WO2015125784A1 - リチウムイオン2次電池用負極活物質およびその製造方法 - Google Patents

リチウムイオン2次電池用負極活物質およびその製造方法 Download PDF

Info

Publication number
WO2015125784A1
WO2015125784A1 PCT/JP2015/054313 JP2015054313W WO2015125784A1 WO 2015125784 A1 WO2015125784 A1 WO 2015125784A1 JP 2015054313 W JP2015054313 W JP 2015054313W WO 2015125784 A1 WO2015125784 A1 WO 2015125784A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
group
lithium
Prior art date
Application number
PCT/JP2015/054313
Other languages
English (en)
French (fr)
Inventor
高橋小弥太
三崎日出彦
荒川太地
向後雅則
津吉徹
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2015125784A1 publication Critical patent/WO2015125784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery and a method for producing the same.
  • lithium ion secondary batteries such as EVs and PHEVs are increasingly required
  • lithium ion secondary batteries such as EVs and PHEVs
  • graphite is mainly used as the negative electrode material of lithium ion secondary batteries.
  • the theoretical capacity is high, and elements such as silicon and tin that can absorb and release lithium ions are used.
  • Development of negative electrode materials using metals or alloys with other elements has been activated.
  • an active material made of a metal material capable of inserting and extracting lithium ions remarkably expands when alloyed with lithium by charging. Therefore, the active material is cracked and refined, and the structure of the negative electrode using these is also broken and the conductivity is cut. Therefore, the negative electrode using these metal materials has a problem that the capacity is remarkably lowered with the passage of cycles.
  • the active material of the negative electrode includes fine particles having a carbonaceous material layer formed on the surface, and the fine particles are composed of at least one element selected from Mg, Al, Si, Ca, Sn, and Pb. Further, it is disclosed that the average particle diameter is 1 to 500 nm, and the atomic ratio of fine particles in the active material is 15% or more.
  • Patent Document 2 discloses metal-carbon composite particles in which metal particles are embedded in a plurality of phases of carbon, and the carbon contains graphite and amorphous carbon.
  • the metal particles include Mg, Al, It is described that any one of Si, Zn, Ge, Bi, In, Pd, and Pt is used, and the average particle size is preferably 0.1 to 20 ⁇ m.
  • Patent Document 3 discloses a so-called core shell in which the negative electrode active material includes graphite core particles, a carbon coating (shell) that covers the graphite core particles, and metal particles that are dispersed and positioned inside the carbon coating.
  • the graphite core particle has an average particle size of 1 to 20 ⁇ m
  • the carbon coating has a coating thickness of 1 to 4 ⁇ m
  • the metals alloyed with lithium include Cr, Sn, Si, Al, Mn, Ni , Zn, Co, In, Cd, Bi, Pb, and V, and at least one substance selected from the group consisting of V and an average particle size of 0.01 to 1.0 ⁇ m is preferable.
  • Patent Document 4 discloses a mixing step in which expanded graphite or flake graphite having a specific surface area of 30 m 2 / g or more and a battery active material that can be combined with lithium ions are mixed to obtain a mixture, and the mixture is spheroidized.
  • a spheronization step for producing a substantially spherical composite active material for a lithium secondary battery containing a battery active material that can be combined with graphite and lithium ions.
  • the battery active material that can be combined with lithium ions contains at least one element selected from Si, Sn, Al, Sb, and In, and the average particle size is preferably 1 ⁇ m or less. .
  • the expansion per particle due to the insertion of lithium at the time of charging becomes smaller, the crack becomes harder, and the cycle life is improved.
  • the surface of the metal fine powder has a natural oxide film, which suppresses ignition of the metal in the atmosphere as a passive state.
  • the thickness of the natural oxide film is almost constant as long as the oxidation treatment conditions are constant regardless of the particle size of the fine powder. Therefore, the smaller the particle size, the higher the weight ratio of the natural oxide film in the particles.
  • the first charge to the metal fine powder as the active material starts with the reaction of lithium with the natural oxide film, but the lithiated oxide film does not subsequently remove and insert lithium, resulting in irreversible capacity and initial charge / discharge. Efficiency is reduced. Accordingly, there is a problem that the initial charge / discharge efficiency is reduced when the particle size of the metal fine powder is reduced.
  • Patent Document 5 the relationship between the average particle diameter of silicon and the content of oxygen element when silicon particles are pulverized is investigated, and when the average particle becomes smaller than 2 ⁇ m, the oxygen element content rapidly increases. It has been shown that efficiency decreases.
  • a film made of an oxide of Si, Ti, Al, and Zr is formed on the surface of the negative electrode active material by a sol-gel method (see, for example, Patent Document 6). Further, a negative electrode material having a reaction part containing at least one of Si and Sn and a coating part made of a metal oxide such as TiO 2 or ZrO 2 provided on a part of the surface, and a coating part for the reaction part It has also been proposed that an excellent charge / discharge efficiency can be obtained with a high capacity by setting the ratio to 0.01 mass% or more and 10 mass% or less (see, for example, Patent Document 7).
  • Japanese Laid-Open Patent Publication No. 10-3920 Japanese Unexamined Patent Publication No. 2000-272911 Japanese Unexamined Patent Publication No. 2010-129545 Japanese Patent No. 5227483 Japanese Unexamined Patent Publication No. 2004-185810 Japanese Unexamined Patent Publication No. 2004-335334 Japanese Unexamined Patent Publication No. 2007-141666 Japan Special Table 2007-500421
  • the present invention is a negative electrode active material for a lithium ion secondary battery comprising Si or a Si alloy (hereinafter collectively referred to as “Si compound”) and a carbonaceous material or a carbonaceous material and graphite,
  • Si compound Si or a Si alloy
  • the present inventors have found that in a negative electrode active material for a lithium ion secondary battery comprising a Si compound and a carbonaceous material or a carbonaceous material and graphite, the carbonaceous material Is compounded with a complex oxide of lithium and at least one element selected from the group of transition metals, Group 13 or Group 15 elements (hereinafter referred to as “lithium compound”), Even when fine particles are used, it is possible to obtain a negative electrode active material that provides a lithium ion secondary battery with high charge and discharge efficiency in the initial stage and cycle, large discharge capacity, long cycle life, and low irreversible expansion caused by the cycle.
  • the headline and the present invention were completed.
  • the present invention has the following gist.
  • a negative electrode active material for a lithium ion secondary battery comprising Si or a Si alloy and a carbonaceous material or a carbonaceous material and graphite
  • the average particle diameter D 50 of the Si or Si alloy is 0.01 to 5 ⁇ m.
  • the carbonaceous material is compounded with a transition metal, a complex oxide of lithium and at least one element selected from the group of Group 13 or Group 15 elements of the periodic table, and a lithium ion Negative electrode active material for secondary battery.
  • the negative electrode active material is a composite particle having a rounded average particle diameter D 50 of 1 to 40 ⁇ m, and the average particle diameter of the Si or Si alloy is 1 of the average particle diameter of the negative electrode active material.
  • the Si or Si alloy is 0.2 ⁇ m or less together with a carbonaceous material complexed with a complex oxide of lithium and at least one element selected from the group of transition metals, group 13 or group 15 elements of the periodic table
  • the structure is sandwiched between thin graphite layers having a thickness of approximately 50 mm, and the structure is laminated and / or spread in a network, and the thin graphite layer is curved near the surface of the active material particles to cover the active material particles.
  • the negative electrode active material for a lithium ion secondary battery according to (1) or (2) above.
  • the content of the Si or Si alloy is 10 to 80% by weight, the content of the carbonaceous material is 5 to 90% by weight, at least selected from the group of the transition metal, group 13 or group 15 element of the periodic table
  • the Si or Si alloy content is 10 to 60% by weight, the carbonaceous material content is 5 to 40% by weight, the graphite content is 20 to 80% by weight, the transition metal, the periodic table 13 Any one of the above (1) to (3), wherein the content of the complex oxide of lithium and at least one element selected from the group of group 15 or group 15 elements is 0.5 to 65% by weight
  • the average particle diameter D 50 of the negative electrode active material is 2 to 20 ⁇ m, and the 10% particle diameter D 10 is 1 ⁇ m or more.
  • Negative electrode active material for lithium ion secondary battery Si or Si alloy, carbon precursor, transition metal, complex oxide of lithium and at least one element selected from the group of Group 13 or 15 elements of the periodic table, and if necessary, graphite mixed (1) characterized in that it comprises a step of granulating and compacting, a step of pulverizing the mixture to form composite particles, and a step of firing the composite particles in an inert gas atmosphere (1) )
  • a step of mixing and dispersing in a solvent in which the carbon precursor is dissolved, a step of granulating and densifying, a step of pulverizing and spheroidizing to form composite particles with rounded shapes, and the composite particles The method for producing a negative electrode active material for a lithium ion secondary battery according to (2) above, comprising a step of firing in an inert atmosphere.
  • the lithium ion secondary according to any one of (8) to (10) above, wherein the temperature of the step of firing the composite particles in an inert atmosphere is 300 to 1000 ° C.
  • a method for producing a negative electrode active material for a battery (12) At least one selected from the group of transition metals, group 13 or group 15 elements on the surface of round Si carbon composite particles comprising Si or Si alloy, carbonaceous material and graphite
  • a negative electrode active material for a lithium ion secondary battery wherein the average particle size D 50 of the negative electrode active material is 1/5 or less of the average particle size of the negative electrode active material, and is 1 to 40 ⁇ m.
  • the Si or Si alloy is sandwiched between graphite thin layers having a thickness of 0.2 ⁇ m or less together with the carbonaceous material, and the structure is laminated and / or network-like.
  • the graphite thin layer is curved near the surface of the active material particles to cover the active material particles, and the surface of the Si carbon composite particles is selected from the group of transition metals, group 13 or group 15 elements.
  • the present invention excellent cycle characteristics by suppressing the reaction between the electrolyte and silicon by reducing the expansion volume per particle by silicon of fine particles, and by complexing the dense carbonaceous material and lithium compound, and the initial and cycle
  • the charge / discharge efficiency is high, and the electric conduction is achieved by the doping effect of at least one element selected from the group of transition metal and group 13 or 15 elements on silicon and the solid electrolyte effect of lithium by the lithium compound.
  • the internal impedance is lowered and the irreversible expansion due to the charge / discharge cycle is suppressed, and a lithium ion battery negative electrode with a high battery capacity secured in a long cycle is obtained.
  • a high bulk density negative electrode active material suitable for forming a high density negative electrode can be obtained by the production method of the present invention.
  • FIG. 2 is a secondary electron image obtained by FE-SEM of a cross section of a negative electrode active material particle obtained in Example 1.
  • FIG. 2 is a mapping image of P (phosphorus) element by EDS (energy dispersive X-ray analysis) of a cross section of negative electrode active material particles obtained in Example 1.
  • capacitance and negative electrode expansion coefficient by the charging / discharging cycle of the battery produced with the negative electrode active material obtained by the comparative example 5 is shown.
  • capacitance by the charging / discharging cycle of the battery produced with the negative electrode active material obtained in Example 10 and a negative electrode expansion coefficient is shown.
  • the SEM image (3000 time) of the negative electrode active material obtained in Example 10 is shown.
  • the SEM image (3000 time) of the negative electrode active material obtained in Example 11 is shown.
  • Si refers to a general grade metal silicon having a purity of about 98%, a chemical grade metal silicon having a purity of 2 to 4N, a chlorinated and purified by distillation using 4N, a single crystal growth method High-purity single crystal silicon that has undergone a deposition step by the above, or those doped with elements of Group 13 or 15 of the periodic table to be p-type or n-type, and polishing or cutting of wafers generated in the semiconductor manufacturing process
  • the purity is higher than that of general-purpose grade metal silicon, such as scraps and waste wafers that have become defective in the process.
  • the Si alloy is an alloy containing Si as a main component.
  • the element contained other than Si is preferably one or more of elements of Groups 2 to 15 of the periodic table, and the selection and / or addition amount of the element having a melting point of the phase contained in the alloy of 900 ° C. or more. Is preferred.
  • the average particle diameter D 50 of the Si compound is 0.01 to 5 ⁇ m, and more preferably 0.05 to 0.5 ⁇ m. If it is smaller than 0.01 ⁇ m, the capacity and initial efficiency due to surface oxidation are drastically reduced, and if it is larger than 5 ⁇ m, cracks are severely caused by expansion due to lithium insertion, resulting in severe cycle deterioration.
  • D 50 is a volume average particle diameter measured by a laser particle size distribution meter.
  • the content of the Si compound is preferably 10 to 80% by weight, more preferably 15 to 50% by weight.
  • the content of the Si compound is less than 10% by weight, a sufficiently large capacity cannot be obtained as compared with the conventional graphite, and when it exceeds 80% by weight, the cycle deterioration becomes severe.
  • the carbonaceous material referred to in the present invention is an amorphous or microcrystalline carbon material, and easily graphitized carbon (soft carbon) that is graphitized by a heat treatment exceeding 2000 ° C. and non-graphitizable carbon (hard carbon) that is difficult to graphitize. )
  • the carbonaceous material content is preferably 5 to 90% by weight, more preferably 8 to 40% by weight.
  • the content of carbonaceous material is less than 5% by weight, the carbonaceous material cannot cover the Si compound, the conductive path becomes insufficient, and the capacity deterioration easily occurs.
  • the content is larger than 90% by weight, the capacity is sufficient. It is not obtained.
  • the graphite referred to in the present invention is a crystal whose graphene layer is parallel to the c-axis, natural graphite obtained by refining ore, artificial graphite obtained by graphitizing the pitch of oil or coal, etc. There are oval or spherical, cylindrical or fiber shapes. In addition, these graphites are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment. Part of the graphite layer is exfoliated to form an accordion, or a pulverized product of expanded graphite, or an ultrasonic wave, etc. Exfoliated graphene or the like can also be used.
  • the particle size of the graphite contained in the negative electrode active material of the present invention is not particularly limited smaller than the size of the anode active material particles, the thickness of the graphite particles is less than 1/5 of the average particle diameter D 50 of the active material Is preferred. Addition of graphite increases the conductivity and strength of the active material particles, and improves charge / discharge rate characteristics and cycle characteristics.
  • the (002) plane spacing d002 measured by X-ray diffraction of graphite particles is preferably 0.338 nm or less, which means highly graphitized graphite. When d002 exceeds this value, the effect of improving conductivity by graphite becomes small.
  • the content of each is preferably 5 to 40% by weight and 20 to 80% by weight, and 8 to 30% by weight. A ratio of 40 to 70% by weight is more preferable.
  • the content of the carbonaceous material is less than 5% by weight, the carbonaceous material cannot cover the Si compound and graphite, adhesion between the Si compound and graphite becomes insufficient, and formation of active material particles tends to be difficult.
  • the effect of the graphite whose electroconductivity is higher than a carbonaceous material is not fully drawn out.
  • the lithium compound referred to in the present invention is a lithium salt of an oxoacid of at least one element selected from the group of transition metals and group 13 or group 15 elements.
  • transition metals lithium cobaltate ( LiCoO 2 ), lithium nickelate (LiNiO 2 ), various lithium manganates (LiMn 2 O 4 , LiMnO 2 , Li 2 MnO 3, etc.), lithium ferrate (LiFeO 2 ), lithium iron phosphate (LiFePO 4 ), various Lithium titanate (Li 2 Ti 2 O 4 , Li 4 Ti 5 O 12 , Li 6 Ti 5 O 12 etc.), various lithium niobates (LiNbO 3 , Li 2 Nb 2 O 5 etc.), lithium tungstate (LiWO 2 ), lithium molybdate (LiMoO 2) and the like, in the case of periodic table group 13 aluminate Lithium (LiAlO 2), lithium metaborate (LiBO 2)
  • the carbonaceous material By combining the carbonaceous material and the lithium compound, the carbonaceous material conducts electrons, the lithium compound conducts lithium ions, and lowers the resistance associated with charging and discharging.
  • at least one element selected from the group of transition metals and Group 13 or Group 15 elements is slightly doped into the Si compound by the heat treatment when manufacturing the negative electrode active material, thereby increasing the electrical conductivity. It is done. More preferable elements from the viewpoint of electrical conductivity include boron in the periodic table group 13 and phosphorus in the periodic table group 15.
  • the composite oxide of lithium containing these elements has a melting point of 800 to 1000 ° C., and solid phase or liquid phase firing proceeds during firing as described later, and it is integrated with the carbonaceous material to closely surround Si or the Si alloy. Cheap.
  • the lithium compound referred to in the present invention is formed by bonding fine grains, but the grain size is preferably 0.2 ⁇ m or less from the viewpoint of the particle strength of the completed negative electrode active material.
  • the content of the lithium compound is 0.5 to 80% by weight, more preferably 0.5 to 65% by weight.
  • the amount is less than 0.5% by weight, the effect of increasing the initial charge / discharge efficiency and the discharge capacity is small.
  • the amount is more than 80% by weight, the conductivity is lowered and a sufficient capacity cannot be obtained.
  • a metal element having a valence different from that of at least one element selected from the group of transition metal, group 13 or group 15 element contained in the lithium compound More preferably, the lithium compound is further contained.
  • a metal element such as monovalent or divalent Na, Cu, or Mg is added to O 4 , Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1), Li 5 + x La 3 Zr x A 2-x O 12 (A is one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga and Ge, 1.4 ⁇ x ⁇ 2) Li 3x La 2 / 3-x AO 3 (A is Ti or Zr, 0.2 ⁇ x ⁇ 0.05), and the like.
  • the lithium compound may further contain a conductive additive.
  • the conductive assistant include carbon black, acetylene black, and CNT.
  • the particle size is 1 ⁇ m or less, and the addition amount is 30% by weight or less based on the weight of the lithium compound.
  • the surface treatment which can ensure dispersibility with respect to the solvent to be used is made at the time of addition.
  • the negative electrode active material for a lithium ion secondary battery of the present invention is a composite particle having a rounded average particle diameter D 50 of 1 to 40 ⁇ m, preferably 2 to 30 ⁇ m.
  • D 50 is less than 1 ⁇ m, it becomes bulky and it becomes difficult to produce a high-density electrode, and when it exceeds 40 ⁇ m, the unevenness of the applied electrode becomes intense and it becomes difficult to produce a uniform electrode.
  • the average particle diameter of the Si compound is 1/5 or less of the average particle diameter of the negative electrode active material, and the carbonaceous material complexed with the lithium compound covers at least the active material surface.
  • the more preferable range of the average particle diameter D 50 of the negative electrode active material is 2 to 20 ⁇ m, and the 10% particle diameter D 10 is 1 ⁇ m or more and the number of flaky particles having a thickness of less than 1 ⁇ m is small. Is preferred.
  • Composite particles with rounded shapes are those in which the corners of particles produced by pulverization, etc. are rounded, spherical or spheroid shapes, discs or oval shapes with thickness and rounded corners, or those Is a deformed one with rounded corners.
  • the shape is rounded, the bulk density of the composite particles is increased, and the packing density when the negative electrode is formed is increased.
  • the carbonaceous material that is complexed with the lithium compound covers at least the active material surface, so that the lithium ion that is solvated in the electrolytic solution during charging and discharging is complexed with the lithium compound. Since only lithium ions react with the Si compound and / or graphite away from the solvent on the surface, the decomposition product of the solvent becomes difficult to be generated, and the charge / discharge efficiency is increased.
  • the Si compound is sandwiched between thin graphite layers having a thickness of 0.2 ⁇ m or less together with a carbonaceous material combined with the lithium compound,
  • the structure is laminated and / or network-like, the thin graphite layer is curved near the surface of the active material particles to cover the active material particles, and the surface of the outermost layer is combined with the lithium compound.
  • the carbonaceous material is preferably covered.
  • the graphite thin layer refers to expanded graphite or expanded graphite in which the above-mentioned graphite is subjected to acid treatment and oxidation treatment and then expanded by heat treatment, and a part of the graphite layer is peeled off to form an accordion shape.
  • the thinner the graphite thin layer the thinner the Si compound sandwiched between the graphite thin layers and the carbonaceous material layer that is complexed with the lithium compound, and the better the transmission of electrons to the Si compound.
  • the thickness exceeds 0.2 ⁇ m, the electron transfer effect of the graphite thin layer is reduced.
  • the graphite thin layer is linear when viewed in cross section, its length is preferably at least half the size of the negative electrode active material particles for electron transfer, and more preferably about the same as the size of the negative electrode active material particles.
  • the graphite thin layer is network-like, it is preferable for electron transfer that the graphite thin layer network is connected to more than half of the size of the negative electrode active material particles, and it may be about the same size as the negative electrode active material particles. Further preferred.
  • the graphite thin layer bends near the surface of the active material particles to cover the active material particles.
  • the electrolyte enters from the end face of the graphite thin layer, the Si compound or the end face of the graphite thin layer is in direct contact with the electrolyte, and a reactant is formed during charge and discharge, resulting in reduced efficiency. Reduce.
  • the Si compound content is 10 to 80% by weight
  • the carbonaceous material content is 5 to 90% by weight
  • the lithium compound content is 0.00. It is preferably 5 to 80% by weight.
  • the content of the Si compound is 10 to 60% by weight
  • the content of the carbonaceous material is 5 to 40% by weight
  • the content of the graphite is 20%. It is preferable that the content of the lithium compound is 0.5 to 65% by weight.
  • the specific surface area is more preferably 0.5 to 20 m 2 / g.
  • the composite of the carbonaceous material and the lithium compound is highly baked simultaneously with carbonization of the carbon precursor described later, and thus forms a dense structure. Therefore, there are few pores leading to the inside of the negative electrode active material particles, and the lithium ions solvated in the electrolytic solution during the charge / discharge process are difficult to directly contact the Si compound and / or graphite, and the specific surface area is 0.
  • the reaction between the Si compound or graphite and the electrolytic solution is suppressed, and the reaction between the carbonaceous material and the electrolytic solution on the surface is kept small, so that the charge / discharge efficiency is increased.
  • the improvement in particle strength by densification of the negative electrode active material cracks due to the expansion of the Si compound are suppressed, and irreversible expansion is reduced.
  • the surface of the round Si carbon composite particle comprising Si or Si alloy, carbonaceous material and graphite is used as the transition metal.
  • a negative electrode active material for a lithium ion secondary battery which is coated with a coating layer of a lithium compound which is a composite oxide of at least one element selected from the group of Group 13 or Group 15 elements and lithium.
  • the average particle diameter of the Si or Si alloy is 0.01 to 5 ⁇ m and 1/5 or less of the average particle diameter of the negative electrode active material, and the average particle diameter D 50 of the negative electrode active material is 1 to 40 ⁇ m.
  • the average particle diameter D 50 of the negative electrode active material described above is less than 1 [mu] m, it becomes difficult to produce a high density of the electrode becomes bulky, when more than 40 [mu] m, uniform electrode becomes intense unevenness of coated electrodes become difficult to produce.
  • a more preferable range of the average particle diameter D 50 is 2 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, and a 10% particle diameter D 10 is 1 ⁇ m or more, and a flaky particle having a thickness of less than 1 ⁇ m. It is preferable that there is little.
  • the lithium compound referred to in the present invention is formed by bonding fine grains, but the grain size is preferably 0.2 ⁇ m or less from the viewpoint of the particle strength of the completed negative electrode active material.
  • the Si carbon composite particles include the Si or Si alloy and a graphite thin layer having a thickness of 0.2 ⁇ m or less together with the carbonaceous material.
  • the structure is sandwiched and spreads in a layered and / or network form, and the graphite thin layer is curved near the surface of the active material particles to cover the active material particles.
  • Lithium ion secondary battery characterized in that it is coated with a coating layer of a lithium compound that is a composite oxide of lithium and at least one element selected from the group of transition metals, group 13 or group 15 elements Negative electrode active material.
  • the Si compound content is 10 to 60% by weight
  • the carbonaceous material content is 5 to 40% by weight
  • the graphite content is The amount is preferably 20 to 80% by weight
  • the lithium compound content is preferably 0.5 to 65% by weight.
  • the content of the lithium compound is more than 9% by weight and more preferably 33% by weight or less, and more preferably 10% by weight or more and 25% by weight or less.
  • the negative electrode active material for a lithium ion secondary battery of the present invention at least one element selected from the group of transition metals, group 13 or group 15 elements contained in the coating layer of the lithium compound More preferably, a metal element having a valence different from that of the lithium compound is further included in the lithium compound coating layer.
  • a metal element having a valence different from that of the lithium compound is further included in the lithium compound coating layer.
  • LiMn 2 having 1 to 3 valent Na, Cu, Mg, Al, Ni, or other metal element added to Li 4 Ti 5 O 12 having 4 valent Ti or trivalent and 4 valent Mn.
  • a metal element such as monovalent or divalent Na, Cu, or Mg is added to O 4 , Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1), Li 5 + x La 3 Zr x A 2-x O 12 (A is one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga and Ge, 1.4 ⁇ x ⁇ 2) Li 3x La 2 / 3-x AO 3 (A is Ti or Zr, 0.2 ⁇ x ⁇ 0.05), and the like.
  • the lithium compound coating layer further contains a carbonaceous material or a conductive additive.
  • the method for producing a negative electrode active material for a lithium ion secondary battery according to the present invention includes a step of mixing a Si compound, a carbon precursor, a lithium compound, and, if necessary, a graphite, a step of granulating and densifying, and a pulverization And forming the composite particles, and firing the composite particles in an inert atmosphere.
  • the Si compound as a raw material a powder having an average particle diameter D 50 of 0.01 to 5 ⁇ m is used.
  • the above-described Si compound raw material (ingot, wafer, powder, etc.) is pulverized by a pulverizer, and in some cases, a classifier is used. In the case of a lump such as an ingot or a wafer, it can be first pulverized using a coarse pulverizer such as a jaw crusher.
  • a ball or bead is used to move the grinding medium, and the impact force, frictional force, or compression force of the kinetic energy is used to grind the material to be crushed, the media agitation mill, or the compression force of the roller.
  • It can be finely pulverized by using a hammer mill, pin mill, disk mill that pulverizes the material to be crushed using the impact force of the colloid, a colloid mill that uses shear force, or a high-pressure wet-on-front collision disperser "Ultimizer”. .
  • the pulverization can be used for both wet and dry processes.
  • very fine particles can be obtained, for example, by using a wet bead mill and gradually reducing the diameter of the beads.
  • dry classification, wet classification, or sieving classification can be used.
  • the process of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, mainly using air flow.
  • Pre-classification adjustment of moisture, dispersibility, humidity, etc.
  • the moisture in the airflow used so that the classification efficiency is not lowered due to the influence of shape, air flow disturbance, velocity distribution, static electricity, etc. It is done by adjusting the oxygen concentration.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • a method for obtaining a Si compound having a predetermined particle size a method in which the Si compound is heated and evaporated by plasma or laser and solidified in an inert gas, or a CVD or plasma CVD using a gas raw material is used. These methods are suitable for obtaining ultrafine particles of 0.1 ⁇ m or less.
  • the carbon precursor as a raw material is not particularly limited as long as it is a polymer mainly composed of carbon and becomes a carbonaceous material by heat treatment in an inert gas atmosphere, but is not limited to petroleum pitch, coal pitch, synthetic pitch, Tar, cellulose, sucrose, polyvinyl chloride, polyvinyl alcohol, phenol resin, furan resin, furfuryl alcohol, polystyrene, epoxy resin, polyacrylonitrile, melamine resin, acrylic resin, polyamideimide resin, polyamide resin, polyimide resin, etc. it can.
  • the lithium compound as a raw material is a composite oxide powder of lithium and at least one element selected from the group of transition metals, Group 13 or Group 15 elements, and Si in the same manner as the Si compound described above. It is preferable to use a material pulverized to an average particle size comparable to that of the compound.
  • a compound of at least one element selected from the group of transition metals, group 13 or group 15 elements, and lithium alkoxide or fatty acid salt is used as a method of compounding the lithium compound with the negative electrode active material.
  • raw material graphite natural graphite, artificial graphite obtained by graphitizing the pitch of petroleum or coal, etc. can be used, and scale-like, oval or spherical, cylindrical or fiber-like are used.
  • these graphites are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment.
  • Part of the graphite layer is peeled off to form an accordion-like form, or a pulverized product of expanded graphite, or an ultrasonic wave between layers.
  • Exfoliated graphene or the like can also be used.
  • the raw material graphite is preliminarily adjusted to a size that can be used in the mixing process, and the particle size before mixing is 1 to 100 ⁇ m for natural graphite or artificial graphite, expanded graphite or a pulverized expanded graphite, and 5 ⁇ m to 5 mm for graphene. Degree.
  • Si compounds, carbon precursors, lithium compounds, and optionally mixed with graphite when the carbon precursor is softened or liquefied by heating, the Si compound, carbon precursor, It can be carried out by kneading a lithium compound and, if necessary, graphite.
  • Si compound, carbon precursor, lithium compound and, if necessary, graphite when the carbon precursor is dissolved in a solvent, Si compound, carbon precursor, lithium compound and, if necessary, graphite are added to the solvent, and the Si compound is dissolved in the solution in which the carbon precursor is dissolved.
  • the carbon precursor, the lithium compound, and, if necessary, graphite are dispersed and mixed, and then the solvent is removed.
  • the solvent to be used can be used without particular limitation as long as it can dissolve the carbon precursor.
  • pitch or tar when pitch or tar is used as the carbon precursor, quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote oil or the like can be used, and when polyvinyl chloride is used, tetrahydrofuran, cyclohexanone, nitrobenzene or the like can be used.
  • phenol resin or furan resin is used, ethanol, methanol or the like can be used.
  • a kneader As a mixing method, when the carbon precursor is heat-softened, a kneader (kneader) can be used.
  • a solvent in addition to the above-described kneader, a Nauter mixer, a Roedige mixer, a Henschel mixer, a high speed mixer, a homomixer, or the like can be used. Further, the jacket is heated with these apparatuses, and then the solvent is removed with a vibration dryer, a paddle dryer or the like.
  • the carbon precursor is solidified, or stirring in the process of solvent removal is continued for a certain amount of time, so that the Si compound, carbon precursor, lithium compound, and, if necessary, a mixture with graphite are granulated. Consolidated. Further, the carbon precursor is solidified or the mixture after removing the solvent is compressed by a compressor such as a roller compactor and coarsely pulverized by a crusher, whereby granulation and consolidation can be achieved.
  • the size of the granulated / consolidated product is preferably 0.1 to 5 mm in view of ease of handling in the subsequent pulverization step.
  • the granulated / consolidated material is pulverized by ball mill, medium agitation mill, roller mill for pulverizing using the compressive force of the roller, or lining material to be crushed at high speed.
  • a jet mill that collides with each other or collides with each other and crushes by the impact force of the impact, a hammer mill that crushes the material to be crushed using the impact force of the rotation of a rotor with a fixed hammer, blade, pin, etc.
  • a dry pulverization method such as a pin mill or a disk mill is preferred.
  • dry classification such as air classification and sieving is used.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • the composite particles obtained by pulverization are fired in an argon gas or nitrogen gas stream or in an inert atmosphere such as a vacuum.
  • the firing temperature is preferably 300 to 1000 ° C., more preferably 500 to 1000 ° C., and particularly preferably 600 to 900 ° C.
  • the firing temperature is less than 300 ° C.
  • the irreversible capacity of the amorphous carbon derived from the carbon precursor is large, and the cycle characteristics are poor, so that the battery characteristics tend to deteriorate.
  • the firing temperature exceeds 1000 ° C., the reaction between the Si compound and the lithium compound occurs, the possibility that the lithium compound is decomposed becomes strong, and the discharge capacity tends to decrease.
  • the method for producing a negative electrode active material for a lithium ion secondary battery of the present invention includes a step of mixing and dispersing an Si compound, a carbon precursor, a lithium compound, and, if necessary, graphite in a solvent in which the carbon precursor is dissolved, It is preferable to include a step of granulating and densifying, a step of forming composite particles having a round shape by pulverization and spheronization, and a step of firing the composite particles in an inert atmosphere.
  • Specialized spheroidizing devices include Hosokawa Micron's Faculty (registered trademark), Nobilta (registered trademark), Mechano-Fusion (registered trademark), Nippon Coke Industries' COMPOSI, Nara Machinery Co., Ltd. hybridization system, Earth Technica's Examples include kryptron orb and kryptron eddy.
  • the Si compound, carbon precursor, lithium compound, expanded graphite or flaky graphite is mixed and dispersed in a solvent in which the carbon precursor is dissolved. And a step of granulating and densifying, a step of forming a composite particle having a round shape by pulverization and spheronization, and a step of firing the composite particle in an inert atmosphere. .
  • Expanded graphite and flaky graphite are made from acid-treated graphite obtained by acid-treating and oxidizing natural graphite and artificial graphite.
  • Expanded graphite is an acid-treated graphite that is expanded by heat treatment, and part of the graphite layer is peeled off to form an accordion.
  • exfoliated graphite is pulverized, or graphene delaminated with ultrasonic waves or the like is flaky graphite.
  • expanded graphite it can be expanded greatly by sufficiently performing acid treatment and increasing the temperature gradient of heat treatment, and the thickness of the graphite thin layer of the negative electrode active material obtained by sufficiently mixing and dispersing can be increased. Since it can be made thin, good electrical conductivity and cycle characteristics can be obtained.
  • a manufacturing method of the second embodiment of the negative electrode active material for a lithium ion secondary battery of the present invention first, in the method for manufacturing a negative electrode active material for a secondary battery described above, a step of mixing and dispersing without adding a lithium compound Si carbon through a step of granulating and densifying, a step of forming a composite particle having a round shape by pulverization and spheronization, and a step of firing the composite particle in an inert atmosphere Composite particles are produced.
  • the lithium compound as a raw material is a composite oxide powder of lithium and at least one element selected from the group of transition metals, Group 13 or Group 15 elements, and Si in the same manner as the Si compound described above. It is preferable to use a material pulverized to an average particle size comparable to that of the compound. Further, at least one element selected from the group of transition metals, Group 13 or Group 15 elements, and lithium alkoxides, fatty acid salts, and inorganic salts can also be used.
  • the prepared lithium compound raw material is dispersed in a suitable solvent such as ethanol, mixed and stirred with the Si carbon composite particles, and the solvent is removed with a dryer to produce Si carbon composite particles coated with the lithium compound raw material. Furthermore, it can bake and can carry out to coating with a lithium compound. If the atmosphere at the time of baking is less than 300 ° C., it may be in the air, but if it is higher, an inert gas atmosphere is preferable.
  • the lithium compound raw material is coated with a tumbling fluidized coating device, etc., by flowing Si carbon composite particles in a fluidized bed, spraying the lithium compound raw material dispersed in a solvent, and simultaneously drying and further heating to coat the lithium compound. You may go up.
  • the thus obtained negative electrode active material for lithium ion secondary batteries of the present invention can be used as a negative electrode material for lithium secondary batteries.
  • the negative electrode active material of the present invention is, for example, kneaded with an organic binder, a conductive additive and a solvent, and formed into a shape such as a sea or pellet, or applied to a current collector and the current collector
  • a negative electrode for a lithium secondary battery is formed by integrating with the body.
  • organic binder for example, polyethylene, polypropylene, ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and a polymer compound having high ion conductivity can be used.
  • Polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide and the like can be used as the polymer compound having a high ionic conductivity.
  • the content of the organic binder is preferably 3 to 20% by weight based on the whole negative electrode material.
  • carboxymethyl cellulose, polysodium acrylate, other acrylic polymers, or fatty acid esters may be added as a viscosity modifier.
  • the type of the conductive agent is not particularly limited, and may be any electron-conductive material that does not cause decomposition or alteration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Zn, Ag, Metal powder and metal fiber such as Sn, Si, or graphite such as natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin fired bodies, etc. Etc. can be used.
  • the addition amount of the conductive agent is 0 to 20% by weight, more preferably 1 to 10% by weight, based on the whole negative electrode material. When the amount of the conductive agent is small, the conductivity of the negative electrode material may be poor and the initial resistance tends to be high. On the other hand, an increase in the amount of conductive agent may lead to a decrease in battery capacity.
  • the solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, pure water, and the amount thereof is not particularly limited.
  • a foil such as nickel or copper, a mesh, or the like can be used.
  • the integration can be performed by a molding method such as a roll or a press.
  • the negative electrode thus obtained has a cycle characteristic compared to a lithium secondary battery using conventional silicon as a negative electrode material by placing the positive electrode opposite to each other through a separator and injecting an electrolytic solution.
  • a lithium secondary battery having excellent characteristics such as high capacity and high initial efficiency can be manufactured.
  • the material used for the positive electrode for example LiNiO 2, LiCoO 2, LiMn 2 O 4, LiNi x Mn y Co 1-x-y O 2, LiFePO 4, Li 0.5 Ni 0.5 Mn 1.5 O 4 Li 2 MnO 3 —LiMO 2 (M ⁇ Co, Ni, Mn) or the like can be used alone or in combination.
  • a lithium salt such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 is used as a non-aqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate.
  • a so-called dissolved organic electrolyte solution can be used.
  • ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used.
  • the counter anion is not particularly limited, and examples thereof include BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ and the like.
  • the ionic liquid can be used by mixing with the organic electrolyte solvent described above.
  • An SEI (solid electrolyte interface layer) forming agent such as vinylene carbonate or fluoroethylene carbonate can also be added to the electrolytic solution.
  • a solid electrolyte obtained by mixing the above salts with polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, or the like, derivatives, mixtures, composites, or the like can also be used.
  • the solid electrolyte can also serve as a separator, and the separator becomes unnecessary.
  • the separator for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene or polypropylene, cloth, microporous film, or a combination thereof is used. can do.
  • Example 1 A pulverized wet bead mill using zirconia beads having a mean particle size D 50 of 7 ⁇ m and chemical grade metal Si (purity 3N) mixed with ethanol in an amount of 20% by weight and having a diameter of 0.3 mm for 5 hours, zirconia having a diameter of 0.03 mm micronization wet bead mill using beads for 5 hours, the average particle diameter D 50 of 0.15 [mu] m, BET surface area of the drying to obtain ultrafine particles Si slurry 100 m 2 / g.
  • a gas such as sulfurous acid was exhausted at the top, and expanded graphite was collected at the bottom in a stainless steel container.
  • the expanded graphite had a width in the (200) plane direction of about 0.5 mm and maintained the original graphite value.
  • the thickness expanded to about 4 mm and about 200 times, and the appearance was coiled. It was confirmed that the layer peeled and was in the form of an accordion.
  • the mixed dried product was passed through a three-roll mill twice, and granulated and compacted to a particle size of about 2 mm and a light bulk density of 350 g / L.
  • the granulated / consolidated product was placed in a new power mill and pulverized at 22000 rpm for 900 seconds while cooling with water, and spheroidized at the same time to obtain a spheroidized powder with a light bulk density of 480 g / L.
  • the obtained powder was put into an alumina boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace. Then, through the mesh of 45 [mu] m, an average particle diameter D 50 of 15 [mu] m, to obtain a negative electrode active material of diatomaceous bulk density 620 g / L.
  • FIG. 1 shows a secondary electron image by FE-SEM of a cross section obtained by cutting the obtained negative electrode active material particles with an ion beam.
  • the carbonaceous material was in close contact with and covered the Si fine particles.
  • the graphite thin layer (12) was curved to cover the active material particles.
  • a lithium ion secondary battery using the obtained negative electrode active material was produced as follows.
  • the obtained negative electrode active material was 95.5% by weight (content in the total solid content, the same applies hereinafter), acetylene black 0.5% by weight as a conductive additive, and CMC 1.5% by weight as a binder.
  • a negative electrode mixture-containing slurry was prepared by mixing 2.5% by weight of SBR and water.
  • the obtained slurry was applied to a copper foil having a thickness of 15 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour. After drying, the lithium ion 2 was punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 3 hours under vacuum to form a negative electrode mixture layer having a thickness of 30 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, dissolved LiPF 6 to a concentration of 1.2 mol / L, and added with 2% by volume of fluoroethylene carbonate. did.
  • the evaluation cell was further placed in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charge / discharge device.
  • Evaluation conditions The evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The discharge capacity and the initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 50 charge / discharge tests under the above charge / discharge conditions with the initial discharge capacity.
  • Comparative Example 1 In the mixing step, a slurry of ultrafine lithium phosphate was not added, 60 g of ultrafine Si slurry, 25 g of the above expanded graphite, 10 g of a resol type phenolic resin, and 1 L of ethanol were put into a stirring vessel. Except for the above, a negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Example 1, and the cells were evaluated.
  • Comparative Example 2 In the mixing step, a negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same order as in Example 1 except that lithium phosphate (Li 3 PO 4 ) was replaced with lithium silicate (Li 4 SiO 4 ). evaluated.
  • lithium phosphate Li 3 PO 4
  • lithium silicate Li 4 SiO 4
  • Table 1 shows the results of Example 1 and the results of Comparative Examples 1 and 2.
  • the lithium ion secondary battery of Example 1 of the negative electrode active material in which lithium phosphate, which is a lithium compound, and Si, a carbonaceous material, and graphite are combined has a high capacity and an initial charge / discharge efficiency. And charge / discharge cycle characteristics are good.
  • the lithium ion secondary battery of Comparative Example 1 of the negative electrode active material in which Si, a carbonaceous material, and graphite were combined without adding a lithium compound had a capacity about 20% lower than that of Example 1 and had an initial charge / discharge. Efficiency is 4% lower and charge / discharge cycle characteristics are inferior. Further, in Comparative Example 2 in which Li 4 SiO 4 which is a complex oxide of Group 14 element and lithium is added instead of the lithium compound, both capacity and initial charge / discharge efficiency are slightly lower than those in Comparative Example 1, and the charge / discharge cycle is reduced. Only the characteristics were good.
  • Example 2 60 g of ultrafine Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 24 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resol type phenolic resin (4 g weight after firing) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Thereafter, the mixed solution was transferred to a rotary evaporator, heated to 60 ° C. with a warm bath while rotating, and evacuated with an aspirator to remove the solvent.
  • the mixed dried product was passed through a three-roll mill twice, and granulated and consolidated to a particle size of about 2 mm and a light bulk density of 370 g / L.
  • the granulated / consolidated product was placed in a new power mill and pulverized at 22000 rpm for 900 seconds while cooling with water, and spheroidized at the same time to obtain a spheroidized powder with a light bulk density of 490 g / L.
  • the obtained powder was put into an alumina boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace.
  • 30 g of round Si carbon composite particles having an average particle diameter D 50 of 18 ⁇ m and a light bulk density of 640 g / L were obtained by passing through a mesh having an opening of 45 ⁇ m.
  • Example 2 Using Comparative Example 3 and the negative electrode active material of Example 2 in which the weight of the lithium phosphate was 1% by weight and 5% by weight, a negative electrode and an evaluation cell were prepared in the same manner as in Example 1, and the cell evaluated.
  • the results of Example 2 and Comparative Example 3 are shown in Table 2.
  • the initial charge / discharge efficiency was improved by 2% as compared with Comparative Example 3 in which the Si carbon composite particles were coated with lithium phosphate.
  • the 1 wt% lithium phosphate coating improved the capacity by 5% and improved the charge / discharge cycle characteristics.
  • the capacity per weight was slightly reduced, but the charge / discharge cycle characteristics were further improved.
  • Example 3 60 g of ultrafine particle Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 23 g of expanded graphite prepared under the same conditions as in Example 1, and ultrafine particles prepared under the same conditions as in Example 1. 10 g of a slurry of lithium phosphate (concentration 20% by weight), 10 g of a resole type phenol resin (weight 4 g after firing), and 1 L of ethanol were placed in a stirring vessel, and mixed and stirred with a homomixer for 1 hour.
  • Example 2 Subsequent drying, three-roll mill, spheronization, calcination, carried out under the same conditions as in Example 1 to mesh through an average particle diameter D 50 of 18 [mu] m, to obtain a negative electrode active material of diatomaceous bulk density 715 g / L.
  • Example 4 60 g of ultrafine particle Si (concentration 20 wt%) slurry prepared under the same conditions as in Example 1, 21 g of expanded graphite prepared under the same conditions as in Example 1, and ultrafine particles prepared under the same conditions as in Example 1. 20 g of a slurry of lithium phosphate (concentration 20 wt%), 10 g of a resol type phenol resin (weight 4 g after firing), and 1 L of ethanol were placed in a stirring vessel, and mixed and stirred with a homomixer for 1 hour.
  • Example 2 Subsequent drying, three-roll mill, spheronization, calcination, carried out under the same conditions as in Example 1 to mesh through an average particle diameter D 50 of 22 .mu.m, to obtain a negative electrode active material of diatomaceous bulk density 785 g / L.
  • Example 5 60 g of ultrafine particle Si (concentration 20 wt%) slurry prepared under the same conditions as in Example 1, 19 g of expanded graphite prepared under the same conditions as in Example 1, and ultrafine particles prepared under the same conditions as in Example 1. 30 g of a slurry of lithium phosphate (concentration 20% by weight), 10 g of a resole type phenol resin (weight 4 g after firing), and 1 L of ethanol were placed in a stirring vessel, and mixed and stirred with a homomixer for 1 hour.
  • Example 2 Subsequent drying, three-roll mill, spheronization, calcination, carried out under the same conditions as in Example 1 to mesh through an average particle diameter D 50 of 19 .mu.m, to obtain a negative electrode active material of diatomaceous bulk density 675 g / L.
  • Example 6 60 g of ultrafine Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 24 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resol type phenolic resin (4 g weight after firing) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Subsequent drying, three-roll mill, spheronization, conducted under the same conditions as in Example 2 to a firing mesh through an average particle diameter D 50 of 16 [mu] m, loosed bulk density was 30g prepared Si-carbon composite particles of 610 g / L. 30 g of this Si carbon composite particle was divided into four, and 7.5 g was used as the negative electrode active material of Comparative Example 4.
  • lithium phosphate was coated in the same manner as in Example 2 as 5, 9 and 13% by weight as the weight of the negative electrode active material to prepare three types of negative electrode active materials.
  • Example 7 Si carbon composite particles before being coated with a lithium compound were produced under the same conditions as in Example 6, and then lithium ethoxide (Li (OEt)) and titanium tetraisopropoxide (Ti (i-Pr) 4 ) were in a molar ratio. 6: 4
  • Li—Ti oxide was coated with 5, 9 and 13% by weight in terms of Li 4 Ti 5 O 12 as a weight in the negative electrode active material (firing temperature 850 ° C.), Three types of negative electrode active materials were produced.
  • Example 8 Si carbon composite particles before being coated with a lithium compound were prepared under the same conditions as in Example 6, and then lithium ethoxide (Li (OEt)) and niobium pentaethoxide (Nb (OEt) 5 ) in a molar ratio of 1: 1.
  • Li (OEt) lithium ethoxide
  • Nb (OEt) 5 niobium pentaethoxide
  • the firing temperature was 350 ° C.
  • the Li—Nb oxide in terms of LiNbO 3 was coated as 5, 9 and 13% by weight as the weight in the negative electrode active material, and three types A negative electrode active material was prepared.
  • Example 9 60 g of ultrafine Si (concentration 20 wt%) slurry prepared under the same conditions as in Example 1, 24 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resol type phenolic resin (weight after firing: 8 g) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Subsequent drying, three-roll milling, spheronization, and firing are performed under the same conditions as in Example 2. After firing, classification is performed using a centrifugal airflow classifier (rotor rotational speed 18000 rpm), and an average particle diameter D 50 is obtained. 14 g of Si carbon composite particles having a particle size of 5 ⁇ m and a light bulk density of 230 g / L.
  • Example 10 100 g of ultrafine Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 16 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resole-type phenol resin (4 g weight after firing) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Subsequent drying, three-roll milling, spheronization, and firing are performed under the same conditions as in Example 2. After firing, classification is performed using a centrifugal airflow classifier (rotor rotational speed 18000 rpm), and an average particle diameter D 50 is obtained. 14 ⁇ m of Si carbon composite particles having a particle size of 4 ⁇ m and a light bulk density of 210 g / L.
  • Example 11 80 g of ultrafine particle Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 20 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resol type phenol resin (4 g weight after firing) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Subsequent drying, three-roll milling, spheronization, and firing are performed under the same conditions as in Example 2. After firing, classification is performed using a centrifugal airflow classifier (rotor rotational speed 18000 rpm), and an average particle diameter D 50 is obtained. 14 ⁇ m of Si carbon composite particles having a particle size of 4 ⁇ m and a light bulk density of 200 g / L.
  • Comparative Example 5 80 g of ultrafine particle Si (concentration 20% by weight) slurry prepared under the same conditions as in Example 1, 20 g of expanded graphite prepared under the same conditions as in Example 1, and 10 g of resol type phenol resin (4 g weight after firing) ), 1 L of ethanol was put into a stirring vessel, and mixed and stirred with a homomixer for 1 hour. Subsequent drying, three-roll mill, spheronization, baking, mesh up through was conducted under the same conditions as in Example 1, the average particle diameter D 50 of 17 .mu.m, to obtain a negative electrode active material of diatomaceous bulk density 640 g / L.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 , preliminarily dried at 80 ° C., and then dried at 200 ° C. with a vacuum dryer. Dry for hours. After drying, it was punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 20 ⁇ 5 ⁇ m. A negative electrode for an ion secondary battery was obtained.
  • Electrode displacement evaluation cell The amount of expansion was measured using an electrode displacement cell that measures the expansion displacement of the negative electrode.
  • a positive electrode is used for the lower part
  • a negative electrode is used for the upper part
  • a piston-like support is fixed to the upper part of the negative electrode with a spring so that expansion displacement of the electrode is transmitted to the support.
  • only the expansion displacement on the negative electrode side was measured by inserting and fixing a hard glass filter between the positive electrode and the negative electrode.
  • the displacement displacement of the electrode can be measured by installing a laser displacement meter on the surface of the column. A commercially available displacement meter was used as the laser displacement meter. The displacement data was connected to a data logger and recorded.
  • the evaluation cell was assembled in a glove box.
  • 16 mm ⁇ metallic lithium, 16 mm ⁇ glass filter, 21 mm ⁇ hard glass filter, 21 mm ⁇ polypropylene separator, and 13.8 mm ⁇ negative electrode were each dipped in the electrolyte solution, and then laminated in this order.
  • the piston-like column was fixed with a spring and sealed with a lid.
  • the electrolyte is a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, the additive is FEC (fluoroethylene carbonate), and LiPF 6 is dissolved to a concentration of 1.2 mol / L. used.
  • the electrode was connected to a charge / discharge device.
  • Evaluation conditions The evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. Recording of the laser displacement meter was started simultaneously with the start of charge / discharge.
  • an electrode displacement evaluation cell was assembled, and a change in electrode thickness due to charging / discharging was examined with a laser displacement meter.
  • the expansion rate is defined with the height obtained by subtracting the initial thickness of the electrode from the initial position of the laser displacement meter as the origin (0%), the maximum position by the initial charge as 100%, the charge / discharge capacity by the charge / discharge cycle, and The change in the expansion coefficient is shown in FIGS.
  • Table 3 shows the results of similarly assembling batteries using the negative electrode active materials of Examples 3 to 5 and Comparative Example 4, and evaluating the charge / discharge capacity and expansion rate before and after the cycle test (25 times).
  • Table 4 shows the results of assembling batteries in the same manner using the negative electrode active materials of Examples 6 to 8 and Comparative Example 4, and evaluating the charge / discharge capacity and expansion rate before and after the cycle test (25 times).
  • the decrease in the capacity of the negative electrode active material due to the coating is small in the order of Li—Nb oxide, Li—Ti oxide, and lithium phosphate.
  • Lithium phosphate was excellent.
  • the expansion rate for the 25th time was less than 130% by adding more than 10% by weight of the coating material, and reduced to around 120% for any material by 15% by weight coating.
  • Table 5 shows the results of similarly assembling batteries using the negative electrode active materials of Examples 9 to 11 and Comparative Example 5, and evaluating the charge / discharge capacity and expansion rate before and after the cycle test (25 times).
  • the average particle diameter D 50 of the anode active material and the following 5 ⁇ 6 [mu] m approximately 15 [mu] m, and, by the D 10 or more 1 [mu] m, in Si50 weight percent, initial capacity while exceeding the 900mAh / g, In the 25th time, a high capacity retention rate of 94%, an efficiency of 99%, and a low expansion rate of 108% were secured.
  • the SEM images of the negative electrode active materials of Examples 10 and 11 are shown in FIGS. 5 and 6. Although the particles in FIG. 5 (Example 10) are mostly spherical, the particles in FIG. 6 (Example 11). is mixed numerous fine flaky particles D 10 of cause less than 1 [mu] m, which is considered to cause a slight expansion greater in example 11. Note that the grain size of the lithium compound of the coating film is less than 0.2 ⁇ m from these SEM images and SEM images of higher magnification, and the grain size of the lithium compound is not limited to Examples 10 and 11 but in any of the Examples. Was less than 0.2 ⁇ m.
  • Example 12 LAGP (Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , purity 3N) powder was pulverized for 20 seconds with a new power mill (batch type cutter mill), then mixed with ethanol in an amount of 20% by weight. the milled wet mill using 0.3mm zirconia beads for 10 hours, the average particle diameter D 50 was obtained slurry of the ultrafine LAGP of 0.2 [mu] m.
  • Example 13 By replacing LAGP with LLZ (Li 7 La 3 Zr 2 O 12 ), a negative electrode active material obtained by coating 13 g by weight of LLZ as a weight of the negative electrode active material on 10 g of Si carbon composite particles in the same manner as in Example 12 Produced.
  • LLZ Li 7 La 3 Zr 2 O 12
  • Example 14 In the same manner as in Example 12, replacing LAGP with LLT (Li 0.33 La 0.55 Ti 3 ), negative electrode active material in which 10 g of Si carbon composite particles were coated with 13 wt% of LLT as the weight of the negative electrode active material. The material was made.
  • LLT Li 0.33 La 0.55 Ti 3
  • the lithium ion secondary battery negative electrode active material and the manufacturing method thereof according to the present invention can be used for a lithium ion secondary battery that requires a high capacity and a long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 初期およびサイクル中の高い効率と電池容量を維持しつつ、サイクル特性に優れるリチウムイオン2次電池負極活物質およびその製造方法を提供する。 Si化合物と、炭素質物または炭素質物と黒鉛とを、含んでなるリチウムイオン2次電池用負極活物質において、Si化合物、炭素前駆体、および遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、さらに必要に応じて黒鉛の粉末を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合粒子を形成する工程と、該複合粒子を不活性ガス雰囲気中で焼成する工程により、該Si化合物の平均粒径が0.01~5μmであり、該炭素質物が遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している負極活物質を用いる。

Description

リチウムイオン2次電池用負極活物質およびその製造方法
 本発明は、リチウムイオン2次電池用負極活物質およびその製造方法に関するものである。
 スマートフォン、タブレット型端末などモバイル機器の高性能化や、EV、PHEVなどリチウムイオン2次電池を搭載した車両の普及に伴い、リチウムイオン2次電池の高容量化の要求が高まっている。現在、リチウムイオン2次電池の負極材には主に黒鉛が用いられているが、さらなる高容量化のため、理論容量が高く、リチウムイオンを吸蔵・放出可能な元素であるシリコンやスズ等の金属、もしくは他の元素との合金を用いた負極材の開発が活発化している。
 一方、これらのリチウムイオンを吸蔵・放出可能な金属材料からなる活物質は、充電によってリチウムと合金化した際に、著しく体積膨張することが知られている。そのため、活物質が割れて微細化し、さらにこれらを用いた負極も構造が破壊されて導電性が切断される。従って、これらの金属材料を用いた負極はサイクル経過によって容量が著しく低下することが課題となっている。
 この課題に対し、これらの金属材料を微粒子化し、炭素質物や黒鉛などで複合化する手法が提案されている。このような複合粒子は、これらの金属材料がリチウムと合金化し、微細化しても炭素質物や黒鉛によって導電性が確保されるため、これらの材料を単独で負極材として用いるよりもサイクル特性が著しく向上することが知られている。例えば、特許文献1には、負極の活物質は炭素質物層が表面に形成された微粒子を含み、該微粒子はMg、Al、Si、Ca、SnおよびPbから選ばれる少なくとも一種の元素からなると共に、平均粒径が1~500nmであり、かつ前記活物質中の微粒子の原子比率は15%以上であることが開示されている。また、特許文献2には、金属粒子が複数相の炭素中に埋設され、該炭素は黒鉛および非晶質炭素を含むものである金属炭素複合体粒子が開示され、前記金属粒子について、Mg、Al、Si、Zn、Ge、Bi、In、Pd、Ptのいずれかからなり、平均粒子径は0.1~20μmが好ましいと記載されている。また、特許文献3には、負極活物質が、黒鉛コア粒子と、該黒鉛コア粒子を被覆する炭素被膜(シェル)と、該炭素被膜内部に分散して位置する金属粒子とを含む、いわゆるコアシェル構造であり、前記黒鉛コア粒子の平均粒径は1~20μm、前記炭素被膜のコーティング
厚さは1~4μm、前記リチウムと合金化する金属としては、Cr、Sn、Si、Al、Mn、Ni、Zn、Co、In、Cd、Bi、Pb、Vからなる群から選択される少なくともいずれか1つの物質を含み、平均粒径は0.01~1.0μmが好ましいと開示されている。さらに、特許文献4には、比表面積30m/g以上の膨張黒鉛または薄片状黒鉛と、リチウムイオンと化合可能な電池活物質とを混合して混合物を得る混合工程と、該混合物に球形化処理を施し、黒鉛およびリチウムイオンと化合可能な電池活物質を含有する略球状のリチウム二次電池用複合活物質を製造する球形化工程とを有する、リチウム二次電池用複合活物質の製造方法が開示され、前記リチウムイオンと化合可能な電池活物質について、Si、Sn、Al、Sb、Inから選ばれる少なくとも1種の元素を含有し、平均粒子径は1μm以下が好ましいと記載されている。
 上記の微粒子化した金属材料を用いる方法では、金属材料を微粒子化するほど、充電時のリチウム挿入による一粒子あたりの膨張が少なく、割れにくくなり、サイクル寿命が向上する。しかしながら、金属微粉末の表面は自然酸化膜が存在し、不動態として金属の大気中での発火を抑えている。自然酸化膜の厚みは、微粉末の粒径によらず酸化処理条件が一定であればほぼ一定であるため、粒径が小さいほど粒子中の自然酸化膜の重量比が高まる。活物質としての金属微粉末への初回の充電はリチウムが自然酸化膜と反応することから始まるが、リチウム化された酸化膜はその後リチウムを脱・挿入しないため、不可逆容量が生じ、初期充放電効率が低下する。従って、金属微粉末の粒径を小さくすると初期充放電効率が低下することが問題となっている。例えば、特許文献5には、シリコン粒子を粉砕した場合の、シリコンの平均粒径と酸素元素含有量との関係を調べ、平均粒子が2μmより小さくなると酸素元素含有量が急激に大きくなり、初期効率が下がることが示されている。
 金属材料を用いた負極がサイクル経過によって容量が著しく低下するその他の原因として、リチウムを吸蔵したSi、Sn等は活性が高いため、電解液が分解されてリチウムが不活性化されてしまうことがある。そのため、上記の微粒子化した金属材料を用いる方法と炭素質物や黒鉛などで複合化する手法とを組み合わせて、金属粒子の割れによる微粉化を抑えつつ、導電路を確保しても、電解液の分解ガス発生や不活性なリチウム化合物の膜発生により、充電時に生じた膨張が放電時に完全には戻らない不可逆な膨張が発生し、サイクル劣化に拍車をかけている。
 そこで、ゾルゲル法により負極活物質の表面にSi、Ti、Al、Zrの酸化物よりなる被膜を形成することが開示されている(例えば、特許文献6参照)。また、Si、Snのうち少なくとも一方を含む反応部と、その表面の一部に設けられたTiOあるいはZrOなどの金属酸化物よりなる被覆部とを有する負極材料で、反応部に対する被覆部の割合を0.01質量%以上10質量%以下とすることにより、高容量で、優れた充放電効率を得ることができることも提案されている(例えば、特許文献7参照)。また、超微細Si相粒子および前記Si相粒子を取り囲む酸化物から構成された複合体、および炭素材料を含んでなる、優れた充放電サイクル特性を示す負極材料も提案されている(例えば、特許文献8参照)。しかしながら、これらの方法でも長いサイクルを実施した場合には、不可逆な膨張の抑制は不十分であった。
日本国特開平10-3920号公報 日本国特開2000-272911号公報 日本国特開2010-129545号公報 日本国特許第5227483号公報 日本国特開2004-185810号公報 日本国特開2004-335334号公報 日本国特開2007-141666号公報 日本国特表2007-500421号公報
 本発明は、SiまたはSi合金(以下、併せて「Si化合物」という)と、炭素質物または炭素質物と黒鉛とを含んで複合化したリチウムイオン2次電池用負極活物質であり、Si化合物の微粒子を用いても初期およびサイクル中の充放電効率が高く、放電容量が大きく、サイクル寿命が長く、サイクルにより発生する不可逆な膨張が少ないリチウムイオン2次電池を与える負極活物質およびその製造方法を提供することにある。
 本発明者らは先の課題を解決すべく鋭意検討を重ねた結果、Si化合物と、炭素質物または炭素質物と黒鉛とを、含んでなるリチウムイオン2次電池用負極活物質において、該炭素質物が遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物(以下、「リチウム化合物」という)と複合化されていることにより、Si化合物の微粒子を用いても初期およびサイクル中の充放電効率が高く、放電容量が大きく、サイクル寿命が長く、サイクルにより発生する不可逆な膨張が少ないリチウムイオン2次電池を与える負極活物質が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の要旨を有するものである。
(1)SiまたはSi合金と、炭素質物または炭素質物と黒鉛とを、含んでなるリチウムイオン2次電池用負極活物質において、該SiまたはSi合金の平均粒径D50が0.01~5μmであり、該炭素質物が、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、と複合化されていることを特徴とするリチウムイオン2次電池用負極活物質。
(2)前記負極活物質が、形状が丸みを帯びた平均粒径D50が1~40μmの複合粒子であり、前記SiまたはSi合金の平均粒径が該負極活物質の平均粒径の1/5以下であり、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物が、少なくとも活物質表面を覆っていることを特徴とする上記(1)に記載のリチウムイオン2次電池用負極活物質。
(3)前記SiまたはSi合金が、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物が覆っていることを特徴とする上記(1)または(2)に記載のリチウムイオン2次電池用負極活物質。
(4)前記SiまたはSi合金の含有量が10~80重量%、前記炭素質物の含有量が5~90重量%、前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物の含有量が0.5~80重量%であることを特徴とする上記(1)~(3)のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
(5)前記SiまたはSi合金の含有量が10~60重量%、前記炭素質物の含有量が5~40重量%、前記黒鉛の含有量が20~80重量%、前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物の含有量が0.5~65重量%であることを特徴とする上記(1)~(3)のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
(6)比表面積が0.5~20m/gであることを特徴とする上記(1)~(5)のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
(7)前記負極活物質の平均粒径D50が2~20μm、かつ10%粒径D10が1μm以上であることを特徴とする上記(1)~(6)のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
(8)SiまたはSi合金、炭素前駆体、および遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、さらに必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合粒子を形成する工程と、該複合粒子を不活性ガス雰囲気中で焼成する工程とを含むことを特徴とする上記(1)に記載のリチウムイオン2次電池用負極活物質の製造方法。
(9)SiまたはSi合金、炭素前駆体、および遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、さらに必要に応じて黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程とを含むことを特徴とする上記(2)に記載のリチウムイオン2次電池用負極活物質の製造方法。
(10)SiまたはSi合金、炭素前駆体、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、膨張黒鉛または薄片状黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰気中で焼成する工程とを含むことを特徴とする上記(3)に記載のリチウムイオン2次電池用負極活物質の製造方法。
(11)前記複合粒子を不活性雰囲気中で焼成する工程の温度が、300~1000℃であることを特徴とする上記(8)~(10)のいずれか1項に記載のリチウムイオン2次電池用負極活物質の製造方法。
(12)SiまたはSi合金と、炭素質物と黒鉛とを、含んでなる丸みを帯びたSi炭素複合粒子の表面を遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆しているリチウムイオン2次電池用負極活物質であって、該SiまたはSi合金の平均粒径が0.01~5μm、かつ、該負極活物質の平均粒径の1/5以下であり、該負極活物質の平均粒径D50が1~40μmであることを特徴とするリチウムイオン2次電池用負極活物質。
(13)前記Si炭素複合粒子において、前記SiまたはSi合金が、前記炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、該Si炭素複合粒子表面を遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆していることを特徴とする上記(12)に記載のリチウムイオン2次電池用負極活物質。
(14)前記リチウム化合物が、負極活物質中において0.5~65重量%であることを特徴とする上記(12)または(13)に記載のリチウムイオン2次電池用負極活物質。
(15)前記負極活物質の平均粒径D50が2~20μm、10%粒径D10が1μm以上であることを特徴とする上記(12)~(14)のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
 本発明によれば、微粒子のシリコンによる粒子当たりの膨張体積の低減と、緻密な炭素質物とリチウム化合物の複合化により、電解液とシリコンの反応を抑えることにより優れたサイクル特性と、初期およびサイクル中の高い充放電効率が得られ、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素のシリコンへのドーピング効果やリチウム化合物によるリチウムの固体電解質効果により、電気伝導性とリチウムイオン伝導性が高まることで内部インピーダンスが下がり、さらに充放電サイクルによる不可逆な膨張を抑制し、高い電池容量が長期のサイクルで確保されたリチウムイオン電池負極が得られる。また、本発明の製造方法により、高密度の負極形成に適した高い嵩密度の負極活物質を得ることができる。
実施例1で得られた負極活物質粒子断面のFE-SEMによる2次電子像である。 実施例1で得られた負極活物質粒子断面のEDS(エネルギー分散型X線分析)によるP(リン)元素のマッピング像である。 比較例5で得られた負極活物質で作製した電池の充放電サイクルによる充放電容量および負極膨張率の変化を示す。 実施例10で得られた負極活物質で作製した電池の充放電サイクルによる充放電容量および負極膨張率の変化を示す。 実施例10で得られた負極活物質のSEM像(3000倍)を示す。 実施例11で得られた負極活物質のSEM像(3000倍)を示す。
 以下、本発明のリチウムイオン2次電池用負極活物質について詳細に説明する。
 本発明でいうSiとは、純度が98%程度の汎用グレードの金属シリコン、純度が2~4Nのケミカルグレードの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、もしくはそれらに周期表13族もしくは15族元素をドーピングして、p型またはn型としたもの、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレードの金属シリコン以上の純度であれば特に限定されない。
 本発明でいうSi合金とは、Siが主成分の合金である。前記Si合金において、Si以外に含まれる元素としては、周期表2~15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素の選択および/または添加量が好ましい。
 本発明のリチウムイオン2次電池用負極活物質において、Si化合物の平均粒径D50は0.01~5μmであり、0.05~0.5μmの範囲がさらに好ましい。0.01μmより小さいと、表面酸化による容量や初期効率の低下が激しく、5μmより大きいと、リチウム挿入による膨張で割れが激しく生じ、サイクル劣化が激しくなる。なお、D50はレーザー粒度分布計で測定した体積平均の粒子径である。
 Si化合物の含有量は10~80重量%が好ましく、15~50重量%がさらに好ましい。Si化合物の含有量が10重量%未満の場合、従来の黒鉛に比べて十分に大きい容量が得られず、80重量%より大きい場合、サイクル劣化が激しくなる。
 本発明でいう炭素質物とは、非晶質もしくは微結晶の炭素物質であり、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカーボン)と、黒鉛化しにくい難黒鉛化炭素(ハードカーボン)がある。
 本発明のリチウムイオン2次電池用負極活物質において、炭素質物の含有量は5~90重量%が好ましく、8~40重量%がさらに好ましい。炭素質物の含有量が5重量%未満の場合、炭素質物がSi化合物を覆うことができず、導電パスが不十分となって容量劣化が激しく起こりやすく、90重量%より大きい場合、容量が十分に得られない。
 本発明でいう黒鉛とは、グラフェン層がc軸に平行な結晶であり、鉱石を精製した天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等があり、原料の形状としては鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等がある。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させ、黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、もしくは超音波等により層間剥離させたグラフェン等も用いることができる。本発明の負極活物質に含まれる黒鉛の粒子サイズは、負極活物質粒子のサイズより小さければ特に限定されないが、黒鉛粒子の厚みは活物質の平均粒径D50の1/5以下であることが好ましい。黒鉛の添加により活物質粒子の導電性および強度が高まり、充放電のレート特性およびサイクル特性が向上する。黒鉛粒子のX線回折で測定される(002)面の面間隔d002は0.338nm以下であることが好ましく、これは高度に黒鉛化が進んだ黒鉛を意味している。d002がこの値を超える場合、黒鉛による導電性向上効果が小さくなる。
 本発明のリチウムイオン2次電池用負極活物質において、炭素質物と黒鉛が含まれる場合、各々の含有量は5~40重量%と20~80重量%の割合が好ましく、8~30重量%と40~70重量%の割合がさらに好ましい。炭素質物の含有量が5重量%未満の場合、炭素質物がSi化合物および黒鉛を覆うことができず、Si化合物と黒鉛との接着が不十分となり、活物質粒子の形成が困難となりやすい。また、40重量%より大きい場合、導電性が炭素質物より高い黒鉛の効果が十分に引き出されない。一方、黒鉛の含有量が20重量%未満の場合、導電性が炭素質物より高い黒鉛の効果が十分でなく、80重量%より多い場合、従来の黒鉛に比べて十分に大きい容量が得られない。
 本発明でいうリチウム化合物とは、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素のオキソ酸のリチウム塩であり、例えば、遷移金属の場合、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、各種マンガン酸リチウム(LiMn、LiMnO、LiMnO等)、鉄酸リチウム(LiFeO)、リン酸鉄リチウム(LiFePO)、各種チタン酸リチウム(LiTi、LiTi12、LiTi12等)、各種ニオブ酸リチウム(LiNbO、LiNb等)、タングステン酸リチウム(LiWO)、モリブデン酸リチウム(LiMoO)等が挙げられ、周期表13族の場合、アルミン酸リチウム(LiAlO)、メタホウ酸リチウム(LiBO),テトラホウ酸リチウム(Li)等が挙げられ、周期表15族の場合、トリリン酸リチウム(LiPO),ピロリン酸リチウム(Li)等が挙げられる。本発明でいうリチウム化合物は、これらの固溶体や混合物でも、組成が不定比となる不定比化合物でも、明瞭な結晶相を示さなくても良い。
 炭素質物とリチウム化合物とを複合化させることにより、炭素質物が電子を伝導し、リチウム化合物がリチウムイオンを伝導し、充放電に伴う抵抗を下げる。また、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素は負極活物質を製造する時の熱処理により、Si化合物に僅かにドーピングされ、電気伝導度を高めると考えられる。電気伝導度の観点からより好ましい元素としては、周期表13族ではホウ素、周期表15族ではリンが挙げられる。これらの元素を含むリチウムの複合酸化物は融点が800~1000℃にあり、後述するように焼成時に固相もしくは液相の焼成が進み、炭素質物と一体化してSiまたはSi合金を緻密に取り囲みやすい。
 本発明でいうリチウム化合物は微細なグレインが結合してなるが、でき上がった負極活物質の粒子強度の観点からグレインサイズは0.2μm以下が好ましい。
 本発明のリチウムイオン2次電池用負極活物質において、リチウム化合物の含有量は、0.5~80重量%、さらに好ましくは0.5~65重量%である。0.5重量%未満の場合、初期充放電効率、放電容量を高める効果が少なく、80重量%より多い場合、導電性が低下して十分な容量が得られなくなる。
 本発明のリチウムイオン2次電池用負極活物質において、前記リチウム化合物に含まれる遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素と価数が異なる金属元素が、前記リチウム化合物にさらに含まれていることが、さらに好ましい。例えば、4価のTiを持つLiTi12に対して1~3価のNa、Cu、Mg、Al、Ni等の金属元素を添加や、3価と4価のMnを持つLiMnに対して1~2価のNa、Cu、Mg等の金属元素を添加、Li1+xAlGe2-x(PO(0≦x≦1)、Li5+xLaZr2-x12(AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、1.4≦x≦2)、Li3xLa2/3-xAO(AはTi或いはZr、0.2≦x≦0.05)等が挙げられる。
 本発明のリチウムイオン2次電池用負極活物質においては、前記リチウム化合物に導電助剤がさらに含まれていても良い。導電助剤としては、カーボンブラック、アセチレンブラック、CNT等が挙げられるが、粒子サイズとしては1μm以下であり、添加量は前記リチウム化合物の重量に対して30重量%以下が挙げられる。また添加時には、使用する溶剤に対して分散性を確保可能な表面処理がなされていることが好ましい。
 本発明のリチウムイオン2次電池用負極活物質は、形状が丸みを帯びた平均粒径D50が1~40μmの複合粒子であり、好ましくは2~30μmである。D50が1μm未満の場合、嵩高くなって高密度の電極が作製しにくくなり、40μmを超える場合、塗布した電極の凹凸が激しくなって均一な電極が作製しにくくなる。また、前記Si化合物の平均粒径が該負極活物質の平均粒径の1/5以下であり、前記リチウム化合物と複合化している炭素質物が、少なくとも活物質表面を覆っていることが好ましい。
 サイクル特性の観点から、より好ましい前記負極活物質の平均粒径D50の範囲は2~20μmであり、かつ10%粒子径D10が1μm以上で、厚みが1μm未満の薄片状粒子が少ないことが好ましい。
 形状が丸みを帯びた複合粒子とは、粉砕等により生成した粒子の角が取れているもの、球状もしくは回転楕円体形状、円板もしくは小判形状で厚みを有して角が丸いもの、またはそれらが変形したもので角が丸いものなどである。形状が丸みを帯びることにより複合粒子の嵩密度が高まり、負極にした時の充填密度が高まる。また、前記リチウム化合物と複合化している炭素質物が、少なくとも活物質表面を覆っていることにより、充放電の過程で電解液に溶媒和したリチウムイオンが、前記リチウム化合物と複合化している炭素質物の表面で溶媒から離れて、リチウムイオンのみがSi化合物および/または黒鉛と反応するため、溶媒の分解生成物が生成しにくくなり、充放電の効率が高まる。
 本発明のリチウムイオン2次電池用負極活物質においては、前記Si化合物が、前記リチウム化合物と複合化している炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を前記リチウム化合物と複合化している炭素質物が覆っていることが好ましい。
 本発明でいう黒鉛薄層とは、先に述べた黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、超音波等により層間剥離させたグラフェン等、またはこれらが圧縮力を受けることで生成した、グラフェン1層(厚み0.0003μm)~数百層(厚み~0.2μm)からなる黒鉛薄層である。黒鉛薄層の厚みは薄い方が、黒鉛薄層間に挟まれたSi化合物と、リチウム化合物と複合化している炭素質物の層が薄くなって、Si化合物への電子の伝達が良くなり、厚みが0.2μmを超えると黒鉛薄層の電子伝達効果が薄まる。黒鉛薄層を断面で見て線状の場合、その長さは負極活物質粒子のサイズの半分以上あることが電子伝達に好ましく、負極活物質粒子のサイズと同等程度であることがさらに好ましい。黒鉛薄層が網目状の場合、黒鉛薄層の網が負極活物質粒子のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、負極活物質粒子のサイズと同等程度であることがさらに好ましい。
 本発明においては、黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆うことが好ましい。そのような形状にすることで、黒鉛薄層端面から電解液が侵入して、Si化合物や黒鉛薄層端面と電解液が直接接して、充放電時に反応物が形成され、効率が下がるリスクが低減する。
 本発明のリチウムイオン2次電池用負極活物質においては、前記Si化合物の含有量が10~80重量%、前記炭素質物の含有量が5~90重量%、前記リチウム化合物の含有量が0.5~80重量%であることが好ましい。
 また、本発明のリチウムイオン2次電池用負極活物質においては、前記Si化合物の含有量が10~60重量%、前記炭素質物の含有量が5~40重量%、前記黒鉛の含有量が20~80重量%、前記リチウム化合物の含有量が0.5~65重量%であることが好ましい。
 本発明のリチウムイオン2次電池用負極活物質では、比表面積が0.5~20m/gであることがさらに好ましい。
 本発明のリチウムイオン2次電池用負極活物質において、前記炭素質物とリチウム化合物の複合化物は、後述する炭素前駆体の炭化と同時に高度に焼成されるため、緻密な組織を形成する。そのため、負極活物質粒子内部に通じるポアが少なく、充放電の過程で電解液に溶媒和したリチウムイオンが、直接Si化合物および/または黒鉛に接触しにくい構造となっており、比表面積が0.5~20m/gであることにより、Si化合物や黒鉛と電解液との反応が抑制され、表面での炭素質物と電解液との反応も少なく保たれるため、充放電の効率が高まる。負極活物質の緻密化による粒子強度の向上も相まって、Si化合物の膨張による割れが抑制され、不可逆な膨張が低減する。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態としては、SiまたはSi合金と、炭素質物と黒鉛とを、含んでなる丸みを帯びたSi炭素複合粒子の表面を、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆しているリチウムイオン2次電池用負極活物質であって、該SiまたはSi合金の平均粒径が0.01~5μm、かつ、該負極活物質の平均粒径の1/5以下であり、該負極活物質の平均粒径D50が1~40μmであることを特徴とするリチウムイオン2次電池用負極活物質である。
 上述の負極活物質の平均粒径D50が1μm未満の場合は、嵩高くなって高密度の電極が作製しにくくなり、40μmを超える場合は、塗布した電極の凹凸が激しくなって均一な電極が作製しにくくなる。サイクル特性の観点から、より好ましい平均粒径D50の範囲は2~20μm、さらに好ましくは3~15μmであり、かつ10%粒子径D10が1μm以上であり、厚みが1μm未満の薄片状粒子が少ないことが好ましい。
 本発明でいうリチウム化合物は微細なグレインが結合してなるが、でき上がった負極活物質の粒子強度の観点からグレインサイズは0.2μm以下が好ましい。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態において、前記Si炭素複合粒子は、前記SiまたはSi合金が、前記炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、該Si炭素複合粒子表面を遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆していることを特徴とするリチウムイオン2次電池用負極活物質である。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態においては、前記Si化合物の含有量が10~60重量%、前記炭素質物の含有量が5~40重量%、前記黒鉛の含有量が20~80重量%、前記リチウム化合物の含有量が0.5~65重量%であることが好ましい。前記リチウム化合物の含有量は、9重量%より大きく33重量%以下がさらに好ましく、10重量%以上25重量%以下がより好ましい。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態においては、前記リチウム化合物の被覆層に含まれる遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素と価数が異なる金属元素が、前記リチウム化合物の被覆層にさらに含まれていることが、さらに好ましい。例えば、4価のTiを持つLiTi12に対して1~3価のNa、Cu、Mg、Al、Ni等の金属元素を添加や、3価と4価のMnを持つLiMnに対して1~2価のNa、Cu、Mg等の金属元素を添加、Li1+xAlGe2-x(PO(0≦x≦1)、Li5+xLaZr2-x12(AはSc,Ti,V,Y,Nb,Hf,Ta,Al,Si,Ga及びGeからなる群より選ばれた1種類以上の元素、1.4≦x≦2)、Li3xLa2/3-xAO(AはTi或いはZr、0.2≦x≦0.05)等が挙げられる。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態においては、前記リチウム化合物の被覆層に炭素質物あるいは導電助剤がさらに含まれていることが、さらに好ましい。
 次に、本発明のリチウムイオン2次電池用負極活物質の製造方法について説明する。
 本発明のリチウムイオン2次電池用負極活物質の製造方法は、Si化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛を混合する工程と、造粒・厚密化する工程と、粉砕して複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程を含むものである。
 原料であるSi化合物は、平均粒径D50が0.01~5μmの粉末を使用する。所定の粒子径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョークラッシャー等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いて微粉砕することができる。粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビーズミルを用い、ビーズの径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行われる。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 別の所定の粒子径のSi化合物を得る方法としては、プラズマやレーザー等でSi化合物を加熱して蒸発させ、不活性ガス中で凝固させて得る方法、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。
 原料の炭素前駆体としては、炭素を主体とする高分子で、不活性ガス雰囲気中での熱処理により炭素質物になるものであれば特に限定されないが、石油系ピッチ、石炭系ピッチ、合成ピッチ、タール類、セルロース、スクロース、ポリ塩化ビニル、ポリビニルアルコール、フェノール樹脂、フラン樹脂、フルフリルアルコール、ポリスチレン、エポキシ樹脂、ポリアクリロニトリル、メラミン樹脂、アクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂等が使用できる。
 原料であるリチウム化合物は、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物粉末を、先に述べたSi化合物と同様な方法でSi化合物と同程度の平均粒径に粉砕したものを用いることが好ましい。負極活物質にリチウム化合物を複合化する方法としては、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素の化合物とリチウムのアルコキシドや脂肪酸塩を用いて複合化する方法もあるが、予め複合酸化物としたものを粉砕した粉末を用いることにより、焼成工程でガスが発生したり、周期表13族もしくは15族元素の化合物とリチウムのアルコキシドや脂肪酸塩の分解、生成物の蒸発などによる組成ずれがないため、緻密な負極活物質粒子を得ることができる。粉砕方法としては、湿式のビーズミルを用いてなるべく小さくすることが好ましい。
 原料である黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等が用いられる。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、もしくは超音波等により層間剥離させたグラフェン等も用いることができる。原料の黒鉛は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1~100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm~5mm程度である。
 これらのSi化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛との混合は、炭素前駆体が加熱により軟化、液状化するものである場合は、加熱下でSi化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛を混練することによって行うことができる。また、炭素前駆体が溶媒に溶解するものである場合には、溶媒にSi化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛を投入し、炭素前駆体が溶解した溶液中でSi化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛を分散、混合し、次いで溶媒を除去することで行うことができる。用いる溶媒は、炭素前駆体を溶解できるものであれば特に制限なく使用できる。例えば、炭素前駆体としてピッチ、タール類を用いる場合には、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用でき、ポリ塩化ビニルを用いる場合には、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等が使用でき、フェノール樹脂、フラン樹脂を用いる場合には、エタノール、メタノール等が使用できる。
 混合方法としては、炭素前駆体を加熱軟化させる場合は、混練機(ニーダー)を用いることができる。溶媒を用いる場合は、上述の混練機の他、ナウターミキサー、レーディゲミキサー、ヘンシェルミキサ、ハイスピードミキサー、ホモミキサー等を用いることができる。また、これらの装置でジャケット加熱したり、その後、振動乾燥機、パドルドライヤーなどで溶媒を除去する。
 これらの装置で、炭素前駆体を固化、または、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛との混合物は造粒・圧密化される。また、炭素前駆体を固化、または溶媒除去後の混合物をローラーコンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1~5mmが好ましい。
 造粒・圧密化物の粉砕方法は、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル等の乾式の粉砕方法が好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 粉砕して得られた複合粒子は、アルゴンガスや窒素ガス気流中、もしくは真空など不活性雰囲気中で焼成する。焼成温度は300~1000℃とすることが好ましく、500~1000℃とすることがより好ましく、600~900℃とすることが特に好ましい。焼成温度が300℃未満であると、炭素前駆体由来の非晶質炭素の不可逆容量が大きく、またサイクル特性が悪いため、電池の特性が低下する傾向にある。一方、焼成温度が1000℃を超える場合、Si化合物とリチウム化合物の反応が起ったり、リチウム化合物が分解する可能性が強くなり、放電容量の低下が発生する傾向にある。
 本発明のリチウムイオン2次電池用負極活物質の製造方法は、Si化合物、炭素前駆体、リチウム化合物、さらに必要に応じて黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程を含むことが好ましい。
 造粒・圧密化物を粉砕して球形化処理を施す方法としては、上述の粉砕方法により粉砕して粒度を整えた後、専用の球形化装置を通す方法と、上述のジェットミルやローターの回転による衝撃力を利用して被砕物を粉砕する方法を繰り返す、もしくは処理時間を延長することで球形化する方法がある。専用の球形化装置としては、ホソカワミクロン社のファカルティ(登録商標)、ノビルタ(登録商標)、メカノフュージョン(登録商標)、日本コークス工業社のCOMPOSI、奈良機械製作所社のハイブリダイゼーションシステム、アーステクニカ社のクリプトロンオーブ、クリプトロンエディ等が挙げられる。
 また、本発明のリチウムイオン2次電池用負極活物質の製造方法は、Si化合物、炭素前駆体、リチウム化合物、膨張黒鉛または薄片状黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程を含むことが好ましい。
 膨張黒鉛や薄片状黒鉛は、天然黒鉛や人造黒鉛を酸処理、酸化処理した酸処理黒鉛を原料とする。膨張黒鉛は、酸処理黒鉛を熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となったものである。また、膨張黒鉛の粉砕物、もしくは超音波等により層間剥離させたグラフェンが薄片状黒鉛である。膨張黒鉛においては、酸処理を十分に行い、熱処理の温度勾配を大きくすることで大きく膨張させることが可能であり、混合分散を十分に行うことで出来上がった負極活物質の黒鉛薄層の厚みを薄くできるため、良好な電気伝導性、サイクル特性を得ることができる。
 本発明のリチウムイオン2次電池用負極活物質の第2の形態の製造方法としては、まず、上述の2次電池用負極活物質の製造方法において、リチウム化合物の添加なしで、混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程を経て、Si炭素複合粒子を作製する。
 次に、リチウム化合物を被覆するためリチウム化合物を準備する。原料であるリチウム化合物は、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物粉末を、先に述べたSi化合物と同様な方法でSi化合物と同程度の平均粒径に粉砕したものを用いることが好ましい。また、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素およびリチウムのアルコキシド、脂肪酸塩、無機塩を用いることもできる。
 準備したリチウム化合物原料をエタノール等の適当な溶媒に分散させ、Si炭素複合粒子と混合撹拌し、乾燥機で溶媒除去し、リチウム化合物原料で被覆されたSi炭素複合粒子を作製する。さらに、焼成して、リチウム化合物による被覆化まで行うことができる。焼成時の雰囲気は300℃未満であれば大気中でも良いが、それ以上では不活性ガス雰囲気中が好ましい。なお、リチウム化合物原料の被覆は転動流動コーティング装置等により、Si炭素複合粒子を流動床で流動させ、溶媒に分散させたリチウム化合物原料を噴霧し、同時に乾燥、さらに加熱してリチウム化合物の被覆まで行っても良い。
 このようにして得られる本発明のリチウムイオン2次電池用負極活物質は、リチウム二次電池の負極材料として用いることができる。
 本発明の負極活物質は、例えば、有機系結着剤、導電助剤および溶剤と混練して、シー状、ペレット状等の形状に成形するか、または集電体に塗布し、該集電体と一体化してリチウム二次電池用負極とされる。
 有機系結着剤としては、例えばポリエチレン、ポリプロピレン、エチレンプロピレンポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン導電性の大きな高分子化合物が使用できる。イオン導電率の大きな高分子化合物としては、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリイミド等が使用できる。有機系結着剤の含有量は、負極材全体に対して3~20重量%含有させることが好ましい。また、有機系結着剤の他に粘度調整剤として、カルボキシメチルセルロース、ポリアクリル酸ソーダ、その他のアクリル系ポリマー、または脂肪酸エステル等を添加しても良い。
 導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であれば良く、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、または天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛などを用いることができる。導電剤の添加量は、負極材全体中に対して0~20重量%であり、さらには1~10重量%が好ましい。導電剤量が少ないと、負極材の導電性に乏しい場合があり、初期抵抗が高くなる傾向がある。一方、導電剤量の増加は電池容量の低下につながるおそれがある。
 前記溶剤としては特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、純水等が挙げられ、その量に特に制限はない。集電体としては、例えばニッケル、銅等の箔、メッシュなどが使用できる。一体化は、例えばロール、プレス等の成形法で行うことができる。
 このようにして得られた負極は、セパレータを介して正極を対向して配置し、電解液を注入することにより、従来のシリコンを負極材料に用いたリチウム二次電池と比較して、サイクル特性に優れ、高容量、高初期効率という優れた特性を有するリチウム二次電池を作製することができる。
 正極に用いられる材料については、例えばLiNiO、LiCoO、LiMn、LiNiMnCo1-x-y、LiFePO、Li0.5Ni0.5Mn1.5、LiMnO-LiMO(M=Co,Ni,Mn)等を単独または混合して使用することができる。
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤に溶解させた、いわゆる有機電解液を使用することができる。さらには、イミダゾリウム、アンモニウム、およびピリジニウム型のカチオンを用いたイオン液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン液体は前述の有機電解液溶媒と混合して使用することが可能である。電解液には、ビニレンカーボネートやフロロエチレンカーボネートの様なSEI(固体電解質界面層)形成剤を添加することもできる。
 また、上記塩類をポリエチレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド等やこれらの誘導体、混合物、複合体等に混合された固体電解質を用いることもできる。この場合、固体電解質はセパレータも兼ねることができ、セパレータは不要となる、セパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはこれらを組み合わせたものを使用することができる。
 以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例1
 平均粒子径D50が7μmのケミカルグレードの金属Si(純度3N)をエタノールに20重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを5時間、直径0.03mmのジルコニアビーズを用いた超微粉砕湿式ビーズミルを5時間行い、平均粒子径D50が0.15μm、乾燥時のBET表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径約0.5mm((200)面方向の幅)、厚み約0.02mmの天然黒鉛を、濃硫酸に硝酸ナトリウム1重量%、過マンガン酸カリウム7重量%を添加した液に24時間浸漬し、その後、水洗して乾燥し、酸処理黒鉛を得た。この酸処理黒鉛を振動粉末供給器に入れ、10L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した長さ1m、内径11mmのムライト管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。膨張黒鉛の(200)面方向の幅は約0.5mmで元の黒鉛の値を保っていたが、厚みは約4mmと約200倍に膨張し、外観はコイル状であり、SEM観察で黒鉛層が剥離し、アコーディオン状であることが確認された。
 リン酸リチウム(LiPO、純度3N)の凝集塊をニューパワーミル(バッチ式カッターミル)により20秒粉砕後、エタノールに20重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを10時間行い、平均粒子径D50が0.05μmの超微粒子リン酸リチウムのスラリーを得た。
 上記超微粒子Si(濃度20重量%)スラリーを60g、上記膨張黒鉛を24g、上記超微粒子リン酸リチウム(濃度20重量%)のスラリーを4g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で60℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに12時間乾燥して、約40gの混合乾燥物(軽装嵩密度80g/L)を得た。
 この混合乾燥物を3本ロールミルに2回通し、粒度約2mm、軽装嵩密度350g/Lに造粒・圧密化した。
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、22000rpmで900秒粉砕し、同時に球形化し、軽装嵩密度480g/Lの球形化粉末を得た。得られた粉末をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。その後、目開き45μmのメッシュを通し、平均粒子径D50が15μm、軽装嵩密度620g/Lの負極活物質を得た。
 図1に、得られた負極活物質粒子をイオンビームで切断した断面のFE-SEMによる2次電子像を示す。負極活物質粒子内部は0.05~0.2μmの長さのSiの微粒子が炭素質物と共に0.02~0.2μmの厚みの黒鉛薄層(11)の間(13)(隙間は0.05~1μm)に挟まった構造が網目状に広がり、積層していた。炭素質物はSiの微粒子に密着して覆っていた。また、活物質粒子の表面付近では、黒鉛薄層(12)が湾曲して活物質粒子を覆っていた。さらに、EDS(エネルギー分散型X線分析)で組成分析したところ、図2に示すように、炭素質物が存在する黒鉛薄層間(21)と負極活物質表面(22)にP(リン)が検出された。窒素ガスを用いたBET法による比表面積は18m/gであった。粉末X線回折では黒鉛の(002)面に対応する回折線が見られ、d002は0.336nmであった。また、その付近に炭素質物の非晶質炭素化に由来する非常にブロードな回折線が観察された。Siの(100)面に対応する回折線が見られ、d002は0.314nmであった。
 得られた負極活物質を用いたリチウムイオン2次電池を以下のようにして作製した。
 「リチウムイオン二次電池用負極の作製」
 得られた負極活物質を95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてCMC1.5重量%とSBR2.5重量%、水とを混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが15μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で3時間熱処理して、厚みが30μmの負極合剤層を形成したリチウムイオン2次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、LiPFを1.2mol/Lの濃度になるように溶解させ、これにフルオロエチレンカーボネートを2体積%添加したものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
 「評価条件」
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。放電容量と初期充放電効率は、初回充放電試験の結果とした。
 また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量を初回の放電容量を比較し、その容量維持率として評価した。
 比較例1
 混合工程において、超微粒子リン酸リチウムのスラリーは添加せず、超微粒子Siスラリーを60g、上記膨張黒鉛を25g、レゾール型のフェノール樹脂を10g、エタノール1Lを撹拌容器に入れて、工程を実施した以外は実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
 比較例2
 混合工程において、リン酸リチウム(LiPO)を珪酸リチウム(LiSiO)に代えた以外は実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
 実施例1の結果と比較例1,2の結果を表1に示す。
 表1から明らかなように、リチウム化合物であるリン酸リチウムと、Si、炭素質物、黒鉛を複合化した負極活物質の実施例1のリチウムイオン2次電池は、高容量で、初期充放電効率が高く、充放電サイクル特性が良好である。
 これに対し、リチウム化合物を添加せず、Si、炭素質物、黒鉛を複合化した負極活物質の比較例1のリチウムイオン2次電池は、実施例1より20%程度低容量で、初期充放電効率が4%低く、充放電サイクル特性が劣る。また、リチウム化合物の代わりに、周期表14族元素とリチウムの複合酸化物であるLiSiOを添加した比較例2は、比較例1より容量、初期充放電効率ともに少し下がり、充放電サイクル特性のみが良好であった。
 実施例2
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を24g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で60℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに12時間乾燥して、約40gの混合乾燥物(軽装嵩密度90g/L)を得た。
 この混合乾燥物を3本ロールミルに2回通し、粒度約2mm、軽装嵩密度370g/Lに造粒・圧密化した。
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、22000rpmで900秒粉砕し、同時に球形化し、軽装嵩密度490g/Lの球形化粉末を得た。得られた粉末をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。その後、目開き45μmのメッシュを通し、平均粒子径D50が18μm、軽装嵩密度640g/Lの丸みを帯びたSi炭素複合粒子を30g得た。
 このSi炭素複合粒子30gを3つに分けて、10gを比較例3の負極活物質とした。別の10gのSi炭素複合粒子を実施例1と同様の条件で調製した超微粒子リン酸リチウム(濃度20重量%)のスラリー0.5gおよびエタノール100mLをビーカーに入れてスターラーで20分間撹拌混合し、その後、60℃の温浴のロータリーエバポレーターで乾燥した。残りの10gのSi炭素複合粒子を同様の条件で超微粒子リン酸リチウム(濃度20重量%)のスラリー2.5gおよびエタノール100mLと混合し、乾燥した。超微粒子リン酸リチウムと混合した2種類の試料をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度850℃で1時間焼成した。その後、解砕機で軽く解砕し、目開き45μmのメッシュを通した。得られた負極活物質中のリン酸リチウムの重量は、其々、1重量%および5重量%であった。また、平均粒子径D50は18~19μm、軽装嵩密度は660~690g/Lであった。
 比較例3および、上記リン酸リチウムの重量が1重量%および5重量%の実施例2の負極活物質を用いて、実施例1と同様の方法で負極、評価用セルの順に作製し、セル評価した。実施例2の結果と比較例3の結果を表2に示す。
 表2から明らかなように、リン酸リチウムでSi炭素複合粒子を被覆することで、被覆されていない比較例3に比べて初期充放電効率が2%向上した。リン酸リチウム1重量%被覆では容量が5%向上し、充放電サイクル特性も向上した。また、リン酸リチウム5重量%被覆では、重量あたりの容量は僅かに低下したが、充放電サイクル特性はさらに向上した。
 実施例3
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を23g、実施例1と同様の条件で調製した超微粒子リン酸リチウム(濃度20重量%)のスラリーを10g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成、メッシュ通しまで実施例1と同様の条件で行い、平均粒子径D50が18μm、軽装嵩密度715g/Lの負極活物質を得た。
 実施例4
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を21g、実施例1と同様の条件で調製した超微粒子リン酸リチウム(濃度20重量%)のスラリーを20g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成、メッシュ通しまで実施例1と同様の条件で行い、平均粒子径D50が22μm、軽装嵩密度785g/Lの負極活物質を得た。
 実施例5
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を19g、実施例1と同様の条件で調製した超微粒子リン酸リチウム(濃度20重量%)のスラリーを30g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成、メッシュ通しまで実施例1と同様の条件で行い、平均粒子径D50が19μm、軽装嵩密度675g/Lの負極活物質を得た。
 実施例6
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を24g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成メッシュ通しまで実施例2と同様の条件で行い、平均粒子径D50が16μm、軽装嵩密度が610g/LのSi炭素複合粒子を30g作製した。このSi炭素複合粒子30gを4つに分けて、7.5gを比較例4の負極活物質とした。
 その後、実施例2と同様の方法にてリン酸リチウムを負極活物質中の重量として5、9、13重量%被覆し、3種類の負極活物質を作製した。
 実施例7
 実施例6と同様の条件でリチウム化合物被覆前のSi炭素複合粒子を作製し、その後、リチウムエトキシド(Li(OEt))とチタンテトライソプロポキシド(Ti(i-Pr))をモル比6:4として実施例2と同様の方法にてLiTi12換算でLi-Ti酸化物を負極活物質中の重量として5、9、13重量%被覆(焼成温度850℃)し、3種類の負極活物質を作製した。
 実施例8
 実施例6と同様の条件でリチウム化合物被覆前のSi炭素複合粒子を作製し、その後、リチウムエトキシド(Li(OEt))とニオブペンタエトキシド(Nb(OEt))をモル比1:1として、焼成温度を350℃とした他は、実施例2と同様の方法にてLiNbO換算でLi-Nb酸化物を負極活物質中の重量として5、9、13重量%被覆し、3種類の負極活物質を作製した。
 実施例9
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを60g、実施例1と同様の条件で調製した膨張黒鉛を24g、レゾール型のフェノール樹脂を10g(焼成後重量8g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成までは実施例2と同様の条件で行い、焼成後、遠心型気流式分級機(ローター回転数18000rpm)を用いて分級し、平均粒子径D50が5μm、軽装嵩密度が230g/LのSi炭素複合粒子を14g作製した。
 その後、実施例2と同様の方法にてリン酸リチウムを負極活物質中の重量として13重量%被覆して負極活物質を作製した。
 実施例10
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを100g、実施例1と同様の条件で調製した膨張黒鉛を16g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成までは実施例2と同様の条件で行い、焼成後、遠心型気流式分級機(ローター回転数18000rpm)を用いて分級し、平均粒子径D50が4μm、軽装嵩密度が210g/LのSi炭素複合粒子を14g作製した。
 その後、実施例2と同様の方法にてリン酸リチウムを負極活物質中の重量として13重量%被覆して負極活物質を作製した。
 実施例11
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを80g、実施例1と同様の条件で調製した膨張黒鉛を20g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成までは実施例2と同様の条件で行い、焼成後、遠心型気流式分級機(ローター回転数18000rpm)を用いて分級し、平均粒子径D50が4μm、軽装嵩密度が200g/LのSi炭素複合粒子を14g作製した。
 その後、超微粒子リン酸リチウムのスラリーとのスターラーによる撹拌混合の時間を5分間に短縮した以外は、実施例2と同様の方法にてリン酸リチウムを負極活物質中の重量として13重量%被覆して負極活物質を作製した。
 比較例5
 実施例1と同様の条件で調製した超微粒子Si(濃度20重量%)スラリーを80g、実施例1と同様の条件で調製した膨張黒鉛を20g、レゾール型のフェノール樹脂を10g(焼成後重量4g)、エタノール1Lを撹拌容器に入れて、ホモミキサーで1時間混合撹拌した。その後の乾燥、3本ロールミル、球形化、焼成、メッシュ通しまでは実施例1と同様の条件で行い、平均粒子径D50が17μm、軽装嵩密度640g/Lの負極活物質を得た。
 実施例3~11および比較例3~5で得られた負極活物質を用いたリチウムイオン2次電池を以下のようにして作製した。
 「リチウムイオン二次電池用負極の作製」
 得られた負極活物質を80.0重量%に対して、導電助剤としてアセチレンブラック5.0重量%と、バインダとしてポリイミド(IST社のドリームボンド)15重量%(硬化後重量)、NMPとを混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、80℃で予備乾燥後、200℃で真空乾燥機にて10時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが20±5μmの負極合剤層を形成したリチウムイオン2次電池用負極を得た。
 「電極変位評価用セル」
 負極電極の膨張変位を測定する電極変位セルを用いて膨張量を測定した。下部に正極、上部に負極とし、負極電極上部にピストン状の支柱をバネで固定することで電極の膨張変位が支柱に伝わる構造とした。また、正極電極と負極電極の間に硬質状のガラスフィルターを挿入し、固定することで負極側の膨張変位のみを測定した。さらに支柱の表面にレーザー変位計を設置することで、電極の膨張変位の測定を可能とした。レーザー変位計は、一般に市販されている変位計を用いた。変位量のデータは、データーロガーに接続し、データ記録を行った。
 評価用セルは、グローブボックス中で組み立てた。評価セルに、16mmφの金属リチウム、16mmφのガラスフィルター、21mmφの硬質ガラスフィルター、21mmφのポリプロピレン製セパレータ、13.8mmφの上記負極を、各々、電解液にディップした後、この順に積層し、最後に上記のピストン状の支柱をバネで固定し、蓋で密閉した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、添加剤はFEC(フルオロエチレンカボネート)とし、LiPFを1.2mol/Lの濃度になるように溶解させたものを使用した。組立後、電極を充放電装置に接続した。
 「評価条件」
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。充放電開始と同時にレーザー変位計の記録を開始した。
 比較例5および実施例10の負極活物質を用いて上述に従って電極を作製して初期厚みを測定した後、電極変位評価用セルを組み立て、レーザー変位計で電極厚みの充放電による変化を調べた。ここで、レーザー変位計の初期位置から電極の初期厚みを差し引いた高さを原点(0%)、初回充電による極大位置を100%として、膨張率を定義し、充放電サイクルによる充放電容量および膨張率の変化を図3および図4に示した。
 図3(比較例5)では、充電時の膨張より放電時の収縮が小さい不可逆な膨張が顕著で、25回目の充電で膨張率は195%(図中矢印)を示した。図4(実施例10)では、2回目の充電で108%と僅かに膨張したが、その後、殆ど変化せず、25回目の充電でも膨張率は108%(図中矢印)を維持した。一方、充放電容量についても、図3(比較例5)では25回の充放電で15%減少したが、図4(実施例10)では25回の充放電で6%の低下に留まり、サイクル特性が大幅に改善され、25回目以降は容量が逆転した。初期充放電効率においては、ポリイミドバインダーのリチウム化による不可逆容量が200mAh/g程度あるため、水系バインダーを使用した場合に比べてかなり低下したが、25回目の充放電の効率においては、図3(比較例5)では93%と低いが、図4(実施例10)では約99%と大幅に改善された。
 実施例3~5と比較例4の負極活物質を用いて同様に電池を組み立て、サイクル試験(25回)前後の充放電容量および膨張率を評価した結果を表3に示す。
 表3より、5重量%以上のリン酸リチウムの添加により初期の容量と効率は下がるが、サイクルによる容量維持率が高まり、25回目の効率は99%まで高まった。また、25回目の膨張率は、リン酸リチウム無添加では165%だったものが、リン酸リチウムを10重量%を超えて添加することにより膨張率130%以下となり、15重量%添加では105%まで抑制された。
 実施例6~8と比較例4の負極活物質を用いて同様に電池を組み立て、サイクル試験(25回)前後の充放電容量および膨張率を評価した結果を表4に示す。
 表4より、被覆による負極活物質の容量低下は、Li-Nb酸化物、Li-Ti酸化物、リン酸リチウムの順で少ないが、容量維持率および25回目の効率ではLi-Ti酸化物、リン酸リチウムが優れていた。25回目の膨張率は、被覆材料を10重量%を超えて添加することにより膨張率は130%以下となり、15重量%被覆により何れの材料でも120%前後まで低減した。
 実施例9~11と比較例5の負極活物質を用いて同様に電池を組み立て、サイクル試験(25回)前後の充放電容量および膨張率を評価した結果を表5に示す。
 表5より、負極活物質の平均粒径D50を15μm以下の5~6μm程度とし、かつ、D10を1μm以上とすることにより、Si50重量%で、初期容量が900mAh/gを超えながら、25回目で高い容量維持率94%と効率99%および低い膨張率108%を確保した。
 実施例10、11の負極活物質のSEM像を図5、6に示すが、図5(実施例10)の粒子は大部分が概略球形状であるものの、図6(実施例11)の粒子はD10が1μm未満の原因となる細かい薄片状の粒子が多数混じっており、これが実施例11で若干膨張が大きい原因と考えられる。なお、これらのSEM像およびさらに高倍率のSEM像から被覆膜のリチウム化合物のグレインサイズは0.2μm未満であり、実施例10、11のみならず、いずれの実施例でもリチウム化合物のグレインサイズは0.2μm未満であった。
 実施例12
 LAGP(Li1.5Al0.5Ge1.5(PO、純度3N)の粉末をニューパワーミル(バッチ式カッターミル)により20秒粉砕後、エタノールに20重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを10時間行い、平均粒子径D50が0.2μmの超微粒子LAGPのスラリーを得た。
 実施例6と同様の条件で作製したリチウム化合物被覆前のSi炭素複合粒子10gに、上記超微粒子LAGPのスラリー7.5gおよびエタノール100mLをビーカーに入れてスターラーで20分間撹拌混合し、その後、60℃の温浴のロータリーエバポレーターで乾燥した。この試料をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度840℃で1時間焼成した。その後、解砕機で軽く解砕し、目開き45μmのメッシュを通した。得られた負極活物質中のLAGPの重量は、13重量%であった。
 実施例13
 LAGPをLLZ(LiLaZr12) に替えて、実施例12と同様の方法で、Si炭素複合粒子10gにLLZを負極活物質中の重量として13重量%被覆した負極活物質を作製した。
 実施例14
 LAGPをLLT(Li0.33La0.55Ti) に替えて、実施例12と同様の方法で、Si炭素複合粒子10gにLLTを負極活物質中の重量として13重量%被覆した負極活物質を作製した。
 実施例12~14の負極活物質を用いて、実施例1と同様の方法で負極(負極活物質を95.5重量%に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてCMC1.5重量%とSBR2.5重量%、水とを混合して負極合剤含有スラリーを調製)、評価用セルの順に作製し、セル評価した結果を表6に示す。
 表6から明らかなように、LAGP、LLZ、LLTでSi炭素複合粒子を被覆することで、被覆されていない比較例3に比べて初期容量はやや下がったが、LAGPを及びLLT被覆では容量維持率が顕著に向上した。膨張率は、比較例3は175%と大きいが、実施例12~14で何れの試料も130%以下となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明であるリチウムイオン2次電池負極活物質およびその製造方法は、高容量で長寿命が必要とされるリチウムイオン2次電池に利用することができる。
 11 負極活物質内部の黒鉛薄層
 12 負極活物質表面付近の黒鉛薄層
 13 Si微粒子と炭素質物の層
 21 負極活物質内部の黒鉛薄層間のP(リン)元素のKα線からの信号(白点)
 22 負極活物質表面のP(リン)元素のKα線からの信号(白点)
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年02月19日出願の日本国特許出願(特願2014-029999)及び2014年09月22日出願の日本国特許出願(特願2014-193163)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (15)

  1. SiまたはSi合金と、炭素質物または炭素質物と黒鉛とを、含んでなるリチウムイオン2次電池用負極活物質において、該SiまたはSi合金の平均粒径D50が0.01~5μmであり、該炭素質物が、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、と複合化されていることを特徴とするリチウムイオン2次電池用負極活物質。
  2. 前記負極活物質が、形状が丸みを帯びた平均粒径D50が1~40μmの複合粒子であり、前記SiまたはSi合金の平均粒径が該負極活物質の平均粒径の1/5以下であり、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物が、少なくとも活物質表面を覆っていることを特徴とする請求項1に記載のリチウムイオン2次電池用負極活物質。
  3. 前記SiまたはSi合金が、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物と複合化している炭素質物が覆っていることを特徴とする請求項1または2に記載のリチウムイオン2次電池用負極活物質。
  4. 前記SiまたはSi合金の含有量が10~80重量%、前記炭素質物の含有量が5~90重量%、前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物の含有量が0.5~80重量%であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
  5. 前記SiまたはSi合金の含有量が10~60重量%、前記炭素質物の含有量が5~40重量%、前記黒鉛の含有量が20~80重量%、前記遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物の含有量が0.5~65重量%であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
  6. 比表面積が0.5~20m/gであることを特徴とする請求項1~5のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
  7. 前記負極活物質の平均粒径D50が2~20μm、かつ10%粒径D10が1μm以上であることを特徴とする請求項1~6のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
  8. SiまたはSi合金、炭素前駆体、および遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、さらに必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合粒子を形成する工程と、該複合粒子を不活性ガス雰囲気中で焼成する工程とを含むことを特徴とする請求項1に記載のリチウムイオン2次電池用負極活物質の製造方法。
  9. SiまたはSi合金、炭素前駆体、および遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、さらに必要に応じて黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程とを含むことを特徴とする請求項2に記載のリチウムイオン2次電池用負極活物質の製造方法。
  10. SiまたはSi合金、炭素前駆体、遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物、膨張黒鉛または薄片状黒鉛を、該炭素前駆体が溶解する溶媒に混合分散する工程と、造粒・厚密化する工程と、粉砕および球形化処理して形状が丸みを帯びた複合粒子を形成する工程と、該複合粒子を不活性雰気中で焼成する工程とを含むことを特徴とする請求項3に記載のリチウムイオン2次電池用負極活物質の製造方法。
  11. 前記複合粒子を不活性雰囲気中で焼成する工程の温度が、300~1000℃であることを特徴とする請求項8~10のいずれか1項に記載のリチウムイオン2次電池用負極活物質の製造方法。
  12. SiまたはSi合金と、炭素質物と黒鉛とを、含んでなる丸みを帯びたSi炭素複合粒子の表面を遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆しているリチウムイオン2次電池用負極活物質であって、該SiまたはSi合金の平均粒径が0.01~5μm、かつ、該負極活物質の平均粒径の1/5以下であり、該負極活物質の平均粒径D50が1~40μmであることを特徴とするリチウムイオン2次電池用負極活物質。
  13. 前記Si炭素複合粒子において、前記SiまたはSi合金が、前記炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、該Si炭素複合粒子表面を遷移金属、周期表13族もしくは15族元素の群から選択される少なくとも1つの元素とリチウムとの複合酸化物であるリチウム化合物の被覆層で被覆していることを特徴とする請求項12に記載のリチウムイオン2次電池用負極活物質。
  14. 前記リチウム化合物が、負極活物質中において0.5~65重量%であることを特徴とする請求項12または13に記載のリチウムイオン2次電池用負極活物質。
  15. 前記負極活物質の平均粒径D50が2~20μm、10%粒径D10が1μm以上であることを特徴とする請求項12~14のいずれか1項に記載のリチウムイオン2次電池用負極活物質。
PCT/JP2015/054313 2014-02-19 2015-02-17 リチウムイオン2次電池用負極活物質およびその製造方法 WO2015125784A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-029999 2014-02-19
JP2014029999 2014-02-19
JP2014193163 2014-09-22
JP2014-193163 2014-09-22

Publications (1)

Publication Number Publication Date
WO2015125784A1 true WO2015125784A1 (ja) 2015-08-27

Family

ID=53878286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054313 WO2015125784A1 (ja) 2014-02-19 2015-02-17 リチウムイオン2次電池用負極活物質およびその製造方法

Country Status (3)

Country Link
JP (1) JP6572551B2 (ja)
TW (1) TW201603368A (ja)
WO (1) WO2015125784A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145654A1 (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP2017152358A (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
CN112823069A (zh) * 2018-10-05 2021-05-18 住友化学株式会社 金属粒子组合物的制造方法及金属粒子组合物
EP3846251A4 (en) * 2018-10-12 2021-11-17 LG Chem, Ltd. NEGATIVE ELECTRODE AND RECHARGEABLE BATTERY WITH IT
CN115004404A (zh) * 2020-01-31 2022-09-02 松下知识产权经营株式会社 电化学元件和其制造方法、以及电化学器件
CN117438587A (zh) * 2023-12-19 2024-01-23 深圳市本征方程石墨烯技术股份有限公司 一种硅基负极材料及其制备方法和应用、锂离子电池
CN115004404B (zh) * 2020-01-31 2024-05-31 松下知识产权经营株式会社 电化学元件和其制造方法、以及电化学器件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961948B2 (ja) * 2016-08-10 2021-11-05 東ソー株式会社 シリコン系リチウム二次電池用複合活物質およびその製造方法
US11772511B2 (en) 2016-10-21 2023-10-03 Gs Yuasa International Ltd. Vehicle-use energy storage apparatus, vehicle-use discharge system, discharge control method, and vehicle-use energy storage device
CN110121803A (zh) * 2016-12-29 2019-08-13 株式会社村田制作所 负极活性物质、负极、电池、电池组、电子设备、电动车辆、蓄电装置以及电力***
JP6946719B2 (ja) * 2017-04-28 2021-10-06 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6943023B2 (ja) * 2017-05-30 2021-09-29 凸版印刷株式会社 積層体グリーンシート、全固体二次電池およびその製造方法
JP7183529B2 (ja) * 2017-05-30 2022-12-06 凸版印刷株式会社 積層体グリーンシート、全固体二次電池及びその製造方法
JP6969175B2 (ja) * 2017-06-20 2021-11-24 株式会社豊田中央研究所 リチウム二次電池用負極材料、その製造方法、及びそれを備えるリチウム二次電池
CN110945692B (zh) * 2017-08-03 2023-07-07 国立大学法人东京工业大学 非水系二次电池用电极活性物质及其制造方法
JP2022015857A (ja) * 2020-07-10 2022-01-21 セイコーエプソン株式会社 負極活物質の前駆体溶液、負極活物質の前駆体粉末および負極活物質の製造方法
JP7471202B2 (ja) * 2020-11-20 2024-04-19 本田技研工業株式会社 リチウムイオン二次電池用黒鉛粒子、リチウムイオン二次電池用電極及び黒鉛粒子の製造方法
JP7285816B2 (ja) * 2020-12-04 2023-06-02 プライムプラネットエナジー&ソリューションズ株式会社 負極活物質および該負極活物質を備えたリチウムイオン二次電池
CN113066968B (zh) * 2021-03-24 2022-04-22 贝特瑞新材料集团股份有限公司 硅氧复合负极材料及其制备方法、锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090924A (ja) * 1998-09-10 2000-03-31 Mitsubishi Chemicals Corp 非水系二次電池
JP2013077398A (ja) * 2011-09-29 2013-04-25 Panasonic Corp 非水電解質二次電池用負極および非水電解質二次電池
JP2013101931A (ja) * 2011-11-08 2013-05-23 Samsung Sdi Co Ltd 負極活物質、その製造方法、該活物質を含む電極及び該電極を採用したリチウム電池
WO2014097819A1 (ja) * 2012-12-17 2014-06-26 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
JP2015079727A (ja) * 2013-09-10 2015-04-23 東レ株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極、および、リチウムイオン二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350015B2 (en) * 2011-04-19 2016-05-24 Samsung Sdi Co., Ltd. Anode active material, anode and lithium battery including the material, and method of preparing the material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090924A (ja) * 1998-09-10 2000-03-31 Mitsubishi Chemicals Corp 非水系二次電池
JP2013077398A (ja) * 2011-09-29 2013-04-25 Panasonic Corp 非水電解質二次電池用負極および非水電解質二次電池
JP2013101931A (ja) * 2011-11-08 2013-05-23 Samsung Sdi Co Ltd 負極活物質、その製造方法、該活物質を含む電極及び該電極を採用したリチウム電池
WO2014097819A1 (ja) * 2012-12-17 2014-06-26 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
JP2015079727A (ja) * 2013-09-10 2015-04-23 東レ株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極、および、リチウムイオン二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145654A1 (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP2017152358A (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
US10833323B2 (en) 2016-02-24 2020-11-10 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
CN112823069A (zh) * 2018-10-05 2021-05-18 住友化学株式会社 金属粒子组合物的制造方法及金属粒子组合物
EP3846251A4 (en) * 2018-10-12 2021-11-17 LG Chem, Ltd. NEGATIVE ELECTRODE AND RECHARGEABLE BATTERY WITH IT
CN115004404A (zh) * 2020-01-31 2022-09-02 松下知识产权经营株式会社 电化学元件和其制造方法、以及电化学器件
CN115004404B (zh) * 2020-01-31 2024-05-31 松下知识产权经营株式会社 电化学元件和其制造方法、以及电化学器件
CN117438587A (zh) * 2023-12-19 2024-01-23 深圳市本征方程石墨烯技术股份有限公司 一种硅基负极材料及其制备方法和应用、锂离子电池
CN117438587B (zh) * 2023-12-19 2024-04-16 深圳市本征方程石墨烯技术股份有限公司 一种硅基负极材料及其制备方法和应用、锂离子电池

Also Published As

Publication number Publication date
JP2016066579A (ja) 2016-04-28
JP6572551B2 (ja) 2019-09-11
TW201603368A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
JP6572551B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
KR102324577B1 (ko) 리튬 이온 2 차 전지용 부극 활물질 및 그 제조 방법
JP6432519B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6334195B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP6617403B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP5678414B2 (ja) 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
WO2015146864A1 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP6759527B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP6476814B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
WO2016125819A1 (ja) リチウム二次電池用複合活物質およびその製造方法
JP7293645B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2018029049A (ja) シリコン系リチウム二次電池用複合活物質およびその製造方法
JP2018170246A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
JP6451071B2 (ja) リチウムイオン2次電池用カーボンシリコン系負極活物質およびその製造方法
JP2017183113A (ja) リチウムイオン二次電池用複合活物質およびその製造方法
JP6746906B2 (ja) シリコン系粒子およびそれを含むリチウムイオン二次電池用負極活物質並びにそれらの製造方法
JP2014060168A (ja) 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP6739142B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2018170247A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2016178008A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP7400532B2 (ja) 複合炭素材およびその製造方法、リチウムイオン二次電池用負極活物質並びにリチウムイオン二次電池
JP6705122B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2015185445A (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751826

Country of ref document: EP

Kind code of ref document: A1