WO2015129562A1 - 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法 - Google Patents

低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法 Download PDF

Info

Publication number
WO2015129562A1
WO2015129562A1 PCT/JP2015/054723 JP2015054723W WO2015129562A1 WO 2015129562 A1 WO2015129562 A1 WO 2015129562A1 JP 2015054723 W JP2015054723 W JP 2015054723W WO 2015129562 A1 WO2015129562 A1 WO 2015129562A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
metal paste
silver particles
particles
solid content
Prior art date
Application number
PCT/JP2015/054723
Other languages
English (en)
French (fr)
Inventor
勇一 牧田
久保 仁志
優輔 大嶋
淳一 谷内
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54008883&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015129562(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020167023468A priority Critical patent/KR101866111B1/ko
Priority to DE112015000957.4T priority patent/DE112015000957B4/de
Priority to KR1020187009140A priority patent/KR20180036799A/ko
Priority to CN201580010191.2A priority patent/CN106062886B/zh
Publication of WO2015129562A1 publication Critical patent/WO2015129562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a metal paste in which silver particles are dispersed in a solvent.
  • a metal paste essentially containing silver particles having a particle size of 100 to 200 nm, which can be sintered at a relatively low temperature of 150 ° C. or lower and can produce a low-resistance silver sintered body.
  • paste a metal paste essentially containing silver particles having a particle size of 100 to 200 nm, which can be sintered at a relatively low temperature of 150 ° C. or lower and can produce a low-resistance silver sintered body.
  • a metal paste in which conductive metal particles are kneaded and dispersed in a solvent as a solid content is used as a circuit forming material in printed electronics and as a conductive bonding material for bonding various semiconductor elements to a substrate.
  • This metal paste is applied to a substrate or a member to be joined and then heated and fired to sinter the metal particles, thereby forming circuits / electrodes, joints / bonding portions.
  • a metal paste that applies silver particles as metal particles is attracting attention as a particularly useful metal paste for the above applications.
  • Silver is a metal having a low specific resistance, and an appropriately formed sintered body can effectively act as a conductive film.
  • silver has the advantage of excellent thermal conductivity, and the metal paste to which silver is applied can be used as a bonding material and heat conduction material for manufacturing semiconductor devices in which the operating temperature is increased due to the large current of power devices and the like. It is supposed to be effective.
  • Patent Document 1 includes silver nanoparticles having an average primary particle diameter of 1 to 200 nm and a dispersion medium having a boiling point of 230 ° C. or more, and further 0.5 to 3.0 ⁇ m.
  • a bonding material comprising submicron silver particles of the following is described.
  • the bonding material made of the metal paste described in Patent Document 1 has a bonding temperature (sintering temperature) for silver particle sintering of 200 ° C. or higher. This bonding temperature can be said to be lower than that of the brazing material, but it is difficult to say that the bonding temperature is sufficiently low.
  • the level of the joining temperature is an element that can affect the semiconductor element that is the material to be joined, and it is desirable that the joining temperature be as low as possible.
  • the sintering temperature of metal particles the possibility of adjustment by controlling the size (particle size) is known.
  • This is referred to as a so-called nano-size effect, and is a phenomenon in which the melting point of the metal particles is remarkably lowered as compared with the bulk material when the nano-particles are tens of nanometers or less.
  • the metal paste described in Patent Document 1 contains silver particles with a relatively large particle size of submicron size, so it is considered difficult to sinter at low temperatures. However, if this nanosize effect is used, sintering is performed at a lower temperature. It is believed that a possible metal paste can be obtained.
  • nano-level silver particles those produced by a thermal decomposition method of a silver complex according to Patent Document 2 have been reported.
  • a heat-decomposable silver compound such as silver oxalate (Ag 2 C 2 0 4 ) is used as a raw material to react with an appropriate organic substance to form a precursor complex, which is heated to form silver particles. How to get.
  • minute nano-level silver particles having an average particle diameter of a few nanometers to a few tens of nanometers with relatively uniform particle diameters can be produced.
  • the metal paste composed of the nano-level silver particles Although nano-level silver particles are sintered at a low temperature of 200 ° C. or lower, the resistance value of the sintered body tends to be considerably higher than that of the bulk material. This problem greatly impairs the usefulness of the metal paste as a circuit material or a conductive bonding material.
  • the present invention can sinter silver particles in a low temperature range for a metal paste containing silver particles, and can form a sintered body with low resistance and a sintered body with excellent thermal conductivity. Offer things.
  • a low temperature range of 150 ° C. or lower was set as the target value of the sintering temperature.
  • the present invention for solving the above-mentioned problems is a metal paste obtained by kneading a solid content composed of silver particles and a solvent, wherein the solid content contains 30% or more of silver particles having a particle size of 100 to 200 nm on the basis of the number of particles. Further, the silver particles constituting the solid content are a metal paste in which an amine compound having a total carbon number of 4 to 8 is bonded as a protective agent.
  • the metal paste according to the present invention contains a certain proportion or more of silver particles constituting a solid content kneaded with a solvent having a medium particle size range of 100 to 200 nm. Further, these silver particles are obtained by binding a protective agent made of a specific amine compound. According to the present inventors, the possibility of sintering at low temperatures and the reduction in resistance of the sintered body, which are the problems of the present application, are to make the particle size range of the main silver particles within the above range, and to use an appropriate protective agent. Effectively achieved as a result of the combination with the selection. Hereinafter, the present invention will be described in more detail.
  • silver particles having a particle size of 100 to 200 nm are present in an amount of 30% or more on the basis of the number of particles with respect to the whole silver particles as solids. This is because such moderately fine silver particles contribute to low temperature sintering. It is preferable that all the silver particles contained in the paste have a particle size of 100 to 200 nm, that is, a ratio of 100%, but this need not be the case. If silver particles having a particle size of 100 to 200 nm are 30% or more, particles outside this particle size range may be present.
  • the ratio of the silver particles having a particle size of 100 to 200 nm is 30% or more, 150 ° C. or less. Sintering is possible, and the resistance value of the sintered body is low.
  • it may be a metal paste in which coarse silver particles having a particle size of more than 500 nm are mixed with silver particles having a particle size of 100 to 200 nm. Usually, coarse silver particles exceeding 500 nm (0.5 ⁇ m) are not sintered at 200 ° C. or lower. However, when silver particles having a particle diameter of 100 to 200 nm applied in the present invention are present in a certain ratio or more, the entire silver particles including such coarse particles are sintered at a low temperature.
  • the ratio of the number of silver particles having a particle diameter of 100 to 200 nm is less than 30%, sintering does not occur at 150 ° C. or lower or is insufficient.
  • all the silver particles in the metal paste have a particle size of 100 to 200 nm, that is, those having a number ratio of 100%, have the effect of the present invention.
  • the average particle diameter (number average) for all silver particles is A thickness of 60 to 800 nm is preferable.
  • the sinterability of silver particles having a particle size of 100 to 200 nm is also related to the action of a protective agent bonded to the silver particles.
  • the protective agent is a compound that binds to a part or the whole surface of metal particles suspended in a solvent, and suppresses aggregation of the metal particles.
  • the protective agent bonded to the silver particles is an amine compound having 4 to 8 carbon atoms in total.
  • a protective agent for silver particles organic substances such as carboxylic acids are generally applicable in addition to amines, but the protective agent applied in the present invention is limited to amine compounds when a protective agent other than amine is applied. This is because sintering of silver particles at 150 ° C. or lower does not occur. In this respect, even when the particle diameter of the silver particles is in the range of 100 to 200 nm, low-temperature sintering does not occur with a protective agent other than amine.
  • the total number of carbon atoms of the amine compound as a protective agent is set to 4-8 because the carbon number of the amine affects the stability and sintering characteristics of the silver particles in relation to the particle size of the silver particles. Because. This is because it is difficult for an amine having less than 4 carbon atoms to stably present silver fine particles having a particle diameter of 100 nm or more, and it is difficult to form a uniform sintered body. On the other hand, amines having more than 8 carbon atoms tend to increase the stability of silver particles excessively and increase the sintering temperature. Therefore, the protective agent of the present invention is limited to amine compounds having 4 to 8 carbon atoms in total.
  • the amine compound is preferably an amine compound having a boiling point of 220 ° C. or lower. Silver particles to which such a high-boiling amine compound is bonded are difficult to separate during sintering even if the particle size range is in an appropriate range, thus inhibiting the progress of sintering.
  • the number of amino groups in the amine compound as the protective agent (mono) amine having one amino group or diamine having two amino groups can be applied.
  • the number of hydrocarbon groups bonded to the amino group is preferably one or two, that is, primary amine (RNH 2 ) or secondary amine (R 2 NH) is preferable.
  • RNH 2 primary amine
  • R 2 NH secondary amine
  • the hydrocarbon group bonded to the amino group may be a hydrocarbon group having a cyclic structure in addition to a chain hydrocarbon having a linear structure or a branched structure. Further, oxygen may be partially included.
  • the protective agent applied in the present invention include the following amine compounds.
  • the protective agent composed of the above-described amine compound is bonded to all silver particles in the metal paste.
  • silver particles having a particle size of 100 to 200 nm are essential, but silver particles having a particle size outside this range are allowed to be mixed. Even when such silver particles having different particle diameters are mixed, it is naturally required that the protective agent for silver particles having a particle diameter of 100 to 200 nm is the above-mentioned amine compound, but it is outside the range of 100 to 200 nm.
  • the silver particles are required to have the amine compound protective agent bound thereto.
  • the compounds are not necessarily the same, and different protecting agents may be included as long as the total number of carbon atoms is 4 to 8 (for example, within the range shown in Table 1).
  • an amine compound as a protective agent is contained in an amount that is not excessive or insufficient, and is bonded to silver particles in order to ensure low-temperature sinterability.
  • the amount of the protective agent is small, the protective effect on the silver particles is insufficient, and the silver particles agglomerate during storage and the low-temperature sinterability is impaired.
  • bonds with silver particle excessively there exists a possibility that the volume shrinkage of the silver sintered compact by amine loss
  • a ratio of nitrogen concentration (mass%) to silver particle concentration (mass%) is preferably 0.0003 to 0.003. If it is less than 0.0003, the protective effect on silver particles is insufficient, and if it exceeds 0.003, the sintered body may be cracked.
  • the nitrogen concentration in the metal paste can be measured by elemental analysis (CHN analysis or the like) of the paste, and the silver particle concentration can be easily obtained from the mass of silver particles and the amount of solvent used during paste production.
  • the silver particles combined with the silver particle protective agent described above are dispersed and suspended in a solvent to form a metal paste.
  • a solvent an organic solvent having 8 to 16 carbon atoms and having an OH group in the structure and a boiling point of 280 ° C. or lower is preferable. This is because when the silver particle sintering temperature target is set to 150 ° C. or lower, it is difficult to volatilize and remove a solvent having a boiling point higher than 280 ° C.
  • this solvent examples include terpineol (C10, boiling point 219 ° C.), dihydroterpineol (C10, boiling point 220 ° C.), texanol (C12, boiling point 260 ° C.), 2,4-dimethyl-1,5-pentadiol ( C9, boiling point 150 ° C.) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (C16, boiling point 280 ° C.).
  • a plurality of solvents may be used as a mixture, or may be used alone.
  • the solvent content is preferably 5% to 60% by mass. If it is less than 5%, the viscosity of the paste becomes too high. If it exceeds 60%, it becomes difficult to obtain a sintered body having a required thickness.
  • the metal paste according to the present invention is produced by kneading a solid containing 30% or more of silver particles having a particle diameter of 100 to 200 nm in a solvent. In order to produce a solid content made of silver particles containing 30% or more of silver particles having a particle size of 100 to 200 nm, it is required to produce silver particles while adjusting the particle size and particle size distribution.
  • the thermal decomposition method which used the silver complex as the precursor is employ
  • the thermal decomposition method uses a silver compound having thermal decomposability such as silver oxalate (Ag 2 C 2 0 4 ) as a starting material, and forms a silver complex with an organic compound that serves as a protective agent. Is heated to obtain silver particles.
  • the thermal decomposition method is also a method applied in the above-mentioned Patent Document 2.
  • the particle size adjustment is easier than other silver particle production methods such as a liquid phase reduction method (the method described in Patent Document 1), and comparatively grain size Silver particles with a uniform diameter can be produced.
  • the conventional pyrolysis method is suitable for the production of fine silver particles having an average particle diameter of several nm to several tens of nm. It was difficult to preferentially produce silver particles having a moderately large particle size range of 100 to 200 nm.
  • the present inventors consider the mechanism of silver particle formation by the pyrolysis method, and adjust the amount of water in the reaction system when the silver complex is pyrolyzed to form silver particles, thereby allowing silver having a particle size of 100 to 200 nm. The particles were preferentially manufactured.
  • the method for producing silver particles according to the present invention comprises producing a silver-amine complex as a precursor by mixing a silver compound having thermal decomposability and an amine, and heating the reaction system containing the precursor.
  • the water content of the reaction system before heating is set to 5 to 100 parts by weight with respect to 100 parts by weight of the silver compound.
  • the silver compound having thermal decomposability as a starting material is silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, Silver citrate, silver lactate, etc.
  • silver oxalate Ag 2 C 2 O 4
  • silver carbonate Ag 2 CO 3
  • Silver oxalate and silver carbonate can be decomposed at a relatively low temperature without requiring a reducing agent to produce silver particles. Further, since carbon dioxide generated by the decomposition is released as a gas, no impurities remain in the solution.
  • silver oxalate is explosive in the dry state
  • water or an organic solvent (alcohol, alkane, alkene, alkyne, ketone, ether, ester, carboxylic acid, fatty acid, aromatic, amine, amide, nitrile Etc.) are preferably mixed and wetted. By making it wet, explosiveness is remarkably lowered and handling becomes easy. At this time, a mixture of 5 to 200 parts by weight of a dispersion solvent with respect to 100 parts by weight of silver oxalate is preferable.
  • the present invention since the present invention strictly regulates the amount of water in the reaction system, the mixing of water needs to be within a range not exceeding the specified amount.
  • a silver-amine complex that is a precursor of silver particles is formed by mixing and reacting the above silver compound and an amine compound.
  • an amine compound having a total carbon number of 4 to 8 is used as the amine used here.
  • the amine compound is mixed so that the ratio of the mass of the amine compound (protective agent) to the mass of silver in the silver compound (the mass of the amine compound (protective agent) / Ag mass) is 2 to 5. Adjust the amount. This is because a sufficient silver-amine complex is formed without generating an unreacted silver compound. Even if an excessive amine compound is bonded to the silver particles, it is removed by washing after the silver particles are produced.
  • a silver-amine complex is formed by the reaction between the silver compound and the amine compound, and a reaction system for producing silver particles is formed. Thereafter, the reaction system is heated to produce silver particles.
  • the amount of water in the reaction system is defined at this stage. It is considered that the water in the reaction system acts as a buffering agent that causes heating to proceed uniformly in the complex decomposition step.
  • the buffering action of water is used to relax the temperature difference in the reaction system during heating, and promote nucleation and growth of silver particles while making them uniform.
  • the water content of the reaction system needs to be in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the silver compound.
  • a preferred range for the water content is 5 to 95 parts by weight, and a more preferred range is 5 to 80 parts by weight.
  • the amount of water is small (less than 5 parts by weight)
  • the particle size of the obtained silver particles is mainly fine particles of less than 100 nm, and the proportion of silver particles of 100 to 200 nm is reduced.
  • the amount of water is large (exceeding 100 parts by weight)
  • the particle size variation of the silver particles becomes too large, and the ratio of the silver particles of 100 to 200 nm tends to decrease.
  • the water content of this reaction system is the water content immediately before the heating step, and it is necessary to consider the amount of water added to the reaction system so far.
  • the amount of water added in advance is also included in the amount of water. For this reason, when only the amount added in advance to the silver compound or the homogenizing agent falls within the specified range of the water content, it can be heated as it is without separately adjusting the water content of the reaction system.
  • the amount added in advance is less than the lower limit (5 parts by weight) of the water content, it is necessary to adjust the amount of water, such as adding water separately.
  • the timing for adding water may be before the heating step, and may be added at any stage before or after the formation of the silver-amine complex.
  • the reaction system is composed of a silver-amine complex and an appropriate range of moisture, and silver particles having a suitable particle size range can be produced without other additives.
  • adjustment of the particle size distribution increase in the proportion of silver particles of 100 to 200 nm
  • addition of additives for further stabilization of the silver complex are not excluded depending on the relationship of the amine compound used. .
  • the additive applicable in the present invention is a homogenizing agent for adjusting the particle size distribution.
  • This homogenizing agent is an organic compound represented by Chemical Formula 1 having an amide as a skeleton.
  • This homogenizing agent makes the silver particle size uniform by making the stability of the silver-amine complex in the reaction system uniform and by aligning the timing of nucleation and growth when silver particles are produced by complex decomposition. Additives to align.
  • An organic compound that functions as a homogenizing agent is required to have an amide (carboxylic amide) (NC—O) in its skeleton.
  • R represents hydrogen, hydrocarbon, aminoalkyl or an amino group comprising a combination thereof
  • R ′, R ′′ represents hydrogen or hydrocarbon.
  • organic compound that is a homogenizing agent examples include urea, urea derivatives, N, N-dimethylformamide (DMF: (CH 3 ) 2 NCHO), N, N-diethylformamide (DEF: (C 2 H 5 ) 2 NCHO), N, N-dimethylacetamide (C 4 H 9 NO), N, N-dimethylpropionamide (C 5 H 11 NO), N, N-diethylacetamide (C 6 H 13 NO) Etc.
  • urea derivatives include 1,3-dimethylurea (C 3 H 8 N 2 O), tetramethylurea (C 5 H 12 N 2 O), 1,3-diethylurea (C 5 H 12 N 2 O), and the like. Is mentioned.
  • the amount is the ratio of the number of moles of the homogenizing agent (mol homogenizing agent ) to the number of moles of silver (mol Ag ) in the silver compound (mol homogenizing agent / mol Ag ). Therefore, it is preferably 0.1 or more.
  • the total addition amount is preferably 0.1 or more. If the molar ratio is less than 0.1, the effect is difficult to occur.
  • the upper limit of the molar ratio (the upper limit of the homogenizing agent) is not particularly specified, but is preferably 4 or less with respect to silver of the silver compound in consideration of the purity of the silver particles.
  • the homogenizing agent is preferably added as it is in the case of a liquid organic compound. Further, in the case of a solid compound such as urea, it may be added as a solid or may be added as an aqueous solution. However, when the aqueous solution is used, it is necessary to consider the water content of the reaction system.
  • the heating temperature at this time is preferably not less than the decomposition temperature of the silver-amine complex.
  • the decomposition temperature of the silver-amine complex varies depending on the type of amine coordinated to the silver compound, but in the case of the silver complex of the amine compound applied in the present invention, the specific decomposition temperature is 90 to 130 ° C.
  • the heating rate affects the particle size of the precipitated silver particles. Therefore, the particle size of the silver particles can be controlled by adjusting the heating rate of the heating step.
  • the heating rate in the heating step is preferably adjusted in the range of 2.5 to 50 ° C./min up to the set decomposition temperature.
  • the precipitated silver particles are recovered through solid-liquid separation and become a solid content of the metal paste. What is important here is that washing is performed so that excessive amine compounds do not bind to the recovered silver particles.
  • the silver particles are preferably washed with an alcohol having a boiling point of 150 ° C. or lower such as methanol, ethanol, propanol or the like as a solvent.
  • an alcohol having a boiling point of 150 ° C. or lower such as methanol, ethanol, propanol or the like as a solvent.
  • cleaning after adding a solvent to the solution after silver particle synthesis
  • the amount of amine removed can be controlled by the volume of solvent added and the number of washings.
  • the solvent is used in a volume of 1/20 to 3 times that of the solution after silver particle synthesis, and washed 1 to 5 times.
  • the collected silver particles can be made into a metal paste by kneading with an appropriate solvent as a solid content.
  • an appropriate solvent as a solid content.
  • the solvent those described above can be applied.
  • the production of silver particles by the above process is performed in two or more systems, and a mixture of two or more kinds of silver particles produced by them is used as a solid content, which is kneaded with a solvent to produce a metal paste. Also good.
  • the metal paste containing silver particles with controlled particle size according to the present invention can be sintered even at a low temperature range of 150 ° C. or lower, and the resulting sintered body exhibits a low resistance value equivalent to that of bulk silver. .
  • the metal paste according to the present invention can be applied as a conductive bonding material, and is also useful as a bonding material for electrical devices that handle large currents such as power devices.
  • the figure explaining the silver particle manufacturing process in this embodiment The SEM photograph which shows the form of the silver particle manufactured by this embodiment.
  • silver particles are produced while changing various conditions such as a silver compound as a raw material and an amine compound as a protective agent, and after kneading with a solvent to produce a metal paste, its thermal analysis and sintering characteristics And the resistance of the sintered compact was evaluated.
  • the outline of the manufacturing process of the silver particle in this embodiment is shown in FIG. 1, and the manufacturing process of a silver particle is demonstrated.
  • Silver Particles In this embodiment, 1.41 g of silver oxalate or 1.28 g of silver carbonate was used as a raw material silver compound so that the silver content was 1 g. When these silver compounds are used as they are, they are moistened with 0.3 g of water (21 parts by weight for 100 parts by weight of silver oxalate and 23 parts by weight for 100 parts by weight of silver carbonate). I prepared something in a state.
  • amine compounds were added to the silver compound as a protective agent to produce a silver-amine complex.
  • the silver compound and amine were mixed at room temperature and kneaded until creamed.
  • the produced silver-amine complex was optionally added in combination with a urea solution and DMF as a homogenizing agent. In consideration of the amount of water, water was sometimes added. And the water content of the reaction system was checked before heating.
  • the protective agent the example which applied oleic acid as things other than an amine is also prepared.
  • the reaction system in which the water content was confirmed was heated from room temperature to decompose the silver-amine complex and precipitate silver particles.
  • the heating temperature at this time was assumed to be 110 to 130 ° C. as the decomposition temperature of the complex, and this was set as the ultimate temperature.
  • the heating rate was 10 ° C./min.
  • Low-temperature sintering test The metal paste produced above was sintered at a low temperature, and the presence / absence of sintering, electrical resistance of the sintered body, and adhesion (bonding force) were evaluated.
  • 50 mg of each metal paste was applied to a Si substrate (with gold plating) (targeted to a film thickness of 50 ⁇ m), the temperature was raised to 150 ° C. at a rate of 2 ° C./min, and the temperature was increased to 150 ° C. At that stage, it was held for 2 hours and sintered.
  • the sintered body was evaluated by first observing SEM and evaluating the presence or absence of the sintered body formation, and then measuring the volume resistivity.
  • metal pastes a, b, and c having a particle size ratio of 100 to 200 nm and an average particle size of 20 to 30 nm are easily obtained. Sintered. On the other hand, metal pastes m, n, and o that tend to have a large average particle size are difficult to sinter. From these results, it can be said that there is a temporary correlation between the particle size and the sintering temperature. However, the metal pastes a to c form a sintered body, but have a high resistance value and poor adhesion. Moreover, although sintered, many cracks were generated in the sintered body and there were some powdered portions.
  • the resistance value it is considered that the resistance is larger than the resistance value (1.6 ⁇ ⁇ cm) of the bulk silver due to the voids called cracks.
  • the influence of the presence of cracks can be considered on the adhesion, but in the first place, it is considered that the metal paste mainly composed of these fine silver particles is not sufficiently sintered (details will be described later). This will be explained by the results of thermal behavior studies). From these results, it can be said that it is not preferable to discuss only the average particle size in order to achieve both low-temperature sinterability of silver particles and low resistance of the sintered body.
  • metal pastes (d to f, h, j to l) which contain silver particles having a suitable particle size (particle size of 100 to 200 nm) and suitable protective agents have good low-temperature sinterability. There were no cracks. And resistance value is also a value close
  • the metal paste g preferably has a silver particle ratio of 100 to 200 nm, but since hydroxyethylaminopropylamine (boiling point: 250 ° C.) with a boiling point exceeding 220 ° C. is applied, the sinterability at low temperatures is It can be said that it is inferior.
  • metal paste i to which oleic acid was applied as a protective agent instead of an amine compound although a silver particle ratio of 100 to 200 nm was suitable, low-temperature sintering could not be performed.
  • the metal paste (a to c) mainly composed of fine silver particles (particle size 20 to 30 nm) sinters, but many cracks occur in the sintered body. It was confirmed that the adhesion was also poor. On the other hand, the metal paste mainly composed of particles having a particle diameter of 100 to 200 nm according to the present invention did not cause any problems in sintering and cracks. Here, it was decided to conduct an analysis to confirm the difference in thermal behavior of each metal paste and the crack generation mechanism.
  • the thermal history (held at 150 ° C. for 2 hours) performed in the low-temperature sintering test is close to the actual usage of the metal paste, but there is no change in the heating temperature. Not suitable for analysis of thermal behavior. Therefore, in this embodiment, TG-DTA analysis (differential thermal analysis) for heating the metal paste at a constant temperature increase rate was performed, and the number of exothermic peaks and the generated temperature due to the sintering of silver particles were confirmed.
  • the rate of temperature rise is 5 ° C./min to 20 ° C./min.
  • the measurement temperature range was from room temperature to 500 ° C., and the measurement was performed at a rate of temperature increase of 10 ° C./min.
  • FIG. 4 shows DTA curves of pastes c, f, i, and m as a representative example. Table 4 shows the number of exothermic peaks due to the sintering of silver particles and the measurement results of the generated temperature for the DTA curve measured for each metal paste.
  • the metal paste (a to c) mainly composed of fine silver particles having a particle size of 20 to 30 nm has an exothermic peak at less than 200 ° C. (180 ° C., 190 ° C.), and more than 200 ° C. ( Even at 210 ° C. and 230 ° C., exothermic peaks appear.
  • the exothermic peak at low temperature is expected in these metal pastes, which are considered to be sintered at low temperature due to the nanosize effect.
  • a plurality of exothermic peaks appear in this way because the sintering behavior of fine silver particles proceeds in multiple stages.
  • the metal paste (d to f, h, j to l) mainly composed of particles having a particle diameter of 100 to 200 nm according to the present invention exhibits a characteristic behavior in the DTA results. That is, in this metal paste, only one exothermic peak derived from the silver particle sintering of the DTA curve appears in a temperature range below 200 ° C. (180 ° C., 190 ° C.). The occurrence of only one exothermic peak indicates that the silver particles are completely sintered in one stage. The phenomenon in which a single exothermic peak appears in this low temperature range is unique.
  • the low-temperature sintering test of this embodiment is equivalent to the heating conditions (fixed at 150 ° C. and held for a certain period of time) in actual use. From this test result, the metal paste suitable for this embodiment is It can be understood that the low temperature sintering property is excellent.
  • FIG. 5 is an SEM photograph of 180 ° C. and 210 ° C. sintered bodies of pastes c and f.
  • 180 ° C. which is the first stage, no cracks occurred in the sintered bodies for both pastes c and f.
  • 210 ° C. corresponding to the second stage for c many cracks are generated only in c. That is, the crack in the paste c is generated during the second stage sintering. It can be said that such a crack does not occur in the paste f not subjected to multi-stage sintering.
  • FIG. 6 is an enlarged view of the photograph of 210 ° C. heating in FIG. According to this photograph, the pastes c and f are very similar in shape and particle size (about 500 nm) of individual particles constituting the sintered body. From this, the hypothesis holds that the diameter of the thermally stable unit particles (units) in the silver sintered body is roughly determined regardless of the particle diameter of the silver particles before sintering.
  • the results of DTA analysis confirm that it is necessary to select an appropriate amine as a protective agent for the silver particles.
  • the temperature is as high as 200 ° C. or more (metal paste i) although there is only one exothermic peak due to sintering.
  • the metal paste g has a silver particle ratio of 100 to 200 nm in particle size, but an amine compound with a high boiling point was applied, so that an exothermic peak appeared at 200 ° C. or higher. Even when the particle size is too large, the exothermic peak does not appear unless it is 200 ° C. or higher (metal paste m).
  • the silver paste according to the present invention acquires low-temperature sinterability by adjusting the particle size range of the main silver particles.
  • the silver sintered body formed according to the present invention has a low resistance and a sufficient bonding strength. It can be widely used as a wiring material, a bonding material or a heat conduction material that requires a sintering process at a low temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 本発明は、銀粒子からなる固形分と溶剤とを混練してなる金属ペーストにおいて、前記固形分が、粒径100~200nmの銀粒子を粒子数基準で30%以上含む銀粒子で構成されており、更に、固形分を構成する銀粒子は、保護剤として炭素数の総和が4~8のアミン化合物が結合したものである金属ペーストである。この金属ペーストは、固形分を構成する銀粒子全体の平均粒径が60~800nmであるものが好ましい。本発明に係る金属ペーストは、150℃以下の低温域でも銀粒子を焼結させて低抵抗の焼結体を形成することができる。

Description

低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法
 本発明は、銀粒子が溶剤に分散する金属ペーストに関する。詳しくは、粒径100~200nmの銀粒子を必須的に含む金属ペーストであって、150℃以下の比較的低温でも焼結可能であり、且つ、低抵抗の銀焼結体を生成可能な金属ペーストに関する。
 導電性の金属粒子を固形分として溶剤に混練・分散させた金属ペーストが、プリンテッドエレクトロニクスにおける回路形成材や、各種半導体素子を基板へ接合するための導電性接合材として使用されている。この金属ペーストは、基板や被接合部材へ塗布後に加熱焼成して金属粒子を焼結させることで回路・電極や接合部・接着部を形成するものである。
 そして、上記用途に対して特に有用な金属ペーストとして着目されているのが、金属粒子として銀粒子を適用する金属ペーストである。銀は比抵抗の低い金属であり、適切に形成された焼結体は導電膜として有効に作用することができる。また、銀は熱伝導性に優れるという利点もあり、銀を適用する金属ペーストは、パワーデバイス等の大電流化され動作温度が高温となる半導体機器製造のための接合材、熱伝導材としても有効であるとされている。
 銀粒子を適用する金属ペーストとしては、例えば、特許文献1に、平均一次粒子径が1~200nmの銀ナノ粒子と沸点230℃以上の分散媒とからなり、更に、0.5~3.0μmのサブミクロン銀粒子を含む接合材が記載されている。特許文献1記載の金属ペーストからなる接合材は、銀粒子焼結のための接合温度(焼成温度)を200℃以上としている。この接合温度は、ろう材による接合温度に比べると低温ということもできるが、十分に低温であるとはいい難い。接合温度の高低は被接合材である半導体素子へ影響を及ぼし得る要素であり、できる限り低温での焼結が可能であるものが望ましい。
 ここで、金属粒子の焼結温度に関しては、そのサイズ(粒径)の制御による調整の可能性が知られている。これはいわゆるナノサイズ効果と称されており、金属粒子は数十nm以下のナノレベルの微粒子となるとバルク材に比べて著しく融点が降下するという現象である。特許文献1記載の金属ペーストは、サブミクロンサイズの比較的大粒径の銀粒子を含むため低温での焼結は難しいと考えられるが、このナノサイズ効果を利用すれば、より低温で焼結可能な金属ペーストを得ることができると考えられる。
 ナノレベルの銀粒子として特許文献2等による銀錯体の熱分解法により製造されたものが報告されている。熱分解法は、シュウ酸銀(Ag)等の熱分解性の銀化合物を原料として適宜の有機物と反応させて前駆体となる錯体を形成し、これを加熱し銀粒子を得る方法である。熱分解法によれば、比較的粒径の揃った平均粒径が数nm~十数nmの微小なナノレベルの銀粒子を製造できる。
国際公開第2011/155615号パンフレット 特開2010-265543号公報
 しかし、本発明者等によれば、このナノレベルの銀粒子で構成した金属ペーストにも問題があることが確認されている。ナノレベルの銀粒子は200℃以下の低温で焼結が生じるものの、焼結体の抵抗値がバルク材よりも相当高くなる傾向がある。この問題は、回路材料や導電性接合材としての金属ペーストにとってその有用性を大きく損なうものである。
 そこで、本発明は、銀粒子を含む金属ペーストについて、低温域で銀粒子を焼結させることができ、その上で抵抗の低い焼結体や熱伝導性に優れた焼結体を形成可能なものを提供する。本発明において焼結温度の目標値としては、150℃以下の低温域を設定した。
 上記課題を解決する本発明は、銀粒子からなる固形分と溶剤とを混練してなる金属ペーストにおいて、前記固形分が、粒径100~200nmの銀粒子を粒子数基準で30%以上含む銀粒子で構成されており、更に、固形分を構成する銀粒子は、保護剤として炭素数の総和が4~8のアミン化合物が結合したものである金属ペーストである。
 本発明に係る金属ペーストは、溶剤と混練される固形分を構成する銀粒子について、粒径100~200nmの中程度の粒径範囲を有するものを一定割合以上含むものである。また、それら銀粒子は特定のアミン化合物からなる保護剤が結合したものである。本発明者等によると、本願の課題である低温での焼結可能性及び焼結体の低抵抗化は、主要な銀粒子の粒径範囲を上記範囲とすることと、適切な保護剤を選定することとの組合せの結果として有効に達成される。以下、本発明についてより詳細に説明する。
 本発明に係る金属ペーストでは、粒径100~200nmの銀粒子が固形分となる銀粒子全体に対して粒子数基準で30%以上存在していることを要する。かかる中程度に微細な銀粒子が低温焼結に寄与するからである。ペーストに含まれる全ての銀粒子が粒径100~200nmであること、即ち、割合が100%であることが好ましいが、そうである必要はない。粒径100~200nmの銀粒子が、30%以上あれば、この粒径範囲外の粒子が存在していても良い。例えば、粒径100~200nmの銀粒子と粒径20~30nmの銀粒子とが混在した金属ペーストであっても、粒径100~200nmの銀粒子の割合が30%以上であれば150℃以下での焼結が可能であり、焼結体の抵抗値も低いものとなる。また、粒径100~200nmの銀粒子に粒径500nm超の粗大な銀粒子が混在した金属ペーストであっても良い。通常、500nm(0.5μm)を超える粗大な銀粒子は200℃以下で焼結することはない。しかし、本発明で適用する粒径100~200nmの銀粒子が一定割合以上存在すると、こうした粗大粒子も含めて銀粒子全体が低温で焼結する。
 粒径100~200nmの銀粒子の粒子数割合については、30%未満の場合、150℃以下で焼結が全く生じないか不十分なものとなる。金属ペースト中の全銀粒子が粒径100~200nmであるもの、即ち、数割合が100%となるものも当然に本発明の効果を有する。このように、本発明では、粒径100~200nmを軸としつつ、粒径の相違する銀粒子群が混在する場合があるが、全ての銀粒子を対象とした平均粒径(数平均)は、60~800nmとなるものが好ましい。
 本発明に係るペーストにおいて、粒径100~200nmの銀粒子の焼結性は、銀粒子と結合する保護剤の作用も関連する。保護剤とは、溶剤中で懸濁する金属粒子の一部又は全面に結合する化合物であって、金属粒子の凝集を抑制するものである。本発明において、銀粒子と結合する保護剤は、炭素数の総和が4~8のアミン化合物である。
 銀粒子の保護剤としては、一般にはアミン以外にカルボン酸類等の有機物が適用可能であるが、本発明で適用する保護剤としてアミン化合物に限定するのは、アミン以外の保護剤を適用する場合、150℃以下での銀粒子の焼結が生じないからである。この点、銀粒子の粒径が100~200nmの範囲内にあっても、アミン以外の保護剤では低温焼結が生じない。
 また、保護剤であるアミン化合物についてその炭素数の総和を4~8とするのは、銀粒子の粒径との関連でアミンの炭素数が銀粒子の安定性、焼結特性に影響を及ぼすからである。これは、炭素数4未満のアミンは粒径100nm以上の銀微粒子を安定的に存在させるのが困難であり、均一な焼結体を形成させるのが困難となる。一方、炭素数8超のアミンは、銀粒子の安定性を過度に増大させ焼結温度を高温にする傾向がある。これらから、本発明の保護剤としては炭素数の総和が4~8のアミン化合物に限定される。
 更に、アミン化合物については、沸点220℃以下のアミン化合物が好ましい。かかる高沸点のアミン化合物が結合した銀粒子は、粒径範囲が適切範囲にあっても焼結の際にアミン化合物が分離し難くなり焼結の進行を阻害することとなる。
 保護剤であるアミン化合物中のアミノ基の数としては、アミノ基が1つである(モノ)アミンや、アミノ基を2つ有するジアミンを適用できる。また、アミノ基に結合する炭化水素基の数は、1つ又は2つが好ましく、すなわち、1級アミン(RNH)、又は2級アミン(RNH)が好ましい。そして、保護剤としてジアミンを適用する場合、少なくとも1以上のアミノ基が1級アミン又は2級アミンのものが好ましい。アミノ基に結合する炭化水素基は、直鎖構造又は分枝構造を有する鎖式炭化水素の他、環状構造の炭化水素基であっても良い。また、一部に酸素を含んでいても良い。本発明で適用する保護剤の好適な具体例としては、下記のアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000002
 上記したアミン化合物からなる保護剤は、金属ペースト中の全ての銀粒子に結合していることが好ましい。本発明では、粒径100~200nmの銀粒子を必須とするが、この範囲外の粒径の銀粒子が混在することも許容する。このような異なる粒径範囲の銀粒子が混在する場合であっても、粒径100~200nmの銀粒子の保護剤が上記アミン化合物であることが当然要求されるが、100~200nmの範囲外の銀粒子についても上記のアミン化合物の保護剤が結合していることが求められる。但し、全く同一の化合物である必要はなく、炭素数の総和が4~8のアミン化合物(例えば、表1記載の範囲内)であれば相違する保護剤を含んでいても良い。
 そして、本発明に係る金属ペーストにおいては、低温焼結性の確保のため、保護剤であるアミン化合物が過不足ない量で含まれており、銀粒子に対して結合していることが好ましい。保護剤が少ない場合、銀粒子への保護効果が足りず、保管時において銀粒子同士が凝集して低温焼結性が損なわれることとなる。また、過剰に保護剤が銀粒子に結合する場合、焼結時にアミン消失による銀焼結体の体積収縮が大きくなり、焼結体にひび割れが多く発生するおそれがある。従って、本発明に係るペースト中の保護剤(アミン化合物)の量に関しては、ペースト中の窒素濃度と銀濃度のバランスが重要である。具体的には、窒素濃度(質量%)と銀粒子濃度(質量%)との比(N(質量%)/Ag(質量%))で0.0003~0.003であるものが好ましい。0.0003未満では銀粒子への保護効果が不足し、0.003を超えると焼結体に割れが発生するおそれが生じる。尚、金属ペースト中の窒素濃度は、ペーストの元素分析(CHN分析等)により測定可能であり、銀粒子濃度はペースト製造時に使用する銀粒子質量及び溶剤量から容易に求めることができる。
 以上説明した銀粒子の保護剤が結合した銀粒子は、溶剤中で分散・懸濁して金属ペーストとなる。この溶剤としては、炭素数8~16で構造内にOH基を有する沸点280℃以下の有機溶剤が好ましい。銀粒子の焼結温度の目標を150℃以下とする場合、沸点280℃を超える溶剤は揮発・除去が困難だからである。この溶剤の好ましい具体例としては、ターピネオール(C10、沸点219℃)、ジヒドロターピネオール(C10、沸点220℃)、テキサノール(C12、沸点260℃)、2,4-ジメチル-1,5-ペンタジオール(C9、沸点150℃)、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート(C16、沸点280℃)が挙げられる。溶剤は複数種を混合して使用しても良く、単品で使用しても良い。
 ペースト全体における溶剤と固形分(銀粒子)との混合比率については、溶剤含有率を質量比で5%~60%とするのが好ましい。5%未満ではペーストの粘度が高くなりすぎる。また、60%を超えると必要な厚さの焼結体を得るのが困難となる。
 次に、本発明に係る金属ペーストの製造方法について説明する。本発明に係る金属ペーストは、上記した粒径100~200nmの銀粒子を30%以上含む固形分を溶剤に混練することで製造される。そして、粒径100~200nmの銀粒子を30%以上含む銀粒子からなる固形分を製造するため、粒径及び粒度分布を調整しつつ銀粒子を製造することが要求される。
 ここで本発明では、銀粒子の製造方法として、銀錯体を前駆体とした熱分解法を採用する。熱分解法は、シュウ酸銀(Ag)等の熱分解性を有する銀化合物を出発原料とし、これに保護剤になる有機化合物とで銀錯体を形成し、これを前駆体として加熱し、銀粒子を得る方法である。熱分解法は上記特許文献2でも適用されている方法であり、液相還元法(特許文献1に記載の方法)等の他の銀粒子製造方法より粒径調整が容易であり、比較的粒径の揃った銀粒子の製造が可能である。
 但し、本発明者等によれば、これまでの熱分解法は、平均粒径で数nm~十数nmとなる微細な銀粒子の製造に好適であるが、本発明の対象となる粒径100~200nmの中程度に大きな粒径範囲を有する銀粒子を優先的に製造することは困難であった。本発明者等は熱分解法による銀粒子の生成機構を考慮し、銀錯体を熱分解して銀粒子とする際の反応系中の水分量を調整することで、粒径100~200nmの銀粒子を優先的に製造できるとした。
 即ち、本発明における銀粒子の製造方法は、熱分解性を有する銀化合物とアミンとを混合して前駆体である銀-アミン錯体を製造し、前記前駆体を含む反応系を加熱することで銀粒子を製造する方法であって、前記加熱前の反応系の水分含有量を銀化合物100重量部に対して5~100重量部とする。
 本発明の銀粒子の製造方法において、出発原料となる熱分解性を有する銀化合物としては、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀等を適用できる。これら銀化合物のうち、特に好ましいのは、シュウ酸銀(Ag)又は炭酸銀(AgCO)である。シュウ酸銀や炭酸銀は、還元剤を要することなく比較的低温で分解して銀粒子を生成することができる。また、分解により生じる二酸化炭素はガスとして放出されることから、溶液中に不純物を残留させることも無い。
 尚、シュウ酸銀については、乾燥状態において爆発性があることから、水又は有機溶媒(アルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、カルボン酸、脂肪酸、芳香族、アミン、アミド、ニトリル等)を混合し、湿潤状態にしたものを利用するのが好ましい。湿潤状態とすることで爆発性が著しく低下し、取り扱い性が容易となる。このとき、シュウ酸銀100重量部に対して、5~200重量部の分散溶媒を混合したものが好ましい。但し、上記のとおり、本発明は反応系の水分量を厳密に規定しているため、水の混合は、規定量を超えない範囲にする必要がある。
 銀粒子の前駆体となる銀-アミン錯体は、上記銀化合物とアミン化合物とを混合・反応させて生成する。ここで使用するアミンは、上記の炭素数の総和が4~8のアミン化合物が適用される。
 アミン化合物の混合量は、アミン化合物(保護剤)の質量と銀化合物中の銀の質量との比(アミン化合物(保護剤)の質量/Ag質量)で2~5となるようにしてアミン化合物量を調整する。未反応の銀化合物を生じさせることなく、十分な銀-アミン錯体を生成させるためである。尚、銀粒子に過剰なアミン化合物が結合していても、銀粒子製造後の洗浄により除去されることとなる。
 銀化合物とアミン化合物との反応により銀-アミン錯体が生成し、銀粒子製造のための反応系が形成される。その後、この反応系を加熱することで銀粒子は生成するが、本発明ではこの段階において反応系中の水分量を規定する。反応系中の水分は、錯体の分解工程において加熱を均一に進行させる緩衝剤として作用すると考えられる。本発明では、水の緩衝作用を利用して、加熱時の反応系内の温度差を緩和しつつ、銀粒子の核生成や核成長を均一化しつつ促進するものである。
 反応系の水分含有量は、銀化合物100重量部に対して5~100重量部の範囲内であることが必要である。水分含有量の好適範囲は5~95重量部であり、さらに好適な範囲は5~80重量部である。水分量が少ない(5重量部未満)と、得られる銀粒子の粒径は100nm未満の微小なものが主体となり、100~200nmの銀粒子の割合が少なくなる。一方、水分量が多い(100重量部を超える)と、銀粒子の粒径バラつきが大きくなりすぎ100~200nmの銀粒子の割合が少なくなる傾向となる。
 尚、この反応系の水分含有量とは、加熱工程の直前段階における水分量であり、それまでに反応系に添加された水の量を考慮する必要がある。上記の通り、銀化合物としてシュウ酸銀を適用するときには、予め水を添加した湿潤状態で使用する場合があるが、この予め添加した水の量も、水分量に含められる。このため、銀化合物や均一化剤に予め添加された量だけで、水分含有量の規定範囲内となる場合、別途反応系の水分量を調節することなく、そのまま加熱することができる。一方、予め添加された量が、水分含有量の下限値(5重量部)より少なければ、別途単独で水を添加する等、水分量の調整が必要となる。水を添加するタイミングは、加熱工程の前であればよく、銀-アミン錯体の形成前、あるいは錯体形成後の、いずれの段階で添加してもよい。
 本発明では、銀-アミン錯体と適正範囲の水分で反応系を構成していれば良く、他の添加物がなくとも好適な粒径範囲の銀粒子を製造可能である。但し、使用するアミン化合物の関係等により、粒径分布の調整(100~200nmの銀粒子の割合の増大)、銀錯体の更なる安定化を図るための添加剤の添加を排除するものではない。
 本発明で適用可能な添加剤は、粒径分布を調整するための均一化剤である。この均一化剤は、アミドを骨格として有する化1で示される有機化合物である。この均一化剤は、反応系中の銀-アミン錯体の安定性を均一なものとして、錯体分解により銀粒子が生成する際の核生成・成長のタイミングを揃えることで、銀粒子の粒径を揃える添加剤である。
Figure JPOXMLDOC01-appb-C000003
 均一化剤として機能する有機化合物は、その骨格にアミド(カルボン酸アミド)(N-C=O)を有することを要件とする。アミドの置換基(R、R’、R’’)には、Rとして水素、炭化水素、アミノ基又はこれらの組合せからなるアミノアルキル等を、また、R’、R’’として水素又は炭化水素を適用できる。本発明者等によれば、均一化剤である有機化合物のアミドが、銀-アミン錯体のアミン部分に作用して錯体が安定する。均一化剤である有機化合物の具体例としては、尿素及び尿素誘導体の他、N,N-ジメチルフォルムアミド(DMF:(CHNCHO)、N,N-ジエチルフォルムアミド(DEF:(CNCHO)、N,N-ジメチルアセトアミド(CNO)、N,N-ジメチルプロピオンアミド(C11NO)、N,N-ジエチルアセトアミド(C13NO)等が挙げられる。尿素誘導体としては、1,3-ジメチル尿素(CO)、テトラメチル尿素(C12O)、1,3-ジエチル尿素(C12O)などが挙げられる。
 均一化剤を反応系への添加する場合、その量は銀化合物の銀のモル数(molAg)に対する均一化剤のモル数(mol均一化剤)の比(mol均一化剤/molAg)で、0.1以上とするのが好ましい。均一化剤として複数の有機化合物を同時に用いる場合は、その合計添加量を0.1以上とするのが好ましい。上記モル比が0.1未満であると、その効果が生じ難い。一方、上記モル比の上限値(均一化剤の上限量)については特に規定されるものではないが、銀粒子の純度を考慮すると銀化合物の銀に対して4以下とするのが好ましい。均一化剤は、液体の有機化合物の場合はそのまま添加するのが好ましい。また、尿素等のような固体の化合物の場合、固体のまま添加しても良く、水溶液で添加しても良い。但し、水溶液とする場合には、反応系の水分量を考慮する必要がある。
 そして、反応系について、水分含有量の確認がなされ、必要に応じて添加剤を添加した後、反応系を加熱することで銀粒子が析出する。このときの加熱温度は、銀-アミン錯体の分解温度以上とするのが好ましい。上述の通り、銀-アミン錯体の分解温度は、銀化合物に配位するアミンの種類によって相違するが、本発明で適用されるアミン化合物の銀錯体の場合、具体的な分解温度は、90~130℃となる。
 反応系の加熱工程において、加熱速度は析出する銀粒子の粒径に影響を及ぼすことから、加熱工程の加熱速度の調整により銀粒子の粒径をコントロールすることができる。ここで、加熱工程における加熱速度は、設定した分解温度まで、2.5~50℃/minの範囲で調整することが好ましい。
 以上の加熱工程を経て銀粒子が析出する。析出した銀粒子は、固液分離を経て回収されて金属ペーストの固形分となる。ここで重要なのは回収される銀粒子に過剰なアミン化合物が結合しないように洗浄を行うことである。上記の通り、本発明においては銀粒子に対するアミン化合物の結合量(ペースト中の窒素含有量)を適切にすることが好ましい。そのため、銀粒子表面の保護に必要最低限のアミン化合物を残し、余剰のアミン化合物を系外へ除去することが必要となる。そのため、本発明では析出した銀粒子の洗浄が重要となる。
 この銀粒子の洗浄は、溶媒としてメタノール、エタノール、プロパノール等の沸点が150℃以下のアルコール適用するのが好ましい。そして、洗浄の詳細な方法としては、銀粒子合成後の溶液に溶媒を加え、懸濁するまで攪拌した後、デカンテーションで上澄み液を除去することが好ましい。アミンの除去量は、加える溶媒の体積と洗浄回数で制御可能である。上述の一連の洗浄作業を洗浄回数1回とする場合、好ましくは、銀粒子合成後の溶液に対して1/20~3倍の体積の溶媒を使用し、1~5回洗浄する。
 回収した銀粒子は固形分として適宜の溶剤と共に混練することで金属ペーストとすることができる。溶剤については上記したものが適用できる。尚、上記の工程による銀粒子の製造を2系統以上で行い、それらで製造される2種以上の銀粒子を混合したものを固形分とし、これを溶剤と混練して金属ペーストを製造しても良い。
 本発明に係る粒径制御された銀粒子を含む金属ペーストは、150℃以下の低温域であっても焼結可能であり、生成する焼結体はバルクの銀と同等の低抵抗値を示す。本発明に係る金属ペーストは、導電性の接合材料としての応用が可能であり、パワーデバイス等の大電流を取り扱う電気機器の接合材としても有用である。
本実施形態における銀粒子製造工程を説明する図。 本実施形態で製造した銀粒子の形態を示すSEM写真。 本実施形態で製造した金属ペーストの粒径分布を示す図。 本実施形態で製造した金属ペーストのDTA分析の結果を示す図。 本実施形態で製造した金属ペーストの焼結過程の形態変化を示す写真。 本実施形態で製造した属ペーストの焼結体の微視的構造を示す写真。
 以下、本発明の好適な実施形態について説明する。本実施形態では、原料となる銀化合物、保護剤であるアミン化合物等の各種条件を変更しつつ銀粒子を製造し、溶剤と混練して金属ペーストを製造した後、その熱分析、焼結特性及び焼結体の抵抗の評価を行った。本実施形態における銀粒子の製造工程の概略を図1に示し、銀粒子の製造工程について説明する。
銀粒子の製造
 本実施形態では、原料となる銀化合物としてシュウ酸銀1.41g又は炭酸銀1.28gを銀含有量で1gとなるようにして使用した。これらの銀化合物に関しては、乾燥品のまま使用する場合と、水0.3g(シュウ酸銀100重量部に対して21重量部、炭酸銀100重量部に対して23重量部)を加えて湿潤状態にしたものを用意した。
 そして、銀化合物に保護剤として各種アミン化合物を加えて銀-アミン錯体を製造した。銀化合物とアミンとの混合は室温で行い、クリーム状になるまで混練した。次に、製造した銀-アミン錯体について、場合により均一化剤として尿素溶液、DMFを組み合わせて添加した。また、水分量を考慮し、場合により水の添加も行った。そして、加熱前に反応系の水分量をチェックした。尚、保護剤については、アミン以外のものとしてオレイン酸を適用した例も用意している。
 水分量の確認がなされた反応系について、室温から加熱して銀-アミン錯体を分解し銀粒子を析出させた。このときの加熱温度は錯体の分解温度として110~130℃を想定し、これを到達温度とした。また、加熱速度は、10℃/minとした。
 加熱工程においては、分解温度近傍から二酸化炭素の発生が確認された。二酸化炭素の発生がとまるまで加熱を継続し、銀粒子が懸濁した液体を得た。銀粒子の析出後、反応液にメタノールを添加して洗浄し、これを遠心分離した。この洗浄と遠心分離は2回行った。
 以上の銀粒子の製造工程に関し、本実施形態では下記の12種の銀粒子を製造した。また、図2に製造した銀粒子のSEM写真を示す。
Figure JPOXMLDOC01-appb-T000004
金属ペーストの製造
 そして、製造した12種の銀粒子を基に単独又は複数組み合わせて固形分とし、これに溶剤としてテキサノールを混練して金属ペーストを製造した。このときの固形分の割合は80~95質量%である。製造した金属ペーストについては、適宜にサンプリングしてSEM観察を行い粒径分布を測定した。また、CHN元素分析によりN含有量を測定して、銀含有量との比(N質量%/Ag質量%)を算出した。
低温焼結試験
 そして、上記で製造した金属ペーストを低温で焼結させて、焼結の有無、焼結体の電気抵抗、密着性(接合力)を評価した。この低温焼結試験は、各金属ペーストをSi基板(金めっき付)に50mg塗布(膜厚50μmを目標とした)し、昇温速度2℃/minで150℃まで昇温し、150℃に達した段階で2時間保持して焼結させた。焼結体の評価は、まずSEM観察し焼結体形成の有無を評価した後、体積抵抗率を測定した。更に、密着性評価のためのピール試験を行った。ピール試験は、焼結体に10本×10本(100マトリックス)の切込みをカッターで入れた後、焼結体に粘着テープを貼付けたに後一気に剥がし、残存する焼結体のマトリックスの個数を数えた。評価基準として残存率95%~100%の場合を密着性良好(○)とし、それ以下を密着性不良(×)と評価した。本実施形態で製造した金属ペーストについての分析結果及び低温焼結試験の結果を表3に示す。また、図3に、粒径分布の測定結果の例としてペーストc、f、i、kの結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表3から、150℃での低温焼結性についてのみ考慮すれば、粒径100~200nmの銀粒子割合が30%未満で平均粒径20~30nmである金属ペーストa、b、cは容易に焼結している。一方、平均粒径が大きい傾向にある金属ペーストm、n、oは焼結し難い。これらの結果から、粒径と焼結温度には一応の相関性があるといえる。しかし、金属ペーストa~cは、焼結体を形成するもその抵抗値が高く、密着性にも劣る。また、焼結はしていたが、焼結体中にクラックが多数発生しており、粉化していた箇所もあった。抵抗値に関しては、クラックという空隙により、バルク体の銀の抵抗値(1.6μΩ・cm)よりも抵抗が大きくなったことによると考えられる。また、密着性についてもクラックの存在による影響が考えられるが、そもそも、これらの微細な銀粒子を主体とする金属ペーストにおいては十分な焼結がなされていないものと考えられる(詳細は、後述する熱的挙動の検討結果で説明する)。これらの結果から、銀粒子の低温焼結性と焼結体の低抵抗化との両立を図るためには、平均粒径のみで論じることは好ましくないといえる。
 これに対して、好適粒径の銀粒子(粒径100~200nm)を適度に含み、保護剤も適切な金属ペースト(d~f、h、j~l)は、低温焼結性が良好であり、また、クラックも発生していなかった。そして、抵抗値もバルク体の銀に近い値であり、密着性も良好である。従って、これらの金属ペーストは、150℃という低温域であっても速やかに焼結したといえる。
 尚、金属ペーストgは、粒径100~200nmの銀粒子割合は好適であるが、沸点が220℃を超えるヒドロキシエチルアミノプロピルアミン(沸点:250℃)を適用したため、低温での焼結性は劣るといえる。また、保護剤としてアミン化合物ではなくオレイン酸を適用した金属ペーストiに関しても、粒径100~200nmの銀粒子割合は好適であるものの低温焼結はできなかった。
熱的挙動の分析
 上記の低温焼結試験において、微細な銀粒子(粒径20~30nm)を主体とする金属ペースト(a~c)は、焼結するものの焼結体にはクラックが多数生じ、密着性も悪いことが確認された。これに対し、本発明の粒径100~200nmの粒子を主とする金属ペーストでは、焼結も問題なく生じクラックもなかった。ここでは、この各金属ペーストの熱的挙動の相違点、割れの発生メカニズムを確認するための分析を行うこととした。
 ところで、金属ペーストの熱的挙動の分析に関して、上記の低温焼結試験で行った熱履歴(150℃に2時間保持)は、金属ペーストの実際の使用方法に近いものの、加熱温度に変化が無く熱的挙動の解析には不向きである。そこで、本実施形態では、一定の昇温速度をもって金属ペーストを加熱するTG-DTA分析(示差熱分析)を行い、銀粒子の焼結に起因する発熱ピークの数及び発生温度を確認した。この金属ペーストのDTA分析においては昇温速度を、5℃/分~20℃/分とするのが好ましい。本実施形態では、測定温度範囲を室温から500℃とし、10℃/分の昇温速度で測定を行った。
 そして、各金属ペーストについてTG-DTA分析を行ったところ、銀粒子の焼結に起因する発熱ピークの数、及び、発生位置(発生温度)についてグループ分けができることがわかった。即ち、発熱ピークの数については1本又は2本現れるものが区別できた。また、発生温度については200℃を境に区別できた。今回測定したDTA曲線のうち、代表的な例として図4に、ペーストc、f、i、mのDTA曲線を示す。また、表4には、各金属ペーストについて測定したDTA曲線についての、銀粒子の焼結に起因する発熱ピークの数と発生温度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000006
 DTA分析によれば、粒径20~30nmの微細銀粒子を主体とする金属ペースト(a~c)は、200℃未満(180℃、190℃)での発熱ピークに加えて、200℃以上(210℃、230℃)でも発熱ピークが発現する。ナノサイズ効果により低温での焼結が可能と思われるこれら金属ペーストにおいて低温での発熱ピークは当然に予測されるものである。しかし、このように複数の発熱ピークが発現するのは、微細銀粒子の焼結挙動が多段階で進行するためと考えられる。
 これに対比すると、本発明に係る粒径100~200nmの粒子を主とする金属ペースト(d~f、h、j~l)は、DTAの結果において特徴的な挙動を示といえる。即ち、この金属ペーストは、DTA曲線の銀粒子焼結に由来する発熱ピークが200℃未満(180℃、190℃)の温度域で1本のみ発現する。発熱ピークが1本のみ発生するのは、銀粒子の焼結が1段階で完全に完了することを示す。この低温域で単発の発熱ピークが発現する現象は特異的なものである。
 尚、今回のDTA分析では、銀粒子焼結に由来する発熱ピークが180℃付近で発現しており、上記低温焼結試験の温度(150℃)より高温となっている。この相違は加熱条件の相違によるものである。即ち、DTA分析は常に加熱温度を変化(上昇)させるものであり、熱的要因のみによる焼結挙動を捉える分析手法だからである。金属ペーストの用途(配線材料、接合材料等)を考えれば、実際の使用に当たっては一定温度に保持して時間経過と共に焼結を進行させるものである。DTA分析では、経時的要因は結果に反映されないことから、温度差が見られたといえる。そして、本実施形態の低温焼結試験は、実際の使用に際した加熱条件(150℃に固定して一定時間保持)に相当するものであり、この試験結果から本実施形態で好適な金属ペーストは低温焼結性に優れることが理解できる。
 また、粒径20~30nmの微細銀粒子を主体とする金属ペースト(a~c)の焼結体で見られたクラックについて、その要因はこの金属ペーストは2段階の焼結挙動を示す点にあると考えられる。この点に関して、図5はペーストc、fの180℃と210℃の焼結体のSEM写真である。1段階目にあたる180℃ではペーストc、fとも焼結体にクラックは生じていない。しかし、cにとって2段階目に相当する210℃では、cにのみクラックが多数生じている。つまり、ペーストcにおけるクラックは、2段階目の焼結の際に発生したこととなる。多段階の焼結をしないペーストfには、このようなクラックは生じないといえる。
 もっとも、焼結体全体の観察ではクラックの有無という点で、ペーストcとペーストfとは相違するが、微視的には近似している。図6は、図5の210℃加熱の写真を拡大したものである。この写真によると、ペーストc、fは、焼結体を構成する個々の粒子の形状・粒径(約500nm)がよく似ている。このことから、銀の焼結体において熱的に安定な単位粒子(ユニット)の径は、焼結前の銀粒子の粒径によらずにおおよそ決まっているとの仮説が成り立つ。この仮説によれば、焼結前の銀粒子がナノ単位の微細粒子のみで構成されていると、上記の安定なユニットに成長するまでは粒子の移動量が大きくそれにより空隙が生じやすくなり、空隙の体積が限界を超えるとユニット同士の結合が切れ、クラックを引き起こすと推察される。
 以上説明した微細銀粒子の熱的挙動の他、DTA分析の結果からは、銀粒子の保護剤として適切なアミンを選択することが必要であることが再確認される。保護剤としてアミン化合物ではなくオレイン酸を適用した場合においては、焼結による発熱ピークが1本ではあるが、その温度が200℃以上と高くなる(金属ペーストi)。また、金属ペーストgは、粒径100~200nmの銀粒子割合は好適であるが、沸点が高いアミン化合物を適用したため、発熱ピークは200℃以上で発現した。尚、粒径が大きすぎる場合も、発熱ピークは200℃以上でなければ発現しない(金属ペーストm)。
 以上説明したように、本発明に係る銀ペーストは、主たる銀粒子の粒径範囲を適切なものとすることで低温焼結性を獲得するものである。本発明により形成される銀焼結体は抵抗も低く、また、接合力も十分である。低温での焼結処理を必要とする配線材料や接合材料や熱伝導材料として広く使用可能である。
 

Claims (8)

  1.  銀粒子からなる固形分と溶剤とを混練してなる金属ペーストにおいて、
     前記固形分が、粒径100~200nmの銀粒子を粒子数基準で30%以上含む銀粒子で構成されており、
     更に、固形分を構成する銀粒子は、保護剤として炭素数の総和が4~8のアミン化合物が結合したものである金属ペースト。
  2.  固形分を構成する銀粒子全体の平均粒径が、60~800nmである請求項1記載の金属ペースト。
  3.  金属ペースト中の窒素濃度(質量%)と銀粒子濃度(質量%)との比(N/Ag)が0.0003~0.003である請求項1又は請求項2記載の金属ペースト。
  4.  保護剤であるアミン化合物は、ブチルアミン、1,4-ジアミノブタン、3-メトキシプロピルアミン、ペンチルアミン、2,2-ジメチルプロピルアミン、3-エトキシプロピルアミン、N,N-ジメチル-1,3-ジアミノプロパン、3-エトキシプロピルアミン、ヘキシルアミン、ヘプチルアミン、N,N-ジエチル-1,3-ジアミノプロパン、ベンジルアミンのいずれかである請求項1~請求項3のいずれかに記載の金属ペースト。
  5.  溶剤は、炭素数8~16で構造内にOH基を有する沸点280℃以下の有機溶剤である請求項1~請求項4のいずれかに記載の金属ペースト。
  6.  銀粒子からなる固形分を製造し、前記固形分と溶剤とを混練する金属ペーストの製造方法において、
     前記銀粒子の製造工程は、(1)熱分解性を有する銀化合物とアミン化合物とを混合して前駆体である銀-アミン錯体を製造する工程と、(2)前記前駆体を含む反応系を前記銀-アミン錯体の分解温度以上に加熱して銀粒子を析出させる工程とからなり、
     前記(2)の加熱前に反応系の水分含有量を、銀化合物100重量部に対して5~100重量部とすることを特徴とする金属ペーストの製造方法。
  7.  更に、(2)の加熱前の反応系に、アミドを骨格として有する下記式で示される有機化合物を1種又は2種以上添加する工程を含む請求項6記載の金属ペーストの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  8.  熱分解性を有する銀化合物は、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀のいずれか1種である請求項6又は請求項7記載の金属ペーストの製造方法。
     
PCT/JP2015/054723 2014-02-25 2015-02-20 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法 WO2015129562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167023468A KR101866111B1 (ko) 2014-02-25 2015-02-20 저온 소결성이 우수한 은 페이스트 및 당해 은 페이스트의 제조 방법
DE112015000957.4T DE112015000957B4 (de) 2014-02-25 2015-02-20 Silberpaste mit hervorragender Niedertemperatur-Sinterbarkeit und Verfahren zur Herstellung dieser Silberpaste
KR1020187009140A KR20180036799A (ko) 2014-02-25 2015-02-20 저온 소결성이 우수한 은 페이스트 및 당해 은 페이스트의 제조 방법
CN201580010191.2A CN106062886B (zh) 2014-02-25 2015-02-20 低温烧结性优异的银浆料及该银浆料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034554A JP5795096B2 (ja) 2014-02-25 2014-02-25 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法
JP2014-034554 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129562A1 true WO2015129562A1 (ja) 2015-09-03

Family

ID=54008883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054723 WO2015129562A1 (ja) 2014-02-25 2015-02-20 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法

Country Status (7)

Country Link
JP (1) JP5795096B2 (ja)
KR (2) KR101866111B1 (ja)
CN (1) CN106062886B (ja)
DE (1) DE112015000957B4 (ja)
MY (1) MY178751A (ja)
TW (1) TWI542711B (ja)
WO (1) WO2015129562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045111A1 (ja) * 2018-08-30 2020-03-05 田中貴金属工業株式会社 低温焼成用の銀インク

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101403B2 (ja) * 2014-11-25 2017-03-22 バンドー化学株式会社 導電性インク
JP2017066501A (ja) * 2015-10-02 2017-04-06 アルプス電気株式会社 被覆銀粒子の製造方法、液状組成物、被覆銀粒子、被覆銀粒子含有組成物、導電部材、導電部材の製造方法、電気・電子部品および電気・電子機器
WO2020050194A1 (ja) 2018-09-03 2020-03-12 株式会社大阪ソーダ 銀ナノ粒子
US20220288678A1 (en) 2019-09-02 2022-09-15 Osaka Soda Co., Ltd. Silver particles
TWI774439B (zh) 2020-07-03 2022-08-11 日商田中貴金屬工業股份有限公司 耐彎折性優異之金屬配線及導電薄片以及為形成該金屬配線之金屬糊
CN116348562A (zh) 2020-08-31 2023-06-27 株式会社大阪曹達 导电性粘接剂
CN115989105A (zh) 2020-09-30 2023-04-18 株式会社大阪曹達 导电性粘接剂
US20240052213A1 (en) 2021-02-18 2024-02-15 The School Corporation Kansai University Electrically conductive adhesive, sintered body of electrically conductive adhesive, method for producing sintered body, electronic component, and method for producing electronic component
CN113770370A (zh) * 2021-08-18 2021-12-10 清华大学 银粉及其制备方法、银浆和光伏电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236453A (ja) * 2010-05-07 2011-11-24 Toda Kogyo Corp 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP2012006005A (ja) * 2010-05-26 2012-01-12 Dai Ichi Kogyo Seiyaku Co Ltd 分散剤および分散体組成物
JP2012031478A (ja) * 2010-07-30 2012-02-16 Toda Kogyo Corp 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
WO2012105682A1 (ja) * 2011-02-04 2012-08-09 国立大学法人山形大学 被覆金属微粒子とその製造方法
WO2014021461A1 (ja) * 2012-08-02 2014-02-06 国立大学法人山形大学 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100081563A1 (en) * 2008-09-26 2010-04-01 Andrew Edgar-Beltran Adhesion and coating integrity of washcoats and overcoats
JP5574761B2 (ja) 2009-04-17 2014-08-20 国立大学法人山形大学 被覆銀超微粒子とその製造方法
CN101710497B (zh) * 2009-12-08 2011-04-20 华中科技大学 一种纳米银导电浆料
WO2011155055A1 (ja) 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 低温焼結性接合材および該接合材を用いた接合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236453A (ja) * 2010-05-07 2011-11-24 Toda Kogyo Corp 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP2012006005A (ja) * 2010-05-26 2012-01-12 Dai Ichi Kogyo Seiyaku Co Ltd 分散剤および分散体組成物
JP2012031478A (ja) * 2010-07-30 2012-02-16 Toda Kogyo Corp 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
WO2012105682A1 (ja) * 2011-02-04 2012-08-09 国立大学法人山形大学 被覆金属微粒子とその製造方法
WO2014021461A1 (ja) * 2012-08-02 2014-02-06 国立大学法人山形大学 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045111A1 (ja) * 2018-08-30 2020-03-05 田中貴金属工業株式会社 低温焼成用の銀インク
JPWO2020045111A1 (ja) * 2018-08-30 2021-08-10 田中貴金属工業株式会社 低温焼成用の銀インク
JP7320515B2 (ja) 2018-08-30 2023-08-03 田中貴金属工業株式会社 低温焼成用の銀インク

Also Published As

Publication number Publication date
MY178751A (en) 2020-10-20
JP2015159096A (ja) 2015-09-03
DE112015000957T5 (de) 2016-11-03
KR101866111B1 (ko) 2018-06-08
DE112015000957B4 (de) 2023-01-05
KR20160113266A (ko) 2016-09-28
TWI542711B (zh) 2016-07-21
TW201538753A (zh) 2015-10-16
KR20180036799A (ko) 2018-04-09
CN106062886A (zh) 2016-10-26
JP5795096B2 (ja) 2015-10-14
CN106062886B (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
JP5795096B2 (ja) 低温焼結性に優れる銀ペースト及び該銀ペーストの製造方法
JP6491753B2 (ja) 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法
JP4928639B2 (ja) 接合材およびそれを用いた接合方法
JP6153077B2 (ja) 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
JP6423416B2 (ja) 焼結が難しい貴金属表面および非貴金属表面上に酸化銀が被覆された焼結ペースト
JP6766160B2 (ja) 金属接合用組成物
JP6352444B2 (ja) 接合用金属酸化物粒子、これを含む焼結接合剤、接合用金属酸化物粒子の製造方法、及び電子部品の接合方法
TW201542731A (zh) 接合用組成物及使用該組成物之金屬接合體
JP2015011899A (ja) 導電性ペースト
JP6032110B2 (ja) 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
WO2019021637A1 (ja) 金属接合積層体の製造方法
JP6153076B2 (ja) 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
WO2018030173A1 (ja) 接合用組成物及びその製造方法
JP5733638B2 (ja) 接合材料およびそれを用いた半導体装置、ならびに配線材料およびそれを用いた電子素子用配線
JPWO2018190397A1 (ja) 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
TWI677488B (zh) 低溫燒結性表面處理銅微粒子之製造方法
JP6626572B2 (ja) 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JP6267835B1 (ja) 接合用組成物及びその製造方法
JP2016098398A (ja) 金属表面の処理方法並びに当該方法により処理された銀被着銅及び複合金属体
JP6624620B1 (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および金属製部材接合体
JP2018092798A (ja) 導電性接合材料及び半導体装置の製造方法
JP2022049054A (ja) 導電体作製方法、金属ペースト及び導電体
Song et al. Development of Cu-Ag composite pastes for power IC attachment
JP2015194415A (ja) ニッケル微粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000957

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167023468

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15754823

Country of ref document: EP

Kind code of ref document: A1