WO2015119073A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2015119073A1
WO2015119073A1 PCT/JP2015/052827 JP2015052827W WO2015119073A1 WO 2015119073 A1 WO2015119073 A1 WO 2015119073A1 JP 2015052827 W JP2015052827 W JP 2015052827W WO 2015119073 A1 WO2015119073 A1 WO 2015119073A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
semiconductor device
silicon nitride
less
Prior art date
Application number
PCT/JP2015/052827
Other languages
English (en)
French (fr)
Inventor
庸輔 神崎
誠二 金子
貴翁 斉藤
泰 高丸
啓介 井手
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015560970A priority Critical patent/JP6286453B2/ja
Priority to CN201580007934.0A priority patent/CN105981148B/zh
Priority to US15/117,524 priority patent/US10012883B2/en
Publication of WO2015119073A1 publication Critical patent/WO2015119073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device including an oxide semiconductor TFT and a manufacturing method thereof.
  • An active matrix liquid crystal display device is provided with an active matrix substrate (also referred to as a “TFT substrate”) in which a thin film transistor (TFT) is provided for each pixel, a counter substrate facing the active matrix substrate, and a substrate therebetween.
  • TFT substrate also referred to as a “TFT substrate”
  • TFT thin film transistor
  • a liquid crystal layer A liquid crystal layer.
  • An active matrix liquid crystal display device adjusts the amount of light transmitted through each pixel by controlling the voltage applied to the liquid crystal layer (electrically called “liquid crystal capacitance”) of each pixel via a TFT.
  • Each pixel of the TFT substrate is provided with an auxiliary capacitor electrically connected to the liquid crystal capacitor in parallel.
  • Patent Document 1 proposes a structure for improving the aperture ratio of an active matrix liquid crystal display device.
  • an organic insulating layer is formed so as to cover the TFT, and an auxiliary capacitor electrode, a dielectric layer, and a pixel electrode are arranged in this order (or the opposite order) on the organic insulating layer.
  • Auxiliary capacitance is formed by laminating.
  • Patent Document 2 discloses an active matrix liquid crystal display device using a TFT having an oxide semiconductor film as an active layer as a switching element as a second modification.
  • An oxide semiconductor has higher mobility than amorphous silicon, and can operate at a higher speed than a TFT having an amorphous silicon film as an active layer (hereinafter referred to as “amorphous silicon TFT”).
  • a TFT having an oxide semiconductor film as an active layer may be referred to as an “oxide semiconductor TFT”.
  • the inventor of the present application adopts a configuration in which an auxiliary capacitor is formed on an organic insulating layer covering the oxide semiconductor TFT for an active matrix liquid crystal display device including the oxide semiconductor TFT.
  • an auxiliary capacitor is formed on an organic insulating layer covering the oxide semiconductor TFT for an active matrix liquid crystal display device including the oxide semiconductor TFT.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the reliability of a semiconductor device including an oxide semiconductor TFT under high temperature and high humidity.
  • a semiconductor device includes a substrate, a thin film transistor supported by the substrate, the thin film transistor having an oxide semiconductor layer, an organic insulating layer provided to cover the thin film transistor, and the organic insulating A lower layer electrode provided on the layer, a dielectric layer provided on the lower layer electrode, and an upper layer electrode provided on the dielectric layer, facing the lower layer electrode through the dielectric layer
  • the dielectric layer is a silicon nitride film having a hydrogen content of 5.33 ⁇ 10 21 pieces / cm 3 or less.
  • the relative dielectric constant of the silicon nitride film is 6.56 or less.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
  • the oxide semiconductor layer includes an In—Sn—Zn—O based semiconductor, an In—Ga—Sn—O based semiconductor, or an In—Ga—O based semiconductor.
  • each of the upper layer electrode and the lower layer electrode is formed of a transparent conductive material.
  • a method of manufacturing a semiconductor device includes a step (a) of preparing a substrate, a step (b) of forming a thin film transistor having an oxide semiconductor layer on the substrate, and covering the thin film transistor.
  • the step (e) is performed under film formation conditions such that a relative dielectric constant of the silicon nitride film is 6.56 or less.
  • the chamber internal pressure is 1200 mTorr or more and 1500 mTorr or less and the substrate temperature is 180 m by plasma CVD using a mixed gas containing SiH 4 and NH 3 and / or N 2 .
  • the flow ratio of SiH 4 to the total flow of the mixed gas is 3% or more and 5% or less, and the power density is 0.36 W / cm 2 or more.
  • the step (e) is performed at a power density of 0.49 W / cm 2 or less.
  • the reliability of a semiconductor device including an oxide semiconductor TFT under high temperature and high humidity can be improved.
  • (A) And (b) is a typical sectional view and a top view of TFT substrate 100A by an embodiment of the present invention, respectively.
  • (A)-(e) is process sectional drawing which shows typically the manufacturing process of TFT substrate 100A.
  • (A)-(c) is process sectional drawing which shows typically the manufacturing process of TFT substrate 100A.
  • (A) And (b) is process sectional drawing which shows typically the manufacturing process of TFT substrate 100A.
  • 6 is a graph showing calculation results of relative dielectric constants of silicon nitride films for Examples 1 to 4 and Comparative Examples 1 and 2; 6 is a graph showing calculation results of hydrogen content for each of Examples 1 to 4 and Comparative Examples 1 and 2.
  • (A) And (b) is a typical sectional view and a top view of other TFT substrate 100B by an embodiment of the present invention, respectively. It is a figure which shows typically the bubble BL which generate
  • the inventor of the present application adopts a configuration in which an auxiliary capacitor is formed on an organic insulating layer covering the oxide semiconductor TFT for an active matrix liquid crystal display device including the oxide semiconductor TFT.
  • bubbles may be generated in the liquid crystal layer.
  • FIG. 8 schematically shows the bubbles BL generated in the liquid crystal display panel P.
  • the size (diameter) of the bubble BL is, for example, about 10 mm.
  • Bubbles are so small that they cannot be seen at the initial stage of generation, but gradually gather and grow over time.
  • the time until the generation of bubbles is confirmed becomes shorter as the water vapor pressure is higher.
  • the time until bubbles are generated decreases in the above order.
  • the main component (about 90% by volume) of the bubbles was H 2 (hydrogen), and the remaining components were N 2 (nitrogen), CO (carbon monoxide) and It was CO 2 (carbon dioxide).
  • the present invention has been conceived based on the above findings found by the present inventors.
  • a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
  • the semiconductor device according to the embodiment of the present invention may be various substrates including various oxide semiconductor TFTs, various display devices, and various electronic devices.
  • a TFT substrate (active matrix substrate) for a liquid crystal display device will be described as an example.
  • the display mode of the liquid crystal display device is not particularly limited, and here, a TFT substrate used in a liquid crystal display device that performs display in an FFS (Fringe Field Switching) mode is exemplified.
  • FFS Ringe Field Switching
  • FIGS. 1A and 1B show a TFT substrate 100A according to an embodiment of the present invention.
  • FIGS. 1A and 1B are a schematic cross-sectional view and a plan view of the TFT substrate 100A, respectively.
  • FIG. 1A is a cross-sectional view taken along the line AA ′ in FIG. (Cross section including TFT 10A).
  • FIG. 1B some of the components shown in FIG. 1A (upper layer electrode 36 and the like described later) are omitted.
  • the TFT substrate 100A includes a substrate (typically a transparent substrate) 11 and a thin film transistor (TFT) 10A supported by the substrate 11.
  • the TFT 10A includes a gate electrode 12g, a gate insulating film 14, an oxide semiconductor layer 16, a source electrode 18s, and a drain electrode 18d. That is, the TFT 10A is an oxide semiconductor TFT.
  • the gate electrode 12g is electrically connected to the scanning wiring (gate bus line) G (branched from the scanning wiring G in this embodiment), and a scanning signal is supplied from the scanning wiring G.
  • the gate insulating film 14 is formed so as to cover the gate electrode 12g.
  • the oxide semiconductor layer 16 has an island shape and is formed so as to overlap the gate electrode 12g with the gate insulating film 14 interposed therebetween.
  • the source electrode 18s is electrically connected to a signal wiring (source bus line) S (branched from the signal wiring S in this embodiment), and a display signal is supplied from the signal wiring S.
  • the source electrode 18s is provided so as to be in contact with part of the oxide semiconductor layer 16 (referred to as a source region).
  • the drain electrode 18d is provided in contact with another part of the oxide semiconductor layer 16 (referred to as a drain region).
  • a region of the oxide semiconductor layer 16 located between the source region and the drain region is referred to as a channel region.
  • a protective layer 22 is formed so as to cover the TFT 10A having the above-described configuration.
  • the TFT 100A in this embodiment further includes an organic insulating layer 24, a lower layer electrode 32, a dielectric layer 34, and an upper layer electrode 36.
  • the organic insulating layer 24 is provided on the protective layer 22 so as to cover the TFT 10A.
  • the organic insulating layer 24 is typically formed from a photosensitive resin material.
  • the thickness of the organic insulating layer 24 is, for example, 1 ⁇ m to 3 ⁇ m.
  • the lower layer electrode 32 is provided on the organic insulating layer 24.
  • the lower layer electrode 32 is formed so as to be continuous over all the pixels of the liquid crystal display device.
  • the lower layer electrode 32 is not formed in the vicinity of the contact hole CH for electrically connecting the drain electrode 18d of the TFT 10A and an upper layer electrode 36 described later.
  • the lower layer electrode 32 functions as a common electrode when supplied with a common signal (COM signal).
  • the dielectric layer 34 is provided on the lower layer electrode 32. As will be described later, the dielectric layer 34 is a silicon nitride film. The thickness of the dielectric layer 34 is, for example, 50 nm to 200 nm.
  • the upper layer electrode 36 is provided on the dielectric layer 34.
  • the upper layer electrode 36 has a portion facing the lower layer electrode 32 with the dielectric layer 34 interposed therebetween.
  • the upper layer electrode 36 is formed independently (separated) for each pixel of the liquid crystal display device and is not shown, but the upper layer electrode 36 has at least one slit.
  • the upper layer electrode 36 is electrically connected to the drain electrode 18d of the TFT 10A in the contact hole CH and functions as a pixel electrode.
  • each of the upper layer electrode 36 and the lower layer electrode 32 is a transparent electrode formed of a transparent conductive material. That is, a transparent auxiliary capacitance is formed in the pixel by the upper layer electrode 36 and the lower layer electrode 32 and the dielectric layer 34 positioned therebetween.
  • the ratio of the area occupied by the transparent auxiliary capacitance in the pixel is typically 50% to 80%.
  • an alignment film is formed on the upper electrode 36.
  • a counter substrate is disposed so as to face the TFT substrate 100A, and a liquid crystal layer is provided between the TFT substrate 100A and the counter substrate.
  • the dielectric layer 34 is a silicon nitride film having a relatively small hydrogen content, that is, a relatively dense silicon nitride film.
  • the dielectric layer 34 is a silicon nitride film having a hydrogen content of 5.33 ⁇ 10 21 pieces / cm 3 or less, and as described in detail later with verification results, Generation of bubbles in the liquid crystal layer is suppressed. Therefore, the reliability under high temperature and high humidity can be improved.
  • the relative dielectric constant of the silicon nitride film is preferably 6.56 or less.
  • FIGS. 2A to 2E, 3A to 3C, 4A and 4B are process cross-sectional views schematically showing the manufacturing process of the TFT substrate 100A.
  • a substrate 11 is prepared.
  • a glass substrate As the substrate 11, a glass substrate, a heat-resistant plastic substrate, or the like can be used.
  • a glass substrate is used.
  • the TFT 10 ⁇ / b> A having the oxide semiconductor layer 16 is formed over the substrate 11.
  • a conductive film (hereinafter referred to as “gate metal film”) is deposited on the substrate 11 by a sputtering method or the like, and then a photolithography process is used.
  • the gate metal film By patterning the gate metal film, the gate electrode 12g and the scanning wiring G (not shown in FIG. 2B) are formed.
  • a tantalum nitride film (TaN film) having a thickness of 20 nm and a tungsten film (W film) having a thickness of 300 nm are sequentially deposited, and the obtained stacked film is patterned, whereby the gate electrode 12g and the scanning wiring G are formed.
  • a gate insulating film 14 covering the gate electrode 12g and the gate bus line G is formed by a CVD (Chemical Vapor Deposition) method or the like.
  • the gate insulating film 14 is formed by sequentially depositing a silicon nitride film (SiN x film) having a thickness of 300 nm and a silicon oxide film (SiO 2 film) having a thickness of 50 nm.
  • the oxide semiconductor film is patterned by using a photolithography process. Then, the island-shaped oxide semiconductor layer 16 is formed.
  • a 50 nm-thick In—Ga—Zn—O-based semiconductor hereinafter abbreviated as “In—Ga—Zn—O-based semiconductor”
  • heat treatment is performed on the entire substrate. (For example, about 300 ° C. to 500 ° C., about 1 to 2 hours). By performing heat treatment, oxygen vacancies in the oxide semiconductor can be recovered.
  • the In—Ga—Zn—O-based semiconductor film is patterned using a photolithography process, so that the island-shaped oxide semiconductor layer 16 is formed.
  • the oxide semiconductor layer 16 includes, for example, an In—Ga—Zn—O-based semiconductor.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). It is suitably used as a drive TFT and a pixel TFT.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer is used, power consumption of the display device can be significantly reduced.
  • the In—Ga—Zn—O based semiconductor may be amorphous or may contain a crystalline part.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Laid-Open No. 2012-134475. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
  • the oxide semiconductor layer 16 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • Zn—O based semiconductor ZnO
  • In—Zn—O based semiconductor IZO (registered trademark)
  • Zn—Ti—O based semiconductor ZTO
  • Cd—Ge—O based semiconductor Cd—Pb—O based Semiconductor
  • CdO (cadmium oxide) Mg—Zn—O based semiconductor
  • In—Sn—Zn—O based semiconductor eg, In 2 O 3 —SnO 2 —ZnO
  • In—Ga—Sn—O based semiconductor In— A Ga—O based semiconductor or the like
  • Zn—O based semiconductor Zn—O based semiconductor
  • IZO In—Zn—O based semiconductor
  • ZTO Zn—Ti—O based semiconductor
  • Cd—Ge—O based semiconductor Cd—Pb—O based Semiconductor
  • a conductive film hereinafter referred to as “source metal film”
  • the source is formed using a photolithography process.
  • the source electrode 18s, the drain electrode 18d, and the signal wiring S are formed.
  • a titanium film (Ti film) having a thickness of 30 nm, an aluminum film (Al film) having a thickness of 300 nm, and a Ti film having a thickness of 100 nm are sequentially deposited, and the obtained laminated film is patterned, whereby the source electrode 18s, the drain electrode 18d, and the source bus line S are formed.
  • the TFT 10A having the oxide semiconductor layer 16 can be formed over the substrate 11.
  • a protective layer 22 is deposited on the TFT 10A by a CVD (Chemical Vapor Deposition) method or the like.
  • the protective layer 22 is formed by depositing a silicon dioxide film (SiO 2 film) having a thickness of 300 nm.
  • heat treatment for example, 250 ° C. or higher and 450 ° C. or lower, for about 1 to 2 hours
  • contact resistance between the oxide semiconductor layer 16 and the source electrode 18s and the drain electrode 18d can be reduced.
  • oxygen vacancies in the channel region can be reduced.
  • an organic insulating layer 24 is formed so as to cover the TFT 10A.
  • the organic insulating layer 24 can be formed by, for example, applying a positive photosensitive resin material (for example, acrylic resin material) on the protective layer 22 and then exposing and developing.
  • a positive photosensitive resin material for example, acrylic resin material
  • a negative photosensitive resin material may be used as the material of the organic insulating layer 24 .
  • the organic insulating layer 24 having a thickness of 2.0 ⁇ m is formed using an acrylic resin material.
  • the opening 24a is formed at a position overlapping the drain electrode 18d.
  • etching is performed using the organic insulating layer 24 as a mask to form an opening 22a in the protective layer 22, and a part of the drain electrode 18d is exposed.
  • the lower layer electrode 32 is formed on the organic insulating layer 24.
  • the lower electrode 32 can be formed by depositing a transparent conductive film on the organic insulating layer 24 by sputtering or the like and then patterning the transparent conductive film using a photolithography process.
  • a material for the transparent conductive film indium tin oxide (ITO), indium zinc oxide (IZO (registered trademark)), or the like can be used.
  • the lower electrode 32 is formed by patterning a transparent conductive film obtained by depositing an IZO film having a thickness of 100 nm.
  • a dielectric layer 34 is formed on the lower electrode 32.
  • a silicon nitride film is formed as the dielectric layer 34 by plasma CVD. The formation of the silicon nitride film is performed under film forming conditions as will be described later. Here, a silicon nitride film having a thickness of 100 nm is deposited. Thereafter, an opening 34a is formed by etching in a part of the dielectric layer 34 (a region overlapping the opening 22a of the protective layer 22 and the opening 24a of the organic insulating layer 24), whereby the drain electrode 18d and the upper layer electrode of the TFT 10A are formed. A contact hole CH for electrically connecting to 36 is formed.
  • an upper electrode 36 is formed on the dielectric layer 34.
  • the upper electrode 36 can be formed in the same manner as the lower electrode 32.
  • an upper layer electrode 36 is formed by depositing an IZO film having a thickness of 100 nm and patterning the obtained transparent conductive film.
  • the upper layer electrode 36 is electrically connected to the drain electrode 18d of the TFT 10A in the contact hole CH.
  • the TFT substrate 100A shown in FIGS. 1A and 1B is obtained.
  • the step of forming the silicon nitride film is performed under film formation conditions such that the hydrogen content of the silicon nitride film is 5.33 ⁇ 10 21 pieces / cm 3 or less.
  • the source gas is, for example, a mixed gas of SiH 4 and NH 3, a mixed gas of SiH 4 and N 2 , or a mixed gas of SiH 4 , NH 3 and N 2 Gas can be used. That is, a mixed gas containing SiH 4 and NH 3 and / or N 2 can be used.
  • the parameters of the film formation conditions include, for example, the chamber internal pressure, the substrate temperature, the distance between the electrodes, the flow rate ratio of SiH 4 to the total flow rate of the mixed gas, and the power density.
  • the silicon nitride film can be made denser (that is, the relative dielectric constant can be increased) to reduce the hydrogen content.
  • the step of forming the silicon nitride film has a relative dielectric constant of 6.25 or more in the silicon nitride film. It is preferable to be executed under such film forming conditions. Specifically, the chamber internal pressure is 1200 mTorr or more and 1500 mTorr or less, the substrate temperature is 180 ° C. or more and 220 ° C. or less, the distance between electrodes is 18 mm or more and 25 mm or less, and the flow rate ratio of SiH 4 to the total flow rate of the mixed gas is 3% or more and 5%. In the following cases, by setting the power density to 0.36 W / cm 2 or more, the hydrogen content of the silicon nitride film can be set to 5.33 ⁇ 10 21 pieces / cm 3 or less.
  • the power density is preferably 0.49 W / cm 2 or less.
  • the relative dielectric constant of the silicon nitride film can be made 6.56 or less, while suppressing the deterioration of characteristics of the TFT 10A and the adverse effect on the organic insulating layer 24. The generation of bubbles in the liquid crystal layer can be suppressed.
  • liquid crystal display device is manufactured using the TFT substrate 100A actually manufactured by the manufacturing method described above, and the result of verifying the reliability under high temperature and high humidity will be described.
  • Example 1 A TFT substrate was produced based on the manufacturing method described above, and the liquid crystal display device of Example 1 was produced using the TFT substrate.
  • the thickness of the silicon nitride film was 300 nm.
  • Example 2 A liquid crystal display device of Example 2 was produced in the same manner as the liquid crystal display device of Example 1 except that the power density was 0.41 W / cm 2 .
  • Example 3 A liquid crystal display device of Example 3 was produced in the same manner as the liquid crystal display device of Example 1 except that the power density was 0.45 W / cm 2 .
  • Example 4 A liquid crystal display device of Example 4 was produced in the same manner as the liquid crystal display device of Example 1 except that the power density was 0.49 W / cm 2 .
  • Comparative Example 1 A liquid crystal display device of Comparative Example 1 was produced in the same manner as the liquid crystal display device of Example 1 except that the power density was 0.28 W / cm 2 .
  • thermo-hygrostat FX420N manufactured by Enomoto Kasei Co., Ltd.
  • each liquid crystal display device is disassembled, and the capacitance of the dielectric layer (silicon nitride film) of each TFT substrate is measured using a capacitance measuring device (Hewlett Packard 4284A) to calculate the relative dielectric constant. (Measurement frequency: 1 kHz).
  • FIG. 5 shows the calculation results of the relative dielectric constant of the silicon nitride film for each of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the relative dielectric constants of the silicon nitride films of Examples 1 to 4 are 6.25, 6.35, 6.48, and 6.56, respectively.
  • the relative dielectric constants of the silicon nitride films of Comparative Examples 1 and 2 are 5.82 and 6.05, respectively.
  • the hydrogen desorption amount was measured for the dielectric layer (silicon nitride film) of each TFT substrate using a thermal desorption spectroscopy (TDS) method, and the obtained hydrogen desorption amount From this, the hydrogen content of the silicon nitride film was calculated.
  • TDS1200 manufactured by Denshi Kagaku Co., Ltd. was used for the measurement of the amount of hydrogen desorption.
  • Each sample was heated by increasing the temperature from 80 ° C. to 700 ° C. at a vacuum degree of 1 ⁇ 10 ⁇ 7 Pa and a temperature increase rate of 1 ° C./sec.
  • FIG. 6 shows the calculation results of the hydrogen content for each of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the hydrogen contents were 7.73 ⁇ 10 ⁇ 21 pieces / cm 3 and 6.30 ⁇ 10 ⁇ 21 pieces / cm 3 , respectively.
  • the hydrogen content is 5.33 ⁇ 10 21 pieces / cm 3 , 4.63 ⁇ 10 21 pieces / cm 3 , 4.20 ⁇ 10 21 pieces / cm 3 , 3.60 ⁇ 10 21 pieces / cm 3 , respectively. cm 3 . That is, in Examples 1 to 4, the hydrogen content of the silicon nitride film was smaller than in Comparative Examples 1 and 2, and all were 5.33 ⁇ 10 21 pieces / cm 3 or less.
  • the hydrogen content of the silicon nitride film is reduced by increasing the power density among the parameters of the film formation conditions, but the flow rate ratio of SiH 4 to the total flow rate of the mixed gas is reduced. Also, the hydrogen content of the silicon nitride film can be reduced. However, it is preferable to control the hydrogen content of the silicon nitride film by adjusting the power density in order to maintain the uniformity of the film thickness in the substrate surface.
  • FIG. 7A and 7B show another TFT substrate 100B according to an embodiment of the present invention.
  • 7A and 7B are a schematic cross-sectional view and a plan view, respectively, of the TFT substrate 100B.
  • FIG. 7A is a cross-sectional view along the line AA ′ in FIG. 7B. (Cross section including TFT 10B).
  • FIG. 7B some of the components shown in FIG. 7A (upper layer electrode 36 and the like described later) are omitted.
  • the TFT 10B has an etch stop layer 17 provided so as to cover the channel region of the oxide semiconductor layer 16.
  • the etch stop layer 17 includes an oxide film such as a silicon oxide film, when oxygen vacancies occur in the oxide semiconductor, the oxygen vacancies can be recovered by oxygen contained in the oxide film. Therefore, oxygen vacancies in the oxide semiconductor can be reduced.
  • the etch stop layer 17 is formed by depositing a protective film on the oxide semiconductor layer 16 by CVD, for example, after forming the oxide semiconductor layer 16 and before forming the source electrode 18s and the drain electrode 18d. It can be formed by patterning using a lithography process. The patterning is performed so that at least a region to be a channel region in the oxide semiconductor layer 16 is covered with the etch stop layer 17.
  • a SiO 2 film having a thickness of 150 nm is used as the etch stop layer 17.
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof may be used.
  • the present invention is not limited to this.
  • the structure which functions as an electrode may be sufficient.
  • the FFS mode is exemplified as the display mode, but other various display modes may be adopted.
  • the semiconductor device according to the embodiment of the present invention may be a TFT substrate for a liquid crystal display device in a VA (Vertical Alignment) mode or a TN (Twisted Nematic) mode.
  • the upper layer electrode 36, the dielectric layer 34, and the lower layer electrode are caused to function as the pixel electrode and the lower layer electrode 32 facing the upper layer electrode 36 via the dielectric layer 34 is functioned as the auxiliary capacitance electrode.
  • a transparent auxiliary capacitor can be formed in the pixel.
  • the reliability of a semiconductor device including an oxide semiconductor TFT under high temperature and high humidity can be improved.
  • the semiconductor device according to the embodiment of the present invention is suitably used as a TFT substrate for a liquid crystal display device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 半導体装置(100A)は、基板(11)と、基板に支持されたTFTであって、酸化物半導体層(16)を有するTFT(10A)と、TFTを覆うように設けられた有機絶縁層(24)と、有機絶縁層上に設けられた下層電極(32)と、下層電極上に設けられた誘電体層(34)と、誘電体層上に設けられた上層電極であって、誘電体層を介して下層電極に対向する部分を有する上層電極(36)とを備える。誘電体層は、水素含有量が5.33×1021個/cm3以下のシリコン窒化物膜である。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関し、特に、酸化物半導体TFTを備えた半導体装置およびその製造方法に関する。
 近年、アクティブマトリクス型の液晶表示装置が広く用いられている。アクティブマトリクス型液晶表示装置は、画素ごとに薄膜トランジスタ(TFT)が設けられたアクティブマトリクス基板(「TFT基板」とも呼ばれる。)と、アクティブマトリクス基板に対向する対向基板と、これらの間に設けられた液晶層とを備える。アクティブマトリクス型液晶表示装置は、TFTを介して各画素の液晶層(電気的には「液晶容量」と呼ばれる。)に印加する電圧を制御することによって、各画素を透過する光の量を調節し、表示を行う。TFT基板の各画素には、液晶容量に電気的に並列に接続された補助容量が設けられる。
 特許文献1には、アクティブマトリクス型液晶表示装置の開口率を向上させるための構造が提案されている。特許文献1に提案されている構造では、TFTを覆うように有機絶縁層を形成し、この有機絶縁層上に、補助容量電極、誘電体層および画素電極をこの順(あるいはこの反対の順)で積層することによって補助容量が形成されている。
 一方、最近、TFTの活性層の材料として、酸化物半導体が注目されている。特許文献2には、酸化物半導体膜を活性層とするTFTをスイッチング素子として用いたアクティブマトリクス型液晶表示装置が変形例2として開示されている。酸化物半導体は、アモルファスシリコンよりも高い移動度を有しており、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)よりも高速で動作することが可能である。本願明細書では、酸化物半導体膜を活性層とするTFTを「酸化物半導体TFT」と称することがある。
特開平9-171196号公報 特開2010-230744号公報
 本願発明者が、酸化物半導体TFTを備えたアクティブマトリクス型液晶表示装置について、酸化物半導体TFTを覆う有機絶縁層上に補助容量を形成する構成を採用したところ、高温高湿下で保存試験を行うと、液晶層中に気泡が発生するという問題が生じることがわかった。このような気泡の発生は、表示品位の低下の原因となるので、液晶表示装置の信頼性を低下させてしまう。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、酸化物半導体TFTを備えた半導体装置の高温高湿下での信頼性を向上させることにある。
 本発明の実施形態による半導体装置は、基板と、前記基板に支持された薄膜トランジスタであって、酸化物半導体層を有する薄膜トランジスタと、前記薄膜トランジスタを覆うように設けられた有機絶縁層と、前記有機絶縁層上に設けられた下層電極と、前記下層電極上に設けられた誘電体層と、前記誘電体層上に設けられた上層電極であって、前記誘電体層を介して前記下層電極に対向する部分を有する上層電極と、を備え、前記誘電体層は、水素含有量が5.33×1021個/cm3以下のシリコン窒化物膜である。
 ある実施形態において、前記シリコン窒化物膜の比誘電率は、6.56以下である。
 ある実施形態において、前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む。
 ある実施形態において、前記In-Ga-Zn-O系半導体は結晶質部分を含む。
 ある実施形態において、前記酸化物半導体層は、In-Sn-Zn-O系半導体、In-Ga-Sn-O系半導体またはIn-Ga-O系半導体を含む。
 ある実施形態において、前記上層電極および前記下層電極のそれぞれは、透明な導電材料から形成されている。
 本発明の実施形態による半導体装置の製造方法は、基板を用意する工程(a)と、前記基板上に、酸化物半導体層を有する薄膜トランジスタを形成する工程(b)と、前記薄膜トランジスタを覆うように有機絶縁層を形成する工程(c)と、前記有機絶縁層上に下層電極を形成する工程(d)と、前記下層電極上に誘電体層を形成する工程(e)と、前記誘電体層上に上層電極を形成する工程(f)と、を包含し、前記工程(e)は、前記誘電体層としてシリコン窒化物膜を形成する工程であり、前記シリコン窒化物膜の水素含有量が5.33×1021個/cm3以下となるような成膜条件で実行される。
 ある実施形態において、前記工程(e)は、前記シリコン窒化物膜の比誘電率が6.56以下となるような成膜条件で実行される。
 ある実施形態において、前記工程(e)は、プラズマCVD法により、SiH4と、NH3および/またはN2とを含む混合ガスを用いて、チェンバ内圧力が1200mTorr以上1500mTorr以下、基板温度が180℃以上220℃以下、電極間距離が18mm以上25mm以下、前記混合ガスの全流量に対するSiH4の流量比が3%以上5%以下、パワー密度が0.36W/cm2以上の成膜条件で実行される。
 ある実施形態において、前記工程(e)は、0.49W/cm2以下のパワー密度で実行される。
 本発明の実施形態によれば、酸化物半導体TFTを備えた半導体装置の高温高湿下での信頼性を向上させることができる。
(a)および(b)は、それぞれ本発明の実施形態によるTFT基板100Aの模式的な断面図および平面図である。 (a)~(e)は、TFT基板100Aの製造工程を模式的に示す工程断面図である。 (a)~(c)は、TFT基板100Aの製造工程を模式的に示す工程断面図である。 (a)および(b)は、TFT基板100Aの製造工程を模式的に示す工程断面図である。 実施例1~4および比較例1、2のそれぞれについて、シリコン窒化物膜の比誘電率の算出結果を示すグラフである。 実施例1~4および比較例1、2のそれぞれについて、水素含有量の算出結果を示すグラフである。 (a)および(b)は、それぞれ本発明の実施形態による他のTFT基板100Bの模式的な断面図および平面図である。 液晶層中に発生した気泡BLを模式的に示す図である。 劣化が発生した(閾値電圧が負にシフトした)TFTのId-Vg特性の例を示すグラフである。
 まず、上述した気泡の発生に関し、本願発明者が見出した知見を説明する。
 本願発明者が、酸化物半導体TFTを備えたアクティブマトリクス型液晶表示装置について、酸化物半導体TFTを覆う有機絶縁層上に補助容量を形成する構成を採用したところ、高温高湿下で保存試験を行うと、液晶層中に気泡が発生することがあった。図8に、液晶表示パネルPにおいて発生した気泡BLを模式的に示す。気泡BLの大きさ(直径)は、例えば約10mmである。
 気泡は、発生の初期段階では目視できないほど小さいが、時間の経過とともに徐々に集まって大きくなっていく。気泡の発生が確認されるまでの時間は、水蒸気圧が高い条件であるほど短くなる。例えば、50℃・95%RH、60℃・95%RHおよび70℃・95%RHの条件では、気泡が発生するまでの時間は、上記の順で短くなる。本願発明者が気泡の成分を分析したところ、気泡の主成分(体積比で約90%)はH2(水素)であり、残りの成分はN2(窒素)、CO(一酸化炭素)およびCO2(二酸化炭素)であった。
 気泡が発生するメカニズムは完全には判明していないが、気泡に含まれる水素は、補助容量を構成する誘電体層として形成されているシリコン窒化物膜に含有されていたものであると推察される。また、有機絶縁層上に補助容量が形成された構成において気泡が発生していることから、シリコン窒化物膜の下に位置する有機絶縁層が、気泡の発生に大きく関係していると考えられる。
 本願発明は、本願発明者が見出した上記知見に基づいて想到されたものである。以下、図面を参照して、本発明の実施形態による半導体装置およびその製造方法を説明するが、本発明は、例示する実施形態に限定されない。本発明の実施形態による半導体装置は、酸化物半導体TFTを備える各種基板、各種表示装置、各種電子機器であってよい。以下では、液晶表示装置用のTFT基板(アクティブマトリクス基板)を例として説明を行う。液晶表示装置の表示モードは、特に限定されず、ここでは、FFS(Fringe Field Switching)モードで表示を行う液晶表示装置に用いられるTFT基板を例示する。なお、以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。
 図1(a)および(b)に、本発明の実施形態によるTFT基板100Aを示す。図1(a)および(b)は、それぞれTFT基板100Aの模式的な断面図および平面図であり、図1(a)は、図1(b)中のA-A’線に沿った断面(TFT10Aを含む断面)に対応する。なお、図1(b)では、図1(a)に示されている構成要素の一部(後述する上層電極36等)が省略されている。
 TFT基板100Aは、図1(a)および(b)に示すように、基板(典型的には透明基板)11と、基板11に支持された薄膜トランジスタ(TFT)10Aとを備える。TFT10Aは、ゲート電極12g、ゲート絶縁膜14、酸化物半導体層16、ソース電極18sおよびドレイン電極18dを有する。つまり、TFT10Aは、酸化物半導体TFTである。
 ゲート電極12gは、走査配線(ゲートバスライン)Gに電気的に接続されており(本実施形態では走査配線Gから分岐している)、走査配線Gから走査信号を供給される。ゲート絶縁膜14は、ゲート電極12gを覆うように形成されている。酸化物半導体層16は、島状であり、ゲート絶縁膜14を介してゲート電極12gに重なるように形成されている。
 ソース電極18sは、信号配線(ソースバスライン)Sに電気的に接続されており(本実施形態では信号配線Sから分岐している)、信号配線Sから表示信号を供給される。ソース電極18sは、酸化物半導体層16の一部(ソース領域と呼ばれる)に接するように設けられている。これに対し、ドレイン電極18dは、酸化物半導体層16の他の一部(ドレイン領域と呼ばれる)に接するように設けられている。酸化物半導体層16の、ソース領域とドレイン領域との間に位置する領域は、チャネル領域と呼ばれる。上述した構成を有するTFT10Aを覆うように、保護層22が形成されている。
 本実施形態におけるTFT100Aは、さらに、有機絶縁層24と、下層電極32と、誘電体層34と、上層電極36とを備える。
 有機絶縁層24は、保護層22上に、TFT10Aを覆うように設けられている。有機絶縁層24は、典型的には、感光性樹脂材料から形成される。有機絶縁層24の厚さは、例えば1μm~3μmである。
 下層電極32は、有機絶縁層24上に設けられている。ここでは、下層電極32は、液晶表示装置のすべての画素にわたって連続するように形成されている。ただし、下層電極32は、TFT10Aのドレイン電極18dと後述する上層電極36とを電気的に接続するためのコンタクトホールCHの近傍には形成されていない。下層電極32は、共通信号(COM信号)が供給されることにより、共通電極として機能する。
 誘電体層34は、下層電極32上に設けられている。誘電体層34は、後述するように、シリコン窒化物膜である。誘電体層34の厚さは、例えば50nm~200nmである。
 上層電極36は、誘電体層34上に設けられている。上層電極36は、誘電体層34を介して下層電極32と対向する部分を有する。上層電極36は、液晶表示装置の画素ごとに独立に(分離して)形成されており、図示されていないが、上層電極36は、少なくとも1つのスリットを有する。上層電極36は、コンタクトホールCHにおいてTFT10Aのドレイン電極18dに電気的に接続されており、画素電極として機能する。
 ここでは、上層電極36および下層電極32のそれぞれは、透明な導電材料から形成された透明電極である。つまり、上層電極36および下層電極32と、これらの間に位置する誘電体層34とによって、画素内に透明な補助容量が形成される。画素内で透明な補助容量の占める面積の割合は、典型的には、50%~80%である。
 なお、図示されていないが、上層電極36上には、配向膜が形成される。液晶表示装置においては、TFT基板100Aに対向するように対向基板が配置され、TFT基板100Aと対向基板との間に、液晶層が設けられる。
 本実施形態のTFT基板100Aでは、誘電体層34は、比較的水素含有量の少ない、つまり、比較的緻密なシリコン窒化物膜である。具体的には、誘電体層34は、水素含有量が5.33×1021個/cm3以下のシリコン窒化物膜であり、そのことによって、後に検証結果を交えて詳述するように、液晶層における気泡の発生が抑制される。そのため、高温高湿下での信頼性を向上させることができる。
 ただし、本願発明者の検討によれば、酸化物半導体TFTを備えるTFT基板において、誘電体層として緻密なシリコン窒化物膜を形成すると、所望のTFT特性が得られない場合があることがわかった。具体的には、図9に示すように閾値電圧が負にシフトすることによってTFTがノーマリーオンデバイスとなり、液晶表示装置内に内蔵された回路(例えばゲートドライバとして使用されるシフトレジスタ回路)の動作が困難となる。
 本願発明者がさらなる検討を重ねた結果、シリコン窒化物膜を比誘電率が高くなり過ぎないように形成することにより、酸化物半導体TFTの特性劣化を抑制し得ることを見出した。具体的には、酸化物半導体TFTであるTFT10Aの特性劣化を抑制する観点からは、シリコン窒化物膜(誘電体層34)の比誘電率は、6.56以下であることが好ましい。シリコン窒化物膜の水素含有量を5.33×1021個/cm3以下とし、且つ、比誘電率を6.56以下とすることにより、TFT10Aの特性劣化を抑制しつつ、液晶層における気泡の発生を抑制することができる。
 次に、図2、図3および図4を参照しながら、本実施形態におけるTFT基板100Aの製造方法を説明する。図2(a)~(e)、図3(a)~(c)および図4(a)、(b)は、TFT基板100Aの製造工程を模式的に示す工程断面図である。
 まず、図2(a)に示すように、基板11を用意する。基板11としては、ガラス基板や、耐熱性を有するプラスチック基板などを用いることができる。ここでは、ガラス基板を用いる。
 次に、基板11上に、酸化物半導体層16を有するTFT10Aを形成する。
 具体的には、まず、図2(b)に示すように、基板11上にスパッタリング法等により導電膜(以下、「ゲートメタル膜」と呼ぶ。)を堆積した後、フォトリソグラフィプロセスを用いてゲートメタル膜をパターニングすることにより、ゲート電極12gおよび走査配線G(図2(b)では不図示)を形成する。ここでは、厚さ20nmの窒化タンタル膜(TaN膜)および厚さ300nmのタングステン膜(W膜)を順に堆積して、得られた積層膜をパターニングすることにより、ゲート電極12gおよび走査配線Gを形成する。
 次に、図2(c)に示すように、CVD(Chemical Vapor Deposition)法等により、ゲート電極12gおよびゲートバスラインGを覆うゲート絶縁膜14を形成する。ここでは、厚さ300nmのシリコン窒化物膜(SiNx膜)および厚さ50nmのシリコン酸化物膜(SiO2膜)を順に堆積することにより、ゲート絶縁膜14を形成する。
 続いて、図2(d)に示すように、ゲート絶縁膜14上にスパッタリング法またはCVD法等により酸化物半導体膜を堆積した後、フォトリソグラフィプロセスを用いて酸化物半導体膜をパターニングすることにより、島状の酸化物半導体層16を形成する。ここでは、スパッタリング法で、厚さ50nmのIn-Ga-Zn-O系の半導体(以下、「In-Ga-Zn-O系半導体」と略する。)膜を堆積した後、基板全体に熱処理(例えば300℃以上500℃以下、1~2時間程度)を行う。熱処理を行うことにより、酸化物半導体の酸素欠損を回復することが可能となる。その後、フォトリソグラフィプロセスを用いてIn-Ga-Zn-O系半導体膜をパターニングし、島状の酸化物半導体層16を形成する。
 このように、酸化物半導体層16は、例えばIn-Ga-Zn-O系半導体を含む。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。本実施形態では、酸化物半導体層16は、In、Ga、Znを、例えばIn:Ga:Zn=1:1:1の割合で含むIn-Ga-Zn-O系半導体層であってもよい。
 In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFTおよび画素TFTとして好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、表示装置の消費電力を大幅に削減することが可能になる。
 In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質部分を含んでもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、特開2012-134475号公報に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層16は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO)、In-Ga-Sn-O系半導体、In-Ga-O系半導体などを含んでいてもよい。
 次に、図2(e)に示すように、スパッタリング法等により酸化物半導体層16上に導電膜(以下、「ソースメタル膜」と呼ぶ。)を堆積した後、フォトリソグラフィプロセスを用いてソースメタル膜をパターニングすることにより、ソース電極18s、ドレイン電極18dおよび信号配線S(図2(e)では不図示)を形成する。ここでは、厚さ30nmのチタン膜(Ti膜)、厚さ300nmのアルミニウム膜(Al膜)および厚さ100nmのTi膜を順に堆積して、得られた積層膜をパターニングすることにより、ソース電極18s、ドレイン電極18dおよびソースバスラインSを形成する。このようにして、酸化物半導体層16を有するTFT10Aを基板11上に形成することができる。
 次に、図3(a)に示すように、CVD(Chemical Vapor Deposition)法等により、TFT10A上に保護層22を堆積する。ここでは、厚さ300nmの二酸化シリコン膜(SiO2膜)を堆積することにより、保護層22を形成する。その後、基板全体に熱処理(例えば250℃以上450℃以下、1~2時間程度)を行う。熱処理を行うことにより、酸化物半導体層16と、ソース電極18sおよびドレイン電極18dとの間のコンタクト抵抗を低減し得る。また、酸化物半導体層16のチャネル領域が酸化される結果、チャネル領域内の酸素欠損を低減できる。
 続いて、図3(b)に示すように、TFT10Aを覆うように有機絶縁層24を形成する。有機絶縁層24は、例えばポジ型の感光性樹脂材料(例えばアクリル系樹脂材料)を保護層22上に付与した後、露光・現像することにより、形成することができる。有機絶縁層24の材料として、ネガ型の感光性樹脂材料を用いてもよい。ここでは、アクリル系樹脂材料を用いて厚さ2.0μmの有機絶縁層24を形成する。このとき、ドレイン電極18dに重なる位置に開口部24aを形成する。また、その後、有機絶縁層24をマスクとしてエッチングを行うことによって保護層22に開口部22aを形成して、ドレイン電極18dの一部を露出させる。
 次に、図3(c)に示すように、有機絶縁層24上に下層電極32を形成する。下層電極32は、有機絶縁層24上にスパッタリング法等により透明導電膜を堆積した後、フォトリソグラフィプロセスを用いて透明導電膜をパターニングすることにより形成することができる。透明導電膜の材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO(登録商標))等を用いることができる。ここでは、厚さ100nmのIZO膜を堆積して得られた透明導電膜をパターニングすることにより、下層電極32を形成する。
 次に、図4(a)に示すように、下層電極32上に誘電体層34を形成する。本実施形態では、誘電体層34としてプラズマCVD法によりシリコン窒化物膜を形成する。シリコン窒化物膜の形成は、後述するような成膜条件で実行する。ここでは、厚さ100nmのシリコン窒化物膜を堆積する。その後、誘電体層34の一部(保護層22の開口部22aおよび有機絶縁層24の開口部24aに重なる領域)にエッチングによって開口部34aを形成することにより、TFT10Aのドレイン電極18dと上層電極36とを電気的に接続するためのコンタクトホールCHを形成する。
 続いて、図4(b)に示すように、誘電体層34上に上層電極36を形成する。上層電極36は、下層電極32と同様に形成することができる。ここでは、厚さ100nmのIZO膜を堆積して、得られた透明導電膜をパターニングすることにより、上層電極36を形成する。上層電極36は、コンタクトホールCHにおいてTFT10Aのドレイン電極18dに電気的に接続される。
 このようにして、図1(a)および(b)に示したTFT基板100Aが得られる。
 ここで、誘電体層34を形成する工程における、シリコン窒化物膜の成膜条件を説明する。本実施形態では、シリコン窒化物膜を形成する工程は、シリコン窒化物膜の水素含有量が5.33×1021個/cm3以下となるような成膜条件で実行される。プラズマCVD法によりシリコン窒化物膜を形成する場合、原料ガスとしては、例えば、SiH4およびNH3の混合ガス、SiH4およびN2の混合ガス、または、SiH4、NH3およびN2の混合ガスを用いることができる。つまり、SiH4と、NH3および/またはN2とを含む混合ガスを用いることができる。
 成膜条件のパラメータとしては、例えば、チェンバ内圧力、基板温度、電極間距離、混合ガスの全流量に対するSiH4の流量比、および、パワー密度が挙げられる。これらのパラメータのうち、例えばパワー密度を高くすることにより、シリコン窒化物膜をより緻密にして(つまり比誘電率を高くして)水素含有量を少なくすることができる。
 シリコン窒化物膜の水素含有量を5.33×1021個/cm3以下とするためには、シリコン窒化物膜を形成する工程は、シリコン窒化物膜の比誘電率が6.25以上となるような成膜条件で実行されることが好ましい。具体的には、チェンバ内圧力が1200mTorr以上1500mTorr以下、基板温度が180℃以上220℃以下、電極間距離が18mm以上25mm以下、混合ガスの全流量に対するSiH4の流量比が3%以上5%以下の場合、パワー密度を0.36W/cm2以上とすることにより、シリコン窒化物膜の水素含有量を5.33×1021個/cm3以下とすることができる。
 なお、パワー密度を高くしすぎると、酸化物半導体TFTであるTFT10Aの特性が劣化(例えば閾値電圧が負にシフト)したり、有機絶縁層24が変色したりすることがある。これらの問題の発生を抑制するためには、パワー密度は、0.49W/cm2以下であることが好ましい。パワー密度が0.49W/cm2以下であることにより、シリコン窒化物膜の比誘電率を6.56以下とすることができ、TFT10Aの特性劣化や有機絶縁層24への悪影響を抑制しつつ、液晶層における気泡の発生を抑制することができる。
 続いて、上述した製造方法により実際に作製したTFT基板100Aを用いて液晶表示装置を試作し、高温高湿下での信頼性を検証した結果を説明する。
<実施例1>
 上述した製造方法に基づいてTFT基板を作製し、そのTFT基板を用いて実施例1の液晶表示装置を作製した。シリコン窒化物膜の厚さは300nmとした。シリコン窒化物膜を形成する工程における成膜条件は以下に示す通りである。
  パワー密度: 0.36W/cm2
  チェンバ内圧力: 1400mTorr
  基板温度: 200℃
  ガス流量比: SiH4:NH3:N2=1:4:20
  電極間距離: 20mm
<実施例2>
 パワー密度を0.41W/cm2としたこと以外は実施例1の液晶表示装置と同様にして、実施例2の液晶表示装置を作製した。
<実施例3>
 パワー密度を0.45W/cm2としたこと以外は実施例1の液晶表示装置と同様にして、実施例3の液晶表示装置を作製した。
<実施例4>
 パワー密度を0.49W/cm2としたこと以外は実施例1の液晶表示装置と同様にして、実施例4の液晶表示装置を作製した。
<比較例1>
 パワー密度を0.28W/cm2としたこと以外は実施例1の液晶表示装置と同様にして、比較例1の液晶表示装置を作製した。
<比較例2>
 パワー密度を0.32W/cm2としたこと以外は実施例1の液晶表示装置と同様にして、比較例2の液晶表示装置を作製した。
 恒温恒湿器(楠本化成社製FX420N)を用い、実施例1~4および比較例1、2の液晶表示装置を70℃・95%RHの環境下で300時間保存した後、気泡の発生の有無を目視および光学顕微鏡により確認した。その結果、比較例1および2の液晶表示装置では気泡が発生していたのに対し、実施例1~4では気泡が発生していなかった。
 次に、各液晶表示装置を分解し、容量測定装置(ヒューレット・パッカード社製4284A)を用いて、各TFT基板の誘電体層(シリコン窒化物膜)の容量を測定し、比誘電率を算出した(測定周波数:1kHz)。図5に、実施例1~4および比較例1、2のそれぞれについて、シリコン窒化物膜の比誘電率の算出結果を示す。
 図5からわかるように、実施例1~4のシリコン窒化物膜の比誘電率は、それぞれ6.25、6.35、6.48、6.56である。これに対し、比較例1および2のシリコン窒化物膜の比誘電率は、それぞれ5.82、6.05である。このように、実施例1~4では、比較例1、2に比べ、比誘電率の高い、つまり、緻密なシリコン窒化物膜が形成されていることが確認された。
 また、昇温脱離ガス分析法(Thermal Desorption Spectroscopy(TDS))法を用いて各TFT基板の誘電体層(シリコン窒化物膜)について水素脱離量を測定し、得られた水素脱離量からシリコン窒化物膜の水素含有量を算出した。水素脱離量の測定には、電子科学社製TDS1200を用いた。各試料の加熱は、1×10-7Paの真空度および1℃/secの昇温速度で80℃から700℃まで温度を上昇させることにより実行した。図6に、実施例1~4および比較例1、2のそれぞれについて、水素含有量の算出結果を示す。
 図6からわかるように、比較例1および2では水素含有量がそれぞれ7.73×10-21個/cm3、6.30×10-21個/cm3であったのに対し、実施例1~4では水素含有量はそれぞれ5.33×1021個/cm3、4.63×1021個/cm3、4.20×1021個/cm3、3.60×1021個/cm3であった。つまり、実施例1~4では、比較例1および2に比べ、シリコン窒化物膜の水素含有量が少なく、いずれも5.33×1021個/cm3以下であった。
 上述した検証結果からわかるように、補助容量を形成する誘電体層34であるシリコン窒化物膜の水素含有量を5.33×1021個/cm3以下とすることにより、液晶層における気泡の発生を抑制することができ、液晶表示装置の高温高湿下での信頼性を向上させることができる。
 なお、上記の説明では、成膜条件のパラメータのうちのパワー密度を高くすることによって、シリコン窒化物膜の水素含有量を少なくしたが、混合ガスの全流量に対するSiH4の流量比を少なくすることによっても、シリコン窒化物膜の水素含有量を少なくすることができる。ただし、パワー密度の調整によってシリコン窒化物膜の水素含有量を制御する方が、基板面内の膜厚の均一性を維持する点で好ましい。
 次に、本発明の実施形態によるTFT基板100Aの改変例を説明する。図7(a)および(b)に、本発明の実施形態による他のTFT基板100Bを示す。図7(a)および(b)は、それぞれTFT基板100Bの模式的な断面図および平面図であり、図7(a)は、図7(b)中のA-A’線に沿った断面(TFT10Bを含む断面)に対応する。なお、図7(b)では、図7(a)に示されている構成要素の一部(後述する上層電極36等)が省略されている。
 図7(a)および(b)に示すように、TFT基板100Bでは、TFT10Bは、酸化物半導体層16のチャネル領域を覆うように設けられたエッチストップ層17を有している。エッチストップ層17を設けることにより、酸化物半導体層16に生じるプロセスダメージを低減できる。また、エッチストップ層17がシリコン酸化物膜などの酸化物膜を含むと、酸化物半導体に酸素欠損が生じた場合に、酸化物膜に含まれる酸素によって酸素欠損を回復することが可能となるので、酸化物半導体の酸素欠損を低減できる。
 エッチストップ層17は、酸化物半導体層16の形成後、ソース電極18sおよびドレイン電極18dの形成前に、例えばCVD法により、酸化物半導体層16上に保護膜を堆積し、この保護膜をフォトリソグラフィプロセスを用いてパターニングすることによって形成することができる。パターニングは、少なくとも酸化物半導体層16のうちチャネル領域となる領域がエッチストップ層17によって覆われるように実行される。ここでは、エッチストップ層17として、厚さ150nmのSiO2膜を用いる。エッチストップ層17として、シリコン酸化物膜、シリコン窒化物膜、酸化窒化シリコン膜またはこれらの積層膜を用いてもよい。
 なお、上記の説明では、下層電極32および上層電極36が、それぞれ共通電極および画素電極として機能する例を示したが、これに限られず、下層電極32および上層電極36が、それぞれ画素電極および共通電極として機能する構成であってもよい。また、上記の説明では、表示モードとしてFFSモードを例示したが、他の種々の表示モードを採用してもよい。例えば、本発明の実施形態による半導体装置は、VA(Vertical Alignment)モードやTN(Twisted Nematic)モードの液晶表示装置用のTFT基板であってもよい。この場合、上層電極36を画素電極として機能させ、誘電体層34を介して上層電極36と対向する下層電極32を補助容量電極として機能させることにより、上層電極36、誘電体層34および下層電極32によって、画素内に透明な補助容量を形成することができる。
 本発明の実施形態によれば、酸化物半導体TFTを備えた半導体装置の高温高湿下での信頼性を向上させることができる。本発明の実施形態による半導体装置は、例えば液晶表示装置用のTFT基板として好適に用いられる。
 10A、10B  薄膜トランジスタ(TFT)
 11  基板
 12g  ゲート電極
 14  ゲート絶縁膜
 16  酸化物半導体層
 17  エッチストップ層
 18s  ソース電極
 18d  ドレイン電極
 22  保護層
 24  有機絶縁層
 32  下層電極
 34  誘電体層
 36  上層電極
 100A、100B  TFT基板
 G  走査配線(ゲートバスライン)
 S  信号配線(ソースバスライン)

Claims (10)

  1.  基板と、
     前記基板に支持された薄膜トランジスタであって、酸化物半導体層を有する薄膜トランジスタと、
     前記薄膜トランジスタを覆うように設けられた有機絶縁層と、
     前記有機絶縁層上に設けられた下層電極と、
     前記下層電極上に設けられた誘電体層と、
     前記誘電体層上に設けられた上層電極であって、前記誘電体層を介して前記下層電極に対向する部分を有する上層電極と、
    を備え、
     前記誘電体層は、水素含有量が5.33×1021個/cm3以下のシリコン窒化物膜である、半導体装置。
  2.  前記シリコン窒化物膜の比誘電率は、6.56以下である、請求項1に記載の半導体装置。
  3.  前記酸化物半導体層は、In-Ga-Zn-O系半導体を含む、請求項1または2に記載の半導体装置。
  4.  前記In-Ga-Zn-O系半導体は結晶質部分を含む、請求項3に記載の半導体装置。
  5.  前記酸化物半導体層は、In-Sn-Zn-O系半導体、In-Ga-Sn-O系半導体またはIn-Ga-O系半導体を含む、請求項1または2に記載の半導体装置。
  6.  前記上層電極および前記下層電極のそれぞれは、透明な導電材料から形成されている、請求項1から5のいずれかに記載の半導体装置。
  7.  基板を用意する工程(a)と、
     前記基板上に、酸化物半導体層を有する薄膜トランジスタを形成する工程(b)と、
     前記薄膜トランジスタを覆うように有機絶縁層を形成する工程(c)と、
     前記有機絶縁層上に下層電極を形成する工程(d)と、
     前記下層電極上に誘電体層を形成する工程(e)と、
     前記誘電体層上に上層電極を形成する工程(f)と、
    を包含し、
     前記工程(e)は、前記誘電体層としてシリコン窒化物膜を形成する工程であり、前記シリコン窒化物膜の水素含有量が5.33×1021個/cm3以下となるような成膜条件で実行される、半導体装置の製造方法。
  8.  前記工程(e)は、前記シリコン窒化物膜の比誘電率が6.56以下となるような成膜条件で実行される、請求項7に記載の半導体装置の製造方法。
  9.  前記工程(e)は、プラズマCVD法により、SiH4と、NH3および/またはN2とを含む混合ガスを用いて、チェンバ内圧力が1200mTorr以上1500mTorr以下、基板温度が180℃以上220℃以下、電極間距離が18mm以上25mm以下、前記混合ガスの全流量に対するSiH4の流量比が3%以上5%以下、パワー密度が0.36W/cm2以上の成膜条件で実行される、請求項7または8に記載の半導体装置の製造方法。
  10.  前記工程(e)は、0.49W/cm2以下のパワー密度で実行される、請求項9に記載の半導体装置の製造方法。
PCT/JP2015/052827 2014-02-10 2015-02-02 半導体装置およびその製造方法 WO2015119073A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560970A JP6286453B2 (ja) 2014-02-10 2015-02-02 半導体装置およびその製造方法
CN201580007934.0A CN105981148B (zh) 2014-02-10 2015-02-02 半导体器件及其制造方法
US15/117,524 US10012883B2 (en) 2014-02-10 2015-02-02 Semiconductor device including a silicon nitride dielectric layer and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014023697 2014-02-10
JP2014-023697 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015119073A1 true WO2015119073A1 (ja) 2015-08-13

Family

ID=53777878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052827 WO2015119073A1 (ja) 2014-02-10 2015-02-02 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US10012883B2 (ja)
JP (1) JP6286453B2 (ja)
CN (1) CN105981148B (ja)
TW (1) TWI619255B (ja)
WO (1) WO2015119073A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024995A (ja) * 2018-08-06 2020-02-13 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法
KR20200021404A (ko) * 2018-08-20 2020-02-28 어플라이드 머티어리얼스, 인코포레이티드 처리 챔버들을 위한 코팅 재료

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137218A (ko) * 2014-05-28 2015-12-09 삼성디스플레이 주식회사 액정표시장치 및 이의 제조 방법
CN105607365A (zh) * 2015-12-31 2016-05-25 深圳市华星光电技术有限公司 一种coa基板及其制作方法
WO2021102661A1 (zh) * 2019-11-26 2021-06-03 重庆康佳光电技术研究院有限公司 一种光阻剥离液的隔离结构、tft阵列及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156723A (ja) * 2008-12-26 2010-07-15 Sharp Corp 液晶パネル、表示装置、テレビ受信装置
WO2013084846A1 (ja) * 2011-12-05 2013-06-13 シャープ株式会社 半導体装置
JP2013239759A (ja) * 2002-05-17 2013-11-28 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014022615A (ja) * 2012-07-20 2014-02-03 Semiconductor Energy Lab Co Ltd 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171196A (ja) 1995-10-16 1997-06-30 Sharp Corp 液晶表示装置
JPH1174485A (ja) * 1997-06-30 1999-03-16 Toshiba Corp 半導体装置およびその製造方法
US6207586B1 (en) * 1998-10-28 2001-03-27 Lucent Technologies Inc. Oxide/nitride stacked gate dielectric and associated methods
JP3406250B2 (ja) * 1999-08-30 2003-05-12 日本エー・エス・エム株式会社 窒化珪素系膜の成膜方法
JP2002075992A (ja) * 2000-09-01 2002-03-15 Fujitsu Ltd シリコン窒化膜の成膜方法および半導体装置の製造方法および半導体装置
KR100469126B1 (ko) * 2002-06-05 2005-01-29 삼성전자주식회사 수소 함유량이 적은 박막 형성방법
JP2006294750A (ja) * 2005-04-07 2006-10-26 Toshiba Corp 薄膜堆積装置及び方法
US20090098741A1 (en) * 2007-10-15 2009-04-16 Asm Japan K.K. Method for forming ultra-thin boron-containing nitride films and related apparatus
US20120153442A1 (en) * 2008-09-30 2012-06-21 Tokyo Electron Limited Silicon nitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
JP2010230744A (ja) 2009-03-26 2010-10-14 Videocon Global Ltd 液晶表示装置及びその製造方法
KR20120071393A (ko) * 2009-09-24 2012-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
JP5687547B2 (ja) * 2010-06-28 2015-03-18 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
KR101995082B1 (ko) 2010-12-03 2019-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR101523219B1 (ko) * 2010-12-27 2015-05-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 컴퓨터 판독 가능한 기록 매체
JP6230253B2 (ja) * 2013-04-03 2017-11-15 三菱電機株式会社 Tftアレイ基板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239759A (ja) * 2002-05-17 2013-11-28 Semiconductor Energy Lab Co Ltd 半導体装置
JP2010156723A (ja) * 2008-12-26 2010-07-15 Sharp Corp 液晶パネル、表示装置、テレビ受信装置
WO2013084846A1 (ja) * 2011-12-05 2013-06-13 シャープ株式会社 半導体装置
JP2014022615A (ja) * 2012-07-20 2014-02-03 Semiconductor Energy Lab Co Ltd 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024995A (ja) * 2018-08-06 2020-02-13 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法
JP7061941B2 (ja) 2018-08-06 2022-05-02 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法
KR20200021404A (ko) * 2018-08-20 2020-02-28 어플라이드 머티어리얼스, 인코포레이티드 처리 챔버들을 위한 코팅 재료
KR102224586B1 (ko) * 2018-08-20 2021-03-05 어플라이드 머티어리얼스, 인코포레이티드 처리 챔버들을 위한 코팅 재료

Also Published As

Publication number Publication date
TWI619255B (zh) 2018-03-21
CN105981148A (zh) 2016-09-28
TW201535752A (zh) 2015-09-16
CN105981148B (zh) 2019-01-04
JP6286453B2 (ja) 2018-02-28
US10012883B2 (en) 2018-07-03
JPWO2015119073A1 (ja) 2017-03-23
US20160349556A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US10573666B2 (en) Display device
US10096629B2 (en) Semiconductor device and method for manufacturing same
TWI406418B (zh) 薄膜電晶體及其製造方法
KR101542840B1 (ko) 박막 트랜지스터 표시판 및 이의 제조 방법
US10297694B2 (en) Semiconductor device and method for manufacturing same
US20140117359A1 (en) Array substrate and method for manufacturing the same and display device
WO2016076168A1 (ja) 半導体装置およびその製造方法
TWI546975B (zh) 半導體裝置、液晶顯示裝置及半導體裝置之製造方法
US20150295092A1 (en) Semiconductor device
JP6286453B2 (ja) 半導体装置およびその製造方法
TWI478355B (zh) 薄膜電晶體
WO2016098651A1 (ja) 半導体装置、その製造方法、および半導体装置を備えた表示装置
US9076721B2 (en) Oxynitride channel layer, transistor including the same and method of manufacturing the same
WO2013115050A1 (ja) 半導体装置およびその製造方法
KR102414598B1 (ko) 박막트랜지스터, 그를 포함하는 표시 장치 및 그 박막트랜지스터의 제조 방법
TW201310646A (zh) 半導體裝置及其製造方法
US20190243194A1 (en) Active matrix substrate and method for manufacturing same
JP5636304B2 (ja) 薄膜トランジスタ回路基板及びその製造方法
US20160181290A1 (en) Thin film transistor and fabricating method thereof, and display device
US10141453B2 (en) Semiconductor device
JP6186077B2 (ja) 液晶表示パネルおよびその製造方法
US8823005B2 (en) Thin-film transistor and method of manufacturing the same
TWI546965B (zh) 半導體裝置及其製造方法
US20150048360A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2020031107A (ja) 薄膜トランジスタ、薄膜トランジスタ基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560970

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746225

Country of ref document: EP

Kind code of ref document: A1