WO2015122334A1 - 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス - Google Patents

光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス Download PDF

Info

Publication number
WO2015122334A1
WO2015122334A1 PCT/JP2015/053141 JP2015053141W WO2015122334A1 WO 2015122334 A1 WO2015122334 A1 WO 2015122334A1 JP 2015053141 W JP2015053141 W JP 2015053141W WO 2015122334 A1 WO2015122334 A1 WO 2015122334A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alignment
photo
structural unit
alignment layer
Prior art date
Application number
PCT/JP2015/053141
Other languages
English (en)
French (fr)
Inventor
麻美 本岡
奥山 健一
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014025936A external-priority patent/JP2015152743A/ja
Priority claimed from JP2014233518A external-priority patent/JP6519151B2/ja
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US15/118,039 priority Critical patent/US10017696B2/en
Priority to CN201580007517.6A priority patent/CN106030395B/zh
Priority to KR1020167021515A priority patent/KR102214075B1/ko
Publication of WO2015122334A1 publication Critical patent/WO2015122334A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/21Bromine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F220/68Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a thermosetting composition having photo-alignment used for an alignment layer.
  • liquid crystals are used in various optical elements such as retardation plates and polarizing plates by utilizing their orientation and anisotropy of physical properties such as refractive index, dielectric constant, and magnetic susceptibility. Applications are being studied.
  • An alignment layer is used to align the liquid crystal.
  • a method for forming the alignment layer for example, a rubbing method or a photo-alignment method is known.
  • the photo-alignment method does not generate static electricity or dust, which is a problem of the rubbing method, and can control the alignment process quantitatively. (For example, refer to Patent Document 1).
  • the alignment layer is required to have heat resistance, solvent resistance, etc. in addition to liquid crystal alignment ability.
  • the alignment layer may be exposed to heat or a solvent during the manufacturing process of various devices, or may be exposed to a high temperature when the various devices are used. When the alignment layer is exposed to a high temperature, the liquid crystal alignment ability may be significantly reduced.
  • Patent Document 2 in order to obtain stable liquid crystal alignment ability, a liquid crystal aligning agent containing a polymer component having a structure capable of crosslinking reaction by light and a structure crosslinked by heat, and light.
  • a liquid crystal aligning agent containing a polymer component having a structure capable of crosslinking reaction and a compound having a structure crosslinked by heat has been proposed.
  • Patent Document 3 discloses (A) an acrylic copolymer having a photodimerization site and a thermal crosslinking site in order to obtain excellent liquid crystal alignment ability, sufficient heat resistance, high solvent resistance and high transparency; (B) The thermosetting film formation composition which has a photo-alignment property containing a crosslinking agent is proposed. (B) A crosslinking agent couple
  • Patent Document 4 in order to obtain excellent liquid crystal alignment ability, sufficient heat resistance, high solvent resistance and high transparency, (A) an acrylic copolymer having a photodimerization site and a thermal crosslinking site, and (B ) A photo-alignment property comprising an acrylic polymer having at least one of a predetermined alkyl ester group and a hydroxyalkyl ester group and at least one of a carboxyl group and a phenolic hydroxy group, and (C) a crosslinking agent.
  • a thermosetting film-forming composition having been proposed.
  • the crosslinking agent is a thermosetting film-forming composition having a photo-alignment property, which is bonded to (A) the thermal crosslinking site of the acrylic copolymer and (B) the carboxyl group and the phenolic hydroxy group of the acrylic polymer. Can be cured by heating.
  • Patent Document 5 discloses (A) a compound having a photo-alignment group and a hydroxy group, and (B) a hydroxy group in order to obtain excellent liquid crystal alignment ability, sufficient heat resistance, high solvent resistance and high transparency. And a thermosetting film-forming composition having photo-alignment properties, which contains a polymer having at least one of carboxyl groups and (C) a crosslinking agent. (C) The crosslinking agent binds to the hydroxy group of the compound (A) and the hydroxy group and carboxyl group of the polymer (B), and the thermosetting film-forming composition having photo-alignment property can be cured by heating. .
  • thermosetting is performed to improve the heat resistance and solvent resistance of the alignment layer.
  • the hardness of the alignment layer increases, and the adhesion to the liquid crystal layer formed on the alignment layer may decrease.
  • Patent Documents 3 to 4 when an acrylic copolymer having a photodimerization site and a thermal crosslinking site is used and thermosetting is performed with a crosslinking agent, a network structure is formed inside the film, so that a high hardness Thus, there is a problem that the adhesion between the alignment layer and the liquid crystal layer formed thereon is lowered.
  • Patent Documents 3 to 4 disclose that the alignment layer formed using the thermosetting film-forming composition having the photo-alignment property described above has good alignment sensitivity, but the alignment regulating power is sufficient. However, there is room for improvement. Further, in order to increase the alignment regulating power, it is only necessary to increase the irradiation amount of polarized ultraviolet rays. In this case, the throughput is lowered.
  • the present invention has been made in view of the above problems, and in a thermosetting composition containing a copolymer having both a photo-alignment site and a thermal cross-linking site, liquid crystal alignment ability and adhesion to a liquid crystal layer. It is a main object to provide a thermosetting composition having a photo-alignment property and an alignment layer, a substrate with an alignment layer, a retardation plate and a device using the same.
  • the present invention contains a copolymer having a photoalignable structural unit represented by the following formula (1) and a thermally crosslinkable structural unit represented by the following formula (2).
  • a thermosetting composition having a photo-alignment characteristic is provided.
  • X represents a photo-alignment group
  • L 1 represents a divalent linking group or single bond
  • R 1 represents a hydrogen atom or a monovalent organic group
  • k represents 1 to 5
  • Y represents a thermally crosslinkable group
  • L 2 represents a divalent linking group or a single bond
  • R 2 represents a hydrogen atom or a monovalent organic group
  • l represents 1 to 5.
  • both the photo-alignable structural unit and the thermally crosslinkable structural unit of the copolymer have a styrene skeleton and contain a lot of ⁇ -electron systems. Therefore, when the alignment layer is formed using the thermosetting composition having photo-alignment property of the present invention, it is considered that an alignment layer having strong interaction with liquid crystal molecules and excellent liquid crystal alignment ability can be obtained. It is done. Furthermore, it is considered that the adhesion with the liquid crystal layer formed on the alignment layer can be improved by the interaction of the ⁇ electron system. Moreover, the thermosetting composition having photo-alignment property of the present invention has thermosetting properties, and an alignment layer having excellent heat resistance and solvent resistance can be obtained.
  • thermosetting composition having photo-alignment property of the present invention preferably further contains a cross-linking agent that binds to the heat cross-linkable group of the heat cross-linkable structural unit. It is because heat resistance and solvent resistance can be improved.
  • the thermally crosslinkable group constituent unit may have a crosslinkable group capable of self-crosslinking as the thermally crosslinkable group. This is because the thermally crosslinkable structural unit of the copolymer has a self-crosslinkable crosslinking group, so that it is not necessary to add a crosslinking agent separately, and photoreactivity can be increased and sensitivity can be improved.
  • the copolymer may further have a second thermally crosslinkable structural unit having a second thermally crosslinkable group capable of self-crosslinking. Since the second heat-crosslinkable structural unit of the copolymer has a second heat-crosslinkable group capable of self-crosslinking, it is not necessary to add a cross-linking agent separately, so that photoreactivity can be improved and sensitivity can be improved. It is.
  • the photo-alignment group is preferably a functional group that causes a photodimerization reaction or a photoisomerization reaction.
  • the photo-alignment group is preferably a cinnamoyl group.
  • the thermally crosslinkable group is preferably a hydroxy group. This is because the reactivity is high.
  • the structural units of the copolymer have a styrene unit.
  • the liquid crystal alignment ability and the adhesion to the liquid crystal layer are improved by the interaction of ⁇ electrons. It is thought that it can be made.
  • the present invention also provides a photodimerization structure of a photoalignable group possessed by the photoalignable structural unit represented by the above formula (1) and a thermally crosslinkable group possessed by the thermally crosslinkable structural unit represented by the above formula (2).
  • An alignment layer comprising a copolymer having a cross-linked structure is provided. According to the present invention, since the alignment layer contains a copolymer having a predetermined photodimerization structure and a crosslinked structure, excellent liquid crystal alignment ability, heat resistance and solvent resistance can be obtained.
  • the present invention also provides a photodimerization structure of a photoalignable group possessed by the photoalignable structural unit represented by the above formula (1) and a thermally crosslinkable group possessed by the thermally crosslinkable structural unit represented by the above formula (2).
  • an alignment layer containing a copolymer having a crosslinked structure wherein the photodimerization structure is a photodimerization structure of a cinnamoyl group.
  • the present invention also provides a photoisomerizable structure of a photoalignable group possessed by the photoalignable structural unit represented by the above formula (1) and a thermal crosslinkability possessed by the thermally crosslinkable structural unit represented by the above formula (2).
  • an alignment layer containing a copolymer having a cross-linked structure of groups is provided. According to the present invention, since the alignment layer contains a copolymer having a predetermined photoisomerization structure and a crosslinked structure, excellent liquid crystal alignment ability, heat resistance and solvent resistance can be obtained.
  • the present invention also provides a photoisomerizable structure of a photoalignable group possessed by the photoalignable structural unit represented by the above formula (1) and a thermal crosslinkability possessed by the thermally crosslinkable structural unit represented by the above formula (2).
  • the cross-linked structure is preferably a cross-linked structure formed by bonding the heat-crosslinkable group of the heat-crosslinkable structural unit and a crosslinking agent. It is because heat resistance and solvent resistance can be improved.
  • the cross-linked structure is a cross-linked structure of a self-crosslinkable cross-linking group that the thermal cross-linkable group constituent unit has as the heat cross-linkable group. This is because it is not necessary to add a cross-linking agent separately, and the photoreactivity can be increased and the sensitivity can be improved when forming the alignment layer.
  • the present invention also includes a substrate and an alignment layer-provided substrate comprising: a substrate; and an alignment layer formed on the substrate and formed from the thermosetting composition having the above-described photo-alignment property or the above-described alignment layer.
  • the alignment layer is formed from the thermosetting composition having the above-described photo-alignment property, or is the above-described alignment layer, so that the liquid crystal alignment ability and the adhesion with the liquid crystal layer are improved. An excellent alignment layer can be obtained.
  • the present invention also provides a retardation plate comprising the above-mentioned substrate with an alignment layer and a retardation layer formed on the alignment layer of the substrate with an alignment layer.
  • a retardation plate comprising the above-mentioned substrate with an alignment layer and a retardation layer formed on the alignment layer of the substrate with an alignment layer.
  • this invention provides the device characterized by having the alignment layer formed from the thermosetting composition which has the above-mentioned photo-orientation property, or the above-mentioned alignment layer.
  • the alignment layer is formed from the thermosetting composition having the above-described photo-alignment property or is the above-described alignment layer, the liquid crystal alignment ability and the adhesion with the liquid crystal layer are excellent. Therefore, a device having good optical characteristics can be obtained.
  • thermosetting composition having a photo-alignment property capable of forming an alignment layer excellent in liquid crystal alignment ability, adhesion to a liquid crystal layer, heat resistance and solvent resistance. Play.
  • thermosetting composition having the photo-alignment property of the present invention and the alignment layer, the substrate with the alignment layer, the retardation plate and the device using the same will be described in detail.
  • thermosetting composition having photo-alignment property of the present invention has a photo-alignment constitutional unit represented by the following formula (1) and a heat represented by the following formula (2). It contains a copolymer having a crosslinkable structural unit.
  • X represents a photo-alignment group
  • L 1 represents a divalent linking group or single bond
  • R 1 represents a hydrogen atom or a monovalent organic group
  • k represents 1 to 5
  • Y represents a thermally crosslinkable group
  • L 2 represents a divalent linking group or a single bond
  • R 2 represents a hydrogen atom or a monovalent organic group
  • l represents 1 to 5.
  • the copolymer in the present invention has a photoalignable structural unit represented by the above formula (1) and a thermally crosslinkable structural unit represented by the above formula (2). All of the crosslinkable structural units have a styrene skeleton and contain many ⁇ electron systems. In general, many liquid crystal molecules have an aromatic ring such as a benzene ring, and also include a ⁇ electron system. Therefore, the alignment layer formed from the thermosetting composition having the photoalignment property of the present invention has a strong interaction with liquid crystal molecules. Thereby, it becomes easy to control alignment of liquid crystal molecules, and it is considered that excellent liquid crystal alignment ability can be obtained. Moreover, it is considered that the alignment layer formed from the thermosetting composition having the photo-alignment property of the present invention has high adhesion to the liquid crystal layer formed on the alignment layer due to the interaction of the ⁇ electron system. .
  • thermosetting composition having photo-alignment property of the present invention has thermosetting property, and an alignment layer having excellent heat resistance and solvent resistance can be obtained.
  • thermosetting composition having photo-alignment property of the present invention will be described.
  • copolymer used in the present invention has a photo-alignable structural unit represented by the above formula (1) and a thermally crosslinkable structural unit represented by the above formula (2).
  • a photo-alignable structural unit represented by the above formula (1) and a thermally crosslinkable structural unit represented by the above formula (2).
  • each structural unit in the copolymer will be described.
  • Photoalignment structural unit The photoalignment structural unit in this invention is represented by following formula (1).
  • X represents a photo-alignment group
  • L 1 represents a divalent linking group or a single bond
  • R 1 represents a hydrogen atom or a monovalent organic group
  • k represents 1 to 5.
  • the photo-alignment structural unit is a portion that develops anisotropy by causing a photoreaction by light irradiation.
  • the photoreaction is preferably a photodimerization reaction or a photoisomerization reaction. That is, the photo-alignment structural unit is a photodimerization structural unit that develops anisotropy by generating a photodimerization reaction by light irradiation, or a light that exhibits anisotropy by generating a photoisomerization reaction by light irradiation.
  • An isomerized structural unit is preferred.
  • X in the above formula (1) is a photo-alignment group.
  • the photo-alignment group is a functional group that exhibits anisotropy by causing a photoreaction by light irradiation, and is preferably a functional group that causes a photodimerization reaction or a photoisomerization reaction.
  • Examples of the photo-alignment group causing the photodimerization reaction include a cinnamoyl group, a chalcone group, a coumarin group, an anthracene group, a quinoline group, an azobenzene group, and a stilbene group.
  • the benzene ring in these functional groups may have a substituent. Any substituent that does not interfere with the photodimerization reaction may be used, and examples thereof include an alkyl group, an aryl group, a cycloalkyl group, an alkoxy group, a hydroxy group, a halogen atom, a trifluoromethyl group, and a cyano group.
  • the photo-alignment group that causes a photoisomerization reaction is preferably a group that causes a cis-trans isomerization reaction, and examples thereof include a cinnamoyl group, a chalcone group, an azobenzene group, and a stilbene group.
  • the benzene ring in these functional groups may have a substituent. Any substituent that does not interfere with the photoisomerization reaction may be used, and examples thereof include an alkoxy group, an alkyl group, a halogen atom, a trifluoromethyl group, and a cyano group.
  • the photo-alignment group is preferably a cinnamoyl group.
  • the cinnamoyl group is preferably a group represented by the following formulas (3-1) and (3-2).
  • R 11 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, or a cycloalkyl group having 1 to 18 carbon atoms.
  • the alkyl group, aryl group and cycloalkyl group may be bonded via an ether bond, ester bond, amide bond or urea bond, and may have a substituent.
  • R 12 to R 15 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a cycloalkyl group having 1 to 18 carbon atoms, or an alkyl group having 1 to 18 carbon atoms.
  • the alkyl group, aryl group and cycloalkyl group may be bonded via an ether bond, ester bond, amide bond or urea bond, and may have a substituent.
  • R 16 and R 17 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms.
  • R 21 to R 25 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms.
  • alkyl group, aryl group and cycloalkyl group may be bonded via an ether bond, ester bond, amide bond or urea bond, and may have a substituent.
  • R 26 and R 27 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms.
  • the benzene ring of the styrene skeleton may be a benzene ring of the cinnamoyl group.
  • L 1 in the above formula (1) is a divalent linking group or a single bond.
  • the photoalignable group X is directly bonded to the styrene skeleton.
  • the divalent linking group include an ether bond, a thioether bond, an ester bond, a thioester bond, a carbonyl bond, a thiocarbonyl bond, an alkylene group, an arylene group, a cycloalkylene group, and combinations thereof.
  • —O—, —S—, —COO—, —COS—, —CO—, —OCO—, —OCO (CH 2 ) n COO—, —OCO (CH 2 CH 2 O) m COO -, -OCOC 6 H 4 O-, -OCOC 6 H 10 O-, -COO (CH 2 ) n O-, -COO (CH 2 CH 2 O) m- , -COOC 6 H 4 O-, -COOC 6 H 10 O—, —O (CH 2 ) n O—, —O (CH 2 CH 2 O) m —, —OC 6 H 4 O—, —OC 6 H 10 O—, — (CH 2 ) n O- and the like can be mentioned.
  • n is 1 to 20
  • m is 1 to 10.
  • R 1 in the above formula (1) is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is preferably a methyl group.
  • R 1 is preferably a hydrogen atom.
  • the photoalignment structural unit is preferably a structural unit represented by the following formula (1-1). In the following formula, each symbol is the same as the formula (1).
  • photo-alignment structural unit examples include structural units represented by the following formulas (1-2) to (1-5).
  • R 31 is the same as R 11 in the formula (3-1), and R 32 and R 33 are the same as R 16 and R 17 in the formula (3-1). .
  • L 11 represents a single bond or a divalent linking group.
  • the divalent linking group is the same as L 1 in the above formula (1).
  • R 11 to R 17 are the same as in the above formula (3-1).
  • L 12 represents a single bond or a divalent linking group.
  • the divalent linking group is the same except that the carbonyl bond and the thiocarbonyl bond are excluded from L 1 in the above formula (1).
  • L 13 represents a single bond or a divalent linking group.
  • the divalent linking group is the same as L 1 in the above formula (1).
  • R 35 to R 37 are the same as R 12 to R 15 in the formula (3-1)
  • R 38 and R 39 are the same as R 16 and R 17 in the formula (3-1).
  • the photo-alignment structural unit possessed by the copolymer may be one type or two or more types.
  • the photoalignable structural unit is preferably a structural unit represented by the above formulas (1-3) or (1-4).
  • L 11 represents a single bond, —O—, —COO—, —OCO—, —OCO (CH 2 ) n COO—, —OCO (CH 2 CH 2 O) m COO—, —OCOC 6 H 10 O—, —COO (CH 2 ) n O—, —COO (CH 2 CH 2 O) m —, —COOC 6 H 10 O—, —O (CH 2 ) n O—, —O It is preferably (CH 2 CH 2 O) m —, —OC 6 H 10 O— or — (CH 2 ) n O—.
  • n is preferably 1 to 11
  • m is preferably 1 to 5.
  • the photoalignable structural unit represented by the above formula (1-3) is more preferably a structural unit represented by the following formula (1-6).
  • R 12 to R 17 and L 11 are the same as in the above formula (1-3).
  • R 18 represents a hydrogen atom, an alkoxy group having 1 to 18 carbon atoms, a cyano group, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group, or a cyclohexyl group.
  • the alkyl group, phenyl group, biphenyl group and cyclohexyl group may be bonded via an ether bond, an ester bond, an amide bond or a urea bond.
  • n represents 1 to 5, and R 18 may be bonded to any of the ortho, meta, and para positions. When n is 2 to 5, R 18 may be the same as or different from each other. Among them, it is preferable that n is 1 and R 18 is bonded to the para position.
  • L 12 represents a single bond, —O—, —OCOC 6 H 10 O—, —COO (CH 2 ) n O—, —COO (CH 2 CH 2 O) m —. , —COOC 6 H 10 O—, —O (CH 2 ) n O—, —O (CH 2 CH 2 O) m —, —OC 6 H 10 O— or — (CH 2 ) n O—. Is preferred.
  • the photoalignable structural unit is a structural unit represented by the above formulas (1-6) and (1-4)
  • an aromatic ring comes to be arranged near the end of the photoalignable structural unit, It has a structure similar to liquid crystal molecules. Therefore, it is considered that the affinity with the liquid crystal layer formed on the alignment layer is increased, and the liquid crystal alignment ability and adhesion are improved.
  • the photo-alignment structural unit is a structural unit represented by the above formulas (1-6) or (1-4)
  • the photodimerization reactivity or photoisomerization reactivity is improved, and the sensitivity is increased. Can be improved.
  • the reason for this is not clear, but is estimated as follows. That is, since the photoalignment structural unit has a styrene skeleton, a stacking structure is easily formed by the ⁇ -electron interaction between the styrene skeletons of the photoalignment structural unit. In the photoalignment structural units represented by the above formulas (1-6) and (1-4), the photoalignment group and the styrene skeleton are close to each other.
  • the photo-alignment group is in a positional relationship that easily causes a photodimerization reaction or a photoisomerization reaction.
  • a photoisomerization reaction the styrene skeletons of the photoalignment constituent units are stacked, and the photoalignment group and the styrene skeleton are close to each other, so that the orientation of the photoalignment groups is uniform. It is considered that the photoisomerization reactivity becomes high.
  • thermosetting composition having a highly sensitive photo-orientation capable of forming an alignment layer with a small exposure amount can be obtained, which can contribute to energy saving.
  • liquid crystal aligning ability can be obtained even when the content ratio of the photoalignable constituent unit in the copolymer is relatively small.
  • the content ratio of the heat-crosslinkable structural unit in the copolymer can be relatively increased, and the heat resistance and solvent resistance can be further increased. Furthermore, because of high sensitivity, it is suitable for mass production, and the productivity of a device having an alignment layer formed from a thermosetting composition having photo-alignment properties can also be improved.
  • a styrenic monomer having a photoalignable group forming the photoalignable structural unit can be used.
  • the styrenic monomer having a photo-alignment group can be used alone or in combination of two or more.
  • the content ratio of the photo-alignment structural unit in the copolymer can be set within a range of 10 mol% to 90 mol%, preferably 20 mol% to 100 mol% when the entire copolymer is 100 mol%. It is in the range of 80 mol%.
  • the content ratio of the photo-alignment structural unit is small, the sensitivity is lowered, and it may be difficult to impart good liquid crystal alignment ability.
  • the content ratio of the photo-alignable structural unit is large, the content ratio of the heat-crosslinkable structural unit is relatively small, sufficient thermosetting property cannot be obtained, and it is difficult to maintain good liquid crystal alignment ability. It may become.
  • the content rate of each structural unit in a copolymer can be computed from the integrated value by ⁇ 1 > H NMR measurement.
  • Thermally crosslinkable structural unit in the present invention is represented by the following formula (2).
  • a thermally crosslinkable structural unit is a site
  • Y represents a thermally crosslinkable group
  • L 2 represents a divalent linking group or a single bond
  • R 2 represents a hydrogen atom or a monovalent organic group
  • l represents 1 to 5
  • Y in the above formula (2) is a thermally crosslinkable group.
  • the thermally crosslinkable group include a hydroxy group, a carboxy group, a phenolic hydroxy group, a mercapto group, a glycidyl group, and an amide group. Among these, from the viewpoint of reactivity, an aliphatic hydroxy group is preferable, and a primary hydroxy group is more preferable.
  • Y represents a selfcrosslinkable crosslinkable group.
  • the ortho position is a hydroxymethyl group or an alkoxy group. Examples thereof include a phenolic hydroxy group substituted with a methyl group, a glycidyl group, an amide group, an N-alkoxymethyl group, and an N-hydroxymethyl group.
  • L 2 in the above formula (2) is a divalent linking group or a single bond.
  • the thermally crosslinkable group Y is directly bonded to the styrene skeleton.
  • the divalent linking group include an ether bond, a thioether bond, an ester bond, a thioester bond, a carbonyl bond, a thiocarbonyl bond, an alkylene group, an arylene group, a cycloalkylene group, and combinations thereof.
  • —OCO (CH 2 ) n COO, —OCO (CH 2 CH 2 O) m —, —OCOC 6 H 4 O—, —OCOC 6 H 10 —, —COO (CH 2 ) n —, —COO (CH 2 CH 2 O) m —, —COOC 6 H 4 O, —COOC 6 H 10 —, —O (CH 2 ) n —, —O (CH 2 CH 2 O) m —, —OC 6 H 4 —, —OC 6 H 10 —, — (CH 2 ) n — and the like can be mentioned.
  • n is preferably 4 to 11.
  • m is preferably 2 to 5.
  • n and m are too large, the chain length of the linking group in the heat-crosslinkable structural unit becomes long, so that the terminal heat-crosslinkable group is unlikely to appear on the surface, and it is difficult for the crosslinking agent to bind to the heat-crosslinkable group. There is a possibility that the reactivity between the crosslinkable structural unit and the crosslinking agent may be lowered. On the other hand, if n and m are too large, the content ratio of the photo-alignment structural unit in the copolymer is relatively reduced, the sensitivity is lowered, and it may be difficult to impart good liquid crystal alignment ability. .
  • n and m are too small, the distance between the thermally crosslinkable group and the styrene skeleton in the thermally crosslinkable structural unit is shortened, so that it is difficult for the crosslinking agent to bind to the thermally crosslinkable group. There is a possibility that the reactivity with the cross-linking agent may decrease.
  • R 2 in the above formula (2) is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is preferably a methyl group.
  • R 2 is preferably a hydrogen atom.
  • the thermally crosslinkable structural unit is preferably a structural unit represented by the following formula (2-1). In the following formula, each symbol is the same as the formula (2).
  • the thermally crosslinkable structural unit may have a crosslinking group.
  • the thermally crosslinkable structural unit can also serve as a crosslinking agent. That is, the crosslinking group is a group capable of self-crosslinking. Further, the thermally crosslinkable structural unit has a crosslinking group as the thermally crosslinkable group.
  • self-crosslinking means that the same functional group or different functional groups react to form a crosslinked structure without using a crosslinking agent.
  • the thermosetting composition which has the photo-alignment property of this invention can be utilized without adding a crosslinking agent.
  • the content of the copolymer in the thermosetting composition having photo-alignment property can be relatively increased, the content ratio of the photo-alignment structural unit contributing to the alignment can be relatively increased, and the photoreactivity can be increased.
  • the cross-linking agent is a low molecular component, and by adding no cross-linking agent, so-called bleed-out, in which the cross-linking agent floats on the surface of the alignment layer, can be prevented, and the liquid crystal alignment ability is inhibited. Can be suppressed. Therefore, photoreactivity can be increased and sensitivity can be improved. Therefore, in this case, it can be set as the thermosetting composition which has a highly sensitive photo-orientation property which can form an orientation layer with a small exposure amount.
  • the irradiation amount of polarized ultraviolet rays when forming the alignment layer can be reduced, and the irradiation time can be shortened, which is useful from the viewpoint of energy saving.
  • liquid crystal aligning ability can be obtained even when the content ratio of the photoalignable constituent unit in the copolymer is relatively small. Therefore, the content ratio of the heat-crosslinkable structural unit in the copolymer can be relatively increased, and the heat resistance and solvent resistance can be further increased.
  • it is suitable for mass production, and the productivity of a device having an alignment layer formed from a thermosetting composition having photo-alignment properties can also be improved.
  • the thermally crosslinkable structural unit preferably has no crosslinkable group.
  • thermally crosslinkable structural unit having a crosslinking group examples include a phenolic hydroxy group, glycidyl group, amide group, N-alkoxymethyl group, N-hydroxymethyl group in which the ortho position is substituted with a hydroxymethyl group or an alkoxymethyl group. The thing which has is mentioned.
  • the thermal crosslinkable structural unit possessed by the copolymer may be one type or two or more types.
  • the copolymer may have a thermally crosslinkable structural unit having a thermally crosslinkable group that does not self-crosslink and a thermally crosslinkable structural unit having a crosslinkable group capable of self-crosslinking as a thermally crosslinkable group.
  • a styrenic monomer having a thermally crosslinkable group forming the above-mentioned thermally crosslinkable structural unit can be used.
  • the styrenic monomer having a thermally crosslinkable group can be used alone or in combination of two or more.
  • the content ratio of the thermally crosslinkable structural unit in the copolymer can be set within the range of 10 mol% to 90 mol%, preferably 20 mol% to 100 mol% when the entire copolymer is 100 mol%. It is in the range of 80 mol%.
  • the content ratio of the thermally crosslinkable structural unit is small, sufficient thermosetting property cannot be obtained, and it may be difficult to maintain good liquid crystal alignment ability.
  • the content ratio of the thermally crosslinkable structural unit is large, the content ratio of the photoalignable structural unit is relatively decreased, the sensitivity is lowered, and it may be difficult to impart good liquid crystal alignment ability. .
  • the copolymer may have a second thermally crosslinkable structural unit having a second thermally crosslinkable group capable of self-crosslinking. Since the copolymer has the second heat-crosslinkable structural unit having the second heat-crosslinkable group capable of self-crosslinking, the thermosetting composition having the photo-alignment property of the present invention is not added separately. Can be used. Therefore, the content of the copolymer in the thermosetting composition having photo-alignment property can be relatively increased, the content ratio of the photo-alignment structural unit contributing to the alignment can be relatively increased, and the photoreactivity can be increased. Can be increased.
  • the cross-linking agent is a low molecular component, and by adding no cross-linking agent, so-called bleed-out, in which the cross-linking agent floats on the surface of the alignment layer, can be prevented, and the liquid crystal alignment ability is inhibited. Can be suppressed. Therefore, photoreactivity can be increased and sensitivity can be improved.
  • the second heat-crosslinkable group capable of self-crosslinking is the same as the self-crosslinkable cross-linking group possessed by the above-mentioned heat-crosslinkable structural unit, and thus description thereof is omitted here.
  • Examples of the monomer unit constituting the second thermally crosslinkable structural unit include acrylic acid ester, methacrylic acid ester, styrene, acrylamide, methacrylamide, maleimide, vinyl ether, and vinyl ester.
  • acrylic acid ester, methacrylic acid ester, acrylamide, methacrylamide, and styrene are preferable.
  • Acrylic acid ester and methacrylic acid ester monomers have the advantages of high solubility, easy availability as commercial products, and good reactivity when copolymerized.
  • acrylamide and methacrylamide monomers to which a self-crosslinkable second thermally crosslinkable group such as an N-alkoxymethyl group or N-hydroxymethyl group is bonded are easily available as commercial products and have an advantage of good reactivity.
  • a self-crosslinkable second thermally crosslinkable group such as an N-alkoxymethyl group or N-hydroxymethyl group is bonded
  • the copolymer not only the photo-alignment structural unit and the heat-crosslinkable structural unit but also the second heat-crosslinkable structural unit has a styrene skeleton, can do. Therefore, when the alignment layer is formed using the thermosetting composition having the photo-alignment property of the present invention, the liquid crystal alignment ability is improved and the adhesion with the liquid crystal layer is improved by the interaction of ⁇ electrons. It is thought that you can.
  • Z 1 represents a monomer unit, and examples thereof include acrylic acid ester, methacrylic acid ester, acrylamide, methacrylamide, styrene, maleimide, vinyl ether, and vinyl ester.
  • acrylic acid ester, methacrylic acid ester, acrylamide, methacrylamide, and styrene are preferable.
  • Specific examples include monomer units represented by the following formula.
  • R 41 represents a hydrogen atom, a methyl group, a chlorine atom or a phenyl group
  • R 42 represents a hydrogen atom or a methyl group
  • R 43 represents a hydrogen atom, a methyl group, a chlorine atom or a phenyl group
  • R 44 Represents a hydrogen atom or a lower alkyl group.
  • -L 3 -Y 2 may be bonded to any of the ortho, meta, and para positions, or a plurality of bonds may be bonded. In a plurality, L 3 and Y 2 may be the same as or different from each other. Among them, it is preferable that one -L 3 -Y 2 is bonded to the para position.
  • Y 2 represents a self-crosslinkable second thermally crosslinkable group, and as described above, for example, glycidyl group, amide group, N-alkoxymethyl group, N-hydroxymethyl group, ortho-position Examples thereof include a phenolic hydroxy group substituted with a hydroxymethyl group or an alkoxymethyl group.
  • L 3 represents a single bond or a divalent linking group.
  • the second thermally crosslinkable group Y 2 capable of self-crosslinking is directly bonded to the monomer unit Z 1 .
  • the divalent linking group include an ether bond, a thioether bond, an ester bond, a thioester bond, a carbonyl bond, a thiocarbonyl bond, an alkylene group, an arylene group, a cycloalkylene group, and combinations thereof.
  • the benzene ring of the styrene skeleton is a phenolic hydroxy group. It becomes the benzene ring of the group.
  • Examples of the monomer that forms the second thermally crosslinkable structural unit include acrylic ester compounds, methacrylic ester compounds, acrylamide compounds, methacrylamide compounds, styrene compounds, maleimide compounds, vinyl compounds, and the like.
  • the second thermally crosslinkable structural unit possessed by the copolymer may be one type or two or more types.
  • a monomer having a second thermally crosslinkable group capable of self-crosslinking that forms the second thermally crosslinkable structural unit can be used.
  • Monomers having a second thermally crosslinkable group capable of self-crosslinking can be used alone or in combination of two or more.
  • the content ratio of the second thermally crosslinkable structural unit in the copolymer can be set within the range of 0 mol% to 80 mol%, preferably 1 mol, when the entire copolymer is 100 mol%. % To 80 mol%, more preferably 5 to 80 mol%. If the content ratio of the second thermally crosslinkable structural unit is small, the above-described effects may not be sufficiently obtained. In addition, when the content ratio of the second thermally crosslinkable structural unit is large, the content ratio of the photoalignable structural unit is relatively decreased, the sensitivity is lowered, and it is difficult to impart good liquid crystal alignment ability. There is.
  • the copolymer has a structural unit having neither a photo-alignable group nor a heat-crosslinkable group in addition to the photo-alignable structural unit and the heat-crosslinkable structural unit. You may do it.
  • other structural units in the copolymer for example, solvent solubility, heat resistance, reactivity, and the like can be improved.
  • the monomer unit constituting the structural unit having no photo-alignable group and heat-crosslinkable group examples include acrylic acid ester, methacrylic acid ester, maleimide, acrylamide, acrylonitrile, maleic anhydride, styrene, vinyl and the like.
  • the copolymer may be a styrene copolymer in which all the structural units have styrene units, or may have a structural unit other than styrene units.
  • the monomer unit which comprises the said structural unit is acrylic acid ester, methacrylic acid ester, and styrene.
  • Acrylic acid ester and methacrylic acid ester monomers have the advantages of high solubility, easy availability as commercial products, and good reactivity when copolymerized.
  • the liquid crystal alignment ability is improved by the interaction of ⁇ electrons.
  • the adhesion to the liquid crystal layer can be improved.
  • the monomer unit constituting the structural unit is preferably styrene. That is, the copolymer is preferably a styrene copolymer having all styrene units as structural units.
  • Examples of the monomer that forms the structural unit having no photo-alignable group and heat-crosslinkable group include, for example, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylamide compounds, acrylonitrile, maleic anhydride, styrene. Compound, vinyl compound and the like can be mentioned.
  • acrylic ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, glycidyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, 2-aminoethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2- Methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate Over DOO, 8-methyl-8-tricyclodecyl acrylate, etc. 8-e
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, glycidyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, 2-aminomethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2- Methyl-2-adamantyl methacrylate DOO, .gamma.-butyrolactone methacrylate
  • vinyl compound examples include methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl carbazole, allyl glycidyl ether, 3-ethenyl-7-oxabicyclo [4.1.0] heptane, 1,2-epoxy-5-hexene, Examples include 1,7-octadiene monoepoxide.
  • styrene compound examples include styrene, p-methylstyrene, ⁇ -methylstyrene, chlorostyrene, bromostyrene, p-trifluoromethylstyrene, p-trifluoromethyl- ⁇ -methylstyrene, and 4 (4-trifluoromethyl).
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the constitutional unit having no photo-alignable group and heat-crosslinkable group in the copolymer may be one type or two or more types.
  • the content ratio of the structural unit in the copolymer is preferably in the range of 0 mol% to 50 mol%, and in the range of 0 mol% to 30 mol%, assuming that the entire copolymer is 100 mol%. More preferably, it is within.
  • the content ratio of the structural unit is large, the content ratio of the photoalignable structural unit and the thermally crosslinkable structural unit is relatively reduced, the sensitivity is lowered, and it becomes difficult to impart good liquid crystal alignment ability. Moreover, sufficient thermosetting cannot be obtained, and it may be difficult to maintain good liquid crystal alignment ability.
  • the number average molecular weight of the copolymer is not particularly limited and can be, for example, about 3,000 to 200,000, preferably within the range of 4,000 to 100,000. It is. If the number average molecular weight is too large, the solubility in a solvent may be lowered or the viscosity may be increased, resulting in a decrease in handleability, and it may be difficult to form a uniform film. On the other hand, if the number average molecular weight is too small, curing may be insufficient during thermosetting, and solvent resistance and heat resistance may be reduced. The number average molecular weight can be measured by gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • Examples of the method for synthesizing the copolymer include a method of copolymerizing a styrene monomer having a photoalignable group and a styrene monomer having a thermally crosslinkable group.
  • the method for synthesizing the copolymer is not particularly limited. For example, a polymerization reaction is performed in a solvent in which a styrene monomer having a photo-alignment group, a styrene monomer having a thermally crosslinkable group, and a polymerization initiator coexist. Can be obtained.
  • the solvent used will not be specifically limited if it dissolves the styrene-type monomer which has a photo-alignment group, the styrene-type monomer which has a heat crosslinkable group, a polymerization initiator, etc. Specifically, it can be the same as that of the solvent used for the thermosetting composition which has the photo-alignment property mentioned later.
  • the temperature during the polymerization reaction can be set, for example, at about 50 ° C. to 120 ° C.
  • the copolymer obtained by the above method is usually in the state of a solution dissolved in a solvent.
  • the copolymer obtained by the above method can be used as it is, but can also be purified and used by the method shown below. That is, the copolymer solution obtained by the above method is poured into diethyl ether, methanol, water or the like while stirring to reprecipitate, and the resulting precipitate is filtered and washed, and then at normal pressure or reduced pressure. Then, it can be dried at room temperature or by heating to obtain a powder of the copolymer. By this operation, the polymerization initiator coexisting with the copolymer and the unreacted monomer can be removed, and as a result, a purified copolymer powder is obtained. If sufficient purification cannot be achieved by a single operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
  • the copolymer may be used in the form of a solution when the copolymer is synthesized, in the form of a powder, or in the form of a solution in which purified powder is redissolved in a solvent described later.
  • the copolymer may be one kind or a mixture of plural kinds of copolymers.
  • thermosetting composition having photo-alignment property of the present invention preferably contains a crosslinking agent.
  • the thermosetting composition having photo-alignment property of the present invention preferably does not contain a crosslinking agent.
  • crosslinking agent examples include epoxy compounds, methylol compounds, isocyanate compounds and the like. Of these, methylol compounds are preferred.
  • Examples of the methylol compound include alkoxymethylated glycoluril, alkoxymethylated benzoguanamine, and alkoxymethylated melamine.
  • Examples of the alkoxymethylated glycoluril include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6- Tetrakis (hydroxymethyl) glycoluril, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea, 1,1,3,3-tetrakis (methoxymethyl) urea, , 3-bis (hydroxymethyl) -4,5-dihydroxy-2-imidazolinone, 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone and the like.
  • glycoluril compounds (trade names Cymel 1170, Powderlink 1174) manufactured by Mitsui Cytec Co., Ltd., methylated urea resins (trade name UFR65), butylated urea resins (trade names UFR300, U-VAN10S60, U-VAN10R, U-VAN11HV), urea / formaldehyde resin (high-condensation type, trade name becamine J-300S, becamine P-955, becamine N) manufactured by Dainippon Ink & Chemicals, Inc., Sanwa Chemical Co., Ltd.
  • methylated urea resins (trade name UFR65)
  • butylated urea resins (trade names UFR300, U-VAN10S60, U-VAN10R, U-VAN11HV)
  • urea / formaldehyde resin high-condensation type, trade name becamine J-300S, becamine P-955, becamine N)
  • Examples thereof include a glycoluril compound (trade name: Nicarak MX-270) and an imidazolidine compound (trade name: Nicalac MX-280).
  • Examples of the alkoxymethylated benzoguanamine include tetramethoxymethyl benzoguanamine.
  • Examples of commercially available products include Mitsui Cytec Co., Ltd. (trade name: Cymel 1123), Sanwa Chemical Co., Ltd. (trade names: Nicarak BX-4000, Nicarac BX-37, Nicarac BL-60, Nicarac BX-55H) and the like. It is done.
  • Examples of the alkoxymethylated melamine include hexamethoxymethyl melamine.
  • methoxymethyl type melamine compounds (trade names Cymel 300, Cymel 301, Cymel 303, Cymel 350, Cymel 3745) manufactured by Mitsui Cytec Co., Ltd., butoxymethyl type melamine compounds (trade names My Coat 506, My Coat 508, Cymel 1156), a methoxymethyl type melamine compound manufactured by Sanwa Chemical Co., Ltd. , Nicarax MX-035, Nicarak MW-390, Nicarak MW-100LM, Nicarax MX-750LM), Butoxymethyl type melamine compounds (trade names Nicarax MX-45, Nicarac MX-4) 0 include NIKALAC MX-302) or the like.
  • a crosslinking agent containing a plurality of benzene rings in the molecule can be used.
  • the cross-linking agent containing a plurality of benzene rings in the molecule include, for example, a phenol derivative having at least two hydroxymethyl groups or alkoxymethyl groups and a molecular weight of 1200 or less, or at least two free N-alkoxymethyl groups.
  • melamine-formaldehyde derivatives and alkoxymethylglycoluril derivatives A phenol derivative having a hydroxymethyl group can be obtained by reacting a corresponding phenol compound having no hydroxymethyl group with formaldehyde in the presence of a base catalyst.
  • the crosslinking agent may be a compound obtained by condensing such a melamine compound, urea compound, glycoluril compound and benzoguanamine compound in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group.
  • a melamine compound urea compound, glycoluril compound and benzoguanamine compound in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group.
  • the high molecular weight compound manufactured from the melamine compound and the benzoguanamine compound which are described in US Patent 6,323,310 is mentioned.
  • Cymel 303 manufactured by Mitsui Cytec Co., Ltd.
  • Cymel 1123 commercial item of a benzoguanamine compound
  • the like can be mentioned.
  • crosslinking agent acrylamide compounds or methacrylamides substituted with hydroxymethyl groups or alkoxymethyl groups such as N-hydroxymethylacrylamide, N-methoxymethylmethacrylamide, N-ethoxymethylacrylamide, N-butoxymethylmethacrylamide, etc.
  • Polymers produced using the compounds can also be used. Examples of such a polymer include poly (N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methylmethacrylate, and N-ethoxymethyl.
  • a copolymer of methacrylamide and benzyl methacrylate a copolymer of N-butoxymethylacrylamide, benzyl methacrylate and 2-hydroxypropyl methacrylate.
  • the weight average molecular weight of such polymers is in the range of 1,000 to 500,000, preferably in the range of 2,000 to 200,000, more preferably in the range of 3,000 to 150,000. More preferably, it is within the range of 3,000 to 50,000.
  • cross-linking agents can be used alone or in combination of two or more.
  • the content of the crosslinking agent in the photo-curable thermosetting composition of the present invention is preferably in the range of 1 to 40 parts by mass, more preferably 100 parts by mass of the copolymer. It is within the range of 2 to 30 parts by mass. If the content is too small, the heat resistance and solvent resistance of the cured film formed from the thermosetting composition having photo-alignment properties may decrease, and the liquid crystal alignment ability may decrease. Moreover, when there is too much content, liquid crystal aligning ability and storage stability may fall.
  • thermosetting composition having photo-alignment property of the present invention may contain an acid or an acid generator. With the acid or the acid generator, the thermosetting reaction of the thermosetting composition having photo-alignment property of the present invention can be promoted.
  • the acid or acid generator examples include a sulfonic acid group-containing compound, hydrochloric acid or a salt thereof, and a compound that generates an acid upon thermal drying and curing of a coating film, that is, a thermal decomposition at a temperature of 50 ° C. to 250 ° C.
  • the compound is not particularly limited as long as it is a compound that generates an acid.
  • Examples of such compounds include hydrochloric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethane.
  • Sulfonic acid p-phenolsulfonic acid, 2-naphthalenesulfonic acid, mesitylenesulfonic acid, p-xylene-2-sulfonic acid, m-xylene-2-sulfonic acid, 4-ethylbenzenesulfonic acid, 1H, 1H, 2H, 2H -Sulfonic acids such as perfluorooctane sulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid, pentafluoroethane sulfonic acid, nonafluorobutane-1-sulfonic acid, dodecylbenzene sulfonic acid, or hydrates or salts thereof.
  • Examples of the compound that generates an acid by heat include bis (tosyloxy) ethane, bis (tosyloxy) propane, bis (tosyloxy) butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, 1,2.3-phenylene.
  • Tris (methyl sulfonate), p-toluenesulfonic acid pyridinium salt, p-toluenesulfonic acid morphonium salt, p-toluenesulfonic acid ethyl ester, p-toluenesulfonic acid propyl ester, p-toluenesulfonic acid butyl ester, p-toluene Sulfonic acid isobutyl ester, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid phenethyl ester, cyanomethyl p-toluenesulfonate, 2,2,2-trifluoroethyl p-toluenesulfonate, 2-hydroxybutyrate Le p- tosylate, N- ethyl-4-toluenesulfonamide, and the like.
  • the content of acid or acid generator in the thermosetting composition having photo-alignment property of the present invention is preferably within a range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the copolymer. More preferably, it is in the range of 0.05 to 10 parts by mass, and even more preferably in the range of 0.1 to 5 parts by mass.
  • thermosetting composition having photo-alignment property of the present invention may contain a sensitizer.
  • Photosensitizers such as photodimerization reaction and photoisomerization reaction can be promoted by the sensitizer.
  • sensitizer examples include benzophenone, anthracene, anthraquinone, thioxanthone and derivatives thereof, and nitrophenyl compounds. Of these, benzophenone derivatives and nitrophenyl compounds are preferred. Preferred examples include N, N-diethylaminobenzophenone, 2-nitrofluorene, 2-nitrofluorenone, 5-nitroacenaphthene, 4-nitrobiphenyl and the like. Sensitizers can be used alone or in combination of two or more compounds.
  • the content of the sensitizer in the photo-curable thermosetting composition of the present invention is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the copolymer. More preferably, it is in the range of 0.2 to 10 parts by mass. If the content is too small, the effect as a sensitizer may not be sufficiently obtained. If the content is too large, the transmittance may be lowered and the coating film may be roughened.
  • thermosetting composition having photo-alignment property of the present invention is mainly used in a solution state dissolved in a solvent.
  • the solvent is not particularly limited as long as it can dissolve the above-described components.
  • thermosetting composition having the photo-alignment property of the present invention is a silane coupling agent, a surfactant, a rheology modifier, a pigment, a dye, a storage as long as the effects of the present invention are not impaired.
  • Stabilizers, antifoaming agents, antioxidants and the like can be contained.
  • a liquid crystalline monomer can be contained in order to improve the liquid crystal alignment ability.
  • thermosetting composition having photo-alignment property of the present invention is usually used as a solution in which each component is dissolved in a solvent.
  • the ratio of the solid content in the thermosetting composition having photo-alignment property of the present invention is not particularly limited as long as each component is uniformly dissolved in the solvent, and is 0.1% by mass to 80% by mass. Within the range, preferably within the range of 0.5% by mass to 60% by mass, and more preferably within the range of 0.5% by mass to 40% by mass. If the ratio of the solid content is too small, it may be difficult to impart liquid crystal alignment ability and thermosetting property.
  • thermosetting composition which has photo-orientation property when there are too many ratios of solid content, the viscosity of the thermosetting composition which has photo-orientation property will become high, and it will become difficult to form a uniform film
  • solid content means what remove
  • the method for preparing the thermosetting composition having photo-alignment property of the present invention is not particularly limited, but since the storage stability becomes long, a copolymer, a crosslinking agent, a sensitizer, and other additives. Is preferably used, and an acid or an acid generator is added later. In addition, when adding an acid or an acid generator from the beginning, it is preferable to use as the acid or an acid generator a compound that generates an acid by thermal decomposition during drying and heat curing of the coating film. In the preparation of the thermosetting composition having photo-alignment property of the present invention, a copolymer solution obtained by a polymerization reaction in a solvent can be used as it is.
  • a crosslinking agent, a sensitizer, and other additives are added to the copolymer solution to form a uniform solution, and an acid or an acid generator is added later.
  • a solvent may be further added for the purpose of adjusting the concentration.
  • the solvent used in the process of forming the copolymer and the solvent used for adjusting the concentration of the thermosetting composition having photo-alignment property may be the same or different.
  • thermosetting composition solution having photo-alignment property is preferably used after being filtered using a filter having a pore size of about 0.2 ⁇ m.
  • thermosetting composition having photo-alignment properties of the present invention include alignment layers for various optical elements such as retardation plates and alignment layers for liquid crystal display elements.
  • the thermosetting composition having photo-alignment property of the present invention can also be used for insulating films and protective films in various devices such as liquid crystal display elements, organic EL elements, TFTs, and color filters.
  • organic EL elements Insulating film, TFT interlayer insulating film, color filter overcoat layer, and the like.
  • Alignment layer The alignment layer of the present invention has two embodiments. In the following, each embodiment will be described separately.
  • the alignment layer according to this embodiment includes a photo-dimerization structure of a photo-alignment group included in a photo-alignment unit represented by the above formula (1) and a heat crosslinkable structure represented by the above formula (2). It contains a copolymer having a crosslinked structure of thermally crosslinkable groups in the unit.
  • the alignment layer contains a copolymer having a predetermined photodimerization structure and a crosslinked structure, excellent liquid crystal alignment ability, heat resistance and solvent resistance can be obtained.
  • the cross-linked structure refers to a three-dimensional network structure.
  • the crosslinked structure does not include a structure in which photoalignable groups described later are crosslinked by a photodimerization reaction.
  • the copolymer has a crosslinked structure of thermally crosslinkable groups that the thermally crosslinkable structural unit represented by the above formula (2) has.
  • the cross-linked structure is composed of a photo-alignable constituent unit represented by the above formula (1) and a heat cross-linkable constitution represented by the above formula (2) described in “A. Thermosetting composition having photo-alignment”. It can be formed by thermosetting a copolymer having units.
  • the cross-linked structure is a three-dimensional network structure and is a structure in which the heat crosslinkable group of the heat crosslinkable structural unit is cross-linked.
  • thermosetting composition having photo-alignment property contains a crosslinking agent
  • the thermally crosslinkable group of the thermally crosslinkable structural unit is bonded to the crosslinking agent.
  • the thermally crosslinkable structural unit has a self-crosslinkable crosslinkable group as a heat crosslinkable group, the selfcrosslinkable crosslinkable group is also bonded to a crosslinker.
  • the copolymer has a heat-crosslinkable structural unit having a heat-crosslinkable group that does not self-crosslink and a heat-crosslinkable structural unit having a crosslinkable group that can be self-crosslinked as a heat-crosslinkable group, the heat that does not self-crosslink The crosslinkable group is bonded to a self-crosslinkable crosslinkable group.
  • a thermally crosslinkable structural unit has a crosslinking group which can be self-crosslinked as a thermally crosslinkable group
  • a crosslinking group self-crosslinks.
  • the crosslinked structure includes a structure in which a thermally crosslinkable group and a crosslinking agent are crosslinked by heating, a structure in which a thermally crosslinkable group that does not self-crosslink and a crosslinking group capable of self-crosslinking are crosslinked by heating, or a crosslinking group capable of self-crosslinking. It becomes the structure which mutually bridge
  • the cross-linking agent is hexamethoxymethylmelamine
  • the cross-linked structure is as shown below. In the following formula, each symbol is the same as the formula (1).
  • the alignment layer contains the copolymer by collecting and analyzing the material from the alignment layer.
  • NMR, IR, GC-MS, XPS, TOF-SIMS and a combination thereof can be applied.
  • the alignment layer has a photodimerization structure of a photoalignment group included in the photoalignment structural unit represented by the above formula (1).
  • the photodimerization structure is a structure in which the photoalignment groups of the photoalignment structural unit represented by the above formula (1) are cross-linked by a photodimerization reaction, and has a cyclopropane skeleton.
  • the photodimerization reaction is a reaction as shown below, and is a reaction in which an olefin structure contained in a photoalignable group forms a cyclopropane skeleton by a photoreaction.
  • Xa to Xd and Xa ′ to Xd ′ differ depending on the type of photo-alignment group.
  • the photodimerization structure is preferably a photodimerization structure of a cinnamoyl group. Specifically, a structure in which cinnamoyl groups described in “A. Thermosetting composition having photo-alignment property” are cross-linked by a photodimerization reaction is preferable.
  • the alignment layer preferably has a photodimerization structure represented by the following formulas (5-1) and (5-2). In the following formulas, each symbol is the same as the above formulas (1-6) and (1-4).
  • the alignment layer has a photodimerization structure represented by the above formulas (5-1) and (5-2), many aromatic rings are arranged and many ⁇ electrons are contained. Therefore, it is considered that the affinity with the liquid crystal layer formed on the alignment layer is increased, the liquid crystal alignment ability is improved, and the adhesion with the liquid crystal layer is increased.
  • the alignment layer has the photodimerization structure.
  • the alignment layer may contain a cross-linking agent, an acid or acid generator, a sensitizer, and other additives. In addition, about these additives, it is the same as that of what was described in said "A. Thermosetting composition which has photo-orientation property".
  • the formation method and film thickness of the alignment layer are the same as those of the alignment layer in the substrate with an alignment layer described later, and thus the description thereof is omitted here.
  • the alignment layer of this embodiment includes a photoisomerizable structure of a photoalignable group contained in the photoalignable structural unit represented by the above formula (1) and a thermal crosslinkability represented by the above formula (2). It contains a copolymer having a crosslinked structure of a thermally crosslinkable group in a structural unit.
  • the alignment layer contains a copolymer having a predetermined photoisomerization structure and a crosslinked structure, excellent liquid crystal alignment ability, heat resistance and solvent resistance can be obtained.
  • the alignment layer has a photoisomerization structure of a photoalignment group included in the photoalignment structural unit represented by the above formula (1).
  • the photoisomerization structure is a structure in which the photoalignment group of the photoalignment structural unit represented by the above formula (1) is isomerized by a photoisomerization reaction.
  • the photoisomerization structure may be either a structure in which a cis isomer is changed to a trans isomer or a structure in which a trans isomer is changed to a cis isomer.
  • the photoalignment group is a cinnamoyl group
  • the photoisomerization reaction is a reaction as shown below
  • the olefin structure contained in the photoalignment group is a reaction that forms a cis isomer or a trans isomer by the photoreaction.
  • Xa to Xd differ depending on the type of photo-alignment group.
  • the photoisomerization structure is preferably a photoisomerization structure of a cinnamoyl group.
  • a structure in which the cinnamoyl group described in “A. Thermosetting composition having photo-alignment property” is isomerized by a photoisomerization reaction is preferable.
  • the photoisomerization structure may be either a structure in which the cis form is changed to a trans form or a structure in which the trans form is changed to a cis form.
  • the alignment layer preferably has a photoisomerized structure of a cinnamoyl group represented by the above formula (1-3) as represented by the following formula.
  • the photoisomerization structure can be confirmed by the same method as in the first embodiment.
  • crosslinked structure and the copolymer are the same as those in the first embodiment, description thereof is omitted here.
  • the crosslinked structure can be confirmed by the same method as in the first embodiment.
  • the substrate with alignment layer of the present invention comprises a substrate and an alignment layer formed on the substrate and formed from the thermosetting composition having the above-described photo-alignment property or the above-described alignment layer. It is characterized by.
  • FIG. 1 is a schematic sectional view showing an example of a substrate with an alignment layer of the present invention.
  • an alignment layer 3 is formed on the substrate 2, and the alignment layer 3 is formed from the thermosetting composition having the above-described photo-alignment property, or the above-described one. Orientation layer.
  • the alignment layer is formed from the thermosetting composition having the above-mentioned photo-orientation property, or by being the above-described alignment layer, it has excellent liquid crystal alignment ability and adhesion with the liquid crystal layer. , Heat resistance and solvent resistance can be obtained.
  • Alignment layer is formed from the thermosetting composition which has the above-mentioned photo-alignment property, or is the above-mentioned alignment layer, and has a function to orient liquid crystal molecules.
  • the alignment layer formed from the thermosetting composition having photo-alignment refers to an alignment layer obtained by thermo-curing a film containing a thermo-setting composition having photo-alignment and further photo-aligning.
  • a thermosetting composition having photo-alignment property is applied onto the substrate, dried and heated to form a cured film.
  • the cured layer is irradiated with polarized ultraviolet rays to form an alignment layer.
  • thermosetting composition having photo-alignment is not particularly limited as long as it is a method capable of forming a uniform film on the substrate.
  • spin coating method roll coating method, rod bar coating Method, spray coating method, air knife coating method, slot die coating method, wire bar coating method, flow coating method, ink jet method and the like.
  • a hot plate or an oven can be used for drying the coating film.
  • the temperature can be set, for example, at about 30 ° C. to 160 ° C., and preferably within the range of 50 ° C. to 140 ° C.
  • the time can be set, for example, in the range of about 20 seconds to 60 minutes, and is preferably in the range of 30 seconds to 10 minutes.
  • a hot plate or an oven can also be used for heat curing of the coating film.
  • the temperature can be set, for example, at about 30 ° C. to 250 ° C.
  • the time can be set, for example, for about 20 seconds to 60 minutes.
  • drying and heat curing of the coating film may be performed simultaneously or separately.
  • the film thickness of the cured film obtained by thermosetting the thermosetting composition having photo-alignment property is appropriately selected depending on the application and the like, and can be, for example, about 0.05 ⁇ m to 30 ⁇ m. In addition, when the film thickness of a cured film is too thin, sufficient liquid crystal aligning ability may not be obtained.
  • the obtained cured film can be irradiated with polarized ultraviolet rays to cause a photoreaction and develop anisotropy.
  • the wavelength of polarized ultraviolet light is usually in the range of 150 nm to 450 nm.
  • the irradiation direction of polarized ultraviolet rays can be perpendicular or oblique to the substrate surface.
  • the alignment layer is formed from the above-described thermosetting composition having photo-alignment property by collecting and analyzing the material from the alignment layer.
  • an analysis method NMR, IR, GC-MS, XPS, TOF-SIMS and a combination thereof can be applied.
  • the substrate used in the present invention supports the alignment layer.
  • the substrate is not particularly limited, and is appropriately selected depending on the application. Examples of the material of the substrate include glass, quartz, polyethylene terephthalate, polycarbonate, triacetyl cellulose, polyester, polysulfone, polyethersulfone, cyclic polyolefin, acrylic resin, metal such as aluminum, and ceramic such as silicon and silicon nitride. Etc.
  • the substrate may be subjected to a surface treatment.
  • the substrate may or may not have flexibility, and is appropriately selected according to the use or the like.
  • a conductive layer may be formed between the substrate and the alignment layer.
  • the conductive layer functions, for example, as an electrode for various devices.
  • Examples of the material for the conductive layer include transparent conductive materials such as ITO and IZO, and metal materials such as aluminum, molybdenum, and chromium.
  • Examples of the use of the substrate with an alignment layer of the present invention include various optical elements such as a retardation plate, liquid crystal display elements, and light emitting elements.
  • the retardation plate of the present invention comprises the above-mentioned substrate with an alignment layer and a retardation layer formed on the alignment layer of the above-mentioned substrate with alignment layer.
  • FIG. 2 is a schematic sectional view showing an example of the retardation plate of the present invention.
  • the alignment layer 12 is formed on the substrate 11, and the retardation layer 13 is formed on the alignment layer 12.
  • the alignment layer 12 is formed from the above-described thermosetting composition having photo-alignment or the above-described alignment layer, and the retardation layer 13 corresponds to a liquid crystal layer.
  • the retardation layer can be obtained by applying a liquid crystal composition on the alignment layer, heating to the phase transition temperature of the liquid crystal composition, aligning the liquid crystal molecules by the alignment layer, and curing.
  • the liquid crystal composition contains at least a liquid crystal compound, and usually further contains a solvent.
  • the liquid crystal composition may further contain other components as long as the alignment of the liquid crystal compound is not inhibited.
  • the liquid crystal composition used for the retardation layer those generally used for retardation layers can be used.
  • Some liquid crystal compositions have alignment properties such as horizontal alignment, cholesteric alignment, vertical alignment, and hybrid alignment, and are appropriately selected according to the combination with the alignment layer, a desired retardation, and the like.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound having a polymerizable group. This is because the polymerizable liquid crystal compounds can be crosslinked with each other, and the stability of the retardation plate is increased.
  • the thickness and the forming method of the retardation layer can be the same as those of a general retardation layer.
  • the phase difference plate may or may not have flexibility.
  • the device of the present invention is characterized by having an alignment layer formed from the thermosetting composition having the above-mentioned photo-orientation or the above-mentioned alignment layer.
  • the device is not particularly limited as long as it has an alignment layer, and examples thereof include various optical elements such as a retardation plate, liquid crystal display elements, and light emitting elements.
  • various optical elements such as a retardation plate, liquid crystal display elements, and light emitting elements.
  • the description will be divided into a retardation plate and a liquid crystal display element.
  • the retardation plate in the present invention is formed on a substrate and an alignment layer formed on the substrate and formed from the thermosetting composition having the above-described photo-orientation property or the alignment layer and the alignment layer. And a retardation layer.
  • a conductive layer may be formed between the substrate and the alignment layer.
  • the substrate, the alignment layer, and the conductive layer are the same as the substrate, the alignment layer, and the conductive layer in the “B. Substrate with alignment layer” described above, and thus description thereof is omitted here.
  • the phase difference plate may or may not have flexibility.
  • liquid crystal display element The liquid crystal display element in this invention has two aspects. Hereinafter, the description will be made separately for each aspect.
  • a first aspect of the liquid crystal display element in the present invention is a substrate with a first alignment layer in which a first alignment layer is formed on a first substrate, and a second alignment layer is formed on a second substrate. And a liquid crystal layer disposed between the substrate with the first alignment layer and the substrate with the second alignment layer.
  • the first alignment layer and the second alignment layer are the above-described ones. It is formed from the thermosetting composition which has the photo-alignment property, or the above-mentioned alignment layer.
  • FIG. 3 is a schematic cross-sectional view showing an example of a liquid crystal display element according to the present invention.
  • the liquid crystal display element 20 illustrated in FIG. 3 is disposed between the first alignment layer-attached substrate 21a, the second alignment layer-attached substrate 21b, the first alignment layer-attached substrate 21a, and the second alignment layer-attached substrate 21b. And a liquid crystal layer 25.
  • the first electrode 23a and the first alignment layer 24a are sequentially stacked on the first substrate 22a.
  • the second electrode is formed on the second substrate 22b.
  • 23b and the second alignment layer 24b are sequentially stacked.
  • the first alignment layer 24a and the second alignment layer 24b are formed from the thermosetting composition having the above-described photo-alignment property, or the above-described alignment layer.
  • liquid crystal composition used for the liquid crystal layer those generally used for the liquid crystal layer can be used.
  • a nematic liquid crystal or a smectic liquid crystal can be used.
  • the film thickness and the forming method of the liquid crystal layer can be the same as those of a general liquid crystal layer.
  • a conductive layer is usually formed as an electrode between at least one of the first substrate and the alignment layer and between the second substrate and the alignment layer.
  • the first substrate, the second substrate, the alignment layer, and the conductive layer are the same as the substrate, the alignment layer, and the conductive layer in “B. Substrate with alignment layer” described above, and thus description thereof is omitted here. Further, the other configuration of the liquid crystal display element can be the same as that of a general liquid crystal display element.
  • a second aspect of the liquid crystal display element according to the present invention has the retardation plate.
  • the configuration of the liquid crystal display element can be the same as that of a general liquid crystal display element.
  • a retardation plate may be arranged outside the substrate constituting the liquid crystal display element, and the substrate constituting the liquid crystal display element also serves as the substrate constituting the retardation plate, and the alignment layer and the position are arranged inside the substrate.
  • a phase difference layer may be disposed.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • a self-crosslinkable monomer derivative 3. (3.68 g, 10 mmol) was added to a solution composed of 20 mL of 10 wt% aqueous potassium hydroxide and 20 mL of ethanol, and the mixture was stirred and dissolved at room temperature.
  • 7.0 mL (80 mmol) of 37% formalin aqueous solution was slowly added at room temperature.
  • the mixture was poured into 200 mL of water in a beaker. While cooling this in an ice bath, a 2.0 wt% acetic acid aqueous solution was slowly added until the pH reached 5.0.
  • the precipitate was separated by filtration, sufficiently washed with water, dried, and purified by column chromatography to obtain a self-crosslinkable thermally crosslinkable monomer 8.
  • Synthesis Example 2 Synthesis of Photo-Orienting Monomer 2
  • phenyl acrylate is used in an equimolar amount and reacted in the same manner as in Synthesis Example 1 to produce a photo-orienting monomer. 2 was obtained.
  • Synthesis Example 3 Synthesis of Photo-Orienting Monomer 3
  • Synthesis Example a instead of using ethylene glycol, an equimolar amount of methyl trans-4-hydroxycinnamate was used to condense as in Synthesis Example a. The photo-alignment monomer 3 was obtained.
  • Synthesis Example a styrene derivative 1 was used in an equimolar amount instead of 4-vinylbenzoic acid, and 4-cyanophenol was used in an equimolar amount instead of ethylene glycol.
  • the photo-alignment monomer 4 was obtained by condensation.
  • Synthesis of photo-alignment monomer 6 In Synthesis example 4, instead of using photo-alignment monomer 3, photo-alignment monomer 5 is used in an equimolar amount to perform deprotection in the same manner as in synthesis example 4. The styrene derivative 3 was obtained. Subsequently, in Synthesis Example a, styrene derivative 3 was used in an equimolar amount instead of 4-vinylbenzoic acid, and 4-methoxyphenol was used in an equimolar amount instead of ethylene glycol. The photo-alignment monomer 6 was obtained by condensation.
  • Synthesis Example 7 Synthesis of Photo-Orienting Monomer 7
  • Synthesis Example a instead of using 4-vinylbenzoic acid, equimolar amount of styrene derivative 2 was used, and instead of using ethylene glycol, equimolar amount of methyl ferulate was used. Then, the photo-alignment monomer 7 was obtained by condensation in the same manner as in Synthesis Example a.
  • Synthesis of Photo-Orienting Monomer 8 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 4 was used, and instead of using ethylene glycol, trans-cinnamic acid was used. The photoalignment monomer 8 was obtained by condensing using equimolar amount similarly to the synthesis example a.
  • Synthesis of Photoalignment Monomer 10 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 1 was used, and instead of using ethylene glycol, trans-cinnamic acid was used. The photoalignment monomer 10 was obtained by condensing using equimolar amount similarly to the synthesis example a.
  • Synthesis of Photo-Orienting Monomer 11 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 3 was used, and instead of using ethylene glycol, trans-cinnamic acid was used. The photoalignment monomer 11 was obtained by condensing using equimolar amount similarly to the synthesis example a.
  • Synthesis of Photoalignment Monomer 12 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 5 was used, and instead of using ethylene glycol, trans-cinnamic acid was used. The photoalignment monomer 12 was obtained by condensing using equimolar amount similarly to the synthesis example a.
  • Synthesis of Photoalignment Monomer 13 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 5 was used, and instead of using ethylene glycol, 4-methoxycinnamic acid was used. Was used in an equimolar amount to condense in the same manner as in Synthesis Example a to obtain photoalignable monomer 13.
  • Synthesis of Photo-Orienting Monomer 14 In Synthesis Example a, instead of using 4-vinylbenzoic acid, an equimolar amount of thermally crosslinkable monomer 6 was used, and instead of using ethylene glycol, trans-cinnamic acid was used. The photoalignment monomer 14 was obtained by condensing using equimolar amount similarly to the synthesis example a.
  • Synthesis Example 15 Synthesis of Photo-Orienting Monomer 15
  • 14.8 g (100 mmol) of trans-cinnamic acid and 20.2 g (200 mmol) of triethylamine were dissolved in 200 ml of dichloromethane and stirred for 15 minutes in an ice bath.
  • 16.7 g (110 mmol) of 4- (chloromethyl) styrene was slowly added and stirred for 18 hours.
  • Synthesis of Photo-Orienting Monomer 17 In Synthesis Example a, instead of using ethylene glycol, 7-hydroxycoumarin is used in an equimolar amount to condense in the same manner as in Synthesis Example a. 17 was obtained.
  • Copolymers 2 to 39 4-vinylbenzoic acid or the above heat crosslinkable monomers 1 to 9 as a heat crosslinkable monomer, and the above photoalignable monomers 1 to 17 as a photoalignment monomer are necessary. Depending on the conditions, copolymers 2 to 39 were synthesized in the same manner as in Production Example 1 using other monomers.
  • Comparative Production Examples 1 and 2 Synthesis of Comparative Copolymers 1 and 2 2-Hydroxyethyl methacrylate (HEMA) or thermally crosslinkable monomer 1 as the thermally crosslinkable monomer and 4- (6-methacrylic acid) as the comparative photoalignment monomer 1
  • HEMA 2-Hydroxyethyl methacrylate
  • 6-methacrylic acid 6-methacrylic acid
  • Copolymers 40 to 47 Synthesis of Copolymers 40 to 47 Using the above-mentioned thermally crosslinkable monomers 5, 7, 8, photo-alignment monomers 3, 8, 10, self-crosslinkable monomers, and other monomers, Copolymers 40 to 47 were synthesized in the same manner as in Production Example 1.
  • Mn number average molecular weight of each synthesized copolymer was determined by gel permeation chromatography (GPC) using HLC-8220 GPC manufactured by Tosoh Corporation and polystyrene as a standard substance and NMP as an eluent. It calculated in.
  • thermosetting composition 1 having the following composition was prepared.
  • -Copolymer 1 0.1 g -Hexamethoxymethylmelamine (HMM): 0.01 g
  • PTSA P-Toluenesulfonic acid monohydrate
  • PGME Propylene glycol monomethyl ether
  • thermosetting composition prepared in Example 1 was applied to one surface of the transparent glass substrate by spin coating, and was heated and dried in an oven at 100 ° C. for 1 minute to form a cured film, whereby a coating film was obtained.
  • An alignment layer was formed by irradiating the cured film surface with polarized ultraviolet rays containing a 313 nm emission line in a direction perpendicular to the substrate normal by 10 mJ / cm 2 using a Hg—Xe lamp and a Grand Taylor prism.
  • the polymerizable liquid crystal composition was applied to the surface of the transparent glass substrate on which the alignment layer was formed by spin coating, and heated in a 70 ° C. oven for 1 minute to form a coating film.
  • a retardation plate was produced by irradiating the application surface of the polymerizable liquid crystal composition with 300 mJ / cm 2 of non-polarized ultraviolet light containing a 365 nm emission line using a Hg—Xe lamp in a nitrogen atmosphere.
  • Examples 2-44 and Comparative Examples 1-2 Hexamethoxymethylmelamine (HMM) or 1,3,4,6-tetrakis (methoxymethyl) glycoluril (TMGU) as the cross-linking agent, p-toluenesulfonic acid monohydrate (PTSA) or p as the acid or acid generator -Thermosetting properties of Examples 2-44 and Comparative Examples 1-2 as in Example 1 using pyridinium salt of toluenesulfonic acid (PPTS) and propylene glycol monomethyl ether (PGME) or methyl ethyl ketone (MEK) as solvent.
  • PPTS pyridinium salt of toluenesulfonic acid
  • PGME propylene glycol monomethyl ether
  • MEK methyl ethyl ketone
  • thermosetting composition 45 A thermosetting composition 45 having the composition shown below was prepared.
  • -Copolymer 1 0.1 g P-Toluenesulfonic acid monohydrate (PTSA): 0.0015 g
  • PGME Propylene glycol monomethyl ether
  • PPME Propylene glycol monomethyl ether
  • thermosetting compositions of Examples 46 to 60 were prepared in the same manner as Example 45 using 1,3,4,6-tetrakis (methoxymethyl) glycoluril (TMGU) to form an alignment layer. A retardation plate was produced.
  • the composition of each thermosetting composition is shown in Table 7 below.
  • the liquid crystal alignment and adhesion were all good. This is thought to be because a ⁇ -electron interaction is acting between liquid crystal molecules because both the photo-alignment structural unit and the thermally crosslinkable structural unit of the copolymer have a styrene skeleton.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、液晶配向能および液晶層との密着性に優れる配向層を形成可能な、光配向性を有する熱硬化性組成物ならびにそれを用いた配向層、配向層付基板、位相差板およびデバイスを提供することを主目的とする。 本発明は、下記式(1)で表される光配向性構成単位および下記式(2)で表される熱架橋性構成単位を有する共重合体を含有することを特徴とする光配向性を有する熱硬化性組成物を提供することにより、上記目的を達成する。ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。

Description

光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
 本発明は、配向層に用いられる光配向性を有する熱硬化性組成物に関するものである。
 液晶はその配向性と屈折率、誘電率、磁化率等の物理的性質の異方性とを利用して、液晶表示素子以外に、位相差板、偏光板等の各種光学素子等、様々な応用が検討されている。
 液晶を配向させるためには配向層が用いられる。配向層の形成方法としては、例えばラビング法や光配向法が知られており、光配向法はラビング法の問題点である静電気や塵の発生がなく、定量的な配向処理の制御ができる点で有用である(例えば特許文献1参照)。
 配向層には、液晶配向能の他、耐熱性、耐溶剤性等が要求される。例えば、配向層が、各種デバイスの製造過程にて熱や溶剤にさらされたり、各種デバイスの使用時に高温にさらされたりする場合がある。配向層が高温にさらされると、液晶配向能が著しく低下するおそれがある。
 そこで、例えば特許文献2には、安定した液晶配向能を得るために、光により架橋反応の可能な構造と熱によって架橋する構造とを有する重合体成分を含有する液晶配向剤、および、光により架橋反応の可能な構造を有する重合体成分と熱によって架橋する構造を有する化合物とを含有する液晶配向剤が提案されている。
 また、特許文献3には、優れた液晶配向能、十分な耐熱性、高い耐溶剤性および高い透明性を得るために、(A)光二量化部位および熱架橋部位を有するアクリル共重合体と、(B)架橋剤とを含有する、光配向性を有する熱硬化膜形成組成物が提案されている。(B)架橋剤は(A)アクリル共重合体の熱架橋部位と結合するものであり、光配向性を有する熱硬化膜形成組成物は加熱により硬化させることができる。
 特許文献4には、優れた液晶配向能、十分な耐熱性、高い耐溶剤性および高い透明性を得るために、(A)光二量化部位および熱架橋部位を有するアクリル共重合体と、(B)所定のアルキルエステル基およびヒドロキシアルキルエステル基の少なくとも一方と、カルボキシル基およびフェノール性ヒドロキシ基の少なくともいずれか一方とを有するアクリル重合体と、(C)架橋剤とを含有する、光配向性を有する熱硬化膜形成組成物が提案されている。(C)架橋剤は(A)アクリル共重合体の熱架橋部位ならびに(B)アクリル重合体のカルボキシル基およびフェノール性ヒドロキシ基と結合するものであり、光配向性を有する熱硬化膜形成組成物は加熱により硬化させることができる。
 特許文献5には、優れた液晶配向能、十分な耐熱性、高い耐溶剤性および高い透明性を得るために、(A)光配向性基およびヒドロキシ基を有する化合物と、(B)ヒドロキシ基およびカルボキシル基の少なくとも一方を有するポリマーと、(C)架橋剤とを含有する、光配向性を有する熱硬化膜形成組成物が提案されている。(C)架橋剤は(A)化合物のヒドロキシ基ならびに(B)ポリマーのヒドロキシ基およびカルボキシル基と結合するものであり、光配向性を有する熱硬化膜形成組成物は加熱により硬化させることができる。
特許第4094764号公報 特許第4207430号公報 国際公開第2010/150748号パンフレット 国際公開第2011/010635号パンフレット 国際公開第2011/126022号パンフレット 国際公開第2014/104320号パンフレット
 このように、配向層の耐熱性、耐溶剤性等の向上のために熱硬化が行うことが提案されている。しかしながら、熱硬化を行うと、配向層の硬度が高くなるため、この配向層上に形成される液晶層との密着性が低下してしまうことがある。特に、特許文献3~4のように、光二量化部位および熱架橋部位を有するアクリル共重合体を用い、架橋剤による熱硬化を行うと、膜の内部に網目構造が形成されるため、高硬度になり、配向層とその上に形成される液晶層との密着性が低下するという問題がある。
 また、特許文献3~4には、上述の光配向性を有する熱硬化膜形成組成物を用いて形成された配向層では配向感度が良かったことが開示されているが、配向規制力は十分であるとはいえず、改善の余地がある。また、配向規制力を高めるには、偏光紫外線の照射量を多くすればよいが、その場合にはスループットが低下する。
 本発明は、上記問題点に鑑みてなされたものであり、光配向部位および熱架橋部位の両方を有する共重合体を含有する熱硬化性組成物において、液晶配向能および液晶層との密着性に優れる配向層を形成可能な、光配向性を有する熱硬化性組成物ならびにそれを用いた配向層、配向層付基板、位相差板およびデバイスを提供することを主目的とする。
 上記目的を達成するために、本発明は、下記式(1)で表される光配向性構成単位および下記式(2)で表される熱架橋性構成単位を有する共重合体を含有することを特徴とする光配向性を有する熱硬化性組成物を提供する。
Figure JPOXMLDOC01-appb-C000006
(ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
 本発明によれば、共重合体の光配向性構成単位および熱架橋性構成単位はいずれもスチレン骨格を有し、π電子系を多く含んでいる。そのため、本発明の光配向性を有する熱硬化性組成物を用いて配向層を形成した場合には、液晶分子との相互作用が強く、液晶配向能に優れる配向層を得ることができると考えられる。さらには、π電子系の相互作用により、配向層上に形成される液晶層との密着性も高めることができると考えられる。また、本発明の光配向性を有する熱硬化性組成物は熱硬化性を有しており、耐熱性および耐溶剤性に優れる配向層を得ることができる。
 本発明の光配向性を有する熱硬化性組成物は、上記熱架橋性構成単位の熱架橋性基と結合する架橋剤をさらに含有することが好ましい。耐熱性および耐溶剤性を高めることができるからである。
 また本発明においては、上記熱架橋性基構成単位が上記熱架橋性基として自己架橋可能な架橋基を有していてもよい。共重合体の熱架橋性構成単位が自己架橋可能な架橋基を有するため、架橋剤を別途添加する必要がなく、光反応性を高め、感度を向上させることができるからである。
 さらに本発明においては、上記共重合体が、自己架橋可能な第2熱架橋性基を有する第2熱架橋性構成単位をさらに有していてもよい。共重合体の第2熱架橋性構成単位が自己架橋可能な第2熱架橋性基を有するため、架橋剤を別途添加する必要がなく、光反応性を高め、感度を向上させることができるからである。
 また本発明においては、上記光配向性基が光二量化反応または光異性化反応を生じる官能基であることが好ましい。また、上記光配向性基がシンナモイル基であることが好ましい。これらの光配向性基は光に対する感度が比較的高く、材料選択の幅が広いという利点を有する。
 さらに本発明においては、上記熱架橋性基がヒドロキシ基であることが好ましい。反応性が高いからである。
 また本発明においては、上記共重合体の全構成単位がスチレン単位を有することが好ましい。上述したように、本発明の光配向性を有する熱硬化性組成物を用いて配向層を形成した場合には、π電子系の相互作用により、液晶配向能および液晶層との密着性を向上させることができると考えられる。
 また本発明は、上記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とする配向層を提供する。
 本発明によれば、配向層は所定の光二量化構造および架橋構造を有する共重合体を含有するため、優れた液晶配向能、耐熱性および耐溶剤性を得ることができる。
 また本発明は、上記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有する配向層であって、上記光二量化構造がシンナモイル基の光二量化構造であることを特徴とする配向層を提供する。
 また本発明は、上記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とする配向層を提供する。
 本発明によれば、配向層は所定の光異性化構造および架橋構造を有する共重合体を含有するため、優れた液晶配向能、耐熱性および耐溶剤性を得ることができる。
 また本発明は、上記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有する配向層であって、上記光異性化構造がシンナモイル基の光異性化構造であることを特徴とする配向層を提供する。
 また本発明においては、上記架橋構造が、上記熱架橋性構成単位が有する上記熱架橋性基と架橋剤とが結合してなる架橋構造であることが好ましい。耐熱性および耐溶剤性を高めることができるからである。
 さらに本発明においては、上記架橋構造が、上記熱架橋性基構成単位が上記熱架橋性基として有する自己架橋可能な架橋基の架橋構造であることも好ましい。架橋剤を別途添加する必要がなく、配向層形成時に光反応性を高め、感度を向上させることができるからである。
 また本発明は、基板と、上記基板上に形成され、上述の光配向性を有する熱硬化性組成物から形成される配向層または上述の配向層とを有することを特徴とする配向層付基板を提供する。
 本発明によれば、配向層が上述の光配向性を有する熱硬化性組成物から形成されるものである、または上述の配向層であることにより、液晶配向能および液晶層との密着性に優れる配向層を得ることができる。
 また本発明は、上述の配向層付基板と、上記配向層付基板の配向層上に形成された位相差層とを有することを特徴とする位相差板を提供する。
 本発明によれば、上述の配向層付基板を有するため、液晶配向能、耐熱性および耐溶剤性に優れており、光学特性の良好な位相差板を得ることができる。
 さらに本発明は、上述の光配向性を有する熱硬化性組成物から形成される配向層または上述の配向層を有することを特徴とするデバイスを提供する。
 本発明によれば、配向層が上述の光配向性を有する熱硬化性組成物から形成されるものである、または上述の配向層であるため、液晶配向能および液晶層との密着性に優れており、光学特性の良好なデバイスを得ることができる。
 本発明においては、液晶配向能、液晶層との密着性、耐熱性および耐溶剤性に優れる配向層を形成可能な、光配向性を有する熱硬化性組成物を提供することができるという効果を奏する。
本発明の配向層付基板の一例を示す概略断面図である。 本発明における位相差板の一例を示す概略断面図である。 本発明における液晶表示素子の一例を示す概略断面図である。
 以下、本発明の光配向性を有する熱硬化性組成物ならびにそれを用いた配向層、配向層付基板、位相差板およびデバイスについて詳細に説明する。
 A.光配向性を有する熱硬化性組成物
 本発明の光配向性を有する熱硬化性組成物は、下記式(1)で表される光配向性構成単位および下記式(2)で表される熱架橋性構成単位を有する共重合体を含有することを特徴とするものである。
Figure JPOXMLDOC01-appb-C000007
(ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
 本発明における共重合体は、上記式(1)で表される光配向性構成単位および上記式(2)で表される熱架橋性構成単位を有するものであり、光配向性構成単位および熱架橋性構成単位はいずれもスチレン骨格を有しており、π電子系を多く含んでいる。また、一般に液晶分子にはベンゼン環等の芳香環を有するものが多く、同じくπ電子系を含む。そのため、本発明の光配向性を有する熱硬化性組成物から形成された配向層は、液晶分子との相互作用が強くなる。これにより、液晶分子を配向制御しやすくなり、優れた液晶配向能が得られると考えられる。また、π電子系の相互作用により、本発明の光配向性を有する熱硬化性組成物から形成された配向層は、この配向層上に形成される液晶層との密着性も高くなると考えられる。
 また、本発明の光配向性を有する熱硬化性組成物は熱硬化性を有しており、耐熱性および耐溶剤性に優れる配向層を得ることができる。
 以下、本発明の光配向性を有する熱硬化性組成物における各成分について説明する。
 1.共重合体
 本発明に用いられる共重合体は、上記式(1)で表される光配向性構成単位および上記式(2)で表される熱架橋性構成単位を有するものである。
 以下、共重合体における各構成単位について説明する。
 (1)光配向性構成単位
 本発明における光配向性構成単位は下記式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000008
(ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表す。)
 光配向性構成単位は、光照射により光反応を生じることで異方性を発現する部位である。光反応としては、光二量化反応または光異性化反応であることが好ましい。すなわち、光配向性構成単位は、光照射により光二量化反応を生じることで異方性を発現する光二量化構成単位、または、光照射により光異性化反応を生じることで異方性を発現する光異性化構成単位であることが好ましい。
 上記式(1)におけるXは光配向性基である。光配向性基は、上述のように、光照射により光反応を生じることで異方性を発現する官能基であり、光二量化反応または光異性化反応を生じる官能基であることが好ましい。
 光二量化反応を生じる光配向性基としては、例えばシンナモイル基、カルコン基、クマリン基、アントラセン基、キノリン基、アゾベンゼン基、スチルベン基等が挙げられる。これらの官能基におけるベンゼン環は、置換基を有していてもよい。置換基としては、光二量化反応を妨げないものであればよく、例えばアルキル基、アリール基、シクロアルキル基、アルコキシ基、ヒドロキシ基、ハロゲン原子、トリフルオロメチル基、シアノ基等が挙げられる。
 光異性化反応を生じる光配向性基としては、シストランス異性化反応を生じるものであることが好ましく、例えばシンナモイル基、カルコン基、アゾベンゼン基、スチルベン基等が挙げられる。これらの官能基におけるベンゼン環は、置換基を有していてもよい。置換基としては、光異性化反応を妨げないものであればよく、例えばアルコキシ基、アルキル基、ハロゲン原子、トリフルオロメチル基、シアノ基等が挙げられる。
 中でも、光配向性基は、シンナモイル基であることが好ましい。具体的に、シンナモイル基としては、下記式(3-1)、(3-2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(3-1)中、R11は水素原子、炭素数1~18のアルキル基、炭素数1~18のアリール基または炭素数1~18のシクロアルキル基を表す。ただし、アルキル基、アリール基およびシクロアルキル基はエーテル結合、エステル結合、アミド結合、尿素結合を介して結合していてもよく、置換基を有してもよい。R12~R15はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~18のアルキル基、炭素数1~18のアリール基または炭素数1~18のシクロアルキル基、炭素数1~18のアルコキシ基またはシアノ基を表す。ただし、アルキル基、アリール基およびシクロアルキル基はエーテル結合、エステル結合、アミド結合、尿素結合を介して結合していてもよく、置換基を有してもよい。R16およびR17はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~18のアルキル基、炭素数1~18のアリール基または炭素数1~18のアルコキシ基を表す。
 また、上記式(3-2)中、R21~R25はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~18のアルキル基、炭素数1~18のアリール基または炭素数1~18のシクロアルキル基、炭素数1~18のアルコキシ基またはシアノ基を表す。ただし、アルキル基、アリール基およびシクロアルキル基はエーテル結合、エステル結合、アミド結合、尿素結合を介して結合していてもよく、置換基を有してもよい。R26およびR27はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~18のアルキル基、炭素数1~18のアリール基または炭素数1~18のアルコキシ基を表す。
 なお、光配向性基がシンナモイル基の場合であって、上記式(3-1)で表される基の場合、スチレン骨格のベンゼン環がシンナモイル基のベンゼン環となっていてもよい。
 上記式(1)におけるLは2価の連結基または単結合である。なお、Lが単結合の場合、光配向性基Xはスチレン骨格に直接結合される。2価の連結基としては、例えばエーテル結合、チオエーテル結合、エステル結合、チオエステル結合、カルボニル結合、チオカルボニル結合、アルキレン基、アリーレン基、シクロアルキレン基、およびこれらの組み合わせ等が挙げられる。具体的には、-O-、-S-、-COO-、-COS-、-CO-、-OCO-、-OCO(CHCOO-、-OCO(CHCHO)COO-、-OCOCO-、-OCOC10O-、-COO(CHO-、-COO(CHCHO)-、-COOCO-、-COOC10O-、-O(CHO-、-O(CHCHO)-、-OCO-、-OC10O-、-(CHO-等が挙げられる。nは1~20、mは1~10である。
 上記式(1)におけるRは水素原子または1価の有機基である。1価の有機基は、好ましくはメチル基である。中でも、Rは水素原子であることが好ましい。
 上記式(1)において、kは1~5であり、-L-Xはオルト位、メタ位、パラ位のいずれに結合していてもよい。kが2~5の場合、LおよびXは互いに同一でもよく異なってもよい。中でも、kが1であり、-L-Xがパラ位に結合していることが好ましい。具体的には、光配向性構成単位は下記式(1-1)で表される構成単位であることが好ましい。なお、下記式中、各符号は上記式(1)と同様である。
Figure JPOXMLDOC01-appb-C000010
 光配向性構成単位としては、下記式(1-2)~(1-5)で表される構成単位を例示することができる。
Figure JPOXMLDOC01-appb-C000011
 上記式(1-2)中、R31は上記式(3-1)のR11と同様であり、R32およびR33は上記式(3-1)のR16およびR17と同様である。
 上記式(1-3)中、L11は単結合または2価の連結基を表す。2価の連結基としては、上記式(1)のLと同様である。R11~R17は上記式(3-1)と同様である。
 上記式(1-4)中、L12は単結合または2価の連結基を表す。2価の連結基としては、上記式(1)のLにおいてカルボニル結合およびチオカルボニル結合を除いた以外は同様である。
 上記式(1-5)中、L13は単結合または2価の連結基を表す。2価の連結基としては、上記式(1)のLと同様である。R35~R37は上記式(3-1)のR12~R15と同様であり、R38およびR39は上記式(3-1)のR16およびR17と同様である。
 共重合体が有する光配向性構成単位は、1種であってもよく2種以上であってもよい。
 中でも、光配向性構成単位は上記式(1-3)、(1-4)で表される構成単位であることが好ましい。
 上記式(1-3)において、L11は単結合、-O-、-COO-、-OCO-、-OCO(CHCOO-、-OCO(CHCHO)COO-、-OCOC10O-、-COO(CHO-、-COO(CHCHO)-、-COOC10O-、-O(CHO-、-O(CHCHO)-、-OC10O-または-(CHO-であることが好ましい。nは1~11であることが好ましく、mは1~5であることが好ましい。
 また、上記式(1-3)で表される光配向性構成単位は、下記式(1-6)で表される構成単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(1-6)中、R12~R17およびL11は上記式(1-3)と同様である。R18は水素原子、炭素数1~18のアルコキシ基、シアノ基、炭素数1~18のアルキル基、フェニル基、ビフェニル基またはシクロヘキシル基を表す。ただし、アルキル基、フェニル基、ビフェニル基およびシクロヘキシル基はエーテル結合、エステル結合、アミド結合、尿素結合を介して結合していてもよい。nは1~5を表し、R18はオルト位、メタ位、パラ位のいずれに結合していてもよい。nが2~5の場合、R18は互いに同一でもよく異なってもよい。中でも、nが1であり、R18がパラ位に結合していることが好ましい。
 また、上記式(1-4)において、L12は単結合、-O-、-OCOC10O-、-COO(CHO-、-COO(CHCHO)-、-COOC10O-、-O(CHO-、-O(CHCHO)-、-OC10O-または-(CHO-であることが好ましい。
 光配向性構成単位が上記式(1-6)、(1-4)で表されるような構成単位である場合、光配向性構成単位の末端付近に芳香環が配置されるようになり、液晶分子に類似した構造になる。そのため、配向層上に形成される液晶層と親和性が高くなり、液晶配向能および密着性が上がると考えられる。
 また、光配向性構成単位が上記式(1-6)、(1-4)で表されるような構成単位である場合には、光二量化反応性または光異性化反応性を高め、感度を向上させることができる。この理由は明らかではないが、次のように推量される。すなわち、光配向性構成単位はスチレン骨格を有するため、光配向性構成単位のスチレン骨格同士のπ電子系の相互作用により、スタッキング構造が形成されやすい。また、上記式(1-6)、(1-4)で表される光配向性構成単位では、光配向性基とスチレン骨格とが近接している。これにより、光配向性基が光二量化反応または光異性化反応を生じやすい位置関係になるものと推量される。例えば、光異性化反応の場合には、光配向性構成単位のスチレン骨格同士がスタッキングしており、光配向性基とスチレン骨格とが近接していることにより、光配向性基の向きが揃いやすくなり、光異性化反応性が高くなると考えられる。また、光二量化反応の場合には、光配向性構成単位のスチレン骨格同士がスタッキングしており、光配向性基とスチレン骨格とが近接していることにより、光配向性基間の距離が短くなるため、光二量化反応性が高くなると考えられる。
 したがって、この場合には、少ない露光量で配向層を形成することが可能な、高感度な光配向性を有する熱硬化性組成物とすることができ、省エネルギーに寄与することができる。
 また、高感度であるため、共重合体における光配向性構成単位の含有割合が比較的少ない場合であっても液晶配向能を得ることができる。そのため、共重合体における熱架橋性構成単位の含有割合を相対的に増やすことができ、耐熱性や耐溶剤性をより高めることができる。さらには、高感度のため、量産に適しており、光配向性を有する熱硬化性組成物から形成された配向層を有するデバイスの生産性を向上させることもできる。
 共重合体の合成には、上記光配向性構成単位を形成する光配向性基を有するスチレン系モノマーを用いることができる。光配向性基を有するスチレン系モノマーは、単独でまたは2種以上を組み合わせて用いることができる。
 共重合体における光配向性構成単位の含有割合としては、共重合体全体を100モル%としたとき、10モル%~90モル%の範囲内で設定することができ、好ましくは20モル%~80モル%の範囲内である。光配向性構成単位の含有割合が少ないと、感度が低下し、良好な液晶配向能を付与するのが困難になる場合がある。また、光配向性構成単位の含有割合が多いと、相対的に熱架橋性構成単位の含有割合が少なくなり、十分な熱硬化性が得られず、良好な液晶配向能を維持するのが困難になる場合がある。
 なお、共重合体における各構成単位の含有割合は、H NMR測定による積分値から算出することができる。
 (2)熱架橋性構成単位
 本発明における熱架橋性構成単位は下記式(2)で表されるものである。熱架橋性構成単位は、加熱により架橋剤と結合する部位である。
Figure JPOXMLDOC01-appb-C000013
(ここで、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
 上記式(2)におけるYは熱架橋性基である。熱架橋性基としては、例えばヒドロキシ基、カルボキシ基、フェノール性ヒドロキシ基、メルカプト基、グリシジル基、アミド基等が挙げられる。中でも、反応性の観点から、脂肪族ヒドロキシ基が好ましく、第1級のヒドロキシ基がより好ましい。また、後述するように、熱架橋性構成単位が熱架橋性基として自己架橋可能な架橋基を有する場合には、Yは自己架橋可能な架橋基を表し、例えばオルト位がヒドロキシメチル基またはアルコキシメチル基で置換されたフェノール性ヒドロキシ基、グリシジル基、アミド基、N-アルコキシメチル基、N-ヒドロキシメチル基等が挙げられる。
 上記式(2)におけるLは2価の連結基または単結合である。なお、Lが単結合の場合、熱架橋性基Yはスチレン骨格に直接結合される。2価の連結基としては、例えばエーテル結合、チオエーテル結合、エステル結合、チオエステル結合、カルボニル結合、チオカルボニル結合、アルキレン基、アリーレン基、シクロアルキレン基、およびこれらの組み合わせ等が挙げられる。具体的には、-OCO(CHCOO、-OCO(CHCHO)-、-OCOCO-、-OCOC10-、-COO(CH-、-COO(CHCHO)-、-COOCO、-COOC10-、-O(CH-、-O(CHCHO)-、-OC-、-OC10-、-(CH-等が挙げられる。nは4~11であることが好ましい。mは2~5であることが好ましい。nおよびmが大きすぎると、熱架橋性構成単位において連結基の鎖長が長くなるため、末端の熱架橋性基が表面に出にくく、熱架橋性基に架橋剤が結合しにくくなり、熱架橋性構成単位と架橋剤との反応性が低下するおそれがある。また、nおよびmが大きすぎると、共重合体における光配向性構成単位の含有割合が相対的に少なくなり、感度が低下し、良好な液晶配向能を付与するのが困難になる場合がある。一方、nおよびmが小さすぎると、熱架橋性構成単位において熱架橋性基とスチレン骨格との距離が短くなるため、熱架橋性基に架橋剤が結合しにくくなり、熱架橋性構成単位と架橋剤との反応性が低下するおそれがある。
 上記式(2)におけるRは水素原子または1価の有機基である。1価の有機基は、好ましくはメチル基である。中でも、Rは水素原子であることが好ましい。
 上記式(2)において、lは1~5であり、-L-Yはオルト位、メタ位、パラ位のいずれに結合していてもよい。lが2~5の場合、LおよびYは互いに同一でもよく異なってもよい。中でも、lが1であり、-L-Yがパラ位に結合していることが好ましい。具体的には、熱架橋性構成単位は下記式(2-1)で表される構成単位であることが好ましい。なお、下記式中、各符号は上記式(2)と同様である。
Figure JPOXMLDOC01-appb-C000014
 また、熱架橋性構成単位は架橋基を有していてもよい。この場合、熱架橋性構成単位が架橋剤を兼ねることができる。すなわち、架橋基は自己架橋可能な基である。また、熱架橋性構成単位は上記熱架橋性基として架橋基を有している。
 ここで、自己架橋とは、架橋剤を介さずに、同一の官能基同士や異なる官能基同士で反応し、架橋構造を形成することをいう。
 このような熱架橋性単位を有する共重合体を用いる場合は、本発明の光配向性を有する熱硬化性組成物を架橋剤を添加せずに利用することができる。そのため、光配向性を有する熱硬化性組成物における共重合体の含有量を相対的に増やし、配向に寄与する光配向性構成単位の含有割合を相対的に増やすことができ、光反応性を高めることができる。また、一般的に架橋剤は低分子成分であり、架橋剤を添加しないことにより、架橋剤が配向層の表面に浮き出てくる、いわゆるブリードアウトを防ぐことができ、液晶配向能が阻害されるのを抑制することができる。したがって、光反応性を高め、感度を向上させることができる。
 したがって、この場合には、少ない露光量で配向層を形成することが可能な、高感度な光配向性を有する熱硬化性組成物とすることができる。よって、配向層形成時の偏光紫外線の照射量を少なく、照射時間を短くすることができ、省エネルギーの観点から有用である。
 また、高感度であるため、共重合体における光配向性構成単位の含有割合が比較的少ない場合であっても液晶配向能を得ることができる。そのため、共重合体における熱架橋性構成単位の含有割合を相対的に増やすことができ、耐熱性や耐溶剤性をより高めることができる。さらには、高感度のため、量産に適しており、光配向性を有する熱硬化性組成物から形成された配向層を有するデバイスの生産性を向上させることもできる。
 一方、保存安定性の点からは、熱架橋性構成単位は架橋基を有さないことが好ましい。
 架橋基を有する熱架橋性構成単位としては、例えば、オルト位がヒドロキシメチル基またはアルコキシメチル基で置換されたフェノール性ヒドロキシ基、グリシジル基、アミド基、N-アルコキシメチル基、N-ヒドロキシメチル基を有するものが挙げられる。
 共重合体が有する熱架橋性構成単位は、1種であってもよく2種以上であってもよい。例えば共重合体が、自己架橋しない熱架橋性基を有する熱架橋性構成単位と、熱架橋性基として自己架橋可能な架橋基を有する熱架橋性構成単位とを有していてもよい。
 共重合体の合成には、上記熱架橋性構成単位を形成する熱架橋性基を有するスチレン系モノマーを用いることができる。熱架橋性基を有するスチレン系モノマーは、単独でまたは2種以上を組み合わせて用いることができる。
 共重合体における熱架橋性構成単位の含有割合としては、共重合体全体を100モル%としたとき、10モル%~90モル%の範囲内で設定することができ、好ましくは20モル%~80モル%の範囲内である。熱架橋性構成単位の含有割合が少ないと、十分な熱硬化性が得られず、良好な液晶配向能を維持するのが困難になる場合がある。また、熱架橋性構成単位の含有割合が多いと、相対的に光配向性構成単位の含有割合が少なくなり、感度が低下し、良好な液晶配向能を付与するのが困難になる場合がある。
 (3)第2熱架橋性構成単位
 本発明において、共重合体は、自己架橋可能な第2熱架橋性基を有する第2熱架橋性構成単位を有していてもよい。共重合体が自己架橋可能な第2熱架橋性基を有する第2熱架橋性構成単位を有することにより、本発明の光配向性を有する熱硬化性組成物を架橋剤を別途添加せずに用いることができる。そのため、光配向性を有する熱硬化性組成物における共重合体の含有量を相対的に増やし、配向に寄与する光配向性構成単位の含有割合を相対的に増やすことができ、光反応性を高めることができる。また、一般的に架橋剤は低分子成分であり、架橋剤を添加しないことにより、架橋剤が配向層の表面に浮き出てくる、いわゆるブリードアウトを防ぐことができ、液晶配向能が阻害されるのを抑制することができる。したがって、光反応性を高め、感度を向上させることができる。
 なお、自己架橋可能な第2熱架橋性基については、上記熱架橋性構成単位が有する自己架橋可能な架橋基と同様であるので、ここでの説明は省略する。
 第2熱架橋性構成単位を構成する単量体単位としては、例えばアクリル酸エステル、メタクリル酸エステル、スチレン、アクリルアミド、メタクリルアミド、マレイミド、ビニルエーテル、ビニルエステル等が挙げられる。中でも、アクリル酸エステル、メタクリル酸エステル、アクリルアミド、メタクリルアミド、スチレンが好ましい。
 アクリル酸エステルおよびメタクリル酸エステルのモノマーは、溶解性が高く、市販品として入手しやすく、共重合とした際の反応性が良いという利点を有する。
 また、N-アルコキシメチル基やN-ヒドロキシメチル基等の自己架橋可能な第2熱架橋性基が結合したアクリルアミドおよびメタクリルアミドのモノマーは、市販品として入手しやすく、また反応性が良いという利点を有する。
 また、スチレンの場合、共重合体において、光配向性構成単位および熱架橋性構成単位だけでなく第2熱架橋性構成単位もスチレン骨格を有することにより、π電子系を多く含む共重合体とすることができる。そのため、本発明の光配向性を有する熱硬化性組成物を用いて配向層を形成した場合、π電子系の相互作用により、液晶配向能を向上させ、また液晶層との密着性を高めることができると考えられる。
 第2熱架橋性構成単位としては、下記式(4)で表される構成単位を例示することができる。
Figure JPOXMLDOC01-appb-C000015
 上記式(4)中、Z1は単量体単位を表し、例えばアクリル酸エステル、メタクリル酸エステル、アクリルアミド、メタクリルアミド、スチレン、マレイミド、ビニルエーテル、ビニルエステル等が挙げられる。中でも、上述のように、アクリル酸エステル、メタクリル酸エステル、アクリルアミド、メタクリルアミド、スチレンが好ましい。具体的には、下記式で表される単量体単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
(上記式中、R41は水素原子、メチル基、塩素原子またはフェニル基を表し、R42は水素原子またはメチル基を表し、R43は水素原子、メチル基、塩素原子またはフェニル基、R44は水素原子または低級アルキル基を表す。)
 単量体単位がスチレンの場合、-L-Yはオルト位、メタ位、パラ位のいずれに結合していてもよく、また複数結合していてもよい。複数の場合、LおよびYは互いに同一でもよく異なってもよい。中でも、-L-Yが1つでありパラ位に結合していることが好ましい。
 上記式(4)中、Yは自己架橋可能な第2熱架橋性基を表し、上述したように、例えばグリシジル基、アミド基、N-アルコキシメチル基、N-ヒドロキシメチル基、オルト位がヒドロキシメチル基またはアルコキシメチル基で置換されたフェノール性ヒドロキシ基等が挙げられる。
 上記式(4)中、Lは単結合または2価の連結基を表す。Lが単結合の場合、自己架橋可能な第2熱架橋性基Yは単量体単位Zに直接結合される。2価の連結基としては、例えばエーテル結合、チオエーテル結合、エステル結合、チオエステル結合、カルボニル結合、チオカルボニル結合、アルキレン基、アリーレン基、シクロアルキレン基、およびこれらの組み合わせ等が挙げられる。
 なお、Zがスチレンであり、Yがオルト位がヒドロキシメチル基またはアルコキシメチル基で置換されたフェノール性ヒドロキシ基であり、Lが単結合の場合、スチレン骨格のベンゼン環がフェノール性ヒドロキシ基のベンゼン環となる。
 このような第2熱架橋性構成単位を形成するモノマーとしては、例えばアクリル酸エステル化合物、メタクリル酸エステル化合物、アクリルアミド化合物、メタクリルアミド化合物、スチレン化合物、マレイミド化合物、ビニル化合物等が挙げられる。
 共重合体が有する第2熱架橋性構成単位は、1種であってもよく2種以上であってもよい。
 共重合体の合成には、上記第2熱架橋性構成単位を形成する自己架橋可能な第2熱架橋性基を有するモノマーを用いることができる。自己架橋可能な第2熱架橋性基を有するモノマーは、単独でまたは2種以上を組み合わせて用いることができる。
 共重合体における第2熱架橋性構成単位の含有割合としては、共重合体全体を100モル%としたとき、0モル%~80モル%の範囲内で設定することができ、好ましくは1モル%~80モル%の範囲内、さらに好ましくは5モル%~80モル%の範囲内である。第2熱架橋性構成単位の含有割合が少ないと、上述した効果が十分に得られない場合がある。また、第2熱架橋性構成単位の含有割合が多いと、相対的に光配向性構成単位の含有割合が少なくなり、感度が低下し、良好な液晶配向能を付与するのが困難になる場合がある。
 (4)他の構成単位
 本発明において、共重合体は、光配向性構成単位および熱架橋性構成単位の他に、光配向性基および熱架橋性基のいずれも有さない構成単位を有していてもよい。共重合体に他の構成単位が含まれることにより、例えば溶剤溶解性、耐熱性、反応性等を高めることができる。
 光配向性基および熱架橋性基を有さない構成単位を構成する単量体単位としては、例えばアクリル酸エステル、メタクリル酸エステル、マレイミド、アクリルアミド、アクリロニトリル、マレイン酸無水物、スチレン、ビニル等が挙げられる。このように共重合体は、全構成単位がスチレン単位を有するスチレン共重合体であってもよく、スチレン単位以外の構成単位を有していてもよい。
 中でも、上記構成単位を構成する単量体単位は、アクリル酸エステル、メタクリル酸エステル、スチレンであることが好ましい。アクリル酸エステルおよびメタクリル酸エステルのモノマーは、溶解性が高く、市販品として入手しやすく、共重合とした際の反応性が良いという利点を有する。また、スチレンの場合、上述したように、本発明の光配向性を有する熱硬化性組成物を用いて配向層を形成した場合には、π電子系の相互作用により、液晶配向能を向上させ、また液晶層との密着性を高めることができると考えられる。
 特に、上記構成単位を構成する単量体単位はスチレンであることが好ましい。すなわち、共重合体は全構成単位がスチレン単位を有するスチレン共重合体であることが好ましい。
 このような光配向性基および熱架橋性基を有さない構成単位を形成するモノマーとしては、例えばアクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、グリシジルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、2-アミノエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、グリシジルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、2-アミノメチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、γ-ブチロラクトンメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。
 ビニル化合物としては、例えば、メチルビニルエーテル、ベンジルビニルエーテル、ビニルナフタレン、ビニルカルバゾール、アリルグリシジルエーテル、3-エテニル-7-オキサビシクロ[4.1.0]ヘプタン、1,2-エポキシ-5-ヘキセン、1,7-オクタジエンモノエポキサイド等が挙げられる。
 スチレン化合物としては、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、クロロスチレン、ブロモスチレン、p-トリフルオロメチルスチレン、p-トリフルオロメチル-α-メチルスチレン、4(4-トリフルオロメチルベンゾイルオキシ)スチレン、p-セチルオキシスチレン、p-パルミトイルオキシスチレン等が挙げられる。
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
 共重合体における光配向性基および熱架橋性基を有さない構成単位は、1種であってもよく2種以上であってもよい。
 共重合体における上記構成単位の含有割合としては、共重合体全体を100モル%としたとき、0モル%~50モル%の範囲内であることが好ましく、0モル%~30モル%の範囲内であることがより好ましい。上記構成単位の含有割合が多いと、相対的に光配向性構成単位および熱架橋性構成単位の含有割合が少なくなり、感度が低下し、良好な液晶配向能を付与するのが困難になり、また十分な熱硬化性が得られず、良好な液晶配向能を維持するのが困難になる場合がある。
 (5)共重合体
 共重合体の数平均分子量は、特に限定されるものではなく、例えば3,000~200,000程度とすることができ、好ましくは4,000~100,000の範囲内である。数平均分子量が大きすぎると、溶剤に対する溶解性が低くなったり粘度が高くなったりして取り扱い性が低下し、均一な膜を形成しにくい場合がある。また、数平均分子量が小さすぎると、熱硬化時に硬化不足になり溶剤耐性や耐熱性が低下する場合がある。
 なお、数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法により測定することができる。
 共重合体の合成方法としては、光配向性基を有するスチレン系モノマーと熱架橋性基を有するスチレン系モノマーとを共重合する方法が挙げられる。
 共重合体の合成方法としては特に限定されないが、例えば、光配向性基を有するスチレン系モノマーと熱架橋性基を有するスチレン系モノマーと重合開始剤等とを共存させた溶剤中において重合反応させることにより得ることができる。その際、用いられる溶剤は、光配向性基を有するスチレン系モノマー、熱架橋性基を有するスチレン系モノマーおよび重合開始剤等を溶解するものであれば特に限定されない。具体的には、後述の光配向性を有する熱硬化性組成物に用いられる溶剤と同様とすることができる。また、重合反応の際の温度は、例えば50℃~120℃程度で設定することができる。上記方法により得られる共重合体は、通常、溶剤に溶解した溶液の状態である。
 上記方法により得られた共重合体はそのまま用いることができるが、下記に示す方法により精製して用いることもできる。
 すなわち、上記方法で得られた共重合体の溶液を、攪拌下のジエチルエーテルやメタノール、水等に投入して再沈殿させ、生成した沈殿物を濾過、洗浄した後に、常圧または減圧下で、常温乾燥または加熱乾燥し、共重合体の粉体とすることができる。この操作により、共重合体と共存する重合開始剤および未反応のモノマーを除去することができ、その結果、精製した共重合体の粉体が得られる。一度の操作で十分に精製できない場合は、得られた粉体を溶剤に再溶解させ、上記の操作を繰り返し行えばよい。
 共重合体は、共重合体を合成した際の溶液形態で、あるいは、粉体形態で、あるいは精製した粉末を後述する溶剤に再溶解した溶液形態で用いてもよい。
 また、共重合体は、1種であってもよく複数種の共重合体の混合物であってもよい。
 2.架橋剤
 本発明の光配向性を有する熱硬化性組成物は、架橋剤を含有することが好ましい。架橋剤は、上記共重合体の熱架橋性構成単位または第2熱架橋性構成単位と結合するものであり、耐熱性および耐溶剤性を高めることができる。一方、光反応性および感度の点からは、本発明の光配向性を有する熱硬化性組成物は、架橋剤を含有しないことが好ましい。
 架橋剤としては、例えばエポキシ化合物、メチロール化合物、イソシアナート化合物等が挙げられる。中でも、メチロール化合物が好ましい。
 メチロール化合物としては、例えばアルコキシメチル化グリコールウリル、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化メラミン等が挙げられる。
 アルコキシメチル化グリコールウリルとしては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。市販品として、三井サイテック(株)製グリコールウリル化合物(商品名サイメル1170、パウダーリンク1174)等の化合物、メチル化尿素樹脂(商品名UFR65)、ブチル化尿素樹脂(商品名UFR300、U-VAN10S60、U-VAN10R、U-VAN11HV)、大日本インキ化学工業(株)製尿素/ホルムアルデヒド系樹脂(高縮合型、商品名ベッカミンJ-300S、ベッカミンP-955、ベッカミンN)、三和ケミカル(株)社製グリコールウリル化合物(商品名ニカラックMX-270)、イミダゾリジン化合物(商品名ニカラックMX-280)等が挙げられる。
 アルコキシメチル化ベンゾグアナミンとしては、例えばテトラメトキシメチルベンゾグアナミン等が挙げられる。市販品として、三井サイテック(株)製(商品名サイメル1123)、(株)三和ケミカル製(商品名ニカラックBX-4000、ニカラックBX-37、ニカラックBL-60、ニカラックBX-55H)等が挙げられる。
 アルコキシメチル化メラミンとしては、例えばヘキサメトキシメチルメラミン等が挙げられる。市販品として、三井サイテック(株)製メトキシメチルタイプメラミン化合物(商品名サイメル300、サイメル301、サイメル303、サイメル350、サイメル3745)、ブトキシメチルタイプメラミン化合物(商品名マイコート506、マイコート508、サイメル1156)、三和ケミカル製メトキシメチルタイプメラミン化合物(商品名ニカラックMW-30、ニカラックMW-22、ニカラックMW-11、ニカラックMS-001、ニカラックMX-002、ニカラックMX-730、ニカラックMX-750、ニカラックMX-035、ニカラックMW-390、ニカラックMW-100LM、ニカラックMX-750LM)、ブトキシメチルタイプメラミン化合物(商品名ニカラックMX-45、ニカラックMX-410、ニカラックMX-302)等が挙げられる。
 また、分子内にベンゼン環を複数個含む架橋剤も利用することができる。分子内にベンゼン環を複数個含む架橋剤としては、例えばヒドロキシメチル基またはアルコキシメチル基を合わせて2個以上有し、分子量が1200以下のフェノール誘導体や、少なくとも2個の遊離N-アルコキシメチル基を有するメラミン-ホルムアルデヒド誘導体やアルコキシメチルグリコールウリル誘導体が挙げられる。ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物とホルムアルデヒドを塩基触媒下で反応させることによって得ることができる。
 また、架橋剤は、このようなアミノ基の水素原子がメチロール基またはアルコキシメチル基で置換されたメラミン化合物、尿素化合物、グリコールウリル化合物およびベンゾグアナミン化合物を縮合させて得られる化合物であってもよい。例えば、米国特許第6323310号に記載されているメラミン化合物およびベンゾグアナミン化合物から製造される高分子量の化合物が挙げられる。メラミン化合物の市販品としては、商品名サイメル303(三井サイテック(株)製)等が挙げられる。ベンゾグアナミン化合物の市販品としては、商品名サイメル1123(三井サイテック(株)製)等が挙げられる。
 さらに、架橋剤としては、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルメタクリルアミド等のヒドロキシメチル基またはアルコキシメチル基で置換されたアクリルアミド化合物またはメタクリルアミド化合物を使用して製造されるポリマーも用いることができる。
 そのようなポリマーとしては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンとの共重合体、N-ヒドロキシメチルメタクリルアミドとメチルメタクリレートとの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートとの共重合体、およびN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000~500,000の範囲内であり、好ましくは2,000~200,000の範囲内であり、より好ましくは3,000~150,000の範囲内であり、さらに好ましくは3,000~50,000の範囲内である。
 これらの架橋剤は、単独でまたは2種以上を組み合わせて使用することができる。
 本発明の光配向性を有する熱硬化性組成物における架橋剤の含有量は、上記共重合体100質量部に対して1質量部~40質量部の範囲内であることが好ましく、より好ましくは2質量部~30質量部の範囲内である。含有量が少なすぎる場合には、光配向性を有する熱硬化性組成物から形成される硬化膜の耐熱性および溶剤耐性が低下し、液晶配向能が低下するおそれがある。また、含有量が多すぎる場合には、液晶配向能および保存安定性が低下することがある。
 3.酸または酸発生剤
 本発明の光配向性を有する熱硬化性組成物は、酸または酸発生剤を含有してもよい。酸または酸発生剤により、本発明の光配向性を有する熱硬化性組成物の熱硬化反応を促進させることができる。
 酸または酸発生剤としては、スルホン酸基含有化合物、塩酸またはその塩、および塗膜の乾燥および加熱硬化時に熱分解して酸を発生する化合物、すなわち温度50℃から250℃で熱分解して酸を発生する化合物であれば特に限定されるものではない。そのような化合物としては、例えば塩酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、オクタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファスルホン酸、トリフルオロメタンスルホン酸、p-フェノールスルホン酸、2-ナフタレンスルホン酸、メシチレンスルホン酸、p-キシレン-2-スルホン酸、m-キシレン-2-スルホン酸、4-エチルベンゼンスルホン酸、1H,1H,2H,2H-パーフルオロオクタンスルホン酸、パーフルオロ(2-エトキシエタン)スルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタン-1-スルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸またはその水和物や塩等が挙げられる。熱により酸を発生する化合物としては、例えばビス(トシルオキシ)エタン、ビス(トシルオキシ)プロパン、ビス(トシルオキシ)ブタン、p-ニトロベンジルトシレート、o-ニトロベンジルトシレート、1,2.3-フェニレントリス(メチルスルホネート)、p-トルエンスルホン酸ピリジニウム塩、p-トルエンスルホン酸モルフォニウム塩、p-トルエンスルホン酸エチルエステル、p-トルエンスルホン酸プロピルエステル、p-トルエンスルホン酸ブチルエステル、p-トルエンスルホン酸イソブチルエステル、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸フェネチルエステル、シアノメチルp-トルエンスルホネート、2,2,2-トリフルオロエチルp-トルエンスルホネート、2-ヒドロキシブチルp-トシレート、N-エチル-4-トルエンスルホンアミド等が挙げられる。また、熱により酸を発生する化合物として、国際公開第2010/150748号パンフレットに記載されているものを用いることもできる。
 本発明の光配向性を有する熱硬化性組成物における酸または酸発生剤の含有量は、上記共重合体100質量部に対して、好ましくは0.01質量部~20質量部の範囲内、より好ましくは0.05質量部~10質量部の範囲内、さらに好ましくは0.1質量部~5質量部の範囲内である。酸または酸発生剤の含有量を上記範囲内とすることで、十分な熱硬化性および溶剤耐性を付与することができ、さらに光照射に対する高い感度をも付与することができる。一方、含有量が多すぎると、光配向性を有する熱硬化性組成物の保存安定性が低下する場合がある。
 4.増感剤
 本発明の光配向性を有する熱硬化性組成物は、増感剤を含有してもよい。増感剤により、光二量化反応や光異性化反応等の光反応を促進させることができる。
 増感剤としては、例えばベンゾフェノン、アントラセン、アントラキノン、チオキサントン等およびその誘導体、およびニトロフェニル化合物等が挙げられる。これらのうち、ベンゾフェノン誘導体およびニトロフェニル化合物が好ましい。好ましい化合物としては、例えばN,N-ジエチルアミノベンゾフェノン、2-ニトロフルオレン、2-ニトロフルオレノン、5-ニトロアセナフテン、4-ニトロビフェニル等が挙げられる。増感剤は単独でまたは2種以上の化合物を組み合わせて併用することができる。
 本発明の光配向性を有する熱硬化性組成物における増感剤の含有量は、上記共重合体100質量部に対して0.1質量部~20質量部の範囲内であることが好ましく、より好ましくは0.2質量部~10質量部の範囲内である。含有量が少なすぎると増感剤としての効果を十分に得られない場合があり、含有量が多すぎると透過率の低下および塗膜の荒れが生じることがある。
 5.溶剤
 本発明の光配向性を有する熱硬化性組成物は、主として溶剤に溶解した溶液状態で用いられる。
 溶剤としては、上記の各成分を溶解できるものであれば特に限定されるものでなく、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ブタノン、3-メチル-2-ペンタノン、2-ペンタノン、2-ヘプタノン、γ―ブチロラクトン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。溶剤は1種単独でまたは2種以上の組合せで使用することができる。
 中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、プロピレングリコールプロピルエーテル、プロピレングリコールプロピルエーテルアセテート、乳酸エチル、乳酸ブチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルは、成膜性が良好で、安全性が高いため好ましい。
 6.添加剤
 本発明の光配向性を有する熱硬化性組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、シランカップリング剤、界面活性剤、レオロジー調整剤、顔料、染料、保存安定剤、消泡剤、酸化防止剤等を含有することができる。また、液晶配向能の向上のために、液晶性モノマーを含有させることができる。
 7.光配向性を有する熱硬化性組成物
 本発明の光配向性を有する熱硬化性組成物は、通常、各成分が溶剤に溶解した溶液として用いられる。本発明の光配向性を有する熱硬化性組成物における固形分の割合は、各成分が均一に溶剤に溶解している限り特に限定されるものではなく、0.1質量%~80質量%の範囲内であり、好ましくは0.5質量%~60質量%の範囲内であり、より好ましくは0.5質量%~40質量%の範囲内である。固形分の割合が少なすぎると、液晶配向能や熱硬化性を付与することが困難になる場合がある。また、固形分の割合が多すぎると、光配向性を有する熱硬化性組成物の粘度が高くなり、均一な膜を形成しにくくなる。
 なお、固形分とは、光配向性を有する熱硬化性組成物の全成分から溶剤を除いたものをいう。
 本発明の光配向性を有する熱硬化性組成物の調製方法は特に限定されるものではないが、保存安定性が長くなることから、共重合体、架橋剤、増感剤およびその他の添加剤を混合し、後から酸または酸発生剤を添加する方法が好ましい。なお、酸または酸発生剤をはじめから添加する場合には、酸または酸発生剤として、塗膜の乾燥および加熱硬化時に熱分解して酸を発生する化合物を用いることが好ましい。
 本発明の光配向性を有する熱硬化性組成物の調製においては、溶剤中の重合反応によって得られる共重合体の溶液をそのまま使用することができる。この場合、共重合体の溶液に、上述のように架橋剤、増感剤およびその他の添加剤等を入れて均一な溶液とし、後から酸または酸発生剤を添加する。この際に、濃度調整を目的としてさらに溶剤を加えてもよい。このとき、共重合体の生成過程で用いられる溶剤と、光配向性を有する熱硬化性組成物の濃度調整に用いられる溶剤とは同一であってもよく異なってもよい。
 また、調製された光配向性を有する熱硬化性組成物の溶液は、孔径が0.2μm程度のフィルタ等を用いて濾過した後、使用することが好ましい。
 8.用途
 本発明の光配向性を有する熱硬化性組成物の用途としては、例えば位相差板等の各種光学素子の配向層、液晶表示素子の配向層を挙げることができる。また、本発明の光配向性を有する熱硬化性組成物は、液晶表示素子、有機EL素子、TFT、カラーフィルタ等の各種デバイスにおける絶縁膜や保護膜等に用いることもでき、例えば有機EL素子の絶縁膜、TFTの層間絶縁膜、カラーフィルタのオーバーコート層等を挙げることができる。
 B.配向層
 本発明の配向層は2つの実施態様を有する。以下、各実施態様に分けて説明する。
 1.第1実施態様
 本実施態様の配向層は、上記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とするものである。
 本発明によれば、配向層は所定の光二量化構造および架橋構造を有する共重合体を含有するものであるため、優れた液晶配向能、耐熱性および耐溶剤性を得ることができる。
 ここで、架橋構造とは、三次元的な網目構造をいう。架橋構造には、後述する光配向性基同士が光二量化反応により架橋した構造は含まれない。
 共重合体は、上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有している。架橋構造は、上記「A.光配向性を有する熱硬化性組成物」に記載した上記式(1)で表される光配向性構成単位および上記式(2)で表される熱架橋性構成単位を有する共重合体を熱硬化することにより形成することができる。架橋構造は、三次元的な網目構造であり、熱架橋性構成単位が有する熱架橋性基が架橋した構造である。光配向性を有する熱硬化性組成物が架橋剤を含有する場合、通常、熱架橋性構成単位が有する熱架橋性基は、架橋剤と結合する。なお、熱架橋性構成単位が熱架橋性基として自己架橋可能な架橋基を有する場合、自己架橋可能な架橋基は架橋剤とも結合する。また、共重合体が、自己架橋しない熱架橋性基を有する熱架橋性構成単位と、熱架橋性基として自己架橋可能な架橋基を有する熱架橋性構成単位とを有する場合、自己架橋しない熱架橋性基は、自己架橋可能な架橋基と結合する。また、熱架橋性構成単位が熱架橋性基として自己架橋可能な架橋基を有する場合、架橋基は自己架橋する。したがって、架橋構造は、熱架橋性基と架橋剤とが加熱により架橋した構造、自己架橋しない熱架橋性基と自己架橋可能な架橋基とが加熱により架橋した構造、または自己架橋可能な架橋基同士が加熱により架橋した構造となる。
 例えば、架橋剤がヘキサメトキシメチルメラミンの場合、架橋構造は下記に示すような構造になる。なお、下記式中、各符号は上記式(1)と同様である。
Figure JPOXMLDOC01-appb-C000017
 なお、共重合体の各構成単位については、上記「A.光配向性を有する熱硬化性組成物」に詳しく記載したので、ここでの説明は省略する。
 配向層が上記共重合体を含有することは、配向層から材料を採取し分析することで確認することができる。分析方法としては、NMR、IR、GC-MS、XPS、TOF-SIMSおよびこれらの組み合わせた方法を適用することができる。
 また、配向層は、上記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造を有している。光二量化構造は、上記式(1)で表される光配向性構成単位の光配向性基同士が光二量化反応により架橋した構造であり、シクロプロパン骨格を有する構造である。
 光二量化反応は、下記に示すような反応であり、光配向性基に含まれるオレフィン構造が光反応によりシクロプロパン骨格を形成する反応である。光配向性基の種類に応じてXa~XdおよびXa′~Xd′は異なる。
Figure JPOXMLDOC01-appb-C000018
 光二量化構造は、シンナモイル基の光二量化構造であることが好ましい。具体的には、上記「A.光配向性を有する熱硬化性組成物」に記載したシンナモイル基同士が光二量化反応により架橋した構造が好ましい。中でも、配向層は、下記式(5-1)、(5-2)で表されるような光二量化構造を有することが好ましい。なお、下記式中、各符号は上記式(1-6)、(1-4)と同様である。
Figure JPOXMLDOC01-appb-C000019
 配向層が、上記式(5-1)、(5-2)で表されるような光二量化構造を有する場合、芳香環が多く配置され、π電子を多く含むようになる。そのため、配向層上に形成される液晶層と親和性が高くなり、液晶配向能が向上し、液晶層との密着性が高くなると考えられる。
 なお、配向層が上記光二量化構造を有することは、NMRまたはIRにより分析可能である。
 また、配向層は、架橋剤、酸または酸発生剤、増感剤、その他の添加剤を含有してもよい。なお、これらの添加剤については、上記「A.光配向性を有する熱硬化性組成物」に記載したものと同様である。
 配向層の形成方法および膜厚等については、後述の配向層付基板における配向層と同様であるので、ここでの説明は省略する。
 2.第2実施態様
 本実施態様の配向層は、上記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造および上記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とするものである。
 本実施態様によれば、配向層は所定の光異性化構造および架橋構造を有する共重合体を含有するものであるため、優れた液晶配向能、耐熱性および耐溶剤性を得ることができる。
 配向層は、上記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造を有している。光異性化構造は、上記式(1)で表される光配向性構成単位が有する光配向性基が光異性化反応により異性化した構造である。例えばシストランス異性化反応の場合、光異性化構造は、シス体がトランス体に変化した構造およびトランス体がシス体に変化した構造のいずれであってもよい。
 例えば、光配向性基がシンナモイル基の場合、光異性化反応は下記に示すような反応であり、光配向性基に含まれるオレフィン構造が光反応によりシス体またはトランス体を形成する反応である。光配向性基の種類に応じてXa~Xdは異なる。
Figure JPOXMLDOC01-appb-C000020
 光異性化構造は、シンナモイル基の光異性化構造であることが好ましい。具体的には、上記「A.光配向性を有する熱硬化性組成物」に記載したシンナモイル基が光異性化反応により異性化した構造が好ましい。この場合、光異性化構造は、シス体がトランス体に変化した構造およびトランス体がシス体に変化した構造のいずれであってもよい。中でも、配向層は、下記式で示されるような、上記式(1-3)で表されるシンナモイル基の光異性化構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000021
 なお、光異性化構造は、上記第1実施態様と同様の方法により確認することができる。
 架橋構造および共重合体については、上記第1実施態様と同様であるので、ここでの説明は省略する。
 なお、架橋構造は、上記第1実施態様と同様の方法により確認することができる。
 C.配向層付基板
 本発明の配向層付基板は、基板と、上記基板上に形成され、上述の光配向性を有する熱硬化性組成物から形成される配向層または上述の配向層とを有することを特徴とするものである。
 図1は本発明の配向層付基板の一例を示す概略断面図である。図1に例示する配向層付基板1においては、基板2上に配向層3が形成されており、配向層3は上述の光配向性を有する熱硬化性組成物から形成されるもの、または上述の配向層である。
 本発明によれば、配向層は上述の光配向性を有する熱硬化性組成物から形成されるものである、または上述の配向層であることにより、優れた液晶配向能、液晶層との密着性、耐熱性および耐溶剤性を得ることができる。
 以下、本発明の配向層付基板における各構成について説明する。
 1.配向層
 本発明における配向層は、上述の光配向性を有する熱硬化性組成物から形成されるもの、または上述の配向層であり、液晶分子を配向させる機能を有するものである。
 ここで、光配向性を有する熱硬化性組成物から形成される配向層とは、光配向性を有する熱硬化性組成物を含有する膜を熱硬化させ、さらに光配向させてなる配向層をいう。
 すなわち、配向層の形成においては、まず、基板上に光配向性を有する熱硬化性組成物を塗布し、乾燥させ、加熱して、硬化膜を形成する。次に、硬化膜に偏光紫外線を照射して、配向層を形成する。
 光配向性を有する熱硬化性組成物の塗布方法としては、基板上に均一な膜を形成可能な方法であれば特に限定されるものではなく、例えばスピンコート法、ロールコート法、ロッドバーコート法、スプレーコート法、エアナイフコート法、スロットダイコート法、ワイヤーバーコート法、フローコート法、インクジェット法等を挙げることができる。
 塗膜の乾燥には、例えばホットプレートやオーブン等を用いることができる。温度は、例えば30℃~160℃程度で設定することができ、好ましくは50℃~140℃の範囲内である。時間は、例えば20秒間~60分間程度で設定することができ、好ましくは30秒間~10分間の範囲内である。
 塗膜の加熱硬化にも、ホットプレートやオーブン等を用いることができる。温度は、例えば30℃~250℃程度で設定することができる。時間は、例えば20秒間~60分間程度で設定することができる。また、塗膜の乾燥および加熱硬化を同時に行ってもよく別々に行ってもよい。
 光配向性を有する熱硬化性組成物を熱硬化させて得られる硬化膜の膜厚は、用途等に応じて適宜選択されるものであり、例えば0.05μm~30μm程度とすることができる。なお、硬化膜の膜厚が薄すぎると、十分な液晶配向能が得られない場合がある。
 得られた硬化膜には、偏光紫外線を照射することにより、光反応を生じさせて異方性を発現させることができる。偏光紫外線の波長は通常150nm~450nmの範囲内である。また、偏光紫外線の照射方向は、基板面に対して垂直または斜め方向とすることができる。
 なお、配向層が上述の光配向性を有する熱硬化性組成物から形成されたものであることは、配向層から材料を採取し分析することで確認することができる。分析方法としては、NMR、IR、GC-MS、XPS、TOF-SIMSおよびこれらの組み合わせた方法を適用することができる。
 2.基板
 本発明に用いられる基板は、配向層を支持するものである。
 基板としては、特に限定されるものではなく、用途等に応じて適宜選択される。基板の材料としては、例えば、ガラスや石英、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリエステル、ポリスルホン、ポリエーテルスルホン、環状ポリオレフィン、アクリル等の樹脂、アルミニウム等の金属、シリコンやシリコンナイトライド等のセラミック等が挙げられる。また、基板は表面処理が施されたものであってもよい。
 基板は、可撓性を有していてもよく有さなくてもよく、用途等に応じて適宜選択される。
 3.導電層
 本発明においては、基板と配向層と間に導電層が形成されていてもよい。導電層は例えば各種デバイスの電極として機能するものである。導電層の材料としては、例えばITO、IZO等の透明導電材料や、アルミニウム、モリブデン、クロム等の金属材料が挙げられる。
 4.用途
 本発明の配向層付基板の用途としては、例えば位相差板等の各種光学素子、液晶表示素子、発光素子等を挙げることができる。
 D.位相差板
 本発明の位相差板は、上述の配向層付基板と、上記配向層付基板の配向層上に形成された位相差層とを有することを特徴とするものである。
 図2は本発明の位相差板の一例を示す概略断面図である。図2に例示する位相差板10においては、基板11上に配向層12が形成され、配向層12上に位相差層13が形成されている。配向層12は上述の光配向性を有する熱硬化性組成物から形成されるものまたは上述の配向層であり、位相差層13は液晶層に該当する。
 位相差層は、配向層上に液晶組成物を塗布し、液晶組成物の相転移温度まで加熱して配向層によって液晶分子を配向させ、硬化することにより得ることができる。
 液晶組成物は、少なくとも液晶化合物を含有するものであり、通常はさらに溶剤を含有する。液晶組成物は、液晶化合物の配向を阻害しない範囲で、さらに他の成分を含有してもよい。
 位相差層に用いられる液晶組成物としては、位相差層に一般的に用いられるものを使用することができる。液晶組成物には、例えば水平配向、コレステリック配向、垂直配向、ハイブリッド配向等の配向性を有するものがあり、配向層との組み合わせや所望の位相差等に応じて適宜選択される。
 中でも、液晶化合物は、重合性基を有する重合性液晶化合物であることが好ましい。重合性液晶化合物同士を架橋することができ、位相差板の安定性が増すからである。
 また、位相差層の膜厚および形成方法等は、一般的な位相差層と同様とすることができる。
 位相差板は可撓性を有していてもよく有さなくてもよい。
 E.デバイス
 本発明のデバイスは、上述の光配向性を有する熱硬化性組成物から形成される配向層または上述の配向層を有することを特徴とするものである。
 デバイスとしては、配向層を有するものであれば特に限定されるものではなく、例えば位相差板等の各種光学素子、液晶表示素子、発光素子等を挙げることができる。
 以下、位相差板および液晶表示素子に分けて説明する。
 1.位相差板
 本発明における位相差板は、基板と、基板上に形成され、上述の光配向性を有する熱硬化性組成物から形成される配向層または上述配向層と、配向層上に形成された位相差層とを有するものである。
 なお、位相差層については、上記「D.位相差板」に記載したので、ここでの説明は省略する。
 基板および配向層の間には導電層が形成されていてもよい。なお、基板、配向層および導電層については、上記「B.配向層付基板」における基板、配向層および導電層と同様であるので、ここでの説明は省略する。
 位相差板は可撓性を有していてもよく有さなくてもよい。
 2.液晶表示素子
 本発明における液晶表示素子は、2つの態様を有する。以下、各態様に分けて説明する。
 (1)第1態様
 本発明における液晶表示素子の第1態様は、第1基板上に第1配向層が形成された第1配向層付基板と、第2基板上に第2配向層が形成された第2配向層付基板と、第1配向層付基板および第2配向層付基板の間に配置された液晶層とを有するものであり、第1配向層および第2配向層は、上述の光配向性を有する熱硬化性組成物から形成されるもの、または上述の配向層である。
 図3は本発明における液晶表示素子の一例を示す概略断面図である。図3に例示する液晶表示素子20は、第1配向層付基板21aと、第2配向層付基板21bと、第1配向層付基板21aおよび第2配向層付基板21bの間に配置された液晶層25とを有している。第1配向層付基板21aでは、第1基板22a上に第1電極23aおよび第1配向層24aが順に積層されており、第2配向層付基板21bでは、第2基板22b上に第2電極23bおよび第2配向層24bが順に積層されている。第1配向層24aおよび第2配向層24bは上述の光配向性を有する熱硬化性組成物から形成されるもの、または上述の配向層である。
 液晶層に用いられる液晶組成物としては、液晶層に一般的に用いられるものを使用することができる。例えば、ネマチック液晶、スメクチック液晶等を用いることができる。また、液晶層の膜厚および形成方法等は、一般的な液晶層と同様とすることができる。
 また、第1基板と配向層との間および第2基板と配向層との間の少なくとも一方には、通常、電極として導電層が形成される。
 なお、第1基板、第2基板、配向層および導電層については、上記「B.配向層付基板」における基板、配向層および導電層と同様であるので、ここでの説明は省略する。
 また、液晶表示素子の他の構成は、一般的な液晶表示素子の構成と同様とすることができる。
 (2)第2態様
 本発明における液晶表示素子の第2態様は、上記位相差板を有するものである。
 液晶表示素子の構成は、一般的な液晶表示素子の構成と同様とすることができる。例えば、液晶表示素子を構成する基板の外側に位相差板を配置してもよく、液晶表示素子を構成する基板が位相差板を構成する基板を兼ねており、基板の内側に配向層および位相差層が配置されていてもよい。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例および比較例を示し、本発明をさらに詳細に説明する。
 [合成例a]熱架橋性モノマー1の合成
 300mLフラスコ中、氷冷下において4-ビニル安息香酸20.15g(136mmol)、エチレングリコール7.3g(118mmol)、ジメチルアミノピリジン0.458g(3.82mmol)をジクロロメタン130mlに溶解し、ジクロロメタン40mlに溶解したN,N’-ジシクロヘキシルカルボジイミド28.0g(136mmol)を約10分かけて滴下した。15時間撹拌した後、反応溶液を冷却し、沈殿物をろ別した。溶媒を留去し、メタノールを添加し、再結晶により熱架橋性モノマー1を15.5g得た。
 [合成例b]熱架橋性モノマー2の合成
 合成例aにおいて、エチレングリコールを用いる代わりに、ジエチレングリコールを等モル量用いて、合成例aと同様に縮合することで、熱架橋性モノマー2を得た。
 [合成例c]熱架橋性モノマー3の合成
 合成例aにおいて、エチレングリコールを用いる代わりに、1,4-シクロヘキサンジオールを等モル量用いて、合成例aと同様に縮合することで、熱架橋性モノマー3を得た。
 [合成例d]熱架橋性モノマー4の合成
 200mLフラスコ中、窒素雰囲気下において、p-アセトキシスチレン20.0g(118mmol)を酢酸エチル80mLに溶解し、ナトリウムメトキシド9.08g(47.1mmol)を約30分かけてゆっくり滴下した。1時間半撹拌した後、TLCにより反応の終了を確認し、酢酸エチルで抽出した後、1N塩酸、純水、飽和食塩水で洗浄し、硫酸ナトリウムにより乾燥した。溶媒を留去し、乾燥させることで、熱架橋性モノマー4を得た。
 [合成例e]熱架橋性モノマー5の合成
 熱架橋性モノマー4を合成例dと同様にして得た。200mLフラスコ中、窒素雰囲気、氷零下において、熱架橋性モノマー4 14.0g(118mmol)をジメチルホルムアミド100mlに溶解し、水酸化ナトリウム7.07g(177mmol)を添加し、15分撹拌した後、2-クロロエタノール10.5g(130mmol)を約10分かけて滴下した。16時間撹拌した後、TLCにより反応の終了を確認し、酢酸エチルで抽出した後、飽和炭酸水素水溶液、1N塩酸、純水、飽和食塩水で洗浄し、硫酸ナトリウムにより乾燥した。溶媒を留去し、乾燥させることで、熱架橋性モノマー5を得た。
 [合成例f]熱架橋性モノマー6の合成
 熱架橋性モノマー4を合成例dと同様にして得た。合成例eにおいて、2-クロロエタノールを用いる代わりに、6-クロロヘキサノールを等モル量用いて、合成例dと同様にエーテル化することで、熱架橋性モノマー6を得た。
 [合成例g]自己架橋性の熱架橋性モノマー7の合成
 200mLフラスコ中、窒素雰囲気下において、p-アセトキシスチレン20.0g(118mmol)を酢酸エチル80mLに溶解し、ナトリウムメトキシド9.08g(47.1mmol)を約30分かけてゆっくり滴下した。1時間半撹拌し、TLCにより反応の終了を確認したのち、この溶液に37%ホルマリン水溶液56.0mL(944mmoL)を室温下でゆっくりと加えた。更に、窒素雰囲気下、40℃で24時間攪拌した後、ビーカー中の水200mLに投入した。これを氷浴にて冷却しながら2.0wt%酢酸水溶液をpH5.0になるまでゆっくりと加えた。析出物をろ別し、十分に水洗浄した後、乾燥し、カラムクロマトグラフィーで精製することにより、自己架橋性の熱架橋性モノマー7を得た。
 [合成例h]自己架橋性の熱架橋性モノマー8の合成
 合成例dと同様に熱架橋性モノマー4(自己架橋性モノマー誘導体1)を得た。
 500mLフラスコ中、熱架橋性モノマー4 12g(100mmol)、アジピン酸16.1g(110mmol)およびジメチルアミノピリジン1.2g(9.8mmol)をジクロロメタン130mlに溶解し、ジクロロメタン40mlに溶解したN,N’-ジシクロヘキシルカルボジイミド22.6g(110mmol)を約10分かけて滴下した。15時間撹拌した後、反応溶液を冷却し、沈殿物をろ別した。溶媒を留去し、メタノールを添加し、再結晶によりカルボン酸誘導体1(自己架橋性モノマー誘導体2)を得た。
 続いて、300mLフラスコ中、氷冷下においてカルボン酸誘導体1 13.82g(50mmol)、ヒドロキノン5.5g(50mmol)、ジメチルアミノピリジン0.176g(1.47mmol)をジクロロメタン50mlに溶解し、ジクロロメタン10mlに溶解したN,N’-ジシクロヘキシルカルボジイミド11.3g(55mmol)を約10分かけて滴下した。15時間撹拌した後、反応溶液を冷却し、沈殿物をろ別した。溶媒を留去し、メタノールを添加し、再結晶により自己架橋性モノマー誘導体3を得た。
 10重量%水酸化カリウム水溶液20mLとエタノール20mLからなる溶液に、自己架橋性モノマー誘導体3 3.68g(10mmol)を加え、室温で攪拌、溶解した。この溶液に37%ホルマリン水溶液7.0mL(80mmoL)を室温下でゆっくりと加えた。更に、窒素雰囲気下、40℃で24時間攪拌した後、ビーカー中の水200mLに投入した。これを氷浴にて冷却しながら2.0wt%酢酸水溶液をpH5.0になるまでゆっくりと加えた。析出物をろ別し、十分に水洗浄した後、乾燥し、カラムクロマトグラフィーで精製することにより、自己架橋性の熱架橋性モノマー8を得た。
 [合成例1]光配向性モノマー1の合成
 300mLフラスコ中、4-ブロモスチレン14.7g(80mmol)、塩化パラジウム0.18g(800μmol)、トリス(2-トリル)ホスフィン0.98g(3.2mmol)、トリエチルアミン32.4g(320mmol)をジメチルアセトアミド135mLに溶解した。次にシリンジでアクリル酸メチル8.3g(97mmol)混合溶液に加え撹拌した。この混合溶液を更に120℃で3時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液300mLに注ぎ、沈殿物を回収した。これらの沈殿物を酢酸エチルとヘキサンの1:1(質量比)溶液で再結晶することにより光配向性モノマー1を得た。
 [合成例2]光配向性モノマー2の合成
 合成例1において、アクリル酸メチルを用いる代わりに、アクリル酸フェニルを等モル量用いて、合成例1と同様に反応することで、光配向性モノマー2を得た。
[合成例3]光配向性モノマー3の合成
 合成例aにおいて、エチレングリコールを用いる代わりに、trans-4-ヒドロキシけい皮酸メチルを等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー3を得た。
 [合成例4]光配向性モノマー4の合成
 500mLフラスコ中、窒素雰囲気下において、光配向性モノマー3 15.4g(50mmol)をメタノール200mLに溶解し、炭酸カリウム8.3g(60mmol)を添加し、終夜で撹拌した。TLCにより反応が終了したことを確認し、沈殿物をろ過した後、濃縮した。濃縮物を酢酸エチルで抽出した後、1N塩酸、純水、飽和食塩水で洗浄し、硫酸ナトリウムにより乾燥した。溶媒を留去し、乾燥させることで、スチレン誘導体1を得た。
 続いて、合成例aにおいて、4-ビニル安息香酸を用いる代わりにスチレン誘導体1を等モル量用い、エチレングリコールを用いる代わりに、4-シアノフェノールを等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー4を得た。
 [合成例5]光配向性モノマー5の合成
 合成例dと同様に熱架橋性モノマー4を得た。500mLフラスコ中、熱架橋性モノマー4 12g(100mmol)、無水こはく酸11.0g(110mmol)および4-ジメチルアミノピリジン1.2g(9.8mmol)を添加し、十分に系内を乾燥した。この系に、トリエチルアミン11.2g(110mmol)およびテトラヒドロフラン200mLを加え、5時間還流下において反応を行った。反応終了後、希塩酸を加え、酢酸エチルで抽出して得た有機層につき水洗を行い、硫酸マグネシウムで乾燥した後に濃縮し、エタノールで再結晶することにより、スチレン誘導体2を得た。
 続いて、合成例aにおいて、4-ビニル安息香酸を用いる代わりにスチレン誘導体2を等モル量用い、エチレングリコールを用いる代わりに、4-ヒドロキシ桂皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー5を得た。
 [合成例6]光配向性モノマー6の合成
 合成例4において、光配向性モノマー3を用いる代わりに、光配向性モノマー5を等モル量用いて、合成例4と同様に脱保護することで、スチレン誘導体3を得た。
 続いて、合成例aにおいて、4-ビニル安息香酸を用いる代わりにスチレン誘導体3を等モル量用い、エチレングリコールを用いる代わりに、4-メトキシフェノールを等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー6を得た。
 [合成例7]光配向性モノマー7の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりにスチレン誘導体2を等モル量用い、エチレングリコールを用いる代わりに、フェルラ酸メチルを等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー7を得た。
 [合成例8]光配向性モノマー8の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー4を等モル量用い、エチレングリコールを用いる代わりに、trans-けい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー8を得た。
 [合成例9]光配向性モノマー9の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー4を等モル量用い、エチレングリコールを用いる代わりに、4-メトキシけい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー9を得た。
 [合成例10]光配向性モノマー10の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー1を等モル量用い、エチレングリコールを用いる代わりに、trans-けい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー10を得た。
 [合成例11]光配向性モノマー11の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー3を等モル量用い、エチレングリコールを用いる代わりに、trans-けい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー11を得た。
 [合成例12]光配向性モノマー12の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー5を等モル量用い、エチレングリコールを用いる代わりに、trans-けい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー12を得た。
 [合成例13]光配向性モノマー13の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー5を等モル量用い、エチレングリコールを用いる代わりに、4-メトキシけい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー13を得た。
 [合成例14]光配向性モノマー14の合成
 合成例aにおいて、4-ビニル安息香酸を用いる代わりに熱架橋性モノマー6を等モル量用い、エチレングリコールを用いる代わりに、trans-けい皮酸を等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー14を得た。
 [合成例15]光配向性モノマー15の合成
 300mLフラスコ中、trans-けい皮酸14.8g(100mmol)、トリエチルアミン20.2g(200mmol)をジクロロメタン200mlに溶解し氷浴下で15分撹拌した。この系に4-(クロロメチル)スチレン16.7g(110mmol)をゆっくり加え、18時間撹拌した。反応終了後、希塩酸を加え、酢酸エチルで抽出して得た有機層につき水洗を行い、硫酸マグネシウムで乾燥した後に濃縮し、エタノールで再結晶することにより、光配向性モノマー15を得た。
 [合成例16]光配向性モノマー16の合成
 300mLフラスコ中、ジメチルホルムアミド100mLに4-アセチルスチレン14.6g(100mmol)、ベンズアルデヒド10.6g(100mmol)を加え攪拌し、カリウム-t-ブトキシド12.4g(110mmol)を加えた。約110℃で約4時間反応し、冷却後、水100mL及び酢酸20.0gを順に加え、更に氷冷し、析出した結晶をろ過した。得られた結晶をメタノールにより再結晶することで、光配向性モノマー16を得た。
 [合成例17]光配向性モノマー17の合成
 合成例aにおいて、エチレングリコールを用いる代わりに、7-ヒドロキシクマリンを等モル量用いて、合成例aと同様に縮合することで、光配向性モノマー17を得た。
 各モノマーの構造を下記表1~表3に示す。
 合成した各モノマーは、日本電子(株)製JEOL JNM-LA400WBを用いて、H NMR測定により、化学構造を確認した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 [製造例1]共重合体1の合成
 熱架橋性モノマー1 3.46g、光配向性モノマー3 0.62g、重合触媒としてα、α′-アゾビスイソブチロニトリル(AIBN)50mgをジオキサン25mlに溶解し、90℃にて6時間反応させた。反応終了後、再沈殿法により精製することで、共重合体1を得た。得られた共重合体の数平均分子量は8500であった。
 [製造例2~39]共重合体2~39の合成
 熱架橋性モノマーとして4-ビニル安息香酸または上記熱架橋性モノマー1~9、光配向性モノマーとして上記光配向性モノマー1~17、必要に応じて他のモノマーを用いて、製造例1と同様に共重合体2~39を合成した。
 [比較製造例1~2]比較共重合体1~2の合成
 熱架橋性モノマーとして2-ヒドロキシエチルメタクリレート(HEMA)または熱架橋性モノマー1、比較光配向性モノマー1として4-(6-メタクリルオキシヘキシル-1-オキシ)ケイ皮酸メチルエステルを用いて、製造例1と同様に比較共重合体1~2を合成した。
 [製造例40~47]共重合体40~47の合成
 上記の熱架橋性モノマー5、7、8、光配向性モノマー3、8、10、自己架橋性モノマー、および他のモノマーを用いて、製造例1と同様に共重合体40~47を合成した。
 各共重合体を下記表4および表5に示す。
 合成した各共重合体の数平均分子量(以下、Mnと称す)は、東ソー(株)製HLC-8220 GPCを用いて、ポリスチレンを標準物質とし、NMPを溶離液としてゲルパーミエーションクロマトグラフィ(GPC)にて算出した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 [実施例1]
 (熱硬化性組成物1の調製)
 下記に示す組成の熱硬化性組成物1を調製した。
・共重合体1:0.1g
・ヘキサメトキシメチルメラミン(HMM):0.01g
・p-トルエンスルホン酸1水和物(PTSA):0.0015g
・プロピレングリコールモノメチルエーテル(PGME):2.1g
 (配向層の形成)
 透明ガラス基板の一面に、実施例1で調製した熱硬化性組成物をスピンコートにより塗布し、100℃のオーブンで1分間加熱乾燥させ、硬化膜を形成し、塗膜を得た。この硬化膜表面にHg-Xeランプおよびグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線を基板法線から垂直方向に10mJ/cm照射することで、配向層を形成した。
 (位相差板の作製)
 下記式で表される液晶性モノマーをシクロヘキサンノンに固形分15質量%となるように溶解した溶液に、BASF株式会社製の光重合開始剤イルガキュア184を5質量%添加し、重合性液晶組成物を調製した。
Figure JPOXMLDOC01-appb-C000027
 透明ガラス基板の配向層が形成された面に、上記重合性液晶組成物をスピンコートにより塗布し、70℃のオーブンで1分間加熱し塗膜を形成した。この基板に窒素雰囲気化でHg-Xeランプを用いて365nmの輝線を含む非偏光の紫外線300mJ/cmを重合性液晶組成物の塗布面に照射して、位相差板を製造した。
 [実施例2~44および比較例1~2]
 架橋剤としてヘキサメトキシメチルメラミン(HMM)または1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(TMGU)、酸または酸発生剤としてp-トルエンスルホン酸1水和物(PTSA)またはp-トルエンスルホン酸ピリジニウム塩(PPTS)、溶剤としてプロピレングリコールモノメチルエーテル(PGME)またはメチルエチルケトン(MEK)を用いて、実施例1と同様に、実施例2~44および比較例1~2の熱硬化性組成物を調製し、配向層を形成し、位相差板を作製した。
 各熱硬化性組成物の組成を下記表6に示す。
 [実施例45]
 (熱硬化性組成物45の調製)
 下記に示す組成の熱硬化性組成物45を調製した。
・共重合体1:0.1g
・p-トルエンスルホン酸1水和物(PTSA):0.0015g
・プロピレングリコールモノメチルエーテル(PGME):2.1g
 (配向層の形成)
 実施例1と同様に配向層を形成した。
 (位相差板の作製)
 実施例1と同様に位相差板を作製した。
 [実施例46~60]
 酸または酸発生剤としてp-トルエンスルホン酸1水和物(PTSA)またはp-トルエンスルホン酸ピリジニウム塩(PPTS)、溶剤としてプロピレングリコールモノメチルエーテル(PGME)、架橋剤としてヘキサメトキシメチルメラミン(HMM)または1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(TMGU)を用いて、実施例45と同様に、実施例46~60の熱硬化性組成物を調製し、配向層を形成し、位相差板を作製した。
 各熱硬化性組成物の組成を下記表7に示す。
 [評価]
 得られた各位相差板について以下の評価を行った。
 (液晶配向性1)
 実施例1~44および比較例1~2について、2枚の直線偏光板をクロスニコル状態にして、その間に位相差板を挟み、目視で観察した。基板を回転させた際に、面内に観察される明暗模様が明確なものを「○」、配向欠陥がみられるものを「×」として評価した。
 (密着性)
 実施例1~44および比較例1~2について、位相差板に対し、等間隔スペーサーを用いて、カッターナイフで1mm間隔に切り込みを入れて、10×10の格子パターンを形成した。続いて、格子パターンの上にセロハンテープを置き、しっかりと密着させた後、セロハンテープを引き剥がした。セロハンテープを引き剥がした後の塗膜のカット部分を観察した。塗膜がカットの線に沿って、または交差する点において剥離が生じている格子の目の個数が、格子パターン全体の個数に対して15%未満の場合を「A」とし、15%以上場合を「B」とした。
Figure JPOXMLDOC01-appb-T000028
 実施例1~44の熱硬化性組成物を用いて配向層を形成した場合にはいずれも、液晶配向性および密着性が良好であった。これは、共重合体の光配向性構成単位および熱架橋性構成単位のいずれもがスチレン骨格を有するため、液晶分子との間でπ電子系の相互作用が働いているものと考えられる。
 (液晶配向性2)
 実施例45~60について、2枚の直線偏光板をクロスニコル状態にして、その間に位相差板を挟み、目視で観察した。基板を回転させた際に、面内に観察される明暗模様が非常に明確なものを「◎」、面内に観察される明暗模様が明確なものを「○」、配向欠陥がみられるものを「×」として評価した。
Figure JPOXMLDOC01-appb-T000029

Claims (18)

  1.  下記式(1)で表される光配向性構成単位および下記式(2)で表される熱架橋性構成単位を有する共重合体を含有することを特徴とする光配向性を有する熱硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
  2.  前記熱架橋性構成単位の熱架橋性基と結合する架橋剤をさらに含有することを特徴とする請求の範囲第1項に記載の光配向性を有する熱硬化性組成物。
  3.  前記熱架橋性基構成単位が前記熱架橋性基として自己架橋可能な架橋基を有することを特徴とする請求の範囲第1項に記載の光配向性を有する熱硬化性組成物。
  4.  前記共重合体が、自己架橋可能な第2熱架橋性基を有する第2熱架橋性構成単位をさらに有することを特徴とする請求の範囲第1項に記載の光配向性を有する熱硬化性組成物。
  5.  前記光配向性基が光二量化反応または光異性化反応を生じる官能基であることを特徴とする請求の範囲第1項から第4項までのいずれかに記載の光配向性を有する熱硬化性組成物。
  6.  前記光配向性基がシンナモイル基であることを特徴とする請求の範囲第1項から第4項までのいずれかに記載の光配向性を有する熱硬化性組成物。
  7.  前記熱架橋性基がヒドロキシ基であることを特徴とする請求の範囲第1項、第2項または第4項に記載の光配向性を有する熱硬化性組成物。
  8.  前記共重合体の全構成単位がスチレン単位を有することを特徴とする請求の範囲第1項から第4項までのいずれかに記載の光配向性を有する熱硬化性組成物。
  9.  下記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造および下記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とする配向層。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
  10.  下記式(1)で表される光配向性構成単位が有する光配向性基の光二量化構造および下記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有する配向層であって、前記光二量化構造がシンナモイル基の光二量化構造であることを特徴とする配向層。
    Figure JPOXMLDOC01-appb-C000003
    (ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
  11.  下記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造および下記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有することを特徴とする配向層。
    Figure JPOXMLDOC01-appb-C000004
    (ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
  12.  下記式(1)で表される光配向性構成単位が有する光配向性基の光異性化構造および下記式(2)で表される熱架橋性構成単位が有する熱架橋性基の架橋構造を有する共重合体を含有する配向層であって、前記光異性化構造がシンナモイル基の光異性化構造であることを特徴とする配向層。
    Figure JPOXMLDOC01-appb-C000005
    (ここで、式(1)中、Xは光配向性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、kは1~5を表し、式(2)中、Yは熱架橋性基、Lは2価の連結基または単結合、Rは水素原子または1価の有機基、lは1~5を表す。)
  13.  前記架橋構造が、前記熱架橋性構成単位が有する前記熱架橋性基と架橋剤とが結合してなる架橋構造であることを特徴とする請求の範囲第9項から第12項までのいずれかに記載の配向層。
  14.  前記架橋構造が、前記熱架橋性基構成単位が前記熱架橋性基として有する自己架橋可能な架橋基の架橋構造であることを特徴とする請求の範囲第9項から第12項までのいずれかに記載の配向層。
  15.  基板と、前記基板上に形成され、請求の範囲第1項から第4項までのいずれかに記載の光配向性を有する熱硬化性組成物から形成される配向層とを有することを特徴とする配向層付基板。
  16.  基板と、前記基板上に形成され、請求の範囲第9項から第12項までのいずれかに記載の配向層とを有することを特徴とする配向層付基板。
  17.  基板と、前記基板上に形成され、請求の範囲第9項から第12項までのいずれかに記載の配向層と、前記配向層上に形成された位相差層とを有することを特徴とする位相差板。
  18.  請求の範囲第9項から第12項までのいずれかに記載の配向層を有することを特徴とするデバイス。
PCT/JP2015/053141 2014-02-13 2015-02-04 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス WO2015122334A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/118,039 US10017696B2 (en) 2014-02-13 2015-02-04 Thermosetting composition with photo-alignment property, alignment layer, substrate with alignment layer, retardation plate, and device
CN201580007517.6A CN106030395B (zh) 2014-02-13 2015-02-04 具有光取向性的热固化性组合物、取向层、带有取向层的基板、相位差板及装置
KR1020167021515A KR102214075B1 (ko) 2014-02-13 2015-02-04 광 배향성을 갖는 열 경화성 조성물, 배향층, 배향층 딸린 기판, 위상차판 및 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-025936 2014-02-13
JP2014025936A JP2015152743A (ja) 2014-02-13 2014-02-13 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
JP2014233518A JP6519151B2 (ja) 2014-11-18 2014-11-18 光配向性を有する熱硬化性組成物、配向層、配向層付基板および位相差板
JP2014-233518 2014-11-18

Publications (1)

Publication Number Publication Date
WO2015122334A1 true WO2015122334A1 (ja) 2015-08-20

Family

ID=53800081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053141 WO2015122334A1 (ja) 2014-02-13 2015-02-04 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス

Country Status (5)

Country Link
US (1) US10017696B2 (ja)
KR (1) KR102214075B1 (ja)
CN (1) CN106030395B (ja)
TW (1) TWI638836B (ja)
WO (1) WO2015122334A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069252A1 (ja) * 2015-10-23 2017-04-27 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置
WO2018074546A1 (ja) * 2016-10-20 2018-04-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び重合体
JP2019073597A (ja) * 2017-10-13 2019-05-16 東ソー株式会社 光架橋性重合体、絶縁膜及びこれを含む有機電界効果トランジスタデバイス
JPWO2021166619A1 (ja) * 2020-02-20 2021-08-26
WO2022158555A1 (ja) * 2021-01-25 2022-07-28 大日本印刷株式会社 光配向性を有する熱硬化性液晶組成物、配向膜兼位相差フィルム及びその製造方法、位相差板及びその製造方法、光学部材及びその製造方法、並びに、表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2718061T3 (es) 2015-06-17 2019-06-27 Clariant Int Ltd Polímeros solubles en agua o hinchables en agua como agentes de reducción de la pérdida de agua en pastas crudas de cemento
EP3551163B1 (en) 2016-12-12 2021-02-17 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
EP3551680A1 (en) 2016-12-12 2019-10-16 Clariant International Ltd Polymer comprising certain level of bio-based carbon
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
WO2018108664A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108665A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108663A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
EP3597673B1 (en) * 2017-03-16 2023-06-07 Tosoh Corporation Photocrosslinkable polymer, insulating film, planarization film, lyophilic/liquid repellent patterned film, and organic field effect transistor device comprising same
KR102635863B1 (ko) * 2017-03-27 2024-02-13 닛산 가가쿠 가부시키가이샤 경화막 형성 조성물, 배향재 및 위상차재
CN111556981B (zh) * 2018-04-05 2023-07-07 Jsr株式会社 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法
WO2020186077A1 (en) * 2019-03-12 2020-09-17 6th Wave Innovations Corp. Molecularly imprinted polymers for extraction of cannabinoids and uses thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094764B2 (ja) 1999-03-30 2008-06-04 Jsr株式会社 液晶配向剤
US7074344B2 (en) 2001-10-03 2006-07-11 Jsr Corporation Liquid crystal aligning agent and liquid crystal display element
JP4207430B2 (ja) 2002-01-31 2009-01-14 Jsr株式会社 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
TWI406061B (zh) * 2005-11-10 2013-08-21 Dainippon Ink & Chemicals 光配向膜用組成物、光學異向體及其製法
JP5459520B2 (ja) 2009-06-23 2014-04-02 日産化学工業株式会社 光配向性を有する熱硬化膜形成組成物
US9796843B2 (en) 2009-07-21 2017-10-24 Nissan Chemical Industries, Ltd. Composition for forming thermoset film having photo alignment properties
CN102834453B (zh) 2010-04-08 2015-01-28 日产化学工业株式会社 形成具有光取向性的热固化膜的组合物
JP5637019B2 (ja) * 2010-04-27 2014-12-10 Jsr株式会社 液晶配向剤
CN103154809B (zh) * 2010-10-14 2016-06-29 夏普株式会社 液晶显示装置和液晶显示装置的制造方法
CN104603650B (zh) * 2012-09-12 2017-06-06 日产化学工业株式会社 取向材的制造方法、取向材、相位差材的制造方法及相位差材
CN104903405B (zh) 2012-12-27 2017-11-10 日产化学工业株式会社 固化膜形成用组合物、取向材及相位差材
US9529132B2 (en) 2013-03-08 2016-12-27 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN YOUNG KIM ET AL.: "Surface relief grating and liquid crystal alignment on azobenzene functionalized polymers", OPTICAL MATERIALS, vol. 21, no. Issues 1-3, 2003, pages 627 - 631, XP004395496, DOI: doi:10.1016/S0925-3467(02)00212-4 *
TAKASHI FUKUDA: "Photoinduced Surface Relief Formation on Azohenzene Thin Film", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 60, no. 8, 2003, pages 428 - 441 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017069252A1 (ja) * 2015-10-23 2018-08-09 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置
US10620481B2 (en) 2015-10-23 2020-04-14 Fujifilm Corporation Optical alignment film composition, optical alignment film, optical laminate, and image display device
WO2017069252A1 (ja) * 2015-10-23 2017-04-27 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置
US11130913B2 (en) 2016-10-20 2021-09-28 Jsr Corporation Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and polymer
WO2018074546A1 (ja) * 2016-10-20 2018-04-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び重合体
JPWO2018074546A1 (ja) * 2016-10-20 2019-06-24 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び重合体
JP2019073597A (ja) * 2017-10-13 2019-05-16 東ソー株式会社 光架橋性重合体、絶縁膜及びこれを含む有機電界効果トランジスタデバイス
JPWO2021166619A1 (ja) * 2020-02-20 2021-08-26
WO2021166619A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 光学積層体、偏光板および画像表示装置
CN115104050A (zh) * 2020-02-20 2022-09-23 富士胶片株式会社 光学层叠体、偏振片及图像显示装置
CN115104050B (zh) * 2020-02-20 2023-11-14 富士胶片株式会社 光学层叠体、偏振片及图像显示装置
JP7385729B2 (ja) 2020-02-20 2023-11-22 富士フイルム株式会社 光学積層体、偏光板および画像表示装置
WO2022158555A1 (ja) * 2021-01-25 2022-07-28 大日本印刷株式会社 光配向性を有する熱硬化性液晶組成物、配向膜兼位相差フィルム及びその製造方法、位相差板及びその製造方法、光学部材及びその製造方法、並びに、表示装置
JPWO2022158555A1 (ja) * 2021-01-25 2022-07-28
JP7416282B2 (ja) 2021-01-25 2024-01-17 大日本印刷株式会社 光配向性を有する熱硬化性液晶組成物、配向膜兼位相差フィルム及びその製造方法、位相差板及びその製造方法、光学部材及びその製造方法、並びに、表示装置

Also Published As

Publication number Publication date
US10017696B2 (en) 2018-07-10
CN106030395B (zh) 2019-08-23
KR102214075B1 (ko) 2021-02-09
CN106030395A (zh) 2016-10-12
KR20160121525A (ko) 2016-10-19
TWI638836B (zh) 2018-10-21
US20160355735A1 (en) 2016-12-08
TW201534627A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015122334A1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
WO2015122335A1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
WO2015122336A1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基材、位相差板およびデバイス
TWI596149B (zh) 硬化膜形成組成物、配向材及相位差材
TWI608047B (zh) 形成硬化膜之薄膜,配向材及相位差材
JP5626493B1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
JP2015152744A (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
JP6369146B2 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基材、位相差板およびデバイス
JP6451248B2 (ja) 転写用積層体、光学素子、および光学素子の製造方法
JP2015152743A (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
JP5626492B1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板、位相差板およびデバイス
JP6648462B2 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板及びその製造方法、並びに、位相差板及びその製造方法
JP6519151B2 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板および位相差板
JP5668881B1 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基材、位相差板およびデバイス
JP2016098251A (ja) 光配向性を有する熱硬化性組成物、配向層付基板の製造方法および位相差板の製造方法
JP6413687B2 (ja) 光配向性を有する熱硬化性組成物、配向層、配向層付基板および位相差板
WO2023204280A1 (ja) 硬化膜形成組成物、配向材および位相差材
WO2020241642A1 (ja) 硬化膜形成組成物、配向材および位相差材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167021515

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15118039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749013

Country of ref document: EP

Kind code of ref document: A1