WO2015115386A1 - ポリアセタール樹脂組成物および樹脂成形品 - Google Patents

ポリアセタール樹脂組成物および樹脂成形品 Download PDF

Info

Publication number
WO2015115386A1
WO2015115386A1 PCT/JP2015/052092 JP2015052092W WO2015115386A1 WO 2015115386 A1 WO2015115386 A1 WO 2015115386A1 JP 2015052092 W JP2015052092 W JP 2015052092W WO 2015115386 A1 WO2015115386 A1 WO 2015115386A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
group
compound
carbon atoms
mass
Prior art date
Application number
PCT/JP2015/052092
Other languages
English (en)
French (fr)
Inventor
麻希子 大島
邦彦 藤本
永井 雅之
英俊 縄田
佐藤 孝紀
隆祐 玉木
Original Assignee
三菱エンジニアリングプラスチックス株式会社
株式会社日本ファインケム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社, 株式会社日本ファインケム filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to US15/112,450 priority Critical patent/US9850367B2/en
Priority to EP15743411.9A priority patent/EP3101067B1/en
Priority to CN201580004955.7A priority patent/CN105916936B/zh
Priority to JP2015559936A priority patent/JP6541578B2/ja
Publication of WO2015115386A1 publication Critical patent/WO2015115386A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/30Hydrazones; Semicarbazones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • C08K5/25Carboxylic acid hydrazides

Definitions

  • the present invention relates to a polyacetal resin composition and a resin molded product.
  • Polyacetal resin has excellent mechanical properties, sliding properties, friction / abrasion properties, heat resistance, molding processability, and the like. For this reason, the polyacetal resin composition containing polyacetal resin is widely used for various machine parts, electrical parts, etc., such as a motor vehicle and OA apparatus.
  • polyacetal resin uses formaldehyde as its main raw material, it undergoes a slight thermal decomposition reaction due to a thermal history during processing and the like, and generates a very small amount of formaldehyde.
  • formaldehyde may cause sick house syndrome and the like, a polyacetal resin composition in which generation of formaldehyde is sufficiently suppressed is demanded.
  • Patent Document 1 discloses a polyacetal resin composition in which a dihydrazone compound is blended in a predetermined ratio with a polyacetal resin. With this polyacetal resin composition, the amount of formaldehyde generated from a product is reduced and molded. It has also been proposed to suppress mold contamination during processing.
  • the present invention has been made in view of the above circumstances, and is a polyacetal that can sufficiently suppress the generation of formaldehyde, can sufficiently suppress contamination of a mold during molding, and can impart excellent mechanical properties to a molded product. It aims at providing a resin composition and a resin molded product.
  • the present inventors have repeatedly studied to solve the above problems. As a result, the present inventors make the end group of the dihydrazone compound a specific group that hardly causes steric hindrance, so that the reactivity between the dihydrazone compound and formaldehyde is particularly enhanced, and the generation of formaldehyde can be sufficiently suppressed. I thought that.
  • the product obtained at this time is difficult to bleed out from the polyacetal resin composition, or even if bleeded out, it is difficult to adhere to the mold and the contamination of the mold during the molding process cannot be sufficiently suppressed. I thought.
  • the present inventors also thought that if the dihydrazone compound is excessively added to the polyacetal resin, the mechanical properties of the molded product may be deteriorated. And the present inventors discovered that the said subject can be solved by the following invention.
  • the present invention is selected from a dihydrazone compound (B1) represented by the following general formula (1) and a dihydrazone compound (B2) represented by the following general formula (2) with respect to 100 parts by mass of the polyacetal resin (A).
  • R 1 represents an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 2 to R 5 each independently represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, at least one of R 2 and R 3 represents an alkyl group having 1 or 2 carbon atoms, and among R 4 and R 5 At least one represents an alkyl group having 1 or 2 carbon atoms.
  • R 8 represents an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 6 and R 7 each independently represents an alicyclic hydrocarbon group having 3 to 12 carbon atoms.
  • the generation of formaldehyde can be sufficiently suppressed, contamination of the mold during molding can be sufficiently suppressed, and excellent mechanical properties can be imparted to the molded product.
  • R 1 is preferably an aliphatic hydrocarbon group having 6 to 12 carbon atoms.
  • the reactivity between the dihydrazone compound (B) and formaldehyde becomes higher, and the generation of formaldehyde is more effectively suppressed. Further, contamination of the mold during molding can be more sufficiently suppressed.
  • R 3 and R 5 are hydrogen atoms, and R 2 and R 4 are methyl groups.
  • R 3 and R 5 are preferably a hydrogen atom or a methyl group.
  • the reactivity between the dihydrazone compound (B) and formaldehyde becomes higher, and the generation of formaldehyde is more effectively suppressed. Further, contamination of the mold during molding can be more sufficiently suppressed.
  • the dihydrazone compound (B) is preferably blended with 100 parts by mass of the polyacetal resin (A).
  • the hydrazide compound (C) is further blended at a ratio of 0.01 to 1 part by mass with respect to 100 parts by mass of the polyacetal resin (A).
  • the generation of formaldehyde can be more sufficiently suppressed as compared with the case where the blending amount of the hydrazide compound (C) with respect to 100 parts by mass of the polyacetal resin (A) is less than 0.01 parts by mass.
  • the compounding quantity of the hydrazide compound (C) with respect to 100 mass parts of polyacetal resin (A) exceeds 1 mass part, the contamination of the metal mold
  • more excellent mechanical properties can be imparted to the molded product obtained.
  • the hydrazide compound (C) is preferably composed of at least one selected from the group consisting of a monohydrazide compound and a dihydrazide compound.
  • the hydrazide compound (C) is composed of a hydrazide compound having three or more hydrazide groups in the molecule, the hydrazide group can be efficiently dispersed in the polyacetal resin, and the hydrazide compound (C) The amount added can be more sufficiently suppressed.
  • the hydrazide compound (C) is particularly preferably composed of a dihydrazide compound.
  • the generation of formaldehyde can be more sufficiently suppressed as compared with the case where the hydrazide compound is composed of only the monohydrazide compound or the case of being composed of the monohydrazide compound and the dihydrazide compound.
  • the present invention is a resin molded product obtained by molding the polyacetal resin composition.
  • a polyacetal resin composition and a resin molded product that can sufficiently suppress the generation of formaldehyde, can sufficiently suppress the contamination of the mold during molding, and can impart excellent mechanical properties to the molded product. can do.
  • the present invention is selected from a dihydrazone compound (B1) represented by the following general formula (1) and a dihydrazone compound (B2) represented by the following general formula (2) with respect to 100 parts by mass of the polyacetal resin (A).
  • R 1 represents an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 2 to R 5 each independently represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, at least one of R 2 and R 3 represents an alkyl group having 1 or 2 carbon atoms, and among R 4 and R 5 At least one represents an alkyl group having 1 or 2 carbon atoms.
  • R 8 represents an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 6 and R 7 each independently represents an alicyclic hydrocarbon group having 3 to 12 carbon atoms.
  • the polyacetal resin is not particularly limited, and even if it is a homopolymer containing only a divalent oxymethylene group as a constituent unit, the divalent oxymethylene group and 2 having 2 or more carbon atoms It may be a copolymer containing a valent oxyalkylene group as a constituent unit.
  • Examples of the oxyalkylene group having 2 or more carbon atoms include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the ratio of the oxyalkylene group having 2 or more carbon atoms to the total number of moles of the oxymethylene group and the oxyalkylene group having 2 or more carbon atoms is not particularly limited, and is 0.5 to 10 mol%, for example. If it is.
  • the number of carbon atoms in the oxyalkylene group may be 2 or more, preferably 6 or less, more preferably 4 or less.
  • trioxane is usually used as a main raw material.
  • cyclic formal or cyclic ether can be used.
  • the cyclic formal include, for example, 1,3-dioxolane, 1,3-dioxane, 1,3-dioxepane, 1,3-dioxocane, 1,3,5-trioxepane and 1,3,6-trioxocane.
  • the cyclic ether include ethylene oxide, propylene oxide, butylene oxide and the like.
  • 1,3-dioxolane may be used, and in order to introduce an oxypropylene group, 1,3-dioxane may be used.
  • 1,3-dioxepane may be introduced.
  • the amount of hemi-formal end groups, the amount of formyl end groups, the amount of end groups unstable to heat, acid, and base is small.
  • the hemi-formal end group is represented by —OCH 2 OH
  • the formyl end group is represented by —CHO.
  • the dihydrazone compound (B) blended in the polyacetal resin composition of the present invention is a dihydrazone compound (B1) represented by the above general formula (1) and a dihydrazone represented by the above general formula (2). At least one of the compounds (B2).
  • R 1 represents an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • the aliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched.
  • aliphatic hydrocarbon group examples include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, and a hexadecylene group.
  • Groups, alkylene groups such as heptadecylene group, octadecylene group, nonadecylene group and icosylene group.
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 6 to 12 carbon atoms.
  • the reactivity between the dihydrazone compound (B) and formaldehyde becomes higher, and generation of formaldehyde is more effectively suppressed. Further, contamination of the mold during molding can be more sufficiently suppressed.
  • the alicyclic hydrocarbon group may be saturated or unsaturated.
  • Examples of the alicyclic hydrocarbon group include a cycloalkylene group having 6 to 10 carbon atoms.
  • Examples of the cycloalkylene group include a cyclohexylene group.
  • aromatic hydrocarbon group examples include arylene groups such as a phenylene group and a naphthylene group.
  • a substituent may be bonded to at least a part of the carbon atoms of the aromatic hydrocarbon group.
  • substituents include a halogen group, a nitro group, and an alkyl group having 1 to 20 carbon atoms.
  • R 2 to R 5 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, and at least one of R 2 and R 3 is an alkyl group having 1 or 2 carbon atoms. And at least one of R 4 and R 5 represents an alkyl group having 1 or 2 carbon atoms.
  • R 3 and R 5 are hydrogen atoms
  • R 2 and R 4 are methyl groups
  • 3 and R 5 are preferably a hydrogen atom or a methyl group.
  • the reactivity between the dihydrazone compound (B) and formaldehyde becomes higher, and the generation of formaldehyde is more effectively suppressed. Further, contamination of the mold during molding can be more sufficiently suppressed.
  • alkyl group having 1 or 2 carbon atoms examples include a methyl group and an ethyl group.
  • dihydrazone compound (B1) represented by the general formula (1) examples include, for example, 1,12-bis [2- (1-methylethylidene) hydrazino]]-1,12-dodecanedione, 1,12 -Bis (2-ethylidenehydrazino) -1,12-dodecanedione, 1,12-bis (2-propylidenehydrazino) -1,12-dodecanedione, 1,12-bis [2- (1-methyl Propylidene) hydrazino] -1,12-dodecanedione, 1,12-bis [2- (1-ethylpropylidene) hydrazino] -1,12-dodecanedione, 1,10-bis [2- (1-methyl) Ethylidene) hydrazino]]-1,10-decanedione, 1,10-bis (2-propylidenehydrazino) -1,10-decanedione
  • the dihydrazone compound (B1) represented by the general formula (1) may be used alone or in combination of two or more.
  • R 8 is an aliphatic hydrocarbon group having 4 to 20 carbon atoms, an alicyclic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic group having 6 to 10 carbon atoms in the same manner as R 1.
  • a hydrocarbon group is shown.
  • R 8 may be the same as or different from R 1 in the general formula (1).
  • R 6 and R 7 each independently represents an alicyclic hydrocarbon group having 3 to 12 carbon atoms.
  • Examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include a cyclohexylene group.
  • dihydrazone compound (B2) represented by the above general formula (2) include, for example, 1,12-bis (2-cyclohexylidenehydrazino) -1,12-dodecanedione, 1,10-bis ( And 2-cyclohexylidenehydrazino) -1,10-decanedione and 1,6-bis (2-cyclohexylidenehydrazino) -1,6-hexanedione.
  • the dihydrazone compound (B2) represented by the general formula (2) may be used alone or in combination of two or more.
  • the compounding quantity of a dihydrazone compound (B) is 0.02 mass part or more with respect to 100 mass parts of polyacetal resin.
  • the blending amount of the dihydrazone compound (B) with respect to 100 parts by mass of the polyacetal resin is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, from the viewpoint of further suppressing generation of formaldehyde. Especially preferably, it is 0.3 mass part or more.
  • the compounding quantity of the dihydrazone compound (B) with respect to 100 mass parts of polyacetal resin is 5 mass parts or less. If the blending amount of the dihydrazone compound (B) exceeds 5 parts by mass, excellent mechanical properties cannot be imparted to the molded product.
  • the blending amount of the dihydrazone compound (B) with respect to 100 parts by mass of the polyacetal resin is preferably 3 parts by mass or less from the viewpoint of further improving the mechanical properties of the molded product obtained by molding the polyacetal resin composition. Furthermore, it is preferable that the compounding quantity of the dihydrazone compound (B) with respect to 100 mass parts of polyacetal resins is 0.5 mass part or less from a viewpoint of suppressing mold contamination more.
  • the blending amount of the dihydrazone compound (B) is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polyacetal resin.
  • production of formaldehyde can be suppressed more fully.
  • the compounding quantity of a dihydrazone compound (B) exceeds 3 mass parts, the more excellent mechanical characteristic can be provided with respect to the molded article obtained by shape
  • the blending amount of the dihydrazone compound (B) is more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the polyacetal resin.
  • the dihydrazone compound (B1) and the dihydrazone compound (B2) are produced by reacting a dicarboxylic acid derivative such as a dicarboxylic acid halide or dicarboxylic acid ester with hydrazine to produce a dihydrazide compound, and reacting the dihydrazide compound with a ketone or an aldehyde. Can be obtained.
  • R 1 (COX) 2 or R 8 (COX) 2 is used as the dicarboxylic acid halide
  • R 1 (COOY) 2 or R 8 (COOY) 2 is used as the dicarboxylic acid ester.
  • Y represents an alkyl group.
  • R 2 —C ( ⁇ O) —R 3 , R 4 —C ( ⁇ O) —R 5 , R 6 ⁇ O, or R 7 ⁇ O is used as the ketone or aldehyde.
  • the polyacetal resin composition of the present invention may contain at least one of a hydrazide compound (C), a heat stabilizer (D), a release agent (E), and a weather stabilizer (F) as necessary. Good.
  • a hydrazide compound (C), a heat stabilizer (D), a release agent (E), and a weather stabilizer (F) as necessary.
  • the hydrazide compound (C), the heat stabilizer (D), the mold release agent (E), and the weather resistance stabilizer (F) will be described in detail.
  • the hydrazide compound (C) may be any hydrazide compound having at least one hydrazide group in the molecule.
  • Examples of the hydrazide compound (C) include polyhydrazide compounds such as monohydrazide compounds, dihydrazide compounds, and trihydrazide compounds.
  • a hydrazide compound having three or more hydrazide groups in the molecule is referred to as a polyhydrazide compound.
  • the monohydrazide compound either an aliphatic monohydrazide compound or an aromatic monohydrazide compound can be used.
  • Examples of the aliphatic monohydrazide compound include propionic acid hydrazide, thiocarbohydrazide, and stearic acid hydrazide.
  • aromatic monohydrazide compound examples include salicylic acid hydrazide, 3-hydroxy-2-naphthoic acid hydrazide, p-toluenesulfonyl hydrazide, aminobenzhydrazide and 4-pyridinecarboxylic acid hydrazide.
  • the dihydrazide compound can be either an aliphatic monohydrazide compound or an aromatic monohydrazide compound.
  • Examples of the aliphatic dihydrazide compound include carbodihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide 1, dodecanedioic acid dihydrazide 1, Hydrazide), 1,18-octadecandicarbohydrazide, stearic acid dihydrazide, maleic acid dihydrazide, fumaric acid dihydrazide, 7,11-octadecadiene-1,18-dicarbohydrazide and the like.
  • aromatic dihydrazide compounds include isophthalic acid dihydrazide, terephthalic acid dihydrazide, 1,5-naphthalenedicarbohydrazide, 1,8-naphthalenedicarbohydrazide, 2,6-naphthalenedicarbohydrazide, 4,4′-oxybis. Examples thereof include benzenesulfonyl hydrazide and 1,5-diphenylcarbonohydrazide.
  • polyhydrazide compound examples include aminopolyacrylamide and 1,3,5-tris (2-hydrazinocarbonylethyl) isocyanurate.
  • the hydrazide compound (C) may be used alone or in combination of two or more.
  • the blending amount of the hydrazide compound (C) with respect to 100 parts by mass of the polyacetal resin (A) is preferably 0.01 to 1 part by mass.
  • the generation of formaldehyde can be more sufficiently suppressed as compared with the case where the blending amount of the hydrazide compound (C) with respect to 100 parts by mass of the polyacetal resin (A) is less than 0.01 parts by mass.
  • the compounding quantity of the hydrazide compound (C) with respect to 100 mass parts of polyacetal resin (A) exceeds 1 mass part, the contamination of the metal mold
  • more excellent mechanical properties can be imparted to the molded product obtained.
  • the hydrazide compound (C) is preferably composed of at least one selected from the group consisting of a monohydrazide compound and a dihydrazide compound.
  • the hydrazide compound (C) is composed of a hydrazide compound having three or more hydrazide groups in the molecule, the hydrazide group can be efficiently dispersed in the polyacetal resin, and the hydrazide compound (C) The amount added can be more sufficiently suppressed.
  • the hydrazide compound (C) is preferably composed of a dihydrazide compound.
  • generation of formaldehyde can be more sufficiently suppressed as compared with the case where the hydrazide compound is composed of only the monohydrazide compound or the case of being composed of the monohydrazide compound and the dihydrazide compound.
  • the blending amount of the hydrazide compound (C) with respect to 100 parts by mass of the polyacetal resin (A) is preferably 0.3 to 1 part by mass. In this case, compared with the case where the compounding quantity of the hydrazide compound (C) with respect to 100 mass parts of polyacetal resin (A) is less than 0.3 mass part, generation
  • a heat stabilizer is not specifically limited, As a heat stabilizer, a hindered phenol compound or a triazine compound is used preferably. These may be blended singly or in combination of two or more. In this case, the generation of formaldehyde is further effectively suppressed.
  • the hindered phenol (sterically hindered phenol) compound is a compound having a structure represented by the following general formula (3) and having at least one structure in the molecule having a substituent at the ortho position relative to the phenolic hydroxyl group.
  • R 9 and R 10 each independently represent a substituted or unsubstituted alkyl group.
  • Examples of the alkyl group represented by R 9 and R 10 include those having 1 to 6 carbon atoms such as methyl, ethyl, propyl, butyl, and amyl groups. Among them, a bulky branched alkyl group such as a t-butyl group is preferable, and at least one of R 9 and R 10 is preferably such a branched alkyl group.
  • a group in which a hydrogen atom of an unsubstituted alkyl group is substituted with a halogen atom such as chlorine can be used.
  • hindered phenol compound used in the present invention examples include 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) and 4,4′-methylene-bis (2,6-di-tert-butylphenol). ), 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,5-di-tert-butyl-4-hydroxybenzyldimethyl Amine, distearyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, 2,6,7-trioxa-1-phospha -Bicyclo [2,2,2] -oct-4-yl-methyl-3,5-di-t-butyl-4-hydroxyhydrocinnamate, 3,5-di-t-butyl-4- Droxyphenyl-3,5-dist
  • R 9 and R 10 each have the same meanings as R 9 and R 10 in the general formula (3).
  • 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3,5-dimethyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2′-thiodiethyl-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], etc.
  • An ester of propionic acid having a droxyphenyl group and a polyhydric alcohol is also preferred.
  • the triazine compound is basically an amino-substituted triazine compound having a structure represented by the following general formula (5), or an initial polycondensate of the amino-substituted triazine compound and formaldehyde.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, alkyl group, aralkyl group, aryl group, cycloalkyl group, amino group or A substituted amino group, at least one of which represents an amino group or a substituted amino group.
  • amino-substituted triazine compound or the initial polycondensate of amine-substituted triazine compound and formaldehyde include, for example, guanamine, melamine, N-butylmelamine, N-phenylmelamine, N, N-diphenylmelamine, N, N -Diallylmelamine, N, N ', N "-triphenylmelamine, N, N', N" -trimethylolmelamine, benzoguanamine, 2,4-diamino-6-methyl-sym-triazine, 2,4-diamino- 6-butyl-sym-triazine, 2,4-diamino-6-benzyloxy-sym-triazine, 2,4-diamino-6-butoxy-sym-triazine, 2,4-diamino-6-cyclohexyl-sym-triazine 2,4-di
  • the blending amount of the heat stabilizer (D) is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 2 parts by weight, and more preferably 0.1 to 1 part per 100 parts by weight of the polyacetal resin. More preferably, it is part by mass.
  • the thermal decomposition of the polyacetal resin is less than when the blending amount of the heat stabilizer (D) is less than 0.01 parts by mass. It is more effectively suppressed and the generation of formaldehyde is more effectively suppressed.
  • the mechanical characteristic of a polyacetal resin composition can be improved more.
  • release agent Although a release agent is not specifically limited, as a release agent, polyethylene, silicone oil, a fatty acid, fatty acid ester, or a fatty acid metal salt is used preferably. These may be blended singly or in combination of two or more. In this case, contamination of the mold during the molding process is further effectively suppressed.
  • polyethylene waxes such as low molecular weight polyethylene or low molecular weight polyethylene copolymers, and modified polyethylene waxes in which polar groups are introduced by oxidative modification or acid modification thereof.
  • the number average molecular weight of polyethylene is preferably 500 to 15000, more preferably 1000 to 10,000.
  • Polyethylene wax such as low molecular weight polyethylene and low molecular weight polyethylene copolymer is a method of directly polymerizing ethylene or ethylene and ⁇ -olefin using a Ziegler catalyst, a method of obtaining high molecular weight polyethylene or a by-product during the production of the copolymer Further, it can be produced by a method of thermally decomposing a high molecular weight polyethylene or copolymer.
  • a polyethylene wax is preferably a copolymer type polyethylene wax of 50 to 99 mol% of ethylene and 1 to 50 mol% of an ⁇ -olefin, and a particularly preferable polyethylene wax is a polyethylene wax in which the ⁇ -olefin is propylene.
  • Oxidation-modified polyethylene wax is obtained by treating polyethylene wax with peroxide or oxygen to introduce polar groups such as carboxyl groups and hydroxyl groups.
  • Acid-modified polyethylene wax is introduced with polar groups such as carboxyl groups and sulfonic acid groups by treatment with inorganic acids, organic acids or unsaturated carboxylic acids in the presence of peroxide or oxygen if necessary. It is.
  • These polyethylene waxes are commercially available under the names of general type high density polyethylene wax, general type low density polyethylene wax, low oxidation type polyethylene wax, high oxidation type polyethylene wax, acid-modified type polyethylene wax or special monomer modified type. And can be easily obtained.
  • silicone oil examples include silicone oil made of polydimethylsiloxane, silicone oil in which a part of methyl group of polydimethylsiloxane is substituted with phenyl group, part of methyl group of polydimethylsiloxane is hydrogen or 2 or more carbon atoms Silicone oil substituted with alkyl group, silicone oil with polydimethylsiloxane partially substituted with halogenated phenyl group, silicone oil with polydimethylsiloxane partially substituted with fluoroester group Epoxy-modified silicone oils such as polydimethylsiloxane having an epoxy group, amino-modified silicone oils such as polydimethylsiloxane having an amino group, and alkylaralkyl resins such as dimethylsiloxane and phenylmethylsiloxane.
  • Corn oil polyether-modified silicone oil such as polydimethylsiloxane having a structure in which a part of methyl group of dimethylsiloxane unit is substituted with polyether, a part of methyl group of dimethylsiloxane unit is substituted with polyether
  • examples thereof include alkylaralkyl polyether-modified silicone oils such as polymers of dimethylsiloxane and phenylmethylsiloxane.
  • Examples of the fatty acid include saturated or unsaturated fatty acids having 12 or more carbon atoms.
  • Examples of fatty acids are lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid , Laccelic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, arachidonic acid, cetreic acid, erucic acid and the like.
  • the fatty acid is preferably a saturated fatty acid having 12 to 22 carbon atoms.
  • fatty acid esters include fatty acid esters of fatty acids having 5 to 32 carbon atoms and monovalent or polyhydric alcohols having 2 to 30 carbon atoms.
  • fatty acids caproic acid, caprylic acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid and other saturated fatty acids, or oleic acid
  • unsaturated fatty acids such as elaidic acid, linoleic acid, linolenic acid, arachidonic acid, pladicic acid, erucic acid, ricinoleic acid and the like.
  • Alcohols include monohydric alcohols such as propyl alcohol, isopropyl alcohol, butyl alcohol, octyl alcohol, capryl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, and behenyl alcohol, or ethylene glycol, propylene glycol, butanediol, glycerin, pentaerythritol. And polyhydric alcohols such as sorbitan.
  • the fatty acid ester is preferably a fatty acid ester of a fatty acid having 12 to 22 carbon atoms and a monovalent or polyhydric alcohol having 2 to 22 carbon atoms.
  • Fatty acid metal salt is a salt of higher fatty acid and metal.
  • a higher fatty acid refers to a fatty acid having 12 or more carbon atoms. Examples of the higher fatty acid include stearic acid, oleic acid, octanoic acid, lauric acid, behenic acid, ricinoleic acid and the like. Examples of the metal include zinc, calcium, magnesium, nickel, copper and the like.
  • the compounding amount of the release agent (E) is preferably 0.01 to 3 parts by mass, more preferably 0.05 to 2.5 parts by mass with respect to 100 parts by mass of the polyacetal resin. More preferably, it is ⁇ 2 parts by mass.
  • the compounding amount of the release agent (E) is 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyacetal resin, compared to when the compounding amount of the mold release agent (E) is less than 0.01 parts by mass.
  • contamination of the mold during the molding process is more effectively suppressed.
  • the mechanical characteristic of a polyacetal resin composition can be improved more.
  • an anti-smudge stabilizer is further blended in the polyacetal resin composition of the present invention. In this case, generation of formaldehyde can be more effectively suppressed.
  • a light stabilizer or an ultraviolet absorber is preferably used.
  • a hindered amine light stabilizer is preferably used.
  • those represented by the following general formula (6) are particularly preferably used.
  • R 14 represents an organic group in which the bond to the nitrogen atom is a carbon atom
  • X represents an organic group bonded to the 4-position of the piperidyl group via an oxygen atom or nitrogen atom, or a hydrogen atom.
  • R 14 examples include linear or branched alkyl groups having 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a t-butyl group, a hexyl group, an octyl group, and a decyl group. Of these, a methyl group is preferred.
  • preferred hindered amine light stabilizers include, for example, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, 1- [2- ⁇ 3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionyloxy ⁇ ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, Tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,2,6,6-pentamethyl-4-piperidyl and tridecyl- 1,2,3,4-butanetetracarboxylate (part of the four ester moieties of butanetetracarboxylate is 1,2,2,6,6-pentamethyl-4-piperidi A mixture of compounds in which the others are tridecyl groups),
  • the anti-stabilizing agent (F) may be blended singly or in combination of two or more.
  • the blending amount of the anti-wrinkle stabilizer (F) is preferably 0.01 to 3 parts by mass, more preferably 0.03 to 2 parts by mass, and more preferably 0.05 to 1 with respect to 100 parts by mass of the polyacetal resin. More preferably, it is part by mass.
  • the blending amount of the anti-wrinkle stabilizer (F) is 0.01 to 3 parts by mass, the generation of formaldehyde can be suppressed more effectively than when the blending amount is out of the above range.
  • the polyacetal resin composition includes inorganic fillers, antioxidants, colorants, nucleating agents, plasticizers, optical brighteners, sliding agents, polyethylene glycol, and glycerin.
  • inorganic fillers such as higher fatty acid salts may be further blended.
  • an inorganic filler is mix
  • any inorganic filler generally blended in a thermoplastic resin can be used.
  • the inorganic filler may have any shape such as a fiber shape, a plate shape, a needle shape, a spherical shape, and a powder.
  • examples of inorganic fillers include silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, carbon fibers, boron fibers, potassium titanate fibers, metal fibers such as stainless steel, and fibers such as aramid fibers.
  • Reinforcing filler carbon black, graphite, silica, quartz powder, glass beads, milled fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, silicates such as wollastonite, Metal oxide such as iron oxide, titanium oxide, zinc oxide, antimony trioxide, alumina, metal carbonate such as calcium carbonate, sulfate such as barium sulfate, ferrite, silicon carbide, silicon nitride, boron nitride, various metal powders, etc. Powdered inorganic fillers; mica, talc, glass flakes, etc. Jo fillers, and the like can be exemplified, may be used in combination few with these alone.
  • glass fiber it is preferable to use glass fiber, carbon fiber, talc or mica.
  • glass fiber from the viewpoint of mechanical properties and heat resistance.
  • the inorganic filler may be used after surface treatment with a surface treatment agent such as a silane coupling agent, a titanate compound or an isocyanate compound, if necessary. Good.
  • the adhesion amount is preferably 0.01 parts by mass or more and more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler.
  • thermoplastic polyurethane in order to impart toughness and impact resistance.
  • a thermoplastic polyurethane a thermoplastic polyurethane having a residual isocyanate amount of 0.10% by mass or less, a water content of 3000 ppm by mass or less, and having a melt viscosity of 200,000 poise or more at 180 ° C. Is preferably used.
  • the polyacetal resin composition includes a dicarboxylic acid represented by R 1 (COH) 2 , a dicarboxylic acid halide represented by R 1 (COX) 2 or R 8 (COX) 2 , R 1 (COOY) 2 or R 8 (COOY) 2 or a dicarboxylic acid ester represented by R 2 —C ( ⁇ O) —R 3 , R 4 —C ( ⁇ O) —R 5 , R 6 ⁇ O, R 7 ⁇ O, or ,
  • a reaction product obtained by reacting only one end of a dihydrazide compound with R 2 —C ( ⁇ O) —R 3 , R 4 —C ( ⁇ O) —R 5 , R 6 ⁇ O, R 7 ⁇ O May further be included.
  • the present invention is a resin molded product obtained by molding the polyacetal resin composition described above.
  • the molding method is not particularly limited, and an injection molding method, an extrusion molding method, or the like is used as the molding method.
  • the generation of formaldehyde is sufficiently suppressed. Therefore, as a countermeasure against so-called sick house syndrome, automobile interior parts, interior parts such as houses (hot water mixing plugs, etc.), clothing parts (fasteners) , Belt buckles, etc.), building material applications (piping, pump parts, etc.), and machine parts (gears, etc.).
  • A Polyacetal resin (POM) An acetal copolymer obtained by copolymerizing trioxane and 1,3-dioxolane so that the content of 1,3-dioxolane in POM is 4.2% by mass, and having a melt index (ASTM-D1238) Standard: 190 ° C., 2.16 kg) is 10.5 g / 10 min.
  • a glass reactor was charged with 310.0 g (1.2 mol) of dodecanedioic acid dihydrazide and 845.9 g of methanol and heated to 50 ° C. Acetone 348.5g (6.0mol) was dripped there and it reacted. After cooling, crystals were precipitated, filtered, washed with water and dried to obtain 305.0 g of B-1 (weight yield 75.1%).
  • B-6 was obtained in the same manner as B-1, except that propyl aldehyde was used instead of acetone as a raw material.
  • B-2 to B-5 and B-7 to B-21 were obtained in the same manner as B-1, except that acetone and dodecanedioic acid dihydrazide as raw materials were appropriately changed.
  • Mold contamination suppression effect The mold contamination suppression effect was evaluated as follows. First, pellets of the polyacetal resin compositions obtained in Examples 1 to 34 and Comparative Examples 1 to 11 were molded using a so-called drop mold using a mini mat M8 / 7A molding machine manufactured by Sumitomo Heavy Industries, Ltd. 3000 shots were continuously formed at a temperature of 200 ° C. and a mold temperature of 80 ° C. After the molding, the state of the inner wall surface of the mold was observed with the naked eye.
  • the standard regarding the mold contamination suppression effect was as follows. A: There is no mold deposits, and the effect of suppressing mold contamination is very good. B: Almost no mold deposits, and the effect of suppressing mold contamination is very good. C: Mold contamination with little mold deposits. Good suppression effect D: Many mold deposits, poor mold contamination suppression effect Here, A to C were accepted and D was rejected. The results are shown in Tables 1-10.
  • the polyacetal resin composition of the present invention it has been confirmed that generation of formaldehyde can be sufficiently suppressed, contamination of the mold during molding can be sufficiently suppressed, and excellent mechanical properties can be imparted to the molded product. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリアセタール樹脂(A)100質量部に対して、下記一般式(1)で表されるジヒドラゾン化合物(B1)及び下記一般式(2)で表されるジヒドラゾン化合物(B2)から選ばれる群より選択される少なくとも1種のジヒドラゾン化合物(B)が0.02~5質量部配合されているポリアセタール樹脂組成物が提供される。 (上記式(1)中、Rは炭素数4~20の脂肪族炭化水素基等を示す。R~Rはそれぞれ独立に、炭素数1若しくは2のアルキル基等を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示す。) (上記式(2)中、Rは炭素数4~20の脂肪族炭化水素基等を示す。R及びRはそれぞれ独立に、炭素数3~12の脂環式炭化水素基を示す。)

Description

ポリアセタール樹脂組成物および樹脂成形品
 本発明はポリアセタール樹脂組成物および樹脂成形品に関する。
 エンジニアリングプラスチックスのポリアセタール樹脂は、優れた機械的性質、摺動特性、摩擦・磨耗特性、耐熱性、成形加工性などを有している。このため、ポリアセタール樹脂を含むポリアセタール樹脂組成物は、自動車、OA機器などの各種機械部品や電気部品等に広く用いられている。
 ところが、ポリアセタール樹脂は、その主原料にホルムアルデヒドを使用するため、加工成形時等における熱履歴によって僅かながら熱分解反応を起こし、極めて微量ながらもホルムアルデヒドを発生させる。ここで、ホルムアルデヒドは、シックハウス症候群等を引き起こす可能性があるとされているため、ホルムアルデヒドの発生が十分に抑制されたポリアセタール樹脂組成物が求められている。
 このようなポリアセタール樹脂組成物として、下記特許文献1に開示されるものが知られている。下記特許文献1には、ポリアセタール樹脂に、ジヒドラゾン化合物を所定の割合で配合したポリアセタール樹脂組成物が開示されており、このポリアセタール樹脂組成物により、製品から発生するホルムアルデヒドの発生量を低減し、成形加工時の金型の汚染をも抑制することが提案されている。
特開2007-70574号公報
 しかし、上記特許文献1記載のポリアセタール樹脂組成物では、ホルムアルデヒド発生を十分に抑制できない場合があった。また上記特許文献1記載のポリアセタール樹脂組成物では、ポリアセタール樹脂組成物を成形して得られる成形品に対し優れた機械特性を付与できない場合もあった。
 本発明は、上記事情に鑑みてなされたものであり、ホルムアルデヒドの発生を十分に抑制でき、成形加工時の金型の汚染を十分に抑制できるとともに、優れた機械特性を成形品に付与できるポリアセタール樹脂組成物および樹脂成形品を提供することを目的とする。
 本発明者らは、上記課題を解決するため検討を重ねた。その結果、本発明者らは、ジヒドラゾン化合物の末端基を、立体障害を起こしにくい特定の基にすることで、ジヒドラゾン化合物とホルムアルデヒドとの反応性が特に高まり、ホルムアルデヒドの発生を十分に抑制できるのではないかと考えた。またこのとき得られる生成物がポリアセタール樹脂組成物からブリードアウトしにくいか、ブリードアウトしても、金型に付着しにくくなり、成形加工時の金型の汚染をも十分に抑制できるのではないかと考えた。また本発明者らは、ジヒドラゾン化合物をポリアセタール樹脂に対して過剰に配合すると、成形品の機械特性が低下するのではないかとも考えた。そして、本発明者らは以下の発明により上記課題を解決し得ることを見出した。
 すなわち本発明は、ポリアセタール樹脂(A)100質量部に対して、下記一般式(1)で表されるジヒドラゾン化合物(B1)及び下記一般式(2)で表されるジヒドラゾン化合物(B2)から選ばれる群より選択される少なくとも1種のジヒドラゾン化合物(B)が0.02~5質量部配合されているポリアセタール樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R~Rはそれぞれ独立に、水素原子、又は炭素数1若しくは2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000004
(上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R及びRはそれぞれ独立に、炭素数3~12の脂環式炭化水素基を示す。)
 本発明のポリアセタール樹脂組成物によれば、ホルムアルデヒドの発生を十分に抑制でき、成形加工時の金型の汚染を十分に抑制できるとともに、優れた機械特性を成形品に付与できる。
 上記ポリアセタール樹脂組成物においては、前記一般式(1)において、Rが炭素数6~12の脂肪族炭化水素基であることが好ましい。
 この場合、ジヒドラゾン化合物(B)とホルムアルデヒドとの反応性がより高くなり、ホルムアルデヒドの発生がより効果的に抑制される。また、成形加工時の金型の汚染をより十分に抑制できる。
 上記ポリアセタール樹脂組成物においては、前記一般式(1)において、R及びRがエチル基である場合には、R及びRが水素原子であり、R及びRがメチル基である場合には、R及びRが水素原子又はメチル基であることが好ましい。
 この場合、ジヒドラゾン化合物(B)とホルムアルデヒドとの反応性がより高くなり、ホルムアルデヒドの発生がより効果的に抑制される。また、成形加工時の金型の汚染をより十分に抑制できる。
 上記ポリアセタール樹脂組成物においては、前記ポリアセタール樹脂(A)100質量部に対して、前記ジヒドラゾン化合物(B)が0.05~3質量部配合されていることが好ましい。
 この場合、ジヒドラゾン化合物(B)の配合量が0.05質量部未満である場合に比べて、ホルムアルデヒドの発生をより十分に抑制できる。またジヒドラゾン化合物(B)の配合量が3質量部を超える場合に比べて、ポリアセタール樹脂組成物を成形して得られる成形品に対してより優れた機械特性を付与することができる。
 上記ポリアセタール樹脂組成物においては、前記ポリアセタール樹脂(A)100質量部に対して、ヒドラジド化合物(C)が0.01~1質量部の割合でさらに配合されていることが好ましい。
 この場合、ポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量が0.01質量部未満である場合に比べて、ホルムアルデヒドの発生をより十分に抑制することができる。またポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量が1質量部を超える場合に比べて、成形加工時の金型の汚染を十分に抑制できるとともに、ポリアセタール樹脂組成物を成形して得られる成形品に対してより優れた機械特性を付与することができる。
 前記ヒドラジド化合物(C)は、モノヒドラジド化合物及びジヒドラジド化合物からなる群より少なくとも1種で構成されることが好ましい。
 この場合、ヒドラジド化合物(C)が、ヒドラジド基を分子内に3個以上有するヒドラジド化合物で構成される場合に比べて、ヒドラジド基を効率的にポリアセタール樹脂中に分散でき、ヒドラジド化合物(C)の添加量をより十分に抑制できる。
 前記ヒドラジド化合物(C)は、ジヒドラジド化合物で構成されることが特に好ましい。
 この場合、ヒドラジド化合物がモノヒドラジド化合物のみで構成される場合、又はモノヒドラジド化合物及びジヒドラジド化合物で構成される場合に比べて、ホルムアルデヒドの発生をより十分に抑制することができる。
 また本発明は、上記ポリアセタール樹脂組成物を成形してなる樹脂成形品である。
 この樹脂成形品によれば、ホルムアルデヒドの発生を十分に抑制できるとともに、優れた機械特性を有することが可能となる。
 本発明によれば、ホルムアルデヒドの発生を十分に抑制でき、成形加工時の金型の汚染を十分に抑制できるとともに、優れた機械特性を成形品に付与できるポリアセタール樹脂組成物および樹脂成形品を提供することができる。
 以下、本発明について詳細に説明する。
 本発明は、ポリアセタール樹脂(A)100質量部に対して、下記一般式(1)で表されるジヒドラゾン化合物(B1)及び下記一般式(2)で表されるジヒドラゾン化合物(B2)から選ばれる群より選択される少なくとも1種のジヒドラゾン化合物(B)が0.02~5質量部配合されているポリアセタール樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
(上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R~Rはそれぞれ独立に、水素原子、又は炭素数1若しくは2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R及びRはそれぞれ独立に、炭素数3~12の脂環式炭化水素基を示す。)
 このポリアセタール樹脂組成物によれば、ホルムアルデヒドの発生を十分に抑制でき、成形加工時の金型の汚染を十分に抑制できるとともに、優れた機械特性を成形品に付与できる。
 以下、本発明のポリアセタール樹脂組成物に用いられるポリアセタール樹脂(A)およびジヒドラゾン化合物(B)について詳細に説明する。
 (A)ポリアセタール樹脂
 ポリアセタール樹脂は特に限定されるものではなく、2価のオキシメチレン基のみを構成単位として含むホモポリマーであっても、2価のオキシメチレン基と、炭素数が2以上の2価のオキシアルキレン基とを構成単位として含むコポリマーであってもよい。
 炭素数が2以上のオキシアルキレン基としては、例えばオキシエチレン基、オキシプロピレン基、及び、オキシブチレン基などが挙げられる。
 ポリアセタール樹脂においては、オキシメチレン基および炭素数2以上のオキシアルキレン基の総モル数に占める炭素数2以上のオキシアルキレン基の割合は特に限定されるものではなく、たとえば0.5~10モル%であればよい。オキシアルキレン基中の炭素数は2以上であればよいが、好ましくは6以下であり、より好ましくは4以下である。
 上記ポリアセタール樹脂を製造するためには通常、主原料としてトリオキサンが用いられる。また、ポリアセタール樹脂中に炭素数2~6のオキシアルキレン基を導入するには、例えば環状ホルマールや環状エーテルを用いることができる。環状ホルマールの具体例としては、例えば1,3-ジオキソラン、1,3-ジオキサン、1,3-ジオキセパン、1,3-ジオキソカン、1,3,5-トリオキセパン及び1,3,6-トリオキソカン等が挙げられる。環状エーテルの具体例としては、例えばエチレンオキシド、プロピレンオキシドおよびブチレンオキシド等が挙げられる。ポリアセタール樹脂(A)中にオキシエチレン基を導入するには、例えば1,3-ジオキソランを用いればよく、オキシプロピレン基を導入するには、1,3-ジオキサンを用いればよく、オキシブチレン基を導入するには、1,3-ジオキセパンを導入すればよい。
 なお、ポリアセタール樹脂においては、ヘミホルマール末端基量、ホルミル末端基量、熱や酸、塩基に対して不安定な末端基量が少ない方がよい。ここで、ヘミホルマール末端基とは、-OCHOHで表されるものであり、ホルミル末端基とは-CHOで表されるものである。
 (B)ジヒドラゾン化合物
 本発明のポリアセタール樹脂組成物に配合されるジヒドラゾン化合物(B)は、上記一般式(1)で表されるジヒドラゾン化合物(B1)及び上記一般式(2)で表されるジヒドラゾン化合物(B2)のうちの少なくとも1種である。
 一般式(1)において、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。
 上記脂肪族炭化水素基は、飽和又は不飽和であってもよく、直鎖状又は分岐状であってもよい。
 脂肪族炭化水素基の具体例としては、例えばブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基及びイコシレン基などのアルキレン基などが挙げられる。
 脂肪族炭化水素基は炭素数6~12の脂肪族炭化水素基であることが好ましい。この場合、ジヒドラゾン化合物(B)とホルムアルデヒドとの反応性がより高くなり、ホルムアルデヒドの発生がより効果的に抑制される。また、成形加工時の金型の汚染をより十分に抑制できる。
 上記脂環式炭化水素基は、飽和又は不飽和であってもよい。
 脂環式炭化水素基としては、炭素数6~10のシクロアルキレン基などが挙げられる。シクロアルキレン基としては、例えばシクロへキシレン基などが挙げられる。
 芳香族炭化水素基としては、例えばフェニレン基及びナフチレン基などのアリーレン基が挙げられる。
 芳香族炭化水素基の炭素原子の少なくとも一部に置換基が結合していてもよい。この置換基としては、例えばハロゲン基、ニトロ基、炭素数1~20のアルキル基などが挙げられる。
 一般式(1)において、R~Rはそれぞれ独立に、水素原子、又は炭素数1若しくは2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示す。
 ここで、一般式(1)において、R及びRがエチル基である場合には、R及びRが水素原子であり、R及びRがメチル基である場合には、R及びRが水素原子又はメチル基であることが好ましい。
 この場合、ジヒドラゾン化合物(B)とホルムアルデヒドとの反応性がより高くなり、ホルムアルデヒドの発生がより効果的に抑制される。また、成形加工時の金型の汚染をより十分に抑制できる。
 上記炭素数1又は2のアルキル基としては、メチル基及びエチル基が挙げられる。
 上記一般式(1)で表されるジヒドラゾン化合物(B1)の具体例としては、例えば1,12-ビス[2-(1-メチルエチリデン)ヒドラジノ]]-1,12-ドデカンジオン、1,12-ビス(2-エチリデンヒドラジノ)-1,12-ドデカンジオン、1,12-ビス(2-プロピリデンヒドラジノ)-1,12-ドデカンジオン、1,12-ビス[2-(1-メチルプロピリデン)ヒドラジノ]-1,12-ドデカンジオン、1,12-ビス[2-(1-エチルプロピリデン)ヒドラジノ]-1,12-ドデカンジオン、1,10-ビス[2-(1-メチルエチリデン)ヒドラジノ]]-1,10-デカンジオン、1,10-ビス(2-プロピリデンヒドラジノ)-1,10-デカンジオン、1,10-ビス(2-プロピリデンヒドラジノ)-1,10-デカンジオン、1,10-ビス[2-(1-メチルプロピリデン)ヒドラジノ]-1,10-デカンジオン、1,10-ビス[2-(1-エチルプロピリデン)ヒドラジノ]-1,10-デカンジオン、1,6-ビス[2-(1-メチルエチリデン)ヒドラジノ]-1,6-ヘキサンジオン、1,6-ビス(2-エチリデンヒドラジノ)-1,6-ヘキサンジオン、1,6-ビス(2-プロピリデンヒドラジノ)-1,6-ヘキサンジオン、1,6-ビス[2-(1-メチルプロピリデン)ヒドラジノ]-1,6-ヘキサンジオン、1,6-ビス[2-(1-エチルプロピリデン)ヒドラジノ]-1,6-ヘキサンジオンなどが挙げられる。
 上記一般式(1)で表されるジヒドラゾン化合物(B1)は単独でも、2種類以上を組み合わせて配合されてもよい。
 一般式(2)において、Rは、Rと同様に、炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。Rは一般式(1)におけるRと同じでも異なってもよい。
 R及びRはそれぞれ独立に、炭素数3~12の脂環式炭化水素基を示す。
 炭素数3~12の脂環式炭化水素基としては、例えばシクロヘキシレン基などが挙げられる。
 上記一般式(2)で表されるジヒドラゾン化合物(B2)の具体例としては、例えば1,12-ビス(2-シクロヘキシリデンヒドラジノ)-1,12-ドデカンジオン、1,10-ビス(2-シクロヘキシリデンヒドラジノ)-1,10-デカンジオン、1,6-ビス(2-シクロヘキシリデンヒドラジノ)-1,6-ヘキサンジオンなどが挙げられる。
 上記一般式(2)で表されるジヒドラゾン化合物(B2)は単独でも、2種類以上を組み合わせて配合されてもよい。
 ジヒドラゾン化合物(B)の配合量は、ポリアセタール樹脂100質量部に対して0.02質量部以上である。ジヒドラゾン化合物(B)の配合量が0.02質量部未満である場合、ホルムアルデヒドの発生を十分に抑制できない。ポリアセタール樹脂100質量部に対するジヒドラゾン化合物(B)の配合量は、ホルムアルデヒドの発生をより抑制する観点からは、好ましくは0.05質量部以上であり、より好ましくは0.1質量部以上であり、特に好ましくは0.3質量部以上である。
 一方、ポリアセタール樹脂100質量部に対するジヒドラゾン化合物(B)の配合量は5質量部以下である。ジヒドラゾン化合物(B)の配合量が5質量部を超えると、優れた機械特性を成形品に付与することができなくなる。ポリアセタール樹脂100質量部に対するジヒドラゾン化合物(B)の配合量は、ポリアセタール樹脂組成物を成形して得られる成形品に対する機械特性をより向上させる観点からは、3質量部以下であることが好ましい。さらに金型汚染をより抑制する観点からは、ポリアセタール樹脂100質量部に対するジヒドラゾン化合物(B)の配合量は0.5質量部以下であることが好ましい。
 ジヒドラゾン化合物(B)の配合量はポリアセタール樹脂100質量部に対して0.05~3質量部であることが好ましい。この場合、ジヒドラゾン化合物(B)の配合量が0.05質量部未満である場合に比べて、ホルムアルデヒドの発生をより十分に抑制できる。またジヒドラゾン化合物(B)の配合量が3質量部を超える場合に比べて、ポリアセタール樹脂組成物を成形して得られる成形品に対してより優れた機械特性を付与することができる。
 ジヒドラゾン化合物(B)の配合量はポリアセタール樹脂100質量部に対して0.1~1.0質量部であることがより好ましい。
 なお、ジヒドラゾン化合物(B1)及びジヒドラゾン化合物(B2)は、ジカルボン酸ハライドやジカルボン酸エステルなどのジカルボン酸誘導体とヒドラジンとを反応させてジヒドラジド化合物を生成し、そのジヒドラジド化合物とケトンやアルデヒドとを反応させることによって得ることができる。このとき、ジカルボン酸ハライドとしては、R(COX)又はR(COX)を、ジカルボン酸エステルとしてはR(COOY)又はR(COOY)を用いる。ここで、Yは、アルキル基を表す。ケトンやアルデヒドとしては、R-C(=O)-R、R-C(=O)-R、R=O、又は、R=Oが用いられる。
 本発明のポリアセタール樹脂組成物は、必要に応じ、ヒドラジド化合物(C)、熱安定剤(D)、離型剤(E)および耐候安定剤(F)のうちの少なくとも1種を含んでいてもよい。以下、ヒドラジド化合物(C)、熱安定剤(D)、離型剤(E)および耐候安定剤(F)について詳細に説明する。
 (C) ヒドラジド化合物
 ヒドラジド化合物(C)は、少なくとも1個のヒドラジド基を分子内に有するヒドラジド化合物であればよい。ヒドラジド化合物(C)としては、例えばモノヒドラジド化合物、ジヒドラジド化合物、及び、トリヒドラジド化合物等のポリヒドラジド化合物が挙げられる。なお、本明細書においては、ヒドラジド基を分子内に3個以上有するヒドラジド化合物をポリヒドラジド化合物と呼ぶこととする。
 モノヒドラジド化合物は、脂肪族モノヒドラジド化合物又は芳香族モノヒドラジド化合物の何れでも使用することができる。
 脂肪族モノヒドラジド化合物としては、プロピオン酸ヒドラジド、チオカルボヒドラジド及びステアリン酸ヒドラジド等が挙げられる。
 芳香族モノヒドラジド化合物としては、例えばサリチル酸ヒドラジド、3-ヒドロキシ-2-ナフトエ酸ヒドラジド、p-トルエンスルホニルヒドラジド、アミノベンズヒドラジド及び4-ピリジンカルボン酸ヒドラジドが挙げられる。
 またジヒドラジド化合物は、脂肪族モノヒドラジド化合物又は芳香族モノヒドラジド化合物の何れでも使用することができる。
 脂肪族ジヒドラジド化合物としては、カルボジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド(1,12-ドデカンジカルボヒドラジド)、1,18-オクタデカンジカルボヒドラジド、ステアリン酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、7,11-オクタデカジエン-1,18-ジカルボヒドラジド等が挙げられる。
 芳香族ジヒドラジド化合物としては、例えばイソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、1,5-ナフタレンジカルボヒドラジド、1,8-ナフタレンジカルボヒドラジド、2,6-ナフタレンジカルボヒドラジド、4,4'-オキシビスベンゼンスルホニルヒドラジド、1,5-ジフェニルカルボノヒドラジドが挙げられる。
 ポリヒドラジド化合物としては、例えばアミノポリアクリルアミド及び1,3,5-トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート等が挙げられる。
 上記ヒドラジド化合物(C)は単独で使用しても、2種以上混合して用いてもよい。本発明のポリアセタール樹脂組成物において、ポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量は、0.01~1質量部であることが好ましい。
 この場合、ポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量が0.01質量部未満である場合に比べて、ホルムアルデヒドの発生をより十分に抑制することができる。またポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量が1質量部を超える場合に比べて、成形加工時の金型の汚染を十分に抑制できるとともに、ポリアセタール樹脂組成物を成形して得られる成形品に対してより優れた機械特性を付与することができる。
 ヒドラジド化合物(C)は、モノヒドラジド化合物及びジヒドラジド化合物からなる群より少なくとも1種で構成されることが好ましい。
 この場合、ヒドラジド化合物(C)が、ヒドラジド基を分子内に3個以上有するヒドラジド化合物で構成される場合に比べて、ヒドラジド基を効率的にポリアセタール樹脂中に分散でき、ヒドラジド化合物(C)の添加量をより十分に抑制できる。
 特に、ヒドラジド化合物(C)は、ジヒドラジド化合物で構成されることが好ましい。この場合、ヒドラジド化合物がモノヒドラジド化合物のみで構成される場合、又はモノヒドラジド化合物及びジヒドラジド化合物で構成される場合に比べて、ホルムアルデヒドの発生をより十分に抑制することができる。
 ポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量は、好ましくは0.3~1質量部である。この場合、ポリアセタール樹脂(A)100質量部に対するヒドラジド化合物(C)の配合量が0.3質量部未満である場合に比べて、ホルムアルデヒドの発生をより十分に抑制することができる。
 (D)熱安定剤
 熱安定剤は特に限定されるものではないが、熱安定剤としては、ヒンダードフェノール化合物又はトリアジン化合物が好ましく用いられる。これらは1種類単独で配合しても、2種類以上を組み合わせて配合してもよい。この場合、ホルムアルデヒドの発生がさらに効果的に抑制される。
 ヒンダードフェノール(立体障害性フェノール)化合物とは、下記一般式(3)で示される構造であってフェノール性水酸基に対するオルト位に置換基を有する構造を分子内に少なくとも一個有する化合物をいう。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)において、R及びR10は、各々独立して、置換又は非置換のアルキル基を示す。
 R及びR10が示すアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基等炭素数1~6のものが挙げられる。なかでもt-ブチル基のような嵩高い分岐アルキル基が好ましく、R及びR10のうちの少なくとも一つはこのような分岐アルキル基であることが好ましい。置換アルキル基としては、非置換アルキル基の水素原子を塩素等のハロゲン原子で置換したものを用いることができる。
 本発明に用いるヒンダードフェノール化合物としては、例えば2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4'-メチレン-ビス(2,6-ジ-t-ブチルフェノール)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルジメチルアミン、ジステアリル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート、ジエチル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート、2,6,7-トリオキサ-1-ホスファ-ビシクロ〔2,2,2〕-オクト-4-イル-メチル-3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート、3,5-ジ-t-ブチル-4-ヒドロキシフェニル-3,5-ジステアリル-チオトリアジルアミン、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2,6-ジ-t-ブチル-4-ヒドロキシメチルフェノール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、N,N'-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、ペンタエリスリトール-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3,5-ジメチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2'-チオジエチル-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕等が挙げられる。
 これらのなかでも好ましいのは,N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)のような下記一般式(4)で示される構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000008
 一般式(4)において、R及びR10は、それぞれ、一般式(3)のR及びR10と同義である。
 また、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、ペンタエリスリトール-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3,5-ジメチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2'-チオジエチル-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕等のような、3-位に3,5-ジアルキルー4-ヒドロキシフェニル基を有するプロピオン酸と多価アルコールのエステルも好ましい。
 上記トリアジン化合物とは、基本的には、下記一般式(5)で示される構造を有するアミノ置換トリアジン化合物、または該アミノ置換トリアジン化合物とホルムアルデヒドとの初期重縮合物である。
Figure JPOXMLDOC01-appb-C000009
(上記一般式(5)において、R11、R12、R13はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、メルカプト基、アルキル基、アラルキル基、アリール基、シクロアルキル基、アミノ基または置換アミノ基を示し、その少なくとも一つは、アミノ基、または置換アミノ基を表す。)
 アミノ置換トリアジン化合物、または、アミン置換トリアジン化合物とホルムアルデヒドとの初期重縮合物の具体例としては、例えばグアナミン、メラミン、N-ブチルメラミン、N-フェニルメラミン、N,N-ジフェニルメラミン、N,N-ジアリルメラミン、N,N’,N”-トリフェニルメラミン、N,N’,N”-トリメチロールメラミン、ベンゾグアナミン、2,4-ジアミノ-6-メチル-sym-トリアジン、2,4-ジアミノ-6-ブチル-sym-トリアジン、2,4-ジアミノ-6-ベンジルオキシ-sym-トリアジン、2,4-ジアミノ-6-ブトキシ-sym-トリアジン、2,4-ジアミノ-6-シクロヘキシル-sym-トリアジン、2,4-ジアミノ-6-クロロ-sym-トリアジン、2,4-ジアミノ-6-メルカプト-sym-トリアジン、アメリン(N,N,N’,N’-テトラシアノエチルベンゾグアナミン)、または、それらとホルムアルデヒドとの初期重縮合物等が挙げられる。中でも、メラミン、メチロールメラミン、ベンゾグアナミン、水溶性メラミン-ホルムアルデヒド樹脂が特に好ましい。
 熱安定剤(D)の配合量はポリアセタール樹脂100質量部に対して0.01~3質量部であることが好ましく、0.05~2質量部であることがより好ましく、0.1~1質量部であることがさらに好ましい。熱安定剤(D)の配合量が0.01~3質量部である場合、熱安定剤(D)の配合量が0.01質量部未満である場合に比べて、ポリアセタール樹脂の熱分解がより効果的に抑制され、ホルムアルデヒドの発生がより効果的に抑制される。また熱安定剤(D)の配合量が3質量部を超える場合に比べて、ポリアセタール樹脂組成物の機械特性をより向上させることができる。
 (E)離型剤
 離型剤は特に限定されるものではないが、離型剤としては、ポリエチレン、シリコーンオイル、脂肪酸、脂肪酸エステル又は脂肪酸金属塩が好ましく用いられる。これらは1種類単独で配合しても、2種類以上を組み合わせて配合してもよい。この場合、成形加工時の金型の汚染がさらに効果的に抑制される。
 ポリエチレンとしては、低分子量ポリエチレン若しくは低分子量ポリエチレン共重合体等のポリエチレンワックス、これらを酸化変性又は酸変性することによって極性基を導入した変性ポリエチレンワックスなどが挙げられる。ポリエチレンの数平均分子量は、好ましくは500~15000であり、より好ましくは1000~10000である。
 低分子量ポリエチレン及び低分子量ポリエチレン共重合体等のポリエチレンワックスは、エチレン又はエチレンとα-オレフィンとをチーグラー触媒などで直接重合する方法、高分子量ポリエチレンあるいは共重合体製造時の副成物として得る方法、高分子量ポリエチレンあるいは共重合体を熱分解する方法等により製造することができる。こうしたポリエチレンワックスとしては、エチレン50~99モル%とα-オレフィン1~50モル%との共重合体型ポリエチレンワックスが好ましく、特に好ましいポリエチレンワックスは、α-オレフィンがプロピレンであるポリエチレンワックスである。
 酸化変性ポリエチレンワックスは、ポリエチレンワックスをパーオキシドや酸素などで処理してカルボキシル基や水酸基等の極性基を導入したものである。酸変性ポリエチレンワックスは、必要と有ればパーオキシドや酸素の存在下に、無機酸、有機酸あるいは不飽和カルボン酸等で処理することにより、カルボキシル基やスルホン酸基等の極性基を導入したものである。これらのポリエチレンワックス類は、一般型高密度ポリエチレンワックス、一般型低密度ポリエチレンワックス、低酸化型ポリエチレンワックス、高酸化型ポリエチレンワックス、酸変性型ポリエチレンワックスあるいは特殊モノマー変性型などの名称で市販されており、容易に入手することができる。
 シリコーンオイルとしては、例えば、ポリジメチルシロキサンからなるシリコーンオイル、ポリジメチルシロキサンのメチル基の一部がフェニル基に置換されたシリコーンオイル、ポリジメチルシロキサンのメチル基の一部が水素や炭素数2以上のアルキル基に置換されたシリコーンオイル、ポリジメチルシロキサンのメチル基の一部がハロゲン化フェニル基に置換されたシリコーンオイル、ポリジメチルシロキサンのメチル基の一部がフルオロエステル基に置換されたシリコーンオイル、エポキシ基を有するポリジメチルシロキサンのようなエポキシ変性シリコーンオイル、アミノ基を有するポリジメチルシロキサンのようなアミノ変性シリコーンオイル、ジメチルシロキサンとフェニルメチルシロキサンのようなアルキルアラルキルシリコーンオイル、ジメチルシロキサン単位のメチル基の一部がポリエーテルに置換された構造を有するポリジメチルシロキサンのようなポリエーテル変性シリコーンオイル、ジメチルシロキサン単位のメチル基の一部がポリエーテルに置換されたジメチルシロキサンとフェニルメチルシロキサンとのポリマーのようなアルキルアラルキルポリエーテル変性シリコーンオイル等が挙げられる。
 脂肪酸としては、炭素数12以上の飽和又は不飽和脂肪酸が挙げられる。脂肪酸の例としては、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、セトレイン酸、エルカ酸等が挙げられる。脂肪酸は、好ましくは炭素数12~22の飽和脂肪酸である。
 脂肪酸エステルとしては、炭素数5~32の脂肪酸と炭素数2~30の一価もしくは多価アルコールとの脂肪酸エステルが挙げられる。脂肪酸としては、カプロン酸、カプリル酸、ウンデシル酸、ラウリル酸、トリデシル酸、ミリスチン酸、パルミチル酸、ステアリン酸、ベヘニン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の飽和脂肪酸、あるいはオレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、プラジシン酸、エルカ酸、リシノール酸などの不飽和脂肪酸などが挙げられる。アルコールとしては、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコールなどの一価アルコール、もしくは、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、ペンタエリスリトール、ソルビタン等の多価アルコールが挙げられる。脂肪酸エステルは、好ましくは、炭素数12~22の脂肪酸と炭素数2~22の一価もしくは多価アルコールとの脂肪酸エステルである。
 脂肪酸金属塩は、高級脂肪酸と金属との塩である。高級脂肪酸とは、炭素数が12以上である脂肪酸を言う。高級脂肪酸としては、ステアリン酸、オレイン酸、オクタン酸、ラウリル酸、べへニン酸、リシノレイン酸等が挙げられる。金属としては、亜鉛、カルシウム、マグネシウム、ニッケル、銅等が挙げられる。
 離型剤(E)の配合量はポリアセタール樹脂100質量部に対して0.01~3質量部であることが好ましく、0.05~2.5質量部であることがより好ましく、0.05~2質量部であることがさら好ましい。離型剤(E)の配合量がポリアセタール樹脂100質量部に対して0.01~3質量部である場合、離型剤(E)の配合量が0.01質量部未満である場合に比べて、成形加工時の金型の汚染がより効果的に抑制される。また離型剤(E)の配合量が3質量部を超える場合に比べて、ポリアセタール樹脂組成物の機械特性をより向上させることができる。
 (F)耐侯安定剤
 本発明のポリアセタール樹脂組成物には、さらに耐侯安定剤が配合されることが好ましい。この場合、ホルムアルデヒドの発生をより効果的に抑制できる。耐侯安定剤としては、光安定剤又は紫外線吸収剤が好ましく用いられる。光安定剤としては、ヒンダードアミン系光安定剤が好ましく用いられる。光安定剤としては、特に下記一般式(6)で表されるものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000010
 上記式中、R14は窒素原子との結合部が炭素原子である有機基、Xは、酸素原子若しくは窒素原子を介してピペリジル基の4-位と結合する有機基、又は水素原子を示す。
 R14としては、炭素数1~10の直鎖状又は分岐状のアルキル基等が挙げられる。このようなアルキル基としては、例えばメチル基、エチル基、プロピル基、t-ブチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。中でもメチル基が好ましい。
 好ましいヒンダードアミン系光安定剤の具体例としては、例えばビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、1,2,2,6,6-ペンタメチル-4-ピペリジル及びトリデシル-1,2,3,4ブタンテトラカルボキシレート(ブタンテトラカルボキシレートの4つのエステル部の一部が1,2,2,6,6-ペンタメチル-4-ピペリジル基で他がトリデシル基である化合物の混合物)、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β,β-テトラメチル-3,9(2,4,8,10-テトラオキサスピロ[5,5]ウデンカン)-ジエタノールとの縮合物、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの縮合物、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、N,N´,N´´,N´´´-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネートが挙げられる。
 上記耐侯安定剤(F)は1種類単独で配合しても、2種類以上を組み合わせて配合してもよい。耐侯安定剤(F)の配合量はポリアセタール樹脂100質量部に対して0.01~3質量部であることが好ましく、0.03~2質量部であることがより好ましく、0.05~1質量部であることがさら好ましい。耐侯安定剤(F)の配合量が0.01~3質量部である場合、配合量が上記範囲を外れる場合に比べて、ホルムアルデヒドの発生をより効果的に抑制できる。
 ポリアセタール樹脂組成物には、上記(A)~(F)成分のほか、無機充填材、酸化防止剤、着色剤、核剤、可塑剤、蛍光増白剤、摺動剤、ポリエチレングリコール、グリセリンのような帯電防止剤、高級脂肪酸塩等の添加剤をさらに配合してもよい。中でも、ポリアセタール樹脂組成物には、無機充填材が配合されることが好ましい。
 無機充填材としては、熱可塑性樹脂に一般に配合される任意の無機充填材を用いることができる。無機充填材は、繊維状、板状、針状、球状、粉末等、いずれの形状であってもよい。無機充填材としては、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維、カーボン繊維、ボロン繊維、チタン酸カリウム繊維、ステンレス等の金属繊維、アラミド繊維等の繊維状強化充填剤;カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドファイバー、ガラスバルーン、ガラス粉、ケイ酸カルシウム、ケイ酸アルミニウム、カオリン、クレー、珪藻土、ウォラストナイトの如きケイ酸塩、酸化鉄、酸化チタン、酸化亜鉛、3酸化アンチモン、アルミナの如き金属酸化物、炭酸カルシウムの如き金属炭酸塩、硫酸バリウムの如き硫酸塩、フェライト、炭化ケイ素、窒化ケイ素、窒化ホウ素、各種金属粉末等の粉末状無機充填剤;マイカ、タルク、ガラスフレーク等の板状充填剤等を例示することができ、これらを単独で用いてもいくつかを併用してもよい。
 これらの中でも、ガラス繊維、カーボン繊維、タルク又はマイカを用いるのが好ましい。特に、機械的物性及び耐熱性の点からガラス繊維を用いるのが好ましい。
 また、無機充填材は、その取扱い及び樹脂成分との密着性の見地から、必要ならばシランカップリング剤やチタネート化合物、イソシアネート化合物等の表面処理剤で表面処理を施したものを使用してもよい。その付着量は、無機充填材100質量部に対して0.01質量部以上とすることが好ましく、0.05質量部以上とすることがより好ましい。
 また本発明のポリアセタール樹脂組成物において、靭性や耐衝撃性を付与するためには、熱可塑性ポリウレタンを配合することが好ましい。このような熱可塑性ポリウレタンとしては、特に0.10質量%以下の残存イソシアネート量を含有し、3000質量ppm以下の含水率を有し、180℃において20万ポアズ以上の溶融粘度を示す熱可塑性ポリウレタンを用いることが好ましい。 
 さらにポリアセタール樹脂組成物には、R(COH)で表されるジカルボン酸、R(COX)又はR(COX)で表されるジカルボン酸ハライド、R(COOY)又はR(COOY)で表されるジカルボン酸エステル、あるいは、R-C(=O)-R、R-C(=O)-R、R=O、R=O、又は、ジヒドラジド化合物の片端のみとR-C(=O)-R、R-C(=O)-R、R=O、R=Oとを反応させて得られる反応生成物がさらに含まれていてもよい。
 また本発明は、上述したポリアセタール樹脂組成物を成形してなる樹脂成形品である。
 成形方法は、特に限定されるものではなく、成形方法としては、射出成形法、押出成形法などが用いられる。
 本発明のポリアセタール樹脂組成物は、例えばホルムアルデヒドの発生が十分に抑制されていることから、いわゆるシックハウス症候群対策として、自動車内装部品、家屋等の内装部品(熱水混合栓等)、衣料部品(ファスナー、ベルトバックル等)や建材用途(配管、ポンプ部品等)、機械部品(歯車等)などに有用である。
 以下、本発明について実施例及び比較例を挙げてより具体的に説明するが、本発明は下記実施例に限定されるものではない。
 実施例および比較例で使用した材料は下記の通りである。
 (A)ポリアセタール樹脂(POM)
 トリオキサンと1,3-ジオキソランとを、POM中の1,3-ジオキソランの含有率が4.2質量%となるように共重合して得られたアセタールコポリマーであって、メルトインデックス(ASTM-D1238規格:190℃、2.16kg)が10.5g/10分であるアセタールコポリマー
 (B)ジヒドラゾン化合物
B-1:1,12-ビス[2-(1-メチルエチリデン)ヒドラジノ]]-1,12-ドデカンジオン
B-2:1,12-ビス[2-(1-メチルプロピリデン)ヒドラジノ]-1,12-ドデカンジオン
B-3:1,12-ビス[2-(1-エチルプロピリデン)ヒドラジノ]-1,12-ドデカンジオン
B-4:1,12-ビス(2-シクロヘキシリデンヒドラジノ)-1,12-ドデカンジオン
B-5:1,12-ビス(2-エチリデンヒドラジノ)-1,12-ドデカンジオン
B-6:1,12-ビス(2-プロピリデンヒドラジノ)-1,12-ドデカンジオン
B-7:1,8-ビス[2-(1-メチルエチリデン)ヒドラジノ]-1,8-オクタンジオン
B-8:1,6-ビス[2-(1-メチルエチリデン)ヒドラジノ]-1,6-ヘキサンジオン
B-9:1,6-ビス[2-(1-メチルプロピリデン)ヒドラジノ]-1,6-ヘキサンジオン
B-10:1,3-ビス[2-(1-メチルエチリデン)ヒドラジノカルボニル]ベンゼン
B-11:1,18-ビス[2-(1-メチルエチリデン)ヒドラジノ)-1,18-オクタデカンジオン
B-12:1,4-ビス[2-(1-メチルエチリデン)ヒドラジノ)-1,4-シクロヘキサンジオン
B-13:1,12-ビス(2-メチリデンヒドラジノ)-1,12-ドデカンジオン
B-14:1,3-ビス(2-メチリデンヒドラジノカルボニル)ベンゼン
B-15:1,12-ビス[2-(1,3-ジメチルブチリデン)ヒドラジノ]-1,12-ドデカンジオン
B-16:1,12-ビス[2-(ジフェニルメチリデン)ヒドラジノ]-1,12-ドデカンジオン
B-17:1,12-ビス(2-ベンジリデンヒドラジノ)-1,12-ドデカンジオン
B-18:1,12-ビス(2-ネオペンチリデンヒドラジノ)-1,12-ドデカンジオン
B-19:1,6-ビス[2-(1,3-ジメチルブチリデン)ヒドラジノ]-1,6-ヘキサンジオン
B-20:1,4-ビス[2-(1-メチルエチリデン)ヒドラジノ)-1,4-ブタンジオン
B-21:1,22-ビス[2-(1-メチルエチリデン)ヒドラジノ)-1,22-ドコサンジオン
 (C)ヒドラジド化合物
C-1:1,12-ドデカン二酸ジヒドラジド
C-2:アジピン酸ジヒドラジド
C-3:イソフタル酸ジヒドラジド
C-4:ステアリン酸ヒドラジド
 なお、上記B-1は以下のようにして合成した。
 ガラス製反応器にドデカン二酸ジヒドラジド310.0g(1.2モル)、メタノール845.9gを仕込み、50℃に加熱した。そこにアセトン348.5g(6.0モル)を滴下して反応を行った。その後冷却して結晶を析出させ、濾別、水洗浄後、乾燥して305.0gのB-1(重量収率75.1%)を得た。
 またB-6については、原料としてアセトンを用いる代わりにプロピルアルデヒドを用いたこと以外はB-1と同様の方法で得た。
 B-2~B-5及びB-7~B-21については、原料としてのアセトン及びドデカン二酸ジヒドラジドをそれぞれ適宜変更したこと以外はB-1と同様の方法で得た。
 [ポリアセタール樹脂組成物の製造]
(実施例1~34及び比較例1~11)
 ポリアセタール樹脂(A)、ジヒドラゾン化合物(B)及びヒドラジド化合物(C)を表1~10に示す配合割合で、川田製作所社製スーパーミキサーを用いて均一に混合したのち、常法に従って2軸押出機(池貝鉄工社製PCM-30、スクリュー径30mm)を用いて、スクリュー回転数120rpm、シリンダー設定温度190℃の条件下で溶融混練したのち、ストランドに押出し、ペレタイザーにてカットすることでポリアセタール樹脂組成物のペレットを製造した。なお、表1~10において、配合量の単位は質量部である。
 [特性評価]
(1)ホルムアルデヒド発生の抑制効果
 ホルムアルデヒド発生の抑制効果については、ホルムアルデヒド発生量を測定し、そのホルムアルデヒド発生量に基づいて評価した。ホルムアルデヒド発生量については以下にようにして求めた。
<平板試験片の作製>
 まず日精樹脂工業社製射出成形機PS-40を用い、シリンダー温度215℃、金型温度80℃にて、実施例1~34及び比較例1~11で得られたポリアセタール樹脂組成物のペレットを射出成形し、100mm×40mm×2mmの平板試験片を作製した。
<ホルムアルデヒド発生量の測定>
 この平板試験片を作製した日の翌日に、この平板試験片につき、ドイツ自動車工業組合規格VDA275(自動車室内部品-改訂フラスコ法によるホルムアルデヒド放出量の定量)に記載された方法に準拠して、下記の方法によりホルムアルデヒド発生量(μg/g-POM)を測定した。
(i)まずポリエチレン容器中に蒸留水50mlを入れ、上記平板試験片を空中に吊るした状態で蓋を閉め、密閉状態で60℃にて3時間加熱した。
(ii)続いて室温で60分間放置した後、平板試験片を取り出した。
(iii)ポリエチレン容器内の蒸留水中に吸収されたホルムアルデヒド量を、UVスペクトロメーターにより、アセチルアセトン比色法で測定し、このホルムアルデヒド量を平板試験片中のPOMの質量で除した値をホルムアルデヒド発生量とした。結果を表1~10に示す。
なお、表1~10において、ホルムアルデヒド発生抑制効果に関する合否の基準は下記の通りとした。
ホルムアルデヒド発生量が2.5μg/g-POM以下  :合格
ホルムアルデヒド発生量が2.5μg/g-POM超   :不合格
 (2)金型汚染抑制効果
 金型汚染抑制効果については以下のようにして評価した。まず住友重機械工業社製ミニマットM8/7A成形機を用い、いわゆるしずく型金型を用いて、実施例1~34及び比較例1~11で得られたポリアセタール樹脂組成物のペレットを、成形温度200℃、金型温度80℃で3000ショット連続成形した。成形終了後、金型の内壁面の状態を肉眼で観察した。ここで、金型汚染抑制効果に関する基準は以下の通りとした。
 
A:金型付着物が全くなく、金型汚染抑制効果は極めて良好
B:金型付着物が殆ど少なく、金型汚染抑制効果は極めて良好
C:金型付着物が少しあるものの、金型汚染抑制効果は良好
D:金型付着物が多く、金型汚染抑制効果は不良
 
ここで、A~Cについては合格とし、Dについては不合格とした。結果を表1~10に示す。
 (3)機械特性
 機械特性については以下のようにして評価した。まず射出成形機(製品名:EC100S、東芝機械社製)を用い、上流から下流側に向かって配置される4つのシリンダーの各温度を、190℃、190℃、180℃、170℃に設定し、金型温度を90℃に設定して、実施例1~34及び比較例1~11で得られたポリアセタール樹脂組成物のペレットを射出成形し、ISO9988-2規格に規定される引張試験用試験片を作製した。そして、引張試験機(製品名:ストログラフAPII、東洋精機製作所社製)を用いて、ISO527規格に準拠した条件で、上記の引張試験用試験片について引張試験を行い、引張降伏強度を測定した。結果を表1~10に示す。表1~10において、機械特性の合否基準は以下の通りとした。
 
引張降伏強度が60MPa以上:合格
引張降伏強度が60MPa未満:不合格
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 
 表1~10に示すように、実施例1~34はすべて、ホルムアルデヒド発生抑制、金型汚染抑制及び機械特性の点で合格基準を満たすことが分かった。これに対し、比較例1~11は、ホルムアルデヒド発生抑制、金型汚染抑制又は機械特性の点で合格基準を満たさないことが分かった。
 従って、本発明のポリアセタール樹脂組成物によれば、ホルムアルデヒドの発生を十分に抑制でき、成形加工時の金型の汚染を十分に抑制できるとともに、優れた機械特性を成形品に付与できることが確認された。

Claims (8)

  1.  ポリアセタール樹脂(A)100質量部に対して、下記一般式(1)で表されるジヒドラゾン化合物(B1)及び下記一般式(2)で表されるジヒドラゾン化合物(B2)から選ばれる群より選択される少なくとも1種のジヒドラゾン化合物(B)が0.02~5質量部配合されているポリアセタール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R~Rはそれぞれ独立に、水素原子、又は炭素数1若しくは2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示し、R及びRのうち少なくとも一方は炭素数1又は2のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式中、Rは炭素数4~20の脂肪族炭化水素基、炭素数6~10の脂環式炭化水素基又は炭素数6~10の芳香族炭化水素基を示す。R及びRはそれぞれ独立に、炭素数3~12の脂環式炭化水素基を示す。)
  2.  前記一般式(1)において、Rが炭素数6~12の脂肪族炭化水素基である請求項1記載のポリアセタール樹脂組成物。
  3.  前記一般式(1)において、R及びRがエチル基である場合には、R及びRが水素原子であり、
     R及びRがメチル基である場合には、R及びRが水素原子又はメチル基である、請求項1又は2に記載のポリアセタール樹脂組成物。
  4.  前記ポリアセタール樹脂(A)100質量部に対して、前記ジヒドラゾン化合物(B)が0.05~3質量部配合されている請求項1~3のいずれか一項に記載のポリアセタール樹脂組成物。
  5.  前記ポリアセタール樹脂(A)100質量部に対して、ヒドラジド化合物(C)が0.01~1質量部の割合でさらに配合されている、請求項1~4のいずれか一項に記載のポリアセタール樹脂組成物。
  6.  前記ヒドラジド化合物(C)がモノヒドラジド化合物及びジヒドラジド化合物からなる群より少なくとも1種で構成される、請求項5に記載のポリアセタール樹脂組成物。
  7.  前記ヒドラジド化合物(C)がジヒドラジド化合物で構成される、請求項6に記載のポリアセタール樹脂組成物。
  8.  請求項1~7のいずれか一項に記載のポリアセタール樹脂組成物を成形してなる樹脂成形品。
PCT/JP2015/052092 2014-01-28 2015-01-27 ポリアセタール樹脂組成物および樹脂成形品 WO2015115386A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/112,450 US9850367B2 (en) 2014-01-28 2015-01-27 Polyacetal resin composition and resin molded article
EP15743411.9A EP3101067B1 (en) 2014-01-28 2015-01-27 Polyacetal resin composition, and resin molded article
CN201580004955.7A CN105916936B (zh) 2014-01-28 2015-01-27 聚缩醛树脂组合物和树脂成型品
JP2015559936A JP6541578B2 (ja) 2014-01-28 2015-01-27 ポリアセタール樹脂組成物および樹脂成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012893 2014-01-28
JP2014012893 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115386A1 true WO2015115386A1 (ja) 2015-08-06

Family

ID=53756959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052092 WO2015115386A1 (ja) 2014-01-28 2015-01-27 ポリアセタール樹脂組成物および樹脂成形品

Country Status (5)

Country Link
US (1) US9850367B2 (ja)
EP (1) EP3101067B1 (ja)
JP (1) JP6541578B2 (ja)
CN (1) CN105916936B (ja)
WO (1) WO2015115386A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175956A (ja) * 2015-03-18 2016-10-06 三菱エンジニアリングプラスチックス株式会社 撥菌材
JP2017025257A (ja) * 2015-07-27 2017-02-02 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物及びポリアセタール樹脂成形品
JP2017137386A (ja) * 2016-02-02 2017-08-10 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物及びそれを用いて得られる樹脂成形品
JP2017206665A (ja) * 2016-05-20 2017-11-24 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物、その製造方法及び樹脂成形品
JP2019006974A (ja) * 2017-06-20 2019-01-17 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物および成形品
JP7462495B2 (ja) 2020-07-08 2024-04-05 グローバルポリアセタール株式会社 樹脂組成物および成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056334A1 (en) * 2017-09-25 2019-03-28 Dow Global Technologies Llc AQUEOUS POLYMER COMPOSITION
CN113166524B (zh) * 2018-07-26 2024-06-18 杜邦聚合物公司 金属-聚缩醛组合件
CN113652054A (zh) * 2020-05-12 2021-11-16 旭化成株式会社 聚缩醛树脂组合物
JP7078687B2 (ja) * 2020-10-09 2022-05-31 ポリプラスチックス株式会社 ポリアセタール樹脂組成物及び自動車部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137785A (ja) * 2003-11-10 2005-06-02 Polyplastics Co アルデヒド抑制剤組成物およびポリアセタール樹脂組成物
JP2005325225A (ja) * 2004-05-14 2005-11-24 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物およびそれからなる成形品
JP2005336304A (ja) * 2004-05-26 2005-12-08 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物およびそれからなる成形品
JP2007070574A (ja) 2005-09-09 2007-03-22 Polyplastics Co ポリアセタール樹脂組成物及び成形品
JP2009084369A (ja) * 2007-09-28 2009-04-23 Adeka Corp 合成樹脂組成物
JP2014501827A (ja) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン ヒドラジド、ヒドラゾン又はポリアミンを含む天然ゴム及びカーボンブラックをベースとする組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616102B2 (ja) * 2010-04-08 2014-10-29 旭化成ケミカルズ株式会社 自動車内装・機構部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137785A (ja) * 2003-11-10 2005-06-02 Polyplastics Co アルデヒド抑制剤組成物およびポリアセタール樹脂組成物
JP2005325225A (ja) * 2004-05-14 2005-11-24 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物およびそれからなる成形品
JP2005336304A (ja) * 2004-05-26 2005-12-08 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物およびそれからなる成形品
JP2007070574A (ja) 2005-09-09 2007-03-22 Polyplastics Co ポリアセタール樹脂組成物及び成形品
JP2009084369A (ja) * 2007-09-28 2009-04-23 Adeka Corp 合成樹脂組成物
JP2014501827A (ja) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン ヒドラジド、ヒドラゾン又はポリアミンを含む天然ゴム及びカーボンブラックをベースとする組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175956A (ja) * 2015-03-18 2016-10-06 三菱エンジニアリングプラスチックス株式会社 撥菌材
JP2017025257A (ja) * 2015-07-27 2017-02-02 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物及びポリアセタール樹脂成形品
WO2017018210A1 (ja) * 2015-07-27 2017-02-02 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物及びポリアセタール樹脂成形品
JP2017137386A (ja) * 2016-02-02 2017-08-10 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物及びそれを用いて得られる樹脂成形品
JP2017206665A (ja) * 2016-05-20 2017-11-24 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物、その製造方法及び樹脂成形品
JP2019006974A (ja) * 2017-06-20 2019-01-17 三菱エンジニアリングプラスチックス株式会社 ポリアセタール樹脂組成物および成形品
JP7462495B2 (ja) 2020-07-08 2024-04-05 グローバルポリアセタール株式会社 樹脂組成物および成形品

Also Published As

Publication number Publication date
JP6541578B2 (ja) 2019-07-10
JPWO2015115386A1 (ja) 2017-03-23
EP3101067A4 (en) 2017-09-06
US20160333170A1 (en) 2016-11-17
US9850367B2 (en) 2017-12-26
EP3101067B1 (en) 2018-05-16
EP3101067A1 (en) 2016-12-07
CN105916936A (zh) 2016-08-31
CN105916936B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6541578B2 (ja) ポリアセタール樹脂組成物および樹脂成形品
US10131782B2 (en) Polyoxymethylene compositions, method of manufacture, and articles made therefrom
JP6062614B2 (ja) ポリアセタール樹脂組成物
EP3330317B1 (en) Polyacetal resin composition and polyacetal resin molded article
JP5752986B2 (ja) ポリアセタール樹脂組成物及びそれからなる成形品
JP5661437B2 (ja) ポリアセタール樹脂組成物
JP2012233131A (ja) ポリアセタール樹脂組成物及びそれからなる成形品
JP2012092185A (ja) ポリアセタール樹脂組成物及びそれからなる成形品
JP5936335B2 (ja) ポリアセタール樹脂組成物
CN108026352B (zh) 聚缩醛树脂组合物及其成型体
JP2007145979A (ja) ポリアセタール樹脂組成物及び成形品
JP5890754B2 (ja) ポリアセタール樹脂組成物
JP4845174B2 (ja) ポリアセタール樹脂組成物およびそれを含む樹脂成形品
JP2013028737A (ja) ポリオキシメチレン樹脂組成物及びそれからなる成形品
JP2005162909A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
JP2013100393A (ja) ポリアセタール樹脂組成物
JP2005263921A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
JP2012107150A (ja) ポリアセタール樹脂組成物及びそれからなる成形品
JP2014005385A (ja) ポリアセタール樹脂組成物
JP2006045331A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
JP2005171158A (ja) ポリアセタール樹脂組成物及びそれからなる成形品
JP2017137386A (ja) ポリアセタール樹脂組成物及びそれを用いて得られる樹脂成形品
JP2013103958A (ja) ポリアセタール樹脂組成物
JP2006045333A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
JP2005179593A (ja) ポリアセタール樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112450

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015743411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743411

Country of ref document: EP