WO2015129488A1 - 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法 - Google Patents

多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法 Download PDF

Info

Publication number
WO2015129488A1
WO2015129488A1 PCT/JP2015/053972 JP2015053972W WO2015129488A1 WO 2015129488 A1 WO2015129488 A1 WO 2015129488A1 JP 2015053972 W JP2015053972 W JP 2015053972W WO 2015129488 A1 WO2015129488 A1 WO 2015129488A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
resin
precursor
phase separation
Prior art date
Application number
PCT/JP2015/053972
Other languages
English (en)
French (fr)
Inventor
三原崇晃
田中健太郎
竹内康作
堀口智之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015510216A priority Critical patent/JP6489010B2/ja
Priority to CA2940849A priority patent/CA2940849C/en
Priority to US15/121,424 priority patent/US10131770B2/en
Priority to CN201580010451.6A priority patent/CN106029756B/zh
Priority to KR1020167022992A priority patent/KR102068052B1/ko
Priority to EP15756090.5A priority patent/EP3133110B1/en
Priority to EA201691515A priority patent/EA034212B1/ru
Priority to AU2015224174A priority patent/AU2015224174B2/en
Publication of WO2015129488A1 publication Critical patent/WO2015129488A1/ja
Priority to SA516371737A priority patent/SA516371737B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/56Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2039/00Use of polymers with unsaturated aliphatic radicals and with a nitrogen or a heterocyclic ring containing nitrogen in a side chain or derivatives thereof as moulding material
    • B29K2039/06Polymers of N-vinyl-pyrrolidones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers

Definitions

  • the present invention relates to a porous carbon material, a carbon material reinforced composite material, a porous carbon material precursor, a method for producing a porous carbon material precursor, and a production of the porous carbon material that can be used as a structural material having excellent interfacial adhesion. It is about the method.
  • Carbon materials are basic materials used in various applications because of their high chemical stability, high heat resistance, high conductivity, high strength, processability, and high biocompatibility.
  • Examples of conventional carbon materials include highly conductive carbon black, carbon nanotubes, fullerene, and graphene.
  • highly conductive carbon black carbon nanotubes, fullerene, and graphene.
  • the effect of improving the strength is limited.
  • the resin infiltrate into the voids in the filler and the voids remain in the filler, the effect of improving the strength is limited when the composite material is used.
  • carbon fibers mentioned as carbon materials other than the above carbon materials have a structure such as strength, elastic modulus, chemical and thermal stability, high conductivity, and low specific gravity when compared to metals. It is used for various applications, mainly materials.
  • carbon fibers when used as a structural material, it is often used in combination with a thermosetting or thermoplastic resin.
  • the affinity between the carbon fiber surface and the resin is low, and carbon is used to reduce the strength of the composite material due to peeling.
  • Patent Document 1 describes a method of making a carbon fiber surface porous by an activation treatment.
  • Patent Document 2 a continuous porous structure is formed in the carbon material itself by mixing a thermosetting resin and a thermoplastic resin, curing the thermosetting resin, and then carbonizing after removing the thermoplastic resin.
  • Patent Document 3 discloses a method of obtaining porous carbon fibers by spinning and stretching a combination of incompatible polymers.
  • Non-Patent Document 1 Since pores are formed in one direction from the surface of the carbon material to the inside during the activation process, innumerable irregularities are formed on the fiber surface, and the resin and the carbon fiber are in contact with each other. However, since the unevenness acts as a defect with respect to tensile strength, it is difficult to maintain the fiber strength required for the carbon fiber as a structural material.
  • Patent Document 1 discloses a technique related to a carbon material having a co-continuous structure by combining a thermosetting resin and a thermoplastic resin to form a co-continuous structure, and then carbonizing the thermosetting resin. Because of its low molecular weight, it was inferior in spinnability and could not be fiberized. Even if a carbon fiber material is obtained, it is not stretched, so the co-continuous structure of the carbon material is not oriented, and the strength required of the carbon material can be obtained particularly as a structural material. There wasn't.
  • Patent Document 2 discloses a technique for obtaining porous carbon fibers by combining incompatible polymers, but in a combination of incompatible polymers, a spinning dope that forms a sea-island structure is elongated and elongated.
  • a spinning dope that forms a sea-island structure is elongated and elongated.
  • the amount of resin that disappears due to carbonization is small, lotus root-like carbon fibers are obtained, and when the amount of resin that disappears is large, only a lot of thin and short carbon fibers are obtained. It was not possible to obtain continuous carbon fibers that were significantly improved.
  • the present invention is a porous carbon material having a continuous porous structure at least in part and having an excellent strength and interfacial adhesion to a matrix resin because the continuous porous structure is oriented in a specific direction. Is to provide.
  • the porous carbon material of the present invention for solving the above problems has a continuous porous structure at least in part, and the degree of orientation of the continuous porous structure measured by small angle X-ray scattering or X-ray CT method is 1.10.
  • the porous carbon material is characterized by the above.
  • the carbon material reinforced composite material of the present invention is a carbon material reinforced composite material obtained by combining the porous carbon material of the present invention and a resin.
  • the method for producing the porous carbon material precursor of the present invention includes: Step 1: a step of dissolving a carbonizable resin and a disappearing resin to form a resin mixture; Step 2: A step of molding the resin mixture obtained in Step 1 and subjecting it to phase separation to obtain a precursor material having a co-continuous phase separation structure; Step 3: A step of stretching the precursor material obtained in Step 2; It is a manufacturing method of the porous carbon material precursor which has this.
  • the present invention is a method for producing a porous carbon material having a carbonization treatment step for carbonizing the porous carbon material precursor obtained by the method for producing a porous carbon material precursor of the present invention and removing a lost resin.
  • one aspect of the method for producing the porous carbon material of the present invention is: Step 1: a step of dissolving a carbonizable resin and a disappearing resin to form a resin mixture; Step 2: A step of molding the resin mixture obtained in Step 1 and subjecting it to phase separation to obtain a precursor material having a co-continuous phase separation structure; Step 3: A step of stretching the precursor material obtained in Step 2; Step 4a: Carbonization treatment step of carbonizing the porous carbon material precursor obtained in Step 3 and removing the disappearing resin; A method for producing a porous carbon material having Also, one aspect of the method for producing the porous carbon material of the present invention is: Step 1: a step of dissolving a carbonizable resin and a disappearing resin to form a resin mixture; Step 2: A step of molding the resin mixture obtained in Step 1 and subjecting it to phase separation to obtain a precursor material having a co-continuous phase separation structure; Step 3: A step of stretching the precursor material obtained in Step 2; Step 4: removing the disappearing resin
  • the porous carbon material precursor of the present invention has a co-continuous phase separation structure at least in part, and the degree of orientation of the co-continuous phase separation structure measured by small-angle X-ray scattering or X-ray CT method is 1.10.
  • a porous carbon material having a continuous porous structure at least in part and having an excellent strength and interfacial adhesiveness with a matrix resin by being oriented in a specific direction. Obtainable.
  • FIG. 2 is a scanning electron micrograph of a longitudinal section of a porous carbon fiber of the present invention prepared in Example 1.
  • the porous carbon material of the present invention (hereinafter sometimes simply referred to as “material”) has a continuous porous structure at least partially.
  • the continuous porous structure here refers to a longitudinal or transverse section of the porous carbon material of the present invention or the surface of the pulverized porous carbon material observed with a scanning secondary electron microscope (hereinafter referred to as SEM).
  • SEM scanning secondary electron microscope
  • To tilt the sample means to determine dust and other specific parts of the sample as a target when observing with an electron microscope, and tilt the stage so that it becomes the center of the image.
  • the inclination angle only needs to be able to confirm the state in which the holes are continuous, and it is only necessary to be able to incline about 20 °.
  • the continuous porous structure is formed in the material in this way, it is possible to significantly increase the surface area when compared with a carbon material having the same volume.
  • the matrix resin in the case of a composite material is a carbon material. Since the area touching the surface is greatly improved, the strength of the composite material can be dramatically increased with the same interface adhesive strength.
  • the continuous porous structure of the present invention has pores formed three-dimensionally, the surface of the branch portion constituting the pores has very few defects (irregularities) that are the starting points of destruction, so that a high-strength material Is obtained.
  • the branch portions forming the continuous porous structure are connected to each other, the entire material forms an integral structure. When stress is applied to a part of the branch portion, the branch portions are quickly formed. Since it is possible to disperse stress throughout the material through adjacent branches, it has a very strong resistance to fracture.
  • the phrase “having a continuous porous structure in at least a part” means that the continuous porous structure can be seen in a part of the sample required for the observation when the surface or the cross section of the material is observed with the SEM.
  • the continuous porous structure is observed at any of the imaging magnifications. It is assumed that a continuous porous structure is observed. In this case, the minimum size of the observation image is 640 pixels wide and 480 pixels vertical.
  • the degree of orientation of the continuous porous structure measured by small-angle X-ray scattering or X-ray CT method is 1.10 or more.
  • the degree of orientation measured by the small-angle X-ray scattering method is such that when a two-dimensional measurement is performed by the small-angle X-ray scattering method, a scattering peak is obtained at an angle corresponding to the structure period of the continuous porous structure.
  • the camera length is adjusted appropriately so that a scattering peak appears. From the principle of the small-angle X-ray scattering method, the measurement can be performed by shortening the camera length when the structure period of the continuous porous structure is small and increasing the length when the structure period is large. However, when the camera length is long, the intensity of scattered X-rays becomes small. Therefore, by using radiated light as an X-ray source, it is possible to measure a continuous porous structure having a large structure period.
  • the orientation degree of the continuous porous structure referred to in the present invention is an angle at which the orientation degree calculated by the following method is maximized by appropriately rotating the sample and measuring by small angle X-ray scattering or X-ray CT method.
  • the measured value Especially when the sample is pulverized, measure it by attaching it to a film that has been confirmed in advance to have no effect on the scattering pattern, or attaching it to the tip of a rod-shaped sample table, and measure only the porous carbon material. It shows the data measured and devised as appropriate so that the scattering data can be obtained.
  • the scattering pattern by the X-ray CT method of the present invention when there is a large structure that cannot be observed by the small-angle X-ray scattering method, the structure of the porous carbon material is directly observed in three dimensions, and the obtained three-dimensional image is obtained. Is subjected to Fourier transform to obtain two-dimensional measurement data. After taking the natural logarithm of the intensity of the two-dimensional measurement data obtained by the small-angle X-ray scattering method or the X-ray CT method in this way, the average luminance Iave of the entire image is obtained.
  • the degree of orientation of the continuous porous structure is 1.10 or more, the strength as the porous carbon material can be increased because the continuous porous structure is in a sufficiently oriented state. Can be achieved.
  • the higher the degree of orientation of the continuous porous structure the higher the orientation of the porous carbon material, which is preferably obtained, preferably 1.30 or more, more preferably 1.50 or more, more preferably 2 More preferably, it is 0.00 or more.
  • the structural period L corresponding to each direction can be obtained by the following equation.
  • the short axis side corresponds to the extending axis direction and corresponds to the lengths of the branch portions and the hole portions oriented in parallel to the extending axis.
  • the structural period on the long axis side of the continuous porous structure formed in the porous carbon material of the present invention is preferably 5 nm to 5 ⁇ m. As the structural period is smaller, the thickness of the branch portion is reduced, and thus the surface area per unit volume is increased. Therefore, it is possible to increase the adhesive strength when a composite material is used. In addition, the larger the structural period, the larger the pores formed in the continuous porous structure, and the smaller the pressure loss, the easier the resin permeation, thus allowing quick degassing and complexing. From these points, the structural period on the long axis side is more preferably 30 nm to 2 ⁇ m, and further preferably 50 nm to 1 ⁇ m.
  • the structural period on the short axis side of the continuous porous structure formed in the porous carbon material of the present invention is preferably 10 nm to 20 ⁇ m.
  • the larger the structural period on the short axis side the longer the pores that form the continuous porous structure, together with the branch parts, so that the liquid resin becomes a capillary phenomenon centering between the branch parts during resin impregnation. This is preferable because the composite material with few bubbles after curing can be obtained by being easily filled into the continuous porous structure.
  • the structural period on the short axis side is more preferably 50 nm to 20 ⁇ m, and further preferably 100 nm to 10 ⁇ m.
  • the porous carbon material of the present invention preferably has a tensile strength of 50 MPa or more. Higher tensile strength is preferable because a strong composite material can be formed as a structural material. Therefore, the tensile strength is more preferably 100 MPa or more, and further preferably 200 MPa or more.
  • the aspect ratio calculated by the fiber length / fiber diameter is preferably 2 or more.
  • the porous carbon fiber of the present invention in the case of a composite material is preferable because a sufficient strength improvement effect can be obtained as a filler.
  • the porous carbon fiber of the present invention is used as a so-called short fiber, when the aspect ratio is 1000 or less, the uncured resin and the porous carbon fiber of the present invention are sufficiently dispersed to form a uniform composite. It is preferable because a material can be obtained.
  • the porous carbon material of the present invention preferably has at least part of a dense layer on which part of its surface is practically free of pores in magnified observation with a scanning secondary electron microscope.
  • the fact that no pores are actually seen is set so that one side formed in a portion having a continuous porous structure is in a range of 3 times or more the pore diameter and the pixel size is in a range of 1 nm ⁇ 10%. It refers to a state in which no hole is observed when observed at a magnification. This indicates, for example, that when a pore diameter formed in a portion having a continuous porous structure is 100 nm, there is a portion where no pore is observed in a rectangular region having a side of 300 nm or more.
  • the presence of such a dense layer makes the material excellent in electrical conductivity and thermal conductivity, so that it can be prevented from being charged during use due to electric discharge, and the thermal conductivity is increased to improve efficiency from the heating element and cooling body. Can give and receive heat well.
  • porous carbon materials of the present invention when having a fibrous form, at least a dense layer in which at least a portion of the fiber surface is practically free of pores by magnified observation with a scanning secondary electron microscope is provided. It is preferable to have a part.
  • the presence of such a dense layer makes the material excellent in electrical conductivity and thermal conductivity, so that it can be prevented from being charged during use due to electric discharge, and the thermal conductivity is increased to improve efficiency from the heating element and cooling body. Can give and receive heat well. From such a viewpoint, it is preferable that the fiber surface of the porous carbon fiber is covered with a dense layer.
  • the form of the porous carbon material of the present invention can be arbitrarily selected. Specific examples of the form include fiber, film, bulk and particle.
  • the cross-sectional shape of the fiber is not particularly limited and can be arbitrarily selected according to the application.
  • the cross-sectional shape of the fiber is preferably a multi-leaf cross-section represented by a round cross-section, a triangular cross-section, etc., and a hollow cross-section, etc. This is a more preferable embodiment.
  • the porous carbon fiber is provided with chemicals such as an oil agent and a sizing agent.
  • the oil agent reduces wear and tear due to friction when the porous carbon fiber of the present invention is passed through a loom, knitting machine, etc., and prevents adhesion to equipment due to electrification and guide disengagement, improving process passability and low cost. This is preferable because it is possible to produce a final product.
  • the sizing agent is preferable because the interfacial adhesiveness per unit area between the porous carbon fiber surface and the matrix resin can be enhanced, and a material having particularly high peel strength can be obtained.
  • the porous carbon fiber of the present invention may be in an amorphous state or in a state where graphitization has progressed.
  • an amorphous state the carbon network surface is randomly oriented, so that the resistance to mechanical deformation is high, which is a preferable mode.
  • the amorphous state means a state where there is no clear peak within a half-value width of 3 ° in a diffraction angle range of 20 to 30 ° when X-ray diffraction measurement is performed on the porous carbon fiber of the present invention.
  • the ratio of crystal parts is high, and the thermal conductivity and electrical conductivity are excellent.
  • the state in which graphitization has progressed means that when the porous carbon fiber of the present invention is subjected to X-ray diffraction measurement, the degree of graphitization measured from a diffraction peak corresponding to d (002) is 0.1 or more. Say the state.
  • the porous carbon fiber of the present invention preferably has a diameter in the range of 100 nm to 10 mm.
  • a diameter of 100 nm or more is preferable because a sufficient specific surface area is secured and handling is easy.
  • a diameter of 10 mm or less is preferable because it has sufficient resistance to bending and can stably produce a product by preventing fiber breakage during handling.
  • the fiber diameter is preferably in the range of 100 nm to 1 mm, more preferably in the range of 1 ⁇ m to 500 ⁇ m.
  • the porous carbon fiber of the present invention can have various arbitrary forms such as a woven fabric, a knitted fabric, and a braid as a long fiber.
  • a woven fabric since the orientation of strength according to the woven structure is observed, it is also a preferable aspect to laminate a woven fabric sheet by a hand layup method or the like to form a composite material.
  • the knitted fabric and the braided structure are structures formed without cutting the long fibers, a composite material can be obtained without impairing the mechanical strength of the porous carbon fiber having the continuous porous structure of the present invention. This is also a preferred embodiment.
  • the thickness is in the range of 20 nm to 10 mm, ensuring uniform and bending resistance, preventing breakage and stabilizing. Since it becomes easy to obtain a structure, it is preferable.
  • the film thickness is preferably in the range of 20 nm to 1 mm, and more preferably in the range of 20 nm to 500 ⁇ m.
  • the particle size is preferably in the range of 20 nm to 10 mm.
  • the smaller the particle size the larger the surface area. Therefore, the adhesiveness with the resin is improved, and particularly when compounding with a thermoplastic resin, mixing with a kneader or the like can be performed uniformly.
  • the handleability of a porous carbon material improves so that a particle size is large, it is preferable.
  • porous carbon material of the present invention when it has a bulk form, it may be a single porous carbon material or a combination of porous carbon materials having other forms of the present invention. .
  • the porous carbon material of the present invention includes, as an example, a step (step 1) in which a carbonizable resin and a disappearing resin are mixed to form a resin mixture, and a step in which the resin mixture in a compatible state is molded and phase-separated.
  • the porous carbon material precursor can be produced by carbonizing the porous carbon material precursor after obtaining the porous carbon material precursor by the (step 2) and the stretching step (step 3).
  • the porous carbon material precursor is a term that particularly means a precursor material just before carbonization for finally forming a porous carbon material. That is, the porous carbon material precursor is a precursor material that can be converted into a porous carbon material only by subsequent carbonization treatment.
  • steps 1 to 3 are performed before the firing step.
  • it means a precursor material after undergoing the other steps.
  • precursor material is a generic term for materials at each stage before carbonization in the method for producing a porous carbon material according to the present invention.
  • Step 1 is a step in which a carbonizable resin and a disappearing resin are mixed to form a resin mixture.
  • the carbonizable resin is a resin that is carbonized by firing and remains as a carbon material, and both a thermoplastic resin and a thermosetting resin can be used.
  • a thermoplastic resin it is preferable to select a resin that can be infusibilized by a simple process such as heating or irradiation with high energy rays.
  • thermosetting resin infusibilization treatment is often unnecessary, and this is also a suitable material.
  • thermoplastic resins include polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, phenolic resins, wholly aromatic polyesters
  • thermosetting resins include unsaturated polyester resins, alkyd resins, melamine resins, urea resins.
  • thermoplastic resin Polyimide resin, diallyl phthalate resin, lignin resin, urethane resin, and the like. These may be used singly or in a mixed state, but mixing in each of the thermoplastic resin or the thermosetting resin is also a preferable aspect from the ease of molding.
  • the molecular weight of the carbonizable resin is preferably 10,000 or more in terms of weight average molecular weight.
  • a carbonizable resin having a molecular weight of 10,000 or more has a sufficient viscosity in the process of molding or stretching, and can stably produce a precursor material.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 1,000,000 or less from the viewpoint of easy moldability and resin extrusion.
  • thermoplastic resin from the viewpoint of carbonization yield, moldability, stretchability, and economy, and among them, polyphenylene oxide, polyvinyl alcohol, polyacrylonitrile, wholly aromatic polyesters are preferably used, and by stretching It is a more preferable embodiment to use polyacrylonitrile that can easily increase the degree of orientation of the continuous porous structure.
  • the disappearing resin is a resin that can be removed at any stage up to the carbonization treatment after step 3 described later.
  • the removal of the disappearing resin may be performed simultaneously with the infusibilization treatment, the heat treatment, or the carbonization treatment, which will be described later, or a step (step 4) for removing the disappearing resin may be provided separately from these.
  • the method for removing the disappearing resin is not particularly limited, and is a method of chemically removing the polymer by depolymerizing it using a chemical, a method of dissolving and removing by adding a solvent that dissolves the disappearing resin, and heating.
  • a method of removing the lost resin by reducing the molecular weight by thermal decomposition is preferably used. These methods can be used alone or in combination, and when combined, they may be performed simultaneously or separately.
  • a method of hydrolyzing with an acid or alkali is preferable from the viewpoints of economy and handleability.
  • the resin that is susceptible to hydrolysis by acid or alkali include polyester, polycarbonate, and polyamide.
  • a method of removing by adding a solvent that dissolves the disappearing resin a method of dissolving and removing the disappearing resin by continuously supplying a solvent to the mixed carbonizable resin and the disappearing resin, or by a batch method
  • a suitable example is a method of mixing and dissolving and removing the disappearing resin.
  • the disappearing resin suitable for the method of removing by adding a solvent include polyolefins such as polyethylene, polypropylene and polystyrene, acrylic resins, methacrylic resins, polyvinyl pyrrolidone, aliphatic polyesters, polycarbonates and the like.
  • polyolefins such as polyethylene, polypropylene and polystyrene
  • acrylic resins methacrylic resins
  • polyvinyl pyrrolidone polyvinyl pyrrolidone
  • aliphatic polyesters polycarbonates and the like.
  • an amorphous resin is more preferable because of its solubility in a solvent, and examples thereof include polystyrene, methacrylic resin, and polycarbonate.
  • a method of removing the lost resin by reducing the molecular weight by thermal decomposition a method in which the mixed carbonizable resin and the lost resin are heated in a batch manner to thermally decompose, or a continuously mixed carbonized resin and the lost resin are removed.
  • a method of heating and thermally decomposing while continuously supplying to a heat source a method in which the mixed carbonizable resin and the lost resin are heated in a batch manner to thermally decompose, or a continuously mixed carbonized resin and the lost resin are removed.
  • the disappearing resin is preferably a resin that disappears by thermal decomposition when carbonizing the porous carbon material precursor, and even when an infusible treatment of the carbonizable resin described later is performed, a large chemical change occurs. It is preferably a thermoplastic resin that does not occur and has a carbonization yield of less than 10% after firing.
  • Specific examples of such disappearing resins include polyolefins such as polyethylene, polypropylene and polystyrene, acrylic resins, methacrylic resins, polyacetals, polyvinylpyrrolidones, aliphatic polyesters, aromatic polyesters, aliphatic polyamides, polycarbonates and the like. These may be used alone or in a mixed state.
  • step 1 the carbonizable resin and the disappearing resin are mixed to form a resin mixture (polymer alloy).
  • “Compatibilized” as used herein refers to creating a state in which the phase separation structure of the carbonizable resin and the disappearing resin is not observed with an optical microscope by appropriately selecting the temperature and / or solvent conditions.
  • the carbonizable resin and the disappearing resin may be compatible by mixing only the resins, or may be compatible by adding a solvent.
  • a system in which a plurality of resins are compatible includes a phase diagram of an upper critical eutectic temperature (UCST) type that is in a phase separation state at a low temperature but has one phase at a high temperature, and conversely, a phase separation state at a high temperature.
  • UCT upper critical eutectic temperature
  • LCST lower critical solution temperature
  • the solvent to be added is not particularly limited, but the absolute value of the difference from the average value of the solubility parameter (SP value) of the carbonizable resin and the disappearing resin, which is a solubility index, is within 5.0. It is preferable. Since it is known that the smaller the absolute value of the difference from the average value of SP values, the higher the solubility, it is preferable that there is no difference. Further, the larger the absolute value of the difference from the average SP value, the lower the solubility, and it becomes difficult to take a compatible state between the carbonizable resin and the disappearing resin. Therefore, the absolute value of the difference from the average value of SP values is preferably 3.0 or less, and most preferably 2.0 or less.
  • carbonizable resins and disappearing resins are polyphenylene oxide / polystyrene, polyphenylene oxide / styrene-acrylonitrile copolymer, wholly aromatic polyester / polyethylene as long as they do not contain solvents.
  • examples include terephthalate, wholly aromatic polyester / polyethylene naphthalate, wholly aromatic polyester / polycarbonate.
  • combinations of systems containing solvents include polyacrylonitrile / polyvinyl alcohol, polyacrylonitrile / polyvinylphenol, polyacrylonitrile / polyvinylpyrrolidone, polyacrylonitrile / polylactic acid, polyvinyl alcohol / vinyl acetate-vinyl alcohol copolymer, polyvinyl Examples include alcohol / polyethylene glycol, polyvinyl alcohol / polypropylene glycol, and polyvinyl alcohol / starch.
  • the method of mixing the carbonizable resin and the disappearing resin is not limited, and various known mixing methods can be adopted as long as uniform mixing is possible. Specific examples include a rotary mixer having a stirring blade and a kneading extruder using a screw.
  • the temperature (mixing temperature) when mixing the carbonizable resin and the disappearing resin is equal to or higher than the temperature at which both the carbonizable resin and the disappearing resin are softened.
  • the softening temperature may be appropriately selected as the melting point if the carbonizable resin or disappearing resin is a crystalline polymer, and the glass transition temperature if it is an amorphous resin.
  • the mixing temperature is preferably 400 ° C. or lower from the viewpoint of preventing deterioration of the resin due to thermal decomposition and obtaining a precursor of a porous carbon material having excellent quality.
  • Step 1 it is preferable to mix 90 to 10% by weight of the disappearing resin with 10 to 90% by weight of the carbonizable resin. It is preferable that the carbonizable resin and the disappearing resin are within the above-mentioned range since an optimum pore size and porosity can be arbitrarily designed. If the carbonizable resin is 10% by weight or more, it is possible to maintain the mechanical strength of the carbonized material and improve the yield. Further, if the carbonizable material is 90% by weight or less, it is preferable because the lost resin can efficiently form voids.
  • the mixing ratio of the carbonizable resin and the disappearing resin can be arbitrarily selected within the above range in consideration of the compatibility of each material. Specifically, in general, the compatibility between resins deteriorates as the composition ratio approaches 1: 1, so when a system that is not very compatible is selected as a raw material, the amount of carbonizable resin is increased. It is also preferable to improve the compatibility by reducing it so that it approaches a so-called uneven composition.
  • a solvent when mixing the carbonizable resin and the disappearing resin. Addition of a solvent lowers the viscosity of the carbonizable resin and the disappearing resin to facilitate molding, and facilitates compatibilization of the carbonizable resin and the disappearing resin.
  • the solvent here is not particularly limited as long as it is a liquid at room temperature that can dissolve and swell at least one of the carbonizable resin and the disappearing resin. If both the carbonizable resin and the disappearing resin are dissolved, it is possible to improve the compatibility of both, which is a more preferable embodiment.
  • the amount of the solvent added is 20% by weight with respect to the total weight of the carbonizable resin and the disappearing resin from the viewpoint of improving the compatibility between the carbonizable resin and the disappearing resin, lowering the viscosity and improving the flowability to improve the moldability.
  • the above is preferable.
  • it is preferably 90% by weight or less based on the total weight of the carbonizable resin and the disappearing resin from the viewpoint of reducing the cost associated with the recovery and reuse of the solvent and securing the spinnability.
  • Step 2 is a step of forming a resin mixture in a state of being compatible in Step 1 and performing phase separation to obtain a precursor material having a co-continuous phase separation structure.
  • the co-continuous phase separation structure indicates a state in which the phases occupying 50% by weight or more of each of the carbonizable resin and the disappearing resin constituting the resin mixture are continuously separated from each other.
  • a method for molding the resin mixture in a compatible state is not particularly limited, and a molding method in accordance with a phase separation method described later can be appropriately selected.
  • the resin mixture is a combination of thermoplastic resins, it can be melt-molded after being heated above the softening temperature of the resin.
  • a solvent is contained in the resin mixture, molding using a solution can be performed.
  • dry spinning, dry-wet spinning, wet spinning, or the like can be appropriately selected.
  • Melt molding is a method in which a resin mixture heated and melted (fluidized) using a kneading extruder is extruded from a die and taken out while cooling, and the process speed is faster than molding using a solution. It is characterized by excellent productivity. Moreover, since the volatilization of the solvent does not occur, the cost for safety measures in the process can be suppressed, and therefore, it is preferable because the production can be performed at a low cost.
  • solution spinning is a method in which a spinning dope consisting of a resin mixture and a solvent prepared in advance is measured and fiberized by extruding it from the die, which controls the phase separation state precisely. It is possible.
  • dry-wet spinning and wet spinning using a coagulation bath is a more preferable embodiment because the phase separation state of the precursor fiber can be precisely controlled by appropriately combining heat-induced phase separation and non-solvent-induced phase separation.
  • the method for phase-separating the carbonizable resin and the disappearing resin mixed in step 2 is not particularly limited.
  • phase separation methods can be used alone or in combination.
  • Specific methods for use in combination include, for example, a method in which non-solvent-induced phase separation is caused through a coagulation bath and then heated to cause heat-induced phase separation, or a temperature in the coagulation bath is controlled to cause non-solvent-induced phase separation. And a method of causing the thermally induced phase separation simultaneously, a method of cooling the material discharged from the die, causing the thermally induced phase separation, and then contacting with a non-solvent.
  • Step 3 is a step of stretching the precursor material obtained by forming the resin mixture in Step 2 and causing phase separation to form a co-continuous phase separation structure. This step makes it possible to orient the co-continuous phase separation structure formed in step 2, and obtain a precursor material (porous carbon material precursor) of the porous carbon material in which the co-continuous phase separation structure is highly oriented. be able to.
  • the porous carbon material precursor of the present invention has a co-continuous phase separation structure at least in part, and the orientation degree of the co-continuous phase separation structure measured by small angle X-ray scattering or X-ray CT method is 1. It is a porous carbon material precursor characterized by being 10 or more.
  • the orientation degree of the co-continuous phase separation structure referred to in the present invention is determined in the same manner as the orientation degree of the continuous porous structure referred to in the present invention.
  • the orientation degree of the co-continuous phase separation structure of the porous carbon material precursor needs to be 1.10 or more.
  • the structural period L of the co-continuous phase separation structure as referred to in the present invention is determined on the short axis side and the long axis side, respectively, similarly to the structural period L of the continuous porous structure referred to in the present invention. Further, similarly to the structural period L of the continuous porous structure referred to in the present invention, the structural period on the long axis side of the co-continuous phase separation structure formed in the porous carbon material precursor of the present invention is 5 nm to 5 ⁇ m. It is preferable. The thickness is more preferably 30 nm to 2 ⁇ m, and further preferably 50 nm to 1 ⁇ m.
  • the short period side structure period of the co-continuous phase separation structure formed in the porous carbon material precursor of the present invention is the short axis structure of the continuous porous structure formed in the porous carbon material of the present invention. Similar to the period, it is preferably 10 nm to 20 ⁇ m. The thickness is more preferably 50 nm to 20 ⁇ m, and further preferably 100 nm to 10 ⁇ m.
  • Stretching can be performed by appropriately using conventionally known means.
  • a typical example is a method of stretching between rollers with a difference in speed.
  • a method of heating and stretching the roller itself, a contact type or non-contact type heater, a hot water / solvent bath, a steam heating facility, a laser heating facility, etc. are provided between the rollers, and the precursor material is Examples of the method include heating and stretching.
  • other stretching methods in particular, when obtaining a film-like porous carbon material, a method of pressing a resin mixture between rollers, a method of biaxial stretching using a crimper, and the like are also suitable.
  • the heating temperature is preferably equal to or higher than the glass transition temperature of the carbonizable resin and / or the disappearing resin from the viewpoint of ensuring molecular mobility and smoothly stretching. Moreover, since it can extend
  • the upper limit of the heating temperature is not particularly set, but when the carbonizable resin or disappearing resin is a crystalline polymer, it is preferably below the melting point. When the carbonizable resin or the disappearing resin is an amorphous polymer, the heating temperature is preferably 300 ° C. or less from the viewpoint of preventing the carbonization reaction.
  • the stretching may be performed up to the limit of the stretching ratio at which it breaks at a time.
  • a component that relaxes in a short time and a component that relaxes in a longer time are often mixed, and it is also preferable to first stretch a component that can relax in a short time at a high draw ratio.
  • the high stretch ratio here refers to a ratio of 90% or more of the stretch ratio calculated from the secondary yield point elongation after obtaining the SS curve for the material before stretching and after the low stress elongation region. This means setting the draw ratio.
  • a material stretched at a stretch ratio of 90% or more of the stretch ratio calculated from the secondary yield point elongation yields a uniform material free from thick and uneven irregularities, and is excellent in quality.
  • the manufacturing method of the porous carbon material precursor of the present invention is: Step 1: a step of dissolving a carbonizable resin and a disappearing resin to form a resin mixture; Step 2: A step of molding the resin mixture obtained in Step 1 and subjecting it to phase separation to obtain a precursor material having a co-continuous phase separation structure; Step 3: A step of stretching the precursor material obtained in Step 2; It is a manufacturing method of the porous carbon material precursor which has this.
  • the precursor material that has been stretched in step 3 is preferably subjected to a heat treatment step.
  • the heat treatment can be subjected to carbonization while suppressing the shrinkage associated with relaxation of the molecular chains oriented by stretching and maintaining a highly oriented state.
  • a conventionally known method can be used.
  • a method of heating the wound material in an oven or the like is preferable.
  • a method of heating the roller surface itself or a method of heat treatment by providing a contact or non-contact heater, hot water / solvent bath, steam heating equipment, laser heating equipment, etc. between the rollers is also preferably used. It is done.
  • the heating temperature in the heat treatment induces crystallization from the viewpoint of ensuring molecular mobility and smoothly relaxing the molecular chain, and particularly when the carbonizable resin and / or the disappearing resin is a crystalline polymer.
  • the temperature is preferably equal to or higher than the glass transition temperature of the carbonizable resin and / or the disappearing resin.
  • heating to a temperature higher than the higher one of the glass transition temperature of the carbonizable resin and the disappearing resin ensures the molecular mobility of the carbonizable resin and the disappearing resin and smoothly relaxes the molecular chain. This is a more preferable embodiment.
  • the upper limit of the heating temperature in the heat treatment is not particularly set, but when the carbonizable resin or the disappearing resin is a crystalline polymer, it is preferably below its melting point.
  • the heating temperature is preferably 300 ° C. or less from the viewpoint of preventing the carbonization reaction.
  • the purpose of heat treatment is to prevent macro contraction by crystallizing or relaxing the molecular chain orientation, so that the length of the material during heat treatment does not change in the range of 0.8 to 1.2 times. It is preferably limited. Limiting the length means suppressing a dimensional change during heat treatment, specifically, winding around a metal roll, fixing to a metal frame, heat treatment in a state where the speed is limited between rollers, and the like. .
  • the heat-treated material is partially relaxed in orientation, and when a crystalline polymer is contained in the resin mixture, it is possible to prevent macro contraction by advancing crystallization.
  • the length limit is preferably 0.8 times or more based on the original length, since it can be greatly relaxed around a micromolecular chain while minimizing the relaxation of the structure in which the phase separation state is oriented.
  • the length restriction is preferably 1.2 times or less with respect to the original length, since it can be relaxed around a microscopic molecular chain while maintaining a highly oriented phase separation state without relaxing.
  • the method for removing the lost resin is not particularly limited as long as the lost resin can be chemically decomposed or dissolved. Specifically, the disappearance resin is chemically decomposed using acid, alkali, or enzyme, and is removed by reducing the molecular weight, or by depolymerization using radiation such as electron beam, gamma ray, ultraviolet ray, infrared ray, etc. A method for removing the lost resin is suitable.
  • the lost resin when the lost resin can be removed by thermal decomposition, the lost resin can be removed by pyrolysis and gasification simultaneously with the carbonization treatment step, infusibilization treatment or heat treatment step described later.
  • a method of removing the lost resin by pyrolysis and gasification at the same time as carbonization or infusibilization in the carbonization step or infusibilization step is preferable.
  • the process is regarded as the lost resin removal process. I will do it.
  • the precursor material drawn in step 3 and subjected to a heat treatment step as necessary is preferably subjected to an infusibilization treatment step before being subjected to a carbonization treatment step.
  • the infusible treatment method is not particularly limited, and a known method can be used. Specific methods include a method of causing oxidative crosslinking by heating in the presence of oxygen, a method of forming a crosslinked structure by irradiating high energy rays such as electron beams and gamma rays, and impregnating a substance having a reactive group, Examples thereof include a method of mixing to form a crosslinked structure, and a method of simply heating. Among them, the method of causing oxidative crosslinking by heating in the presence of oxygen is preferable because the process is simple and the production cost can be kept low. These methods may be used singly or in combination, and each may be used simultaneously or separately.
  • the heating temperature in the method of causing oxidative crosslinking by heating in the presence of oxygen is preferably 150 ° C. or higher from the viewpoint of efficiently promoting the crosslinking reaction. Moreover, it is preferable that it is the temperature of 350 degrees C or less from a viewpoint of preventing the yield deterioration from the weight loss by thermal decomposition, combustion, etc. of carbonizable resin.
  • the time of the infusibilization treatment step is preferably equal to or longer than the time during which the precursor material can sufficiently undergo the infusibilization treatment.
  • a precursor material that has been sufficiently infusibilized is preferable because it is excellent in carbonization yield and strength.
  • the infusibilization treatment time is preferably 10 minutes or more, and more preferably 30 minutes or more.
  • the upper limit of the infusibilization treatment time is not particularly limited, but is preferably 300 minutes or less from the viewpoint of reducing the process passage time and obtaining a porous carbon material at low cost.
  • the oxygen concentration in the infusibilization process is not particularly limited, but it is a preferable aspect to supply a gas having an oxygen concentration of 18% or more because manufacturing costs can be kept low.
  • the method for supplying the gas is not particularly limited, and examples thereof include a method for supplying air directly into the heating device and a method for supplying pure oxygen into the heating device using a cylinder or the like.
  • the carbonizable resin is irradiated with an electron beam or gamma ray using a commercially available electron beam generator or gamma ray generator. And a method of inducing cross-linking.
  • the lower limit of the irradiation intensity is preferably 1 kGy or more from the efficient introduction of a crosslinked structure by irradiation.
  • a method of forming a crosslinked structure by impregnating and mixing a substance having a reactive group is a method in which a low molecular weight compound having a reactive group is impregnated in a resin mixture, and a crosslinking reaction is advanced by irradiation with heat or high energy rays. And a method in which a low molecular weight compound having a reactive group is mixed in advance and the crosslinking reaction is advanced by heating or irradiation with high energy rays.
  • the porous carbon material precursor of the present invention is a porous carbon material precursor obtained by subjecting to the above steps 1 to 3 and, if necessary, a heat treatment step, an infusibilization treatment step, a disappearance resin removal step (step 4), and the like. Can be finally obtained by subjecting it to a carbonization treatment step (step 5).
  • the method of carbonization is not particularly limited, and any known method can be used, but it is usually preferable to carry out by firing.
  • firing is preferably performed by heating to 600 ° C. or higher in an inert gas atmosphere.
  • the inert gas refers to one that is chemically inert during heating, and specific examples include helium, neon, nitrogen, argon, krypton, xenon, carbon dioxide, and the like. Of these, nitrogen and argon are preferable from the viewpoint of cost.
  • the flow rate of the inert gas may be an amount that can sufficiently reduce the oxygen concentration in the heating device, and an optimal value can be selected as appropriate depending on the size of the heating device, the amount of raw material supplied, the heating temperature, and the like. preferable.
  • the upper limit of the flow rate is not particularly limited, but is preferably set appropriately in accordance with the temperature distribution and the design of the heating device, from the viewpoint of economy and the temperature change in the heating device being reduced.
  • the upper limit of the heating temperature is not limited, but if it is 3000 ° C. or less, it is preferable from an economical viewpoint because carbonization is sufficiently advanced and no special processing is required for the equipment.
  • the disappearing resin when the disappearing resin is simultaneously removed in the carbonization treatment step (step 5 '), it is preferable to supply the porous carbon material precursor into the heating device. At this time, it is also preferable to appropriately provide an exhaust facility so that the gas generated by decomposition of the lost resin is not contaminated. In addition, it is preferable to set the heating temperature at this time to be equal to or higher than the temperature at which the disappearing resin is decomposed, because it is possible to prevent the disappearance resin from remaining and promote the formation of a porous structure.
  • heating may be performed by continuous processing in the process, or may be performed by batch processing in which a certain number of porous carbon material precursors are heated together.
  • the heating method in the case of continuously performing carbonization treatment it is a method to take out the material while continuously supplying the material using a roller, a conveyor, or the like in a heating device maintained at a constant temperature. It is preferable because it can be increased.
  • the lower limit of the rate of temperature rise and the rate of temperature drop when performing batch processing in the heating device is not particularly limited, but productivity can be increased by shortening the time required for temperature rise and temperature drop, and 1 ° C. It is preferable that the speed is at least 1 minute.
  • the upper limit of the temperature increase rate and the temperature decrease rate is not particularly limited, it is preferable to make it slower than the thermal shock resistance of the material constituting the heating device.
  • ⁇ Evaluation method> (Orientation degree of continuous porous structure or bicontinuous phase separation structure) Position the light source, sample, and two-dimensional detector so that a porous carbon material or a porous carbon material precursor is sandwiched between sample plates, and information with a scattering angle of less than 10 degrees can be obtained from an X-ray source obtained from a CuK ⁇ ray light source. Adjusted. After taking the natural logarithm of the intensity of the two-dimensional measurement data obtained from the two-dimensional detector, the average luminance Iave of the entire image is obtained.
  • x represents a distance from the origin on the moving radius.
  • Ellipse approximation is performed on the figure p (x, ⁇ ) obtained by plotting this using the least squares method to obtain the short axis b and long axis a of the ellipse, and the long axis a / short axis b Is the orientation degree of a continuous porous structure or a bicontinuous phase separation structure.
  • the porous carbon material or the porous carbon material precursor has a fibrous form and total reflection by X-rays occurs, it is ⁇ 5 ° from the center of the streak due to total reflection so as to eliminate the influence of total reflection.
  • Ellipse approximation was performed excluding p (x, ⁇ ) in the range.
  • Example 1 70 g of polyacrylonitrile (MW 150,000) manufactured by Polyscience, 70 g of polyvinyl pyrrolidone (MW 40,000) manufactured by Sigma-Aldrich, and 400 g of dimethyl sulfoxide (DMSO) manufactured by Wakken as a solvent were put into a separable flask. A uniform and transparent solution was prepared at 150 ° C. while stirring and refluxing for 3 hours. At this time, the concentration of polyacrylonitrile and the concentration of polyvinylpyrrolidone were 13% by weight, respectively.
  • DMSO dimethyl sulfoxide
  • the solution After cooling the obtained spinning stock solution having a polymer concentration of 26% to 25 ° C., the solution was discharged at a rate of 3 mL / min from a 1-hole cap of 0.6 mm ⁇ , and led to a coagulation bath of pure water maintained at 25 ° C., Thereafter, the yarn was taken up at a speed of 5 m / min and deposited on a bat to obtain a raw yarn. At this time, the air gap was 5 mm, and the immersion length in the coagulation bath was 5 cm. The obtained raw yarn was translucent and caused phase separation.
  • the obtained raw yarn is dried for 1 hour in a circulation drier kept at 25 ° C. to dry the moisture on the surface of the raw yarn, followed by vacuum drying at 25 ° C. for 5 hours, and the dried raw yarn Got.
  • the obtained dried yarn was sent out at a yarn speed of 5 m / min and wound at a rate of 30 m / min through a non-contact slit heater maintained at 90 ° C. to obtain a drawn yarn having a draw ratio of 6.0 times.
  • the drawn yarn was put into an electric furnace maintained at 250 ° C., and infusibilization treatment was performed by heating in an oxygen atmosphere for 1 hour under no tension.
  • the drawn yarn subjected to the infusibilization treatment changed to black, and a porous carbon material precursor in which infusibilization progressed was obtained.
  • the degree of orientation of the co-continuous phase separation structure of the obtained porous carbon material precursor was 4.05.
  • the obtained porous carbon material precursor was carbonized under the conditions of a nitrogen flow rate of 1000 mL / min, a heating rate of 10 ° C./min, an ultimate temperature of 1500 ° C., and a holding time of 1 minute to obtain porous carbon fibers.
  • the orientation degree of the continuous porous structure of the obtained porous carbon fiber was 2.25. Further, the structural period on the long axis side was 49.8 nm, the structural period on the short axis side was 112 nm, and a uniform continuous porous structure was formed at the center of the fiber. The strength of the fiber was 250 MPa. The results are shown in Table 1. Moreover, the scanning electron micrograph of the longitudinal cross-section of the porous carbon fiber obtained by the present Example is shown in FIG.
  • Example 2 The obtained dried yarn was sent out at a yarn speed of 5 m / min, and wound at a rate of 25 m / min through a non-contact slit heater maintained at 90 ° C. to obtain a drawn yarn having a draw ratio of 5.0 times. Except for the above, a porous carbon material precursor and porous carbon fibers were obtained in the same manner as in Example 1. The degree of orientation of the co-continuous phase separation structure of the obtained porous carbon material precursor was 3.80.
  • the orientation degree of the continuous porous structure of the obtained porous carbon fiber was 1.81.
  • the structural period on the long axis side was 48.9 nm
  • the structural period on the short axis side was 88.5 nm
  • a uniform continuous porous structure was formed at the center of the fiber.
  • the strength was 190 MPa. The results are shown in Table 1.
  • Example 3 The obtained dry yarn was fed out at a yarn speed of 5 m / min and wound up at a rate of 20 m / min through a non-contact slit heater maintained at 90 ° C., and a drawn yarn having a draw ratio of 4.0 times was obtained. Except for the above, a porous carbon material precursor and porous carbon fibers were obtained in the same manner as in Example 1. The degree of orientation of the co-continuous phase separation structure of the obtained porous carbon material precursor was 3.15.
  • the degree of orientation of the continuous porous structure of the obtained porous carbon fiber was 1.49. Further, the structural period on the long axis side was 49.8 nm, the structural period on the short axis side was 74.2 nm, and a uniform continuous porous structure was formed at the center of the fiber. The strength was 150 MPa. The results are shown in Table 1.
  • Example 4 The obtained dried yarn was sent out at a yarn speed of 5 m / min and wound up at a rate of 15 m / min through a non-contact slit heater maintained at 90 ° C. to obtain a drawn yarn having a draw ratio of 3.0 times. Except for the above, a porous carbon material precursor and porous carbon fibers were obtained in the same manner as in Example 1. The degree of orientation of the co-continuous phase separation structure of the obtained porous carbon material precursor was 2.81.
  • the orientation degree of the continuous porous structure of the obtained porous carbon fiber was 1.25. Further, the structural period on the long axis side was 49.0 nm, the structural period on the short axis side was 61.2 nm, and a uniform continuous porous structure was formed at the center of the fiber. The strength was 110 MPa. The results are shown in Table 1.
  • Example 5 The obtained dried yarn was sent out at a yarn speed of 5 m / min and wound up at a rate of 10 m / min through a non-contact slit heater maintained at 90 ° C. to obtain a drawn yarn having a draw ratio of 2.0 times. Except for the above, a porous carbon material precursor and porous carbon fibers were obtained in the same manner as in Example 1. The degree of orientation of the co-continuous phase separation structure of the obtained porous carbon material precursor was 1.87.
  • the degree of orientation of the continuous porous structure of the obtained porous carbon fiber was 1.12.
  • the structural period on the long axis side was 51.9 nm
  • the structural period on the short axis side was 58.1 nm
  • a uniform continuous porous structure was formed at the center of the fiber.
  • the strength of the fiber was 80 MPa. The results are shown in Table 1.
  • the produced sample showed a continuous porous structure, but the orientation degree of the continuous porous structure was 1.02, and a uniform continuous porous structure was formed at the center of the sample.
  • the strength of the flat plate was 40 MPa. The results are shown in Table 1.
  • Comparative Example 2 In Comparative Example 1, the prepared solution was discharged from a 0.6 mm ⁇ 1-hole cap at 3 mL / min, led to a pure water coagulation bath maintained at 25 ° C., and then taken up at a rate of 5 m / min. Attempts were made to obtain a raw yarn by depositing on the fiber, but the spinnability was poor and fibers could not be obtained stably.
  • Example 3 A porous carbon material precursor and porous carbon fibers were obtained in the same manner as in Example 1 except that the obtained dried yarn was carbonized without stretching.
  • the orientation degree of the continuous porous structure of the obtained porous carbon fiber was 1.01, and a uniform continuous porous structure was formed at the center of the fiber.
  • the strength was 60 MPa. The results are shown in Table 1.
  • Example 6 70 g of polyacrylonitrile (MW 150,000) manufactured by Polyscience, 70 g of polyvinyl pyrrolidone (MW 40,000) manufactured by Sigma-Aldrich, and 400 g of dimethyl sulfoxide (DMSO) manufactured by Wakken as a solvent were put into a separable flask. A uniform and transparent solution was prepared at 150 ° C. while stirring and refluxing for 3 hours. At this time, the concentration of polyacrylonitrile and the concentration of polyvinylpyrrolidone were 13% by weight, respectively.
  • DMSO dimethyl sulfoxide
  • the obtained solution was poured onto a polyethylene terephthalate film, passed through a water bath to induce phase separation, and then air-dried to obtain a dry film. Thereafter, only the dry film was peeled off from the polyethylene terephthalate film, and the film was stretched so as to be 3.0 times in one direction with a film stretching machine equipped with a crimper while keeping the temperature of the dry film at 80 ° C.
  • the obtained stretched dry film is put into an electric furnace maintained at 250 ° C., and subjected to infusibilization treatment by heating in an oxygen atmosphere under no tension for 1 hour, and the porous carbon material changed to black I got a precursor.
  • the obtained porous carbon material precursor was carbonized under the conditions of a nitrogen flow rate of 1000 mL / min, a temperature rising rate of 10 ° C./min, an ultimate temperature of 1500 ° C., and a holding time of 1 minute to obtain a porous carbon film.
  • the degree of orientation of the continuous porous structure of the obtained porous carbon film was 2.04.
  • the structural period on the long axis side was 51.4 nm
  • the structural period on the short axis side was 104.8 nm
  • a uniform continuous porous structure was formed at the center of the film. The results are shown in Table 1.
  • Example 7 A porous carbon material precursor and a porous carbon film were obtained in the same manner as in Example 6 except that the draw ratio was 4.0 times.
  • the degree of orientation of the continuous porous structure of the obtained porous carbon film was 2.43. Further, the structural period on the long axis side was 45.5 nm, the structural period on the short axis side was 110.6 nm, and a uniform continuous porous structure was formed at the center of the film. The results are shown in Table 1.
  • Example 8 The porous carbon fiber obtained in Example 1 was cut to a length of 5 mm or less, pulverized using a ball mill, sieved with a 40-mesh wire mesh filter, and those passing through the sieve were collected to form a particulate porous A carbonaceous material was obtained.
  • the average particle diameter of the obtained porous carbon particles was 30 ⁇ m. Moreover, when one piece was taken out out of the porous carbon particles and the degree of orientation of the continuous porous structure was measured, it was 2.24. Further, the structural period on the long axis side was 49.3 nm, the structural period on the short axis side was 110.4 nm, and a uniform continuous porous structure was formed at the center of the particle. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

 界面接着性に優れた構造材料として用いることができる延伸軸に配向した連続多孔構造を持つ炭素材料及びその製造方法を提供する。 連続多孔構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される連続多孔構造の配向度が1.10以上であることを特徴とする多孔質炭素材料によって、上記課題は解決される。

Description

多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法
 本発明は、界面接着性に優れた構造材料として用いることができる多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法に関するものである。
 炭素材料は、化学的な安定性や耐熱性の高さ、高導電率や強度の高さ、加工性、生態適合性の高さなどから、様々な用途に使用される基礎材料である。従来の炭素材料は、例えば高導電性のカーボンブラック、カーボンナノチューブ、フラーレン、グラフェンなどが挙げられる。しかし、いずれも粒子状の形態を取っており、粒子同士が接合されていないことから、例えばフィラーとして樹脂と複合した場合でも、強度の向上効果は限定的であった。またフィラー中の空隙への樹脂の浸潤が限定的であり、フィラー中に空隙が残存してしまうことなどから、複合材料とした場合に強度の向上効果が限定的であった。
 また特に、上記炭素材料以外の炭素材料として挙げられる炭素繊維は、その強度、弾性率、化学的・熱的安定性、高導電率や金属と比較した際の比重が軽いなどの特徴から、構造材料を中心として様々な用途に使用されている。また構造材料として使用する際には、熱硬化性あるいは熱可塑性樹脂と複合化して用いることが多いが、炭素繊維表面と当該樹脂との親和性が低く、剥離による複合材料の強度低下に関して、炭素繊維の表面処理を中心に種々検討がなされている。例えば、特許文献1には賦活処理により炭素繊維の表面を多孔質化する方法が記載されている。
 しかしながら数μm程度の直径を持つ炭素繊維の表面処理のみでは、接着力の向上に寄与できる面が処理を受けた炭素繊維の表面にしかないため、比表面積が事実上小さいため樹脂と炭素繊維が接触する界面が少なく、剥離強度の向上には限界が存在した。そこで、表面だけでなく、炭素繊維全体を多孔質化することで、比表面積を増大させ、樹脂と炭素繊維の接触界面を増大させることに加え、樹脂にアンカー効果を発揮させて剥離強度を向上させることが検討されている。
 例えば、特許文献2には、熱硬化性樹脂と熱可塑性樹脂を混合し、熱硬化性樹脂を硬化させた後に熱可塑性樹脂を除去してから炭化することで、炭素材料そのものに連続多孔構造を導入する例が示されている。また、特許文献3には、非相溶ポリマー同士の組合せを紡糸、延伸して多孔質炭素繊維を得る方法が開示されている。
特開昭61-282430号公報 特開2004-259593号公報 特開平2-160924号公報
 非特許文献1に記載の活性炭繊維は、賦活化過程で細孔が炭素材料の表面から内部へと一方向へ形成されるため、繊維表面に無数の凹凸が形成され、樹脂と炭素繊維が接触する界面の面積が飛躍的に向上するが、該凹凸が引張強度に対する欠陥として作用することから、構造材料として炭素繊維に求められる繊維強度を保つことが困難であった。
 また特許文献1には、熱硬化性樹脂と熱可塑性樹脂を組み合わせて共連続構造を形成させ、その後炭化して共連続構造を持つ炭素材料に関する技術が開示されているが、熱硬化性樹脂が低分子量であるため曳糸性に劣り、繊維化が不可能であった。また繊維状に細長い炭素材料が得られたとしても、延伸を行っていないため炭素材料としては共連続構造が無配向の状態であり、特に構造材料として炭素材料に求められる強度を得ることができなかった。
 更に特許文献2には、非相溶ポリマー同士の組合せにより多孔質炭素繊維を得る技術について開示されているが、非相溶ポリマー同士の組合せでは、海島構造を形成した紡糸ドープを細長く延伸しても、炭化で消失する樹脂が少量の場合にはレンコン状の炭素繊維が、消失する樹脂が多量の場合は多数の細く短い炭素繊維が得られるのみであり、界面接着性向上に寄与できる表面積を大幅に向上させた、連続した炭素繊維を得ることはできなかった。
 本発明は、連続多孔構造を少なくとも一部に有し、かつある特定の方向に連続多孔構造が配向していることで、強度に優れ、マトリックス樹脂との界面接着性に優れた多孔質炭素材料を提供するものである。
 上記課題を解決するための本発明の多孔質炭素材料は、連続多孔構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される連続多孔構造の配向度が1.10以上であることを特徴とする多孔質炭素材料である。
 また、本発明の炭素材料強化複合材料は、本発明の多孔質炭素材料と樹脂とを複合化してなる炭素材料強化複合材料である。
 また、本発明の多孔質炭素材料プリカーサの製造方法は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
を有する多孔質炭素材料プリカーサの製造方法である。
 また、本発明の多孔質炭素材料プリカーサの製造方法により得られた多孔質炭素材料プリカーサを炭化処理するとともに消失樹脂を除去する炭化処理工程を有する多孔質炭素材料の製造方法である。
 また、本発明の多孔質炭素材料の製造方法の一態様は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
工程4a:工程3で得られた多孔質炭素材料プリカーサを炭化するとともに前記消失樹脂を除去する炭化処理工程;
を有する多孔質炭素材料の製造方法であり、
 また、本発明の多孔質炭素材料の製造方法の一態様は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
工程4:前記消失樹脂を除去する工程;
工程5:工程4で得られた消失樹脂が除去された多孔質炭素材料プリカーサを炭化する炭化処理工程;
を有する多孔質炭素材料の製造方法である。
 また、本発明の多孔質炭素材料プリカーサは、共連続相分離構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される共連続相分離構造の配向度が1.10以上であることを特徴とする多孔質炭素材料プリカーサである。
 本発明により、連続多孔構造を少なくとも一部に有し、ある特定の方向に連続多孔構造が配向していることで、強度に優れ、マトリックス樹脂との界面接着性に優れた多孔質炭素材料を得ることができる。
実施例1で作成した本発明の多孔質炭素繊維の縦断面の走査型電子顕微鏡写真である。
<多孔質炭素材料>
 本発明の多孔質炭素材料(以下、単に「材料」ということがある。)は、連続多孔構造を少なくとも一部に有することが重要である。ここでいう連続多孔構造とは、本発明の多孔質炭素材料の縦断面もしくは横断面、あるいは粉砕した多孔質炭素材料の表面を走査型二次電子顕微鏡(以下SEMと呼称する)にて観察した際に、孔が3次元的に連続している状態が確認できることを言い、試料を傾斜させて観察した際にも、同様に孔が観察される状態を言う。試料を傾斜させるとは、電子顕微鏡における観察時に、微細な砂などのゴミや試料の特徴的な特定部分を目標物として決定し、これを画像中心となるようにステージを傾斜させることを言う。傾斜角度は孔が連続している状態が確認できれば良く、およそ20°程度傾斜できれば良い。
 このように連続多孔構造が材料中に形成されていることによって、同じ体積を持つ炭素材料と比較した場合に大幅な表面積の増大が可能であり、例えば複合材料とした場合のマトリックス樹脂が炭素材料に触れる面積が飛躍的に向上することから、同じ界面接着強度であれば、複合材料の強度を飛躍的に高めることが可能となる。また本発明の連続多孔構造は、孔が3次元的に形成されているものの、孔を構成する枝部分の表面には破壊の起点となる欠陥(凹凸)が非常に少ないため、高強度の材料が得られる。更には、連続多孔構造を形成する枝部分は、それぞれが互いに連結されているため材料全体で一体の構造体を形成しており、枝部の一部に応力がかかった際には、速やかに隣接した枝部を通じて材料全体で応力を分散して受け持つことが可能であることから、破壊に対して非常に強い耐性を持つ。
 連続多孔構造を少なくとも一部に有するとは、SEMにて材料の表面または断面観察を行った際に、連続多孔構造が観察に要した試料の一部に見られることを言う。連続多孔構造の観察においては、SEMの撮影倍率を画素の一辺が0.1nmから100nmのサイズを持つ値に任意に設定して、うちいずれかの撮影倍率で連続多孔構造が観察された時点で、連続多孔構造が観察されたものと見なす。またこの際の観察画像の最小サイズは、横640ピクセル、縦480ピクセルである。
 また本発明の多孔質炭素材料は、小角X線散乱またはX線CT法で測定される連続多孔構造の配向度が1.10以上であることが重要である。小角X線散乱法で測定される配向度は、小角X線散乱法で二次元測定を行うと、連続多孔構造の構造周期に対応する角度に散乱ピークが得られるが、これが得られない場合には、カメラ長を適宜調整して散乱ピークが現れる状態にする。小角X線散乱法の原理から、連続多孔構造の構造周期が小さい場合にはカメラ長を短く、大きい場合は長くすることで測定が可能になる。ただしカメラ長を長く取った場合には、散乱してきたX線の強度が小さくなってしまうため、X線源に放射光を用いることで構造周期の大きな連続多孔構造の測定が可能になる。
 また、本発明でいう連続多孔構造の配向度とは、試料を適宜回転させ、小角X線散乱またはX線CT法にて測定し、下記方法で算出される配向度が最大となる角度にて測定した値を言う。特に粉砕した試料である場合には、散乱パターンに影響を与えないことを予め確認したフィルム等に貼り付けて測定するか、棒状の試料台先端に貼り付けて測定するなど、多孔質炭素材料のみの散乱データが得られるように適宜工夫して測定したデータのことを示す。
 また本発明のX線CT法による散乱パターンについては、小角X線散乱法では観測できない大きな構造体が存在する場合に、直接多孔質炭素材料の構造を三次元観察し、得られた三次元像に対してフーリエ変換を行い、二次元測定データを得る。このように小角X線散乱法またはX線CT法で得られた二次元測定データに対して、その強度の自然対数を取った後、画像全体の平均輝度Iaveを求める。その後、別途測定した光源の中心点を原点として動径を決め、円周方向に1°刻みでφ=0°~360°までスキャンしながら動径方向の散乱強度を求め、各円周方向の角度において、ビームストッパーによる影の影響が無くなる散乱強度が得られる位置から動径上における強度がIaveとなる点の集合p(x,φ)を求める。ここでxは動径上における原点からの距離を表す。これをプロットして得られた図形に対して最小二乗法を用いて楕円近似を行い、この楕円の短軸、長軸を求め、長軸/短軸の比を配向度とした。
 連続多孔構造の配向度が1.10以上であると、連続多孔構造が充分に配向した状態であることから多孔質炭素材料としての強度を高くすることが可能となり、構造材料として求められる強度を達成することが可能になる。連続多孔構造の配向度は高いほど高度に配向が進んだ多孔質炭素材料が得られたことを示すため好ましく、1.30以上であるとより好ましく、1.50以上であると更に好ましく、2.00以上であると一層好ましい。
 また前記楕円の長軸に相当する部分に対応する散乱角度をθ、短軸に対応する散乱角度をθとすると、それぞれの方向に対応する構造周期Lが、以下の式によって得られる。このとき短軸側が延伸軸方向に対応し、延伸軸に対して平行に配向した枝部分及び孔部分の長さに対応する。
長軸側
Figure JPOXMLDOC01-appb-M000001
短軸側
Figure JPOXMLDOC01-appb-M000002
 本発明の多孔質炭素材料内に形成される連続多孔構造が持つ長軸側の構造周期は、5nm~5μmであることが好ましい。構造周期は小さいほど枝部の太さが細くなることから単位体積あたりの表面積が増大するため、複合材料にした場合の接着強度を高くすることが可能となる。また、構造周期が大きいほど連続多孔構造に形成された孔が大きくなり、圧力損失が小さくなることで樹脂の浸透が容易になることから、速やかな脱気、複合化が可能になる。これらの点から長軸側の構造周期は30nm~2μmであるとより好ましく、50nm~1μmの範囲であると更に好ましい。
 本発明の多孔質炭素材料内に形成される連続多孔構造が持つ短軸側の構造周期は、10nm~20μmであることが好ましい。特に短軸側の構造周期は大きいほど、連続多孔構造を形成する孔部分も枝部分と共に細長い形状となるため、樹脂含浸の際に液体の樹脂が枝部と枝部の間を中心に毛細管現象により連続多孔構造内に充填されやすくなることで、硬化後に気泡の少ない複合材料が得られるため好ましい。これらの点から短軸側の構造周期は50nm~20μmであるとより好ましく、100nm~10μmの範囲であると更に好ましい。
 本発明の多孔質炭素材料は、その引張り強度が50MPa以上であることが好ましい。引張り強度は高いほど構造材料として強固な複合材料を形成できるため好ましい。このことから引張り強度は100MPa以上であるとより好ましく、200MPa以上であると更に好ましい。
 本発明の多孔質炭素材料のうち、特に繊維状の形態を持つ場合は、繊維長さ/繊維直径で計算されるアスペクト比が2以上であることが好ましい。アスペクト比が2以上であると、複合材料とした場合の本発明の多孔質炭素繊維がフィラーとして充分な強度向上効果が得られるため好ましい。また特に本発明の多孔質炭素繊維をいわゆる短繊維として使用する場合には、アスペクト比が1000以下であると、未硬化の樹脂と本発明の多孔質炭素繊維が充分に分散し、均一な複合材料を得ることができるため好ましい。
 本発明の多孔質炭素材料は、その表面の一部に走査型二次電子顕微鏡での拡大観察では事実上孔が見られない緻密層を少なくとも一部に有することが好ましい。ここで事実上孔が見られないとは、連続多孔構造を有する部分に形成された一辺が細孔直径の3倍以上の範囲で、画素サイズが1nm±10%の範囲となるように設定した拡大率で観察した際に孔が観察されない状態を指す。これは例えば、連続多孔構造を有する部分に形成された細孔直径が100nmの場合、一辺が300nm以上の矩形領域において孔が観察されない部分が存在することを示す。このような緻密層が存在することで電気伝導性、熱伝導性に優れた材料となることから、放電による使用中の帯電防止ができるほか、熱伝導性を高めて発熱体や冷却体から効率よく熱を授受できる。
 また本発明の多孔質炭素材料のうち、特に繊維状の形態を持つ場合は、繊維表面の少なくとも一部に走査型二次電子顕微鏡での拡大観察では事実上孔が見られない緻密層を少なくとも一部に有することが好ましい。このような緻密層が存在することで電気伝導性、熱伝導性に優れた材料となることから、放電による使用中の帯電防止ができるほか、熱伝導性を高めて発熱体や冷却体から効率よく熱を授受できる。このような観点からは、多孔質炭素繊維の繊維表面が緻密層で覆われていることが好ましい。
 本発明の多孔質炭素材料は、その形態を任意に選択することができる。形態の具体的な例としては、繊維、フィルム、バルクや粒子などが挙げられる。
 また本発明の多孔質炭素材料のうち、繊維状の形態を持つ場合において、繊維の断面形状は特に限定されず、用途に応じて任意に選択することが可能である。繊維の断面形状は、丸断面、三角断面などに代表される多葉断面、中空断面などが好ましいが、中でも丸断面の繊維であると断面内の強度分布が均一であり、破壊に強い構造であることからより好ましい態様である。
 また前記の多孔質炭素繊維には、油剤、サイジング剤などの薬剤が付与されていることも好ましい態様である。油剤は、本発明の多孔質炭素繊維を織機、編機などを通した際の摩擦による損耗を減少するほか帯電による設備との接着やガイド外れを防止し、工程通過性を高め、低コストで最終製品を作ることが可能になるため好ましい。またサイジング剤は、多孔質炭素繊維表面とマトリックス樹脂との単位面積当たりの界面接着性を高められるため、特に剥離強度の高い材料が得られるため好ましい。
 また本発明の多孔質炭素繊維は、アモルファス状であっても黒鉛化が進行した状態であっても良い。アモルファス状である場合には、炭素網面がランダムに配向しているため力学的な変形に対する耐力が高く、好ましい態様である。ここでアモルファス状とは、本発明の多孔質炭素繊維にX線回折測定を行った場合に、回折角度20~30°の範囲で半値幅3°以内の明瞭なピークを持たない状態を言う。また黒鉛化が進行した状態であれば、結晶部分の比率が高いため熱伝導性、電気伝導性に優れることから、特に電池材料として好適な物性を示すことから好ましい態様である。ここで黒鉛化が進行した状態とは、本発明の多孔質炭素繊維にX線回折測定を行った場合に、d(002)に相当する回折ピークから測定された黒鉛化度が0.1以上である状態を言う。
 また本発明の多孔質炭素繊維は、その直径が100nm~10mmの範囲であることが好ましい。100nm以上の直径があれば、十分な比表面積を確保し、また取り扱いも容易であることから好ましい。また10mm以下の直径であれば、充分な曲げに対する耐性を持ち、取り扱いの際に繊維の折損を防止して安定して製品を製造できるため好ましい。繊維直径は上記観点から100nm~1mmの範囲であると好ましく、1μm~500μmの範囲であるとより好ましい。
 また本発明の多孔質炭素繊維は、長繊維として織物、編物、組物など種々任意の形態を持つことができる。織物の場合には、織組織に応じた強度の配向が観察されるため、ハンドレイアップ法などにより織物シートを積層して複合材料とすることも好適な態様である。また編物、組物は、長繊維が切断されず形成された構造体であるため、本発明の連続多孔構造を持つ多孔質炭素繊維における力学的な強度を損なうことなく複合材料が得られるため、こちらも好ましい態様である。
 また本発明の多孔質炭素材料が、特にフィルム状の形態を持つ場合には、その厚みは20nm~10mmの範囲であると、均一かつ曲げに対する耐性を確保し、破壊を防止して安定して構造体を得やすくなるため好ましい。フィルム厚みは、20nm~1mmの範囲であると好ましく、20nm~500μmの範囲であるとより好ましい。
 また本発明の多孔質炭素材料が、特に粒子状の形態を持つ場合には、その粒径は20nm~10mmの範囲であることが好ましい。粒径は、小さいほど表面積が大きいため、樹脂との接着性が向上するほか、特に熱可塑性樹脂との複合の際には、混練機等での混合を均一に行うことができるため好ましい。また粒径は大きいほど多孔質炭素材料の取扱い性が向上するため好ましい。
 また本発明の多孔質炭素材料が、特にバルク状の形態を持つ場合には、単一の多孔質炭素材料であっても、本発明の他の形態を持つ多孔質炭素材料を組み合わせても良い。
 <多孔質炭素材料の製造方法>
 本発明の多孔質炭素材料は、一例として、炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程(工程1)と、相溶した状態の樹脂混合物を成形し、相分離させる工程(工程2)と、延伸する工程(工程3)とにより多孔質炭素材料プリカーサを得た後、該多孔質炭素材料プリカーサを炭化することにより製造することができる。なお、本明細書において、多孔質炭素材料プリカーサとは、最終的に多孔質炭素材料とするための炭化を行う直前の前駆体材料を特に意味する用語とする。すなわち、多孔質炭素材料プリカーサは、あと炭化処理するのみによって多孔質炭素材料とすることが可能な前駆体材料であり、多孔質炭素材料の製造において、焼成工程の前に、工程1~工程3に加えて後述する熱処理や不融化処理を含む他の工程を含む場合には、当該他の工程を経た後の前駆体材料を意味する。また、本明細書において、単に「前駆体材料」という場合には、本発明に係る多孔質炭素材料の製造方法における、炭化前の各段階の材料の総称であるものとする。
 〔工程1〕
 工程1は、炭化可能樹脂と、消失樹脂とを相溶させ、樹脂混合物とする工程である。
 ここで炭化可能樹脂とは、焼成により炭化し、炭素材料として残存する樹脂であり、熱可塑性樹脂および熱硬化性樹脂の双方を用いることができる。熱可塑性樹脂の場合、加熱や高エネルギー線照射などの簡便なプロセスで不融化処理を実施可能な樹脂を選択することが好ましい。また、熱硬化性樹脂の場合、不融化処理が不要の場合が多く、こちらも好適な材料として挙げられる。熱可塑性樹脂の例としては、ポリフェニレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂、全芳香族ポリエステルが挙げられ、熱硬化性樹脂の例としては、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ユリア樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、リグニン樹脂、ウレタン樹脂などを列挙することができる。これらは単独で用いても、混合された状態で用いても構わないが、熱可塑性樹脂あるいは熱硬化性樹脂それぞれのうちで混合することも成形加工の容易さから好ましい態様である。
 炭化可能樹脂の分子量は、重量平均分子量で10,000以上であることが好ましい。10,000以上の分子量を持つ炭化可能樹脂は、成形あるいは延伸の過程において十分粘性を有し、安定して前駆体材料の製造が可能になる。重量平均分子量の上限は特に限定されないが、成形性や樹脂の押し出しが容易にできる観点から、1,000,000以下であることが好ましい。
 中でも炭化収率と成形性、延伸性、経済性の観点から熱可塑性樹脂を用いることが好ましい態様であり、中でもポリフェニレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、全芳香族ポリエステルが好適に用いられ、延伸による連続多孔構造の配向度をより高めることが容易なポリアクリロニトリルを用いることがより好ましい態様である。
 また消失樹脂とは、後述する工程3の後、炭化処理までのいずれかの段階で除去することのできる樹脂である。消失樹脂の除去は、後述する不融化処理や熱処理、もしくは炭化処理と同時に行われるようにしてもよく、またこれらとは別に消失樹脂を除去する工程(工程4)を設けてもよい。消失樹脂を除去する方法については特に限定されるものではなく、薬品を用いて解重合するなどして化学的に除去する方法、消失樹脂を溶解する溶媒を添加して溶解除去する方法、加熱して熱分解によって消失樹脂を低分子量化して除去する方法などが好適に用いられる。これらの手法は単独で、もしくは組み合わせて使用してすることができ、組み合わせて実施する場合にはそれぞれを同時に実施しても別々に実施しても良い。
 化学的に除去する方法としては、酸またはアルカリを用いて加水分解する方法が経済性や取り扱い性の観点から好ましい。酸またはアルカリによる加水分解を受けやすい樹脂としては、ポリエステル、ポリカーボネート、ポリアミドなどが挙げられる。
 消失樹脂を溶解する溶媒を添加して除去する方法としては、混合された炭化可能樹脂と消失樹脂に対して、連続して溶媒を供給して消失樹脂を溶解、除去する方法や、バッチ式で混合して消失樹脂を溶解、除去する方法などが好適な例として挙げられる。
 溶媒を添加して除去する方法に適した消失樹脂の具体的な例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリビニルピロリドン、脂肪族ポリエステル、ポリカーボネートなどが挙げられる。中でも溶媒への溶解性から非晶性の樹脂であることがより好ましく、その例としてはポリスチレン、メタクリル樹脂、ポリカーボネートが挙げられる。
 熱分解によって消失樹脂を低分子量化して除去する方法としては、混合された炭化可能樹脂と消失樹脂をバッチ式で加熱して熱分解する方法や、連続して混合された炭化可能樹脂と消失樹脂を加熱源中へ連続的に供給しつつ加熱して熱分解する方法が挙げられる。
 消失樹脂は、これらのなかでも、多孔質炭素材料プリカーサを炭化する際に熱分解により消失する樹脂であることが好ましく、後述する炭化可能樹脂の不融化処理を行った場合にも大きな化学変化を起さず、かつ焼成後の炭化収率が10%未満となる熱可塑性樹脂であることが好ましい。このような消失樹脂の具体的な例としてはポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリアセタール、ポリビニルピロリドン、脂肪族ポリエステル、芳香族ポリエステル、脂肪族ポリアミド、ポリカーボネートなどを列挙することができ、これらは、単独で用いても、混合された状態で用いても構わない。
 工程1においては、炭化可能樹脂と消失樹脂を相溶させ、樹脂混合物(ポリマーアロイ)とする。ここでいう「相溶させ」とは、温度および/または溶媒の条件を適切に選択することにより、光学顕微鏡で炭化可能樹脂と消失樹脂の相分離構造が観察されない状態を作り出すことを言う。
 炭化可能樹脂と消失樹脂は、樹脂同士のみの混合により相溶させてもよいし、さらに溶媒を加えることにより相溶させてもよい。
 複数の樹脂が相溶する系としては、低温では相分離状態にあるが高温では1相となる上限臨界共溶温度(UCST)型の相図を示す系や、逆に、高温では相分離状態にあるが低温では1相となる下限臨界共溶温度(LCST)型の相図を示す系などが挙げられる。また特に炭化可能樹脂と消失樹脂の少なくとも一方が溶媒に溶解した系である場合には、非溶媒の浸透によって後述する相分離が誘発されるものも好適な例として挙げられる。
 加えられる溶媒については特に限定されるものではないが、溶解性の指標となる炭化可能樹脂と消失樹脂の溶解度パラメーター(SP値)の平均値からの差の絶対値が、5.0以内であることが好ましい。SP値の平均値からの差の絶対値は、小さいほど溶解性が高いことが知られているため、差がないことが好ましい。またSP値の平均値からの差の絶対値は、大きいほど溶解性が低くなり、炭化可能樹脂と消失樹脂との相溶状態を取ることが難しくなる。このことからSP値の平均値からの差の絶対値は、3.0以下であることが好ましく、2.0以下が最も好ましい。
 相溶する系の具体的な炭化可能樹脂と消失樹脂の組み合わせ例としては、溶媒を含まない系であれば、ポリフェニレンオキシド/ポリスチレン、ポリフェニレンオキシド/スチレン-アクリロニトリル共重合体、全芳香族ポリエステル/ポリエチレンテレフタレート、全芳香族ポリエステル/ポリエチレンナフタレート、全芳香族ポリエステル/ポリカーボネートなどが挙げられる。溶媒を含む系の具体的な組合せ例としては、ポリアクリロニトリル/ポリビニルアルコール、ポリアクリロニトリル/ポリビニルフェノール、ポリアクリロニトリル/ポリビニルピロリドン、ポリアクリロニトリル/ポリ乳酸、ポリビニルアルコール/酢酸ビニル-ビニルアルコール共重合体、ポリビニルアルコール/ポリエチレングリコール、ポリビニルアルコール/ポリプロピレングリコール、ポリビニルアルコール/デンプンなどを挙げることができる。
 炭化可能樹脂と消失樹脂を混合する方法については限定されるものではなく、均一に混合できる限りにおいて公知の種々の混合方式を採用できる。具体例としては、攪拌翼を持つロータリー式のミキサーや、スクリューによる混練押出機などが挙げられる。
 また炭化可能樹脂と消失樹脂を混合する際の温度(混合温度)を、炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることも好ましい態様である。ここで軟化する温度とは、炭化可能樹脂または消失樹脂が結晶性高分子であれば融点、非晶性樹脂であればガラス転移点温度を適宜選択すればよい。混合温度を炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることで、両者の粘性を下げられるため、より効率の良い攪拌、混合が可能になる。混合温度の上限についても特に限定されるものではないが、熱分解による樹脂の劣化を防止し、品質に優れた多孔質炭素材料の前駆体を得る観点から、400℃以下であることが好ましい。
 また、工程1においては、炭化可能樹脂10~90重量%に対し消失樹脂90~10重量%を混合することが好ましい。炭化可能樹脂と消失樹脂が前記範囲内であると、最適な孔サイズや空隙率を任意に設計できるため好ましい。炭化可能樹脂が10重量%以上であれば、炭化後の材料における力学的な強度を保つことが可能になるほか、収率が向上するため好ましい。また炭化可能な材料が90重量%以下であれば、消失樹脂が効率よく空隙を形成できるため好ましい。
 炭化可能樹脂と消失樹脂の混合比については、それぞれの材料の相溶性を考慮して、上記の範囲内で任意に選択することができる。具体的には、一般に樹脂同士の相溶性はその組成比が1対1に近づくにつれて悪化するため、相溶性のあまり高くない系を原料に選択した場合には、炭化可能樹脂の量を増やす、減らすなどして、いわゆる偏組成に近づけることで相溶性を改善することも好ましい態様として挙げられる。
 また炭化可能樹脂と消失樹脂を混合する際に、溶媒を添加することも好ましい態様である。溶媒を添加することで炭化可能樹脂と消失樹脂の粘性を下げ、成形を容易にするほか、炭化可能樹脂と消失樹脂を相溶化させやすくなる。ここでいう溶媒も特に限定されるものではなく、炭化可能樹脂、消失樹脂のうち少なくともいずれか一方を溶解、膨潤させることが可能な常温で液体であるものであれば良い。炭化可能樹脂及び消失樹脂をいずれも溶解するものであれば、両者の相溶性を向上させることが可能となるためより好ましい態様である。
 溶媒の添加量は、炭化可能樹脂と消失樹脂の相溶性を向上させ、粘性を下げて流動性を改善して成形性を高める観点から炭化可能樹脂と消失樹脂の合計重量に対して20重量%以上であることが好ましい。また一方で溶媒の回収、再利用に伴うコストを低減すること、曳糸性を確保する観点から、炭化可能樹脂と消失樹脂の合計重量に対して90重量%以下であることが好ましい。
 〔工程2〕
 工程2は、工程1において相溶させた状態の樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程である。ここで共連続相分離構造とは、樹脂混合物を構成する炭化可能樹脂と消失樹脂のそれぞれ50重量%以上を占める相が、それぞれ互いに連続して相分離した状態を示す。
 相溶させた状態の樹脂混合物を成形する方法は特に限定されるものではなく、後述の相分離法に合わせた成形法を適宜選択できる。樹脂混合物が熱可塑性樹脂の組合せであれば、樹脂の軟化温度以上に加熱してから溶融成形を行うことができる。また樹脂混合物に溶媒が含まれる場合には、溶液を用いた成形を行うことができる。特に繊維状の前駆体材料を得る場合には乾式紡糸、乾湿式紡糸や湿式紡糸などを適宜選択することができる。
 溶融成形は、混練押出機などを用いて加熱、溶融(流動状態)させた樹脂混合物を口金から押し出し、冷却しつつ取り出すことで成形する方法であり、工程速度が溶液を用いた成形よりも速く、生産性に優れていることが特徴である。また溶媒の揮散が起こらないため、工程中の安全対策にかかる費用を抑えられることから低コストでの製造が可能であるため好ましい。
 また溶液を用いた成形のうち、特に溶液紡糸は、予め調整した樹脂混合物と溶媒からなる紡糸ドープを計量、口金から押し出すことで繊維化する方法であり、こちらは相分離状態を緻密に制御することが可能である。特に凝固浴を用いる乾湿式紡糸、湿式紡糸については、熱誘起相分離、非溶媒誘起相分離などを適宜組み合わせて前駆体繊維の相分離状態を緻密に制御できることから、更に好ましい態様である。
 工程2において混合された炭化可能樹脂と消失樹脂を相分離させる方法は特に限定されるものではない。例えば温度変化によって相分離を誘発する温度誘起相分離法、非溶媒を添加することによって相分離を誘発する非溶媒誘起相分離法が挙げられる。
 これら相分離法は、単独で、もしくは組み合わせて使用することができる。組み合わせて使用する場合の具体的な方法は、例えば凝固浴を通して非溶媒誘起相分離を起こした後に加熱して熱誘起相分離を起こす方法や、凝固浴の温度を制御して非溶媒誘起相分離と熱誘起相分離を同時に起こす方法や、口金から吐出された材料を冷却して熱誘起相分離を起こした後に非溶媒と接触させる方法などが挙げられる。
 〔工程3〕
 工程3は、工程2において樹脂混合物を成形し、相分離させて共連続相分離構造を形成させた前駆体材料を延伸する工程である。本工程により工程2で形成された共連続相分離構造を配向させることが可能になり、共連続相分離構造が高度に配向した多孔質炭素材料の前駆体材料(多孔質炭素材料プリカーサ)を得ることができる。
 すなわち、本発明の多孔質炭素材料プリカーサは、共連続相分離構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される前記共連続相分離構造の配向度が1.10以上であることを特徴とする多孔質炭素材料プリカーサである。
 本発明でいう共連続相分離構造の配向度は、本発明でいう連続多孔構造の配向度と同様に求められる。連続多孔構造の配向度が1.10以上である多孔質炭素材料を得るには、多孔質炭素材料プリカーサの共連続相分離構造の配向度が1.10以上である必要がある。共連続相分離構造の配向度は高いほど高度に配向が進んだ多孔質炭素材料が得られるため好ましく、1.30以上であるとより好ましく、1.50以上であると更に好ましく、2.00以上であると一層好ましい。
 本発明でいう共連続相分離構造の構造周期Lは、本発明でいう連続多孔構造の構造周期Lと同様に短軸側、長軸側としてそれぞれ求められる。また、本発明でいう連続多孔構造の構造周期Lと同様に、本発明の多孔質炭素材料プリカーサ内に形成される共連続相分離構造が持つ長軸側の構造周期は、5nm~5μmであることが好ましい。30nm~2μmであるとより好ましく、50nm~1μmの範囲であると更に好ましい。
 本発明の多孔質炭素材料プリカーサ内に形成される共連続相分離構造が持つ短軸側の構造周期は、本発明の多孔質炭素材料内に形成される連続多孔構造が持つ短軸側の構造周期と同様に、10nm~20μmであることが好ましい。50nm~20μmであるとより好ましく、100nm~10μmの範囲であると更に好ましい。
 延伸は、従来公知の手段を適宜用いて行うことが可能である。代表的なものとして速度差を付けたローラー間で延伸する方法が挙げられる。この方法としては、当該ローラーそのものを加温して延伸する方法や、ローラー間に接触式あるいは非接触式ヒーター、温水・溶媒浴、スチーム加熱設備、レーザー加熱設備などを設けて、前駆体材料を加熱、延伸する方法を挙げることができる。また他の延伸方法として、特にフィルム状の多孔質炭素材料を得る場合は、ローラー間で樹脂混合物をプレスする方法や、クリンパーを用いて二軸延伸する方法なども好適である。
 加熱温度は、分子運動性を確保して延伸をスムーズに行う観点から炭化可能樹脂及び/または消失樹脂のガラス転移点温度以上であることが好ましい。また炭化可能樹脂及び消失樹脂のガラス転移点温度のうち、高い方の温度以上に加熱されることが、炭化可能樹脂及び消失樹脂の両者をスムーズに延伸することができるため、より好ましい態様である。加熱温度の上限は特に設定されないが、炭化可能樹脂または消失樹脂が結晶性高分子である場合にはその融点以下であることが好ましい。炭化可能樹脂または消失樹脂が非晶性高分子である場合には、炭化反応を防ぐ観点から加熱温度は300℃以下であることが好ましい。
 また延伸は、一度に破断する限界の延伸倍率近傍まで行っても構わない。より高度に配向した材料を得るためには、複数回に分けて実施することが好ましい。高分子鎖は、短時間で緩和する成分と、より長い時間で緩和する成分が混合されていることが多く、短時間で緩和できる成分を先に高い延伸倍率で延伸しておくことも好ましい。ここでいう高い延伸倍率とは、延伸前の材料についてS-Sカーブを取得しておき、その低応力伸長領域後の二次降伏点伸度から算出される延伸倍率の90%以上の倍率で延伸倍率を設定することを言う。二次降伏点伸度から算出される延伸倍率の90%以上の倍率で延伸された材料は、太細や凹凸ムラの無い均一な材料が得られ、品質に優れたものが得られる。その後の延伸では、最終的な多孔質炭素材料の配向度、強度、伸度を考慮して延伸倍率を決定することが好ましいが、目安として2倍未満の延伸倍率を設定し、これを複数回行うことで破断を防ぎつつ高度に共連続相分離構造が配向した多孔質炭素材料プリカーサを安定して得ることができる。
 すなわち、本発明の多孔質炭素材料プリカーサの製造方法は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
を有する多孔質炭素材料プリカーサの製造方法である。
 〔熱処理工程〕
 工程3において延伸が施された前駆体材料には、さらに熱処理工程に供されることが好ましい。熱処理は、延伸によって配向した分子鎖が緩和することに伴う収縮を抑制し、高度に配向した状態を保ったまま炭化に供することができる。
 熱処理の具体的な方法は、従来公知の手法を用いることができるが、バッチで熱処理する場合には、巻き取った材料をオーブン等で加熱する方法が好ましい。またオンラインで熱処理する場合は、ローラー表面そのものを加熱する方法や、ローラー間に接触式あるいは非接触式ヒーター、温水・溶媒浴、スチーム加熱設備、レーザー加熱設備などを設けて熱処理する方法も好ましく用いられる。
 熱処理における加熱温度は、分子運動性を確保して分子鎖の緩和をスムーズに行う観点から、また特に炭化可能樹脂及び/または消失樹脂が結晶性高分子である場合には、結晶化を誘発して寸法安定性を大幅に向上させる観点から、炭化可能樹脂及び/または消失樹脂のガラス転移点温度以上であることが好ましい。また特に炭化可能樹脂及び消失樹脂のガラス転移点温度のうち、高い方の温度以上に加熱されることが、炭化可能樹脂及び消失樹脂の分子運動性を確保して分子鎖の緩和をスムーズに行うことができるため、より好ましい態様である。
 熱処理における加熱温度の上限は特に設定されないが、炭化可能樹脂または消失樹脂が結晶性高分子である場合にはその融点以下であることが好ましい。炭化可能樹脂または消失樹脂が非晶性高分子である場合には、炭化反応を防ぐ観点から加熱温度は300℃以下であることが好ましい。
 熱処理は分子鎖の配向状態を結晶化あるいは緩和させてマクロな収縮を防止することが目的であるため、熱処理時の材料は0.8~1.2倍の範囲で長さが変化しないように制限されていることが好ましい。長さを制限するとは、熱処理における寸法変化を抑制することを意味し、具体的には金属ロールに巻き付ける、金枠に固定する、ローラー間で速度が制限された状態で熱処理するなどが挙げられる。熱処理された材料は、配向が一部緩和し、樹脂混合物中に結晶性高分子が含まれる場合には結晶化が進行することでマクロな収縮を防止することが可能になる。長さの制限は、元の長さを基準として0.8倍以上であると相分離状態が配向した構造の緩和を最小限にとどめつつ、ミクロな分子鎖を中心に大きく緩和させられるため好ましい。長さの制限は、元の長さを基準として1.2倍以下であると配向した相分離状態を緩和させることなく高度に維持しつつ、ミクロな分子鎖を中心に緩和させられるため好ましい。
 〔消失樹脂の除去工程(工程4)〕
 消失樹脂の除去を後述する炭化処理工程(工程5)で行わない場合、消失樹脂を除去する工程(工程4)を、工程3の後、炭化処理工程(工程5)の前に設ける必要がある。消失樹脂の除去の方法は特に限定されるものではなく、消失樹脂を化学的に分解あるいは溶解することが可能であれば良い。具体的には、酸、アルカリや酵素を用いて消失樹脂を化学的に分解し、低分子量化して除去する方法や、電子線、ガンマ線や紫外線、赤外線などの放射線を用いて解重合することで消失樹脂を除去する方法などが好適である。
 また特に熱分解によって消失樹脂を除去することができる場合には、後述する炭化処理工程、不融化処理もしくは熱処理工程と同時に消失樹脂を熱分解、ガス化して除去することもできる。また、予め消失樹脂の80重量%以上が消失する温度で熱処理する工程を別に設けることもできる。
 工程数を減じて生産性を高める観点からは、炭化処理工程もしくは不融化処理工程において炭化もしくは不融化と同時に消失樹脂を熱分解、ガス化して除去する方法が好適である。なお、本発明においては、消失樹脂の除去を、専用の工程を設けずに不融化処理工程、熱処理工程等の炭化処理以前の工程中で同時に行う場合、当該工程を消失樹脂の除去工程と捉えることとする。
 〔不融化処理工程〕
 工程3において延伸され、必要に応じ熱処理工程に供された前駆体材料は、炭化処理工程に供する前に不融化処理工程に供することが好ましい。不融化処理の方法は特に限定されるものではなく、公知の方法を用いることができる。具体的な方法としては、酸素存在下で加熱することで酸化架橋を起こす方法、電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法、反応性基を持つ物質を含浸、混合して架橋構造を形成する方法、単に加熱する方法などが挙げられる。中でも酸素存在下で加熱することで酸化架橋を起こす方法が、プロセスが簡便であり製造コストを低く抑えることが可能である点から好ましい。これらの手法は単独もしくは組み合わせて使用しても、それぞれを同時に使用しても別々に使用しても良い。
 酸素存在下で加熱することで酸化架橋を起こす方法における加熱温度は、架橋反応を効率よく進める観点から150℃以上の温度であることが好ましい。また、炭化可能樹脂の熱分解、燃焼等による重量ロスからの収率悪化を防ぐ観点から、350℃以下の温度であることが好ましい。
 不融化処理工程の時間は、前駆体材料が充分に不融化処理を進められる時間以上であることが好ましい。充分に不融化処理が進行した前駆体材料は、炭化収率に優れ、かつ強度にも優れることから好ましい。充分に不融化処理を進めるため、不融化処理時間は10分以上であることが好ましく、30分以上であることがより好ましい。また不融化処理時間の上限については特に制約されないが、工程通過時間を低減して安価に多孔質炭素材料を得る観点から、300分以下であることが好ましい。
 また不融化処理工程中の酸素濃度については特に限定されないが、18%以上の酸素濃度を持つ気体を供給することが製造コストを低く抑えることが可能となるため好ましい態様である。気体の供給方法については特に限定されないが、空気をそのまま加熱装置内に供給する方法や、ボンベ等を用いて純酸素を加熱装置内に供給する方法などが挙げられる。
 電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法としては、市販の電子線発生装置やガンマ線発生装置などを用いて、炭化可能樹脂へ電子線やガンマ線などを照射することで、架橋を誘発する方法が挙げられる。照射による架橋構造の効率的な導入から照射強度の下限は1kGy以上であると好ましい。また、主鎖の切断による分子量低下から材料強度が低下するのを防止する観点から1000kGy以下であることが好ましい。
 反応性基を持つ物質を含浸、混合して架橋構造を形成する方法は、反応性基を持つ低分子量化合物を樹脂混合物に含浸して、加熱または高エネルギー線を照射して架橋反応を進める方法、予め反応性基を持つ低分子量化合物を混合しておき、加熱または高エネルギー線を照射して架橋反応を進める方法などが挙げられる。
 〔炭化処理工程(工程5)〕
 本発明の多孔質炭素材料は、上記工程1~工程3、および必要に応じて熱処理工程、不融化処理工程、消失樹脂の除去工程(工程4)等に供して得られた多孔質炭素材料プリカーサを、最終的に炭化処理工程(工程5)に供することで得ることができる。
 炭化処理の方法は特に限定されず、公知のあらゆる方法を用いることができるが、通常、焼成によって行うことが好ましい。前駆体材料を充分に炭化させるために、焼成は不活性ガス雰囲気において600℃以上に加熱することにより行うことが好ましい。ここで不活性ガスとは、加熱時に化学的に不活性であるものを言い、具体的な例としては、ヘリウム、ネオン、窒素、アルゴン、クリプトン、キセノン、二酸化炭素などである。中でも窒素、アルゴンを用いることが、コストの観点から好ましい態様である。
 また不活性ガスの流量は、加熱装置内の酸素濃度を充分に低下させられる量であれば良く、加熱装置の大きさ、原料の供給量、加熱温度などによって適宜最適な値を選択することが好ましい。流量の上限についても特に限定されるものではないが、経済性や加熱装置内の温度変化を少なくする観点から、温度分布や加熱装置の設計に合わせて適宜設定することが好ましい。
 加熱する温度の上限は限定されないが、3000℃以下であれば、充分に炭化を進められ、かつ設備に特殊な加工が必要ないため経済的な観点からは好ましい。
 また炭化処理工程で消失樹脂の除去を同時に行う場合(工程5’)には、多孔質炭素材料プリカーサを加熱装置内に供給することが好ましい。この際に、消失樹脂が分解して発生するガスについて、装置を汚損することがないように、適宜排気設備を設けておくことも好ましい。またこのときの加熱温度は、消失樹脂が分解する温度以上に設定すると、消失樹脂の残存を防止して多孔質化を進めることが可能となることから好ましい。
 なお、炭化処理工程において、加熱は工程内の連続処理により行っても、一定数の多孔質炭素材料プリカーサをまとめて加熱を行うバッチ式処理により行ってもよい。連続的に炭化処理を行う場合の加熱方法については、一定温度に保たれた加熱装置内に、材料をローラーやコンベヤ等を用いて連続的に供給しつつ取り出す方法であることが、生産性を高くすることが可能であるため好ましい。
 一方加熱装置内にてバッチ式処理を行う場合の昇温速度、降温速度の下限は特に限定されないが、昇温、降温にかかる時間を短縮することで生産性を高めることができるため、1℃/分以上の速度であると好ましい。また昇温速度、降温速度の上限は特に限定されないが、加熱装置を構成する材料の耐熱衝撃特性よりも遅くすることが好ましい。
 すなわち、本発明の多孔質炭素材料の製造方法の一態様は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
工程5’:工程3で得られた多孔質炭素材料プリカーサを炭化するとともに前記消失樹脂を除去する炭化処理工程;
を有する多孔質炭素材料の製造方法であり、
 本発明の多孔質炭素材料の製造方法の別の態様は、
工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
工程3:工程2で得られた前駆体材料を延伸する工程;
工程4:前記消失樹脂を除去する工程;
工程5:工程4で得られた消失樹脂が除去された多孔質炭素材料プリカーサを炭化する炭化処理工程;
を有する多孔質炭素材料の製造方法である。
 以下に本発明の好ましい実施例を記載するが、これらの記載は何ら本発明を限定するものではない。
 <評価手法>
 〔小角X線散乱またはX線CT法〕
 (連続多孔構造、あるいは共連続相分離構造の配向度)
 多孔質炭素材料あるいは多孔質炭素材料プリカーサを試料プレートに挟み込み、CuKα線光源から得られたX線源から散乱角度10度未満の情報が得られるように、光源、試料及び二次元検出器の位置を調整した。二次元検出器から得られた二次元測定データに対して、その強度の自然対数を取った後、画像全体の平均輝度Iaveを求める。その後、別途測定した光源の中心点を原点として動径を決め、円周方向に1°刻みでφ=0°~360°までスキャンしながら動径方向の散乱強度を求める。そして、各円周方向の角度において、ビームストッパーによる影の影響が無くなる散乱強度が得られる位置から動径上における強度とIaveとが最初に交差する点の集合p(x,φ)を求める。ここでxは動径上における原点からの距離を表す。これをプロットして得られた図形p(x,φ)に対して最小二乗法を用いて楕円近似を行うことで、楕円の短軸b、長軸aを求め、長軸a/短軸bの比を連続多孔構造、あるいは共連続相分離構造の配向度とした。また、多孔質炭素材料あるいは多孔質炭素材料プリカーサが繊維状の形態を持ち、X線による全反射が発生した場合は、全反射の影響が無くなるよう、全反射によるストリークの中心から±5°の範囲にあるp(x,φ)を除外して楕円近似を行った。
 また小角X線散乱では散乱強度分布が得られないほど連続多孔構造あるいは共連続相分離構造が大きい場合には、X線CT法を用いて多孔質炭素材料あるいは多孔質炭素材料プリカーサの3次元測定データを得た。得られた3次元測定データに対して、延伸軸に対して直交方向となるようにデジタルスライス像を作成した。得られた複数のデジタルスライス像に対してフーリエ変換を行うことで2次元の散乱データを得た。これら2次元の散乱データを合算することで、小角X線散乱のデータと同様の散乱データとし、このデータを二次元測定データとして楕円近似を行った。得られた楕円の短軸、長軸を求め、長軸/短軸の比を連続多孔構造、あるいは共連続相分離構造の配向度とした。
 (連続多孔構造、あるいは共連続相分離構造の構造周期)
 上記連続多孔構造、あるいは共連続相分離構造の配向度の測定で得られた楕円の長軸、短軸に対応する距離の半分の長さから、試料から測定器までの距離をLとした際に、正接の逆関数で算出される散乱角度を求める。長軸側の散乱角度をθ、短軸側の散乱角度をθとし、それぞれの方向に対応する構造周期Lを、以下の式によって得た。このとき短軸側が延伸軸方向に対応する。
長軸側
Figure JPOXMLDOC01-appb-M000003
短軸側
Figure JPOXMLDOC01-appb-M000004
 〔強度〕
 得られた試料について、試料長5mm、引張速度5mm/minにて破断までの最大強力を求め、得られた値を引張試験軸と垂直の試料初期断面積で割ることで強度を算出した。
 [実施例1]
 70gのポリサイエンス社製ポリアクリロニトリル(MW15万)と70gのシグマ・アルドリッチ社製ポリビニルピロリドン(MW4万)、及び、溶媒として400gの和研薬製ジメチルスルホキシド(DMSO)をセパラブルフラスコに投入し、3時間攪拌および還流を行いながら150℃で均一かつ透明な溶液を調整した。このときポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度はそれぞれ13重量%であった。
 得られたポリマー濃度26%の紡糸原液を25℃まで冷却した後、0.6mmφの1穴口金から3mL/分で溶液を吐出して、25℃に保たれた純水の凝固浴へ導き、その後5m/分の速度で引き取り、バット上に堆積させることで原糸を得た。このときエアギャップは5mmとし、また凝固浴中の浸漬長は5cmとした。得られた原糸は半透明であり、相分離を起こしていた。
 得られた原糸を25℃に保った循環式乾燥機にて1時間乾燥して原糸表面の水分を乾燥させた後、25℃にて5時間の真空乾燥を行い、乾燥後の原糸を得た。
 得られた乾燥糸を、糸速度5m/分にて送り出し、90℃に保った非接触スリットヒーター内を通じて30m/分の速度にて巻取り、延伸倍率6.0倍の延伸糸を得た。
 その後250℃に保った電気炉中へ延伸糸を投入し、無緊張下、酸素雰囲気下で1時間加熱することで不融化処理を行った。不融化処理を行った延伸糸は、黒色に変化し、不融化が進行した多孔質炭素材料プリカーサを得た。
 得られた多孔質炭素材料プリカーサの共連続相分離構造の配向度は4.05であった。
 得られた多孔質炭素材料プリカーサを窒素流量1000mL/分、昇温速度10℃/分、到達温度1500℃、保持時間1分の条件で炭化処理を行うことで、多孔質炭素繊維とした。
 得られた多孔質炭素繊維の連続多孔構造の配向度は2.25であった。また長軸側の構造周期は49.8nm、短軸側の構造周期は112nmであり、繊維中心部には均一な連続多孔構造が形成されていた。また繊維の強度は250MPaであった。結果を表1に示す。また、本実施例により得られた多孔質炭素繊維の縦断面の走査型電子顕微鏡写真を図1に示す。
 [実施例2]
 得られた乾燥糸を、糸速度5m/分にて送り出し、90℃に保った非接触スリットヒーター内を通じて25m/分の速度にて巻取り、延伸倍率5.0倍の延伸糸を得たこと以外は、実施例1と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素繊維を得た。得られた多孔質炭素材料プリカーサの共連続相分離構造の配向度は3.80であった。
 得られた多孔質炭素繊維の連続多孔構造の配向度は1.81であった。また長軸側の構造周期は48.9nm、短軸側の構造周期は88.5nmであり、繊維中心部には均一な連続多孔構造が形成されていた。また強度は190MPaであった。結果を表1に示す。
 [実施例3]
 得られた乾燥糸を、糸速度5m/分にて送り出し、90℃に保った非接触スリットヒーター内を通じて20m/分の速度にて巻取り、延伸倍率4.0倍の延伸糸を得たこと以外は、実施例1と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素繊維を得た。得られた多孔質炭素材料プリカーサの共連続相分離構造の配向度は3.15であった。
 得られた多孔質炭素繊維の連続多孔構造の配向度は1.49であった。また長軸側の構造周期は49.8nm、短軸側の構造周期は74.2nmであり、繊維中心部には均一な連続多孔構造が形成されていた。また強度は150MPaであった。結果を表1に示す。
 [実施例4]
 得られた乾燥糸を、糸速度5m/分にて送り出し、90℃に保った非接触スリットヒーター内を通じて15m/分の速度にて巻取り、延伸倍率3.0倍の延伸糸を得たこと以外は、実施例1と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素繊維を得た。得られた多孔質炭素材料プリカーサの共連続相分離構造の配向度は2.81であった。
 得られた多孔質炭素繊維の連続多孔構造の配向度は1.25であった。また長軸側の構造周期は49.0nm、短軸側の構造周期は61.2nmであり、繊維中心部には均一な連続多孔構造が形成されていた。また強度は110MPaであった。結果を表1に示す。
 [実施例5]
 得られた乾燥糸を、糸速度5m/分にて送り出し、90℃に保った非接触スリットヒーター内を通じて10m/分の速度にて巻取り、延伸倍率2.0倍の延伸糸を得たこと以外は、実施例1と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素繊維を得た。得られた多孔質炭素材料プリカーサの共連続相分離構造の配向度は1.87であった。
 得られた多孔質炭素繊維の連続多孔構造の配向度は1.12であった。また長軸側の構造周期は51.9nm、短軸側の構造周期は58.1nmであり、繊維中心部には均一な連続多孔構造が形成されていた。また繊維の強度は80MPaであった。結果を表1に示す。
 [比較例1]
 群栄化学(株)社製フェノールレゾール(グレード:PL2211)の50重量%メタノール溶液100gに和光純薬(株)社製ポリメチルメタクリレート(PMMA)30g、アセトン100gを加えて撹拌し、PMMAを溶解した。作製した溶液をポリテトラフルオロエチレン製の皿に注ぎ、室温で3日乾燥した。更に、真空オーブン中、23℃で2日溶媒を除去した後、オーブンの温度を40℃に設定し完全に溶媒を除去するために2日間乾燥を行なった。得られた琥珀色の固形サンプルを37tプレス成型機で縦×横×高さ=50mm×50mm×5mmの平板を成形圧力10kgf/cm2、温度180℃で10分成形した。このサンプルをアセトン中で2日間撹拌洗浄してPMMA成分を完全に除去した。その後、シリコニット炉で1L/minの窒素流通下、昇温速度2℃/minで600℃まで昇温後、その温度で1時間保持して焼成を行ない、サンプル(多孔質材料)を作製した。
 作製されたサンプルは連続多孔構造を示したが、連続多孔構造の配向度は1.02であり、サンプル中心部には均一な連続多孔構造が形成されていた。また平板の強度は40MPaであった。結果を表1に示す。
 [比較例2]
 比較例1において、作製した溶液を0.6mmφの1穴口金から3mL/分で吐出して、25℃に保たれた純水の凝固浴へ導き、その後5m/分の速度で引き取り、バット上に堆積させることで原糸を得ることを試みたが、曳糸性が劣悪であり、安定して繊維を得ることができなかった。
 [比較例3]
 得られた乾燥糸を延伸せずに炭化したこと以外は実施例1と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素繊維を得た。得られた多孔質炭素繊維の連続多孔構造の配向度は1.01であり、繊維中心部には均一な連続多孔構造が形成されていた。また強度は、60MPaであった。結果を表1に示す。
 [実施例6]
 70gのポリサイエンス社製ポリアクリロニトリル(MW15万)と70gのシグマ・アルドリッチ社製ポリビニルピロリドン(MW4万)、及び、溶媒として400gの和研薬製ジメチルスルホキシド(DMSO)をセパラブルフラスコに投入し、3時間攪拌および還流を行いながら150℃で均一かつ透明な溶液を調整した。このときポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度はそれぞれ13重量%であった。
 得られた溶液を、ポリエチレンテレフタレートフィルム上に流涎し、水浴に通すことで相分離を誘発させた後に風乾することで、乾燥フィルムを得た。その後乾燥フィルムのみをポリエチレンテレフタレートフィルムから剥離させ、乾燥フィルムの温度を80℃に保ったままクリンパーを備え付けたフィルム用延伸機にて一方向に3.0倍となるように延伸を行った。得られた延伸後の乾燥フィルムを、250℃に保った電気炉中へ投入し、無緊張下、酸素雰囲気下で1時間加熱することで不融化処理を行い、黒色に変化した多孔質炭素材料プリカーサを得た。
 得られた多孔質炭素材料プリカーサを窒素流量1000mL/分、昇温速度10℃/分、到達温度1500℃、保持時間1分の条件で炭化処理を行うことで、多孔質炭素フィルムとした。
 得られた多孔質炭素フィルムの連続多孔構造の配向度は2.04であった。また長軸側の構造周期は51.4nm、短軸側の構造周期は104.8nmであり、フィルム中心部には均一な連続多孔構造が形成されていた。結果を表1に示す。
 [実施例7]
 延伸倍率を4.0倍とした以外は実施例6と同様の方法で多孔質炭素材料プリカーサおよび多孔質炭素フィルムを得た。
 得られた多孔質炭素フィルムの連続多孔構造の配向度は2.43であった。また長軸側の構造周期は45.5nm、短軸側の構造周期は110.6nmであり、フィルム中心部には均一な連続多孔構造が形成されていた。結果を表1に示す。
 [実施例8]
 実施例1で得られた多孔質炭素繊維を5mm以下の長さにカットし、ボールミルを用いて粉砕を行い、40メッシュの金網フィルターでふるいにかけ、ふるいを通過したものを集めて粒子状の多孔質炭素材料を得た。
 得られた多孔質炭素粒子の平均粒径は30μmであった。また多孔質炭素粒子のうち、1個を取り出して連続多孔構造の配向度を測定したところ、2.24であった。また長軸側の構造周期は49.3nm、短軸側の構造周期は110.4nmであり、粒子中心部には均一な連続多孔構造が形成されていた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 

Claims (15)

  1. 連続多孔構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される前記連続多孔構造の配向度が1.10以上であることを特徴とする多孔質炭素材料。
  2. 長軸側の構造周期が5nm~5μmであり、短軸側の構造周期が10nm~20μmである、請求項1に記載の多孔質炭素材料。
  3. 材料表面の少なくとも一部に緻密層を有する、請求項1または2に記載の多孔質炭素材料。
  4. 請求項1~請求項3のいずれかに記載の多孔質炭素材料と樹脂とを複合化してなる炭素材料強化複合材料。
  5. 繊維状の形態を持つことを特徴とする、請求項1~請求項3のいずれかに記載の多孔質炭素材料。
  6. フィルム状の形態を持つことを特徴とする、請求項1~請求項3のいずれかに記載の多孔質炭素材料。
  7. 粒子状の形態を持つことを特徴とする、請求項1~請求項3のいずれかに記載の多孔質炭素材料。
  8. 繊維長さ/繊維直径で計算されるアスペクト比が2以上である、請求項5に記載の多孔質炭素材料。
  9. 工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
    工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
    工程3:工程2で得られた前駆体材料を延伸する工程;
    を有する多孔質炭素材料プリカーサの製造方法。
  10. 前記工程1において、炭化可能樹脂10~90重量%に対し消失樹脂90~10重量%を混合して相溶させる、請求項9に記載の多孔質炭素材料プリカーサの製造方法。
  11. 前記工程3において延伸を複数回行う、請求項9または請求項10に記載の多孔質炭素材料プリカーサの製造方法。
  12. 前期工程3の後、さらに前記消失樹脂を除去する工程を有する、請求項9~請求項11のいずれかに記載の多孔質炭素材料プリカーサの製造方法。
  13. 工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
    工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
    工程3:工程2で得られた前駆体材料を延伸して、多孔質炭素材料プリカーサを得る工程;
    工程5’:工程3で得られた多孔質炭素材料プリカーサを炭化するとともに前記消失樹脂を除去する炭化処理工程;
    を有する多孔質炭素材料の製造方法。
  14. 工程1:炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程;
    工程2:工程1で得られた樹脂混合物を成形し、相分離させて共連続相分離構造を有する前駆体材料を得る工程;
    工程3:工程2で得られた前駆体材料を延伸して、多孔質炭素材料プリカーサを得る工程;
    工程4:工程3で得られた多孔質炭素材料プリカーサから前記消失樹脂を除去する工程;
    工程5:工程4で得られた消失樹脂が除去された多孔質炭素材料プリカーサを炭化する炭化処理工程;
    を有する多孔質炭素材料の製造方法。
  15. 共連続相分離構造を少なくとも一部に有し、小角X線散乱またはX線CT法により測定される前記共連続相分離構造の配向度が1.10以上であることを特徴とする多孔質炭素材料プリカーサ。
     
PCT/JP2015/053972 2014-02-26 2015-02-13 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法 WO2015129488A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015510216A JP6489010B2 (ja) 2014-02-26 2015-02-13 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法
CA2940849A CA2940849C (en) 2014-02-26 2015-02-13 Porous carbon material and production methods therefor
US15/121,424 US10131770B2 (en) 2014-02-26 2015-02-13 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
CN201580010451.6A CN106029756B (zh) 2014-02-26 2015-02-13 多孔质碳材料、多孔质碳材料前体、及其制造方法、以及碳材料增强复合材料
KR1020167022992A KR102068052B1 (ko) 2014-02-26 2015-02-13 다공질 탄소 재료, 탄소 재료 강화 복합 재료, 다공질 탄소 재료 전구체, 다공질 탄소 재료 전구체의 제조 방법, 및 다공질 탄소 재료의 제조 방법
EP15756090.5A EP3133110B1 (en) 2014-02-26 2015-02-13 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
EA201691515A EA034212B1 (ru) 2014-02-26 2015-02-13 Пористый углеродистый материал, композитный материал, армированный углеродистым материалом, предшественник пористого углеродистого материала, способ получения предшественника пористого углеродистого материала и способ получения пористого углеродистого материала
AU2015224174A AU2015224174B2 (en) 2014-02-26 2015-02-13 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
SA516371737A SA516371737B1 (ar) 2014-02-26 2016-08-25 مادة مركبة مدعمة بمادة كربونية

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034901 2014-02-26
JP2014-034901 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129488A1 true WO2015129488A1 (ja) 2015-09-03

Family

ID=54008811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053972 WO2015129488A1 (ja) 2014-02-26 2015-02-13 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法

Country Status (11)

Country Link
US (1) US10131770B2 (ja)
EP (1) EP3133110B1 (ja)
JP (1) JP6489010B2 (ja)
KR (1) KR102068052B1 (ja)
CN (1) CN106029756B (ja)
AU (1) AU2015224174B2 (ja)
CA (1) CA2940849C (ja)
EA (1) EA034212B1 (ja)
SA (1) SA516371737B1 (ja)
TW (1) TWI659926B (ja)
WO (1) WO2015129488A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043030A1 (ja) * 2014-09-18 2016-03-24 東レ株式会社 粒子状多孔質炭素材料、粒子状炭素材料集合体および粒子状多孔質炭素材料の製造方法
WO2017126501A1 (ja) * 2016-01-22 2017-07-27 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159943B2 (en) * 2014-07-24 2018-12-25 Toray Industries, Inc. Carbon membrane for fluid separation, fluid separation membrane module, and method for producing carbon membrane for fluid separation
KR101918448B1 (ko) 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
CN106986326B (zh) * 2017-05-08 2019-02-22 西安理工大学 一种碳纳米管及利用pet制备碳纳米管的方法
EP3659697A4 (en) * 2017-07-25 2021-04-21 Toray Industries, Inc. CARBON MEMBRANE FOR FLUID SEPARATION AND METHOD FOR MANUFACTURING THEREOF
US11142458B2 (en) 2018-02-14 2021-10-12 United States Of America As Represented By The Secretary Of Agriculture Lignin-based carbon foams and composites and related methods
KR102181565B1 (ko) * 2019-03-08 2020-11-23 주식회사 에버월앤씨피에스 외벽단열용 하이접착 몰탈 조성물
CN109880152B (zh) * 2019-03-13 2021-07-13 四川大学 取向连通多孔生物医用支架的制备方法及其制备的支架和该支架在制备医疗产品中的用途
CN110093687B (zh) * 2019-05-29 2021-07-16 南通大学 一种酚醛基活性炭纤维的制备方法
CN111235698B (zh) * 2020-03-24 2022-09-23 北华大学 一种氮掺杂多孔碳纤维材料的制备方法及其应用
DE102020119592A1 (de) * 2020-07-24 2022-01-27 Technische Universität Dresden Verfahren zur Herstellung poröser Kohlenstofffasern und deren Verwendung
JP2022055783A (ja) * 2020-09-29 2022-04-08 セイコーエプソン株式会社 成形体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274615A (ja) * 1988-03-15 1990-03-14 Mitsubishi Rayon Co Ltd 炭素繊維系多孔質中空糸膜およびその製法
JPH0398624A (ja) * 1989-09-11 1991-04-24 Mitsubishi Rayon Co Ltd 炭素繊維系多孔質中空糸膜およびその製法
JPH05195324A (ja) * 1992-01-21 1993-08-03 Toray Ind Inc 炭素繊維製造用プリカーサーおよびその製造法
JP2004044074A (ja) * 2002-06-17 2004-02-12 Sgl Carbon Ag 活性炭素繊維及びその製造方法
WO2009084390A1 (ja) * 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. 耐炎化繊維と炭素繊維の製造方法
JP2011228086A (ja) * 2010-04-19 2011-11-10 Mitsubishi Rayon Co Ltd 多孔質電極基材とその製造方法
JP2012099363A (ja) * 2010-11-02 2012-05-24 Mitsubishi Rayon Co Ltd 多孔質電極基材及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576810A (en) 1983-08-05 1986-03-18 E. I. Du Pont De Nemours And Company Carbon fiber production
JPS61282430A (ja) 1985-06-06 1986-12-12 Toho Rayon Co Ltd 活性炭素繊維の製造法
US5089135A (en) 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
JPH02160924A (ja) 1988-12-08 1990-06-20 Mitsubishi Rayon Co Ltd 多孔質炭素繊維及びその製造法
CN1185375C (zh) * 2002-01-11 2005-01-19 清华大学 一种氧合器用的膜材料的制备方法
CN1190259C (zh) * 2002-03-18 2005-02-23 天津膜天膜工程技术有限公司 一种聚丙烯腈基中空碳纤维膜及其制造方法
JP2004259593A (ja) 2003-02-26 2004-09-16 Mitsubishi Chemicals Corp イオン伝導体用多孔質材料及びイオン伝導体、並びに燃料電池
JP2006328340A (ja) * 2005-04-25 2006-12-07 Hitachi Chem Co Ltd 多孔質ポリマーフィルムと多孔質炭素フィルム、それらの製造方法及びそれらフィルムを用いた加工成形物
KR101320730B1 (ko) * 2005-09-29 2013-10-21 도레이 카부시키가이샤 다공질 탄소 시트
US8377546B2 (en) * 2008-09-08 2013-02-19 Silver H-Plus Technology Co., Ltd. Plastics electrode material and secondary cell using the material
KR101739254B1 (ko) 2009-11-24 2017-05-25 미쯔비시 케미컬 주식회사 다공질 전극 기재, 그의 제법, 전구체 시트, 막-전극 접합체, 및 고체 고분자형 연료전지
CA2767211C (en) * 2009-11-24 2018-07-31 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
RU2442425C2 (ru) 2010-05-24 2012-02-20 Общество С Ограниченной Ответственностью "Производственно-Коммерческая Фирма "Атлантис-Пак" Синтетическая колбасная оболочка на полиамидной основе, наполняемая без растяжения, и способ получения такой оболочки
CN103014921B (zh) 2012-12-17 2014-09-17 中国科学院化学研究所 多孔碳纤维及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274615A (ja) * 1988-03-15 1990-03-14 Mitsubishi Rayon Co Ltd 炭素繊維系多孔質中空糸膜およびその製法
JPH0398624A (ja) * 1989-09-11 1991-04-24 Mitsubishi Rayon Co Ltd 炭素繊維系多孔質中空糸膜およびその製法
JPH05195324A (ja) * 1992-01-21 1993-08-03 Toray Ind Inc 炭素繊維製造用プリカーサーおよびその製造法
JP2004044074A (ja) * 2002-06-17 2004-02-12 Sgl Carbon Ag 活性炭素繊維及びその製造方法
WO2009084390A1 (ja) * 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. 耐炎化繊維と炭素繊維の製造方法
JP2011228086A (ja) * 2010-04-19 2011-11-10 Mitsubishi Rayon Co Ltd 多孔質電極基材とその製造方法
JP2012099363A (ja) * 2010-11-02 2012-05-24 Mitsubishi Rayon Co Ltd 多孔質電極基材及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043030A1 (ja) * 2014-09-18 2016-03-24 東レ株式会社 粒子状多孔質炭素材料、粒子状炭素材料集合体および粒子状多孔質炭素材料の製造方法
EP3196164A4 (en) * 2014-09-18 2018-03-28 Toray Industries, Inc. Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
US10399856B2 (en) 2014-09-18 2019-09-03 Toray Industries, Inc. Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
WO2017126501A1 (ja) * 2016-01-22 2017-07-27 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
CN108495703A (zh) * 2016-01-22 2018-09-04 东丽株式会社 流体分离膜、流体分离膜组件及多孔质碳纤维
JPWO2017126501A1 (ja) * 2016-01-22 2018-11-08 東レ株式会社 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
US10835874B2 (en) 2016-01-22 2020-11-17 Toray Industries, Inc. Fluid separation membrane, fluid separation membrane module, and porous carbon fiber

Also Published As

Publication number Publication date
SA516371737B1 (ar) 2019-07-29
TWI659926B (zh) 2019-05-21
KR102068052B1 (ko) 2020-01-20
CA2940849C (en) 2020-07-14
JPWO2015129488A1 (ja) 2017-03-30
CA2940849A1 (en) 2015-09-03
EA034212B1 (ru) 2020-01-17
CN106029756B (zh) 2019-12-24
JP6489010B2 (ja) 2019-03-27
EP3133110B1 (en) 2020-03-25
TW201532961A (zh) 2015-09-01
AU2015224174A1 (en) 2016-09-15
EP3133110A4 (en) 2017-10-25
US10131770B2 (en) 2018-11-20
CN106029756A (zh) 2016-10-12
KR20160125388A (ko) 2016-10-31
EA201691515A1 (ru) 2017-02-28
US20160362541A1 (en) 2016-12-15
EP3133110A1 (en) 2017-02-22
AU2015224174B2 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6489010B2 (ja) 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法
JP5696813B2 (ja) 多孔質炭素材料、多孔質炭素材料プリカーサー、多孔質炭素材料プリカーサーの製造方法及び多孔質炭素材料の製造方法
JP6911757B2 (ja) 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
JP6733177B2 (ja) 流体分離用炭素膜、流体分離膜モジュールおよび、流体分離用炭素膜の製造方法
US11617990B2 (en) Porous carbon fiber and fluid separation membrane
JP6610255B2 (ja) 多孔質炭素材料
JP6672660B2 (ja) 多孔質炭素繊維および炭素繊維強化複合材料
JP6442927B2 (ja) 多孔質炭素材料
JP6657952B2 (ja) 粒子状多孔質炭素材料、粒子状炭素材料集合体および粒子状多孔質炭素材料の製造方法
JP6607250B2 (ja) 流体分離用炭素膜および流体分離用炭素膜モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022992

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015756090

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2940849

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15121424

Country of ref document: US

Ref document number: 201691515

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015224174

Country of ref document: AU

Date of ref document: 20150213

Kind code of ref document: A