WO2015125677A1 - Transparent conductor - Google Patents

Transparent conductor Download PDF

Info

Publication number
WO2015125677A1
WO2015125677A1 PCT/JP2015/053731 JP2015053731W WO2015125677A1 WO 2015125677 A1 WO2015125677 A1 WO 2015125677A1 JP 2015053731 W JP2015053731 W JP 2015053731W WO 2015125677 A1 WO2015125677 A1 WO 2015125677A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
refractive index
high refractive
transparent conductor
Prior art date
Application number
PCT/JP2015/053731
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
仁一 粕谷
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016504057A priority Critical patent/JPWO2015125677A1/en
Publication of WO2015125677A1 publication Critical patent/WO2015125677A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductor having a transparent metal layer, and more particularly to a transparent conductor excellent in light transmittance, moisture resistance and electrical connectivity.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having high light transmittance is often used.
  • the surface electrical resistance of the transparent conductive film is further lowered, and specifically, a resistance value of 100 ⁇ / ⁇ or less is strongly demanded.
  • the ITO film that has been widely used conventionally has a resistance value of only about 150 ⁇ / ⁇ , which is insufficient for the above demand.
  • Japanese Patent Application Laid-Open Nos. 2011-138628 and 2011-171292 disclose a method for manufacturing a conductive element to which a silver mesh is applied.
  • the mesh diameter is about 20 ⁇ m, it can be visually recognized by human eyes, so that it is difficult to apply to a touch panel display device or the like.
  • silver nanowires that are commercially available from some manufacturers have a minute size that is invisible to the naked eye and expresses electrical conductivity within the film, but the sheet resistance is about 60 ⁇ / ⁇ . The quality required for current touch panel display devices and the like was insufficient.
  • the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process.
  • stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency.
  • the conductive film having such characteristics is difficult to apply to flexible touch panels and curved members that are expected to be put to practical use in the near future.
  • Patent Document 1 a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied in recent years (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver thin film is formed by sputtering, a metal film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium zinc oxide), ICO A transparent conductive film having a structure sandwiched between (indium cerium oxide) and a-GIO (a film of an amorphous oxide made of gallium, indium, and oxygen) has also been proposed (for example, Patent Documents 2 to 4, Non-Patent Documents (See Patent Document 3.) Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 1 and 2).
  • a metal film having a high refractive index for example, niobium oxide (
  • Patent Documents 2 to 4 and Non-Patent Documents 1 to 3 for example, ITO / silver thin film / ITO, ZnO / silver thin film / ZnO, ICO / silver thin film / ICO, Nb 2 O 5 /
  • the transparent conductors produced by sputtering such as silver thin film / IZO and zinc sulfide / silver thin film / zinc sulfide, have the following problems.
  • a transparent conductor having a structure in which a silver thin film layer is sandwiched between metal oxide layers such as niobium oxide and IZO has insufficient moisture resistance.
  • metal oxide layers such as niobium oxide and IZO
  • the compatibility between the sandwiched metal oxide and silver is poor, and when the silver film is thinned, plasmon absorption increases or illegal absorption increases in the silver thin film due to an oxidizing atmosphere.
  • the zinc sulfide layer becomes an insulator, it cannot be electrically connected to the silver thin film through the zinc sulfide layer, which hinders the production of patterned electrodes such as a touch panel.
  • the present invention has been made in view of the above-mentioned problems, and a problem to be solved is to provide a transparent conductor excellent in light transmittance, moisture resistance and electrical connectivity.
  • the present inventor has provided an intermediate layer containing zinc sulfide on at least one side adjacent to the silver thin film layer, and the intermediate layer is on the second high refractive index layer side.
  • the present inventors have found that the problem can be solved by forming a thin layer having a specific thickness at a certain time and further imparting a high refractive index and conductivity to the second high refractive index layer.
  • a transparent substrate a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index and conductivity higher than the refractive index of the transparent substrate.
  • the second high refractive index layer has a transparent conductor laminated in this order, and zinc sulfide is contained in at least one of the transparent metal layer and the first or second high refractive index layer.
  • a transparent conductor, wherein the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided and the intermediate layer is provided between the transparent metal layer and the second high refractive index layer.
  • the anti-sulfurization layer containing at least one of metal oxide, metal fluoride, metal nitride, or zinc is further provided between the intermediate layer containing zinc sulfide and the transparent metal layer.
  • the transparent conductor according to item.
  • the second high refractive index layer has a transparent conductor laminated in this order, and zinc sulfide is contained in at least one of the transparent metal layer and the first or second high refractive index layer.
  • the presence of abundant zinc sulfide in the vicinity of the transparent metal layer containing silver as a main component makes it possible to grip silver atoms and prevent silver atoms from migrating. As a result, a uniform silver thin film layer can be formed with an extremely thin film of 10 nm or less. Thereby, silver plasmon absorption can be reduced.
  • Zinc sulfide has a good barrier property, and can improve the moisture resistance of a transparent metal layer (silver thin film layer) made of Ag, for example.
  • a transparent metal layer silver thin film layer
  • the zinc sulfide layer becomes an insulator, it cannot be electrically connected to the silver thin film layer via the zinc sulfide layer.
  • silver is easily sulfided by zinc sulfide, which has been an obstacle for increasing light transmittance. For this reason, there was a problem in applying to patterned electrodes such as a touch panel.
  • An intermediate layer containing zinc sulfide is provided on at least one side adjacent to the silver thin film layer, and when the intermediate layer is on the second high refractive index layer side, a thin layer having a specific thickness is formed.
  • the refractive index layer With a high refractive index and conductivity, the electrical connection between the external terminal and the silver thin film layer can be improved even through the second high refractive index layer and the intermediate layer, and it has low resistance and moisture resistance. It is considered that a transparent conductor having excellent properties can be obtained.
  • Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention
  • the schematic diagram which shows an example of the pattern which consists of a conduction
  • the perspective view which shows an example of a structure of the touchscreen provided with the transparent conductor which has an electrode pattern.
  • the transparent conductor of the present invention includes a transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index of the transparent substrate.
  • a second high refractive index layer having a higher refractive index and conductivity is a transparent conductor laminated in this order, between the transparent metal layer and the first or second high refractive index layer.
  • At least one has an intermediate layer containing zinc sulfide, and the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided between the transparent metal layer and the second high refractive index layer.
  • a metal oxide between the intermediate layer containing zinc sulfide and the transparent metal layer, It is preferable to further have an antisulfurization layer containing at least one of metal fluoride, metal nitride, or zinc.
  • an intermediate layer containing zinc sulfide between the transparent metal layer and the first high refractive index layer in order to obtain a thin transparent metal layer with improved moisture resistance and less plasmon absorption.
  • an intermediate layer containing zinc sulfide between both the transparent metal layer and the first and second high refractive index layers in order to further improve moisture resistance.
  • the transparent metal layer is preferably formed in a pattern.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • ⁇ Basic structure of transparent conductor ⁇ 1A to 1C are schematic cross-sectional views showing an example of the configuration of the transparent conductor of the present invention.
  • the transparent conductor 1 of the present invention comprises a transparent substrate 2 on which a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B are laminated in this order.
  • an intermediate layer containing zinc sulfide hereinafter also referred to as ZnS
  • ZnS zinc sulfide
  • a first intermediate layer 5A is provided between the transparent metal layer 4 and the first high refractive index layer 3A.
  • the intermediate layer 5A containing zinc sulfide when the intermediate layer 5A containing zinc sulfide is provided adjacent to the transparent metal layer 4, the silver atom in the transparent metal 4 and the sulfur atom of ZnS have a high affinity, so that the migration of silver atoms is suppressed.
  • a uniform transparent metal layer 4 can be obtained with a thin film. And since this silver thin film is stable, it is excellent also in moisture resistance.
  • a second intermediate layer 5B is also provided between the transparent metal layer 4 and the second high refractive index layer 3B.
  • the moisture resistance is further improved.
  • the layer containing ZnS since the layer containing ZnS is thin, it can be electrically connected to the transparent metal layer through the second high refractive index layer and the second intermediate layer.
  • an antisulfurization layer 6A is further provided between the first intermediate layer 5A and the transparent metal layer 4.
  • an antisulfurization layer 6A is further provided between the first intermediate layer 5A and the transparent metal layer 4.
  • the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C.
  • the transparent electrode unit EU composed of the layer 3A, the intermediate layer 5A, the transparent metal layer 4, and the second high refractive index layer 3B may be patterned into a desired shape.
  • the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b that does not have the transparent electrode unit EU is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
  • the transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a first intermediate layer 5A, a transparent metal layer 4, a second intermediate layer 5B, a second high refractive index layer 3B, and a sulfide.
  • a known functional layer may be provided as necessary.
  • the layers included in the transparent conductor 1 of the present invention are preferably layers made of an inorganic material except for the transparent substrate 2. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 3B, the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
  • the transparent conductor of the present invention includes a transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index of the transparent substrate.
  • a second high refractive index layer having a higher refractive index and conductivity is a transparent conductor laminated in this order, between the transparent metal layer and the first or second high refractive index layer.
  • At least one has an intermediate layer containing zinc sulfide, and the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided between the transparent metal layer and the second high refractive index layer.
  • the intermediate layers 5A and 5B are provided between the first high refractive index layer 3A and the transparent metal layer 4 or between the second high refractive index layer 3B and the transparent metal layer 4. It is. Further, an antisulfurization layer 6 can be provided between the intermediate layer 5 and the transparent metal layer 4.
  • Transparent substrate As the transparent substrate 2 applicable to the transparent conductor 1 of the present invention, materials applied to transparent substrates of various display devices can be used.
  • the transparent substrate 2 is a glass substrate, cellulose ester resin (for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Limited)).
  • cellulose ester resin for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.
  • polycarbonate resin for example, Panlite, Multilon (above, manufactured by Teijin Limited
  • Cycloolefin resins for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex) (Manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN)), polyether Sulfone resin, acrylonitrile / butadiene / styrene resin (abbreviation: ABS resin) / acrylonitrile / styrene resin (abbreviation: AS resin), methyl methacrylate / butad
  • the transparent substrate 2 applied to the present invention includes a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, and cycloolefin resin.
  • Resin such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin
  • a film composed of the components is preferred.
  • the transparent substrate 2 preferably has a high light transmittance with respect to visible light.
  • the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably.
  • the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2.
  • the average absorptance is measured by measuring the average reflectance of the transparent substrate 2 by making light incident from the same angle as the average transmittance.
  • Average absorptance (%) 100 ⁇ (average transmittance + average reflectance) (%) Calculate as The average transmittance and the average reflectance can be measured using a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ⁇ 1.70.
  • the refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2.
  • the refractive index of the transparent substrate 2 can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
  • the haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5%, more preferably in the range of 0.1 to 1.2%.
  • the haze value of the transparent substrate is 2.5% or less, the haze value as the transparent conductor can be suppressed, which is preferable.
  • the haze value can be measured using a haze meter.
  • the thickness of the transparent substrate 2 is preferably in the range of 1 ⁇ m to 20 mm, more preferably in the range of 10 ⁇ m to 2 mm. If the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
  • the transparent substrate 2 to be used is formed after removing the moisture contained in the substrate and the remaining solvent by using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
  • a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of obtaining the smoothness of the first high refractive index layer formed thereafter.
  • the transparent conductor of the present invention has a first high refractive index layer and a second high refractive index layer, the first high refractive index layer closer to the transparent substrate and the second high refractive index layer farther away.
  • the first high refractive index layer 3 ⁇ / b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a.
  • the first high refractive index layer 3A may also be formed in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern made up of the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
  • the first high refractive index layer 3 ⁇ / b> A has a refractive index higher than that of the transparent substrate 2.
  • the first high refractive index layer 3A preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate, and is larger by 0.4 to 1.0. It is more preferable.
  • the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer is preferably larger than 1.5, and is 1.7 to 2.5. Is more preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer.
  • the refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 3A may be a metal oxide having the above refractive index.
  • the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7.
  • the first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • the second high refractive index layer 3B has a refractive index higher than the refractive index of the transparent substrate 2 like the first high refractive index layer 3A.
  • the second high refractive index layer includes a material having a refractive index higher than that of the transparent substrate 2 described above.
  • the refractive index of light having a wavelength of 570 nm of the material is preferably 0.1 to 1.1, and more preferably 0.4 to 1.0 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate.
  • the specific refractive index of light having a wavelength of 570 nm of the material contained in the second high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably.
  • the refractive index of the material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the second high refractive index layer.
  • the refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
  • the second high-refractive index layer 3B is a layer that also has conductivity in order to ensure electrical connectivity.
  • a material having a specific resistance of 1000 ⁇ ⁇ cm or less is preferable. More preferably, it is 0.1 ⁇ ⁇ cm or less.
  • the material included in the second high refractive index layer preferably includes an oxide semiconductor material among the materials included in the first high refractive index layer. Of these, metal oxides are preferable.
  • the first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • the thickness of the first high refractive index layer 3A and the second high refractive index layer 3B is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm.
  • the thickness of these high refractive index layers is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the high refractive index layer.
  • the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the region including the high refractive index layer is unlikely to decrease.
  • the thickness of the high refractive index layer is measured with an ellipsometer.
  • the high refractive index layer is preferably formed by vapor deposition or sputtering.
  • Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • a vapor deposition apparatus for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used.
  • Sputtering methods include magnetron sputtering and counter sputtering.
  • the patterning method is not particularly limited.
  • the high refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed. It may be a layer patterned by a lithography method.
  • ⁇ Middle layer ⁇ In this invention, it has an intermediate
  • the silver atoms constituting the transparent metal layer have an affinity with the silver atoms contained in the intermediate layer. It interacts with the sulfur atoms of zinc sulfide, reducing the diffusion distance of silver atoms on the surface of the intermediate layer, and suppressing the aggregation of silver at specific locations.
  • the silver atoms first form a two-dimensional nucleus on the surface of the intermediate layer containing silver atoms and zinc sulfide, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus (Frank-van).
  • the film is formed by the film growth of der Merwe (FM type).
  • an island-shaped growth type (Volume-Weber) in which silver atoms attached on the surface of the intermediate layer are bonded while diffusing the surface to form a three-dimensional nucleus and grow into a three-dimensional island shape. : VW type), it is considered that the film is easily formed into an island shape, but in the present invention, the zinc sulfide contained in the intermediate layer prevents the island-like growth in this manner, and the layer growth Is presumed to be promoted.
  • a conductive layer having a uniform film thickness can be obtained even though the film thickness is small. Therefore, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs. As a result, it is possible to obtain a transparent conductor in which conductivity is ensured while maintaining light transmittance with a thinner film thickness.
  • the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, silver corrosion is prevented and the moisture resistance of the transparent conductor can be improved. It is done.
  • FIG. 3 is an example showing the relationship between the thickness of the silver thin film layer and light absorption.
  • 6 is a graph showing the relationship between the thickness of a silver thin film layer and the average light absorption of visible light (400 to 800 nm) when silver is deposited on a thin layer of glass, ITO and zinc sulfide to form a silver thin film layer.
  • visible light 400 to 800 nm
  • the absorption of silver can be reduced more than when silver is deposited on glass or ITO.
  • the intermediate layer can be provided on at least one of the transparent metal layer and the first or second high-refractive index layer, thereby exhibiting the effects of the present invention.
  • an intermediate layer containing zinc sulfide is provided between the transparent metal layer and the first high refractive index layer, and more preferably, the transparent metal layer, the first and second high refractive index layers, And having an intermediate layer containing zinc sulfide.
  • the average content of zinc sulfide is preferably 50% or more, more preferably in the range of 70 to 100% with respect to the total number of moles of the material constituting the intermediate layer.
  • the ratio of ZnS is high, the refractive index increases, and Ag absorption can be reduced.
  • the amorphousness of the first high refractive index layer 3A is increased, and the occurrence of cracks in the first high refractive index layer 3A is suppressed.
  • metal oxide examples include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4.
  • metal fluoride which can be used in conjunction with zinc sulfide, LaF 3, BaF 2, Na 5 Al 3 F 14, Na 3 AlF 6, AlF 3, MgF 2, CaF 2, BaF 2, CeF 3, NdF 3 , YF 3 and the like.
  • examples of the metal nitride that can be used together with zinc sulfide include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
  • the thickness of the intermediate layer may be at least 0.1 nm or more on either side.
  • the intermediate layer is preferably 1 nm or more. More preferably, it is in the range of 5 to 20 nm.
  • the thickness of the intermediate layer is 15 nm or less. Preferably, it is in the range of 1 to 12 nm. More preferably, it is in the range of 5 to 10 nm. If the thickness of the intermediate layer is greater than 15 nm, the conductivity of the intermediate layer is lowered, and sufficient electrical connectivity between the external terminal and the silver thin film layer is achieved even through the second intermediate layer and the second high refractive index layer. Can't get.
  • the intermediate layer is preferably formed by vapor deposition or sputtering.
  • Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • a vapor deposition apparatus for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used.
  • Sputtering methods include magnetron sputtering and counter sputtering.
  • the transparent conductor of the present invention has an antisulfurization layer containing at least one of a metal oxide, a metal fluoride, a metal nitride, or zinc between the intermediate layer containing zinc and the transparent metal layer. Is preferred.
  • the one closer to the transparent substrate is referred to as a first sulfidation prevention layer, and the one far from the transparent substrate is referred to as a second sulfidation prevention layer.
  • the metal in the transparent metal layer is sulfided during the formation of the transparent metal layer 4 or the second intermediate layer 5B.
  • Metal sulfide may be generated, and the light transmittance of the transparent conductor may be reduced.
  • a sulfidation prevention layer is included between the first intermediate layer 5A and the transparent metal layer 4 or between the transparent metal layer 4 and the second intermediate layer 5B, the formation of metal sulfide is suppressed.
  • the sulfidation preventing layer may be a metal oxide, metal nitride, metal fluoride, or a layer containing zinc or zinc. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
  • metal fluorides examples include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the sulfidation preventing layer is not particularly limited as long as the transparent metal layer 4 can be prevented from being sulfided when the transparent metal layer 4 is formed or when the second intermediate layer 5B is formed.
  • ZnS contained in the first intermediate layer 5 ⁇ / b> A and the second intermediate layer 5 ⁇ / b> B has a high affinity with the metal contained in the transparent metal layer 4. Therefore, when the thickness of the sulfidation preventing layer is very thin, a portion where the transparent metal layer 4 and the first intermediate layer 5A or the transparent metal layer 4 and the second intermediate layer 5B are in contact with each other is generated, and the adhesion between the layers is increased. Cheap.
  • the antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 nm to 3 nm.
  • the thickness of the sulfidation prevention layer is measured with an ellipsometer.
  • an antisulfurization layer containing Zn or Ga metal is preferable because it does not deteriorate moisture resistance and has strong interaction with Ag.
  • the anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and patterned by a known etching method. It may be a layer formed.
  • the transparent metal layer 4 containing silver as a main component is a layer for conducting electricity in the transparent conductor 1.
  • the transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, or may be patterned into a desired shape as shown in FIG.
  • “containing silver as a main component” means that the silver content in the transparent metal layer is 60 atomic% or more.
  • the silver content is 90 atomic% or more from the viewpoint of conductivity, more preferably 95 atomic% or more, and the transparent electrode is preferably made of only silver.
  • the metal used in combination with silver in the transparent metal layer can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum or the like.
  • the sulfide resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
  • platinum palladium is formed at a thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON.
  • the average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus.
  • a layer made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
  • the thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm.
  • the transparent conductor 1 when the thickness of the transparent metal layer 4 is 10 nm or less, the original reflection of metal hardly occurs in the transparent metal layer 4. Furthermore, when the thickness of the transparent metal layer 4 is 10 nm or less, the optical admittance of the transparent conductor 1 is easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a The reflection of light is easy to be suppressed.
  • the thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
  • the transparent metal layer 4 may be a layer formed by any forming method, but is preferably a layer formed by a vacuum evaporation method or a sputtering method.
  • the formation speed of the transparent metal layer containing silver as a main component Is preferably 0.3 nm / second or more.
  • the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second.
  • the temperature during film formation is preferably within the range of ⁇ 25 to 65 ° C.
  • the counter sputtering method is preferable because the smoothness of Ag is improved and transparency and conductivity are improved.
  • the patterning method is not particularly limited.
  • the transparent metal layer 4 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
  • the transparent conductor 1 of the present invention has a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 3B. It may be.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
  • the refractive index of light is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B.
  • Dielectric materials or oxide semiconductor materials are included.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B.
  • the refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 81% or more, more preferably 84% or more, and still more preferably 87% in both the conduction region a and the insulation region b. That's it.
  • the transparent conductor is also used in applications requiring light transmittance with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light with a wavelength of 450 to 800 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptivity, and average reflectance measured in the environment where the transparent conductor is used. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance (%) is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the first high refractive index layer, the intermediate layer, the transparent metal layer, and the second high refractive index layer are formed in this order on the transparent substrate 2 by the method described above. It is preferable to form a metal pattern electrode by patterning the transparent metal layer into a predetermined shape after being manufactured by laminating, and specifically, using an etching solution by a photolithography method, for example, in FIG. It is preferable to form an electrode pattern as shown.
  • the line width of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the transparent metal layer is processed into a desired pattern.
  • a conventionally known general photolithography method can be used as appropriate.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a transparent metal layer. Remove. After etching, the remaining resist is removed to obtain a transparent electrode having an intended pattern.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
  • FIG. 4 is a process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
  • the first high refractive index layer 3A, the first intermediate layer 5A, the transparent metal layer 4, the second intermediate layer 5B, the second The transparent conductor 1 in which the high refractive index layer 3B is laminated in this order is produced.
  • the transparent conductor 1 it is preferable to subject the transparent conductor 1 to ultrasonic cleaning before forming the resist film in FIG.
  • ultrasonic cleaning for example, ultrasonic cleaning and water washing with pure water are performed several times using a detergent clean 3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
  • a resist film 7 made of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • the resist for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • a coating method it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
  • the resist film 7A to be removed in the next step is irradiated with light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductor is immersed in a developer to dissolve the resist film 7A in the region irradiated with light.
  • a developer for positive photoresist “Tokuso SD” series (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation should be used. Can do.
  • the developing method it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline.
  • a solution containing an inorganic acid or an organic acid is preferable, and formic acid, acetic acid, oxalic acid, citric acid, hydrochloric acid, phosphoric acid, and the like can be mentioned.
  • oxalic acid, acetic acid Phosphoric acid is preferred.
  • Commercially available products can also be used as the etchant, for example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and “Mixed liquid SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
  • the transparent conductor 1 having the resist film 7 is immersed in an etching solution containing an organic acid or the like, and the electrode unit EU in the insulating region b that is not protected by the resist film 7 is dissolved.
  • the electrode unit EU of the conductive region a protected by 7 is formed as a predetermined electrode pattern.
  • the etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
  • the resist film remover was etched using, for example, acetone, sodium hydroxide solution, and commercially available N-300 manufactured by Nagase ChemteX Corporation.
  • the transparent conductor can be immersed, the resist film 7 can be removed, and a transparent conductor having an electrode pattern can be produced.
  • the transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer are approximated respectively. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • FIG. 5 is a perspective view illustrating an example of a configuration of a touch panel including a transparent conductor having an electrode pattern.
  • the touch panel 21 shown in FIG. 5 is a projected capacitive touch panel.
  • a first transparent electrode unit EU-1 and a second transparent electrode unit EU-2 are arranged in this order on one main surface of the transparent substrates 2-1 and 2-2. Covered with a face plate 13.
  • the first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are the transparent conductors 1 on which the electrode patterns described with reference to FIGS. 2 and 4 are formed, respectively. Accordingly, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first intermediate layer 5A, the transparent metal layer 4, the second intermediate layer 5B, and the second high refractive index on the transparent substrate 2-1. It is the structure which laminated
  • the second transparent electrode unit EU-2 has the same configuration.
  • the first intermediate layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high refractive index layer (ITO) were laminated in this order.
  • the thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • ITO first high refractive index layer
  • PET transparent substrate
  • Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, and layer thickness ITO was RF sputtered to a thickness of 30.0 nm.
  • the target-substrate distance was 86 mm.
  • the volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
  • the transparent conductors 2 and 3 were prepared in the same manner as in the production of the transparent conductor 1 by changing the layer thicknesses of the first high refractive index layer and the first intermediate layer as shown in Table 1. Produced. The layer thickness was adjusted by adjusting the sputtering time.
  • ITO first high refractive index layer
  • PET transparent substrate
  • L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness 40 ITO was RF sputtered to a thickness of 0.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 35 ° C., and formation rate 2.0 nm / s. Then, Ag was RF-sputtered so that the layer thickness became 7.0 nm. The target-substrate distance was 86 mm.
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature, and formation rate of 0.15 nm / nm using an Anelva L-430S-FHS sputtering apparatus.
  • ZnS—SiO 2 was RF sputtered to a layer thickness of 10.0 nm under the condition that the volume ratio of ZnS to SiO 2 was 80:20.
  • the target-substrate distance was 86 mm.
  • the PET film on which the transparent metal layer was formed was formed on the transparent substrate using an L-430S-FHS sputtering apparatus manufactured by Anerva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0 ITO was RF sputtered at 0.03 nm / second so that the layer thickness was 31.0 nm.
  • the target-substrate distance was 86 mm.
  • the transparent conductor 4 was produced.
  • first intermediate layer (Preparation of first intermediate layer (ZnS-SiO 2 ))
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, film formation rate 0.15 nm using an Anelva L-430S-FHS sputtering apparatus.
  • ZnS—SiO 2 was RF sputtered at / s under the condition that the volume ratio of ZnS to SiO 2 would be 80:20.
  • the target-substrate distance was 86 mm.
  • the PET film on which the first intermediate layer was formed was made of Agnel L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 15 ° C., and formation rate 1.5 nm / s.
  • RF sputtering was performed to a thickness of 7.0 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (ZnO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • ZnO was RF sputtered to have a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • ZnS—SiO 2 (Formation of second intermediate layer (ZnS—SiO 2 ))
  • L-430S-FHS manufactured by Anerva Co. is used on the PET film on which the second antisulfurization layer is formed, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s.
  • ZnS—SiO 2 was RF sputtered so that the layer thickness was 10.0 nm under the condition that the volume ratio of ZnS to SiO 2 was 80:20.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second intermediate layer was formed was subjected to Ar20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • ITO was RF sputtered to a layer thickness of 30.0 nm.
  • the target-substrate distance was 86 mm.
  • the transparent conductor 5 was produced.
  • GZO first high refractive index layer
  • COP transparent substrate
  • GZO was RF sputtered to 0 nm.
  • the target-substrate distance was 86 mm.
  • first intermediate layer (ZnS) layer (Formation of first intermediate layer (ZnS) layer)
  • the COP film on which the first high-refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.22 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • ZnS was RF sputtered to a layer thickness of 10.0 nm.
  • the target-substrate distance was 86 mm.
  • first antisulfurization layer (GZO)
  • the COP film on which the first intermediate layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.07 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was RF sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 20 ° C., formation rate 2.5 nm / s. Then, Ag was RF-sputtered so that the layer thickness became 7.0 nm. The target-substrate distance was 86 mm.
  • the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.07 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was RF sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the second antisulfation layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.22 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, RF sputtering was performed so that the layer thickness was 10.0 nm. The target-substrate distance was 86 mm.
  • first intermediate layer (ZnS) layer (Formation of first intermediate layer (ZnS) layer)
  • the COP film on which the first high-refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.22 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • RF sputtering was performed so that the layer thickness became 3.0 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the first intermediate layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 30 ° C., formation rate 3.0 nm / s, Ag was RF sputtered to a layer thickness of 7.0 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • Zn0 was RF sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • IGZO second high refractive index layer
  • the COP film on which the second intermediate layer was formed was subjected to Ar20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.05 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • IGZO was RF sputtered so that the layer thickness was 35.0 nm.
  • the target-substrate distance was 86 mm. In this way, a transparent conductor 9 was produced.
  • first intermediate layer ZnS—SnO 2
  • the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, film formation rate 0.04 nm using an Anelva L-430S-FHS sputtering apparatus.
  • ZnS—SnO 2 was RF sputtered at / s under the condition that the volume ratio of ZnS to SnO 2 was 80:20.
  • the target-substrate distance was 86 mm.
  • first antisulfurization layer (ZnO)
  • the COP film on which the first intermediate layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • ZnO was RF sputtered to have a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature ⁇ 15 ° C., formation rate 1.1 nm / s. Then, RF sputtering of Ag was performed so that the layer thickness became 7.5 nm. The target-substrate distance was 86 mm.
  • the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • In 2 O 3 was RF sputtered to have a layer thickness of 40.0 nm.
  • the target-substrate distance was 86 mm.
  • the transparent conductor 10 was produced.
  • first intermediate layer (ZnS) layer (Formation of first intermediate layer (ZnS) layer)
  • ZnS was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat is energized and heated, and vacuum-deposited on the first high refractive index layer of the PC film at a formation speed of 2.7 nm / second to form a first intermediate layer having a layer thickness of 5.0 nm. did.
  • Second high refractive index layer (TiO 2 )
  • the PC film on which the transparent metal layer was formed was fixed to a vacuum deposition apparatus similar to the above, TiO 2 was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa.
  • the heating boat was energized and heated, and vapor-deposited on the PC film at a forming speed of 0.30 nm / second to form a second high refractive index layer having a layer thickness of 40.0 nm, thereby producing a transparent conductor 11. .
  • first intermediate layer (ZnS—ZrO 2 ) layer)
  • the thin glass substrate on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0. Using an Anelva L-430S-FHS sputtering apparatus.
  • ZnS—ZrO 2 was RF sputtered to a layer thickness of 5.0 nm under the condition that the volume ratio of ZnS to ZrO 2 was 80:20.
  • the target-substrate distance was 86 mm.
  • the thin glass on which the first intermediate layer was formed was layered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 5 ° C., and formation rate 1.8 nm / s. Ag was RF-sputtered to a thickness of 6.5 nm. The target-substrate distance was 86 mm.
  • the thin glass on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • Zn0 was RF sputtered to a layer thickness of 40.0 nm.
  • the target-substrate distance was 86 mm.
  • the transparent conductor 12 was produced.
  • a polyethylene terephthalate film with a clear hard coat As a transparent substrate, a polyethylene terephthalate film with a clear hard coat (referred to as PET / CHC film) is used. On this PET / CHC film, a first high refractive index layer (ZnS-containing layer) / transparent metal layer (Ag) / A second conductor for preventing sulfurization (GZO) / second intermediate layer (ZnS-containing layer) / second high-refractive index layer (ITO) was laminated in this order by vapor deposition to produce a transparent conductor 13.
  • ZnS-containing layer transparent metal layer
  • a second conductor for preventing sulfurization (GZO) / second intermediate layer (ZnS-containing layer) / second high-refractive index layer (ITO) was laminated in this order by vapor deposition to produce a transparent conductor 13.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated. ZnS was vapor-deposited on a PET / CHC film (G1SBF: thickness 125 ⁇ m, refractive index 1.59) manufactured by Kimoto Co., Ltd. under the condition of a forming speed of 2.7 nm / second, and the first thickness of 40.0 nm was obtained. A refractive index layer was formed.
  • the PET / CHC film on which the first high refractive index layer was formed was fixed to the above-described vacuum evaporation apparatus, Ag was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 ⁇ 10 ⁇ 4 Pa. . Subsequently, the resistance heating boat is energized and heated, and vacuum-deposited on the first high refractive index layer on the PET / CHC film to form a transparent metal layer having a layer thickness of 7.5 nm at a formation rate of 1.8 nm / second and a temperature of 5 It formed on the film-forming conditions of °C.
  • Second anti-sulfurization layer (GZO) layer Next, the PET / CHC film on which the transparent metal layer was formed was fixed to the above vacuum deposition apparatus, GZO was loaded into a molybdenum resistance heating boat, and the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa. Next, the resistance heating boat is energized and heated, and vacuum-deposited on the transparent metal layer on the PET / CHC film at a forming speed of 0.07 nm / second to form a second antisulfurization layer having a layer thickness of 1.0 nm. Formed.
  • Second intermediate layer (ZnS) layer (Formation of second intermediate layer (ZnS) layer)
  • the PET / CHC film on which the second anti-sulfuration layer was formed was fixed to the above-described vacuum vapor deposition apparatus, ZnS was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat is energized and heated, and vacuum-deposited on the second anti-sulfurization layer on the PET / CHC film at a formation rate of 0.5 nm / second to form a second intermediate layer having a layer thickness of 2.0 nm. Formed.
  • a first high refractive index layer (ITO) / transparent metal layer (APC) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m).
  • first high refractive index layer and second high refractive index layer (Formation of first high refractive index layer and second high refractive index layer (ITO))
  • the first high-refractive index layer and the second high-refractive index layer (ITO) are respectively the same methods as the first high-refractive index layer and the second high-refractive index layer in the production of the transparent conductor 1, but the thickness is As shown in Table 1, the sputtering time was adjusted so as to be 40.0 nm, respectively.
  • first high refractive index layer and second high refractive index layer (ZnS-SiO 2 ))
  • ANELVA of L-430S-FHS sputtering apparatus Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, formation rate at 0.15 nm / s, a ZnS-SiO 2 ZnS and SiO 2 ratio by volume
  • the first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed by RF sputtering so that the layer thickness was 45.0 nm under the condition of 80:20.
  • the target-substrate distance was 86 mm.
  • the produced transparent conductor was subjected to ultrasonic cleaning treatment.
  • An ultrasonic cleaning treatment was performed at 25 ° C. for 4 minutes using a detergent “Clean 30-30 (10%)” manufactured by Kao Corporation as a cleaning solution.
  • a detergent “Clean 30-30 (10%)” manufactured by Kao Corporation as a cleaning solution.
  • ultrasonic washing was performed twice with pure water at 25 ° C. for 4 minutes.
  • water was scattered with a spin coater and then dried in an oven.
  • OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. is applied as a resist on the cleaned transparent conductor by spin coating method and dried at 2000 rpm for 30 seconds to form a resist film (7) having a thickness of 1 ⁇ m. did.
  • ultraviolet rays were irradiated through the mask 8 under conditions of 60 mJ, and developed using a developer for positive photoresist “Tokuso SD-1” (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation as a developer. .
  • Yamaso SD-1 tetramethylammonium hydroxide
  • etching solution “mixed liquid SEA-5” (phosphoric acid: 55% by mass, acetic acid: 30% by mass, water and other components: 15% by mass) manufactured by Kanto Chemical Co., Ltd. was used, as shown in FIG.
  • An electrode pattern comprising an insulating region b having only a transparent substrate and a current-carrying region a having a transparent electrode unit EU was formed.
  • the width of the line-shaped insulating region b was 16 ⁇ m.
  • the remaining resist film 7 was peeled off using acetone to obtain patterned transparent conductors 1 to 15 corresponding to the transparent conductors 1 to 15, respectively.
  • Second high refractive index layer only In order to examine the conductivity of only the second high refractive index layer, only the second high refractive index layer was separately formed on the glass under the same conditions as the second high refractive index layer formed for each of the transparent conductors 1 to 15. .
  • COP cycloolefin polymer PET: polyethylene terephthalate
  • PC polycarbonate
  • ITO indium tin oxide
  • GZO gallium zinc oxide
  • IGZO indium gallium zinc oxide
  • AZO zinc oxide doped with aluminum
  • Corrosion is not observed over the entire area (corrosion number: 0)
  • The number of occurrences of corrosion is 1 or more and less than 5 in the entire area range
  • The number of occurrences of corrosion is 5 or more in the entire area range [Average transmittance] Using the transparent conductor formed in a pattern, the average transmittance in the conduction region was measured according to the following method.
  • the transmittance is measured in consideration of the value obtained by subtracting the reflection (4%) at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere (4%).
  • a value obtained by adding 8% to the value was defined as each average transmittance of the transparent conductor. Based on the above measured values, the following ranking was performed.
  • A tester was applied at a distance of 5 cm, and a resistance value of 200 ⁇ or less was obtained.
  • A tester was applied at a distance of 5 cm, and a resistance value of 200 ⁇ or more was obtained.
  • 1000 A tester was applied at a distance of 5 cm. When the resistance value is 1000 ⁇ or less, it can be used as a touch panel electrode.
  • the specific resistance was calculated from the sheet resistance result obtained by “Loresta EP MCP-T360” using the following relational expression.
  • Table 1 shows the structure of the transparent conductor and the results obtained by the above evaluation.
  • the transparent conductors 1 to 7 and 9 to 13 of the present invention have higher moisture resistance, average transmittance, and electrical conductivity than the comparative transparent conductors 8, 14 and 15. It can be seen that the connectivity is excellent.
  • the transparent conductor of the present invention is excellent in light transmittance, moisture resistance and electrical connectivity, and includes various devices such as touch panel materials, liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, and solar cells. It can be preferably applied to.
  • SYMBOLS 1 Transparent conductor 2, 2-1, 2-2 Transparent substrate 3A 1st high refractive index layer 3B 2nd high refractive index layer 4 Transparent metal layer 5 Intermediate layer 5A 1st intermediate layer 5B 2nd intermediate layer 6 Sulfidation prevention layer 6A First antisulfuration layer 7 Resist film 7A Resist film to be removed 8 Mask 9 Exposure machine 10 Etching solution 13 Front plate 21 Touch panel a Conduction area b Insulation area EU, EU-1, EU-2 Transparent electrode unit

Abstract

The objective of the present invention is to provide a transparent conductor which has excellent light transmittance, moisture resistance and electrical connectivity. A transparent conductor according to the present invention is obtained by sequentially laminating, in the following order, a transparent substrate, a first high-refractive-index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a second high-refractive-index layer having electrical conductivity and a refractive index higher than the refractive index of the transparent substrate. This transparent conductor is characterized by comprising an intermediate layer containing zinc sulfide between the transparent metal layer and the first high-refractive-index layer and/or between the transparent metal layer and the second high-refractive-index layer, and is also characterized in that the thickness of the intermediate layer is 15 nm or less in cases where the intermediate layer is arranged between the transparent metal layer and the second high-refractive-index layer.

Description

透明導電体Transparent conductor
 本発明は、透明金属層を有する透明導電体に関し、更に詳しくは、光透過性、耐湿性及び電気接続性に優れた透明導電体に関する。 The present invention relates to a transparent conductor having a transparent metal layer, and more particularly to a transparent conductor excellent in light transmittance, moisture resistance and electrical connectivity.
 近年、タッチパネル材料、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、太陽電池等の各種装置に、低抵抗な透明導電膜が求められている。 In recent years, low resistance transparent conductive films have been required for various devices such as touch panel materials, liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, and solar cells.
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ここで、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低く、具体的には、100Ω/□以下の抵抗値が強く求められている。しかし、従来、広く用いられているITO膜では、抵抗値としては150Ω/□程度にとどまっており、上記の要望に対しては不十分な特性であった。 In recent years, a capacitive touch panel display device has been developed, and the surface electrical resistance of the transparent conductive film is further lowered, and specifically, a resistance value of 100Ω / □ or less is strongly demanded. However, the ITO film that has been widely used conventionally has a resistance value of only about 150Ω / □, which is insufficient for the above demand.
 このような背景から、近年、ITOに代わる次世代の透明導電膜の開発が盛んになされてきた。 Against this background, the development of next-generation transparent conductive films to replace ITO has been actively carried out in recent years.
 上記課題に対し、例えば、特開2011-138628号公報、特開2011-171292号公報等には、銀メッシュを適用する導電性要素の製造方法が開示されている。しかしながら、これら銀メッシュを用いた方法では、メッシュの径が20μm程度であるため、人間の目で視認できてしまうため、タッチパネル表示装置等への適用は難しいのが現状である。また、一部メーカーより市販されている銀ナノワイヤーでは、肉眼で視認されない程度の微小サイズを有し、膜内での導電性を発現するものの、面抵抗値としては、60Ω/□程度であり、現在のタッチパネル表示装置等で要求されている品質に対しては不十分であった。 In response to the above problems, for example, Japanese Patent Application Laid-Open Nos. 2011-138628 and 2011-171292 disclose a method for manufacturing a conductive element to which a silver mesh is applied. However, in the method using these silver meshes, since the mesh diameter is about 20 μm, it can be visually recognized by human eyes, so that it is difficult to apply to a touch panel display device or the like. In addition, silver nanowires that are commercially available from some manufacturers have a minute size that is invisible to the naked eye and expresses electrical conductivity within the film, but the sheet resistance is about 60Ω / □. The quality required for current touch panel display devices and the like was insufficient.
 そのほかにも、酸化亜鉛等を用いることにより低抵抗化する試みがなされているが、このような方法では、導電膜の膜厚としては、200nm程度まで積層する必要があり、製造過程で形成した導電膜に応力が掛かった際、膜内にクラック等が発生しやすくなるため歩留まりが低下し、生産効率の点で問題を有している。またこのような特性を抱えた導電膜は、近い将来に実用化が予測されているフレキシブルタッチパネルや曲面部材への適用が難しい。 In addition, attempts have been made to reduce the resistance by using zinc oxide or the like, but in such a method, the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process. When stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency. In addition, the conductive film having such characteristics is difficult to apply to flexible touch panels and curved members that are expected to be put to practical use in the near future.
 上記問題を踏まえ、近年、銀の蒸着膜を透明導電膜として適用する方法が、盛んに検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、銀薄膜を、スパッタ法により形成した屈折率の高い金属膜(例えば、酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウムセリウムオキサイド)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物等の膜)で挟持する構成の透明導電膜も提案されている(例えば、特許文献2~4、非特許文献3参照。)。さらに、銀薄膜を硫化亜鉛膜で挟み込む方法も提案されている(例えば、非特許文献1及び2参照)。 In view of the above problems, a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied in recent years (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver thin film is formed by sputtering, a metal film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium zinc oxide), ICO A transparent conductive film having a structure sandwiched between (indium cerium oxide) and a-GIO (a film of an amorphous oxide made of gallium, indium, and oxygen) has also been proposed (for example, Patent Documents 2 to 4, Non-Patent Documents (See Patent Document 3.) Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 1 and 2).
 しかしながら、特許文献2~4や非特許文献1~3で開示されているような、例えば、ITO/銀薄膜/ITO、ZnO/銀薄膜/ZnO、ICO/銀薄膜/ICO、Nb/銀薄膜/IZO、硫化亜鉛/銀薄膜/硫化亜鉛というような構成を、スパッタ法により作製した透明導電体では、下記のような問題を抱えていた。 However, as disclosed in Patent Documents 2 to 4 and Non-Patent Documents 1 to 3, for example, ITO / silver thin film / ITO, ZnO / silver thin film / ZnO, ICO / silver thin film / ICO, Nb 2 O 5 / The transparent conductors produced by sputtering, such as silver thin film / IZO and zinc sulfide / silver thin film / zinc sulfide, have the following problems.
 すなわち、
 1)酸化ニオブやIZO等の金属酸化物層で銀薄膜層を挟み込んだ構成の透明導電体では、耐湿性が十分でなかった。その結果、湿度環境下で透明導電体を使用すると、形成した銀薄膜が腐食しやすい。
That is,
1) A transparent conductor having a structure in which a silver thin film layer is sandwiched between metal oxide layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when a transparent conductor is used in a humidity environment, the formed silver thin film tends to corrode.
 2)また、挟持する金属酸化物と、銀との相性が悪く、銀膜を薄膜化すると、プラズモン吸収が増加したり、酸化性雰囲気により銀薄膜に不正な吸収が増加する。
といった問題があり、一方、
 3)銀薄膜が硫化亜鉛層に挟持された構成の透明導電体では、透明導電体の耐湿性は十分高いものの、銀薄膜層の形成時、又は硫化亜鉛層の形成時に、銀が硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなる。
2) In addition, the compatibility between the sandwiched metal oxide and silver is poor, and when the silver film is thinned, plasmon absorption increases or illegal absorption increases in the silver thin film due to an oxidizing atmosphere.
On the other hand,
3) With a transparent conductor having a silver thin film sandwiched between zinc sulfide layers, the moisture resistance of the transparent conductor is sufficiently high, but silver is sulfided when the silver thin film layer is formed or when the zinc sulfide layer is formed. Silver sulfide is likely to occur. As a result, the light transmittance of the transparent conductor is lowered.
 4)また、硫化亜鉛層が絶縁体となるため、硫化亜鉛層を介して銀薄膜に電気接続することができないため、タッチパネル等のパターン化された電極の作製に支障となる。 4) In addition, since the zinc sulfide layer becomes an insulator, it cannot be electrically connected to the silver thin film through the zinc sulfide layer, which hinders the production of patterned electrodes such as a touch panel.
 等の様々な問題を抱えていた。 I had various problems such as.
 したがって、上記のような問題を克服し、光透過性、耐湿性及び電気接続性に優れた透明導電体の開発が、要望されている。 Therefore, there is a demand for the development of a transparent conductor that overcomes the above-described problems and is excellent in light transmittance, moisture resistance, and electrical connectivity.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-015623号公報JP 2002-015623 A 特開2008-226581号公報JP 2008-226581 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、光透過性、耐湿性及び電気接続性に優れた透明導電体を提供することである。 The present invention has been made in view of the above-mentioned problems, and a problem to be solved is to provide a transparent conductor excellent in light transmittance, moisture resistance and electrical connectivity.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、硫化亜鉛を含有する中間層を、少なくとも銀薄膜層に隣接する一方の側に設け、かつ中間層が第2高屈折率層側にあるとき特定の厚さの薄い層とし、さらに第2高屈折率層に高い屈折率と導電性を持たせることにより課題を解決できることを見いだし本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor has provided an intermediate layer containing zinc sulfide on at least one side adjacent to the silver thin film layer, and the intermediate layer is on the second high refractive index layer side. The present inventors have found that the problem can be solved by forming a thin layer having a specific thickness at a certain time and further imparting a high refractive index and conductivity to the second high refractive index layer.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.透明基板と、前記透明基板の屈折率より高い屈折率を有する第1高屈折率層と、銀を主成分として含有する透明金属層と、前記透明基板の屈折率より高い屈折率と導電性を有する第2高屈折率層とが、この順に積層された透明導電体であって、前記透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有し、かつ前記透明金属層と前記第2高屈折率層との間に中間層を有するとき中間層の厚さが15nm以下であることを特徴とする透明導電体。 1. A transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index and conductivity higher than the refractive index of the transparent substrate. The second high refractive index layer has a transparent conductor laminated in this order, and zinc sulfide is contained in at least one of the transparent metal layer and the first or second high refractive index layer. A transparent conductor, wherein the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided and the intermediate layer is provided between the transparent metal layer and the second high refractive index layer.
 2.前記硫化亜鉛を含有した中間層と前記透明金属層との間に、金属酸化物、金属フッ化物、金属窒化物又は亜鉛の少なくともいずれかを含む硫化防止層をさらに有することを特徴とする第1項に記載の透明導電体。 2. The anti-sulfurization layer containing at least one of metal oxide, metal fluoride, metal nitride, or zinc is further provided between the intermediate layer containing zinc sulfide and the transparent metal layer. The transparent conductor according to item.
 3.前記透明金属層と、前記第1高屈折率層との間に、硫化亜鉛を含有した中間層を有することを特徴とする第1項又は第2項に記載の透明導電体。 3. 3. The transparent conductor according to item 1 or 2, wherein an intermediate layer containing zinc sulfide is provided between the transparent metal layer and the first high refractive index layer.
 4.前記透明金属層と前記第1及び第2高屈折率層との間の両方に、硫化亜鉛を含有した中間層を有することを特徴とする第1項又は第2項に記載の透明導電体。 Four. 3. The transparent conductor according to claim 1 or 2, wherein an intermediate layer containing zinc sulfide is provided between the transparent metal layer and the first and second high refractive index layers.
 5.前記透明金属層が、パターン状に形成されていることを特徴とする第1項から第4項までのいずれか一項に記載の透明導電体。 5. The transparent conductor according to any one of Items 1 to 4, wherein the transparent metal layer is formed in a pattern.
 本発明の上記手段により、光透過性、耐湿性及び電気接続性に優れた透明導電体を提供することができる。 By the above means of the present invention, it is possible to provide a transparent conductor excellent in light transmittance, moisture resistance and electrical connectivity.
 本発明の上記課題を解決することができた発現機構・作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism / action mechanism that has solved the above-mentioned problems of the present invention is not clear, but is presumed as follows.
 本発明の透明導電体においては、第1高屈折率層と、銀を主成分として含有する透明金属層と、前記透明基板の屈折率より高い屈折率を有する第2高屈折率と導電性を有する第2高屈折率層とが、この順に積層された透明導電体であって、前記透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有し、かつ前記透明金属層と前記第2高屈折率層との間に中間層を有するとき中間層の厚さが15nm以下であることを特徴としている。 In the transparent conductor of the present invention, the first high refractive index layer, the transparent metal layer containing silver as a main component, the second high refractive index and conductivity having a refractive index higher than the refractive index of the transparent substrate. The second high refractive index layer has a transparent conductor laminated in this order, and zinc sulfide is contained in at least one of the transparent metal layer and the first or second high refractive index layer. When the intermediate layer is provided and an intermediate layer is provided between the transparent metal layer and the second high refractive index layer, the thickness of the intermediate layer is 15 nm or less.
 銀を主成分として含有する透明金属層近傍に、硫化亜鉛が豊富に存在することにより、銀原子をグリップし、銀原子のマイグレーション(移動)を防止することができる。その結果、10nm以下という極めて薄膜で均一な銀薄膜層を形成することができる。これにより、銀のプラズモン吸収を低減することができる。 The presence of abundant zinc sulfide in the vicinity of the transparent metal layer containing silver as a main component makes it possible to grip silver atoms and prevent silver atoms from migrating. As a result, a uniform silver thin film layer can be formed with an extremely thin film of 10 nm or less. Thereby, silver plasmon absorption can be reduced.
 また、硫化亜鉛は良好なバリア性を有しており、例えば、Agから構成されている透明金属層(銀薄膜層)の耐湿性を向上させることができる。しかし、硫化亜鉛層が絶縁体となるため、硫化亜鉛層を介して銀薄膜層に電気接続することができなかった。また、硫化亜鉛により銀が硫化されやすく、光透過性をより高くするための障害となっていた。このためタッチパネル等のパターン化された電極に適用するには支障があった。硫化亜鉛を含有する中間層を、少なくとも銀薄膜層に隣接する一方の側に設け、かつ中間層が第2高屈折率層側にあるとき特定の厚さの薄い層とし、さらに第2高屈折率層に高い屈折率と導電性を持たせることで、第2高屈折率層及び中間層を介しても外部端子と銀薄膜層との電気接続性を向上させることができ、低抵抗かつ耐湿性も優れた透明導電体が得られるものと考えられる。 Zinc sulfide has a good barrier property, and can improve the moisture resistance of a transparent metal layer (silver thin film layer) made of Ag, for example. However, since the zinc sulfide layer becomes an insulator, it cannot be electrically connected to the silver thin film layer via the zinc sulfide layer. In addition, silver is easily sulfided by zinc sulfide, which has been an obstacle for increasing light transmittance. For this reason, there was a problem in applying to patterned electrodes such as a touch panel. An intermediate layer containing zinc sulfide is provided on at least one side adjacent to the silver thin film layer, and when the intermediate layer is on the second high refractive index layer side, a thin layer having a specific thickness is formed. By providing the refractive index layer with a high refractive index and conductivity, the electrical connection between the external terminal and the silver thin film layer can be improved even through the second high refractive index layer and the intermediate layer, and it has low resistance and moisture resistance. It is considered that a transparent conductor having excellent properties can be obtained.
本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductor of this invention. 銀薄膜層の厚さと光吸収の関係を示す一例An example showing the relationship between the thickness of silver thin film layer and light absorption 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 電極パターンを有する透明導電体を具備したタッチパネルの構成の一例を示す斜視図The perspective view which shows an example of a structure of the touchscreen provided with the transparent conductor which has an electrode pattern.
 本発明の透明導電体は、透明基板と、前記透明基板の屈折率より高い屈折率を有する第1高屈折率層と、銀を主成分として含有する透明金属層と、前記透明基板の屈折率より高い屈折率と導電性を有する第2高屈折率層とが、この順に積層された透明導電体であって、前記透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有し、かつ前記透明金属層と前記第2高屈折率層との間に中間層を有するとき中間層の厚さが15nm以下であることを特徴とする。この特徴は、請求項1から請求項5に係る発明に共通する技術的特徴である。 The transparent conductor of the present invention includes a transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index of the transparent substrate. A second high refractive index layer having a higher refractive index and conductivity is a transparent conductor laminated in this order, between the transparent metal layer and the first or second high refractive index layer. At least one has an intermediate layer containing zinc sulfide, and the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided between the transparent metal layer and the second high refractive index layer. And This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、高い光透過性と安定した色調を有する透明金属層を得ることができるため、前記硫化亜鉛を含有した中間層と前記透明金属層との間に、金属酸化物、金属フッ化物、金属窒化物又は亜鉛の少なくともいずれかを含む硫化防止層をさらに有することが、好ましい。 As an embodiment of the present invention, since it is possible to obtain a transparent metal layer having high light transmittance and stable color tone, a metal oxide, between the intermediate layer containing zinc sulfide and the transparent metal layer, It is preferable to further have an antisulfurization layer containing at least one of metal fluoride, metal nitride, or zinc.
 また、前記透明金属層と、前記第1高屈折率層との間に、硫化亜鉛を含有した中間層を有することが耐湿性の向上とプラズモン吸収が少ない薄膜の透明金属層を得るために好ましい。さらに、前記透明金属層と前記第1及び第2高屈折率層との間の両方に、硫化亜鉛を含有した中間層を有することが、より耐湿性を向上させるために好ましい。また透明金属層が、パターン状に形成されていることが好ましい。 Further, it is preferable to have an intermediate layer containing zinc sulfide between the transparent metal layer and the first high refractive index layer in order to obtain a thin transparent metal layer with improved moisture resistance and less plasmon absorption. . Furthermore, it is preferable to have an intermediate layer containing zinc sulfide between both the transparent metal layer and the first and second high refractive index layers in order to further improve moisture resistance. The transparent metal layer is preferably formed in a pattern.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《透明導電体の基本的な構成》
 図1A~1Cは、本発明の透明導電体の構成の一例を示す概略断面図である。
《Basic structure of transparent conductor》
1A to 1C are schematic cross-sectional views showing an example of the configuration of the transparent conductor of the present invention.
 本発明の透明導電体1は、透明基板上2に、第1高屈折率層3Aと、透明金属層4と、第2高屈折率層3Bをこの順で積層し、かつ透明金属層4と、前記第1高屈折率層3A又は第2高屈折率層3Bとの間の少なくとも一方に、硫化亜鉛(以下、ZnSとも記載する。)を含有した中間層を有することを特徴とする。図1Aでは、透明金属層4と前記第1高屈折率層3Aの間に第1中間層5Aが設けられている。このように、硫化亜鉛を含有した中間層5Aを透明金属層4に隣接して設けると、透明金属4中の銀原子とZnSの硫黄原子との親和性が高いため、銀原子のマイグレーションが抑えられ、薄膜で均一な透明金属層4を得ることができる。かつ、この銀薄膜は安定であるため、耐湿性にも優れている。 The transparent conductor 1 of the present invention comprises a transparent substrate 2 on which a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B are laminated in this order. In addition, an intermediate layer containing zinc sulfide (hereinafter also referred to as ZnS) is provided in at least one of the first high refractive index layer 3A and the second high refractive index layer 3B. In FIG. 1A, a first intermediate layer 5A is provided between the transparent metal layer 4 and the first high refractive index layer 3A. Thus, when the intermediate layer 5A containing zinc sulfide is provided adjacent to the transparent metal layer 4, the silver atom in the transparent metal 4 and the sulfur atom of ZnS have a high affinity, so that the migration of silver atoms is suppressed. Thus, a uniform transparent metal layer 4 can be obtained with a thin film. And since this silver thin film is stable, it is excellent also in moisture resistance.
 図1Bでは、さらに透明金属層4と第2高屈折率層3Bの間にも第2中間層5Bが設けられている。このような構成とすることで、さらに耐湿性は向上する。また、本発明において、ZnSを含有する層は薄いため、第2高屈折率層及び第2中間層を通して、透明金属層と電気接続することが可能となる。 In FIG. 1B, a second intermediate layer 5B is also provided between the transparent metal layer 4 and the second high refractive index layer 3B. By adopting such a configuration, the moisture resistance is further improved. In the present invention, since the layer containing ZnS is thin, it can be electrically connected to the transparent metal layer through the second high refractive index layer and the second intermediate layer.
 また図1Cでは、第1中間層、第2中間層に加えてさらに、第1中間層5Aと透明金属層4との間に硫化防止層6Aが設けられている。このような構成とすることで、透明金属層中の銀が中間層に含まれる硫黄により硫化されることを抑えることができる。 Further, in FIG. 1C, in addition to the first intermediate layer and the second intermediate layer, an antisulfurization layer 6A is further provided between the first intermediate layer 5A and the transparent metal layer 4. By setting it as such a structure, it can suppress that the silver in a transparent metal layer is sulfided by the sulfur contained in an intermediate | middle layer.
 本発明の透明導電体1では、図1A~1Cで示すように、透明金属層4が透明基板2の全面に積層されていてもよく、図2に示すように、例えば、第1高屈折率層3A、中間層5A、透明金属層4、第2高屈折率層3Bから構成される透明電極ユニットEUが所望の形状にパターニングされていてもよい。本発明の透明導電体1において、透明電極ユニットEUが積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明電極ユニットEUを有していない領域bが絶縁領域である。 In the transparent conductor 1 of the present invention, the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C. For example, as shown in FIG. The transparent electrode unit EU composed of the layer 3A, the intermediate layer 5A, the transparent metal layer 4, and the second high refractive index layer 3B may be patterned into a desired shape. In the transparent conductor 1 of the present invention, the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b that does not have the transparent electrode unit EU is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体1の用途に応じて、適宜選択される。静電方式のタッチパネルに適用するパターンの詳細については、後述する。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
 また、本発明の透明導電体1には、透明基板2、第1高屈折率層3A、第1中間層5A、透明金属層4、第2中間層5B、第2高屈折率層3B及び硫化防止層6の他に、必要に応じて公知の機能性層を設けてもよい。 The transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a first intermediate layer 5A, a transparent metal layer 4, a second intermediate layer 5B, a second high refractive index layer 3B, and a sulfide. In addition to the prevention layer 6, a known functional layer may be provided as necessary.
 本発明の透明導電体1に含まれる層は、透明基板2を除いて、いずれも無機材料からなる層であることが好ましい。例えば、第2高屈折率層3B上に有機樹脂からなる接着層が積層されていたとしても、透明基板2から第2高屈折率層3Bまでの積層体が、本発明の透明導電体1であると定義する。 The layers included in the transparent conductor 1 of the present invention are preferably layers made of an inorganic material except for the transparent substrate 2. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 3B, the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
 《透明導電体の各構成要素》
 本発明の透明導電体は、透明基板と、前記透明基板の屈折率より高い屈折率を有する第1高屈折率層と、銀を主成分として含有する透明金属層と、前記透明基板の屈折率より高い屈折率と導電性を有する第2高屈折率層とが、この順に積層された透明導電体であって、前記透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有し、かつ前記透明金属層と前記第2高屈折率層との間に中間層を有するとき中間層の厚さが15nm以下であることを特徴とする。
<< Each component of transparent conductor >>
The transparent conductor of the present invention includes a transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index of the transparent substrate. A second high refractive index layer having a higher refractive index and conductivity is a transparent conductor laminated in this order, between the transparent metal layer and the first or second high refractive index layer. At least one has an intermediate layer containing zinc sulfide, and the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided between the transparent metal layer and the second high refractive index layer. And
 さらには、第1高屈折率層3Aと透明金属層4との間又は第2高屈折率層3Bと透明金属層4との間に、中間層5A、5Bを有していることが好ましい態様である。さらに中間層5と透明金属層4との間に硫化防止層6を設けることもできる。 Furthermore, it is preferable that the intermediate layers 5A and 5B are provided between the first high refractive index layer 3A and the transparent metal layer 4 or between the second high refractive index layer 3B and the transparent metal layer 4. It is. Further, an antisulfurization layer 6 can be provided between the intermediate layer 5 and the transparent metal layer 4.
 〔透明基板〕
 本発明の透明導電体1に適用可能な透明基板2としては、各種表示デバイスの透明基板に適用されている材料を用いることができる。
[Transparent substrate]
As the transparent substrate 2 applicable to the transparent conductor 1 of the present invention, materials applied to transparent substrates of various display devices can be used.
 透明基板2は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース(略称:TAC)、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えば、パンライト、マルチロン(以上、帝人社製))、シクロオレフィン樹脂(例えば、ゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えば、ポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(略称:PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN))、ポリエーテルスルホン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂(略称:ABS樹脂)/アクリロニトリル・スチレン樹脂(略称:AS樹脂)、メチルメタクリレート・ブタジエン・スチレン樹脂(略称:MBS樹脂)、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/エチレンビニルアルコール樹脂(略称:EVOH)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板2が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。 The transparent substrate 2 is a glass substrate, cellulose ester resin (for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Limited)). , Cycloolefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex) (Manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN)), polyether Sulfone resin, acrylonitrile / butadiene / styrene resin (abbreviation: ABS resin) / acrylonitrile / styrene resin (abbreviation: AS resin), methyl methacrylate / butadiene / styrene resin (abbreviation: MBS resin), polystyrene, methacrylic resin, polyvinyl alcohol / ethylene It may be a transparent resin film made of vinyl alcohol resin (abbreviation: EVOH), styrene block copolymer resin, or the like. When the transparent substrate 2 is a transparent resin film, the film may contain two or more kinds of resins.
 高い光透過性を達成することができる観点から、本発明に適用する透明基板2としては、ガラス基板や、セルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等の樹脂成分から構成されるフィルムであることが好ましい。 From the viewpoint of achieving high light transmittance, the transparent substrate 2 applied to the present invention includes a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, and cycloolefin resin. Resin such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin A film composed of the components is preferred.
 透明基板2は、可視光に対する光透過性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板2の光の平均透過率が70%以上であると、透明導電体1の光透過性が高まりやすい。また、透明基板2の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 2 preferably has a high light transmittance with respect to visible light. The average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably. When the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板2の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板2の平均反射率を測定し、
 平均吸収率(%)=100-(平均透過率+平均反射率)(%)
として算出する。平均透過率及び平均反射率は、分光光度計を用いて測定することができる。
The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2. On the other hand, the average absorptance is measured by measuring the average reflectance of the transparent substrate 2 by making light incident from the same angle as the average transmittance.
Average absorptance (%) = 100− (average transmittance + average reflectance) (%)
Calculate as The average transmittance and the average reflectance can be measured using a spectrophotometer.
 透明基板2の波長570nmの光の屈折率は1.40~1.95の範囲内であることが好ましく、より好ましくは1.45~1.75の範囲内であり、さらに好ましくは1.45~1.70の範囲内である。透明基板2の屈折率は、通常、透明基板2の材質によって定まる。透明基板2の屈折率は、エリプソメーターを用い、25℃の環境下で測定することにより求めることができる。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ~ 1.70. The refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2. The refractive index of the transparent substrate 2 can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
 透明基板2のヘイズ値は、0.01~2.5%の範囲内であることが好ましく、より好ましくは0.1~1.2%の範囲内である。透明基板のヘイズ値が2.5%以下であると、透明導電体としてのヘイズ値を抑制することができ、好ましい。ヘイズ値は、ヘイズメーターを用いて測定することができる。 The haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5%, more preferably in the range of 0.1 to 1.2%. When the haze value of the transparent substrate is 2.5% or less, the haze value as the transparent conductor can be suppressed, which is preferable. The haze value can be measured using a haze meter.
 透明基板2の厚さは、1μm~20mmの範囲内であることが好ましく、より好ましくは10μm~2mmの範囲内である。透明基板の厚さが1μm以上であれば、透明基板2の強度が高まり、第1高屈折率層3Aの作製時に割れたり、裂けたりすることを防止することができる。一方、透明基板2の厚さが20mm以下であれば、透明導電体1の十分なフレキシブル性を得ることができる。さらに、透明導電体1を具備した電子デバイス機器等の厚さを薄くできる。また、透明導電体1を用いた電子デバイス機器等を軽量化することもできる。 The thickness of the transparent substrate 2 is preferably in the range of 1 μm to 20 mm, more preferably in the range of 10 μm to 2 mm. If the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
 本発明においては、使用する透明基板2は、各構成層を製膜する前に、基板中に含まれている水分や残留している溶媒を、クライオポンプ等を用いてあらかじめ除いたのち、形成工程で使用することが好ましい。 In the present invention, the transparent substrate 2 to be used is formed after removing the moisture contained in the substrate and the remaining solvent by using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
 また、本発明に適用する透明基板上には、そのあとに形成する第1高屈折率層の平滑性を得る観点から、公知のクリアハードコート層を設けてもよい。 Further, a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of obtaining the smoothness of the first high refractive index layer formed thereafter.
 〔高屈折率層〕
 本発明の透明導電体は、第1高屈折率層と第2高屈折率層を有しており、透明基板に近い方を第1高屈折率層、遠い方を第2高屈折率層と呼ぶ。
(High refractive index layer)
The transparent conductor of the present invention has a first high refractive index layer and a second high refractive index layer, the first high refractive index layer closer to the transparent substrate and the second high refractive index layer farther away. Call.
 第1高屈折率層3Aは、透明導電体の導通領域a、つまり透明金属層4が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体1の導通領域aに形成される。第1高屈折率層3Aは、透明導電体1の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認し難くするとの観点から、図2に例示するように導通領域aのみに形成されていることが好ましい。 The first high refractive index layer 3 </ b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a. The first high refractive index layer 3A may also be formed in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern made up of the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
 第1高屈折率層3Aは、透明基板2の屈折率より高い屈折率を有する。第1高屈折率層3Aには、前述の透明基板2の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第1高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層によって、透明導電体の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層の屈折率は、第1高屈折率層に含まれる材料の屈折率や、第1高屈折率層に含まれる材料の密度で調整される。 The first high refractive index layer 3 </ b> A has a refractive index higher than that of the transparent substrate 2. The first high refractive index layer 3A preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate, and is larger by 0.4 to 1.0. It is more preferable. On the other hand, the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer is preferably larger than 1.5, and is 1.7 to 2.5. Is more preferably 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer. The refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer.
 第1高屈折率層3Aに含まれる誘電性材料又は酸化物半導体材料は、上記屈折率を有する金属酸化物でありうる。上記屈折率を有する金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム・ガリウム、亜鉛の酸化物)、Bi、Ga、GeO、WO、HfO、In、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第1高屈折率層は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上が含まれる層であってもよい。 The dielectric material or the oxide semiconductor material included in the first high refractive index layer 3A may be a metal oxide having the above refractive index. Examples of the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO ( Indium cerium oxide), IGZO (indium gallium, zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (gallium, indium, and Amorphous oxide made of oxygen) and the like. The first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
 第2高屈折率層3Bは、第1高屈折率層3A同様に透明基板2の屈折率より高い屈折率を有する。第2高屈折率層には、前述の透明基板2の屈折率より高い屈折率を有する材料が含まれる。当該材料の波長570nmの光の屈折率は、透明基板の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第2高屈折率層に含まれる材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。材料の屈折率が1.5より大きいと、第2高屈折率層によって、透明導電体の導通領域aの光学アドミッタンスが十分に調整される。なお、第2高屈折率層の屈折率は、第2高屈折率層に含まれる材料の屈折率や、第2高屈折率層に含まれる材料の密度で調整される。 The second high refractive index layer 3B has a refractive index higher than the refractive index of the transparent substrate 2 like the first high refractive index layer 3A. The second high refractive index layer includes a material having a refractive index higher than that of the transparent substrate 2 described above. The refractive index of light having a wavelength of 570 nm of the material is preferably 0.1 to 1.1, and more preferably 0.4 to 1.0 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the material contained in the second high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably. 1.8 to 2.5. When the refractive index of the material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the second high refractive index layer. The refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
 第2高屈折率層3Bは、さらに、電気接続性を確保するために導電性をも有する層である。本発明において、良好な電気接続性を確保するためには、比抵抗が1000Ω・cm以下の材料であることが好ましい。さらに好ましくは0.1Ω・cm以下であることが望ましい。このような構成とすることで、後述する硫化亜鉛を含有した厚さ15nm以下の中間層と、この第2高屈折率層を通して外側に設けられた端子と、透明金属層との電気接続性が得られ、透明金属層を通して通電できるので、透明導電体の導電性が格段に向上する。 The second high-refractive index layer 3B is a layer that also has conductivity in order to ensure electrical connectivity. In the present invention, in order to ensure good electrical connectivity, a material having a specific resistance of 1000 Ω · cm or less is preferable. More preferably, it is 0.1Ω · cm or less. With such a configuration, the electrical connection between the transparent metal layer and the intermediate layer containing zinc sulfide, which will be described later, having a thickness of 15 nm or less, the terminal provided outside through the second high refractive index layer, and the transparent metal layer is achieved. Since it is obtained and can be energized through the transparent metal layer, the conductivity of the transparent conductor is remarkably improved.
 第2高屈折率層に含まれる材料は、上記した第1高屈折率層に含まれる材料の中でも酸化物半導体材料が含まれることが好ましい。中でも金属酸化物が好ましい。 The material included in the second high refractive index layer preferably includes an oxide semiconductor material among the materials included in the first high refractive index layer. Of these, metal oxides are preferable.
 金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム・ガリウム、亜鉛の酸化物)、Bi、Ga、GeO、WO、HfO、In、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第1高屈折率層は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上が含まれる層であってもよい。 Examples of metal oxides, TiO 2, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium gallium, oxide of zinc), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (amorphous consisting of gallium, indium, and oxygen) Oxide) and the like. The first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
 第1高屈折率層3A及び第2高屈折率層3Bの厚さは、10~150nmの範囲内であることが好ましく、より好ましくは10~80nmの範囲内である。これらの高屈折率層の厚さが10nm以上であると、高屈折率層によって、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。一方、高屈折率層の厚さが150nm以下であれば、高屈折率層が含まれる領域の光透過性が低下し難い。高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 3A and the second high refractive index layer 3B is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm. When the thickness of these high refractive index layers is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the high refractive index layer. On the other hand, when the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the region including the high refractive index layer is unlikely to decrease. The thickness of the high refractive index layer is measured with an ellipsometer.
 高屈折率層は、蒸着法又はスパッタ法により形成することが好ましい。本発明に適用可能な蒸着法としては、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着装置としては、例えば、シンクロン社製のBMC-800T蒸着機等を用いることができる。スパッタ法としてはマグネトロンスパッタや対向スパッタが含まれる。 The high refractive index layer is preferably formed by vapor deposition or sputtering. Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. As the vapor deposition apparatus, for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used. Sputtering methods include magnetron sputtering and counter sputtering.
 また、高屈折率層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。高屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく、公知のエッチング法、例えば、フォトリソグラフィー法によってパターニングされた層であってもよい。 Further, when the high refractive index layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The high refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed. It may be a layer patterned by a lithography method.
 ≪中間層≫
 本発明においては、透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有する。
≪Middle layer≫
In this invention, it has an intermediate | middle layer containing zinc sulfide in at least one between a transparent metal layer and the said 1st or 2nd high refractive index layer.
 これにより、中間層の上部に銀を主成分として含有している透明金属層を成膜する際には、透明金属層を構成する銀原子が、中間層に含有されている銀原子と親和性のある硫化亜鉛の硫黄原子と相互作用し、当該中間層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集が抑えられる。 As a result, when forming a transparent metal layer containing silver as a main component on the upper part of the intermediate layer, the silver atoms constituting the transparent metal layer have an affinity with the silver atoms contained in the intermediate layer. It interacts with the sulfur atoms of zinc sulfide, reducing the diffusion distance of silver atoms on the surface of the intermediate layer, and suppressing the aggregation of silver at specific locations.
 すなわち、銀原子は、まず銀原子と硫化亜鉛を含有する中間層表面上で2次元的な核を形成し,それを中心に2次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 That is, the silver atoms first form a two-dimensional nucleus on the surface of the intermediate layer containing silver atoms and zinc sulfide, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus (Frank-van). The film is formed by the film growth of der Merwe (FM type).
 なお、一般的には、中間層表面において付着した銀原子が表面を拡散しながら結合し3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により島状に成膜し易いと考えられるが、本発明では、中間層に含有されている硫化亜鉛により、このような様式の島状成長が防止され、層状成長が促進されると推察される。 In general, an island-shaped growth type (Volume-Weber) in which silver atoms attached on the surface of the intermediate layer are bonded while diffusing the surface to form a three-dimensional nucleus and grow into a three-dimensional island shape. : VW type), it is considered that the film is easily formed into an island shape, but in the present invention, the zinc sulfide contained in the intermediate layer prevents the island-like growth in this manner, and the layer growth Is presumed to be promoted.
 したがって、薄い膜厚でありながらも、均一な膜厚の導電性層が得られるようになる。そのため、透明金属層4が薄くとも、プラズモン吸収が生じ難くなる。この結果、より薄い膜厚として光透過性を保ちつつも、導電性が確保された透明導電体とすることができる。 Therefore, a conductive layer having a uniform film thickness can be obtained even though the film thickness is small. Therefore, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs. As a result, it is possible to obtain a transparent conductor in which conductivity is ensured while maintaining light transmittance with a thinner film thickness.
 また、この層を設けることにより、銀と硫黄原子の親和性が強くなり、かつ水の透過性を妨げるため銀の腐食が防止され、透明導電体の耐湿性を向上させることができるものと考えられる。 In addition, by providing this layer, the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, silver corrosion is prevented and the moisture resistance of the transparent conductor can be improved. It is done.
 図3は、銀薄膜層の厚さと光吸収の関係を示す一例である。ガラス、ITO及び硫化亜鉛の薄層上に銀を蒸着して銀薄膜層を形成した際の、銀薄膜層の厚さと可視光(400~800nm)の平均光吸収の関係を示すグラフである。硫化亜鉛上に銀を成膜すると、ガラスやITO上に銀を成膜するより銀の吸収を減らすことができる。 FIG. 3 is an example showing the relationship between the thickness of the silver thin film layer and light absorption. 6 is a graph showing the relationship between the thickness of a silver thin film layer and the average light absorption of visible light (400 to 800 nm) when silver is deposited on a thin layer of glass, ITO and zinc sulfide to form a silver thin film layer. When silver is deposited on zinc sulfide, the absorption of silver can be reduced more than when silver is deposited on glass or ITO.
 この中間層は、透明金属層と、第1又は第2高屈折率層との間の少なくとも一方に設けられることで本発明の効果を発現することができる。好ましくは、透明金属層と第1高屈折率層との間に、硫化亜鉛を含有した中間層を有することであり、より好ましくは、透明金属層と、第1及び第2高屈折率層との間の両方に、硫化亜鉛を含有した中間層を有することである。 The intermediate layer can be provided on at least one of the transparent metal layer and the first or second high-refractive index layer, thereby exhibiting the effects of the present invention. Preferably, an intermediate layer containing zinc sulfide is provided between the transparent metal layer and the first high refractive index layer, and more preferably, the transparent metal layer, the first and second high refractive index layers, And having an intermediate layer containing zinc sulfide.
 中間層において、硫化亜鉛の平均含有量は、中間層を構成する材料の総モル数に対して、50%以上であることが好ましく、より好ましくは、70~100%の範囲内である。ZnSの比率が高いと屈折率が高くなり、Agの吸収を低減することができる。一方、ZnS以外の成分が多く含まれると、第1高屈折率層3Aの非晶質性が高まり、第1高屈折率層3Aの割れ(クラック)の発生が抑制される。 In the intermediate layer, the average content of zinc sulfide is preferably 50% or more, more preferably in the range of 70 to 100% with respect to the total number of moles of the material constituting the intermediate layer. When the ratio of ZnS is high, the refractive index increases, and Ag absorption can be reduced. On the other hand, when many components other than ZnS are contained, the amorphousness of the first high refractive index layer 3A is increased, and the occurrence of cracks in the first high refractive index layer 3A is suppressed.
 硫化亜鉛と共に用いることができる金属酸化物としては、例えば、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。上記金属酸化物の中でも、特に、二酸化ケイ素(SiO)が好ましい。 Examples of the metal oxide that can be used with zinc sulfide include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4. O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (Indium cerium oxide), Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , a-GIO ( Amorphous oxides of gallium, indium, and oxygen). Among the above metal oxides, silicon dioxide (SiO 2 ) is particularly preferable.
 また、硫化亜鉛と共に用いることができる金属フッ化物としては、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等を挙げることができる。 As the metal fluoride which can be used in conjunction with zinc sulfide, LaF 3, BaF 2, Na 5 Al 3 F 14, Na 3 AlF 6, AlF 3, MgF 2, CaF 2, BaF 2, CeF 3, NdF 3 , YF 3 and the like.
 また、硫化亜鉛と共に用いることができる金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化クロム、窒化ケイ素、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウム、窒化チタン等を挙げることができる。 Further, examples of the metal nitride that can be used together with zinc sulfide include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
 本発明においては、中間層の厚さは、いずれか一方の側に少なくとも0.1nm以上あればよい。中間層が透明金属層の第1高屈折率層側にあるとき、1nm以上であることが好ましい。より好ましくは5~20nmの範囲内である。 In the present invention, the thickness of the intermediate layer may be at least 0.1 nm or more on either side. When the intermediate layer is on the first high refractive index layer side of the transparent metal layer, it is preferably 1 nm or more. More preferably, it is in the range of 5 to 20 nm.
 中間層が透明金属層の第2高屈折率層側にあるとき、中間層の厚さは15nm以下である。好ましくは1~12nmの範囲内である。より好ましくは5~10nmの範囲内である。中間層の厚さが、15nmより厚いと、中間層の導電性が低くなり、第2中間層と第2高屈折率層及を介しても外部端子と銀薄膜層との十分な電気接続性を得ることができない。 When the intermediate layer is on the second high refractive index layer side of the transparent metal layer, the thickness of the intermediate layer is 15 nm or less. Preferably, it is in the range of 1 to 12 nm. More preferably, it is in the range of 5 to 10 nm. If the thickness of the intermediate layer is greater than 15 nm, the conductivity of the intermediate layer is lowered, and sufficient electrical connectivity between the external terminal and the silver thin film layer is achieved even through the second intermediate layer and the second high refractive index layer. Can't get.
 中間層は、蒸着法又はスパッタ法により形成することが好ましい。本発明に適用可能な蒸着法としては、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着装置としては、例えば、シンクロン社製のBMC-800T蒸着機等を用いることができる。スパッタ法としてはマグネトロンスパッタや対向スパッタが含まれる。 The intermediate layer is preferably formed by vapor deposition or sputtering. Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. As the vapor deposition apparatus, for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used. Sputtering methods include magnetron sputtering and counter sputtering.
 〔硫化防止層〕
 本発明の透明導電体は、亜鉛を含有した中間層と前記透明金属層との間に、金属酸化物、金属フッ化物、金属窒化物、又は亜鉛の少なくともいずれかを含む硫化防止層を有することが好ましい。透明基板に近い方を第1硫化防止層、遠い方を第2硫化防止層と呼ぶ。
[Sulfurization prevention layer]
The transparent conductor of the present invention has an antisulfurization layer containing at least one of a metal oxide, a metal fluoride, a metal nitride, or zinc between the intermediate layer containing zinc and the transparent metal layer. Is preferred. The one closer to the transparent substrate is referred to as a first sulfidation prevention layer, and the one far from the transparent substrate is referred to as a second sulfidation prevention layer.
 透明金属層とZnSを含む中間層とが隣接して成膜されると、透明金属層4の成膜時、又は第2中間層5Bの成膜時に、透明金属層中の金属が硫化されて金属硫化物が生成し、透明導電体の光透過性が低下する場合がある。これに対し、第1中間層5Aと透明金属層4との間、又は透明金属層4と第2中間層5Bとの間に、硫化防止層が含まれると、金属硫化物の生成が抑制される。 When the transparent metal layer and the intermediate layer containing ZnS are formed adjacent to each other, the metal in the transparent metal layer is sulfided during the formation of the transparent metal layer 4 or the second intermediate layer 5B. Metal sulfide may be generated, and the light transmittance of the transparent conductor may be reduced. On the other hand, when a sulfidation prevention layer is included between the first intermediate layer 5A and the transparent metal layer 4 or between the transparent metal layer 4 and the second intermediate layer 5B, the formation of metal sulfide is suppressed. The
 硫化防止層は、金属酸化物、金属窒化物、金属フッ化物、又は亜鉛を含む層又は亜鉛でありうる。硫化防止層には、これらが一種のみ含まれてもよく、二種以上含まれてもよい。 The sulfidation preventing layer may be a metal oxide, metal nitride, metal fluoride, or a layer containing zinc or zinc. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、等が含まれる。 Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。 Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
 金属窒化物の例には、Si、AlN等が含まれる。 Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 硫化防止層の厚さは、透明金属層4の成膜時、又は第2中間層5Bの成膜時に、透明金属層4が硫化されることを防止可能な厚さであれば、特に制限されない。ただし、第1中間層5Aや第2中間層5Bに含まれるZnSは、透明金属層4に含まれる金属との親和性が高い。そのため、硫化防止層の厚さが非常に薄いと、透明金属層4と第1中間層5A、又は透明金属層4と第2中間層5Bとが接する部分が生じ、各層同士の密着性が高まりやすい。つまり、硫化防止層は比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1nm~3nmである。硫化防止層の厚さは、エリプソメーターで測定される。特にZnやGa金属が入った硫化防止層であれば耐湿性を劣化させず、またAgとの相互作用も強いため好ましい。 The thickness of the sulfidation preventing layer is not particularly limited as long as the transparent metal layer 4 can be prevented from being sulfided when the transparent metal layer 4 is formed or when the second intermediate layer 5B is formed. . However, ZnS contained in the first intermediate layer 5 </ b> A and the second intermediate layer 5 </ b> B has a high affinity with the metal contained in the transparent metal layer 4. Therefore, when the thickness of the sulfidation preventing layer is very thin, a portion where the transparent metal layer 4 and the first intermediate layer 5A or the transparent metal layer 4 and the second intermediate layer 5B are in contact with each other is generated, and the adhesion between the layers is increased. Cheap. That is, the antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 nm to 3 nm. The thickness of the sulfidation prevention layer is measured with an ellipsometer. In particular, an antisulfurization layer containing Zn or Ga metal is preferable because it does not deteriorate moisture resistance and has strong interaction with Ag.
 硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。硫化防止層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and patterned by a known etching method. It may be a layer formed.
 〔透明金属層〕
 銀を主成分として含有する透明金属層4は、透明導電体1において電気を導通させるための層である。透明金属層4は、図1A~1Cに記載のように透明基板2の全面に形成されていてもよく、また、図2に示すように所望の形状にパターニングされていてもよい。
(Transparent metal layer)
The transparent metal layer 4 containing silver as a main component is a layer for conducting electricity in the transparent conductor 1. The transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, or may be patterned into a desired shape as shown in FIG.
 銀を主成分として含有するとは、本発明においては、透明金属層中の銀含有比率が60原子%以上であることをいう。好ましくは銀の含有比率は導電性の観点から90原子%以上でより好ましくは95原子%以上で、さらには透明電極が銀のみからなることが好ましい。 In the present invention, “containing silver as a main component” means that the silver content in the transparent metal layer is 60 atomic% or more. Preferably, the silver content is 90 atomic% or more from the viewpoint of conductivity, more preferably 95 atomic% or more, and the transparent electrode is preferably made of only silver.
 透明金属層中に銀と組み合わされて用いられる金属としては、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば、銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal used in combination with silver in the transparent metal layer can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum or the like. For example, when silver and zinc are combined, the sulfide resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属層4のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体1の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
 透明金属層4の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
 (i)ガラス基板上に、白金パラジウムをシンクロン社製のBMC-800T蒸着装置にて0.1nmで形成する。白金パラジウムの平均厚さは、蒸着装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上に、真空蒸着法にて金属からなる層を20nmの厚さで形成する。 (I) On the glass substrate, platinum palladium is formed at a thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus. Thereafter, a layer made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率(%)=100-(透過率+反射率)(%)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, the absorptance (%) = 100− (transmittance + reflectance) (%) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に透過率及び反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, the transmittance | permeability and a reflectance are measured similarly. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層4の厚さは10nm以下であることが好ましく、より好ましくは3~9nmの範囲内であり、さらに好ましくは5~8nmの範囲内である。透明導電体1では、透明金属層4の厚さが10nm以下の場合、透明金属層4に金属本来の反射が生じ難い。さらに、透明金属層4の厚さが10nm以下であると、第1高屈折率層3A及び第2高屈折率層3Bによって、透明導電体1の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層4の厚さは、エリプソメーターを用いて測定して求めることができる。 The thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm. In the transparent conductor 1, when the thickness of the transparent metal layer 4 is 10 nm or less, the original reflection of metal hardly occurs in the transparent metal layer 4. Furthermore, when the thickness of the transparent metal layer 4 is 10 nm or less, the optical admittance of the transparent conductor 1 is easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a The reflection of light is easy to be suppressed. The thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
 透明金属層4は、いずれの形成方法で形成された層でもよいが、真空蒸着法又はスパッタ法で形成された層であることが好ましい。 The transparent metal layer 4 may be a layer formed by any forming method, but is preferably a layer formed by a vacuum evaporation method or a sputtering method.
 スパッタ法又は真空蒸着法であれば、平面性の高い透明金属層を、極めて早い形成速度で形成することができる。また、ZnSを含有する中間層の上に金属層を成膜する際、層の形成速度が速ければ、金属の硫化物が生成しにくいため、銀を主成分として含有する透明金属層の形成速度は0.3nm/秒以上であることが好ましい。形成速度が0.5~30nm/秒の範囲内であることがより好ましく、特に好ましくは1.0~15nm/秒の範囲内である。また成膜時の温度は、-25~65℃の範囲内であることが好ましい。 If it is a sputtering method or a vacuum evaporation method, a transparent metal layer with high planarity can be formed at a very high formation rate. In addition, when forming a metal layer on an intermediate layer containing ZnS, if the formation speed of the layer is high, it is difficult to generate a metal sulfide. Therefore, the formation speed of the transparent metal layer containing silver as a main component Is preferably 0.3 nm / second or more. The formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second. The temperature during film formation is preferably within the range of −25 to 65 ° C.
 対向スパッタ法ではAgの平滑性が高まるため、また透明性と導電性が良好になるため好ましい。 The counter sputtering method is preferable because the smoothness of Ag is improved and transparency and conductivity are improved.
 また、透明金属層4が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属層4は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the transparent metal layer 4 is a film patterned in a desired shape, the patterning method is not particularly limited. The transparent metal layer 4 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
 〔その他の構成層〕
 (低屈折率層)
 本発明の透明導電体1には、第2高屈折率層3B上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層(図示せず)を有していてもよい。低屈折率層は、透明導電体1の導通領域aにのみ形成されていてもよく、透明導電体1の導通領域a及び絶縁領域bの両方に形成されていてもよい。
[Other component layers]
(Low refractive index layer)
The transparent conductor 1 of the present invention has a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 3B. It may be. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
 低屈折率層には、第1高屈折率層3A及び第2高屈折率層3Bに含まれる誘電性材料又は酸化物半導材料の波長570nmの光の屈折率より、光の屈折率が低い誘電性材料又は酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、第1高屈折率層3A及び第2高屈折率層3Bに含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 In the low refractive index layer, the refractive index of light is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B. Dielectric materials or oxide semiconductor materials are included. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B. The refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
 〔透明導電体の物性〕
 一方、透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても81%以上であることが好ましく、より好ましくは84%以上、さらに好ましくは87%以上である。波長450~800nmの光の平均透過率が81%以上であると、広い波長範囲の光に対して光透過性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。
[Physical properties of transparent conductor]
On the other hand, the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 81% or more, more preferably 84% or more, and still more preferably 87% in both the conduction region a and the insulation region b. That's it. When the average transmittance of light having a wavelength of 450 to 800 nm is 81% or more, the transparent conductor is also used in applications requiring light transmittance with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
 一方、透明導電体の波長450~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長450~800nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light with a wavelength of 450 to 800 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均吸収率、及び平均反射率は、透明導電体の使用環境下で測定した平均透過率、平均吸収率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率(%)は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptivity, and average reflectance measured in the environment where the transparent conductor is used. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance (%) is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、透明導電体1が、図2に示すように導通領域a及び絶縁領域bを有する場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 Further, when the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体1に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 When the transparent conductor 1 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の厚さ等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
 〔電極パターンを有する透明導電体の形成方法〕
 本発明の透明導電体に対し、図2で示すような導通領域及び絶縁領域からなるパターンの形成方法について説明する。
[Method for forming transparent conductor having electrode pattern]
A method of forming a pattern composed of a conductive region and an insulating region as shown in FIG. 2 will be described for the transparent conductor of the present invention.
 本発明の透明導電体においては、上記のような方法で透明基板2上に、例えば、第1高屈折率層と、中間層、透明金属層と、第2高屈折率層とをこの順で積層して製造した後、透明金属層を所定の形状にパターニングして、金属パターン電極を形成することが好ましく、具体的には、フォトリソグラフィー法により、エッチング液を用いて、例えば、図5に示すような電極パターンを形成することが好ましい。形成する電極の線幅としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。 In the transparent conductor of the present invention, for example, the first high refractive index layer, the intermediate layer, the transparent metal layer, and the second high refractive index layer are formed in this order on the transparent substrate 2 by the method described above. It is preferable to form a metal pattern electrode by patterning the transparent metal layer into a predetermined shape after being manufactured by laminating, and specifically, using an etching solution by a photolithography method, for example, in FIG. It is preferable to form an electrode pattern as shown. The line width of the electrode to be formed is preferably 50 μm or less, and particularly preferably 20 μm or less.
 (製造工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法について説明する。
(Manufacturing process)
Hereinafter, a method for forming an electrode pattern by photolithography will be described.
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、透明金属層を、所望のパターンに加工する方法である。 The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The transparent metal layer is processed into a desired pattern.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所期のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の中間層の溶解及び透明金属層の除去を行う。エッチング後、残留するレジストを剥離することによって、所期のパターンを有する透明電極が得られる。このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所期の目的に応じて容易に選定することができる。 In the present invention, a conventionally known general photolithography method can be used as appropriate. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used. After the development, the resist pattern is formed by stopping the development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a transparent metal layer. Remove. After etching, the remaining resist is removed to obtain a transparent electrode having an intended pattern. As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
 次いで、図を交えて、本発明に適用可能な電極パターンの形成方法について説明する。 Next, an electrode pattern forming method applicable to the present invention will be described with reference to the drawings.
 図4は、本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図である。 FIG. 4 is a process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
 第1ステップとして、図4の(a)で示すように、透明基板2上に、第1高屈折率層3A、第1中間層5A、透明金属層4、第2中間層層5B、第2高屈折率層3Bをこの順で積層した透明導電体1を作製する。 As a first step, as shown in FIG. 4A, on the transparent substrate 2, the first high refractive index layer 3A, the first intermediate layer 5A, the transparent metal layer 4, the second intermediate layer 5B, the second The transparent conductor 1 in which the high refractive index layer 3B is laminated in this order is produced.
 次いで、図4の(b)でレジスト膜を形成する前に、透明導電体1に超音波洗浄処理を施すことが好ましい。超音波洗浄としては、例えば、花王社製の洗剤クリンスル―3030を用いて超音波洗浄と純水による水洗いを数回行った後、スピンコータで水を飛ばし、オーブンで乾燥させる。 Next, it is preferable to subject the transparent conductor 1 to ultrasonic cleaning before forming the resist film in FIG. As the ultrasonic cleaning, for example, ultrasonic cleaning and water washing with pure water are performed several times using a detergent clean 3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
 次いで、図4の(b)で示すレジスト膜の形成工程で、透明導電体1上に感光性樹脂組成物等から構成されるレジスト膜7を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物あるいはポジ型感光性樹脂組成物を用いることができる。レジストとしては、例えば、東京応化工業社製のOFPR-800LB等を用いることができる。 Next, in the resist film forming step shown in FIG. 4B, a resist film 7 made of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used. As the resist, for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電体1上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50℃以上、150℃以下の範囲で30秒~30分間行うことができる。 As a coating method, it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
 次いで、図4の(c)に示す露光工程で、所定の電極パターンにより作製したマスク8を介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機9を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜7Aに照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Next, in the exposure process shown in FIG. 4C, using an exposure machine 9 such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner, etc., through a mask 8 produced with a predetermined electrode pattern, The resist film 7A to be removed in the next step is irradiated with light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion). The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、図4の(d)に示す現像工程で、露光済みの透明導電体を、現像液に浸漬して、光照射した領域のレジスト膜7Aを溶解する。現像液としては、例えば、レジストとしてポジ型感光性樹脂組成物を用いた場合には、トクヤマ社製のポジ型フォトレジスト用現像液「トクソーSD」シリーズ(テトラメチルアンモニウムヒドロキシド)等を用いることができる。 Next, in the developing step shown in FIG. 4D, the exposed transparent conductor is immersed in a developer to dissolve the resist film 7A in the region irradiated with light. As the developer, for example, when a positive photosensitive resin composition is used as a resist, a developer for positive photoresist “Tokuso SD” series (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation should be used. Can do.
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を1種あるいは2種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50℃以上150℃以下の範囲で乾燥ベークを行ってもよい。 As the developing method, it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed in the range of 50 ° C. to 150 ° C.
 次いで、図4の(e)に示すように、エッチング液10を用いたエッチング処理を行う。 Next, as shown in FIG. 4E, an etching process using the etching solution 10 is performed.
 本発明に適用可能なエッチング液としては、無機酸あるいは有機酸を含有する液が好ましく、ギ酸、酢酸、シュウ酸、クエン酸、塩酸、リン酸等を挙げることができ、特に、シュウ酸、酢酸、リン酸が好ましい。また、エッチング液としては市販品を用いることもでき、例えば、林純薬工業社製のPure Etch DE100(シュウ酸)、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)等を用いることができる。 As an etching solution applicable to the present invention, a solution containing an inorganic acid or an organic acid is preferable, and formic acid, acetic acid, oxalic acid, citric acid, hydrochloric acid, phosphoric acid, and the like can be mentioned. In particular, oxalic acid, acetic acid Phosphoric acid is preferred. Commercially available products can also be used as the etchant, for example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and “Mixed liquid SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
 具体的には、例えば、有機酸等を含むエッチング液に、レジスト膜7を有する透明導電体1を浸漬し、レジスト膜7で保護されていない絶縁領域bの電極ユニットEUを溶解し、レジスト膜7で保護している導電領aの電極ユニットEUを所定の電極パターンとして形成する。エッチング時間は、適用する酸の種類により異なるが、30~120秒の範囲内で調整することが好ましい。 Specifically, for example, the transparent conductor 1 having the resist film 7 is immersed in an etching solution containing an organic acid or the like, and the electrode unit EU in the insulating region b that is not protected by the resist film 7 is dissolved. The electrode unit EU of the conductive region a protected by 7 is formed as a predetermined electrode pattern. The etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
 最後に、図4の(f)に示すように、レジスト膜剥離液として、例えば、アセトン、水酸化ナトリウム液、市販品としては、ナガセケムテックス社製のN-300等を用いて、エッチングした透明導電体を浸漬して、レジスト膜7を除去して、電極パターンを有する透明導電体を作製することができる。 Finally, as shown in FIG. 4 (f), the resist film remover was etched using, for example, acetone, sodium hydroxide solution, and commercially available N-300 manufactured by Nagase ChemteX Corporation. The transparent conductor can be immersed, the resist film 7 can be removed, and a transparent conductor having an electrode pattern can be produced.
 《透明導電体の適用分野》
 上記構成からなる本発明の透明導電体は、液晶方式、プラズマ方式、有機エレクトロルミネッセンス方式、フィールドエミッション方式など各種ディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
《Field of application of transparent conductors》
The transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
 このとき、透明導電体の表面(例えば、透明基板と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like. In this case, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer are approximated respectively. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 以下、本発明の透明導電体をタッチパネルに適用した一例を示す。
図5は、電極パターンを有する透明導電体を具備したタッチパネルの構成の一例を示す斜視図である。
Hereinafter, an example in which the transparent conductor of the present invention is applied to a touch panel will be described.
FIG. 5 is a perspective view illustrating an example of a configuration of a touch panel including a transparent conductor having an electrode pattern.
 図5に示すタッチパネル21は、投影型静電容量式のタッチパネルである。このタッチパネル21は、透明基板2-1及び2-2の一主面上に、第1の透明電極ユニットEU-1及び第2の透明電極ユニットEU-2がこの順に配置され、この上部が前面板13で覆われている。 The touch panel 21 shown in FIG. 5 is a projected capacitive touch panel. In the touch panel 21, a first transparent electrode unit EU-1 and a second transparent electrode unit EU-2 are arranged in this order on one main surface of the transparent substrates 2-1 and 2-2. Covered with a face plate 13.
 第1の透明電極ユニットEU-1及び第2の透明電極ユニットEU-2は、それぞれが、図2及び図4を用いて説明した電極パターンが形成された透明導電体1である。したがって、第1の透明電極ユニットEU-1は、透明基板2-1上に、第1高屈折率層3A、第1中間層5A、透明金属層4、第2中間層5B、第2高屈折率層3Bをこの順で積層した構成である。第2の透明電極ユニットEU-2も同様の構成である。 The first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are the transparent conductors 1 on which the electrode patterns described with reference to FIGS. 2 and 4 are formed, respectively. Accordingly, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first intermediate layer 5A, the transparent metal layer 4, the second intermediate layer 5B, and the second high refractive index on the transparent substrate 2-1. It is the structure which laminated | stacked the rate layer 3B in this order. The second transparent electrode unit EU-2 has the same configuration.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。また、以下の説明で、各構成要件の後の括弧内に記載した数値及び符号は、各図に示した符号を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented. Moreover, in the following description, the numerical value and code | symbol described in the parenthesis after each structural element represent the code | symbol shown in each figure.
 《透明導電体の作製》
 〔透明導電体1の作製〕
 透明基板としてポリエチレンテレフタレート(略称:PET)フィルム(東洋紡製「コスモシャインA4300」厚さ50μm)を用い、PETフィルム上に、下記の方法にしたがって、スパッタ法により第1高屈折率層(ITO)/第1中間層(ZnS-SiO)/透明金属層(Ag)/第2高屈折率層(ITO)をこの順に積層した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<< Production of transparent conductor >>
[Preparation of transparent conductor 1]
A polyethylene terephthalate (abbreviation: PET) film (“Cosmo Shine A4300”, 50 μm in thickness, manufactured by Toyobo Co., Ltd.) is used as the transparent substrate, and the first high refractive index layer (ITO) / ITO is formed on the PET film by sputtering according to the following method. The first intermediate layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high refractive index layer (ITO) were laminated in this order. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 (第1高屈折率層(ITO)の形成)
 前記透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が30.0nmとなるようITOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first high refractive index layer (ITO))
On the transparent substrate (PET), using an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, and layer thickness ITO was RF sputtered to a thickness of 30.0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS-SiO)の作製)
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ZnS-SiOをZnSとSiOの体積比率が80:20となる条件で、層厚が10.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Preparation of first intermediate layer (ZnS-SiO 2 ))
Using ANELVA of L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, formation rate at 0.15 nm / s, a ZnS-SiO 2 ZnS and SiO 2 ratio by volume Was sputtered to a layer thickness of 10.0 nm under the condition of 80:20. The target-substrate distance was 86 mm.
 なお、第1高屈折率層におけるZnSとSiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとSiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度25℃、形成速度0.7nm/sでAgを層厚が7.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using Anelva L-430S-FHS, Ag was RF-sputtered at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, a temperature of 25 ° C., and a formation rate of 0.7 nm / s to a layer thickness of 7.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ITO)の形成)
 前記透明基板上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層圧が41.0nmとなるようITOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。このようにして透明導電体1を作製した。
(Formation of second high refractive index layer (ITO))
On the transparent substrate, an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer pressure 41.0 nm ITO was RF sputtered so that The deposited film had a target-substrate distance of 86 mm. Thus, the transparent conductor 1 was produced.
 〔透明導電体2及び3の作製〕
 透明導電体1の作製において、表1で示したように第1高屈折率層と第1中間層の層厚を変えて、透明導電体1の作製と同様にして透明導電体2及び3を作製した。層厚はスパッタ時間を調整することで行った。
[Production of transparent conductors 2 and 3]
In the production of the transparent conductor 1, the transparent conductors 2 and 3 were prepared in the same manner as in the production of the transparent conductor 1 by changing the layer thicknesses of the first high refractive index layer and the first intermediate layer as shown in Table 1. Produced. The layer thickness was adjusted by adjusting the sputtering time.
 〔透明導電体4の作製〕
 上記透明導電体1の作製において、第1中間層のかわりに、第1中間層と同じ厚さ、同じ材料の第2中間層を透明金属層の上に設け、さらに第1高屈折率層と第2高屈折率層の厚さを表1に記載のように変え、透明導電体1と同様にして透明導電体4を作製した。
[Preparation of transparent conductor 4]
In the production of the transparent conductor 1, in place of the first intermediate layer, a second intermediate layer having the same thickness and the same material as the first intermediate layer is provided on the transparent metal layer, and the first high refractive index layer and The thickness of the second high refractive index layer was changed as shown in Table 1, and the transparent conductor 4 was produced in the same manner as the transparent conductor 1.
 (第1高屈折率層(ITO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が40.0nmとなるようITOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first high refractive index layer (ITO))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness 40 ITO was RF sputtered to a thickness of 0.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度35℃、形成速度2.0nm/sで、層厚が7.0nmとなるようAgをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 35 ° C., and formation rate 2.0 nm / s. Then, Ag was RF-sputtered so that the layer thickness became 7.0 nm. The target-substrate distance was 86 mm.
 (第2中間層(ZnS-SiO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ZnS-SiOをZnSとSiOの体積比率が80:20となる条件で、層厚が10.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second intermediate layer (ZnS—SiO 2 ))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature, and formation rate of 0.15 nm / nm using an Anelva L-430S-FHS sputtering apparatus. At s, ZnS—SiO 2 was RF sputtered to a layer thickness of 10.0 nm under the condition that the volume ratio of ZnS to SiO 2 was 80:20. The target-substrate distance was 86 mm.
 (第2高屈折率層(ITO)の形成)
 次いで、透明金属層を形成したPETフィルムを、前記透明基板上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が31.0nmとなるようITOをRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして透明導電体4を作製した。
(Formation of second high refractive index layer (ITO))
Next, the PET film on which the transparent metal layer was formed was formed on the transparent substrate using an L-430S-FHS sputtering apparatus manufactured by Anerva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0 ITO was RF sputtered at 0.03 nm / second so that the layer thickness was 31.0 nm. The target-substrate distance was 86 mm. Thus, the transparent conductor 4 was produced.
 〔透明導電体5の作製〕
 (第1高屈折率層(ITO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が30.0nmとなるようITOをRFスパッタした。ターゲット-基板間距離は86mmであった。
[Preparation of transparent conductor 5]
(Formation of first high refractive index layer (ITO))
On a transparent substrate (PET), using an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness 30 ITO was RF sputtered to a thickness of 0.0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS-SiO)の作製)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、成膜レート0.15nm/sでZnS-SiOをZnSとSiOの体積比率が80:20となる条件で、層厚が10.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Preparation of first intermediate layer (ZnS-SiO 2 ))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, film formation rate 0.15 nm using an Anelva L-430S-FHS sputtering apparatus. ZnS—SiO 2 was RF sputtered at / s under the condition that the volume ratio of ZnS to SiO 2 would be 80:20. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1中間層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度15℃、形成速度1.5nm/sでAgを厚さ7.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first intermediate layer was formed was made of Agnel L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 15 ° C., and formation rate 1.5 nm / s. RF sputtering was performed to a thickness of 7.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(ZnO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (ZnO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. ZnO was RF sputtered to have a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (第2中間層(ZnS-SiO)の形成)
 次いで、第2硫化防止層を形成したPETフィルム上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ZnS-SiOをZnSとSiOの体積比率が80:20となる条件で、層厚が10.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second intermediate layer (ZnS—SiO 2 ))
Next, L-430S-FHS manufactured by Anerva Co. is used on the PET film on which the second antisulfurization layer is formed, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s. ZnS—SiO 2 was RF sputtered so that the layer thickness was 10.0 nm under the condition that the volume ratio of ZnS to SiO 2 was 80:20. The target-substrate distance was 86 mm.
 (第2高屈折率層(ITO)の形成)
 次いで、第2中間層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が30.0nmとなるようITOをRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして透明導電体5を作製した。
(Formation of second high refractive index layer (ITO))
Next, the PET film on which the second intermediate layer was formed was subjected to Ar20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. ITO was RF sputtered to a layer thickness of 30.0 nm. The target-substrate distance was 86 mm. Thus, the transparent conductor 5 was produced.
 〔透明導電体6の作製〕
 透明基板としてシクロオレフィンポリマー(略称:COP)フィルム(日本ゼオン製「ゼオノアZ14」厚さ50μm)を用い、COPフィルム上に、下記の方法に従って、スパッタ法により第1高屈折率層(GZO)/第1中間層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2中間層(ZnS)/第2高屈折率層(GZO)をこの順に積層した。
[Preparation of transparent conductor 6]
Using a cycloolefin polymer (abbreviation: COP) film (“ZEONOR Z14”, 50 μm thick, manufactured by ZEON Corporation) as a transparent substrate, the first high refractive index layer (GZO) / First intermediate layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second intermediate layer (ZnS) / second high refractive index layer (GZO) Were stacked in this order.
 (第1高屈折率層(GZO)の形成)
 透明基板(COP)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が30.0nmとなるようGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first high refractive index layer (GZO))
On a transparent substrate (COP), using an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.07 nm / second, and layer thickness 30. GZO was RF sputtered to 0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS)層の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.22nm/秒で、層厚が10.0nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first intermediate layer (ZnS) layer)
Next, the COP film on which the first high-refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.22 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, ZnS was RF sputtered to a layer thickness of 10.0 nm. The target-substrate distance was 86 mm.
 (第1硫化防止層(GZO)の形成)
 次いで、第1中間層を形成した、COPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が1.0nmとなるようGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the COP film on which the first intermediate layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.07 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO was RF sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成した、COPフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度20℃、形成速度2.5nm/sで、層厚が7.0nmとなるようAgをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the COP film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 20 ° C., formation rate 2.5 nm / s. Then, Ag was RF-sputtered so that the layer thickness became 7.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が1.0nmとなるようGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.07 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was RF sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2中間層(ZnS)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.22nm/秒で、層厚が10.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second intermediate layer (ZnS))
Next, the COP film on which the second antisulfation layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.22 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, RF sputtering was performed so that the layer thickness was 10.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO)の形成)
 次いで、第2中間層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が30.0nmnmとなるようGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして、透明導電体6を作製した。
(Formation of second high refractive index layer (GZO))
Next, the COP film on which the second intermediate layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.07 nm / second using an Anelva L-430S-FHS sputtering apparatus. GZO was RF sputtered to have a layer thickness of 30.0 nm. The target-substrate distance was 86 mm. Thus, the transparent conductor 6 was produced.
 〔透明導電体7及び8の作製〕
 透明導電体6の作製において、表1で示したように第2中間層と、第2高屈折率層の層厚を変えて、透明導電体6の作製と同様にして透明導電体7及び8を作製した。層厚はスパッタ時間を調整することで行った。
[Production of transparent conductors 7 and 8]
In the production of the transparent conductor 6, as shown in Table 1, the transparent conductors 7 and 8 were changed in the same manner as the production of the transparent conductor 6 by changing the layer thicknesses of the second intermediate layer and the second high refractive index layer. Was made. The layer thickness was adjusted by adjusting the sputtering time.
 〔透明導電体9の作製〕
 (第1高屈折率層(IGZO)の形成)
 透明基板(前記COPフィルム)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.05nm/秒で、層厚が36.0nmとなるようIGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
[Preparation of transparent conductor 9]
(Formation of first high refractive index layer (IGZO))
On a transparent substrate (the COP film), using an L-430S-FHS sputtering apparatus manufactured by Anerva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.05 nm / second, and layer thickness IGZO was RF sputtered to 36.0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS)層の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.22nm/秒で、層厚が3.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first intermediate layer (ZnS) layer)
Next, the COP film on which the first high-refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.22 nm / L using an Anelva L-430S-FHS sputtering apparatus. Second, RF sputtering was performed so that the layer thickness became 3.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1中間層を形成した、COPフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度30℃、形成速度3.0nm/sで、層厚が7.0nmとなるようAgをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the COP film on which the first intermediate layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 30 ° C., formation rate 3.0 nm / s, Ag was RF sputtered to a layer thickness of 7.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(ZnO)の形成)
 次いで、透明金属層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZn0をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (ZnO))
Next, the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Zn0 was RF sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (第2中間層(ZnS)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.22nm/秒で、層厚が5.0nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second intermediate layer (ZnS))
Next, the COP film on which the second antisulfation layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.22 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, ZnS was RF sputtered so that the layer thickness was 5.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(IGZO)の形成)
 次いで、第2中間層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.05nm/秒で、層厚が35.0nmとなるようIGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして透明導電体9を作製した。
(Formation of second high refractive index layer (IGZO))
Next, the COP film on which the second intermediate layer was formed was subjected to Ar20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.05 nm / second using an Anelva L-430S-FHS sputtering apparatus. IGZO was RF sputtered so that the layer thickness was 35.0 nm. The target-substrate distance was 86 mm. In this way, a transparent conductor 9 was produced.
 〔透明導電体10の作製〕
 (第1高屈折率層(Nb)の形成)
 透明基板(前記COPフィルム)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.04nm/秒で、層厚が35.0nmとなるようNbをRFスパッタした。ターゲット-基板間距離は86mmであった。
[Preparation of transparent conductor 10]
(Formation of the first high refractive index layer (Nb 2 O 5 ))
On a transparent substrate (the COP film), using an L-430S-FHS sputtering apparatus manufactured by Anerva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.04 nm / second, and layer thickness Nb 2 O 5 was RF sputtered to 35.0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS-SnO)層の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、成膜レート0.04nm/sでZnS-SnOをZnSとSnOの体積比率が80:20となる条件で、層厚が5.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first intermediate layer (ZnS—SnO 2 ) layer)
Next, the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, film formation rate 0.04 nm using an Anelva L-430S-FHS sputtering apparatus. ZnS—SnO 2 was RF sputtered at / s under the condition that the volume ratio of ZnS to SnO 2 was 80:20. The target-substrate distance was 86 mm.
 (第1硫化防止層(ZnO)の形成)
 次いで、第1中間層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZn0をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (ZnO))
Next, the COP film on which the first intermediate layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure of 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus. ZnO was RF sputtered to have a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1硫化防止層を形成した、COPフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度-15℃、形成速度1.1nm/sで、層厚が7.5nmとなるようAgをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the COP film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature −15 ° C., formation rate 1.1 nm / s. Then, RF sputtering of Ag was performed so that the layer thickness became 7.5 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(In)の形成)
 次いで、透明金属層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が40.0nmとなるようInをRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして透明導電体10を作製した。
(Formation of Second High Refractive Index Layer (In 2 O 3 ))
Next, the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. In 2 O 3 was RF sputtered to have a layer thickness of 40.0 nm. The target-substrate distance was 86 mm. Thus, the transparent conductor 10 was produced.
 〔透明導電体11の作製〕
 (第1高屈折率層(TiO)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにTiOを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、形成速度0.3nm/秒の条件でポリカーボネートポリマー(略称:PC)フィルム(カネカ製「エルメックR40#140フィルム」厚さ40μm)上にTiOを蒸着して、層厚が35nmの第1高屈折率層を形成した。
[Preparation of transparent conductor 11]
(Formation of first high refractive index layer (TiO 2 ))
As a vacuum deposition apparatus, using the BMC-800T deposition apparatus Synchron Corp., a TiO 2 loaded into molybdenum resistance heating boat, after the pressure in the vacuum tank was reduced to 1 × 10 -4 Pa, it was electrically heated to the resistance heating boat TiO 2 was vapor-deposited on a polycarbonate polymer (abbreviation: PC) film (Kaneka's “Elmec R40 # 140 film” thickness 40 μm) under the conditions of a formation rate of 0.3 nm / second, and a first high thickness of 35 nm was obtained. A refractive index layer was formed.
 (第1中間層(ZnS)層の形成)
 次いで、第1高屈折率層を形成したPCフィルムを、上記の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、PCフィルムの第1高屈折率層上に、形成速度2.7nm/秒の条件で真空蒸着して、層厚が5.0nmの第1中間層を形成した。
(Formation of first intermediate layer (ZnS) layer)
Next, the PC film on which the first high refractive index layer was formed was fixed to the above-described vacuum vapor deposition apparatus, ZnS was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. Next, the resistance heating boat is energized and heated, and vacuum-deposited on the first high refractive index layer of the PC film at a formation speed of 2.7 nm / second to form a first intermediate layer having a layer thickness of 5.0 nm. did.
 (透明金属層(Ag)の形成)
 次いで、第1中間層を形成したPCフィルムを、上記と同様の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートにAgを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、PCフィルム上に真空蒸着して、層厚が8.0nmの透明金属層を、形成速度0.5nm/秒、温度0℃の成膜条件で形成した。
(Formation of transparent metal layer (Ag))
Next, the PC film on which the first intermediate layer was formed was fixed to the same vacuum evaporation apparatus as described above, Ag was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. Subsequently, the resistance heating boat was energized and heated, and vacuum-deposited on the PC film to form a transparent metal layer having a layer thickness of 8.0 nm under film forming conditions at a formation rate of 0.5 nm / second and a temperature of 0 ° C.
 (第2高屈折率層(TiO)の形成)
 次いで、透明金属層を形成したPCフィルムを、上記と同様の真空蒸着装置に固定し、モリブデン製抵抗加熱ボートにTiOを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、形成速度0.30nm/秒の条件でPCフィルム上に蒸着して、層厚が40.0nmの第2高屈折率層を形成して、透明導電体11を作製した。
(Formation of second high refractive index layer (TiO 2 ))
Next, the PC film on which the transparent metal layer was formed was fixed to a vacuum deposition apparatus similar to the above, TiO 2 was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was depressurized to 1 × 10 −4 Pa. The heating boat was energized and heated, and vapor-deposited on the PC film at a forming speed of 0.30 nm / second to form a second high refractive index layer having a layer thickness of 40.0 nm, thereby producing a transparent conductor 11. .
 〔透明導電体12の作製〕
 (第1高屈折率層(SnO)の形成)
 厚さ50μmの薄ガラス基板(松浪硝子工業(株)製)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が35.0nmとなるようSnOをRFスパッタした。ターゲット-基板間距離は86mmであった。
[Preparation of transparent conductor 12]
(Formation of first high refractive index layer (SnO 2 ))
Using an Anelva L-430S-FHS sputtering apparatus on a thin glass substrate (made by Matsunami Glass Industry Co., Ltd.) having a thickness of 50 μm, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate SnO 2 was RF sputtered at 0.03 nm / second so that the layer thickness was 35.0 nm. The target-substrate distance was 86 mm.
 (第1中間層(ZnS-ZrO)層の形成)
 次いで、第1高屈折率層を形成した薄ガラス基板を、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度ト0.15nm/sでZnS-ZrOをZnSとZrOの体積比率が80:20となる条件で、層厚が5.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first intermediate layer (ZnS—ZrO 2 ) layer)
Next, the thin glass substrate on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0. Using an Anelva L-430S-FHS sputtering apparatus. At 15 nm / s, ZnS—ZrO 2 was RF sputtered to a layer thickness of 5.0 nm under the condition that the volume ratio of ZnS to ZrO 2 was 80:20. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1中間層を形成した薄ガラスを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、温度5℃、形成速度1.8nm/sで、層厚が6.5nmとなるようAgをRFスパッタした。ターゲット-基板間距離は86mmであった。 
 (第2高屈折率層(AZO)の形成)
 次いで、透明金属層を形成した薄ガラスを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が40.0nmとなるようZn0をRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして、透明導電体12を作製した。
(Formation of transparent metal layer (Ag))
Next, the thin glass on which the first intermediate layer was formed was layered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, temperature 5 ° C., and formation rate 1.8 nm / s. Ag was RF-sputtered to a thickness of 6.5 nm. The target-substrate distance was 86 mm.
(Formation of second high refractive index layer (AZO))
Next, the thin glass on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus. Zn0 was RF sputtered to a layer thickness of 40.0 nm. The target-substrate distance was 86 mm. Thus, the transparent conductor 12 was produced.
 〔透明導電体13の作製〕
 透明基板として、クリアハードコート付きポリエチレンテレフタレートフィルム(PET/CHCフィルムと称する。)を用い、このPET/CHCフィルム上に、第1高屈折率層(ZnS含有層)/透明金属層(Ag)/第2硫化防止層(GZO)/第2中間層(ZnS含有層)/第2高屈折率層(ITO)を、この順に蒸着法により積層して、透明導電体13を作製した。
[Preparation of transparent conductor 13]
As a transparent substrate, a polyethylene terephthalate film with a clear hard coat (referred to as PET / CHC film) is used. On this PET / CHC film, a first high refractive index layer (ZnS-containing layer) / transparent metal layer (Ag) / A second conductor for preventing sulfurization (GZO) / second intermediate layer (ZnS-containing layer) / second high-refractive index layer (ITO) was laminated in this order by vapor deposition to produce a transparent conductor 13.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、形成速度2.7nm/秒の条件で、株式会社きもと製PET/CHCフィルム(G1SBF:厚さ125μm、屈折率1.59)上にZnSを蒸着して、層厚が40.0nmの第1高屈折率層を形成した。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. ZnS was vapor-deposited on a PET / CHC film (G1SBF: thickness 125 μm, refractive index 1.59) manufactured by Kimoto Co., Ltd. under the condition of a forming speed of 2.7 nm / second, and the first thickness of 40.0 nm was obtained. A refractive index layer was formed.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPET/CHCフィルムを、上記の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートにAgを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、PET/CHCフィルム上の第1高屈折率層に真空蒸着して、層厚が7.5nmの透明金属層を、形成速度1.8nm/秒、温度5℃の成膜条件で形成した。
(Formation of transparent metal layer (Ag))
Next, the PET / CHC film on which the first high refractive index layer was formed was fixed to the above-described vacuum evaporation apparatus, Ag was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. . Subsequently, the resistance heating boat is energized and heated, and vacuum-deposited on the first high refractive index layer on the PET / CHC film to form a transparent metal layer having a layer thickness of 7.5 nm at a formation rate of 1.8 nm / second and a temperature of 5 It formed on the film-forming conditions of ℃.
 (第2硫化防止層(GZO)層の形成)
 次いで、透明金属層を形成したPET/CHCフィルムを、上記の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートにGZOを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、PET/CHCフィルム上の透明金属層上に、形成速度0.07nm/秒の条件で真空蒸着して、層厚が1.0nmの第2硫化防止層を形成した。
(Formation of second anti-sulfurization layer (GZO) layer)
Next, the PET / CHC film on which the transparent metal layer was formed was fixed to the above vacuum deposition apparatus, GZO was loaded into a molybdenum resistance heating boat, and the vacuum chamber was depressurized to 1 × 10 −4 Pa. Next, the resistance heating boat is energized and heated, and vacuum-deposited on the transparent metal layer on the PET / CHC film at a forming speed of 0.07 nm / second to form a second antisulfurization layer having a layer thickness of 1.0 nm. Formed.
 (第2中間層(ZnS)層の形成)
 次いで、第2硫化防止層を形成したPET/CHCフィルムを、上記の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、PET/CHCフィルム上の第2硫化防止層上に、形成速度0.5nm/秒の条件で真空蒸着して、層厚が2.0nmの第2中間層を形成した。
(Formation of second intermediate layer (ZnS) layer)
Next, the PET / CHC film on which the second anti-sulfuration layer was formed was fixed to the above-described vacuum vapor deposition apparatus, ZnS was loaded into a resistance heating boat made of molybdenum, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. Next, the resistance heating boat is energized and heated, and vacuum-deposited on the second anti-sulfurization layer on the PET / CHC film at a formation rate of 0.5 nm / second to form a second intermediate layer having a layer thickness of 2.0 nm. Formed.
 (第2高屈折率層(ITO)の形成)
 次いで、透明金属層を形成したPET/CHCフィルムを、上記と同様の真空蒸着装置に固定し、モリブデン製抵抗加熱ボートにITOを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、形成速度2.7nm/秒の条件でPET/CHCフィルム上の第2中間層(ZnS)層に蒸着して、層厚が41.0nmの第2高屈折率層を形成して、透明導電体13を作製した。
(Formation of second high refractive index layer (ITO))
Next, the PET / CHC film on which the transparent metal layer was formed was fixed to a vacuum deposition apparatus similar to the above, ITO was loaded into a molybdenum resistance heating boat, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. A resistance heating boat is energized and heated, and is deposited on the second intermediate layer (ZnS) layer on the PET / CHC film at a forming speed of 2.7 nm / sec. To form a transparent conductor 13.
 〔透明導電体14の作製〕
 東洋紡製PET(コスモシャインA4300 厚さ50μm)からなる透明基板上に、第1高屈折率層(ITO)/透明金属層(APC)/第2高屈折率層(ITO)を順に積層した。
[Preparation of transparent conductor 14]
A first high refractive index layer (ITO) / transparent metal layer (APC) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm).
 (第1高屈折率層、及び第2高屈折率層(ITO)の形成)
第1高屈折率層、及び第2高屈折率層(ITO))は、それぞれ透明導電体1の作製における第1高屈折率層と第2高屈折率層と同様の方法で、ただし、厚さを表1で示したように、それぞれ40.0nmとなるようにスパッタ時間を調整して形成した。
(Formation of first high refractive index layer and second high refractive index layer (ITO))
The first high-refractive index layer and the second high-refractive index layer (ITO) are respectively the same methods as the first high-refractive index layer and the second high-refractive index layer in the production of the transparent conductor 1, but the thickness is As shown in Table 1, the sputtering time was adjusted so as to be 40.0 nm, respectively.
 (透明金属層(APC)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、形成速度2.5Å/sで、AgとPdとCuとの合金APC(Ag:Pd:Cu=98.6:1.2:0.2(質量比))を、厚さが9.0nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。このようにして透明導電体14を作製した。
(Formation of transparent metal layer (APC))
Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, formation rate 2.5 Å / s, alloy APC of Ag, Pd and Cu (Ag: Pd : Cu = 98.6: 1.2: 0.2 (mass ratio)) was RF-sputtered to a thickness of 9.0 nm. The target-substrate distance was 86 mm. In this way, a transparent conductor 14 was produced.
 〔透明導電体15の作製〕
 コーニング社製ガラス基板(#7059、厚さ1.1mm)からなる透明基板上に、第1高屈折率層(ZnS-SiO)/透明金属層(Ag)/第2高屈折率層(ZnS-SiO)を順に積層した。
[Preparation of transparent conductor 15]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high refractive index layer (ZnS) on a transparent substrate made of Corning glass substrate (# 7059, thickness 1.1 mm). -SiO 2 ) were sequentially laminated.
 (第1高屈折率層及び第2高屈折率層(ZnS-SiO)の形成)
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ZnS-SiOをZnSとSiOの体積比率が80:20となる条件で、層厚がそれぞれ45.0nmとなるようRFスパッタして第1高屈折率層及び第2高屈折率層(ZnS-SiO)を形成した。ターゲット-基板間距離は86mmであった。
(Formation of first high refractive index layer and second high refractive index layer (ZnS-SiO 2 ))
Using ANELVA of L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, formation rate at 0.15 nm / s, a ZnS-SiO 2 ZnS and SiO 2 ratio by volume The first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed by RF sputtering so that the layer thickness was 45.0 nm under the condition of 80:20. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 Arガス0.6Paの雰囲気中、0.55W/cm2の電力密度で、厚さが11.0nmとなるよう、純度4NのAgターゲットを直流スパッタした。このようにして透明導電体15を作製した。
(Formation of transparent metal layer (Ag))
In an atmosphere of Ar gas 0.6 Pa, a 4N purity Ag target was DC sputtered at a power density of 0.55 W / cm 2 and a thickness of 11.0 nm. In this way, a transparent conductor 15 was produced.
 ≪パターン状に形成された透明導電体の作製≫
 上記のように作製した透明導電体1~15のそれぞれに対して以下のようにしてパターニングを施し、パターン状に形成された透明導電体1~15を作製した。
≪Preparation of patterned transparent conductor≫
Each of the transparent conductors 1 to 15 produced as described above was patterned as follows to produce transparent conductors 1 to 15 formed in a pattern.
 次いで、上記作製した透明導電体に対し、図4に記載のパターニング方法に従って、図2に記載のように、導通領域aと、絶縁領域bを有するパターンを形成した。 Next, a pattern having a conductive region a and an insulating region b was formed as shown in FIG. 2 on the produced transparent conductor according to the patterning method shown in FIG.
 レジスト膜7を形成する前に、上記作製した透明導電体について、超音波洗浄処理を行った。洗浄液として、花王社製の洗剤「クリンスル―3030(10%)」を用いて、超音波洗浄処理を、25℃で4分間行った。次いで、25℃の純水で水洗を5回行った後、25℃の純水にて超音波洗浄を4分間で2回行った。最後に、スピンコータで水を飛散させたのち、オーブンで乾燥させた。 Before forming the resist film 7, the produced transparent conductor was subjected to ultrasonic cleaning treatment. An ultrasonic cleaning treatment was performed at 25 ° C. for 4 minutes using a detergent “Clean 30-30 (10%)” manufactured by Kao Corporation as a cleaning solution. Subsequently, after washing 5 times with pure water at 25 ° C., ultrasonic washing was performed twice with pure water at 25 ° C. for 4 minutes. Finally, water was scattered with a spin coater and then dried in an oven.
 次いで、洗浄した透明導電体上に、レジストとして、東京応化工業社製のOFPR-800LBをスピンコーティング法により、2000rpmで30秒間の塗布、乾燥を行い、厚さ1μmのレジスト膜(7)を形成した。 Next, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. is applied as a resist on the cleaned transparent conductor by spin coating method and dried at 2000 rpm for 30 seconds to form a resist film (7) having a thickness of 1 μm. did.
 次いで、マスク8を介して、60mJの条件で紫外線を照射し、現像液として、トクヤマ社製のポジ型フォトレジスト用現像液「トクソーSD-1」(テトラメチルアンモニウムヒドロキシド)を用いて現像した。 Next, ultraviolet rays were irradiated through the mask 8 under conditions of 60 mJ, and developed using a developer for positive photoresist “Tokuso SD-1” (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation as a developer. .
 次いで、エッチング液としては、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)を用い、図2に示すように、透明基板のみを有する絶縁領域bと、透明電極ユニットEUを有する通電領域aからなる電極パターンを形成した。また、ライン状の絶縁領域bの幅は16μmとした。 Next, as the etching solution, “mixed liquid SEA-5” (phosphoric acid: 55% by mass, acetic acid: 30% by mass, water and other components: 15% by mass) manufactured by Kanto Chemical Co., Ltd. was used, as shown in FIG. An electrode pattern comprising an insulating region b having only a transparent substrate and a current-carrying region a having a transparent electrode unit EU was formed. The width of the line-shaped insulating region b was 16 μm.
 最後に、アセトンを用いて、残留しているレジスト膜7を剥離して、それぞれ透明導電体1~15に対応する、パターン状に形成された透明導電体1~15を得た。 Finally, the remaining resist film 7 was peeled off using acetone to obtain patterned transparent conductors 1 to 15 corresponding to the transparent conductors 1 to 15, respectively.
 ≪第2高屈折率層のみの形成≫
 第2高屈折率層のみの導電性を調べるため、透明導電体1~15のそれぞれについて第2高屈折率層を形成した同条件で、ガラス上に別途第2高屈折率層のみを形成した。
<< Formation of second high refractive index layer only >>
In order to examine the conductivity of only the second high refractive index layer, only the second high refractive index layer was separately formed on the glass under the same conditions as the second high refractive index layer formed for each of the transparent conductors 1 to 15. .
 なお、以上の透明導電体の作製、又は表1で用いた略称の詳細は、以下のとおりである。 The details of the above-mentioned production of the transparent conductor or the abbreviations used in Table 1 are as follows.
 COP:シクロオレフィンポリマー
 PET:ポリエチレンテレフタレート
 PC:ポリカーボネート
 ITO:酸化インジウムスズ
 GZO:ガリウム亜鉛酸化物
 IGZO:インジウムガリウム亜鉛酸化物
 AZO:アルミニウムによりドープされた亜鉛酸化物
 APC:AgとPdとCuとの合金(Ag:Pd:Cu=98.6:1.2:0.2(質量比))
 *1:ZnS-SiO
 *2:ZnS-SnO
 *3:ZnS-ZrO
 《透明導電体の評価》
 上記作製した各透明導電体について、下記の各特性値の測定及び評価を行った。
COP: cycloolefin polymer PET: polyethylene terephthalate PC: polycarbonate ITO: indium tin oxide GZO: gallium zinc oxide IGZO: indium gallium zinc oxide AZO: zinc oxide doped with aluminum APC: alloy of Ag, Pd and Cu (Ag: Pd: Cu = 98.6: 1.2: 0.2 (mass ratio))
* 1: ZnS-SiO 2
* 2: ZnS-SnO 2
* 3: ZnS—ZrO 2
<< Evaluation of transparent conductor >>
About each produced said transparent conductor, the following characteristic value was measured and evaluated.
 〔耐湿性〕
 耐湿性の評価は、水分により腐食された透明金属層の腐食数を観察することで行った。具体的には、温度65℃、相対湿度95%の環境下で透明導電体1~15を100時間さらしたのち、上記作製した各透明導電体30mm×30mmの面積範囲を、100倍のルーペを用いて観察し、サイズ20μm以上の腐食数を測定し、下記の基準に従って腐食耐性を評価した。
[Moisture resistance]
Evaluation of moisture resistance was performed by observing the number of corrosion of the transparent metal layer corroded by moisture. Specifically, after the transparent conductors 1 to 15 are exposed for 100 hours in an environment of a temperature of 65 ° C. and a relative humidity of 95%, the area range of each of the produced transparent conductors 30 mm × 30 mm is adjusted with a 100 times magnifier. The number of corrosions having a size of 20 μm or more was measured, and corrosion resistance was evaluated according to the following criteria.
 〇:全面積範囲で、腐食の発生が認められない(腐食数:0個)
 △:全面積範囲で、腐食の発生数が1個以上、5個未満である
 ×:全面積範囲で、腐食の発生数が5個以上である
 〔平均透過率〕
 パターン状に形成された透明導電体を用いて導通領域における平均透過率を以下の方法に従って測定した。
○: Corrosion is not observed over the entire area (corrosion number: 0)
Δ: The number of occurrences of corrosion is 1 or more and less than 5 in the entire area range ×: The number of occurrences of corrosion is 5 or more in the entire area range [Average transmittance]
Using the transparent conductor formed in a pattern, the average transmittance in the conduction region was measured according to the following method.
 パターン状に形成された透明導電体1~15の第2高屈折率層側の表面に、マッチングオイル(ニコン社製 屈折率=1.515)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm)とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の450~800nmの波長範囲における平均透過率(%)を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。 Matching oil (refractive index = 1.515 manufactured by Nikon Corporation) was applied to the surface of the transparent conductors 1 to 15 formed in a pattern on the second high refractive index layer side. Then, a transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm) manufactured by Corning) were bonded together, and from the alkali-free glass substrate side, the transparent conductor 450 to 800 nm The average transmittance (%) in the wavelength range was measured, and at this time, the measuring light was incident on the conduction region from an angle inclined by 5 ° with respect to the normal line of the surface of the alkali-free glass substrate. The light transmittance and reflectance were measured with a spectrophotometer U4100.
 なお、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を考慮し、透過率の測定値に8%足した値を透明導電体の各平均透過率とした。以上の測定値をもとに、以下のランク付けを行った。 Note that the transmittance is measured in consideration of the value obtained by subtracting the reflection (4%) at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere (4%). A value obtained by adding 8% to the value was defined as each average transmittance of the transparent conductor. Based on the above measured values, the following ranking was performed.
 ◎:平均透過率が95%以上である
 ○:平均透過率が92%以上95%未満である
 △:平均透過率が89%以上92%未満である
 ×:平均透過率が89%未満である
 〔電気接続性〕
 透明導電体1~15のそれぞれについて、導通試験を行った。すなわち第2高屈折率層側の表面において、5cm離した距離で、HIOKI LCR HiTester(日置電機社製、型番3522-50)を用い、5V 100HZの交流を用いて抵抗値を測定した。その値を以下のようにランク付けして評価した。
◎: Average transmittance is 95% or more ○: Average transmittance is 92% or more and less than 95% △: Average transmittance is 89% or more and less than 92% ×: Average transmittance is less than 89% [Electrical connectivity]
Each of the transparent conductors 1 to 15 was subjected to a continuity test. That is, on the surface on the second high refractive index layer side, a resistance value was measured using a HIKI LCR HiTester (manufactured by Hioki Electric Co., model number 3522-50) at a distance of 5 cm and using an alternating current of 5 V 100 HZ. The values were ranked and evaluated as follows.
 ○:5cm離した距離でテスターを当て、200Ω以下の抵抗値を得た
 △:5cm離した距離でテスターを当て、200Ω超1000Ω以下の抵抗値を得た
 ×:5cm離した距離でテスターを当て、1000Ω超の抵抗値を得た
 この値が1000Ω以下であれば、タッチパネル用電極として、用いることができる。
○: A tester was applied at a distance of 5 cm, and a resistance value of 200 Ω or less was obtained. Δ: A tester was applied at a distance of 5 cm, and a resistance value of 200 Ω or more was obtained. 1000: A tester was applied at a distance of 5 cm. When the resistance value is 1000Ω or less, it can be used as a touch panel electrode.
 〔第2高屈折率層の導電性の測定〕
 第2高屈折率層のみを形成した試料のそれぞれについて、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」を接触させて、第2高屈折率層の導電性を評価した。その結果から第2高屈層の比抵抗を算出し、比抵抗を以下のようにランク付けした。
[Measurement of conductivity of second high refractive index layer]
Each of the samples on which only the second high refractive index layer was formed was brought into contact with a resistivity meter “Loresta EP MCP-T360” manufactured by Mitsubishi Chemical Analytech Co., and the conductivity of the second high refractive index layer was evaluated. From the result, the specific resistance of the second highly bent layer was calculated, and the specific resistance was ranked as follows.
 なお、比抵抗の計算は「ロレスタEP MCP-T360」で得られたシート抵抗結果から、以下の関係式を用いて換算した。 The specific resistance was calculated from the sheet resistance result obtained by “Loresta EP MCP-T360” using the following relational expression.
 Rs=ρ/t
Rs:シート抵抗
ρ:比抵抗
t:膜厚
 例えば、シート抵抗(Rs)が100Ω/□で、厚さ(t)が100nmのとき、比抵抗ρは、100×100nm=10-5Ω・m=10-3Ω・cmと計算できる。
Rs = ρ / t
Rs: sheet resistance ρ: specific resistance t: film thickness For example, when the sheet resistance (Rs) is 100Ω / □ and the thickness (t) is 100 nm, the specific resistance ρ is 100 × 100 nm = 10 −5 Ω · m = 10 −3 Ω · cm.
 ここで層厚は、あらかじめエリプソメータで測定しておいた値を用いた。 Here, for the layer thickness, a value measured in advance with an ellipsometer was used.
 透明導電体の構成と、以上の評価により得られた結果を表1に示す。 Table 1 shows the structure of the transparent conductor and the results obtained by the above evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかなように、本発明の透明導電体1~7、及び9~13は、比較の透明導電体8、14及び15に比べて、耐湿性、平均透過率及び電気接続性に優れていることが分かる。 As is clear from the results shown in Table 1, the transparent conductors 1 to 7 and 9 to 13 of the present invention have higher moisture resistance, average transmittance, and electrical conductivity than the comparative transparent conductors 8, 14 and 15. It can be seen that the connectivity is excellent.
 本発明の透明導電体は、光透過性、耐湿性及び電気接続性に優れ、タッチパネル材料、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、太陽電池等の各種装置に好ましく適用することができる。 The transparent conductor of the present invention is excellent in light transmittance, moisture resistance and electrical connectivity, and includes various devices such as touch panel materials, liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, and solar cells. It can be preferably applied to.
 1 透明導電体
 2、2-1、2-2 透明基板
 3A 第1高屈折率層
 3B 第2高屈折率層
 4 透明金属層
 5 中間層
 5A 第1中間層
 5B 第2中間層
 6 硫化防止層
 6A 第1硫化防止層
 7 レジスト膜
 7A 除去するレジスト膜
 8 マスク
 9 露光機
 10 エッチング液
 13 前面版
 21 タッチパネル
 a 導通領域
 b 絶縁領域
 EU、EU-1、EU-2 透明電極ユニット
DESCRIPTION OF SYMBOLS 1 Transparent conductor 2, 2-1, 2-2 Transparent substrate 3A 1st high refractive index layer 3B 2nd high refractive index layer 4 Transparent metal layer 5 Intermediate layer 5A 1st intermediate layer 5B 2nd intermediate layer 6 Sulfidation prevention layer 6A First antisulfuration layer 7 Resist film 7A Resist film to be removed 8 Mask 9 Exposure machine 10 Etching solution 13 Front plate 21 Touch panel a Conduction area b Insulation area EU, EU-1, EU-2 Transparent electrode unit

Claims (5)

  1.  透明基板と、前記透明基板の屈折率より高い屈折率を有する第1高屈折率層と、銀を主成分として含有する透明金属層と、前記透明基板の屈折率より高い屈折率と導電性を有する第2高屈折率層とが、この順に積層された透明導電体であって、前記透明金属層と、前記第1又は第2高屈折率層との間の少なくとも一方に、硫化亜鉛を含有した中間層を有し、かつ前記透明金属層と前記第2高屈折率層との間に中間層を有するとき中間層の厚さが15nm以下であることを特徴とする透明導電体。 A transparent substrate, a first high refractive index layer having a refractive index higher than the refractive index of the transparent substrate, a transparent metal layer containing silver as a main component, and a refractive index and conductivity higher than the refractive index of the transparent substrate. The second high refractive index layer has a transparent conductor laminated in this order, and zinc sulfide is contained in at least one of the transparent metal layer and the first or second high refractive index layer. A transparent conductor, wherein the intermediate layer has a thickness of 15 nm or less when the intermediate layer is provided and the intermediate layer is provided between the transparent metal layer and the second high refractive index layer.
  2.  前記硫化亜鉛を含有した中間層と前記透明金属層との間に、金属酸化物、金属フッ化物、金属窒化物又は亜鉛の少なくともいずれかを含む硫化防止層をさらに有することを特徴とする請求項1に記載の透明導電体。 The anti-sulfurization layer containing at least one of a metal oxide, a metal fluoride, a metal nitride, or zinc is further provided between the intermediate layer containing zinc sulfide and the transparent metal layer. The transparent conductor according to 1.
  3.  前記透明金属層と、前記第1高屈折率層との間に、硫化亜鉛を含有した中間層を有することを特徴とする請求項1又は請求項2に記載の透明導電体。 3. The transparent conductor according to claim 1, further comprising an intermediate layer containing zinc sulfide between the transparent metal layer and the first high refractive index layer.
  4.  前記透明金属層と前記第1及び第2高屈折率層との間の両方に、硫化亜鉛を含有した中間層を有することを特徴とする請求項1又は請求項2に記載の透明導電体。 The transparent conductor according to claim 1 or 2, further comprising an intermediate layer containing zinc sulfide between both the transparent metal layer and the first and second high refractive index layers.
  5.  前記透明金属層が、パターン状に形成されていることを特徴とする請求項1から請求項4までのいずれか一項に記載の透明導電体。 The transparent conductor according to any one of claims 1 to 4, wherein the transparent metal layer is formed in a pattern.
PCT/JP2015/053731 2014-02-19 2015-02-12 Transparent conductor WO2015125677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504057A JPWO2015125677A1 (en) 2014-02-19 2015-02-12 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-029083 2014-02-19
JP2014029083 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125677A1 true WO2015125677A1 (en) 2015-08-27

Family

ID=53878182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053731 WO2015125677A1 (en) 2014-02-19 2015-02-12 Transparent conductor

Country Status (2)

Country Link
JP (1) JPWO2015125677A1 (en)
WO (1) WO2015125677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146321A (en) * 2015-01-30 2016-08-12 三菱マテリアル株式会社 Laminate transparent conductive film, laminate wiring film and method for producing laminate wiring film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239203A (en) * 1990-02-16 1991-10-24 Asahi Optical Co Ltd Surface high reflecting mirror
JP2005138363A (en) * 2003-11-05 2005-06-02 Ricoh Co Ltd Phase change-type optical recording medium
JP2010034577A (en) * 2003-08-25 2010-02-12 Asahi Glass Co Ltd Electromagnetic wave shielding laminate display employing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239203A (en) * 1990-02-16 1991-10-24 Asahi Optical Co Ltd Surface high reflecting mirror
JP2010034577A (en) * 2003-08-25 2010-02-12 Asahi Glass Co Ltd Electromagnetic wave shielding laminate display employing the same
JP2005138363A (en) * 2003-11-05 2005-06-02 Ricoh Co Ltd Phase change-type optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146321A (en) * 2015-01-30 2016-08-12 三菱マテリアル株式会社 Laminate transparent conductive film, laminate wiring film and method for producing laminate wiring film

Also Published As

Publication number Publication date
JPWO2015125677A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
JP2016081318A (en) Transparent conductor and touch panel
WO2015166850A1 (en) Transparent electroconductive film
JP6319302B2 (en) Transparent conductor and method for producing the same
JP6536575B2 (en) Transparent conductor and touch panel
JP2015156270A (en) Method of forming transparent electrode pattern
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP6344095B2 (en) Transparent conductor and touch panel
WO2015068738A1 (en) Transparent conductive body
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
WO2015125677A1 (en) Transparent conductor
WO2015087895A1 (en) Transparent conductive body
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
WO2015190227A1 (en) Transparent conductor manufacturing method
JP6256253B2 (en) Transparent conductor and touch panel
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP6493225B2 (en) Transparent conductive film
JP2016177940A (en) Method for producing transparent conductive body
WO2015011928A1 (en) Method for producing transparent conductive body
WO2015053371A1 (en) Transparent conductor
JP2015173050A (en) Method of producing transparent conductor and patterned transparent conductor
JP2016171226A (en) Etchant and patterning method of transparent conductor
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752656

Country of ref document: EP

Kind code of ref document: A1