-28
JP6535024B2 (ja) 2019-06-26
CN103927811B (zh) 2016-09-14
JP2017514114A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2015144046A1 (zh) 一种磁电阻磁性图像识别传感器
WO2015010649A1 (zh) 一种单磁阻tmr磁场传感器芯片及验钞机磁头
WO2013135117A1 (zh) 磁电阻磁场梯度传感器
WO2015180568A1 (zh) 一种磁电阻z轴梯度传感器芯片
WO2013182036A1 (zh) 一种磁电阻齿轮传感器
EP2818884B1 (en) Magneto-resistive sensor for measuring magnetic field
US8294577B2 (en) Stressed magnetoresistive tamper detection devices
JP6265484B2 (ja) 磁気センサモジュール
WO2014206351A1 (zh) 磁电阻成像传感器阵列
WO2014146570A1 (zh) 用于验钞机磁头的tmr半桥磁场梯度传感器芯片
US20130127454A1 (en) Magnetic field sensor including an anisotropic magnetoresistive magnetic sensor and a hall magnetic sensor
WO2015158247A1 (zh) 一种低飞移高度面内磁性图像识别传感器芯片
WO2023109418A1 (zh) 一种电屏蔽的磁隧道结信号隔离器
WO2015101244A1 (zh) 近距离磁电阻成像传感器阵列
WO2020111862A1 (ko) 이상 홀 효과를 이용하는 자기 센서, 홀 센서 및 홀 센서의 제조방법
EP1385151A3 (en) Magnetoresistive element having currrent-perpendicular-to-the-plane structure
KR101541992B1 (ko) 자발 홀 효과 마그네틱 센서 및 이를 포함하는 마그네틱 센싱 장치
CN203812310U (zh) 一种磁电阻磁性图像识别传感器
Sohier et al. Evaluation of magnetoimpedance in narrow NiFe/Al/NiFe thin films for secured packaging
JP4890401B2 (ja) 原点検出装置
CN104598858B (zh) 超薄磁头及读卡器
US20230417802A1 (en) Printed circuit board ground plane optimization for coreless current sensors
JP7404964B2 (ja) 磁気センサ
US20040096700A1 (en) Magnetic sensor system
CN115113113A (zh) 磁传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128821

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016559210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015770409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770409

Country of ref document: EP