WO2015137230A1 - 電動モータ - Google Patents

電動モータ Download PDF

Info

Publication number
WO2015137230A1
WO2015137230A1 PCT/JP2015/056494 JP2015056494W WO2015137230A1 WO 2015137230 A1 WO2015137230 A1 WO 2015137230A1 JP 2015056494 W JP2015056494 W JP 2015056494W WO 2015137230 A1 WO2015137230 A1 WO 2015137230A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
phase
coils
advance
turns
Prior art date
Application number
PCT/JP2015/056494
Other languages
English (en)
French (fr)
Inventor
夏海 田村
裕人 田中
哲平 時崎
敏 田村
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US15/112,537 priority Critical patent/US10367401B2/en
Priority to EP15761469.4A priority patent/EP3118979B1/en
Priority to CN201580012749.0A priority patent/CN106104990B/zh
Publication of WO2015137230A1 publication Critical patent/WO2015137230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • H02K23/38DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings having winding or connection for improving commutation, e.g. equipotential connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/006Structural associations of commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel

Definitions

  • the present invention relates to an electric motor.
  • This application claims priority based on Japanese Patent Application No. 2014-052304 filed in Japan on March 14, 2014, the contents of which are incorporated herein by reference.
  • a DC motor with a brush in which a motor magnet is disposed on the inner peripheral surface of a bottomed cylindrical yoke and an armature is rotatably provided radially inward of the motor magnet is known (for example, see Patent Document 1).
  • the armature includes an armature core having a plurality of teeth radially extending outward in the radial direction on the outer periphery of an annular core body that is externally fitted and fixed to a rotating shaft, and each tooth of the armature core is provided between teeth.
  • the commutator has a plurality of segments arranged side by side in a state of being insulated from each other in the circumferential direction, and terminal portions of the respective armature coils are connected to these segments. Further, a plurality of brushes are in sliding contact with the segment.
  • a direct current is supplied to each armature coil by the brush through the segments, the armature and the rotating shaft are moved by the magnetic attractive force and repulsive force generated between the magnetic field formed in the armature core and the motor magnet. Rotate. This rotation sequentially changes the segments in sliding contact with the brush, so that the direction of the current flowing through the armature coil is switched, so-called rectification is performed. Then, the armature rotates continuously, and the rotation output is taken out from the rotation shaft.
  • An object of the present invention is to provide an electric motor capable of improving commutation and extending the life of a brush.
  • the electric motor is attached to the motor magnet in which a plurality of magnetic poles are arranged in the circumferential direction, a rotating shaft that is rotatably provided inside the motor magnet, and the rotating shaft.
  • An armature core having a plurality of teeth extending radially outward and a plurality of slots formed between the teeth; a coil wound around each of the teeth by a concentrated winding method; and the rotation A commutator provided to rotate integrally with the shaft and having a plurality of segments arranged in the circumferential direction; and an anode brush and a cathode brush for supplying power to the coil through the segments; and Three coils are wound respectively, and among the three coils, the number of turns of one coil is the turn of the other two coils. It is set less than.
  • the magnetic pole is set to 4 poles, the number of the slots is set to 6, and the number of the segments is set to 18;
  • the three coils wound around each tooth are composed of one forward winding coil formed by winding in the forward direction and two reverse winding coils formed by winding in the reverse direction,
  • Each tooth is assigned in the circumferential direction in the order of U phase, V phase, and W phase, and the forward winding coil wound around each phase is used as a U phase, V phase, and W phase coil, respectively.
  • the three coils include an advance coil whose magnetomotive force vector is directed toward the advance side, A retarding coil whose magnetic force vector is directed toward the retarded angle side and a positive coil whose magnetomotive force vector is neither directed toward the advanced angle side nor the retarded angle side, and the advance angle ⁇ 1 of the magnetomotive force vector of the advanced angle coil is 0 ° ⁇
  • the retardation angle ⁇ 2 of the magnetomotive force vector of the retardation coil satisfies 0 ° ⁇ 2 ⁇ 20 °
  • the advance angle ⁇ 3 of the position of the anode brush satisfies 0 ° ⁇ ⁇ 3 ⁇ 3 °
  • the number of turns of the advance coil is T1
  • the number of turns of the positive coil is T2
  • the number of turns of the retard coil is T3
  • the three coils include: an advance coil whose magnetomotive force vector is directed toward the advance side; A retarding coil whose magnetic force vector is directed toward the retarded angle side and a positive coil whose magnetomotive force vector is neither directed toward the advanced angle side nor the retarded angle side, and the advance angle ⁇ 1 of the magnetomotive force vector of the advanced angle coil is 0 ° ⁇
  • the retardation angle ⁇ 2 of the magnetomotive force vector of the retardation coil satisfies 0 ° ⁇ 2 ⁇ 20 °
  • the advance angle ⁇ 3 of the position of the anode brush satisfies 3 ° ⁇ 3 ⁇ 10 °
  • the number of turns of the advance coil is T1
  • the number of turns of the positive coil is T2
  • the number of turns of the retard coil is T3, each of the turns T1, T2, T3
  • the three coils are such that the three coils have a magnetomotive force vector toward the advance side.
  • the number of turns of the advance coil is T1
  • the number of turns of the positive coil is T2
  • the number of turns of the retard coil is T3
  • the turns T1, T2, and T3 are: It is set to satisfy T1
  • the number of turns of one coil is set to be smaller than the number of turns of the other two coils, the influence of deterioration of rectification due to mismatch of magnetomotive force vectors by three coils is reduced. it can. Also, brush life can be extended by improving rectification.
  • FIG. 1 is an external side view of a motor with a reduction gear to which an electric motor according to the present invention is applied.
  • FIG. 2 is a longitudinal sectional view thereof.
  • the motor 1 with a reduction gear is used for driving a wiper of an automobile, for example.
  • the motor 1 with a speed reducer includes an electric motor 2 and a speed reduction mechanism 4 connected to the rotating shaft 3 of the electric motor 2.
  • the electric motor 2 includes a yoke 5 that also serves as a bottomed cylindrical motor housing, and an armature 6 that is rotatably provided in the yoke 5.
  • the cylindrical portion 53 of the yoke 5 is formed in a substantially cylindrical shape, and a motor magnet 7 is provided on the inner peripheral surface of the cylindrical portion 53.
  • a motor magnet 7 is provided on the inner peripheral surface of the cylindrical portion 53.
  • four magnetic poles are arranged in the circumferential direction by alternately arranging N poles and S poles.
  • the bottom wall (end portion) 51 of the yoke 5 is formed with a bearing housing 19 projecting outward in the axial direction at the center in the radial direction, and a sliding bearing for rotatably supporting one end of the rotary shaft 3 therein. 18 is provided.
  • the sliding bearing 18 has a centering function of the rotating shaft 3.
  • An outer flange portion 52 is provided at the opening of the cylindrical portion 53, and the end of the gear housing 23 of the speed reduction mechanism 4 is fixed to the outer flange portion 52, so that the electric motor 2 and the speed reduction mechanism 4 are integrated. Are combined.
  • FIG. 3 is an external side view of the armature.
  • the armature 6 includes an armature body 80 that is externally fitted and fixed to the rotating shaft 3, and a commutator 10 that is disposed on the other end side (the speed reduction mechanism 4 side) of the rotating shaft 3. ing.
  • the armature body 80 has an armature core 8 and an armature coil 9 wound around the armature core 8.
  • the armature core 8 is composed of a laminated core formed by laminating a core plate of a magnetic material punched by pressing or the like in the axial direction, or a dust core obtained by press-molding soft magnetic powder.
  • the armature core 8 has an annular core body 11.
  • a through hole 11 a for press-fitting the rotating shaft 3 is formed at the center of the core body 11.
  • six teeth 12 are radially provided on the outer peripheral portion of the core body 11 at equal intervals in the circumferential direction.
  • Each tooth 12 is formed in a substantially T shape in an axial plan view.
  • Each tooth 12 includes a winding drum portion 12a that protrudes radially from the core body 11 in the radial direction, a flange portion 12b that extends from the tip of the winding drum portion 12a in the circumferential direction, and that forms the outer periphery of the armature core 8. It is comprised by.
  • An armature coil 9 is formed by passing enameled windings 14 through these slots 13 and winding the windings 14 around the outer periphery of the winding body 12a of the teeth 12 by a concentrated winding method (armature coils). Details of the forming method 9 will be described later).
  • a commutator 10 is externally fitted and fixed to the other end side (the reduction mechanism 4 side) of the armature core 8 of the rotating shaft 3.
  • the commutator 10 is provided with a plurality of segments 15 formed of a conductive material on the outer peripheral surface. Eighteen segments 15 that are three times the number of teeth 12 and slots 13 of the armature core 8 are attached.
  • the segment 15 is made of a plate-like metal piece that is long in the axial direction, and is fixed in parallel at equal intervals along the circumferential direction while being insulated from each other.
  • the electric motor 2 is configured as a so-called four-pole six-slot 18-segment electric motor in which the number of magnetic poles is four, the number of slots 13 is six, and the number of segments 15 is eighteen.
  • a riser 16 that is folded in a shape that is folded back to the outer diameter side is integrally formed at the end of each segment 15 on the armature core 8 side.
  • a terminal portion of the armature coil 9 is wound around the riser 16 and fixed by fusing or the like. Thereby, the segment 15 and the armature coil 9 corresponding to this are conducted.
  • the commutator 10 configured in this manner faces the gear housing 23 of the speed reduction mechanism 4 as shown in FIG.
  • a gear group 41 of the speed reduction mechanism 4 is housed in the gear housing 23.
  • the brush housing portion 22 is formed integrally with the gear housing 23 on the electric motor 2 side, and the commutator 10 of the electric motor 2 is exposed to the brush housing portion 22.
  • the brush 21 is housed inside the brush housing part 22 through a holder stay and a brush holder (not shown) so as to be able to appear and retract.
  • the brush 21 is for supplying electric power from an external power source (for example, a battery mounted on an automobile) to the commutator 10.
  • the brush 21 is biased toward the commutator 10 by a spring (not shown), and the tip thereof is in sliding contact with the segment 15.
  • the brush 21 is commonly used for the low speed brush (anode brush) 21a and the high speed brush (anode brush) 21b connected to the anode side, and the low speed brush 21a and the high speed brush 21b, and is connected to the cathode side. And a common brush (cathode brush) 21c.
  • the low speed brush 21a and the common brush 21c are disposed at a mechanical angle of 90 ° in the circumferential direction so as to correspond to the magnetic pole pitch (electrical angle 180 °) of the motor magnet 7.
  • the high speed brush 21b is disposed at a position slightly advanced from the common brush 21c by the magnetic pole pitch of the motor magnet 7.
  • the advance angle of the high speed brush 21b is set to 30 °, for example.
  • FIG. 4 is a development view of the armature. A gap between adjacent teeth corresponds to a slot.
  • FIG. 5 is a diagram showing the winding direction of the winding, and is a view of the armature from the rear side where the commutator is not arranged.
  • each segment 15, each tooth 12, and the formed armature coil 9 will be described with reference numerals.
  • the 18 segments 15, the ones that are 180 ° opposite (segments 15 having the same potential) are electrically connected by a connection line (not shown) or the like. Accordingly, the same symbols 1 to 9 are assigned to the segments 15 having the same conditions as the brush.
  • each of the teeth 12 is assigned a U phase, a V phase, and a W phase in this order in the circumferential direction. That is, the first and fourth teeth 12 are the U phase, the second and fifth teeth 12 are the V phase, and the third and sixth teeth 12 are the W phase.
  • the position corresponding to No. 1 is the position corresponding to the No. 1 tooth 12.
  • the winding 14 is then drawn into the slot 13 between the 1-6th teeth 12 existing in the vicinity of the first segment 15. . Then, the winding 14 is wound around each tooth 12 in the forward direction by the concentrated winding method.
  • the winding 14 is pulled out from the slot 13 between the first and second teeth 12 and is wound around the riser 16 of the second segment 15 adjacent to the first segment 15. Then, the winding end 14 b is connected to the second segment 15. As a result, a U-phase first coil 91 wound around the first tooth 12 in the forward direction is formed between the first and second segments 15.
  • the winding 14 is wound around the riser 16 of the fifth segment 15 and the winding start end 14 a is drawn into the slot 13 between the first and second teeth 12. And it winds to the 1st teeth 12 by the concentrated winding system in the reverse direction. Subsequently, the winding 14 is pulled out from the slot 13 between the 1-6th teeth 12 and is wound around the riser 16 of the 6th segment 15 adjacent to the 5th segment 15. Then, the winding end 14 b is connected to the sixth segment 15. As a result, a “ ⁇ U” phase second coil 92 wound around the first tooth 12 in the reverse direction is formed between the 5th and 6th segments 15.
  • winding 14 is wound around the riser 16 of the 6th segment 15 and the winding start end 14a is drawn into the slot 13 between the 1-2th teeth 12. And it winds to the 1st teeth 12 by the concentrated winding system in the reverse direction.
  • the first tooth 12 corresponding to the U-phase is formed by winding the U-phase first coil 91 formed by winding the winding 14 in the forward direction and the winding 14 in the reverse direction.
  • the armature coil 9 including the second coil 92 of the “ ⁇ U” phase and the third coil 93 of the “ ⁇ U” phase is formed.
  • the armature core 8 is formed with the three-phase armature coil 9 including the first coil 91, the second coil 92, and the third coil 93 by sequentially performing this operation between the segments 15 corresponding to the respective phases. Between the adjacent segments 15, coils 91 to 93 of U, “ ⁇ W”, “ ⁇ W”, V, “ ⁇ U”, “ ⁇ U”, W, “ ⁇ V” and “ ⁇ V” phases are Electrically connected in order.
  • connection positions of the winding start end 14a and the winding end end 14b of the windings 14 forming the coils 91 to 93 of each phase to the segments 15 are U, “ ⁇ W”, “ ⁇ W” between the adjacent segments 15.
  • V, “ ⁇ U”, “ ⁇ U”, W, “ ⁇ V”, and “ ⁇ V” phase coils 91 to 93 may be electrically connected in this order.
  • the total number of turns (total number of turns of the winding 14) of the first, second, and third coils 91, 92, and 93 wound around each tooth 12 is set to n (n is 3 is a natural number), the number of turns of each of the first, second, and third coils 91, 92, and 93 is the same “n / 3”.
  • the number of turns is set so that the number of turns of one coil is smaller than the number of turns of the other two coils under the condition that the total number of turns n is kept constant.
  • a magnetic field is formed in each of the second, third, fifth and sixth teeth 12.
  • the directions of these magnetic fields are in order in the circumferential direction. For this reason, between the magnetic field formed in each tooth 12 and the motor magnet 7, a magnetic attractive force or repulsive force acts in the same direction at a point-symmetrical position about the rotation shaft 3. As a result, the rotating shaft 3 rotates.
  • a voltage is applied to the high-speed brush 21b, the high-speed brush 21b is advanced, so that the rotary shaft 3 rotates at a high speed.
  • the third coil 93 between the 6th and 7th segments is short-circuited.
  • the U-phase teeth 12 are at a position where the retardation angle is 20 °, and are rectified at that position. Therefore, a magnetomotive force vector having a retardation of 20 ° is generated in the U-phase teeth 12.
  • the number of turns of the coils 91, 92, 93 is changed. That is, assuming that the number of turns of the lead angle 20 ° coil (the number of turns of the winding 14) is T1, the number of turns of the lead angle 0 ° coil is T2, and the number of turns of the retard angle 20 ° coil is T3, T1, T2,
  • the above condition (1) is the case of the low speed brush 21a in which the position of the brush 21 is not advanced. If the position of the low speed brush 21a is advanced, the advance angle is large. It turns out that it is necessary to change it accordingly. Therefore, the following conditions could be obtained.
  • the advance angle is originally set at the position of the high speed brush 21b. However, since the frequency of use is less than that of the low speed brush 21a, the above conditions are set based on the low speed brush 21a. .
  • the position of the low speed brush 21a by setting the conditions of the number of turns of each of the coils 91, 92, 93 to the above conditions (1) to (3), the influence of the deterioration of the rectification property can be reliably reduced. This can extend the life of the brush.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the present invention is not limited to this, and the configuration of the three coils 91, 92, and 93 can be applied to various electric motors in which three coils are formed in each tooth.
  • the brush 21 is configured by three brushes, that is, the low speed brush (anode brush) 21a, the high speed brush (anode brush) 21b, and the common brush (cathode brush) 21c has been described.
  • the present invention is not limited to this, and the configuration of the three coils 91, 92, and 93 can be applied to an electric motor in which an anode brush and a cathode brush are provided in pairs. .
  • the number of turns of one coil is set to be smaller than the number of turns of the other two coils, the influence of deterioration of rectification due to mismatch of magnetomotive force vectors by three coils is reduced. it can. Also, brush life can be extended by improving rectification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 4極6スロット18セグメントの電動モータにおいて、各ティース(12)に、1つの順巻きコイル(91)と2つの逆巻きコイル(92)、(93)を巻回し、順巻きコイルをU相、V相、W相のコイルとし、逆巻きコイルを-U相、-V相、-W相のコイルとしたとき、隣接するセグメント間に、U相、-W相、-W相、V相、-U相、-U相、W相、-V相、-V相のコイルがこの順で電気的に接続されるようにする。U相、V相、W相のコイル(91)のターン数をT1、先にブラシに摺接する-U相、-V相、-W相のコイル(92)のターン数をT2、後にブラシに摺接する-U相、-V相、-W相のコイル(93)のターン数をT3とするとき、T2>T1>T3とする。

Description

電動モータ
 本発明は、電動モータに関するものである。
 本願は、2014年3月14日に、日本に出願された特願2014-052304号に基づき優先権を主張し、その内容をここに援用する。
 電動モータとして、例えば、有底筒状のヨークの内周面にモータマグネットを配置し、このモータマグネットよりも径方向内側にアーマチュアを回転自在に設けたブラシ付きの直流モータが知られている(例えば、特許文献1参照)。
 アーマチュアは、回転軸に外嵌固定される円環状のコア本体の外周に、径方向外方に向かって放射状に延びる複数のティースを設けたアーマチュアコアと、該アーマチュアコアの各ティースにティース間のスロットを介して巻回されたアーマチュアコイルと、アーマチュアコアと一体回転するように前記回転軸上に設けられるコンミテータと、を備えている。
 コンミテータは、周方向に互いに絶縁された状態で並んで配置された複数のセグメントを有しており、これらセグメントに、各アーマチュアコイルの端末部が接続されている。
 さらに、セグメントには複数のブラシが摺接されている。そして、ブラシによりセグメントを介して各アーマチュアコイルに直流電流が供給されると、アーマチュアコアに形成される磁界とモータマグネットとの間に生じる磁気的な吸引力や反発力により、アーマチュアおよび回転軸が回転する。この回転によってブラシが摺接するセグメントが順次変更され、アーマチュアコイルに流れる電流の向きが切り替えられる、いわゆる整流が行われる。そして、アーマチュアが継続的に回転し、回転出力が回転軸から取り出される。
 ところで、コンミテータが回転すると、セグメントに対してブラシが接触、離間を繰り返すことになる。このため、セグメント間の電圧が大きいと、セグメントからブラシが離間する際に放電が発生し、ブラシ寿命が低下する。これを防止するための手段として、例えば、アーマチュアコアのティースの数に対してコンミテータのセグメントの数を増大する方法がある。
特許第3047544号公報
 ところで、セグメントの数をティースの数の3倍に増やし、各ティースごとのコイルの数を3本にした場合、同じティースに巻かれている3本のコイルからの起磁力ベクトルが一致せず、遅角、進角無し、進角のコイルができてしまい、整流が悪化するという可能性がある。
 本発明は、整流性の向上を図り、ブラシ寿命を延命させることができる電動モータを提供することを目的とする。
 本発明の第1の態様によれば、電動モータは、周方向に複数の磁極が配列されたモータマグネットと、前記モータマグネットの内側に回転自在に設けられる回転軸と、前記回転軸に取り付けられ、径方向外方に向かって放射状に延びる複数のティースおよびこれらティース間に形成される複数のスロットを有するアーマチュアコアと、前記各ティースにそれぞれ集中巻方式にて巻装されたコイルと、前記回転軸と一体回転するよう設けられ、複数のセグメントを周方向に配置したコンミテータと、前記セグメントを介して前記コイルに給電を行うための陽極ブラシおよび陰極のブラシと、を備え、前記各ティースに、それぞれ3つのコイルが巻装されており、前記3つのコイルのうち、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されている。
 本発明の第2の態様によれば、本発明の第1の態様に係る電動モータは、前記磁極が4極、前記スロットの個数が6個、前記セグメントの個数が18個に設定され、前記各ティースに巻装されている前記3つのコイルは、順方向に巻回して形成された1つの順巻きコイルと、逆方向に巻回して形成された2つの逆巻きコイルと、により構成され、前記各ティースを周回り方向にU相、V相、W相の順で割り当て、各相に巻装されている前記順巻きコイルをそれぞれU相、V相、W相のコイルとし、各相に巻装されている前記逆巻きコイルをそれぞれ-U相、-V相、-W相のコイルとしたとき、隣接する前記セグメント間に、U相、-W相、-W相、V相、-U相、-U相、W相、-V相、-V相のコイルがこの順で電気的に接続され、巻装されている1つの順巻きコイルおよび2つの逆巻きコイルのうち、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されている。
 本発明の第3の態様によれば、本発明の第1の態様若しくは第2の態様に係る電動モータにおいて、前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、前記進角コイルの起磁力ベクトルの進角θ1が0°<θ1≦20°を満たし、前記遅角コイルの起磁力ベクトルの遅角θ2が0°<θ2≦20°を満たし、前記陽極ブラシの位置の進角θ3が0°≦θ3≦3°を満たす場合において、前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、前記各ターン数T1,T2,T3は、T2>T1>T3を満たすように設定されている。
 本発明の第4の態様によれば、本発明の第1の態様若しくは第2の態様に係る電動モータにおいて、前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、前記進角コイルの起磁力ベクトルの進角θ1が0°<θ1≦20°を満たし、前記遅角コイルの起磁力ベクトルの遅角θ2が0°<θ2≦20°を満たし、前記陽極ブラシの位置の進角θ3が3°<θ3≦10°を満たす場合において、前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、前記各ターン数T1,T2,T3は、T2>T3>T1を満たすように設定されている。
 本発明の第5の態様によれば、本発明の第1の態様若しくは第2の態様に係る電動モータにおいて、前記3つのコイルは、前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、前記進角コイルの起磁力ベクトルの進角θ1が0°<θ1≦20°を満たし、前記遅角コイルの起磁力ベクトルの遅角θ2が0°<θ2≦20°を満たし、前記陽極ブラシの位置の進角θ3がθ3=20°を満たす場合において、前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、前記各ターン数T1,T2,T3は、T3>T2>T1を満たすように設定されている。
 上記の電動モータによれば、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されているので、3つのコイルによる起磁力ベクトルの不一致による整流性の悪化の影響を軽減できる。また、整流の改善によりブラシ寿命を延命させることができる。
本発明の実施形態における減速機付きモータの外観側面図である。 本発明の実施形態における減速機付きモータの縦断面図である。 本発明の実施形態におけるアーマチュアの側面図である。 本発明の実施形態におけるアーマチュアの展開図である。 本発明の実施形態における巻線の巻回方向を示す図である。 本発明の実施形態におけるアーマチュアの進角20°のときの展開図である。 本発明の実施形態におけるアーマチュアの進角0°のときの展開図である。 本発明の実施形態におけるアーマチュアの遅角20°のときの展開図である。 本発明の実施形態におけるコイルのターン数の違いによる特性比較図である。
(第1実施形態)
(減速機付モータ)
 次に、本発明の実施形態を図面に基づいて説明する。
 図1は、本発明に係る電動モータが適用された減速機付モータの外観側面図である。図2は、その縦断面図である。
 図1および図2に示すように、減速機付モータ1は、例えば、自動車のワイパ駆動用に用いるものである。減速機付モータ1は、電動モータ2と、電動モータ2の回転軸3に連結された減速機構4とを備えている。電動モータ2は、有底筒状のモータハウジングを兼ねたヨーク5と、ヨーク5内に回転自在に設けられたアーマチュア6とを有している。
 ヨーク5の筒部53は略円筒状に形成されており、この筒部53の内周面には、モータマグネット7が設けられている。モータマグネット7の内周面には、周方向に4つの磁極が、N極とS極を交互に並べて配列されている。
 ヨーク5の底壁(エンド部)51には、径方向中央に軸方向外側に向かって突出する軸受ハウジング19が形成され、ここに回転軸3の一端を回転自在に軸支するための滑り軸受18が設けられている。この滑り軸受18は、回転軸3の調心機能を有している。
 筒部53の開口部には外フランジ部52が設けられ、その外フランジ部52に減速機構4のギヤハウジング23の端部が固定されることで、電動モータ2と減速機構4とが一体に結合されている。
(アーマチュア)
 図3は、アーマチュアの外観側面図である。
 図2および図3に示すように、アーマチュア6は、回転軸3に外嵌固定されたアーマチュア本体80と、回転軸3の他端側(減速機構4側)に配置されたコンミテータ10とを備えている。
 アーマチュア本体80は、アーマチュアコア8と、アーマチュアコア8に巻回されたアーマチュアコイル9とを有している。アーマチュアコア8は、プレス加工等によって打ち抜かれた磁性材料のコアプレートを軸方向に積層することで形成された積層コア、あるいは、軟磁性粉を加圧成形した圧粉コアよりなる。
(アーマチュアコア)
 図5に示すように、アーマチュアコア8は、円環状のコア本体11を有している。コア本体11の中心には、回転軸3を圧入するための貫通孔11aが形成されている。また、コア本体11の外周部には、周方向に等間隔にティース12が放射状に6つ設けられている。各ティース12は、軸方向平面視略T字型に形成されたものである。各ティース12は、コア本体11から径方向に沿って放射状に突出する巻胴部12aと、巻胴部12aの先端から周方向に沿って延び、アーマチュアコア8の外周を構成する鍔部12bとにより構成されている。
 このような構成により、隣接するティース12間にはスロット13が6つ形成されている。そして、これらスロット13にエナメル被覆の巻線14を通し、ティース12の巻胴部12aの外周に巻線14を集中巻方式で巻回することで、アーマチュアコイル9が形成されている(アーマチュアコイル9の形成方法の詳細は後述する)。
(コンミテータ)
 次に、アーマチュアの他の構成について述べる。
 図2および図3に示すように、回転軸3のアーマチュアコア8よりも他端側(減速機構4側)には、コンミテータ10が外嵌固定されている。コンミテータ10には、外周面に、導電材で形成されたセグメント15が複数取り付けられている。セグメント15は、アーマチュアコア8のティース12およびスロット13の数の3倍の18枚取り付けられている。セグメント15は軸方向に長い板状の金属片からなり、互いに絶縁された状態で周方向に沿って等間隔に並列に固定されている。このように、電動モータ2は、磁極数が4極、スロット13の個数が6つ、セグメント15の枚数が18枚に設定されたいわゆる4極6スロット18セグメントの電動モータとして構成されている。
 また、各セグメント15のアーマチュアコア8側の端部には、外径側に折り返す形で折り曲げられたライザ16が一体成形されている。ライザ16には、アーマチュアコイル9の端末部が掛け回わされ、ヒュージングなどにより固定されている。これにより、セグメント15と、これに対応するアーマチュアコイル9とが導通される。
 このように構成されたコンミテータ10は、図1に示すように、減速機構4のギヤハウジング23に臨まされている。ギヤハウジング23には、減速機構4の歯車群41が収納されている。また、ギヤハウジング23の電動モータ2側には、ブラシ収納部22が一体成形され、ここに電動モータ2のコンミテータ10が臨まされている。
 ブラシ収納部22の内側には、ホルダステーやブラシホルダ(不図示)を介してブラシ21が出没自在に収納されている。ブラシ21は、コンミテータ10に外部電源(例えば、自動車に搭載されるバッテリ等)からの電力を給電するためのものである。ブラシ21は、不図示のスプリングによってコンミテータ10側に向かって付勢されており、その先端がセグメント15に摺接している。
 ブラシ21は、陽極側に接続されている低速用ブラシ(陽極ブラシ)21a、および高速用ブラシ(陽極ブラシ)21bと、これら低速用ブラシ21aと高速用ブラシ21bとに共通使用され陰極側に接続されている共通ブラシ(陰極ブラシ)21cとにより構成されている。低速用ブラシ21aと共通ブラシ21cは、モータマグネット7の磁極ピッチ(電気角180°)に対応させて、周方向に機械角で90°間隔をあけて配置されている。一方、高速用ブラシ21bは、共通ブラシ21cに対してモータマグネット7の磁極ピッチよりも僅かに進角させた位置に配置されている。なお、高速用ブラシ21bの進角は、例えば、30°に設定されている。
(アーマチュアコイルの形成方法)
 次に、図4、図5に基づいて、アーマチュアコイル9の形成方法の一例について説明する。
 図4は、アーマチュアの展開図である。隣接するティース間の空隙は、スロットに相当している。図5は、巻線の巻回方向を示す図で、コンミテータが配置されていない後方側からアーマチュアを見たものである。なお、以下の図4においては、各セグメント15、各ティース12、および、形成されたアーマチュアコイル9にそれぞれ符号を付して説明する。ここで、18枚のセグメント15のうち、180°対向する位置にあるもの(同電位となるセグメント15同士)は、不図示の接続線等により電気的に接続されている。従って、ブラシに対して同条件のセグメント15には、1~9の同符号を付してある。
 図4、図5に示すように、各ティース12は、それぞれU相、V相、W相が周方向にこの順で割り当てられている。つまり、1番、4番ティース12がU相、2番、5番ティース12がV相、3番、6番ティース12がW相になる。ここで、セグメント15に付した番号のうち、1番に相当する位置は、1番ティース12に対応する位置とする。
 なお、図4において、各ティース12への巻線14の巻回方向が時計回りであるときを順方向と称し、反時計回りであるときを逆方向と称して説明する。
 まず、例えば、巻線14の巻き始め端14aを1番セグメント15より巻き始める場合、この後、巻線14を1番セグメント15近傍に存在する1-6番ティース12の間のスロット13に引き込む。そして、各ティース12に巻線14を順方向に集中巻方式にて巻回する。
 続いて、1-2番ティース12の間のスロット13から巻線14を引き出し、1番セグメント15に隣接する2番セグメント15のライザ16に掛け回す。そして、2番セグメント15に巻き終わり端14bを接続する。これにより、1-2番セグメント15間には、1番ティース12に順方向に巻回されたU相の第1コイル91が形成される。
 また、5番セグメント15のライザ16に巻き始め端14aを掛け回した巻線14を、1-2番ティース12の間のスロット13に引き込む。そして、1番ティース12に逆方向に集中巻方式にて巻回する。
 続いて、1-6番ティース12の間のスロット13から巻線14を引き出し、5番セグメント15に隣接する6番セグメント15のライザ16に掛け回す。そして、6番セグメント15に巻き終わり端14bを接続する。これにより、5-6番セグメント15間には、1番ティース12に逆方向に巻回された「-U」相の第2コイル92が形成される。
 さらに、6番セグメント15のライザ16に巻き始め端14aを掛け回した巻線14を、1-2番ティース12の間のスロット13に引き込む。そして、1番ティース12に回逆方向に集中巻方式にて巻回する。
 続いて、1-6番ティース12の間のスロット13から巻線14を引き出し、6番セグメント15に隣接する7番セグメント15のライザ16に掛け回す。そして、7番セグメント15に巻き終わり端14bを接続する。これにより、6-7番セグメント15間には、1番ティース12に逆方向に巻回された「-U」相の第3コイル93が形成される。
 したがって、U相に相当する1番ティース12には、巻線14が順方向に巻回されて形成されるU相の第1コイル91、巻線14が逆方向に巻回されて形成される「-U」相の第2コイル92および「-U」相の第3コイル93で構成されるアーマチュアコイル9が形成される。
 そして、これを各相に対応するセグメント15間で順次行うことにより、アーマチュアコア8には第1コイル91、第2コイル92および第3コイル93を備えた3相構造のアーマチュアコイル9が形成され、隣接するセグメント15間にU、「-W」、「-W」、V、「-U」、「-U」、W、「-V」、「-V」相のコイル91~93がこの順で電気的に順次接続される。
 なお、各相のコイル91~93を形成する巻線14の巻き始め端14aおよび巻き終わり端14bのセグメント15への接続箇所は、隣接するセグメント15間にU、「-W」、「-W」、V、「-U」、「-U」、W、「-V」、「-V」相のコイル91~93がこの順で電気的に順次接続されていればよい。
 ところで、一般的には、各ティース12に巻回された第1、第2、第3の3つのコイル91、92、93の合計ターン数(巻線14の合計巻回数)をn(nは3の倍数であって自然数)とした場合、第1、第2、第3の3つのコイル91、92、93の各ターン数は、それぞれ同じ「n/3」としているが、本実施形態では、それらのターン数を、合計ターン数nを一定に保った条件で、1つのコイルのターン数が他の2つのコイルのターン数よりも少なくなるように設定している。ここでは、その説明の前に電動モータ2の動作について説明する。
(電動モータの動作)
 電動モータ2の動作説明にあたり、2つの陽極ブラシ(低速用ブラシ21a、高速用ブラシ21b)のうち、低速用ブラシ21aに電圧を印加した場合ついて説明する。
 例えば、図4に示すように、1-2番セグメント15間に低速用ブラシ21aが配置されると共に、6番セグメント15に共通ブラシ21cが配置された場合、U相の第1コイル91は、短絡される。
 そして、「-U」相の第2コイル92に逆方向(図4における反時計回り方向)の電流が流れ、「-U」相の第3コイル93に順方向(図4における時計回り方向)の電流が流れる。すなわち、第2コイル92および第3コイル93には、互いに逆向きの電流が流れるので磁界が相殺され、モータマグネット7との間にトルクが発生しない。
 これに対し、V相の第1コイル91、「-V」相の第2コイル92および「-V」相の第3コイル93には、それぞれ順方向に電流が流れる。また、「-W」相の第1コイル91、「-W」相の第2コイル92および「-W」相の第3コイル93には、それぞれ逆方向に電流が流れる。
 すると、2、3、5、6番ティース12にそれぞれ磁界が形成される。これらの磁界の向きは、周回り方向に順番になる。このため、各ティース12に形成される磁界とモータマグネット7との間に、磁気的な吸引力や反発力が回転軸3を中心にして点対称位置で同じ方向に作用する。そして、これによって回転軸3が回転する。なお、高速用ブラシ21bに電圧を印加すると、この高速用ブラシ21bが進角されているので、この分、回転軸3が高速回転する。
(進角コイル、遅角コイルが生じる理由)
 次に、アーマチュア6が回転するのに伴う、各ティース12の3つのコイル91、92、93の変化について説明する。
 ここで、以下の説明では、ブラシ21の位置自体が進角されていない低速用ブラシ21aに電圧を印加した場合について説明する。また、3相のうち、U相について代表して述べるが、他の相についても同様である。
 アーマチュア6が回転して、図6に示す状態になったとき、5-6番セグメント間の第2コイル92がブラシ21によって短絡される。その際、U相のティース12は、進角0°の位置(ティース12が磁極に正対する位置)から電気角で20°ずれた位置にある。
従って、U相のティース12に、進角20°の起磁力ベクトルが発生する。
 次に、アーマチュア6が回転し、図7に示す状態になったとき、1-2番セグメント間の第1コイル91が短絡される。その際、U相のティース12は、進角0°の位置にあり、その位置で整流される。従って、U相のティース12に、進角0°の起磁力ベクトルが発生する。
 次に、アーマチュア6が回転し、図8に示す状態になったとき、6-7番セグメント間の第3コイル93が短絡される。その際、U相のティース12は、遅角20°の位置にあり、その位置で整流される。従って、U相のティース12に、遅角20°の起磁力ベクトルが発生する。
 以上に鑑みて各相のコイル91~93を形成する巻線14の機能を調べてみると、各ティース12に巻装されている3つのコイル(1つの順巻きコイル91および2つの逆巻きコイル92、93)のうち、1つのコイルが、進角無しの起磁力ベクトルを発生する進角0°コイル(正コイル)、残りの1つのコイルが、進角20°の起磁力ベクトルを発生する進角20°コイル(進角コイル)、最後の1つのコイルが、遅角20°の起磁力ベクトルを発生する遅角20°コイル(遅角コイル)、であることが分かった。
 表1にその分類を示す。なお、表1中に記載の「seg」とはセグメントの略称である。
Figure JPOXMLDOC01-appb-T000001
 以上のように3つのコイル91、92、93が、進角20°、進角0°、遅角20°の働きをすることになると、先に述べたように起磁力ベクトルの不一致から整流性に悪影響が出るおそれがある。そこで、本実施形態の電動モータ2では、コイル91、92、93のターン数に変化を持たせている。すなわち、進角20°コイルのターン数(巻線14の巻回数)をT1、進角0°コイルのターン数をT2、遅角20°コイルのターン数をT3としたとき、T1、T2、T3の大小関係を次のように設定している。
  T2>T1>T3  ・・・(1)
 ただし、「T1+T2+T3=一定」の条件内でT1、T2、T3の大小関係を決めている。
 このように、3つのコイル91、92、93のターン数に変化を持たせることにより、図9(a)、(b)に示すように、特に性能的な影響を及ぼす可能性(例えば、ブラシ寿命の低下)のある遅角20°コイルのセグメント間電圧が低下することが確かめられた。
 ところで、上記の条件(1)は、ブラシ21の位置自体が進角されていない低速用ブラシ21aの場合であり、この低速用ブラシ21aの位置自体が進角されていると、進角の大きさに応じて変える必要があることが分かった。そこで、以下の条件を得ることができた。
 低速用ブラシ21aの進角θが
 (1)0°≦θ≦3° の場合は、T2>T1>T3
 (2)3°<θ≦10°の場合は、T2>T3>T1
 (3)θ=20°の場合は、   T3>T2>T1
に設定する。
 なお、高速用ブラシ21bの位置には、そもそも進角が設定されているが、低速用ブラシ21aと比較して使用頻度が少ないため、低速用ブラシ21aを基準に上記の条件を設定している。
(効果)
 したがって、上述の実施形態によれば、各ティース12に3つのコイル91、92、93が形成されている電動モータ2において、3つのコイル91、92、93のうち、1つのコイルのターン数を他の2つのコイルのターン数よりも少なく設定することにより、各ティース12に巻装された3つのコイル91、92、93による起磁力ベクトルの不一致による整流性の悪化の影響を軽減できる。また、整流の改善によりブラシ寿命を延命させることができる。
 とりわけ、低速用ブラシ21aの位置に応じ、各コイル91、92、93のターン数の条件を上記の条件(1)~(3)に設定することにより、確実に整流性の悪化の影響を低減でき、ブラシ寿命を延命させることができる。
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、自動車のワイパ駆動用に用いる減速機付モータ1の電動モータ2に、上記の3つのコイル91、92、93の構成を適用した場合について説明した。しかしながら、これに限られるものではなく、各ティースに3つのコイルが形成されるさまざまな電動モータに上記の3つのコイル91、92、93の構成を適用することが可能である。
 また、上述の実施形態では、ブラシ21は、低速用ブラシ(陽極ブラシ)21a、高速用ブラシ(陽極ブラシ)21b、共通ブラシ(陰極ブラシ)21cの3つのブラシで構成されている場合について説明した。しかしながら、これに限られるものではなく、陽極ブラシと陰極ブラシとが対となって設けられている電動モータにも、上記の3つのコイル91、92、93の構成を適用することが可能である。
 上記の電動モータによれば、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されているので、3つのコイルによる起磁力ベクトルの不一致による整流性の悪化の影響を軽減できる。また、整流の改善によりブラシ寿命を延命させることができる。
 1 減速機付きモータ
 2 電動モータ
 6 アーマチュア
 7 モータマグネット
 8 アーマチュアコア
 9 アーマチュアコイル
 10 コンミテータ
 15 セグメント
 12 ティース
 13 スロット
 21 ブラシ
 91,92,93 コイル

Claims (5)

  1.  周方向に複数の磁極が配列されたモータマグネットと、
     前記モータマグネットの内側に回転自在に設けられる回転軸と、
     前記回転軸に取り付けられ、径方向外方に向かって放射状に延びる複数のティースおよびこれらティース間に形成される複数のスロットを有するアーマチュアコアと、
     前記各ティースにそれぞれ集中巻方式にて巻装されたコイルと、
     前記回転軸と一体回転するよう設けられ、複数のセグメントを周方向に配置したコンミテータと、
     前記セグメントを介して前記コイルに給電を行うための陽極ブラシおよび陰極のブラシと、を備え、
     前記各ティースに、それぞれ3つのコイルが巻装されており、
     前記3つのコイルのうち、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されている電動モータ。
  2.  前記磁極が4極、前記スロットの個数が6個、前記セグメントの個数が18個に設定され、
     前記各ティースに巻装されている前記3つのコイルは、順方向に巻回して形成された1つの順巻きコイルと、逆方向に巻回して形成された2つの逆巻きコイルと、により構成され、
     前記各ティースを周回り方向にU相、V相、W相の順で割り当て、各相に巻装されている前記順巻きコイルをそれぞれU相、V相、W相のコイルとし、各相に巻装されている前記逆巻きコイルをそれぞれ-U相、-V相、-W相のコイルとしたとき、隣接する前記セグメント間に、U相、-W相、-W相、V相、-U相、-U相、W相、-V相、-V相のコイルがこの順で電気的に接続され、
     巻装されている1つの順巻きコイルおよび2つの逆巻きコイルのうち、1つのコイルのターン数が他の2つのコイルのターン数よりも少なく設定されている請求項1に記載の電動モータ。
  3.  前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、
     前記進角コイルの起磁力ベクトルの進角θ1が
     0°<θ1≦20°
     を満たし、
     前記遅角コイルの起磁力ベクトルの遅角θ2が
     0°<θ2≦20°
     を満たし、
     前記陽極ブラシの位置の進角θ3が
     0°≦θ3≦3°
     を満たす場合において、
     前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、
     前記各ターン数T1,T2,T3は、
     T2>T1>T3
     を満たすように設定されている請求項1または請求項2に記載の電動モータ。
  4.  前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、
     前記進角コイルの起磁力ベクトルの進角θ1が
     0°<θ1≦20°
     を満たし、
     前記遅角コイルの起磁力ベクトルの遅角θ2が
     0°<θ2≦20°
     を満たし、
     前記陽極ブラシの位置の進角θ3が
     3°<θ3≦10°
     を満たす場合において、
     前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、
     前記各ターン数T1,T2,T3は、
     T2>T3>T1
     を満たすように設定されている請求項1または請求項2に記載の電動モータ。
  5.  前記3つのコイルは、起磁力ベクトルが進角側に向かう進角コイルと、起磁力ベクトルが遅角側に向かう遅角コイルと、起磁力ベクトルが進角側にも遅角側にも向かない正コイルとされ、
     前記進角コイルの起磁力ベクトルの進角θ1が
     0°<θ1≦20°
     を満たし、
     前記遅角コイルの起磁力ベクトルの遅角θ2が
     0°<θ2≦20°
     を満たし、
     前記陽極ブラシの位置の進角θ3が
     θ3=20°
     を満たす場合において、
     前記進角コイルのターン数をT1とし、前記正コイルのターン数をT2とし、前記遅角コイルのターン数をT3としたとき、
     前記各ターン数T1,T2,T3は、
     T3>T2>T1
     を満たすように設定されている請求項1または請求項2に記載の電動モータ。
PCT/JP2015/056494 2014-03-14 2015-03-05 電動モータ WO2015137230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/112,537 US10367401B2 (en) 2014-03-14 2015-03-05 Electric motor with commutator segments, anode and cathode brushes and coils having varying number of turns based on anode brush position angle
EP15761469.4A EP3118979B1 (en) 2014-03-14 2015-03-05 Electric motor
CN201580012749.0A CN106104990B (zh) 2014-03-14 2015-03-05 电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052304A JP6316032B2 (ja) 2014-03-14 2014-03-14 電動モータ
JP2014-052304 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137230A1 true WO2015137230A1 (ja) 2015-09-17

Family

ID=54071676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056494 WO2015137230A1 (ja) 2014-03-14 2015-03-05 電動モータ

Country Status (5)

Country Link
US (1) US10367401B2 (ja)
EP (1) EP3118979B1 (ja)
JP (1) JP6316032B2 (ja)
CN (1) CN106104990B (ja)
WO (1) WO2015137230A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928563B2 (ja) 2018-01-10 2021-09-01 株式会社ミツバ モータ
JP7327947B2 (ja) * 2019-02-25 2023-08-16 ニデックプレシジョン株式会社 モータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189870A (ja) * 2006-01-16 2007-07-26 Nidec Copal Corp モータ
WO2013015409A1 (ja) * 2011-07-27 2013-01-31 株式会社ミツバ 電動モータ
JP2013038985A (ja) * 2011-08-10 2013-02-21 Mitsuba Corp 電動モータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2509746A (en) * 1949-03-29 1950-05-30 Gen Electric Rotor winding
JPS601824B2 (ja) * 1977-12-22 1985-01-17 株式会社セコ−技研 重畳しない電機子巻線を備えた直流電動機
JPS5499906A (en) * 1978-01-23 1979-08-07 Sekoh Giken Kk Dc motor equipped with armature coil free from overlapping
US4447751A (en) * 1981-11-12 1984-05-08 Itsuki Ban Direct current motor
US4583016A (en) * 1983-06-28 1986-04-15 Itsuki Ban Direct current motor
JPS6198379U (ja) * 1984-11-30 1986-06-24
US4847526A (en) * 1985-07-11 1989-07-11 Nippon Ferrofluidics Corporation Variant-pole electric motor
US5044065A (en) * 1990-05-24 1991-09-03 Black & Decker Inc. Coil winding armatures with parallel coils
JPH04265653A (ja) * 1991-02-18 1992-09-21 Mitsubishi Electric Corp 直流電動機の電機子
JP3047544B2 (ja) 1991-08-30 2000-05-29 株式会社日立製作所 交流整流子電動機
JPH11178300A (ja) 1997-12-15 1999-07-02 Asmo Co Ltd アーマチャ及びそのアーマチャを備えた回転電機
JP2000341892A (ja) 1999-05-31 2000-12-08 Asmo Co Ltd 集中巻線モータの製造方法及び集中巻線モータ
JP3954504B2 (ja) * 2003-01-23 2007-08-08 アスモ株式会社 モータ
CN1864318B (zh) * 2003-10-08 2013-04-24 株式会社美姿把 旋转电机中的电枢及其制造方法
JP4528825B2 (ja) * 2007-12-21 2010-08-25 日立アプライアンス株式会社 自己始動型永久磁石同期電動機及びこれを用いた圧縮機
JP5515426B2 (ja) * 2009-05-28 2014-06-11 日本電産株式会社 モータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189870A (ja) * 2006-01-16 2007-07-26 Nidec Copal Corp モータ
WO2013015409A1 (ja) * 2011-07-27 2013-01-31 株式会社ミツバ 電動モータ
JP2013038985A (ja) * 2011-08-10 2013-02-21 Mitsuba Corp 電動モータ

Also Published As

Publication number Publication date
EP3118979A1 (en) 2017-01-18
JP6316032B2 (ja) 2018-04-25
JP2015177637A (ja) 2015-10-05
EP3118979A4 (en) 2017-12-06
US10367401B2 (en) 2019-07-30
CN106104990A (zh) 2016-11-09
CN106104990B (zh) 2018-11-23
EP3118979B1 (en) 2019-06-05
US20160344273A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US8436505B2 (en) Electric motor and reduction motor
US8378547B2 (en) Electric motor
JP4886469B2 (ja) 直流モータのアーマチュア、直流モータ及び直流モータのアーマチュア巻線方法
US8274193B2 (en) Electric motor
JP2008136343A (ja) 直流モータのアーマチュア、直流モータ及び直流モータのアーマチュア巻線方法
EP3116101B1 (en) Armature core, armature, and electric motor
WO2015137230A1 (ja) 電動モータ
JP2016208800A (ja) 電動モータ
JP2011041389A (ja) 3相直流モータ
EP3373420A1 (en) Rotor of rotating electric machine
JP2020058172A (ja) モータ
JP2010004597A (ja) ブラシ付モータ
JP5300339B2 (ja) ブラシ付モータ
JP6595346B2 (ja) モータ
JP2019198205A (ja) 電動モータ
EP3739735B1 (en) Motor
JP5546146B2 (ja) 直流モータ
JP2017017804A (ja) 電動モータおよび減速機付モータ
JP2009303389A (ja) ブラシ付モータ
WO2019049582A1 (ja) モータ
JP5931489B2 (ja) 直流モータの巻線巻装方法、及び直流モータ
JP2009106080A (ja) 電動モータ
JP2008148428A (ja) 直流モータのアーマチュア、直流モータ及び直流モータのアーマチュア巻線方法
JP2012222937A (ja) 3相直流モータ
JP2008289277A (ja) 直流モータのアーマチュア、直流モータおよび直流モータのコイル巻装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761469

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015761469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015761469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15112537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201606818

Country of ref document: ID