WO2015105302A1 - Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst - Google Patents

Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst Download PDF

Info

Publication number
WO2015105302A1
WO2015105302A1 PCT/KR2015/000053 KR2015000053W WO2015105302A1 WO 2015105302 A1 WO2015105302 A1 WO 2015105302A1 KR 2015000053 W KR2015000053 W KR 2015000053W WO 2015105302 A1 WO2015105302 A1 WO 2015105302A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon nanotubes
carbon nanotube
walled carbon
walled
Prior art date
Application number
PCT/KR2015/000053
Other languages
French (fr)
Korean (ko)
Inventor
강득주
김주희
김주식
Original Assignee
주식회사 제이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140174427A external-priority patent/KR101756453B1/en
Application filed by 주식회사 제이오 filed Critical 주식회사 제이오
Priority to JP2016543626A priority Critical patent/JP7179441B2/en
Priority to US15/110,737 priority patent/US9975774B2/en
Priority to CN201580003474.4A priority patent/CN105873679B/en
Publication of WO2015105302A1 publication Critical patent/WO2015105302A1/en

Links

Classifications

    • B01J35/617
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Definitions

  • the present invention relates to a catalyst for synthesizing multi-walled carbon nanotubes. More specifically, the multi-walled carbon nanotubes can easily disperse the synthesized multi-walled carbon nanotubes and can significantly improve conductivity.
  • a catalyst for synthesis, a method for producing the catalyst, and a multi-walled carbon nanotube synthesized with the catalyst are examples of the multi-walled carbon nanotubes.
  • Carbon nanotubes are carbon allotropees that form a cylindrical tube structure by combining carbons in hexagons, and are called nanotubes because they have a small shape of ribs of several nm in diameter. These carbon nanotubes are hollow because they are light and are attracting attention as new materials due to their tensile strength up to 100 times or more and up to 90 ° without damage to steel of the same thickness. In addition, it has high thermal conductivity and electrical conductivity, and exhibits the characteristics of the conductor and the semiconductor depending on the angle at which the carbon layer is wound.
  • the carbon nano-leave may be classified into a single walled carbon nanotube (SWNT) and a multi-walled carbon nanotube (MWNT) according to the number of walls.
  • SWNT single walled carbon nanotube
  • MWNT multi-walled carbon nanotube
  • carbon nanotubes are electro-discharge, laser deposition, plasma
  • the present invention has been made to solve the problems of the prior art as described above, and a catalyst having a large specific surface area having a value of 30 or more divided by the volume of carbon nanotubes grown per catalyst lg by the volume of lg is prepared. , Using this to manufacture high quality multi-walled carbon nanotubes having a large specific surface area (preferably 3-10 ran in diameter and 3-10 in number of walls). And to provide a technology to enable mass production of low cost multi-walled carbon nanotubes greatly improved dispersibility.
  • the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
  • One aspect of the present application provides a multi-walled carbon nanotube having a volume of 30 or more divided by the volume of the catalyst lg divided by the volume of the multi-walled carbon nanotubes grown per catalyst lg represented by the following formula (1): V t / c- (W t x yt ) / (W c XY c ) (1)
  • W t is the weight of carbon nanotubes that can be listed as a unit catalyst (lg),
  • W c is lg as the unit catalyst weight, p t is the hanging density of carbon nanotubes, and p c is the hanging density of catalyst).
  • Another aspect of the present application provides a multi-walled carbon nano-leuver, characterized in that the surface area is 400 ⁇ 1000 m7g.
  • the surface area of the multi-walled carbon nanotubes is, for example,
  • niVg 400-1,000 preferably 500 1,000 niVg, more preferably 600 ⁇ 1,000 or m7g.
  • Another aspect of the present disclosure provides a composite containing multi-walled carbon nanoleubes.
  • the composite may include more than 0.5% by weight of the multi-walled carbon nanotubes, thereby having a conductivity, the matrix of the composite may be a polymer, a ceramic, a metal or a combination thereof.
  • an energy storage device including multi-walled carbon nanotubes.
  • Another aspect of the present application is composed of Fe, Co, Ca, Ni and Mo.
  • a plate-shaped catalyst for growing carbon nanotubes having a volume of carbon nanotubes divided by the volume of catalyst l g of 30 or more:
  • Wt is the weight of carbon nanotubes that can be grown as a unit catalyst (lg)
  • W c is lg as the weight of the unit catalyst
  • p t is the hanging density of carbon nanotubes
  • p e is the apparent density of the catalyst.
  • Another aspect of the present application provides a plate-shaped catalyst for growing carbon nanotubes having a specific surface area of 120 inVg or more.
  • Another aspect of the present application provides a carbon nanotube comprising a plate-shaped catalyst. In the case of the plate-shaped catalyst, the surface area is larger than that of the spherical or acicular catalyst,
  • Each surface of the plate-shaped catalyst of the present application is flat or has a curvature
  • the plate-shaped catalyst produced by the catalyst production method according to the present invention has a very low density. That is, since the surface area is very wide compared to the weight, synthesizing carbon nanotubes using such a catalyst, the dispersion energy is low, and the degree of damage in the dispersion process is very low to maintain high conductivity.
  • the multi-walled carbon nano-leave synthesized using the catalyst according to the production method of the present invention has a diameter comparable to that of a single-walled carbon nanotube (SWNT), and the number of walls is very homogeneous with 3 to 10. ', The specific surface area is large, indicating very high conductivity.
  • the carbon nanotubes grown by using the catalyst of the present invention have a purity of 98% or more, and thus, multi-walled carbon nanotubes can be synthesized by using the same amount of catalyst.
  • FIG. 1 is a scanning electron microscope (SEM) image of a catalyst prepared according to Example 1 of the present application.
  • Figure 2 of the multi-walled carbon nanotubes prepared according to Example 1 of the present application are a scanning electron microscope (SEM) image of a catalyst prepared according to Example 1 of the present application.
  • Figure 3 is a multi-walled carbon nanotubes prepared according to Example 2 of the present application.
  • FIG. 4 is a graph showing surface resistance according to the content of multi-walled carbon nanotubes (MWNT). 5 is a schematic view showing a method of preparing a catalyst for multiwall carbon nanotube synthesis.
  • a multi-wall having a value of 30 or more divided by the volume of the catalyst-g divided by the volume of the multi-walled carbon nanotubes grown per gram of the catalyst represented by the following formula (1)
  • V t / c (W t XY t ) / (W c xy c ) (1)
  • W t is the weight of carbon nanotubes that can be grown as a unit catalyst (lg)
  • W c is lg as the weight of the unit catalyst
  • p t is the hanging density of the carbon nanotubes
  • Pc is the hanging density of the catalyst
  • This surface area is a large surface area that has not been observed in multi-walled carbon nanotubes other than single-walled carbon nanotubes (SWNT).
  • This surface area is multi-walled by carbon nanotubes grown using the catalyst of the present invention. This is because the number is small and the diameter of the carbon nanotubes is small.
  • the multi-walled carbon nanotubes have a diameter of 3 to 10 nm, and the number of walls is 3 to 10, but is not limited thereto.
  • the diameter of the multi-walled nano-leeve is 3 to 10 ran, preferably 3 to 6 ran, more preferably 3-5 ran, and the number of walls of the multi-walled carbon nanotubes is 3-10, preferably 3-6, more preferably 3-5.
  • the multi-walled carbon nanotubes are characterized by having a purity of 98% or more, but is not limited thereto.
  • Another aspect of the present application provides a composite comprising multi-walled carbon nanotubes.
  • the composite may include more than 0.5% by weight of the multi-walled carbon nanotubes, thereby having a conductive all, the matrix of the composite may be a polymer, ceramic, metal, or these mixtures.
  • the plymer may be a thermoplastic polymer or a thermosetting polymer, but is not limited thereto.
  • Thermoplastic resins are plastic or deformable polymeric materials that can be dissolved in liquid and re-dissolved after curing.
  • the thermoplastic resin may be an acrylic resin, vinyl chloride resin, vinyl acetate resin, vinylacetyl resin,
  • Methyl methacryl resin, styrene resin, polypropylene resin, polyethylene resin, or polyamide resin (nylon) may be used, but is not limited thereto.
  • Thermosetting resins are polymeric materials that cure into a more powerful form upon application of energy, and once cured, cannot be heated or molded again.
  • the thermosetting resin may be a phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, polyamide resin, alkyd resin, or silicone resin, but is not limited thereto. It is not.
  • the electrical conductivity of the carbon nanotube conductive composite in general, for a multi-walled carbon nanotubes is an electrical permeation (percolation) occurs in the amount of about 1-2 wt. 0/0.
  • the multi-walled carbon nanotubes according to the present invention exhibit conductivity even at very low concentrations of 5 wt%.
  • the conductive composite using the same may be used in, for example, a bulk composite, a thin film composite, an energy field, and an electric and electronic field, and specifically, an electronic device antistatic and electrostatic dispersion plastic, an electromagnetic shielding, and a heat dissipation plastic, Conductive transparent electrodes used in OLEDs and solar cells, lithium ion battery additives, and carbon nanotube composites for concrete reinforcement and heat dissipation, but are not limited thereto.
  • Yet another aspect of the present disclosure provides an energy storage device including multi-walled carbon nanotubes. Carbon material including multi-walled carbon nanotubes is a very important material that determines the performance of the energy storage device, the energy storage device using the same, for example
  • Another aspect of the present application comprises at least one component selected from the group consisting of Fe, Co, Ca, Ni and Mo (preferably at least two components), and one component selected from the group consisting of Mn, Al, Mg and Si It includes the above (preferably two or more components), has a composition ratio represented by the following formula (1), the apparent density is 0.05 ⁇ 0.07g / m £, multi-walled carbon nanotubes grown per lg catalyst represented by the following formula 2 Provided is a plate-shaped catalyst for growing carbon nanotubes having a volume of 30 divided by the volume of catalyst lg:
  • a, b, c, d, e, w, x, z represents the mole fraction of each element, 0 ⁇ a ⁇ 10, 0 ⁇ b ⁇ 10, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 10, 0 ⁇ e ⁇ 10, 0 ⁇ w ⁇ 30, 0 ⁇ x ⁇ 30, 0 ⁇ y ⁇ 30, 0 ⁇ z ⁇ 30,
  • V t / c (W t XY t ) / (W c x Yc ) (2)
  • W t is the weight of carbon nanotubes that can be grown as a unit catalyst (lg)
  • W c is lg as the weight of the unit catalyst
  • p t is the apparent density of carbon nanotubes, and is the catalyst density of the catalyst).
  • the catalyst for example, iron ( ⁇ ) chloride tetrahydrate [Iron (II) chloride tetrahydrate], a substance containing iron (Fe) component [iron (II) sulfate heptahydrate [ Iron (II) sulfate heptahydrate], Iron (III) chloride anhydrous, Iron (III) nitrate nonahydrate [Iron (III) nitrate cobalt (II) acetate as a material comprising nonahydrate], ammonium iron (III) sulfate dodecahydrate, and cobalt (Co)
  • Calcium chloride anhydrous, Calcium nitrate tetrahydrate, Calcium sulfate dihydrate,
  • Ni nickel (II) chloride hexahydrate, nickel (II) nitrate hexahydrate, nickel (II) sulfate hexahydrate [Nickel (II) chloride hexahydrate] Nickel (II) sulfate hexahydrate], ammonium molybdate tetrahydrate, manganese (Mn), manganese (II) acetate tetrahydrate, manganese (II) chloride Tetrahydrate [Manganese (II) chloride
  • Manganese (II) nitrate hexahydrate Manganese (II) sulfate monohydrate, a material containing aluminum (Al), aluminum chloride nucleohydrate ( Aluminum chloride hexahydrate, Aluminum hydroxide, Aluminum
  • Another aspect of the present application provides a plate-shaped catalyst for growing carbon nanotubes having a specific surface area of 120 inVg or more.
  • the volume of multi-walled carbon nanotubes grown per catalyst lg divided by the volume of catalyst lg is 30 or more to increase the active reaction area by using a plate-shaped catalyst for growing carbon nanotubes.
  • Carbon nanotubes can be mass produced. Carbon nanotubes synthesized using the catalyst having a large specific surface area have low dispersion energy and high conductivity.
  • Another aspect of the present application provides a carbon nanotube comprising a plate-shaped catalyst. In the case of the plate-shaped catalyst, the surface area is larger than that of the spherical or acicular catalyst,
  • the range of high temperature for droplet spraying the mixture is, for example, 400 ⁇ 900 ° C., preferably 400-700 ° C., more preferably 400-500 ° C.
  • the present invention will be described in more detail with reference to Examples, but the present application is not limited thereto.
  • Example 1 The sum of the moles of Al and Mg in 100 of water is 16, and M6 (N0 3 ) 2 .63 ⁇ 40 and While adding and stirring A1C1 3 '6H 2 O, Fe (N0 3 ) 2 ' 9H 2 0 and Co (N0 3 ) 2 '6H 2 0 were added and stirred so that the sum of the moles of Fe and Co became 5. Thereafter, the mixture was calcined while spraying droplets in the range of 400-900 ° C. to obtain a catalyst.
  • Example 2 The same production method as in Example 1 was used, and the metal catalyst was prepared by changing the sum of the moles of AIII and Mg to 20.
  • Carbon nanotubes were prepared.
  • Preparation Example 2 Through a vapor deposition method using a catalyst obtained in Example 2 to raise the temperature of a reaction vessel under a carbon source gas and an inert gas to 400-1200 ° C.
  • Carbon nanotubes were prepared.
  • a batch type reactor As the reactors used to prepare the carbon nanotubes in Preparation Examples 1 and 2, a batch type reactor, a fluidized bed reactor, a rotary kiln reactor, etc. may be used.
  • a loop type fluidized bed reactor may be used, but is not limited thereto.
  • particulate plate catalysts with a maximized specific surface area were prepared.
  • 1 is a scanning electron microscope (SEM) image of a catalyst prepared according to Example 1.
  • FIG. The BET (Brunauer Emmett Teller) specific surface area measurement was 142 mVg, and the apparent density of the catalyst was applied according to Korean Industrial Standard (KS M ISO 1306). That is, in order to measure the walking density, the diameter is 100 ⁇ 10 ⁇ , there is no headlight on the straight wall of constant height, and it is not more than 50 mm higher than the edge of a cylindrical container with a capacity of 1,000 cm 3 when fully filled.
  • KS M ISO 1306 Korean Industrial Standard
  • the catalyst was placed in the center of the vessel, with excess catalyst used to make the cone higher than the edge of the vessel.
  • a straight line or spatula was horizontally contacted with the edge of the container at right angles, and then wiped once to select the surface and weighed with the catalyst.
  • the weight of the catalyst was determined by subtracting the cylinder weight to the nearest g number.
  • the coarse densities of the catalysts prepared in Example 1 and Example 2 measured as described above were 0.05 g / ⁇ and 0.02 g / m, respectively.
  • the multi-walled carbon nanotubes of Preparation Example 1 and Preparation Example 2 were prepared using the catalysts prepared in Examples 1 and 2, wherein the catalysts were synthesized per lg.
  • the amount of carbon nanotubes was 90g and 80g, respectively.
  • 2 g is dried over a little more than one hour of carbon nanotubes at 125 ° C and drying
  • the carbon nanotubes were placed in a weighed crucible and weighed up to 0.1 mg, which were placed in an electric furnace at 800 ⁇ 25 ° C until heated, and the lid was heated. After transferring to a desiccator and weighing with a real thread, the weight was measured to 0.1 mg, the crucible and the lid were washed, dried in a dryer at 125 ° C., and weighed again to 0.1 mg.
  • the BET specific surface areas of the multi-walled carbon nanotubes synthesized in Preparation Example 1 and Preparation Example 2 were 600 m7g, respectively, and the weight ratios (V t / C ) were 450 and 160, respectively.
  • the weight ratio (W) of the carbon nanotubes grown using the unit catalyst (lg) is 450, and the multi-walled carbon nanotubes grown to the volume of the unit catalyst lg. That's 450 times the volume of the tube. That is, since the volume of the unit catalyst lg is 20, it means that the volume of the multi-walled carbon nanotubes grown using the plate catalyst is 9,000 ⁇ (9 Liter).
  • FIGS. 2 and 3 show scanning electron microscope (SEM) and transmission electron microscope (TEM) images of carbon nanotubes prepared according to Preparation Example 1 and Preparation Example 2, respectively. Of 500 urn, 50 um, 1 ⁇ m, and 20 ran . The scale bar can be used to check the measured carbon nanotubes.
  • Figure 4 is a graph showing the surface resistance of the composite according to the content of the multi-walled carbon nanotubes (MWNT) grown using the catalyst of the present application, was measured to confirm the conductivity.
  • Nylon 66 / MWNT composite was prepared by varying the content of carbon nanotubes. As shown in FIG. 4, the composite starts to exhibit conductivity from the content of the multi-walled carbon nanotubes (MWNT) of 0.5 wt%, and as the content of the multi-walled carbon nanotubes increases, the conductivity of the composite rapidly increases. (A rapid decrease in surface resistance occurs as the content of multiwalled carbon nanotubes increases).
  • MWNT multi-walled carbon nanotubes
  • FIG. 5 A schematic diagram of a method for preparing a catalyst for multi-walled carbon nanotube synthesis is shown in FIG. 5.
  • the catalyst (plate-shaped catalyst) prepared by the catalyst production method according to the present invention has a very low density.
  • the surface area is very large compared to the weight, so that the production of multi-walled carbon nanotubes can be increased, and the multi-walled carbon nanotubes synthesized by using such catalysts have low dispersion energy during dispersion and damage in length during dispersion. It is very low enough to maintain high conductivity.
  • high-purity multi-walled carbon nanotubes synthesized using the catalyst prepared by the production method of the present invention have a diameter comparable to that of single-walled carbon nanotubes (SWNT), and the number of walls is very homogeneous, with 3-10.
  • SWNT single-walled carbon nanotubes

Abstract

The present invention relates to a catalyst for synthesizing multi-wall carbon nanotubes and, more specifically, to a catalyst for synthesizing multi-wall carbon nanotubes, capable of easily disperse the synthesized multi-wall carbon nanotubes and significantly improving conductivity, to a method for producing the catalyst, and to multi-wall carbon nanotubes synthesized by the catalyst.

Description

【명세서】  【Specification】
【발명의 명칭】 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브 [Chemical Name of Invention] Catalyst for Synthesis of Multi-walled Carbon Nanotube, Method for Preparing the Catalyst, and Multi-walled Carbon Nanotube Synthesized by the Catalyst
【기술분야】 본 발명은 다중벽 탄소나노튜브 합성을 위한 촉매에 관한 것으로, 더욱 구체적으로는 합성된 다중벽 탄소나노튜브의 분산이 용이하고, 전도성을 현저하게 향상시킬 수 있는 다중벽 탄소나노튜브 합성을 위한 촉매, 그 촉매의 제조 방법 및 그 촉매로 합성된 다중벽 탄소나노튜브에 관한 것이다. TECHNICAL FIELD The present invention relates to a catalyst for synthesizing multi-walled carbon nanotubes. More specifically, the multi-walled carbon nanotubes can easily disperse the synthesized multi-walled carbon nanotubes and can significantly improve conductivity. A catalyst for synthesis, a method for producing the catalyst, and a multi-walled carbon nanotube synthesized with the catalyst.
【배경기술】 탄소나노튜브 (Carbon nanotube: CNT)는 탄소끼리 육각형으로 결합하여 원통형 튜브구조를 이룬 탄소 동소체의 일종으로, 직경이 수 nm 정도의 작은 류브모양을 하고 있어 나노튜브로 지칭된다. 이러한 탄소나노튜브는 속이 비어 있어 가볍고, 동일한 굵기의 강철 대비 최대 100배 이상의 인장강도 및 손상 없이 90°까지 휘는 물성으로 인해 신소재로 주목받고 있다. 또한, 높은 열전도성 및 전기전도성을 가지며, 탄소층이 감겨있는 각도에 따라 도체와 반도체의 성격을 나타낸다. 또한, 탄소나노류브는 벽와 개수에 따라 단일벽 탄소나노튜브 (single walled carbon nanotube: SWNT), 다중벽 탄소나노튜브 (multi-walled carbon nanotube: MWNT)로 구분되기도 한다. 일반적으로 탄소나노튜브는 전기방전법, 레이저 증착법, 플라즈마 BACKGROUND OF THE INVENTION Carbon nanotubes (CNTs) are carbon allotropees that form a cylindrical tube structure by combining carbons in hexagons, and are called nanotubes because they have a small shape of ribs of several nm in diameter. These carbon nanotubes are hollow because they are light and are attracting attention as new materials due to their tensile strength up to 100 times or more and up to 90 ° without damage to steel of the same thickness. In addition, it has high thermal conductivity and electrical conductivity, and exhibits the characteristics of the conductor and the semiconductor depending on the angle at which the carbon layer is wound. In addition, the carbon nano-leave may be classified into a single walled carbon nanotube (SWNT) and a multi-walled carbon nanotube (MWNT) according to the number of walls. In general, carbon nanotubes are electro-discharge, laser deposition, plasma
화학기상증착법, 열화학증착법, 기상합성법 및 전기분해법 등의 방법으로 제조될 수 있으며, 이 중 기상합성법의 경우 기판을 사용하지 않고 반웅로 안에 탄소를 함유하고 있는 가스와 촉매금속을 직접 공급하여 반응시켜 탄소나노류브의 It can be manufactured by chemical vapor deposition, thermochemical vapor deposition, gas phase synthesis, and electrolysis. Among them, in the case of vapor phase synthesis, a gas containing carbon and a catalyst metal in a reaction furnace are directly supplied and reacted without using a substrate. Carbon nanoleu
증착물을 형성하기 때문에 탄소나노튜브를 대량으로 합성할 수 있으면서도 Because deposits are formed, carbon nanotubes can be synthesized in large quantities,
경제성이 뛰어나 가장 각광받고 있다. 이러한 기상합성법에서는 촉매금속의 사용이 필수적이며, Ni, Co 또는 Fe 등이 촉매금속으로서 가장 많이 쓰이고 있다. 각각의 촉매금속 입자는 하나의 씨드 (seed)로 작용하여 탄소나노튜브가 형성된다. 한편, 탄소나노튜브 및 이를 제조하기 위한 촉매에 대한 선행문헌으로는 대한민국 공개특허 제 2010/0042765호 탄소나노튜브 합성용 담지촉매, 그 제조방법 및 이를 이용한 탄소나노튜브, 및 제 2012/0093458호 수직 배향된 번들 구조를 지닌 고전도성 탄소나노튜브 및 이를 이용한 고전도성 고분자 나노복합재 조성물이 있으며 , 파쇄된 구형형상의 촉매 및 시트형 촉매에 대해 각각 개시하고 있으나, 여전히 탄소나노튜브의 우수한 특성을 가진 고품질의 탄소나노튜브를 경제적으로 대량 생산하기에는 어려움이 있다ᅳ 즉, 촉매의 비표면적이 넓지 않아서 사용된 촉매량에 대한 탄소나노튜브의 생산량이 많지 않거나 생산된 탄소나노튜브의 표면적이 넓지 않고 품질이 일정치 않아서, 탄소나노튜브의 우수한 특성을 층분히 살려서 다양한 잠재적 용도에 사용하기에는 부족함이 있었다. It is very economical and is in the spotlight. In such a gas phase synthesis method, the use of a catalyst metal is essential, and Ni, Co, or Fe is most commonly used as a catalyst metal. Each catalytic metal particle acts as a seed to form carbon nanotubes. On the other hand, the prior literature on carbon nanotubes and a catalyst for producing the same as the supported catalyst for the synthesis of carbon nanotubes, Republic of Korea Patent Publication No. 2010/0042765, its preparation method and carbon nanotubes using the same, and 2012/0093458 vertical Highly conductive carbon nanotubes having an oriented bundle structure and a highly conductive polymer nanocomposite composition using the same are disclosed, but spherical spherical catalysts and sheet catalysts are disclosed, respectively, but still have high quality with excellent properties of carbon nanotubes. It is difficult to economically mass-produce carbon nanotubes. That is, the specific surface area of the catalyst is not wide, and the production of carbon nanotubes is not large for the amount of catalyst used, or the surface area of the produced carbon nanotubes is not wide and the quality is not constant. Utilizes the excellent properties of carbon nanotubes in various applications There was not enough.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 촉매 l g당 성장한 탄소나노튜브의 체적을 l g의 체적으로 나눈 값이 30 이상인 넓은 비표면적의 촉매를 제조하고, 이를 이용하여 넓은 비표면적을 가지는 고품질의 다중벽 탄소나노튜브 (바람직하게는 탄소나노튜브의 직경이 3~10 ran이고, 벽의 개수가 3~10개)를 제조하기 위한 것으로, 특히, 전도성 및 분산성을 크게 향상시킨 다중벽 탄소나노튜브를 저비용으로 대량 생산할 수 있도록 하는 기술을 제공하는데 그 목적이 있다. 그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. [Technical Problem] The present invention has been made to solve the problems of the prior art as described above, and a catalyst having a large specific surface area having a value of 30 or more divided by the volume of carbon nanotubes grown per catalyst lg by the volume of lg is prepared. , Using this to manufacture high quality multi-walled carbon nanotubes having a large specific surface area (preferably 3-10 ran in diameter and 3-10 in number of walls). And to provide a technology to enable mass production of low cost multi-walled carbon nanotubes greatly improved dispersibility. However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
【기술적 해결방법】 본원의 일 측면은, 하기 식 (1)로 표시되는 촉매 l g 당 성장한 다중벽 탄소나노튜브의 체적을 촉매 l g의 체적으로 나눈 값이 30 이상인 다중벽 탄소나노튜브를 제공한다: Vt/c - (Wtxyt)/(WcXYc) (1) Technical Solution One aspect of the present application provides a multi-walled carbon nanotube having a volume of 30 or more divided by the volume of the catalyst lg divided by the volume of the multi-walled carbon nanotubes grown per catalyst lg represented by the following formula (1): V t / c- (W t x yt ) / (W c XY c ) (1)
(상기 식 1에서
Figure imgf000005_0001
1/pc이고,
(Equation 1 above
Figure imgf000005_0001
1 / pc
Wt는 단위 촉매 (l g)로 상장시킬 수 있는 탄소나노튜브의 무게, W t is the weight of carbon nanotubes that can be listed as a unit catalyst (lg),
Wc는 단위 촉매의 무게로 l g이며, pt는 탄소나노튜브의 걸보기 밀도, pc는 촉매의 걸보기 밀도임). 본원의 다른 측면은, 표면적이 400~1000 m7g인 것을 특징으로 하는 다증벽 탄소나노류브를 제공한다. 다중벽 탄소나노튜브의 상기 표면적은, 예를 들어, W c is lg as the unit catalyst weight, p t is the hanging density of carbon nanotubes, and p c is the hanging density of catalyst). Another aspect of the present application provides a multi-walled carbon nano-leuver, characterized in that the surface area is 400 ~ 1000 m7g. The surface area of the multi-walled carbon nanotubes is, for example,
400-1,000 niVg, 바람직하게는 500 1,000 niVg, 더욱 바람직하게는 600~1,000 m7g이나 : 이에 제한되는 것은 아니다. 본원의 또 다른 측면은, 다중벽 탄소나노류브를 함유하는 복합체를 제공한다. 특히, 복합체는 다중벽 탄소나노튜브를 0.5 중량% 이상 포함할 수 있고, 이로 인하여 전도성을 가질 수 있으며, 복합체의 매트릭스는 폴리머, 세라믹, 금속 또는 이들의 흔합물일 수 있다. 본원의 또 다른 측껸은, 다중벽 탄소나노튜브를 포함하는 에너지 저장 장치를 제공한다. 본원의 또 다른 측면은, Fe, Co, Ca, Ni 및 Mo로 이루어진.군으로부터 선택된 1성분 이상을 포함하고, Mn, Al, Mg 및 Si로 이루어진 군으로부터 선택된 1성분 이상을 포함하며, 하기 화학식 1로 나타내어지는 조성비를 가지며, 걸보기 밀도가 0.05~0.07g/ 이며, 하기 식 (2)로 표시되는 촉매 l g 당 성장한 다중벽 But it is not limited to: niVg 400-1,000, preferably 500 1,000 niVg, more preferably 600 ~ 1,000 or m7g. Another aspect of the present disclosure provides a composite containing multi-walled carbon nanoleubes. In particular, the composite may include more than 0.5% by weight of the multi-walled carbon nanotubes, thereby having a conductivity, the matrix of the composite may be a polymer, a ceramic, a metal or a combination thereof. Yet another aspect of the present disclosure provides an energy storage device including multi-walled carbon nanotubes. Another aspect of the present application is composed of Fe, Co, Ca, Ni and Mo. It contains at least one component selected from the group, Mn, Al, Mg and at least one component selected from the group consisting of Si, has a composition ratio represented by the following formula (1), walk density is 0.05 ~ 0.07g /, Multiwall grown per catalyst lg represented by the following formula (2)
탄소나노튜브의 체적을 촉매 l g의 체적으로 나눈 값이 30 이상인 탄소나노튜브 성장용 판상형 촉매를 제공한다: Provided is a plate-shaped catalyst for growing carbon nanotubes having a volume of carbon nanotubes divided by the volume of catalyst l g of 30 or more:
[화학식 1] [Formula 1]
[Fea, Cob, Cac, Nid, Moe][Mnw, Alx, Mgy, Siz] [Fe a , Co b, Ca c, Ni d , Mo e ] [Mn w, Al x, Mg y, Si z ]
(상기 화학식 1에서, &, 1?^, (1,6,^ 2는 각 원소의 몰 분율을 나타내고, 0<a<10, 0<b<10, 0<c<10, 0<d<10, 0<e<10, 0<w<30, 0<x<30, 0<y<30, 0≤z≤30이며 , 2<a+b+c+d+e+w+x+y+z< 170, 2<a+b+c+d+e<50, 2<w+x+y+z<50임 ) Vt/c = (Wtxyt)/(WcxYc) (2) (상기 식 2에서 , γ( = l/pt, yc = l/pc이고, (In Formula 1, &, 1? ^, (1, 6, ^ 2 represents the mole fraction of each element, 0 <a <10, 0 <b <10, 0 <c <10, 0 <d < 10, 0 <e <10, 0 <w <30, 0 <x <30, 0 <y <30, 0≤z≤30, 2 <a + b + c + d + e + w + x + y + z <170, 2 <a + b + c + d + e <50, 2 <w + x + y + z <50) Vt / c = (W t xy t ) / (W c x Yc ) (2) (In Formula 2, γ ( = l / p t , y c = l / p c ,
Wt는 단위 촉매 (l g)로 성장시킬 수 있는 탄소나노튜브의 무게, Wc는 단위 촉매의 무게로 l g이며, pt는 탄소나노튜브의 걸보기 밀도, pe는 촉매의 겉보기 밀도임). 본원의 또 다른 측면은, 비표면적이 120 inVg 이상인 탄소나노튜브 성장용 판상형 촉매를 제공한다. 본원의 또 다른 측면은, 판상형 촉매를 포함하는 탄소나노튜브를 제공한다. 판상형 촉매의 경우, 구형 또는 침상형 촉매에 비해 표면적이 넓고, 촉매의 Wt is the weight of carbon nanotubes that can be grown as a unit catalyst (lg), W c is lg as the weight of the unit catalyst, p t is the hanging density of carbon nanotubes, and p e is the apparent density of the catalyst). Another aspect of the present application provides a plate-shaped catalyst for growing carbon nanotubes having a specific surface area of 120 inVg or more. Another aspect of the present application provides a carbon nanotube comprising a plate-shaped catalyst. In the case of the plate-shaped catalyst, the surface area is larger than that of the spherical or acicular catalyst,
상하면에서 탄소나노튜브가 동시에 성장할 수 있는 이점이 있다. 본원의 또 다른 측면은, Fe, Co, Ca, Ni 및 Mo의 반웅 전구체로부터 1성분 이상, Μη, Αΐ, Mg 및 Si의 반웅 전구체로부터 1성분 이상을 선택 및 흔합하여 흔합물을 생성하는 흔합 단계 (a); 및 상기 흔합물을 400~900 °C에서 액적 분무하면서 소성하는 단계 (b)를 포함하는 탄소나노튜브 성장용 판상형 촉매의 제조방법을 제공한다. 본원의 판상형 촉매의 각 면은 편평하거나, 곡률을 가지는 곡면의 There is an advantage that the carbon nanotubes can grow at the same time. Another aspect of the present application, a mixing step of selecting and mixing at least one component from the reaction mixtures of Fe, Co, Ca, Ni and Mo, and at least one component from reaction reaction precursors of Μη, Αΐ, Mg and Si to form a mixture. (a); And it provides a method for producing a carbon nanotube plate-shaped catalyst comprising the step (b) firing the mixture while spraying the droplets at 400 ~ 900 ° C. Each surface of the plate-shaped catalyst of the present application is flat or has a curvature
형태 (휘어진 형태)일 수 있으나 이에 제한되는 것은 아니다. It may be in the form (curved form), but is not limited thereto.
【유리한 효과】 본 발명에 따르는 촉매 제조 방법으로 제조된 판상형 촉매는 걸보기 밀도가 매우 작다. 즉 무게에 비하여 표면적이 매우 넓으므로, 이러한 촉매를 이용하여 탄소나노튜브를 합성하면 분산에너지가 적게 드는 것은 물론 분산 과정에서 길이가 손상되는 정도가 매우 낮아 높은 전도성을 유지할 수 있다. 본 발명의 제조 방법에 의한 촉매를 이용하여 합성된 다중벽 탄소나노류브는 단일벽 탄소나노튜브 (SWNT)에 버금가는 직경을 가지고 있고, 벽 (wall)의 개수가 3~10개로 매우 균질한 상태이며,'비표면적이 커서 매우 높은 전도성을 나타낸다. 또한, 본 발명의 촉매를 이용하여 성장시킨 탄소나노튜브는 98% 이상의 순도를 가지고 있어서 동알한 양의 촉매를 이용하여 수배 이상 많은 양의 다중벽 탄소나노튜브를 합성할 수 있다. [Effective Effect] The plate-shaped catalyst produced by the catalyst production method according to the present invention has a very low density. That is, since the surface area is very wide compared to the weight, synthesizing carbon nanotubes using such a catalyst, the dispersion energy is low, and the degree of damage in the dispersion process is very low to maintain high conductivity. The multi-walled carbon nano-leave synthesized using the catalyst according to the production method of the present invention has a diameter comparable to that of a single-walled carbon nanotube (SWNT), and the number of walls is very homogeneous with 3 to 10. ', The specific surface area is large, indicating very high conductivity. In addition, the carbon nanotubes grown by using the catalyst of the present invention have a purity of 98% or more, and thus, multi-walled carbon nanotubes can be synthesized by using the same amount of catalyst.
【도면의 간단한 설명】 도 1은 본원의 실시예 1에 따라 제조된 촉매의 주사전자현미경 (scanning electron microscope: SEM) 이미지이다. 도 2는 본원의 실시예 1에 따라 제조된 다중벽 탄소나노튜브의 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a scanning electron microscope (SEM) image of a catalyst prepared according to Example 1 of the present application. Figure 2 of the multi-walled carbon nanotubes prepared according to Example 1 of the present application
주사전자현미경 (SEM) 및 투과전자현미경 (transmission electron microscope: TEM) 이미지이다. 도 3은 본원의 실시예 2에 따라 제조된 다중벽 탄소나노튜브의 Scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Figure 3 is a multi-walled carbon nanotubes prepared according to Example 2 of the present application
주사전자현미경 (SEM) 및 투과전자현미경 (TEM) 이미지이다ᅳ 도 4는 다중벽 탄소나노튜브 (MWNT)의 함량에 따른 표면 저항을 나타내는 그래프이다. 도 5는 다중벽 탄소나노튜브 합성을 위한 촉매의 제조방법을 나타내는 개략도이다. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. FIG. 4 is a graph showing surface resistance according to the content of multi-walled carbon nanotubes (MWNT). 5 is a schematic view showing a method of preparing a catalyst for multiwall carbon nanotube synthesis.
【발명의 실시를 위한 최선의 형태】 이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. 본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본 명세서에서 사용되는 정도의 용어 "약"은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 Best Mode for Carrying Out the Invention Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. As used herein, the term "about" refers to the preparation and inherent in the meanings mentioned. When a substance tolerance is given, it is used in the sense of or in the vicinity of the numerical value, and for the purpose of understanding the disclosure, reference is made to the disclosure in which an accurate or absolute numerical value is mentioned.
비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서,"〜하는 단계" 또는 "〜의 단계"는 "〜를 위한 단계"를 의미하지 않는다. 이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다. It is used to prevent unscrupulous intruders from using it unfairly. In addition, in this specification, "a step to" or "a step of" does not mean "a step for ...". Hereinafter, with reference to the accompanying drawings will be described embodiments and embodiments of the present application; However, the present application is not limited to these embodiments, examples and drawings.
본원의 일 측면은, 하기 식 (1)로 표시되는 촉매 l g 당 성장한 다중벽 탄소나노튜브의 체적을 촉매 l g의 체적으로 나눈 값이 30 이상인 다중벽 In one aspect of the present application, a multi-wall having a value of 30 or more divided by the volume of the catalyst-g divided by the volume of the multi-walled carbon nanotubes grown per gram of the catalyst represented by the following formula (1)
탄소나노튜브를 제공한다: Provides carbon nanotubes:
Vt/c = (WtXYt)/(Wcxyc) (1) V t / c = (W t XY t ) / (W c xy c ) (1)
(상기 식 서, 이/ ,^ /^이고, (Equation above, this /, ^ / ^,
Wt는 단위 촉매 (l g)로 성장시킬 수 있는 탄소나노튜브의 무게, Wc는 단위 촉매의 무게로 l g이며, pt는 탄소나노튜브의 걸보기 밀도, Pc는 촉매의 걸보기 밀도임). 본원의 다른 측면은, 표면적이 400~1,000 m7g인 것을 특징으로 하는 다중벽 탄소나노튜브를 제공한다. 다중벽 탄소나노튜브의 상기 표면적은, 예를 들어, W t is the weight of carbon nanotubes that can be grown as a unit catalyst (lg), W c is lg as the weight of the unit catalyst, p t is the hanging density of the carbon nanotubes, and Pc is the hanging density of the catalyst) . Another aspect of the present application provides a multi-walled carbon nanotubes, characterized in that the surface area of 400 ~ 1,000 m7g. The surface area of the multi-walled carbon nanotubes is, for example,
400-1,000 niVg, 바람직하게는 500~1,000 niVg, 더욱 바람직하게는 600~1,000 m7g이나, 이에 제한되는 것은 아니다. 이러한 표면적은 단일벽 탄소나노튜브 (SWNT)가 아닌 다중벽 탄소나노튜브에서는 관찰된 적이 없는 넓은 표면적으로, 이러한 표면적은 본원의 촉매를 사용하여 성장시킨 탄소나노튜브가 다중벽을 가지고 있으나, 벽의 개수가 적고 탄소나노튜브의 직경이 작기 때문이다. 본원의 일 구현예에 있어서, 다중벽 탄소나노튜브는 직경이 3~10 nm이고, 벽의 개수가 3~10개인 것을 특징으로 하나, 이에 제한되는 것은 아니다. 예를 들어, 상기 다중벽 나노류브의 직경은 3~10 ran, 바람직하게는 3~6 ran, 더욱 바람직하게는 3-5 ran이고, 상기 다중벽 탄소나노튜브의 벽의 개수는 3~10개, 바람직하게는 3~6개, 더욱 바람직하게는 3~5개이다. 본원의 일 구현예에 있어서, 다중벽 탄소나노튜브는 순도가 98% 이상인 것을 특징으로 하나, 이에 제한되는 것은 아니다. 본원의 또 다른 측면은, 다중벽 탄소나노튜브를 포함하는 복합체를 제공한다. 특히, 복합체는 다중벽 탄소나노튜브를 0.5 중량% 이상 포함할 수 있고, 이로 인하여 전도성올 가질 수 있으며, 복합체의 매트릭스는 폴리머, 세라믹, 금속, 또는 이들꾀 흔합물일 수 있다. 상기 플리머는 열가소성 폴리머 또는 열경화성 폴리머일 수 있으나, 이에 제한되는 것은 아니다. 열가소성 수지는 가소성 또는 변형성 중합체 소재로서, 액체로 용해되며 경화된 후에도 다시 용해되어 재성형이 가능하다. 예를 들어, 상기 열가소성 수지로는 아크릴 수지, 염화비닐 수지, 초산비닐 수지, 비닐아세틸 수지, 400-1,000 niVg, preferably 500-1,000 niVg, more preferably 600-1,000 m7g, but is not limited thereto. This surface area is a large surface area that has not been observed in multi-walled carbon nanotubes other than single-walled carbon nanotubes (SWNT). This surface area is multi-walled by carbon nanotubes grown using the catalyst of the present invention. This is because the number is small and the diameter of the carbon nanotubes is small. In one embodiment of the present application, the multi-walled carbon nanotubes have a diameter of 3 to 10 nm, and the number of walls is 3 to 10, but is not limited thereto. For example, the diameter of the multi-walled nano-leeve is 3 to 10 ran, preferably 3 to 6 ran, more preferably 3-5 ran, and the number of walls of the multi-walled carbon nanotubes is 3-10, preferably 3-6, more preferably 3-5. In one embodiment of the present application, the multi-walled carbon nanotubes are characterized by having a purity of 98% or more, but is not limited thereto. Another aspect of the present application provides a composite comprising multi-walled carbon nanotubes. In particular, the composite may include more than 0.5% by weight of the multi-walled carbon nanotubes, thereby having a conductive all, the matrix of the composite may be a polymer, ceramic, metal, or these mixtures. The plymer may be a thermoplastic polymer or a thermosetting polymer, but is not limited thereto. Thermoplastic resins are plastic or deformable polymeric materials that can be dissolved in liquid and re-dissolved after curing. For example, the thermoplastic resin may be an acrylic resin, vinyl chloride resin, vinyl acetate resin, vinylacetyl resin,
메틸메타크릴 수지, 스티렌 수지, 폴리프로필렌 수지, 폴리에틸렌 수지, 또는 폴리아미드 수지 (나일론) 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 열경화성 수지는 에너지를 가하면 더 강력한 형태로 경화되는 중합체 소재로서, 일단 경화되면 다시 가열하거나성형할 수 없다. 예를 들어, 상기 열경화성 수지로는 페놀 수지, 우레아 수지, 맬라민 수지, 불포화플리에스테르 수지, 에폭시 수지, 폴리우레탄 수지, 폴리아미드 수지, 알키드 수지, 또는 실리콘 수지 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 탄소나노튜브 전도성 복합체의 전기전도도에 있어서, 일반적으로 다중벽 탄소나노튜브의 경우는 약 1~2 중량0 /0의 함량에서 전기적 침투 (percolation)가 발생하게 된다. 본원에 따른 다중벽 탄소나노튜브는 매우 낮은 농도인 으5 중량 %에서도 전도성을 나타낸다. 이를 이용한 전도성 복합체는, 예를 들어, 벌크형 복합체, 박막형 복합체, 에너지 분야 및 전기전자분야에 활용될 수 있으며, 구체적으로는 전자소자 대전방지 및 정전기분산용 플라스틱, 전자파차폐 및 방열특성을 보유한 플라스틱, OLED와 태양전지에 이용되는 전도성 투명전극, 리튬이온전지 첨가제, 및 콘크리트 강화 및 방열용 탄소나노튜브 복합체로도 이용될 수 있으나, 이에 제한되는 것은 아니다. 본원의 또 다른 측면은, 다중벽 탄소나노튜브를 포함하는 에너지 저장 장치를 제공한다. 다중벽 탄소나노튜브를 포함하는 탄소재료는 에너지 저장 장치의 성능을 좌우하는 매우 중요한 물질로서, 이를 이용한 에너지 저장 장치로는, 예를 들어Methyl methacryl resin, styrene resin, polypropylene resin, polyethylene resin, or polyamide resin (nylon) may be used, but is not limited thereto. Thermosetting resins are polymeric materials that cure into a more powerful form upon application of energy, and once cured, cannot be heated or molded again. For example, the thermosetting resin may be a phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, polyamide resin, alkyd resin, or silicone resin, but is not limited thereto. It is not. In the electrical conductivity of the carbon nanotube conductive composite, in general, for a multi-walled carbon nanotubes is an electrical permeation (percolation) occurs in the amount of about 1-2 wt. 0/0. The multi-walled carbon nanotubes according to the present invention exhibit conductivity even at very low concentrations of 5 wt%. The conductive composite using the same may be used in, for example, a bulk composite, a thin film composite, an energy field, and an electric and electronic field, and specifically, an electronic device antistatic and electrostatic dispersion plastic, an electromagnetic shielding, and a heat dissipation plastic, Conductive transparent electrodes used in OLEDs and solar cells, lithium ion battery additives, and carbon nanotube composites for concrete reinforcement and heat dissipation, but are not limited thereto. Yet another aspect of the present disclosure provides an energy storage device including multi-walled carbon nanotubes. Carbon material including multi-walled carbon nanotubes is a very important material that determines the performance of the energy storage device, the energy storage device using the same, for example
1차전지 및 2차전지, 초고용량 캐패시터 (super-capacitor), 연료전지, 태양 전지가 있으나, 이에 제한되는 것은 아니다. 본원의 또 다른 측면은, Fe, Co, Ca, Ni 및 Mo로 이루어진 군으로부터 선택된 1성분 이상을 포함하고 (바람직하게는 2성분 이상) , Mn, Al, Mg 및 Si로 이루어진 군으로부터 선택된 1성분 이상을 포함하며 (바람직하게는 2성분 이상), 하기 화학식 1로 나타내어지는 조성비를 가지며, 겉보기 밀도가 0.05~0.07g/m£이며, 하기 식 2로 표시되는 촉매 l g 당 성장한 다중벽 탄소나노튜브의 체적을 촉매 l g의 체적으로 나눈 값이 30 아상인 탄소나노튜브 성장용 판상형 촉매를 제공한다: Primary and secondary batteries, super-capacitors, fuel cells, solar cells, but are not limited thereto. Another aspect of the present application comprises at least one component selected from the group consisting of Fe, Co, Ca, Ni and Mo (preferably at least two components), and one component selected from the group consisting of Mn, Al, Mg and Si It includes the above (preferably two or more components), has a composition ratio represented by the following formula (1), the apparent density is 0.05 ~ 0.07g / m £, multi-walled carbon nanotubes grown per lg catalyst represented by the following formula 2 Provided is a plate-shaped catalyst for growing carbon nanotubes having a volume of 30 divided by the volume of catalyst lg:
[화학식 1] [Formula 1]
[Fea, Cob, Cac, Nid, Moe][Mnw, Alx, Mgy> Siz] [Fe a , Co b, Ca c, Ni d , Mo e ] [Mn w, Al x, Mg y> Si z ]
(상기 화학식 1에서, a, b, c, d, e, w, x, z는 각 원소의 몰 분율을 나타내고, 0<a<10, 0<b<10, 0<c<10, 0<d<10, 0<e<10, 0<w<30, 0<x<30, 0<y<30, 0≤z≤30이며,(In Formula 1, a, b, c, d, e, w, x, z represents the mole fraction of each element, 0 <a <10, 0 <b <10, 0 <c <10, 0 < d <10, 0 <e <10, 0 <w <30, 0 <x <30, 0 <y <30, 0≤z≤30,
2<a+b+c+d+e+w+x+y+z<l 70, 2<a+b+c+d+e<50, 2<w+x+y+z<50¾) 2 <a + b + c + d + e + w + x + y + z <l 70, 2 <a + b + c + d + e <50, 2 <w + x + y + z <50¾)
Vt/c = (WtXYt)/(WcxYc) (2) V t / c = (W t XY t ) / (W c x Yc ) (2)
(상기 식 (2)에서, γ(= l/pt, Yc= 1/pc이고, (In Formula ( 2 ), γ (= l / p t , Y c = 1 / pc,
Wt는 단위 촉매 (l g)로 성장시킬 수 있는 탄소나노튜브의 무게, Wc는 단위 촉매의 무게로 l g이며, pt는 탄소나노튜브의 겉보기 밀도, 는 촉매의 걸보기 밀도임). 본원의 일 구현예에 있어서, 상기 촉매는, 예를 들어, 철 (Fe) 성분올 포함하는 물질로서 철 (π) 클로라이드 테트라하이드레이트 [Iron(II) chloride tetrahydrate], 철 (II) 설페이트 헵타하이드레이트 [Iron(II) sulfate heptahydrate], 철 (III) 클로라이드 무수화물 [Iron(III) chloride anhydrous], 철 (III) 나이트레이트 노나하이드레이트 [Iron(III) nitrate nonahydrate], 암모늄 철 (III) 설페이트 도데카하이드레이트 [Ammonium iron(III) sulfate dodecahydrate], 코발트 (Co)를 포함하는 물질로서 코발트 (II) 아세테이트 W t is the weight of carbon nanotubes that can be grown as a unit catalyst (lg), W c is lg as the weight of the unit catalyst, p t is the apparent density of carbon nanotubes, and is the catalyst density of the catalyst). In one embodiment of the present application, the catalyst, for example, iron (π) chloride tetrahydrate [Iron (II) chloride tetrahydrate], a substance containing iron (Fe) component [iron (II) sulfate heptahydrate [ Iron (II) sulfate heptahydrate], Iron (III) chloride anhydrous, Iron (III) nitrate nonahydrate [Iron (III) nitrate cobalt (II) acetate as a material comprising nonahydrate], ammonium iron (III) sulfate dodecahydrate, and cobalt (Co)
테트라하이드레이트 [Cobalt(II) acetate tetrahydrate], 코발트 (II) 클로라이드 Cobalt (II) acetate tetrahydrate, cobalt (II) chloride
핵사하이드레이트 [Cobalt(II) chloride hexahydrate], 코발트 (II) 나이트레이트 Cobalt (II) chloride hexahydrate, cobalt (II) nitrate
핵사하이드레이트 [Cobalt(II) nitrate hexahydrate], 코발트 (II) 설페이트 Cobalt (II) nitrate hexahydrate, cobalt (II) sulfate
헵타하이드레이트 [Cobalt(II) sulfate heptahydrate], 칼슘 (ca)을 포함하는 물질로서 칼슘 아세테이트 모노하이드레이트 (Calcium acetate monohydrate), 칼슘 클로라이드 Heptahydrate [Cobalt (II) sulfate heptahydrate], Calcium acetate monohydrate, calcium chloride
무수화물 (Calcium chloride anhydrous), 칼슘 나이트레이트 테트라하이드레이트 (Calcium nitrate tetrahydrate), 칼슘 설페이트 디하이드레이트 (Calcium sulfate dihydrate), Calcium chloride anhydrous, Calcium nitrate tetrahydrate, Calcium sulfate dihydrate,
니켈 (Ni)을 포함하는 물질로서 니켈 (Π) 클로라이드 핵사하이드레이트 [Nickel(II) chloride hexahydrate], 니켈 (Π) 나이트레이트 핵사하이드레이트 [Nickel(II) nitrate hexahydrate], 니켈 (II) 설페이트 핵사하이드레이트 [Nickel(II) sulfate hexahydrate], 암모늄 몰리브데이트 테트라하이드레이트 (Ammonium molybdate tetrahydrate), 망간 (Mn)을 포함하는 물질로서 망간 (II) 아세테이트 테트라하이드레이트 [Manganese(II) acetate tetrahydrate], 망간 (II) 클로라이드 테트라하이드레이트 [Manganese(II) chloride Materials containing nickel (Ni) include nickel (II) chloride hexahydrate, nickel (II) nitrate hexahydrate, nickel (II) sulfate hexahydrate [Nickel (II) chloride hexahydrate] Nickel (II) sulfate hexahydrate], ammonium molybdate tetrahydrate, manganese (Mn), manganese (II) acetate tetrahydrate, manganese (II) chloride Tetrahydrate [Manganese (II) chloride
tetrahydrate], 망간 (Π) 나이트레이트 핵사하이드레이트 [Manganese(II) nitrate hexahydrate]: 망간 (Π) 설페이트 모노하이드레이트 [Manganese(II) sulfate monohydrate], 알루미늄 (Al)을 포함하는 물질로서 알루미늄 클로라이드 핵사하이드레이트 (Aluminium chloride hexahydrate), 알루미늄 하이드록사이드 (Aluminium hydroxide), 알루미늄 tetrahydrate], Manganese (II) nitrate hexahydrate : Manganese (II) sulfate monohydrate, a material containing aluminum (Al), aluminum chloride nucleohydrate ( Aluminum chloride hexahydrate, Aluminum hydroxide, Aluminum
이소프로폭사이드 (Aluminium isopropoxide), 알루미늄 나이트레이트 Isopropoxide, Aluminum Nitrate
모노하이드레이트 (Aluminium nitrate nonahydrate), 마그네슘 (Mg)을 포함하는 물질호서 마그네슘 아세테이트 테트라하이드레이트 (Magnesium acetate tetrahydrate), 마그네슘 클로라이드 핵사하이드레이트 (Magnesium chloride hexahydrate), 마그네슘 Aluminum nitrate nonahydrate, substance containing magnesium (Mg) Magnesium acetate tetrahydrate, magnesium chloride hexahydrate, magnesium
하이드톡사이드 (Magnesium hydroxide), 마그네슘 나이트레이트 Magnesium hydroxide, magnesium nitrate
핵사하이드레이트 (Magnesium nitrate hexahydrate), 마그네슘 설페이트 무수화물 Magnesium nitrate hexahydrate, magnesium sulfate anhydride
(Magnesium sulfate anhydrous), 규소 (Si)를 포함하는 물질로서 이산화규소 (Silicon dioxide), 탄화규소 (Silicon carbide), 규소 (Silicon), 규소 (IV)[Silicon(IV)] 염화물 (chloride), 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 본원의 또 다른 측면은, 비표면적이 120 inVg 이상인 탄소나노튜브 성장용 판상형 촉매를 제공한다. 본원에 따른 촉매 l g 당 성장한 다중벽 탄소나노튜브의 체적을 촉매 l g의 체적으로 나눈 값이 30 이상인 탄소나노튜브 성장용 판상형 촉매를 이용하여 활성 반웅 면적을 증대시킴으로써 비표면적이 넓은 (Magnesium sulfate anhydrous), a material containing silicon (Si), silicon dioxide, silicon carbide, silicon (Si), silicon (IV) [Silicon (IV)] chloride, and But may be selected from the group consisting of combinations thereof, but is not limited thereto. Another aspect of the present application provides a plate-shaped catalyst for growing carbon nanotubes having a specific surface area of 120 inVg or more. The volume of multi-walled carbon nanotubes grown per catalyst lg divided by the volume of catalyst lg is 30 or more to increase the active reaction area by using a plate-shaped catalyst for growing carbon nanotubes.
탄소나노튜브를 대량 생산할 수 있다. 본원의 비표면적이 넓은 촉매를 이용하여 합성된 탄소나노튜브는 낮은 분산에너지 및 높은 전도성을 가지고 있다. 본원의 또 다른 측면은, 판상형 촉매를 포함하는 탄소나노튜브를 제공한다. 판상형 촉매의 경우, 구형 또는 침상형 촉매에 비해 표면적이 넓고, 촉매의 Carbon nanotubes can be mass produced. Carbon nanotubes synthesized using the catalyst having a large specific surface area have low dispersion energy and high conductivity. Another aspect of the present application provides a carbon nanotube comprising a plate-shaped catalyst. In the case of the plate-shaped catalyst, the surface area is larger than that of the spherical or acicular catalyst,
상하면에서 탄소나노류브가 동시에 성장할 수 있어서 탄소나노튜브의 생산량을 높일 수 있다는 이점이 있다. 본원의 또 다른 측면은, Fe, Co, Ca, Ni 및 Mo의 반웅 전구체로부터 1성분 이상 : Mn, Al, Mg 및 Si의 반응 전구체로부터 1성분 이상을 선택 및 흔합하여 흔합물을 생성하는 흔합 단계 (a); 및 상기 흔합물을 400~900'C에서 액적 분무하면서 소성하는 단계 (b)를 포함하는 탄소나노튜브 성장용 판상형 촉매의 제조방법을 제공한다. 상기 (a) 단계 후에 (b) 단계를 진행하며,.상기 흔합물을 액적 분무하는 고온의 범위는, 예를 들어, 400~900°C , 바람직하게는 400-700 °C, 더욱 바람직하게는 400~500°C이다. 이하, 본원에 대하여 실시예를 이용하여 보다 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. There is an advantage in that the carbon nanotubes can be grown at the upper and lower surfaces at the same time to increase the production of carbon nanotubes. Another aspect of the present application, a mixing step of selecting and mixing one or more components from the reaction precursors of at least one component : Mn, Al, Mg, and Si from reaction precursors of Fe, Co, Ca, Ni, and Mo to generate a mixture. (a); And it provides a method for producing a carbon nanotube plate-shaped catalyst comprising the step (b) firing the mixture while spraying the droplets at 400 ~ 900 ' C. Proceeding to step (b) after step (a), the range of high temperature for droplet spraying the mixture is, for example, 400 ~ 900 ° C., preferably 400-700 ° C., more preferably 400-500 ° C. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present application is not limited thereto.
[실시예] EXAMPLE
Figure imgf000012_0001
실시예 1 물 100 에 Al과 Mg의 몰수의 합이 16이 되도톡 Mg(N03)2.6¾0과 A1C13'6H20를 투입하여 교반하면서, Fe와 Co의 몰수의 합이 5가 되도록 Fe(N03)2'9H20과 Co(N03)2'6H20를 투입하여 교반하였다. 이후, 상기 흔합물을 400~900 °C의 범위에서 액적 분무하면서 소성시켜 촉매를 수득하였다.
Figure imgf000012_0001
Example 1 The sum of the moles of Al and Mg in 100 of water is 16, and M6 (N0 3 ) 2 .6¾0 and While adding and stirring A1C1 3 '6H 2 O, Fe (N0 3 ) 2 ' 9H 2 0 and Co (N0 3 ) 2 '6H 2 0 were added and stirred so that the sum of the moles of Fe and Co became 5. Thereafter, the mixture was calcined while spraying droplets in the range of 400-900 ° C. to obtain a catalyst.
실시예 2 실시예 1에 기재된 방법과 동일한 제조 방법을 사용하였고 , ΑΙ과 Mg의 몰수의 합을 20으로 변화시켜 금속촉매를 제조하였다. Example 2 The same production method as in Example 1 was used, and the metal catalyst was prepared by changing the sum of the moles of AIII and Mg to 20.
제조예 1 상기 실시예 1의 수득된 촉매를 이용하여 탄소 소스 가스 및 불활성 기체 하에서 반웅기의 온도를 400 1200 °C로 숭온시키는 기상증착법을 통해 Preparation Example 1 Through a vapor deposition method using the obtained catalyst of Example 1, the temperature of the reaction vessel was raised to 400 1200 ° C. under a carbon source gas and an inert gas.
탄소나노튜브를 제조하였다. Carbon nanotubes were prepared.
제조예 2 상기 실시예 2의 수득된 촉매를 이용하여 탄소 소스 가스 및 불활성 기체 하에서 반웅기의 온도를 400~1200°C로 승온시키는 기상증착법을 통해 Preparation Example 2 Through a vapor deposition method using a catalyst obtained in Example 2 to raise the temperature of a reaction vessel under a carbon source gas and an inert gas to 400-1200 ° C.
탄소나노튜브를 제조하였다. Carbon nanotubes were prepared.
제조예 1 및 2에서 탄소나노튜브를 제조하기 위해 사용된 반응기로는 배치식 반웅기, 유동층 반웅기, 로타리 킬른 반웅기 등을 사용할 수 있고, 유동층 As the reactors used to prepare the carbon nanotubes in Preparation Examples 1 and 2, a batch type reactor, a fluidized bed reactor, a rotary kiln reactor, etc. may be used.
반응기로는 루프형의 유동층 반웅기를 사용할 수 있으나, 이에 제한되는 것은 아니다. 실시예 1 및 실시예 2에 따라 비표면적이 극대화된 미립자의 판상형 촉매가 제조되었다. 도 1은 실시예 1에 따라 제조된 촉매의 주사전자현미경 (SEM) 이미지이다. BET(Brunauer Emmett Teller) 비표면적 측정 결과는 142 mVg였으며, 촉매의 겉보기 밀도는 한국산업표준 (KS M ISO 1306)을 준용하였다. 즉, 걸보기 밀도를 측정하기 위해서 지름이 100±10 誦이고, 일정한 높이의 직벽에 주등이가 없으며, 완전히 채웠을 때 1,000 cm3의 용량을 지닌 실린더형 용기의 가장자리보다 50 mm 이상 높지 않은 곳에서 용기의 가운데 부분으로 촉매를 넣었으며, 이때 용기의 가장자리보다 높게 원추형을 만들 수 있도록 과량의 촉매를 사용하였다. 직선자 또는 주걱을 수평으로 하여 용기의 가장자리에 직각으로 빈름없이 접촉한 후 한 번 쓸어 표면을 고르고, 촉매와 함께 무게를 측정하였다. 실린더 무게를 감하여 가장 가까운 g수로 촉매의 질량을 결정하였다. 상기와 같이 측정한 실시예 1 및 실시예 2에 의해서 제조된 촉매의 걸보기 밀도는 각각 0.05 g/ ^과 0.02 g/m 였다. 상기 실시예 1 및 실시예 2에 의해서 제조된 촉매를 이용하여 제조예 1 및 제조예 2의 다중벽 탄소나노튜브를 제조하였고, 이때 촉매 l g당 합성된 As a reactor, a loop type fluidized bed reactor may be used, but is not limited thereto. According to Examples 1 and 2, particulate plate catalysts with a maximized specific surface area were prepared. 1 is a scanning electron microscope (SEM) image of a catalyst prepared according to Example 1. FIG. The BET (Brunauer Emmett Teller) specific surface area measurement was 142 mVg, and the apparent density of the catalyst was applied according to Korean Industrial Standard (KS M ISO 1306). That is, in order to measure the walking density, the diameter is 100 ± 10 誦, there is no headlight on the straight wall of constant height, and it is not more than 50 mm higher than the edge of a cylindrical container with a capacity of 1,000 cm 3 when fully filled. The catalyst was placed in the center of the vessel, with excess catalyst used to make the cone higher than the edge of the vessel. A straight line or spatula was horizontally contacted with the edge of the container at right angles, and then wiped once to select the surface and weighed with the catalyst. The weight of the catalyst was determined by subtracting the cylinder weight to the nearest g number. The coarse densities of the catalysts prepared in Example 1 and Example 2 measured as described above were 0.05 g / ^ and 0.02 g / m, respectively. The multi-walled carbon nanotubes of Preparation Example 1 and Preparation Example 2 were prepared using the catalysts prepared in Examples 1 and 2, wherein the catalysts were synthesized per lg.
탄소나노튜브의 양은 각각 90g과 80g이었다. 제조예 1 및 제조예 2로 합성된 다중벽 탄소나노튜브의 걸보기 밀도 (KS MThe amount of carbon nanotubes was 90g and 80g, respectively. Hanging Density of Multi-Walled Carbon Nanotubes Synthesized by Preparation Example 1 and Preparation Example 2 (KS M
ISO 1306에 따라 측정)는 O.Ol g/irrf였고, 투과전자현미경으로 측정한 탄소나노튜브의 직경은 5-8 nm였다. 순도는 98% 이싱 "을 나타냈으며 , 순도 측정은 한국산업표준 (Ash Content KS M ISO 1125)을 준용하였다. 즉, 순도 측정을 위하여 도가니를 밀폐된 전기로에서 1시간 동안 550±25 °C의 온도로 뚜껑을 덮어 가열한 후, 도가니와 뚜껑을 데시케이터에 넣었다. 실온으로 넁각시키고 0.1 mg까지 무게를 측정하였다. 2 g이 약간 넘는 탄소나노튜브를 125 °C와 건조기에서 1시간 동안 건조한 후, 실온으로 넁각시켰다. 탄소나노튜브를 무게를 측정한 도가니에 넣어 0.1 mg까지 무게를 측정하고, 이를 일정량이 될 때까지 800±25 °C의 전기로 안에 넣어 뚜껑을 열고 가열하였다ᅳ 뚜껑을 닫고 데시케이터로 옮겨 실은으로 넁각시킨 후, 0.1 mg까지 무게를 측정하였다. 도가니와 뚜껑을 세척하고 125 °C의 건조기 안에서 건조한 후 , 0.1 mg까지 무게를 재측정하였다. 제조예 1 및 제조예 2로 합성된 다중벽 탄소나노튜브의 BET 비표면적은 모두 600 m7g이었고, 각각의 체중량비 (Vt/C)는 450과 160을 나타냈다. 제조예 1로 생성된 다중벽 탄소나노튜브에 있어서, 단위 촉매 (l g)를 이용하여 성장된 탄소나노튜브의 체중량비 (W)가 450이라는 것은 단위 촉매 l g이 가지는 체적대비 성장된 다중벽 탄소나노튜브의 체적이 450배가 된다는 것이다. 즉, 단위 촉매 l g의 체적은 20 이므로, 판상형 촉매를 이용하여 성장시킨 다중벽 탄소나노튜브의 체적은 9,000 ηύ (9 Liter)라는 것을 의미한다. 도 2 및 도 3은 제조예 1 및 제조예 2에 따라 제조된 탄소나노튜브의 주사전자현미경 (SEM) 및 투과전자현미경 (TEM) 이미지를 각각 나타낸다 . 500 urn, 50 um, 1 ^m, 및 20 ran의 .스케일 바를 이용하여 측정된 탄소나노튜브를 확인할 수 있다. 도 4는 본원의 촉매를 사용하여 성장시킨 다중벽 탄소나노튜브 (MWNT)의 함량에 따른 복합체의 표면 저항을 나타내는 그래프로서, 전도성을 확인하기 위해 측정되었다. 이축 압출기 (twin screw extruder)를 사용하여 제조된 다중벽 Measured according to ISO 1306) was 0.1 g / irrf, and the diameter of the carbon nanotubes measured by transmission electron microscope was 5-8 nm. The purity was 98% Yixing, and the purity was measured according to the Korean Industrial Standard (Ash Content KS M ISO 1125). That is, for measuring purity, the crucible was kept at a temperature of 550 ± 25 ° C for 1 hour in a closed electric furnace. as after heating a cover, were placed in a crucible with a lid in a desiccator. nyaenggak to room temperature and weighed to 0.1 mg. 2 g is dried over a little more than one hour of carbon nanotubes at 125 ° C and drying The carbon nanotubes were placed in a weighed crucible and weighed up to 0.1 mg, which were placed in an electric furnace at 800 ± 25 ° C until heated, and the lid was heated. After transferring to a desiccator and weighing with a real thread, the weight was measured to 0.1 mg, the crucible and the lid were washed, dried in a dryer at 125 ° C., and weighed again to 0.1 mg. The BET specific surface areas of the multi-walled carbon nanotubes synthesized in Preparation Example 1 and Preparation Example 2 were 600 m7g, respectively, and the weight ratios (V t / C ) were 450 and 160, respectively. In the multi-walled carbon nanotubes produced in Preparation Example 1, the weight ratio (W) of the carbon nanotubes grown using the unit catalyst (lg) is 450, and the multi-walled carbon nanotubes grown to the volume of the unit catalyst lg. That's 450 times the volume of the tube. That is, since the volume of the unit catalyst lg is 20, it means that the volume of the multi-walled carbon nanotubes grown using the plate catalyst is 9,000 ηύ (9 Liter). 2 and 3 show scanning electron microscope (SEM) and transmission electron microscope (TEM) images of carbon nanotubes prepared according to Preparation Example 1 and Preparation Example 2, respectively. Of 500 urn, 50 um, 1 ^ m, and 20 ran . The scale bar can be used to check the measured carbon nanotubes. Figure 4 is a graph showing the surface resistance of the composite according to the content of the multi-walled carbon nanotubes (MWNT) grown using the catalyst of the present application, was measured to confirm the conductivity. Multi-Wall Fabricated Using Twin Screw Extruder
탄소나노튜브의 함량을 달리하여 나일론 66/MWNT복합체를 제조하였다. 도 4에 나타낸 바와 같이, 0.5 중량 %의 다중벽 탄소나노튜브 (MWNT) 함량에서부터 복합체는 전도성을 나타내기 시작하여, 다중벽 탄소나노튜브의 함량이 증가함에 따라서 복합체의 전도성이 급격히 높아지는 것을 알 수 있다 (다중벽 탄소나노튜브의 함량이 증가함에 따라서 표면 저항의 급속한 감소가 나타남). 본원의 촉매를 이용하여 합성한 분산성이 높은 다중벽 탄소나노튜브는 낮은 함량 (0.5 중량0 /0)에서도 폴리머 매트릭스 내에서 높은 전도성올 나타냈다. 다중벽 탄소나노튜브 합성을 위한 촉매의 제조방법올 나타내는 개략도는 도 5에 나타냈다. 이상에서 상세히 설명한 바와 같이 본 발명에 따르는 촉매 제조 방법으로 제조된 촉매 (판상형 촉매)는 걸보기 밀도가 매우 작다. 즉 무게에 비하여 표면적이 매우 넓어서, 다중벽 탄소나노튜브의 생산량을 증대시킬 수 있고, 이러한 촉매를 이용하여 합성한 다중벽 탄소나노튜브는 분산시 분산에너지가 적게 드는 것은 물론 분산 과정에서 길이가 손상되는 정도가 매우 낮아 높은 전도성을 유지할 수 있다. 또한, 본 발명의 제조 방법으로 제조된 촉매를 이용하여 합성된 고순도의 다중벽 탄소나노튜브는 단일벽 탄소나노튜브 (SWNT)에 버금가는 직경을 가지고 있고, 벽의 개수가 3~10개로 매우 균질한 상태이며, 표면적이 커서 매우 높은 전도성을 나타내고 있다. 전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 Nylon 66 / MWNT composite was prepared by varying the content of carbon nanotubes. As shown in FIG. 4, the composite starts to exhibit conductivity from the content of the multi-walled carbon nanotubes (MWNT) of 0.5 wt%, and as the content of the multi-walled carbon nanotubes increases, the conductivity of the composite rapidly increases. (A rapid decrease in surface resistance occurs as the content of multiwalled carbon nanotubes increases). One minutes highly dispersible multi-wall synthesis by use of a catalyst of the present application the carbon nanotube are shown all high conductivity in the polymer matrix at a low content (0.5 wt. 0/0). A schematic diagram of a method for preparing a catalyst for multi-walled carbon nanotube synthesis is shown in FIG. 5. As described in detail above, the catalyst (plate-shaped catalyst) prepared by the catalyst production method according to the present invention has a very low density. In other words, the surface area is very large compared to the weight, so that the production of multi-walled carbon nanotubes can be increased, and the multi-walled carbon nanotubes synthesized by using such catalysts have low dispersion energy during dispersion and damage in length during dispersion. It is very low enough to maintain high conductivity. In addition, high-purity multi-walled carbon nanotubes synthesized using the catalyst prepared by the production method of the present invention have a diameter comparable to that of single-walled carbon nanotubes (SWNT), and the number of walls is very homogeneous, with 3-10. It is in one state and has a large surface area and shows very high conductivity. The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present application is indicated by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and the equivalent concept are included in the scope of the present application.
해석되어야 한다. Should be interpreted.

Claims

【청구의 범위】 【청구항 1】 하기 식 (1)로 표시되는 촉매 l g 당 성장한 탄소나노튜브의 체적을 촉매 1 g의 체적으로 나눈 값이 30 이상인 다중벽 탄소나노튜브: Vt/C = (Wtx7t)/(WCX7C) (1) [Scope of Claims] [Claim 1] Multi-walled carbon nanotubes in which the volume of carbon nanotubes grown per lg of catalyst divided by the volume of 1 g of catalyst, expressed by the following formula (1), is 30 or more: Vt/C = (Wtx7t )/(WCX7C) (1)
(상기 식 (1)에서, ^= 1/ , ^= 1/^이고, (In equation (1) above, ^= 1/, ^= 1/^,
Wt는단위 촉매 (l g)로 성장시킬 수 있는 탄소나노튜브의 무게, Wc는 단위 촉매의 무게로 l g이며, pt는 탄소나노류브의 걸보기 밀도, pc는 촉매의 겉보기 밀도임). W t is the weight of carbon nanotubes that can be grown with a unit catalyst (lg), W c is the weight of a unit catalyst (lg), p t is the bulk density of carbon nanotubes, and p c is the apparent density of the catalyst. .
【청구항 2】 표면적이 400~1000 m7g인 것을 특징으로 하는 다중벽 탄소나노튜브. [Claim 2] A multi-walled carbon nanotube characterized by a surface area of 400 to 1000 m7g.
【청구항 3】 제 1 항 또는 제 2 항에 있어서, 상기 다중벽 탄소나노튜브는 직경이 3~10 ran이고, 벽의 개수가 3~10개인 것을 특징으로 하는 다중벽 탄소나노튜브. 【Claim 3】 The multi-walled carbon nanotube according to claim 1 or 2, wherein the multi-walled carbon nanotube has a diameter of 3 to 10 ran and the number of walls is 3 to 10.
【청구항 4】 제 1 항 또는 제 2 항에 있어서, 순도가 98% 이상인 것을 특징으로 하는 다중벽 탄소나노튜브. [Claim 4] The multi-walled carbon nanotube according to claim 1 or 2, wherein the multi-walled carbon nanotube has a purity of 98% or more.
【청구항 5】 제 1 항 또는 제 2 항의 다중벽 탄소나노튜브를 포함하는 복합체. 【청구항 6】 제 1 항 또는 제 2 항의 다중벽 탄소나노튜브를 포함하는 에너지 저장 장치. 【청구항 7] [Claim 5] A composite comprising the multi-walled carbon nanotube of claim 1 or 2. 【Claim 6】 An energy storage device comprising the multi-walled carbon nanotubes of claim 1 or 2. [Claim 7]
Fe, Co, Ca, Ni 및 Mo로 이루어진 군으로부터 선택된 1성분 이상을 포함하고 Μη, ΑΙ, Mg 및 Si로 이루어진 군으로부터 선택된 1성분 이상을 포함하며, 하기 화학식 1로 나타내어지는 조성비를 가지며, 걸보기 밀도가 0.05~0.07g/i 이며, 하기 식. (2)로 표시되는 촉매 l g 당 성장한 탄소나노튜브의 체적을 촉매 1 g의 체적으로 나눈 값이 30 이상인 탄소나노튜브 성장용 판상형 촉매: It contains at least one component selected from the group consisting of Fe, Co, Ca, Ni and Mo, and contains at least one component selected from the group consisting of Μ η , ΑΙ, Mg and Si, and has a composition ratio represented by the following formula (1), The hanging density is 0.05~0.07g/i, and the formula is as follows . A plate-shaped catalyst for carbon nanotube growth in which the volume of carbon nanotubes grown per lg of catalyst, represented by (2) divided by the volume of 1 g of catalyst, is 30 or more:
[화학식 1] [Formula 1]
[Fea, Cob> Cac, Nid, Moe][Mnw> Alx, Mgy, Siz] [Fe a , Co b > Ca c , Ni d , Mo e ] [Mn w > Al x, Mg y, Si z ]
(상기'화학식 1에서,&,1),(:,(1,6,^ ^ ¼ 2는 각 원소의 몰 분율을 나타내고, (In Formula 1, &,1),(:,(1,6,^ ^ ¼ 2 represents the mole fraction of each element,
0<a<10, 0<b<10, 0<c<10, 0<d<10, 0<e<10, 0<w<30, 0<x<30, 0<y<30, 0≤z≤30이며, 2<a+b+c+d+e+w+x+y+z<l 70, 2<a+b+c+d+e<50, 2<w+x+y+z<50임 ) 0<a<10, 0<b<10, 0<c<10, 0<d<10, 0<e<10, 0<w<30, 0<x<30, 0<y<30, 0≤ z≤30, 2<a+b+c+d+e+w+x+y+z<l 70, 2<a+b+c+d+e<50, 2<w+x+y+ z<50)
Vt/c = (WtXYt)/(WcXYc) (2) Vt/ c = ( W t
(상기 식 (2)에서, γί= l/pt, Yc= l/pc이고, (In equation (2) above, γί = l/p t , Y c = l/p c ,
Wt는 단위 촉매 (l g)로 성장시킬 수 있는 탄소나노튜브의 무게, Wc는 단위 촉매의 무게로 1 g이며, pt는 탄소나노튜브의 겉보기 밀도, pc는 촉매의 겉보기 밀도임). 【청구항 8] 비표면적이 120 niVg 이상인 탄소나노튜브 성장용 판상형 촉매. 【청구항 9】 제 7 항 또는 제 8 항의 촉매를 포함하는 탄소나노튜브. 【청구항 10】 Fe, Co, Ca, Ni 및 Mo의 반웅 전구체로부터 1성분 이상, Mn, Al, Mg 및 Si의 반웅 전구체로부터 1성분 이상을 선택 및 흔합하여 흔합물을 생성하는 흔합 단계 (a); 상기 혼합물을 400~900°C에서 액적 분무하면서 소성하는 단계 (b) W t is the weight of the carbon nanotube that can be grown with a unit catalyst (lg), W c is the weight of the unit catalyst, which is 1 g, p t is the apparent density of the carbon nanotube, and p c is the apparent density of the catalyst. . [Claim 8] A plate-shaped catalyst for carbon nanotube growth having a specific surface area of 120 niVg or more. [Claim 9] A carbon nanotube containing the catalyst of claim 7 or 8. 【Claim 10】 A mixing step (a) of generating a mixture by selecting and mixing at least one component from the reaction precursors of Fe, Co, Ca, Ni, and Mo, and at least one component from the reaction precursors of Mn, Al, Mg, and Si; Step (b) of calcining the mixture while spraying droplets at 400-900 ° C
를 포함하는 탄소나노튜브 성장용 판상형 촉매의 제조방법. A method for producing a plate-shaped catalyst for carbon nanotube growth comprising.
PCT/KR2015/000053 2014-01-09 2015-01-05 Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst WO2015105302A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016543626A JP7179441B2 (en) 2014-01-09 2015-01-05 Catalyst for synthesizing multi-walled carbon nanotubes, and multi-walled carbon nanotubes synthesized with the catalyst
US15/110,737 US9975774B2 (en) 2014-01-09 2015-01-05 Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst
CN201580003474.4A CN105873679B (en) 2014-01-09 2015-01-05 For the catalyst of synthesizing multi-wall carbon nanotube, the preparation method of its catalyst and the multi-walled carbon nanotube synthesized by its catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0002743 2014-01-09
KR20140002743 2014-01-09
KR10-2014-0174427 2014-12-05
KR1020140174427A KR101756453B1 (en) 2014-01-09 2014-12-05 Catalyst for Synthesizing multi-walled Carbon Nanotube, and manufacturing method thereof, and multi-walled Carbon Nanotube synthesized by the catalyst

Publications (1)

Publication Number Publication Date
WO2015105302A1 true WO2015105302A1 (en) 2015-07-16

Family

ID=53524094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000053 WO2015105302A1 (en) 2014-01-09 2015-01-05 Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst

Country Status (1)

Country Link
WO (1) WO2015105302A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171322B2 (en) 2015-12-10 2021-11-09 Lg Chem, Ltd. Positive electrode having improved pore structure in positive electrode active material layer
CN114100614A (en) * 2021-12-06 2022-03-01 桂林电子科技大学 Co-Cu-B nanoparticle-loaded composite material of hollow carbon material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100045247A (en) * 2008-10-23 2010-05-03 제일모직주식회사 Supported catalyst for synthesizing carbon nanotubes, method for preparing thereof and carbon nanotube using the same
KR101018660B1 (en) * 2009-12-22 2011-03-04 금호석유화학 주식회사 A catalyst composition for the synthesis of multi-walled carbon nanotubes
KR20120090108A (en) * 2010-12-30 2012-08-17 제일모직주식회사 Supported catalyst for synthesizing carbon nanotubes and method for preparing thereof
KR20130078855A (en) * 2011-12-31 2013-07-10 제일모직주식회사 Supported catalyst for synthesizing multi-wall carbon nanotube having an excellent crystallinity and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100045247A (en) * 2008-10-23 2010-05-03 제일모직주식회사 Supported catalyst for synthesizing carbon nanotubes, method for preparing thereof and carbon nanotube using the same
KR101018660B1 (en) * 2009-12-22 2011-03-04 금호석유화학 주식회사 A catalyst composition for the synthesis of multi-walled carbon nanotubes
KR20120090108A (en) * 2010-12-30 2012-08-17 제일모직주식회사 Supported catalyst for synthesizing carbon nanotubes and method for preparing thereof
KR20130078855A (en) * 2011-12-31 2013-07-10 제일모직주식회사 Supported catalyst for synthesizing multi-wall carbon nanotube having an excellent crystallinity and method for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171322B2 (en) 2015-12-10 2021-11-09 Lg Chem, Ltd. Positive electrode having improved pore structure in positive electrode active material layer
CN114100614A (en) * 2021-12-06 2022-03-01 桂林电子科技大学 Co-Cu-B nanoparticle-loaded composite material of hollow carbon material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101620720B1 (en) Catalysts for preparing carbon nanotubes and carbon nanotubes prepared using same
KR101756453B1 (en) Catalyst for Synthesizing multi-walled Carbon Nanotube, and manufacturing method thereof, and multi-walled Carbon Nanotube synthesized by the catalyst
Cheng et al. CNT@ Fe3O4@ C Coaxial Nanocables: One‐Pot, Additive‐Free Synthesis and Remarkable Lithium Storage Behavior
Zhang et al. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube− two-dimensional clay nanoplatelet heterostructures
US9809458B2 (en) Method for controlling bulk density of carbon nanotube agglomerate
Zhang et al. Multifunctional Co 0.85 Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate
KR101414560B1 (en) method for producing conductive film
Liu et al. An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials
US9512006B2 (en) Secondary structure of carbon nanostructure, bundle thereof and composite comprising same
Shams et al. Solvothermal synthesis of carbon nanostructure and its influence on thermal stability of poly styrene
Okil et al. Fascinating thermo-mechanical features of layered hydroxides/MWCNTs nanocomposites
JP5018387B2 (en) Catalyst and method for producing fine hollow carbon fiber using the same
WO2015105302A1 (en) Catalyst for synthesizing multi-wall carbon nanotubes, method for producing catalyst, and multi-wall carbon nanotubes synthesized by catalyst
Cheney et al. The effect of stirring on the morphology of birnessite nanoparticles
Bai et al. Study of distinctions in the synergistic effects between carbon nanotubes and different metal oxide nanoparticles on enhancing thermal oxidative stability of silicone rubber
Lavayen et al. The formation of nanotubes and nanocoils of molybdenum disulphide
KR20120093458A (en) Highly conductive carbon nanotubes having vertical bundle moieties and highly conductive polymer nanocomposite using the same
KR102379594B1 (en) Entangled carbon nano tube and method for preparing the same
JP5667736B2 (en) Aggregates of fine hollow carbon fibers
KR101180435B1 (en) Catalyst for Synthesizing multi-walled Carbon Nanotube having high conductivity and dispersibility and manufacturing method thereof
Bahrami et al. Synthesis and Physical Characterization of Carbon Nanotubes Coated by Conducting Polypyrrole
Sukhbaatar et al. Influence of Reaction Temperature on Yields of Multi-Walled CNTs Synthesized with Fe-Co/Al2O3 Bimetallic Nanocatalyst
Abdel-Wahab Synthesis and Investigation of Physical Properties of Some Nanocomposites
JP5916836B2 (en) Catalyst for carbon nanotube production
Arumugam Synthesis and Characterization of Manganese (IV) Oxide-Multiwalled Carbon Nano Tubes (MWCNT) Composite Via Solid-State Technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543626

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15110737

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735151

Country of ref document: EP

Kind code of ref document: A1