WO2015107864A1 - Stud pin and pneumatic tire - Google Patents

Stud pin and pneumatic tire Download PDF

Info

Publication number
WO2015107864A1
WO2015107864A1 PCT/JP2014/084728 JP2014084728W WO2015107864A1 WO 2015107864 A1 WO2015107864 A1 WO 2015107864A1 JP 2014084728 W JP2014084728 W JP 2014084728W WO 2015107864 A1 WO2015107864 A1 WO 2015107864A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
stud pin
tire
tread
end surface
Prior art date
Application number
PCT/JP2014/084728
Other languages
French (fr)
Japanese (ja)
Inventor
広樹 遠藤
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2015107864A1 publication Critical patent/WO2015107864A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1675Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile with special shape of the plug- tip
    • B60C11/1681Spherical top portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1643Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile with special shape of the plug-body portion, i.e. not cylindrical

Definitions

  • the present invention relates to a stud pin attached to a tread portion of a pneumatic tire and a pneumatic tire equipped with the stud pin.
  • a stud pin is attached to a tread portion of the tire so that a grip can be obtained on a road surface on ice.
  • a stud pin is embedded in a stud pin mounting hole provided in a tread portion.
  • the stud pin is tightly embedded in the stud pin mounting hole by inserting the stud pin into the stud pin mounting hole with the hole diameter expanded, and the tire pin is rolling This prevents the stud pin from falling out of the stud pin mounting hole due to braking / driving force or lateral force received from the road surface.
  • a tire spike (stud pin) described in Patent Document 1 is known as a stud pin.
  • the stud pin includes an embedded base and a tip that protrudes from one end surface of the embedded base.
  • the embedded base is fitted into a stud pin mounting hole formed in the tread surface of the tire so that the tip portion protrudes from the tread surface.
  • the stud pin has a high grip force by the edge of the tip contacting the icy road surface and exerting the edge effect. For this reason, the edge effect increases as the edge of the tip portion increases. However, there is a limit to increasing the edge of the tip.
  • the portion other than the tip portion of the stud pin, that is, the embedded base portion has not conventionally had a portion that exhibits an edge effect due to contact with the road surface.
  • an object of the present invention is to provide a stud pin and a pneumatic tire capable of improving the performance on ice by enhancing the edge effect by the embedded base portion of the stud pin.
  • the stud pin is A stud pin mounted in a stud pin mounting hole in a tread portion of a pneumatic tire, An embedded base portion having a tip surface exposed to a tread surface of the tread portion when embedded in the tread portion of the pneumatic tire; A tip part made of a material harder than the embedded base, attached to the center part of the tip face, and a part protruding from the tip face and contacting the road surface, Have The tip surface is provided with a protrusion having a protruding height from the tip surface that is lower than the tip portion and spaced from the tip portion.
  • the tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion. It is preferable.
  • 0.5 ⁇ L1 / L ⁇ 1 where L is the radius of the largest inscribed circle inscribed in the tip surface and L1 is the distance between the tip and the convex portion.
  • the tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion.
  • 0.5 ⁇ L2 / L ⁇ 1 where L is the radius of the largest inscribed circle inscribed in the tip surface and L2 is the shortest distance between the plurality of convex portions.
  • H is the protruding height of the tip from the tip surface
  • H1 is the protruding height of the convex from the tip surface. preferable.
  • the convex portion has a bent portion that is convex outward in the radial direction of the embedded base portion at the distal end surface.
  • the convex portion extends in a direction perpendicular to the radial direction of the embedded base at the tip surface.
  • the convex portion is provided in an annular shape with the tip portion as a center.
  • the tip surface preferably has 3 to 6 convex portions.
  • Another aspect of the present invention is a pneumatic tire in which the stud pin is mounted in a stud pin mounting hole in a tread portion of the pneumatic tire.
  • the edge effect by the convex part provided in the buried base part of the stud pin can be enhanced, and the performance on ice can be enhanced.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5. It is a top view which shows the shape of 50 C of stud pins.
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7. It is an external appearance perspective view of stud pin 50D of the 2nd Embodiment of this invention.
  • FIG. 1 is a tire cross-sectional view showing a cross section of a pneumatic tire (hereinafter referred to as a tire) 10 of the present embodiment.
  • the tire 10 is, for example, a passenger car tire.
  • Passenger car tires are tires defined in Chapter A of JATMA YEAR BOOK 2012 (Japan Automobile Tire Association Standard).
  • the present invention can also be applied to small truck tires defined in Chapter B and truck and bus tires defined in Chapter C.
  • the numerical value of the dimension of each pattern element specifically explained below is a numerical example in the tire for passenger cars, and the pneumatic retirement according to the present invention is not limited to these numerical examples.
  • the tire circumferential direction described below refers to the direction of rotation of the tread surface (both rotation directions) when the tire 10 is rotated about the tire rotation axis, and the tire radial direction refers to the tire rotation axis.
  • the radial direction extending orthogonally refers to the tire radial direction outer side, which is the side away from the tire rotation axis in the tire radial direction.
  • the tire width direction means a direction parallel to the tire rotation axis direction, and the tire width direction outside means both sides of the tire 10 away from the tire center line CL.
  • the tire 10 has a pair of bead cores 11, a carcass ply layer 12, and a belt layer 14 as a skeleton material, and a tread rubber member 18, a side rubber member 20, and a bead filler rubber around these skeleton materials. It mainly includes a member 22, a rim cushion rubber member 24, and an inner liner rubber member 26.
  • the pair of bead cores 11 has an annular shape, and is disposed at both ends in the tire width direction and at inner ends in the tire radial direction.
  • the carcass ply layer 12 is composed of one or a plurality of carcass ply materials 12a and 12b in which organic fibers are covered with rubber.
  • the carcass ply materials 12 a and 12 b are formed in a toroidal shape by being wound between a pair of bead cores 11.
  • the belt layer 14 includes a plurality of belt members 14 a and 14 b and is wound around the outer side of the carcass ply layer 12 in the tire radial direction in the tire circumferential direction.
  • the width in the tire width direction of the belt material 14a on the inner side in the tire radial direction is wider than the width of the belt material 14b on the outer side in the tire radial direction.
  • the belt members 14a and 14b are members in which a steel cord is covered with rubber.
  • the steel cord of the belt material 14a and the steel cord of the belt material 14b are arranged to be inclined at a predetermined angle, for example, 20 to 30 degrees with respect to the tire circumferential direction.
  • the steel cord of the belt material 14a and the steel cord of the belt material 14b are inclined in directions opposite to each other with respect to the tire circumferential direction and cross each other.
  • the belt layer 14 suppresses the expansion of the carcass ply layer 12 due to the filled air pressure.
  • a tread rubber member 18 is provided on the outer side of the belt layer 14 in the tire radial direction. Side rubber members 20 are connected to both ends of the tread rubber member 18.
  • the tread rubber member 18 includes a two-layer rubber member including an upper layer tread rubber member 18a provided on the outer side in the tire radial direction and a lower layer tread rubber member 18b provided on the inner side in the tire radial direction.
  • the upper layer tread rubber member 18a is provided with circumferential grooves, lug grooves, and stud pin mounting holes 40.
  • a rim cushion rubber member 24 is provided at the inner end in the tire radial direction of the side rubber member 20.
  • the rim cushion rubber member 24 comes into contact with a rim on which the tire 10 is mounted.
  • a bead filler rubber member 22 is provided outside the bead core 11 in the tire radial direction so as to be sandwiched between carcass ply layers 12 wound around the bead core 11.
  • An inner liner rubber member 26 is provided on the inner surface of the tire 10 facing the tire cavity region filled with air surrounded by the tire 10 and the rim.
  • the tire 10 includes a belt cover layer 28 that covers the outer surface of the belt layer 14 in the tire radial direction.
  • the belt cover layer 28 is made of organic fibers and rubber that covers the organic fibers.
  • the tire 10 has the tire structure shown in FIG. 1, the tire structure of the pneumatic tire of the present invention is not limited to this.
  • FIG. 2 is an external perspective view of the stud pin 50A according to the first embodiment of the present invention.
  • FIG. 3 is a side view of the stud pin 50A mounted in the stud pin mounting hole 40 provided in the tread rubber member 18 of the tread portion T.
  • the stud pin 50A mainly has an embedded base 52A and a tip 60.
  • the embedded base 52A is embedded in the tost stud pin mounting hole 40 of the pneumatic tire to be mounted. When the embedded base 52A is pressed against the tread rubber member 18 from the side surface of the stud pin mounting hole 40, the stud pin 50A is fixed to the tread portion.
  • the stud pin 50 ⁇ / b> A has an embedded base 52 ⁇ / b> A and a distal end 60, and the embedded base 52 ⁇ / b> A and the distal end 60 are formed in this order along the direction X.
  • the direction X is an extending direction extending toward the distal end portion 60 of the embedded base 52A, and coincides with the normal direction of the tread portion with respect to the tread surface when the stud pin 50A is mounted in the stud pin mounting hole 40.
  • the embedded base 52A has a bottom portion 54A, a shank portion 56A, and a trunk portion 58A.
  • the bottom portion 54A, the shank portion 56A, and the trunk portion 58A are formed in this order along the direction X.
  • the bottom 54A is located at the end opposite to the tip 60.
  • the bottom portion 54A has a flange shape and prevents the stud pin 50A from rotating in the stud pin mounting hole 40 due to the force received from the road surface.
  • the shank part 56A is a part that connects the body part 58A and the bottom part 54A.
  • the shank portion 56A has a truncated cone shape, and the diameter of the shank portion 56A is smaller than the maximum outer diameter of the bottom portion 54A and the body portion 58A. For this reason, the shank part 56A forms a recess with respect to the body part 58A and the bottom part 54A, and the bottom part 54A and the body part 58A form a flange shape.
  • the body portion 58A has a cylindrical shape, and is a flange-like portion connected between the shank portion 56A and the tip portion 60 and connected to the tip portion 60.
  • the body portion 58A is embedded in the tread rubber member 18 so that the front end surface 58a and the tread surface are substantially flush with each other so that the front end surface 58a is exposed to the tread surface when mounted on the tire 10.
  • the front end surface 58a of the body portion 58A is provided with a front end portion 60 at the center, and one or a plurality of convex portions 59A are provided on the outer peripheral portion of the front end surface 58a apart from the front end portion 60. 2 and 3, a plurality of convex portions 59A are provided.
  • the tip portion 60 is a portion that protrudes from the tread surface together with the convex portion 59 ⁇ / b> A while being attached to the tread portion, contacts the road surface, and scratches ice.
  • the distal end portion 60 is a portion protruding in a columnar shape from the central portion of the distal end surface 58a of the embedded base portion 52A.
  • the tip of the tip 60 (the end on the direction X side) forms a tip surface 60a perpendicular to the extending direction (direction X) of the embedded base 52A.
  • the tip 60 may be made of the same metal material as the embedded base 52A, or may be made of a different metal material.
  • the embedded base 52A and the tip 60 may be made of aluminum.
  • the embedded base 52A may be made of aluminum and the tip 60 may be made of tungsten.
  • the distal end portion 60 is driven and fitted into a hole (not shown) formed in the distal end surface 58a of the body portion 58A of the embedded base 52A.
  • the distal end portion 60 can be fixed to the embedded base portion 52A.
  • the convex portion 59 ⁇ / b> A is a portion that protrudes from the tread surface together with the tip portion 60 in a state of being attached to the tread portion, contacts the road surface, or scratches ice.
  • the convex portion 59A is integrally formed with the embedded base 52A using the same metal material as that of the embedded base 52A.
  • the front end surface 58a of the body portion 58A of the embedded base 52A is a smooth surface except for the portion where the front end portion 60 and the convex portion 59A are provided.
  • the smooth surface means that the surface is formed smoothly by buffing or the like, for example, a flat surface in which chips are not left by cutting or the like, and no intentional irregularities are formed by knurling or the like. Includes a plane.
  • FIG. 4A is a plan view showing the tip surface 60a. As shown in FIG. 4A, the plurality of convex portions 59A are spaced apart from the distal end portion 60 and are spaced from each other along the outer periphery of the distal end surface 60a.
  • the distance between the protrusion 59A and the tip 60 is sufficiently large so that the protrusion 59A contacts the road surface independently of the tip 60 or scratches ice.
  • the radius of the largest inscribed circle inscribed in the front end surface 58a of the body portion 58A (the radius when the front end surface 58a is circular) is L, and the distance between the convex portion 59A and the front end portion 60 is L1. In this case, it is preferable that 0.5 ⁇ L1 / L ⁇ 1.
  • the distance between the convex portions 59A is sufficiently large in order for the plurality of convex portions 59A to independently contact the road surface or to scratch ice.
  • the shortest distance between the convex portions 59A is L2
  • L2 / L ⁇ 0.5 the distance L2 between the convex portions 59A is too small, and the sum of the edge effects by the plurality of convex portions 59A is not sufficiently large.
  • the distance L2 between the plurality of convex portions 59A is too large, so the length or number of the convex portions 59A is small, and the sum of the edge effects is not sufficiently large.
  • the number of convex portions 59A is not limited to four and is arbitrary.
  • the three convex portions 59A may be spaced apart from the tip portion 60 and spaced from each other along the outer periphery of the tip surface 60a. Further, as shown in FIG.
  • the six convex portions 59A may be provided apart from the tip portion 60 and spaced from each other along the outer periphery of the tip surface 60a.
  • the number of protrusions 59A is preferably 3 to 6. 2 to 4C, the convex portion 59A has a rectangular parallelepiped shape whose longitudinal direction is a direction orthogonal to the radial direction of the front end surface 58a of the body portion 58A.
  • the direction is arbitrary, and the protrusion portion 59A The longitudinal direction may be directed in the radial direction of the distal end surface 58a.
  • H is the protruding height of the front end portion 60 from the front end surface 58a of the body portion 58A and H1 is the protruding height of the convex portion 59A from the front end surface 58a
  • 0.2 ⁇ H1 It is preferable that /H ⁇ 0.8. If H1 / H is smaller than 0.2, the edge effect of the convex portion 59A cannot be sufficiently obtained. On the other hand, if H1 / H is larger than 0.8, the edge effect by the tip 60 is reduced. More preferably, 0.4 ⁇ H1 / H ⁇ 0.6.
  • the area of the front end surface 58a is S and the sum of the area occupying the front end surface 58a of the convex portion 59A in a plan view (FIG. 4) of the front end surface 58a is S1, 0.1 ⁇ S1 / S ⁇ 0. 6 is preferable.
  • S1 / S is smaller than 0.1, the contour length of the convex portion 59A is not sufficiently large, and the edge effect by the convex portion 59A cannot be sufficiently obtained.
  • S1 / S is larger than 0.6, the edge effect by the front-end
  • the edge effect by the convex portion 59A can be obtained in addition to the edge effect by the tip portion 60, so that the edge effect of the stud pin 50A can be enhanced. Can improve the performance on ice.
  • ⁇ Modification 1> In the above embodiment, the case of using the rectangular parallelepiped convex portion 59A has been described, but the present invention is not limited to this.
  • a convex portion 59B having a bent portion that protrudes radially outward of the front end surface 58a of the body portion 58A is provided in the plan view of the front end surface 58a of the body portion 58B of the stud pin 50B.
  • the convex portion 59B may have an arc shape that is convex outward in the radial direction of the front end surface 58a (outside with respect to the front end portion 60).
  • the convex portion 59B By making the convex portion 59B have an arc shape, edge components in various directions can be obtained. For example, in the shape of the convex portion 59A in FIG. 2, there are many edge components in the longitudinal direction, but there are few other edge components in the oblique direction. On the other hand, in this modification, since the convex portion 59B has an arc shape, an edge component is obtained in a balanced manner in all directions, and an edge effect is obtained in a balanced manner in various sliding directions. In order to obtain a balanced edge effect, it is preferable that the radius of curvature of the arc shape of the convex portion 59B is smaller than the distance L1 between the convex portion 59B and the tip portion 60.
  • the upper end surface of the convex portion 59B does not have to be flat, and in order to obtain an edge effect, the protruding height of the convex portion 59B from the front end surface 58a is on the radially outer side of the front end surface 58a. Preferably, it is higher than the inner side in the radial direction. Also in this modification, since the edge effect by the convex part 59B is obtained in addition to the edge effect by the tip part 60, the edge effect of the stud pin 50B can be enhanced and the performance on ice can be enhanced.
  • a convex portion 59 ⁇ / b> C may be provided in an annular shape centering on the tip portion 60 in the plan view of the tip surface 58 a of the body portion 58 ⁇ / b> C of the stud pin 50 ⁇ / b> C.
  • 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. As shown in FIG.
  • the upper end surface of the convex portion 59C does not have to be flat, and the protrusion height of the convex portion 59B from the front end surface 58a is the radially outer end at the central portion in the radial direction of the front end surface 58a. And may be higher than the radially inner end. Also in this modification, since the edge effect by the convex part 59C is obtained in addition to the edge effect by the tip part 60, the edge effect of the stud pin 50C can be enhanced and the performance on ice can be enhanced.
  • FIG. 9 is a perspective view of a stud pin 50D according to the second embodiment of the present invention.
  • the shape of the tip portion 60 is the same as that of the stud pin 50A of the first embodiment, but the shape of the embedded base 52D is different.
  • the embedded base portion 52D of the stud pin 50D shown in FIG. 9 has a bottom portion 54D, a shank portion 56D, and a body portion 58D.
  • the bottom portion 54D, the shank portion 56D, and the body portion 58D are arranged along the direction X. It is formed in order.
  • a recess 54a is formed on the outer peripheral side surface of the bottom portion 54D that contacts the side surface of the stud pin mounting hole 40.
  • the cross section of the bottom portion 54D has a substantially quadrangular shape with rounded corners, and four concave portions 54a are formed by recessing four sides of the substantially quadrangular shape.
  • the cross section of the bottom portion 54D may not be a substantially quadrangular shape with rounded corners, but may be a substantially polygonal shape such as a substantially triangular shape, a pentagonal shape, or a hexagonal shape. Since the bottom portion 54D has a substantially polygonal shape, the rotational movement of the stud pin 50D around the direction X is suppressed.
  • the concave portion 54a is formed by recessing at least one side of the substantially polygonal shape.
  • a plurality of recesses 54a may be formed by recessing the sides of some or all sides of the substantially polygonal shape, that is, 2 sides, 3 sides, 4 sides, 5 sides, 6 sides, and the like.
  • the shank part 56D is a part that connects the body part 58D and the bottom part 54D.
  • the shank portion 56D has a cylindrical shape, and the diameter of the shank portion 56D is smaller than the maximum outer diameter of the bottom portion 54D and the body portion 58D. For this reason, the shank part 56D forms a recess with respect to the body part 58D and the bottom part 54D, and the bottom part 54D and the body part 58D form a flange shape. No concave portion is formed on the outer peripheral side surface of the shank portion 56D.
  • the body portion 58D is a flange-like portion that is located between the shank portion 56D and the tip portion 60D and connected to the tip portion 60D.
  • a concave portion 58a is formed on the outer peripheral side surface pressed from the side surface of the stud pin mounting hole of the body portion 58D. Since this outer peripheral side surface is pressed in contact with the tread rubber member 18 of the tread portion, the movement of the stud pin 50D is restrained by the frictional force.
  • the cross section perpendicular to the direction X of the body portion 58D has a substantially quadrangular shape with rounded corners, and four concave portions 58a are formed with four sides recessed.
  • the cross section of the body portion 58D may not be a substantially rectangular shape with rounded corners, but may be a substantially polygonal shape such as a substantially triangular shape, a pentagonal shape, or a hexagonal shape. Since the body portion 58D has a substantially polygonal shape, the rotational movement of the stud pin 50D around the direction X is suppressed. In addition, by rounding the corner, it is possible to prevent the side surface of the stud pin mounting hole from being damaged by the sharp corner of the body portion 58D of the stud pin 50D.
  • the recess 58a is formed by recessing at least one side of the substantially polygonal shape.
  • a plurality of recesses 58a may be formed by recessing the sides of some or all sides of the substantially polygonal shape, that is, 2 sides, 3 sides, 4 sides, 5 sides, 6 sides, and the like.
  • the tread rubber member 18 enters the recess 58a, the rotational movement of the stud pin 50D around the direction X is suppressed.
  • the body portion 58D is embedded in the tread rubber member 18 so that the front end surface 58a and the tread surface are substantially flush with each other so that the front end surface 58a is exposed to the tread surface when mounted on the tire 10.
  • a convex portion 59D having the same shape as the convex portion 59A of the first embodiment is provided on the distal end surface 58a of the body portion 58D. Also in this embodiment, since the edge effect by the convex portion 59D is obtained in addition to the edge effect by the tip portion 60, similarly to the stud pin 50A according to the first embodiment, the edge effect of the stud pin 50D is enhanced. Can improve performance on ice. Moreover, the rotational movement centering on the direction X of the embedded base 52D can be suppressed, and the removal of the stud pin 50D from the tread portion can be reduced.
  • the shape of the convex part 59D was made the same as that of the convex part 59A of 1st Embodiment, this invention is not limited to this.
  • convex portions having the same shape as the convex portions 59B and 59C shown in FIGS. 5 to 8 may be provided on the front end surface 58a of the body portion 58D.
  • a stud pin similar to the stud pin 60A shown in FIGS. 2 to 4A was attached to a tire similar to the tire 10 shown in FIG.
  • the tire size of the tire was 195 / 65R15.
  • the ratio L1 / L of the radius L of the front end surface of the body portion to the distance L1 between the convex portion and the front end portion was set to 0.4, 0.5, and 0.9.
  • the ratio H1 / H of the projection height H from the tip surface of the tip portion to the projection height H1 from the tip surface of the convex portion was 0.5.
  • the ratio S1 / S of the area S of the tip surface to the total sum S1 of the areas of the tip surface of the convex portions was 0.15.
  • H1 / H was set to 0.1, 0.2, 0.8, or 0.9.
  • L1 / L was set to 0.9 for all, and S1 / S was set to 0.15 for all.
  • S1 / S was set to 0.1, 0.6, or 0.7.
  • L1 / L was set to 0.9 for all, and H1 / H was set to 0.5 for all.
  • a stud pin similar to that of the example was attached to the tire similar to the tire 10 shown in FIG. 1 except that the convex portion was not provided on the front end surface of the body portion.
  • the tire size of the tire was 205 / 55R16.
  • the tires of the above examples and conventional examples were mounted on a passenger car, and the braking performance on ice was evaluated.
  • a passenger car a front-wheel-drive sedan type passenger car having a displacement of 2000 cc was used.
  • the tire internal pressure condition was 230 (kPa) for both the front and rear wheels.
  • the load conditions for each tire were 450 kg weight for the front wheel load and 300 kg weight for the rear wheel load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

The present invention increases performance on ice by increasing an edging effect exhibited by a stud-pin embedded base section. This stud pin has: an embedded base section having a tip-end surface exposed on a tread section when embedded inside the tread section of a pneumatic tire; and a tip-end section comprising a material which is harder than the embedded-base section, attached to the center section of the tip-end surface, and having a section thereof which contacts the road surface by projecting from the tip-end surface. Furthermore, a convexity which projects from the tip-end surface to a lower height than does the tip-end section is provided on the tip-end surface of the embedded-base section at a distance from the tip-end section.

Description

スタッドピン及び空気入りタイヤStud pin and pneumatic tire
 本発明は、空気入りタイヤのトレッド部に装着されるスタッドピン及びこのスタッドピンを装着した空気入りタイヤに関する。 The present invention relates to a stud pin attached to a tread portion of a pneumatic tire and a pneumatic tire equipped with the stud pin.
 従来、氷雪路用タイヤでは、タイヤのトレッド部にスタッドピンが装着され、氷上路面においてグリップが得られるようになっている。
 一般に、スタッドピンは、トレッド部に設けられたスタッドピン取付用孔に埋め込まれる。スタッドピン取付用孔にスタッドピンを埋め込むとき、孔径を拡張した状態のスタッドピン取付用孔にスタッドピンを挿入することで、スタッドピンがスタッドピン取付用孔にきつく埋め込まれ、タイヤ転動中に路面から受ける制駆動力や横力によるスタッドピンのスタッドピン取付用孔からの抜け落ちを防いでいる。
Conventionally, in a snowy road tire, a stud pin is attached to a tread portion of the tire so that a grip can be obtained on a road surface on ice.
Generally, a stud pin is embedded in a stud pin mounting hole provided in a tread portion. When the stud pin is embedded in the stud pin mounting hole, the stud pin is tightly embedded in the stud pin mounting hole by inserting the stud pin into the stud pin mounting hole with the hole diameter expanded, and the tire pin is rolling This prevents the stud pin from falling out of the stud pin mounting hole due to braking / driving force or lateral force received from the road surface.
 スタッドピンとして、例えば特許文献1に記載のタイヤ用スパイク(スタッドピン)が知られている。このスタッドピンは、埋設基部と、埋設基部の一端面より突出する先端部とを備える。埋設基部はタイヤのトレッド面に形成されたスタッドピン取付用孔に、先端部がトレッド面から突出するように嵌め込まれる。 For example, a tire spike (stud pin) described in Patent Document 1 is known as a stud pin. The stud pin includes an embedded base and a tip that protrudes from one end surface of the embedded base. The embedded base is fitted into a stud pin mounting hole formed in the tread surface of the tire so that the tip portion protrudes from the tread surface.
国際公開第2012/117962号International Publication No. 2012/117862
 スタッドピンは先端部のエッジが氷路面と接触し、エッジ効果を発揮することで高いグリップ力を発揮する。このため、先端部のエッジが多いほど、エッジ効果が高まる。しかし、先端部のエッジを増やすのには限界がある。一方、スタッドピンの先端部以外の部分、つまり埋設基部には、従来、路面との接触によるエッジ効果を発揮する部分がなかった。 The stud pin has a high grip force by the edge of the tip contacting the icy road surface and exerting the edge effect. For this reason, the edge effect increases as the edge of the tip portion increases. However, there is a limit to increasing the edge of the tip. On the other hand, the portion other than the tip portion of the stud pin, that is, the embedded base portion, has not conventionally had a portion that exhibits an edge effect due to contact with the road surface.
 そこで、本発明は、スタッドピンの埋設基部によるエッジ効果を高めることで、氷上性能を高めることができるスタッドピンおよび空気入りタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a stud pin and a pneumatic tire capable of improving the performance on ice by enhancing the edge effect by the embedded base portion of the stud pin.
 本発明の一態様は、空気入りタイヤのトレッド部のスタッドピン取付用孔に装着されるスタッドピンである。当該スタッドピンは、
 空気入りタイヤのトレッド部のスタッドピン取付用孔に装着されるスタッドピンであって、
 空気入りタイヤのトレッド部内に埋設されたときにトレッド部の踏面に露出される先端面を有する埋設基部と、
 前記埋設基部よりも硬質の材料からなり、前記先端面の中央部に取り付けられて一部が前記先端面から突出して路面と接触する先端部と、
を有し、
 前記先端面には、前記先端面からの突出高さが前記先端部よりも低い凸部が前記先端部と離間して設けられている。
One aspect of the present invention is a stud pin mounted in a stud pin mounting hole in a tread portion of a pneumatic tire. The stud pin is
A stud pin mounted in a stud pin mounting hole in a tread portion of a pneumatic tire,
An embedded base portion having a tip surface exposed to a tread surface of the tread portion when embedded in the tread portion of the pneumatic tire;
A tip part made of a material harder than the embedded base, attached to the center part of the tip face, and a part protruding from the tip face and contacting the road surface,
Have
The tip surface is provided with a protrusion having a protruding height from the tip surface that is lower than the tip portion and spaced from the tip portion.
 前記先端面には、前記先端面からの突出高さが前記先端部よりも低い複数の凸部が、前記先端部と離間し、かつ、前記先端部の外周方向に互いに間隔を空けて設けられている、ことが好ましい。 The tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion. It is preferable.
 前記先端面に内接する最大の内接円の半径をL、前記先端部と前記凸部との距離をL1としたとき、0.5≦L1/L<1である、ことが好ましい。
 前記先端面には、前記先端面からの突出高さが前記先端部よりも低い複数の凸部が、前記先端部と離間し、かつ、前記先端部の外周方向に互いに間隔を空けて設けられており、
 前記先端面に内接する最大の内接円の半径をL、前記複数の凸部同士の最短距離をL2としたとき、0.5≦L2/L<1である、ことが好ましい。
It is preferable that 0.5 ≦ L1 / L <1 where L is the radius of the largest inscribed circle inscribed in the tip surface and L1 is the distance between the tip and the convex portion.
The tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion. And
It is preferable that 0.5 ≦ L2 / L <1 where L is the radius of the largest inscribed circle inscribed in the tip surface and L2 is the shortest distance between the plurality of convex portions.
 前記先端部の前記先端面からの突出高さをHとし、前記凸部の前記先端面からの突出高さをH1としたとき、0.2≦H1/H≦0.8である、ことが好ましい。 0.2 ≦ H1 / H ≦ 0.8, where H is the protruding height of the tip from the tip surface, and H1 is the protruding height of the convex from the tip surface. preferable.
 前記先端面の面積をSとし、前記凸部の前記先端面を占める面積の総和をS1としたとき、0.1≦S1/S≦0.6である、ことが好ましい。 It is preferable that 0.1 ≦ S1 / S ≦ 0.6, where S is the area of the tip surface and S1 is the total area of the convex portion occupying the tip surface.
 前記凸部は、前記先端面において前記埋設基部の半径方向外側に凸となる屈曲部を有する、ことが好ましい。 It is preferable that the convex portion has a bent portion that is convex outward in the radial direction of the embedded base portion at the distal end surface.
 前記凸部は、前記先端面において前記埋設基部の半径方向と直交する方向に延在する、ことが好ましい。 It is preferable that the convex portion extends in a direction perpendicular to the radial direction of the embedded base at the tip surface.
 前記凸部は、前記先端部を中心として環状に設けられている、ことが好ましい。
 前記先端面は、3~6個の前記凸部を有することが好ましい。
It is preferable that the convex portion is provided in an annular shape with the tip portion as a center.
The tip surface preferably has 3 to 6 convex portions.
 本発明の他の態様は、上記のスタッドピンを、空気入りタイヤのトレッド部のスタッドピン取付用孔に装着した空気入りタイヤである。 Another aspect of the present invention is a pneumatic tire in which the stud pin is mounted in a stud pin mounting hole in a tread portion of the pneumatic tire.
 上述の態様によれば、スタッドピンの埋設基部に設けた凸部によるエッジ効果を高めることができ、氷上性能を高めることができる。 According to the above-mentioned aspect, the edge effect by the convex part provided in the buried base part of the stud pin can be enhanced, and the performance on ice can be enhanced.
本実施形態の空気入りタイヤの断面を示すタイヤ断面図である。It is a tire sectional view showing the section of the pneumatic tire of this embodiment. 本発明の第1の実施形態のスタッドピン50Aの外観斜視図である。It is an external appearance perspective view of the stud pin 50A of the 1st Embodiment of this invention. トレッド部に装着されたスタッドピン50Aの側面図である。It is a side view of stud pin 50A with which the tread part was equipped. スタッドピン50Aの形状を示す平面図である。It is a top view which shows the shape of 50 A of stud pins. スタッドピン50Aの他の形状を示す平面図である。It is a top view which shows the other shape of the stud pin 50A. スタッドピン50Aの他の形状を示す平面図である。It is a top view which shows the other shape of the stud pin 50A. スタッドピン50Bの形状を示す平面図である。It is a top view which shows the shape of the stud pin 50B. 図5のVI-VI矢視断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5. スタッドピン50Cの形状を示す平面図である。It is a top view which shows the shape of 50 C of stud pins. 図7のVIII-VIII矢視断面図である。FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7. 本発明の第2の実施形態のスタッドピン50Dの外観斜視図である。It is an external appearance perspective view of stud pin 50D of the 2nd Embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
〔第1実施形態〕
(タイヤの全体説明)
 以下、本実施形態の空気入りタイヤについて説明する。図1は、本実施形態の空気入りタイヤ(以降、タイヤという)10の断面を示すタイヤ断面図である。
 タイヤ10は、例えば、乗用車用タイヤである。乗用車用タイヤは、JATMA YEAR BOOK 2012(日本自動車タイヤ協会規格)のA章に定められるタイヤをいう。この他、B章に定められる小型トラック用タイヤおよびC章に定められるトラック及びバス用タイヤに適用することもできる。
 以降で具体的に説明する各パターン要素の寸法の数値は、乗用車用タイヤにおける数値例であり、本発明である空気入リタイヤはこれらの数値例に限定されない。
[First Embodiment]
(Whole tire description)
Hereinafter, the pneumatic tire of this embodiment will be described. FIG. 1 is a tire cross-sectional view showing a cross section of a pneumatic tire (hereinafter referred to as a tire) 10 of the present embodiment.
The tire 10 is, for example, a passenger car tire. Passenger car tires are tires defined in Chapter A of JATMA YEAR BOOK 2012 (Japan Automobile Tire Association Standard). In addition, the present invention can also be applied to small truck tires defined in Chapter B and truck and bus tires defined in Chapter C.
The numerical value of the dimension of each pattern element specifically explained below is a numerical example in the tire for passenger cars, and the pneumatic retirement according to the present invention is not limited to these numerical examples.
 以降で説明するタイヤ周方向とは、タイヤ回転軸を中心にタイヤ10を回転させたとき、トレッド面の回転する方向(両回転方向)をいい、タイヤ径方向とは、タイヤ回転軸に対して直交して延びる放射方向をいい、タイヤ径方向外側とは、タイヤ回転軸からタイヤ径方向に離れる側をいう。タイヤ幅方向とは、タイヤ回転軸方向に平行な方向をいい、タイヤ幅方向外側とは、タイヤ10のタイヤセンターラインCLから離れる両側をいう。 The tire circumferential direction described below refers to the direction of rotation of the tread surface (both rotation directions) when the tire 10 is rotated about the tire rotation axis, and the tire radial direction refers to the tire rotation axis. The radial direction extending orthogonally refers to the tire radial direction outer side, which is the side away from the tire rotation axis in the tire radial direction. The tire width direction means a direction parallel to the tire rotation axis direction, and the tire width direction outside means both sides of the tire 10 away from the tire center line CL.
(タイヤ構造)
 タイヤ10は、骨格材として、一対のビードコア11と、カーカスプライ層12と、ベルト層14とを有し、これらの骨格材の周りに、トレッドゴム部材18と、サイドゴム部材20と、ビードフィラーゴム部材22と、リムクッションゴム部材24と、インナーライナゴム部材26と、を主に有する。
(Tire structure)
The tire 10 has a pair of bead cores 11, a carcass ply layer 12, and a belt layer 14 as a skeleton material, and a tread rubber member 18, a side rubber member 20, and a bead filler rubber around these skeleton materials. It mainly includes a member 22, a rim cushion rubber member 24, and an inner liner rubber member 26.
 一対のビードコア11は円環状であり、タイヤ幅方向の両端部であって、タイヤ径方向内側端部に配置されている。
 カーカスプライ層12は、有機繊維をゴムで被覆した1又は複数のカーカスプライ材12a、12bからなる。カーカスプライ材12a、12bは、一対のビードコア11の間に巻き回すことによりトロイダル形状に形成されている。
 ベルト層14は複数のベルト材14a、14bからなり、カーカスプライ層12のタイヤ径方向外側にタイヤ周方向に巻き回されている。タイヤ径方向内側のベルト材14aのタイヤ幅方向の幅は、タイヤ径方向外側のベルト材14bの幅に比べて広い。
 ベルト材14a、14bは、スチールコードにゴムを被覆した部材である。ベルト材14aのスチールコード、および、ベルト材14bのスチールコードは、タイヤ周方向に対して所定の角度、例えば20~30度傾斜して配置されている。ベルト材14aのスチールコードと、ベルト材14bのスチールコードとは、タイヤ周方向に対して互いに逆方向に傾斜し、互いに交錯する。ベルト層14は充填された空気圧によるカーカスプライ層12の膨張を抑制する。
The pair of bead cores 11 has an annular shape, and is disposed at both ends in the tire width direction and at inner ends in the tire radial direction.
The carcass ply layer 12 is composed of one or a plurality of carcass ply materials 12a and 12b in which organic fibers are covered with rubber. The carcass ply materials 12 a and 12 b are formed in a toroidal shape by being wound between a pair of bead cores 11.
The belt layer 14 includes a plurality of belt members 14 a and 14 b and is wound around the outer side of the carcass ply layer 12 in the tire radial direction in the tire circumferential direction. The width in the tire width direction of the belt material 14a on the inner side in the tire radial direction is wider than the width of the belt material 14b on the outer side in the tire radial direction.
The belt members 14a and 14b are members in which a steel cord is covered with rubber. The steel cord of the belt material 14a and the steel cord of the belt material 14b are arranged to be inclined at a predetermined angle, for example, 20 to 30 degrees with respect to the tire circumferential direction. The steel cord of the belt material 14a and the steel cord of the belt material 14b are inclined in directions opposite to each other with respect to the tire circumferential direction and cross each other. The belt layer 14 suppresses the expansion of the carcass ply layer 12 due to the filled air pressure.
 ベルト層14のタイヤ径方向外側には、トレッドゴム部材18が設けられる。トレッドゴム部材18の両端部には、サイドゴム部材20が接続されている。トレッドゴム部材18は、タイヤ径方向外側に設けられる上層トレッドゴム部材18aと、タイヤ径方向内側に設けられる下層トレッドゴム部材18bとの2層のゴム部材からなる。上層トレッドゴム部材18aには、周方向溝、ラグ溝や、スタッドピン取付用孔40が設けられる。 A tread rubber member 18 is provided on the outer side of the belt layer 14 in the tire radial direction. Side rubber members 20 are connected to both ends of the tread rubber member 18. The tread rubber member 18 includes a two-layer rubber member including an upper layer tread rubber member 18a provided on the outer side in the tire radial direction and a lower layer tread rubber member 18b provided on the inner side in the tire radial direction. The upper layer tread rubber member 18a is provided with circumferential grooves, lug grooves, and stud pin mounting holes 40.
 サイドゴム部材20のタイヤ径方向内側の端には、リムクッションゴム部材24が設けられる。リムクッションゴム部材24はタイヤ10を装着するリムと接触する。ビードコア11のタイヤ径方向外側には、ビードコア11の周りに巻きまわしたカーカスプライ層12に挟まれるようにビードフィラーゴム部材22が設けられている。タイヤ10とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ10の内表面には、インナーライナゴム部材26が設けられている。
 この他に、タイヤ10は、ベルト層14のタイヤ径方向外側面を覆うベルトカバー層28を備える。ベルトカバー層28は、有機繊維と、この有機繊維を被覆するゴムとからなる。
A rim cushion rubber member 24 is provided at the inner end in the tire radial direction of the side rubber member 20. The rim cushion rubber member 24 comes into contact with a rim on which the tire 10 is mounted. A bead filler rubber member 22 is provided outside the bead core 11 in the tire radial direction so as to be sandwiched between carcass ply layers 12 wound around the bead core 11. An inner liner rubber member 26 is provided on the inner surface of the tire 10 facing the tire cavity region filled with air surrounded by the tire 10 and the rim.
In addition, the tire 10 includes a belt cover layer 28 that covers the outer surface of the belt layer 14 in the tire radial direction. The belt cover layer 28 is made of organic fibers and rubber that covers the organic fibers.
 タイヤ10は、図1に示すタイヤ構造を有するが、本発明の空気入りタイヤのタイヤ構造は、これに限定されない。 Although the tire 10 has the tire structure shown in FIG. 1, the tire structure of the pneumatic tire of the present invention is not limited to this.
(スタッドピン)
 図2は、本発明の第1の実施形態のスタッドピン50Aの外観斜視図である。図3は、トレッド部Tのトレッドゴム部材18に設けられたスタッドピン取付用孔40に装着されたスタッドピン50Aの側面図である。
 スタッドピン50Aは、埋設基部52Aと、先端部60と、を主に有する。埋設基部52Aは、装着される空気入りタイヤのトスタッドピン取付用孔40内に埋設される。埋設基部52Aがスタッドピン取付用孔40の側面からトレッドゴム部材18に押圧されることによりスタッドピン50Aがトレッド部に固定される。スタッドピン50Aは、埋設基部52Aと、先端部60とを有し、埋設基部52A及び先端部60が、方向Xに沿ってこの順に形成されている。なお、方向Xは、埋設基部52Aの先端部60に向けて延びる延在方向であり、スタッドピン50Aをスタッドピン取付用孔40に装着したときに、トレッド部のトレッド面に対する法線方向と一致する。
 埋設基部52Aは、底部54Aと、シャンク部56Aと、胴体部58Aと、を有し、底部54A、シャンク部56A、および胴体部58Aが、方向Xに沿ってこの順に形成されている。
(Stud pin)
FIG. 2 is an external perspective view of the stud pin 50A according to the first embodiment of the present invention. FIG. 3 is a side view of the stud pin 50A mounted in the stud pin mounting hole 40 provided in the tread rubber member 18 of the tread portion T.
The stud pin 50A mainly has an embedded base 52A and a tip 60. The embedded base 52A is embedded in the tost stud pin mounting hole 40 of the pneumatic tire to be mounted. When the embedded base 52A is pressed against the tread rubber member 18 from the side surface of the stud pin mounting hole 40, the stud pin 50A is fixed to the tread portion. The stud pin 50 </ b> A has an embedded base 52 </ b> A and a distal end 60, and the embedded base 52 </ b> A and the distal end 60 are formed in this order along the direction X. The direction X is an extending direction extending toward the distal end portion 60 of the embedded base 52A, and coincides with the normal direction of the tread portion with respect to the tread surface when the stud pin 50A is mounted in the stud pin mounting hole 40. To do.
The embedded base 52A has a bottom portion 54A, a shank portion 56A, and a trunk portion 58A. The bottom portion 54A, the shank portion 56A, and the trunk portion 58A are formed in this order along the direction X.
 底部54Aは、先端部60と反対側の端部に位置している。底部54Aはフランジ状であり、路面から受ける力によりスタッドピン50Aがスタッドピン取付用孔40内で回転することを防止する。 The bottom 54A is located at the end opposite to the tip 60. The bottom portion 54A has a flange shape and prevents the stud pin 50A from rotating in the stud pin mounting hole 40 due to the force received from the road surface.
 シャンク部56Aは、胴体部58Aと底部54Aとを接続する部分である。シャンク部56Aは円錐台形状であり、シャンク部56Aの径は底部54Aおよび胴体部58Aの最大外径よりも小さい。このため、シャンク部56Aは胴体部58Aおよび底部54Aに対して凹部を形成し、底部54Aおよび胴体部58Aがフランジ形状を成している。 The shank part 56A is a part that connects the body part 58A and the bottom part 54A. The shank portion 56A has a truncated cone shape, and the diameter of the shank portion 56A is smaller than the maximum outer diameter of the bottom portion 54A and the body portion 58A. For this reason, the shank part 56A forms a recess with respect to the body part 58A and the bottom part 54A, and the bottom part 54A and the body part 58A form a flange shape.
 胴体部58Aは円筒形状であり、シャンク部56Aと先端部60との間に位置し、先端部60と接続されたフランジ状の部分である。胴体部58Aは、タイヤ10に装着されるとき、先端面58aがトレッド面に露出するように先端面58aとトレッド面とが略面一となるようにトレッドゴム部材18内に埋設される。 The body portion 58A has a cylindrical shape, and is a flange-like portion connected between the shank portion 56A and the tip portion 60 and connected to the tip portion 60. The body portion 58A is embedded in the tread rubber member 18 so that the front end surface 58a and the tread surface are substantially flush with each other so that the front end surface 58a is exposed to the tread surface when mounted on the tire 10.
 胴体部58Aの先端面58aには、中央に先端部60が設けられるとともに、先端部60から離間して先端面58aの外周部に1又は複数の凸部59Aが設けられている。なお、図2、図3では、複数の凸部59Aが設けられている。
 先端部60は、図3に示すように、トレッド部に装着された状態で凸部59Aとともにトレッド面から突出し、路面と接触し、氷を引っ掻く部分である。先端部60は、埋設基部52Aの先端面58aの中央部から柱状に突出した部分である。先端部60の先端(方向X側の端部)は埋設基部52Aの延在方向(方向X)に対して垂直な先端面60aを形成している。
The front end surface 58a of the body portion 58A is provided with a front end portion 60 at the center, and one or a plurality of convex portions 59A are provided on the outer peripheral portion of the front end surface 58a apart from the front end portion 60. 2 and 3, a plurality of convex portions 59A are provided.
As shown in FIG. 3, the tip portion 60 is a portion that protrudes from the tread surface together with the convex portion 59 </ b> A while being attached to the tread portion, contacts the road surface, and scratches ice. The distal end portion 60 is a portion protruding in a columnar shape from the central portion of the distal end surface 58a of the embedded base portion 52A. The tip of the tip 60 (the end on the direction X side) forms a tip surface 60a perpendicular to the extending direction (direction X) of the embedded base 52A.
 先端部60は、埋設基部52Aと同じ金属材料で作られてもよく、異なる金属材料で作られてもよい。例えば、埋設基部52Aおよび先端部60がアルミニウムで作られてもよい。また、埋設基部52Aがアルミニウムで作られ、先端部60がタングステンで作られてもよい。埋設基部52Aと先端部60とが異なる金属材料で作られている場合、例えば、先端部60を埋設基部52Aの胴体部58Aの先端面58aに形成された図示されない穴に打ち込んで嵌合させることにより、先端部60を埋設基部52Aに固定することができる。 The tip 60 may be made of the same metal material as the embedded base 52A, or may be made of a different metal material. For example, the embedded base 52A and the tip 60 may be made of aluminum. Alternatively, the embedded base 52A may be made of aluminum and the tip 60 may be made of tungsten. When the embedded base 52A and the distal end portion 60 are made of different metal materials, for example, the distal end portion 60 is driven and fitted into a hole (not shown) formed in the distal end surface 58a of the body portion 58A of the embedded base 52A. Thus, the distal end portion 60 can be fixed to the embedded base portion 52A.
 凸部59Aは、図3に示すように、トレッド部に装着された状態で先端部60とともにトレッド面から突出し、路面と接触し、または氷を引っ掻く部分である。
 凸部59Aは、埋設基部52Aと同じ金属材料により、埋設基部52Aと一体に形成されている。なお、埋設基部52Aの胴体部58Aの先端面58aは、先端部60および凸部59Aが設けられた部分を除き、平滑面である。ここで平滑面とは、例えばバフ仕上げ等により平滑に形成されていることをいい、切削加工等による切りくずが残存していない平面、および、ローレット加工等により意図的な凹凸が形成されていない平面を含む。
As shown in FIG. 3, the convex portion 59 </ b> A is a portion that protrudes from the tread surface together with the tip portion 60 in a state of being attached to the tread portion, contacts the road surface, or scratches ice.
The convex portion 59A is integrally formed with the embedded base 52A using the same metal material as that of the embedded base 52A. Note that the front end surface 58a of the body portion 58A of the embedded base 52A is a smooth surface except for the portion where the front end portion 60 and the convex portion 59A are provided. Here, the smooth surface means that the surface is formed smoothly by buffing or the like, for example, a flat surface in which chips are not left by cutting or the like, and no intentional irregularities are formed by knurling or the like. Includes a plane.
 図4Aは先端面60aを示す平面図である。図4Aに示すように、複数の凸部59Aが先端部60から離間するとともに、先端面60aの外周に沿って互いに間隔を空けて設けられている。 FIG. 4A is a plan view showing the tip surface 60a. As shown in FIG. 4A, the plurality of convex portions 59A are spaced apart from the distal end portion 60 and are spaced from each other along the outer periphery of the distal end surface 60a.
 凸部59Aが先端部60と独立して路面と接触し、または氷を引っ掻くために、凸部59Aと先端部60の距離は充分に大きいことが好ましい。
 ここで、胴体部58Aの先端面58aに内接する最大の内接円の半径(先端面58aが円形のときはその半径)をLとし、凸部59Aと先端部60との距離をL1としたとき、0.5≦L1/L<1であることが好ましい。L1/L<0.5の場合、凸部59Aと先端部60の距離L1が小さすぎるため、先端部60によるエッジ効果と凸部59Aによるエッジ効果の和が十分に大きくならない。
It is preferable that the distance between the protrusion 59A and the tip 60 is sufficiently large so that the protrusion 59A contacts the road surface independently of the tip 60 or scratches ice.
Here, the radius of the largest inscribed circle inscribed in the front end surface 58a of the body portion 58A (the radius when the front end surface 58a is circular) is L, and the distance between the convex portion 59A and the front end portion 60 is L1. In this case, it is preferable that 0.5 ≦ L1 / L <1. In the case of L1 / L <0.5, the distance L1 between the convex portion 59A and the tip portion 60 is too small, and the sum of the edge effect by the tip portion 60 and the edge effect by the convex portion 59A is not sufficiently large.
 また、複数の凸部59Aが独立して路面と接触し、または氷を引っ掻くために、凸部59A同士の距離は充分に大きいことが好ましい。ここで、凸部59A同士の最短距離をL2としたとき、0.5≦L2/L<1であることが好ましい。L2/L<0.5の場合、凸部59A同士の距離L2が小さすぎるため、複数の凸部59Aによるエッジ効果の和が十分に大きくならない。一方、L2/L≧1であると、複数の凸部59A同士の距離L2が大きすぎるため、凸部59Aの長さ又は数が小さくなり、エッジ効果の和が十分に大きくならない。
 なお、図4Aにおいては、4個の凸部59Aが先端面60aに設けられているが、凸部59Aの数は4個に限らず、任意である。例えば、図4Bに示すように、3個の凸部59Aが先端部60から離間するとともに、先端面60aの外周に沿って互いに間隔を空けて設けられていてもよい。また、図4Cに示すように、6個の凸部59Aが先端部60から離間するとともに、先端面60aの外周に沿って互いに間隔を空けて設けられていてもよい。複数の凸部59Aによるエッジ効果の和を十分に大きくするために、凸部59Aの数は3~6個であることが好ましい。
 図2~図4Cにおいては、凸部59Aは胴体部58Aの先端面58aの半径方向と直交する方向を長手方向とする直方体形状をしているが、その方向は任意であり、胴体部58Aの先端面58aの半径方向に長手方向を向けてもよい。
In addition, it is preferable that the distance between the convex portions 59A is sufficiently large in order for the plurality of convex portions 59A to independently contact the road surface or to scratch ice. Here, when the shortest distance between the convex portions 59A is L2, it is preferable that 0.5 ≦ L2 / L <1. When L2 / L <0.5, the distance L2 between the convex portions 59A is too small, and the sum of the edge effects by the plurality of convex portions 59A is not sufficiently large. On the other hand, when L2 / L ≧ 1, the distance L2 between the plurality of convex portions 59A is too large, so the length or number of the convex portions 59A is small, and the sum of the edge effects is not sufficiently large.
In FIG. 4A, four convex portions 59A are provided on the tip surface 60a, but the number of convex portions 59A is not limited to four and is arbitrary. For example, as shown in FIG. 4B, the three convex portions 59A may be spaced apart from the tip portion 60 and spaced from each other along the outer periphery of the tip surface 60a. Further, as shown in FIG. 4C, the six convex portions 59A may be provided apart from the tip portion 60 and spaced from each other along the outer periphery of the tip surface 60a. In order to sufficiently increase the sum of the edge effects by the plurality of protrusions 59A, the number of protrusions 59A is preferably 3 to 6.
2 to 4C, the convex portion 59A has a rectangular parallelepiped shape whose longitudinal direction is a direction orthogonal to the radial direction of the front end surface 58a of the body portion 58A. However, the direction is arbitrary, and the protrusion portion 59A The longitudinal direction may be directed in the radial direction of the distal end surface 58a.
 図3に示すように、胴体部58Aの先端面58aからの先端部60の突出高さをHとし、先端面58aからの凸部59Aの突出高さをH1としたとき、0.2≦H1/H≦0.8であることが好ましい。H1/Hが0.2より小さいと、凸部59Aのエッジ効果が充分に得られない。一方、H1/Hが0.8より大きいと、先端部60によるエッジ効果が低下する。より好ましくは、0.4≦H1/H≦0.6である。 As shown in FIG. 3, when H is the protruding height of the front end portion 60 from the front end surface 58a of the body portion 58A and H1 is the protruding height of the convex portion 59A from the front end surface 58a, 0.2 ≦ H1 It is preferable that /H≦0.8. If H1 / H is smaller than 0.2, the edge effect of the convex portion 59A cannot be sufficiently obtained. On the other hand, if H1 / H is larger than 0.8, the edge effect by the tip 60 is reduced. More preferably, 0.4 ≦ H1 / H ≦ 0.6.
 また、先端面58aの面積をSとし、先端面58aの平面視(図4)における凸部59Aの先端面58aを占める面積の総和をS1としたとき、0.1≦S1/S≦0.6であることが好ましい。S1/Sが0.1よりも小さいと、凸部59Aの輪郭の長さが十分に大きくならず、凸部59Aによるエッジ効果が十分に得られない。一方、S1/Sが0.6よりも大きいと、先端部60によるエッジ効果が低下する。より好ましくは、0.2≦S1/S≦0.4である。 Further, assuming that the area of the front end surface 58a is S and the sum of the area occupying the front end surface 58a of the convex portion 59A in a plan view (FIG. 4) of the front end surface 58a is S1, 0.1 ≦ S1 / S ≦ 0. 6 is preferable. When S1 / S is smaller than 0.1, the contour length of the convex portion 59A is not sufficiently large, and the edge effect by the convex portion 59A cannot be sufficiently obtained. On the other hand, when S1 / S is larger than 0.6, the edge effect by the front-end | tip part 60 will fall. More preferably, 0.2 ≦ S1 / S ≦ 0.4.
 以上説明したように、先端面58aに凸部59Aを設けることで、先端部60によるエッジ効果に加えて、凸部59Aによるエッジ効果が得られるため、スタッドピン50Aのエッジ効果を高めることができ、氷上性能を高めることができる。 As described above, by providing the convex portion 59A on the tip surface 58a, the edge effect by the convex portion 59A can be obtained in addition to the edge effect by the tip portion 60, so that the edge effect of the stud pin 50A can be enhanced. Can improve the performance on ice.
<変形例1>
 上記実施形態においては、直方体状の凸部59Aを用いる場合について説明したが、本発明はこれに限られない。例えば、図5に示すように、スタッドピン50Bの胴体部58Bの先端面58aの平面視において、胴体部58Aの先端面58aの半径方向外側に凸となる屈曲部を有する凸部59Bを設けてもよい。凸部59Bは、先端面58aの径方向外側(先端部60に対して外側)に凸となる円弧形状であってもよい。凸部59Bを円弧形状とすることで、様々な方向のエッジ成分が得られる。例えば、図2の凸部59Aの形状では、長手方向のエッジ成分が多いが、それ以外の斜め方向のエッジ成分は少ない。これに対し、本変形例では、凸部59Bが円弧形状であるため、全ての方向にバランスよくエッジ成分が得られ、様々な滑り方向に対してバランスよくエッジ効果が得られる。バランスよくエッジ効果を得るために、凸部59Bの円弧形状の曲率半径は、凸部59Bと先端部60との距離L1よりも小さいことが好ましい。
 図6は図5のVI-VI矢視断面図である。図6に示すように、凸部59Bの上端面は平坦でなくてもよく、エッジ効果を得るために、先端面58aからの凸部59Bの突出高さは、先端面58aの径方向外側のほうが径方向内側よりも高いことが好ましい。
 本変形例においても、先端部60によるエッジ効果に加えて、凸部59Bによるエッジ効果が得られるため、スタッドピン50Bのエッジ効果を高めることができ、氷上性能を高めることができる。
<Modification 1>
In the above embodiment, the case of using the rectangular parallelepiped convex portion 59A has been described, but the present invention is not limited to this. For example, as shown in FIG. 5, in the plan view of the front end surface 58a of the body portion 58B of the stud pin 50B, a convex portion 59B having a bent portion that protrudes radially outward of the front end surface 58a of the body portion 58A is provided. Also good. The convex portion 59B may have an arc shape that is convex outward in the radial direction of the front end surface 58a (outside with respect to the front end portion 60). By making the convex portion 59B have an arc shape, edge components in various directions can be obtained. For example, in the shape of the convex portion 59A in FIG. 2, there are many edge components in the longitudinal direction, but there are few other edge components in the oblique direction. On the other hand, in this modification, since the convex portion 59B has an arc shape, an edge component is obtained in a balanced manner in all directions, and an edge effect is obtained in a balanced manner in various sliding directions. In order to obtain a balanced edge effect, it is preferable that the radius of curvature of the arc shape of the convex portion 59B is smaller than the distance L1 between the convex portion 59B and the tip portion 60.
6 is a cross-sectional view taken along the line VI-VI in FIG. As shown in FIG. 6, the upper end surface of the convex portion 59B does not have to be flat, and in order to obtain an edge effect, the protruding height of the convex portion 59B from the front end surface 58a is on the radially outer side of the front end surface 58a. Preferably, it is higher than the inner side in the radial direction.
Also in this modification, since the edge effect by the convex part 59B is obtained in addition to the edge effect by the tip part 60, the edge effect of the stud pin 50B can be enhanced and the performance on ice can be enhanced.
<変形例2>
 上記実施形態においては、先端面60aの外周に沿って複数の凸部59Aを互いに間隔を空けて設けた場合について説明したが、本発明はこれに限られない。例えば、図7に示すように、スタッドピン50Cの胴体部58Cの先端面58aの平面視において、先端部60を中心として環状に凸部59Cを設けてもよい。
 図8は図7のVIII-VIII矢視断面図である。図8に示すように、凸部59Cの上端面は平坦でなくてもよく、先端面58aからの凸部59Bの突出高さは、先端面58aの径方向における中央部のほうが径方向外側端および径方向内側端よりも高くてもよい。
 本変形例においても、先端部60によるエッジ効果に加えて、凸部59Cによるエッジ効果が得られるため、スタッドピン50Cのエッジ効果を高めることができ、氷上性能を高めることができる。
<Modification 2>
In the above-described embodiment, a case has been described in which a plurality of convex portions 59A are provided at intervals along the outer periphery of the tip surface 60a, but the present invention is not limited to this. For example, as shown in FIG. 7, a convex portion 59 </ b> C may be provided in an annular shape centering on the tip portion 60 in the plan view of the tip surface 58 a of the body portion 58 </ b> C of the stud pin 50 </ b> C.
8 is a cross-sectional view taken along arrow VIII-VIII in FIG. As shown in FIG. 8, the upper end surface of the convex portion 59C does not have to be flat, and the protrusion height of the convex portion 59B from the front end surface 58a is the radially outer end at the central portion in the radial direction of the front end surface 58a. And may be higher than the radially inner end.
Also in this modification, since the edge effect by the convex part 59C is obtained in addition to the edge effect by the tip part 60, the edge effect of the stud pin 50C can be enhanced and the performance on ice can be enhanced.
〔第2実施形態〕
 図9は本発明の第2の実施形態に係るスタッドピン50Dの斜視図である。本実施形態のスタッドピン50Dでは、先端部60の形状は第1の実施形態のスタッドピン50Aと同様であるが、埋設基部52Dの形状が異なる。
 図9に示すスタッドピン50Dの埋設基部52Dは、底部54Dと、シャンク部56Dと、胴体部58Dと、を有し、底部54D、シャンク部56D、および胴体部58Dが、方向Xに沿ってこの順に形成されている。
[Second Embodiment]
FIG. 9 is a perspective view of a stud pin 50D according to the second embodiment of the present invention. In the stud pin 50D of this embodiment, the shape of the tip portion 60 is the same as that of the stud pin 50A of the first embodiment, but the shape of the embedded base 52D is different.
The embedded base portion 52D of the stud pin 50D shown in FIG. 9 has a bottom portion 54D, a shank portion 56D, and a body portion 58D. The bottom portion 54D, the shank portion 56D, and the body portion 58D are arranged along the direction X. It is formed in order.
 底部54Dのスタッドピン取付用孔40の側面と接触する外周側面には、凹部54aが形成されている。具体的には、底部54Dの断面は、角が丸くなった略4角形形状であり、この略4角形形状の4辺が凹んで4つの凹部54aがつくられている。底部54Dの断面は、角が丸くなった略4角形形状でなくてもよく、略3角形形状、5角形形状、6角形形状等の略多角形形状であってもよい。底部54Dが略多角形形状であることで、方向Xを中心とするスタッドピン50Dの回転運動が抑制される。なお、角を丸くすることで、スタッドピン取付用孔40の側面が底部54の尖った角により傷つくことを防ぐことができる。この場合、略多角形形状の少なくとも1辺において辺が凹んで凹部54aがつくられているとよい。勿論、略多角形形状の一部の辺あるいは全ての辺、すなわち、2辺、3辺、4辺、5辺、6辺等において辺が凹んで複数の凹部54aがつくられてもよい。凹部54aがつくられることで、底部54Dの単位体積当たりの表面積を増やすことができ、トレッド部のトレッドゴム部材18との接触面積を増やし、スタッドピン50Dの動きを拘束する摩擦力を増やすことができる。また、凹部54aにトレッドゴム部材18が入りこむことで、方向Xを中心とするスタッドピン50Dの回転運動が抑制される。 A recess 54a is formed on the outer peripheral side surface of the bottom portion 54D that contacts the side surface of the stud pin mounting hole 40. Specifically, the cross section of the bottom portion 54D has a substantially quadrangular shape with rounded corners, and four concave portions 54a are formed by recessing four sides of the substantially quadrangular shape. The cross section of the bottom portion 54D may not be a substantially quadrangular shape with rounded corners, but may be a substantially polygonal shape such as a substantially triangular shape, a pentagonal shape, or a hexagonal shape. Since the bottom portion 54D has a substantially polygonal shape, the rotational movement of the stud pin 50D around the direction X is suppressed. By rounding the corners, it is possible to prevent the side surface of the stud pin mounting hole 40 from being damaged by the sharp corners of the bottom portion 54. In this case, it is preferable that the concave portion 54a is formed by recessing at least one side of the substantially polygonal shape. Of course, a plurality of recesses 54a may be formed by recessing the sides of some or all sides of the substantially polygonal shape, that is, 2 sides, 3 sides, 4 sides, 5 sides, 6 sides, and the like. By forming the recess 54a, the surface area per unit volume of the bottom 54D can be increased, the contact area of the tread portion with the tread rubber member 18 can be increased, and the frictional force that restrains the movement of the stud pin 50D can be increased. it can. Further, since the tread rubber member 18 enters the recess 54a, the rotational movement of the stud pin 50D around the direction X is suppressed.
 シャンク部56Dは、胴体部58Dと底部54Dとを接続する部分である。シャンク部56Dは円筒形状であり、シャンク部56Dの径は底部54Dおよび胴体部58Dの最大外径よりも小さい。このため、シャンク部56Dは胴体部58Dおよび底部54Dに対して凹部を形成し、底部54Dおよび胴体部58Dがフランジ形状を成している。シャンク部56Dの外周側面には凹部が形成されていない。 The shank part 56D is a part that connects the body part 58D and the bottom part 54D. The shank portion 56D has a cylindrical shape, and the diameter of the shank portion 56D is smaller than the maximum outer diameter of the bottom portion 54D and the body portion 58D. For this reason, the shank part 56D forms a recess with respect to the body part 58D and the bottom part 54D, and the bottom part 54D and the body part 58D form a flange shape. No concave portion is formed on the outer peripheral side surface of the shank portion 56D.
 胴体部58Dは、シャンク部56Dと先端部60Dとの間に位置し、先端部60Dと接続されたフランジ状の部分である。胴体部58Dのスタッドピン取付用孔の側面から押圧される外周側面には、凹部58aが形成されている。この外周側面は、トレッド部のトレッドゴム部材18と接触して押圧されるので、スタッドピン50Dの動きを摩擦力により拘束する。
 胴体部58Dの方向Xと垂直な断面は、角が丸くなった略4角形形状であり、4辺が凹んで4つの凹部58aがつくられている。本実施形態では、凹部58aは外周側面に4つ設けられるが、凹部58aは少なくとも1つ以上、すなわち、1つ、2つ、あるいは3つ等設けられてもよい。胴体部58Dの断面は、角が丸くなった略4角形形状でなくてもよく、略3角形形状、5角形形状、6角形形状等の略多角形形状であってもよい。胴体部58Dが略多角形形状であることで、方向Xを中心とするスタッドピン50Dの回転運動が抑制される。なお、角を丸くすることで、スタッドピン取付用孔の側面がスタッドピン50Dの胴体部58Dの尖った角により傷つくことを防ぐことができる。
 この場合、略多角形形状の少なくとも1辺において辺が凹んで凹部58aがつくられているとよい。勿論、略多角形形状の一部の辺あるいは全ての辺、すなわち、2辺、3辺、4辺、5辺、6辺等において辺が凹んで複数の凹部58aがつくられてもよい。凹部58aがつくられることで、胴体部58Dの単位体積当たりの表面積を増やすことができ、トレッド部のトレッドゴム部材18との接触面積を増やし、スタッドピン50Dの動きを拘束する摩擦力を増やすことができる。また、凹部58aにトレッドゴム部材18が入りこむことで、方向Xを中心とするスタッドピン50Dの回転運動が抑制される。
 胴体部58Dは、タイヤ10に装着されるとき、先端面58aがトレッド面に露出するように先端面58aとトレッド面とが略面一となるようにトレッドゴム部材18内に埋設される。
The body portion 58D is a flange-like portion that is located between the shank portion 56D and the tip portion 60D and connected to the tip portion 60D. A concave portion 58a is formed on the outer peripheral side surface pressed from the side surface of the stud pin mounting hole of the body portion 58D. Since this outer peripheral side surface is pressed in contact with the tread rubber member 18 of the tread portion, the movement of the stud pin 50D is restrained by the frictional force.
The cross section perpendicular to the direction X of the body portion 58D has a substantially quadrangular shape with rounded corners, and four concave portions 58a are formed with four sides recessed. In the present embodiment, four recesses 58a are provided on the outer peripheral side surface, but at least one recess 58a may be provided, that is, one, two, or three. The cross section of the body portion 58D may not be a substantially rectangular shape with rounded corners, but may be a substantially polygonal shape such as a substantially triangular shape, a pentagonal shape, or a hexagonal shape. Since the body portion 58D has a substantially polygonal shape, the rotational movement of the stud pin 50D around the direction X is suppressed. In addition, by rounding the corner, it is possible to prevent the side surface of the stud pin mounting hole from being damaged by the sharp corner of the body portion 58D of the stud pin 50D.
In this case, it is preferable that the recess 58a is formed by recessing at least one side of the substantially polygonal shape. Of course, a plurality of recesses 58a may be formed by recessing the sides of some or all sides of the substantially polygonal shape, that is, 2 sides, 3 sides, 4 sides, 5 sides, 6 sides, and the like. By forming the recess 58a, the surface area per unit volume of the body portion 58D can be increased, the contact area of the tread portion with the tread rubber member 18 is increased, and the frictional force that restrains the movement of the stud pin 50D is increased. Can do. Further, since the tread rubber member 18 enters the recess 58a, the rotational movement of the stud pin 50D around the direction X is suppressed.
The body portion 58D is embedded in the tread rubber member 18 so that the front end surface 58a and the tread surface are substantially flush with each other so that the front end surface 58a is exposed to the tread surface when mounted on the tire 10.
 胴体部58Dの先端面58aには、第1の実施形態の凸部59Aと同様の形状の凸部59Dが設けられている。本実施形態においても、第1の実施形態に係るスタッドピン50Aと同様に、先端部60によるエッジ効果に加えて、凸部59Dによるエッジ効果が得られるため、スタッドピン50Dのエッジ効果を高めることができ、氷上性能を高めることができる。また、埋設基部52Dの方向Xを中心とする回転運動を抑制することができ、スタッドピン50Dのトレッド部からの抜けを低減することができる。 A convex portion 59D having the same shape as the convex portion 59A of the first embodiment is provided on the distal end surface 58a of the body portion 58D. Also in this embodiment, since the edge effect by the convex portion 59D is obtained in addition to the edge effect by the tip portion 60, similarly to the stud pin 50A according to the first embodiment, the edge effect of the stud pin 50D is enhanced. Can improve performance on ice. Moreover, the rotational movement centering on the direction X of the embedded base 52D can be suppressed, and the removal of the stud pin 50D from the tread portion can be reduced.
 なお、本実施形態においては、凸部59Dの形状を第1の実施形態の凸部59Aと同様としたが、本発明はこれに限られない。例えば、図5~図8に示す凸部59B、59Cと同様の形状の凸部を胴体部58Dの先端面58aに設けてもよい。 In addition, in this embodiment, although the shape of the convex part 59D was made the same as that of the convex part 59A of 1st Embodiment, this invention is not limited to this. For example, convex portions having the same shape as the convex portions 59B and 59C shown in FIGS. 5 to 8 may be provided on the front end surface 58a of the body portion 58D.
[実施例]
 本実施形態のスタッドピンによる効果を確認するために、図2~図4Aに示すスタッドピン60Aと同様のスタッドピンを図1に示すタイヤ10と同様のタイヤに取り付けた。タイヤのタイヤサイズは、195/65R15とした。
 実施例1~3では、凸部と先端部との距離L1に対する、胴体部の先端面の半径Lの比L1/Lを、0.4、0.5、0.9とした。
 凸部の先端面からの突出高さH1に対する、先端部の先端面からの突出高さHの比H1/Hは、いずれも0.5とした。
 凸部の先端面における面積の総和S1に対する、先端面の面積Sの比S1/Sは、いずれも0.15とした。
[Example]
In order to confirm the effect of the stud pin of this embodiment, a stud pin similar to the stud pin 60A shown in FIGS. 2 to 4A was attached to a tire similar to the tire 10 shown in FIG. The tire size of the tire was 195 / 65R15.
In Examples 1 to 3, the ratio L1 / L of the radius L of the front end surface of the body portion to the distance L1 between the convex portion and the front end portion was set to 0.4, 0.5, and 0.9.
The ratio H1 / H of the projection height H from the tip surface of the tip portion to the projection height H1 from the tip surface of the convex portion was 0.5.
The ratio S1 / S of the area S of the tip surface to the total sum S1 of the areas of the tip surface of the convex portions was 0.15.
 実施例4~9では、H1/Hを、0.1、0.2、0.8、又は0.9とした。L1/Lを、いずれも0.9とし、S1/Sを、いずれも0.15とした。
 実施例9~11では、S1/Sを、0.1、0.6、又は0.7とした。L1/Lを、いずれも0.9とし、H1/Hを、いずれも0.5とした。
In Examples 4 to 9, H1 / H was set to 0.1, 0.2, 0.8, or 0.9. L1 / L was set to 0.9 for all, and S1 / S was set to 0.15 for all.
In Examples 9 to 11, S1 / S was set to 0.1, 0.6, or 0.7. L1 / L was set to 0.9 for all, and H1 / H was set to 0.5 for all.
〔従来例〕
 胴体部の先端面に凸部が設けられていない点以外は実施例と同様のスタッドピンを図1に示すタイヤ10と同様のタイヤに取り付けた。タイヤのタイヤサイズは、205/55R16とした。
[Conventional example]
A stud pin similar to that of the example was attached to the tire similar to the tire 10 shown in FIG. 1 except that the convex portion was not provided on the front end surface of the body portion. The tire size of the tire was 205 / 55R16.
 上記の実施例および従来例のタイヤを乗用車に装着し、氷上制動性能の評価を行った。
 乗用車は、排気量2000ccの前輪駆動のセダン型乗用車を用いた。タイヤの内圧条件は、前輪、後輪ともに230(kPa)とした。各タイヤの荷重条件は、前輪荷重を450kg重、後輪荷重を300kg重とした。
The tires of the above examples and conventional examples were mounted on a passenger car, and the braking performance on ice was evaluated.
As the passenger car, a front-wheel-drive sedan type passenger car having a displacement of 2000 cc was used. The tire internal pressure condition was 230 (kPa) for both the front and rear wheels. The load conditions for each tire were 450 kg weight for the front wheel load and 300 kg weight for the rear wheel load.
〔氷上制動性能〕
 上記の乗用車で氷路面からなるテストコースを走行させ、初速30km/hからブレーキをかけて完全停止するまでの制動距離を測定した。測定値の逆数を用い、従来例を100とする指数により示し、値が大きいほど性能が高いと評価した。
 結果を表1に示す。
[Ice braking performance]
The above-mentioned passenger car was run on a test course consisting of an icy road surface, and the braking distance from the initial speed of 30 km / h until the brakes were completely stopped was measured. The reciprocal of the measured value was used to indicate the conventional example as an index of 100, and the higher the value, the higher the performance.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~11および従来例の比較より、胴体部の先端面に凸部を設けることで、氷上制動性能を高めることができることがわかる。
 実施例1~3を比較すると、L1/Lを増やすと氷上制動性能が高まることがわかる。
 実施例3~7を比較すると、H1/Hが0.2~0.8の範囲で氷上制動性能が高まることがわかる。
 実施例3および8~11を比較すると、S1/Sが0.1~0.6の範囲で氷上制動性能が高まることがわかる。
From comparison between Examples 1 to 11 and the conventional example in Table 1, it can be seen that the braking performance on ice can be improved by providing a convex portion on the front end surface of the body portion.
Comparing Examples 1 to 3, it can be seen that the braking performance on ice increases as L1 / L is increased.
Comparing Examples 3 to 7, it can be seen that the braking performance on ice is enhanced when H1 / H is in the range of 0.2 to 0.8.
Comparing Examples 3 and 8 to 11, it can be seen that the braking performance on ice increases when S1 / S is in the range of 0.1 to 0.6.
 以上、本発明のスタッドピン及び空気入りタイヤについて詳細に説明したが、本発明の空気入りタイヤは上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよい。 The stud pin and the pneumatic tire of the present invention have been described in detail above. However, the pneumatic tire of the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. May be.
10 タイヤ
11 ビードコア
12 カーカスプライ層
14 ベルト層
14a,14b ベルト材
15 ベルトカバー層
18 トレッドゴム部材
18a 上層トレッドゴム部材
18b 下層トレッドゴム部材
20 サイドゴム部材
22 ビードフィラーゴム部材
24 リムクッションゴム部材
26 インナーライナゴム部材
40 スタッドピン取付用孔
50A、50B、50C、50D スタッドピン
52A、52B、52C、52D 埋設基部
54A、54B、54C、54D 底部
54a 凹部
56A、56B、56C、56D シャンク部
58A、58B、58C、58D 胴体部
58a 上端面
58b 凹部
59A、59B、59C、59D 凸部
60 先端部
60a 先端面
DESCRIPTION OF SYMBOLS 10 Tire 11 Bead core 12 Carcass ply layer 14 Belt layers 14a and 14b Belt material 15 Belt cover layer 18 Tread rubber member 18a Upper layer tread rubber member 18b Lower layer tread rubber member 20 Side rubber member 22 Bead filler rubber member 24 Rim cushion rubber member 26 Inner liner Rubber member 40 Stud pin mounting hole 50A, 50B, 50C, 50D Stud pin 52A, 52B, 52C, 52D Embedded base 54A, 54B, 54C, 54D Bottom 54a Recess 56A, 56B, 56C, 56D Shank 58A, 58B, 58C 58D Body portion 58a Upper end surface 58b Recessed portion 59A, 59B, 59C, 59D Convex portion 60 Tip portion 60a Tip surface

Claims (11)

  1.  空気入りタイヤのトレッド部のスタッドピン取付用孔に装着されるスタッドピンであって、
     空気入りタイヤのトレッド部内に埋設されたときにトレッド部に露出される先端面を有する埋設基部と、
     前記埋設基部よりも硬質の材料からなり、前記先端面の中央部に取り付けられて一部が前記先端面から突出して路面と接触する先端部と、
    を有し、
     前記先端面には、前記先端面からの突出高さが前記先端部よりも低い凸部が前記先端部と離間して設けられていることを特徴とするスタッドピン。
    A stud pin mounted in a stud pin mounting hole in a tread portion of a pneumatic tire,
    An embedded base portion having a tip surface exposed to the tread portion when embedded in the tread portion of the pneumatic tire;
    A tip part made of a material harder than the embedded base, attached to the center part of the tip face, and a part protruding from the tip face and contacting the road surface,
    Have
    The stud pin is characterized in that a protruding portion whose protruding height from the tip surface is lower than the tip portion is provided apart from the tip portion on the tip surface.
  2.  前記先端面には、前記先端面からの突出高さが前記先端部よりも低い複数の凸部が、前記先端部と離間し、かつ、前記先端部の外周方向に互いに間隔を空けて設けられている、請求項1に記載のスタッドピン。 The tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion. The stud pin according to claim 1.
  3.  前記先端面に内接する最大の内接円の半径をL、前記先端部と前記凸部との距離をL1としたとき、0.5≦L1/L<1である、請求項1又は2に記載のスタッドピン。 3. The relationship according to claim 1, wherein L ≦ L1 / L <1, where L is a radius of a maximum inscribed circle inscribed in the tip surface and L1 is a distance between the tip and the convex portion. The listed stud pin.
  4.  前記先端面には、前記先端面からの突出高さが前記先端部よりも低い複数の凸部が、前記先端部と離間し、かつ、前記先端部の外周方向に互いに間隔を空けて設けられており、
     前記先端面に内接する最大の内接円の半径をL、前記複数の凸部同士の最短距離をL2としたとき、0.5≦L2/L<1である、請求項1又は2に記載のスタッドピン。
    The tip surface is provided with a plurality of protrusions having a protrusion height from the tip surface lower than that of the tip portion and spaced from the tip portion and spaced from each other in the outer peripheral direction of the tip portion. And
    The radius of a maximum inscribed circle inscribed in the tip surface is L, and a shortest distance between the plurality of convex portions is L2, and 0.5 ≦ L2 / L <1. Stud pin.
  5.  前記先端部の前記先端面からの突出高さをHとし、前記凸部の前記先端面からの突出高さをH1としたとき、0.2≦H1/H≦0.8である、請求項1~4のいずれか一項に記載のスタッドピン。 The height of protrusion of the tip portion from the tip surface is H, and the height of protrusion of the convex portion from the tip surface is H1, 0.2 ≦ H1 / H ≦ 0.8. The stud pin according to any one of 1 to 4.
  6.  前記先端面の面積をSとし、前記凸部の前記先端面を占める面積の総和をS1としたとき、0.1≦S1/S≦0.6である、請求項1~5のいずれか一項に記載のスタッドピン。 The area of the front end surface is S, and the total area of the protrusions occupying the front end surface is S1, 0.1 ≦ S1 / S ≦ 0.6. The stud pin as described in the item.
  7.  前記凸部は、前記先端面において前記先端部に対して外側に凸となる屈曲部を有する、請求項1~6のいずれか一項に記載のスタッドピン。 The stud pin according to any one of claims 1 to 6, wherein the convex portion has a bent portion that protrudes outward from the distal end portion on the distal end surface.
  8.  前記凸部は、前記先端面において前記埋設基部の半径方向と直交する方向に延在する、請求項1~6のいずれか一項に記載のスタッドピン。 The stud pin according to any one of claims 1 to 6, wherein the convex portion extends in a direction orthogonal to a radial direction of the embedded base portion on the distal end surface.
  9.  前記凸部は、前記先端部を中心として環状に設けられている、請求項1~8のいずれか一項に記載のスタッドピン。 The stud pin according to any one of claims 1 to 8, wherein the convex portion is provided in an annular shape centering on the tip portion.
  10.  前記先端面は、3~6個の前記凸部を有する、請求項1~9のいずれか一項に記載のスタッドピン。 The stud pin according to any one of claims 1 to 9, wherein the tip surface has 3 to 6 protrusions.
  11.  請求項1~10のいずれか一項に記載のスタッドピンを、空気入りタイヤのトレッド部のスタッドピン取付用孔に装着したことを特徴とする空気入りタイヤ。 A pneumatic tire, wherein the stud pin according to any one of claims 1 to 10 is mounted in a stud pin mounting hole in a tread portion of the pneumatic tire.
PCT/JP2014/084728 2014-01-15 2014-12-29 Stud pin and pneumatic tire WO2015107864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005412 2014-01-15
JP2014005412 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107864A1 true WO2015107864A1 (en) 2015-07-23

Family

ID=53542762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084728 WO2015107864A1 (en) 2014-01-15 2014-12-29 Stud pin and pneumatic tire

Country Status (1)

Country Link
WO (1) WO2015107864A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290940A (en) * 2017-02-28 2019-09-27 横滨橡胶株式会社 Anti-skid stud and edge nail wheel tire
WO2021246350A1 (en) * 2020-06-01 2021-12-09 横浜ゴム株式会社 Stud pin and tire comprising same
WO2021248627A1 (en) * 2020-06-11 2021-12-16 河北万达轮胎有限公司 Snow tire
RU2807196C1 (en) * 2020-06-01 2023-11-10 Дзе Йокогама Раббер Ко., Лтд. Stud and pneumatic tire equipped with stud

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140101U (en) * 1974-05-07 1975-11-18
JPS59133301U (en) * 1983-02-28 1984-09-06 横浜ゴム株式会社 tire spikes
JPS6115609U (en) * 1984-07-03 1986-01-29 住友ゴム工業株式会社 tire spikes
WO2012004452A1 (en) * 2010-07-08 2012-01-12 Sancus Oy Improved anti-skid stud of a vehicle
WO2014102936A1 (en) * 2012-12-26 2014-07-03 東洋ゴム工業株式会社 Stud pin and pneumatic tire provided therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140101U (en) * 1974-05-07 1975-11-18
JPS59133301U (en) * 1983-02-28 1984-09-06 横浜ゴム株式会社 tire spikes
JPS6115609U (en) * 1984-07-03 1986-01-29 住友ゴム工業株式会社 tire spikes
WO2012004452A1 (en) * 2010-07-08 2012-01-12 Sancus Oy Improved anti-skid stud of a vehicle
WO2014102936A1 (en) * 2012-12-26 2014-07-03 東洋ゴム工業株式会社 Stud pin and pneumatic tire provided therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290940A (en) * 2017-02-28 2019-09-27 横滨橡胶株式会社 Anti-skid stud and edge nail wheel tire
WO2021246350A1 (en) * 2020-06-01 2021-12-09 横浜ゴム株式会社 Stud pin and tire comprising same
JP2021187342A (en) * 2020-06-01 2021-12-13 横浜ゴム株式会社 Stud pin and tire including the same
JP7063350B2 (en) 2020-06-01 2022-05-09 横浜ゴム株式会社 Stud pins and tires with them
RU2807196C1 (en) * 2020-06-01 2023-11-10 Дзе Йокогама Раббер Ко., Лтд. Stud and pneumatic tire equipped with stud
WO2021248627A1 (en) * 2020-06-11 2021-12-16 河北万达轮胎有限公司 Snow tire

Similar Documents

Publication Publication Date Title
JP5983731B2 (en) Stud pin and pneumatic tire
JP5831646B2 (en) Stud pin and pneumatic tire
JP6589885B2 (en) Pneumatic tire
JP6844544B2 (en) Stud pins and stud tires
US10618357B2 (en) Stud pin, and pneumatic tire
JP2015136942A (en) Stud pin and pneumatic tire
WO2015107864A1 (en) Stud pin and pneumatic tire
JP2017197042A (en) Stud pin, pneumatic tire, pneumatic tire manufacturing method, and stud pin mounting method
CN108025602B (en) Pneumatic tire and stud
CN110290940B (en) Anti-skid nail and nail-embedded tire
JP6729375B2 (en) Stud pin and pneumatic tire
JP2018095081A (en) Stud pin and pneumatic tire
CN111936324B (en) Stud and studded tyre
JP6849052B2 (en) Stud pins and stud tires
CN110290941B (en) Anti-skid nail and nail-embedded tire
JP7243213B2 (en) stud pins and stud tires
CN110290942B (en) Anti-skid nail and nail-embedded tire
JP2018140703A (en) Stud pin and pneumatic tire
JP2017213960A (en) Pneumatic tire and stud pin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP