WO2015103720A1 - 一种隧道施工大型综合地球物理超前探测模型试验装置 - Google Patents

一种隧道施工大型综合地球物理超前探测模型试验装置 Download PDF

Info

Publication number
WO2015103720A1
WO2015103720A1 PCT/CN2014/000100 CN2014000100W WO2015103720A1 WO 2015103720 A1 WO2015103720 A1 WO 2015103720A1 CN 2014000100 W CN2014000100 W CN 2014000100W WO 2015103720 A1 WO2015103720 A1 WO 2015103720A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tunnel
model test
detection
shell
Prior art date
Application number
PCT/CN2014/000100
Other languages
English (en)
French (fr)
Inventor
李术才
刘斌
聂利超
徐磊
马翔雪
王传武
刘征宇
宋杰
孙怀凤
许新骥
李尧
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410007171.7A external-priority patent/CN103744129B/zh
Priority claimed from CN201420008786.7U external-priority patent/CN203881961U/zh
Application filed by 山东大学 filed Critical 山东大学
Priority to US14/397,547 priority Critical patent/US9989671B2/en
Publication of WO2015103720A1 publication Critical patent/WO2015103720A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/165Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with magnetic or electric fields produced or modified by the object or by the detecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/17Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with electromagnetic waves

Definitions

  • the invention relates to a geophysical advanced detection model test device, in particular to a large-scale integrated geophysical advanced detection model test device for tunnel construction.
  • Japan’s Qingxin Undersea Tunnel was inundated by water inrush accidents in 1969 and 1976, 33 people were killed, more than 1,300 were disabled, and the construction period was delayed for more than 2 years.
  • the construction of the China’s Yuanliangshan Tunnel occurred in total.
  • Large-scale mudslides and 71 gushings of water and water have seriously threatened construction safety and delayed the construction period. Therefore, it is very necessary to carry out advanced detection of the geological conditions in front of the tunnel face to detect geological structures such as caves, dark rivers and faults that may induce geological disasters.
  • the advanced geological prediction of the tunnel is to use the means of drilling and geophysical exploration to detect the geological conditions in front of the tunnel face, and to grasp the surrounding rock structure and properties of the rock tunnel before the construction, as well as the unfavorable geological structures such as caves, dark rivers and faults.
  • the situation to provide guidance for further construction, to avoid geological disasters such as water inrush, landslides, large deformations, etc., to ensure the safety of construction.
  • a quantitative identification method for three-dimensional positioning and water quantity estimation of bad geology in front of the tunnel is established, a new physical detection technology is developed, the detection effect is verified, the equipment performance is evaluated, and a large-scale integrated geophysical advance detection of tunnel construction is established.
  • the model test device is very important. Geophysical exploration model tests can be used to construct known geological conditions, simulate real detection environments and detect objects, and play an important role in verifying the performance of detection.
  • the physical model test of geophysical exploration refers to the physical prototype of the medium body follows physical and geometric similarity criteria, and a similar model is built in the test room according to a certain scale factor to simulate the actual geological conditions and the real detection environment.
  • Physical testing equipment is required to have various detection methods such as seismic wave method, electromagnetic method and direct current method, and the results of these detection methods are compared and verified, but It is a problem that the observation systems of various detection means are arranged in the physical model without interfering with each other.
  • the object of the present invention is to solve the above problems and provide a large-scale integrated geophysical advanced detection model test device for tunnel construction, which can satisfy the integrated induced polarization method, transient electromagnetic method, seismic method, borehole radar method, and resistivity.
  • the detection requirements of the CT method are to achieve multi-geophysical comprehensive detection.
  • Large-scale integrated geophysical advanced detection model test device for tunnel construction which includes tunnel surrounding rock, main tunnel model, model test shell, hydrogeological structure device, numerical control automatic construction device, horizontal detection drilling and main control room; tunnel surrounding rock Filled in the model test shell, the model test main tunnel model is located in the middle of the front of the model test shell, the water-bearing geological structure device is placed in front of the main tunnel model, and the CNC automatic construction device is installed on the top of the model test shell to horizontally detect the borehole setting.
  • the main control room is located outside the model test enclosure and communicates with the hydrogeological structure device and the CNC automation construction device.
  • the tunnel surrounding rock is used to simulate the surrounding rock condition of the tunnel in actual tunnel construction. It is a similar material that satisfies the requirements of seismic wave field, electromagnetic field and DC electric field detection required for resistivity and wave velocity.
  • the similar materials are as follows The components are mixed and compacted in the following parts by mass:
  • the moisture content of the soil is controlled to be 8% to 16%, and the compactness of the similar material is controlled at 0.75 ⁇ 0. 95 ;
  • the soil and the stone are aggregates of similar materials, the cement is cementing agent, and the stone is 3 ⁇ 4 mesh, cement is directly mixed with thousands of powder;
  • the similar material has a wave speed of 230 ⁇ 1260 m/s and a resistivity of 20-340 ⁇ m.
  • a method for preparing the above-mentioned tunnel surrounding rock is carried out according to the following steps:
  • the main tunnel model includes a connected tunnel model face and a tunnel model cavity, and the tunnel model cavity and the tunnel model face are integrated;
  • the tunnel model cavity is divided into two inner and outer layers, and the inner layer includes a shell And an annular inner reinforcing rib located inside the casing for restraining radial deformation of the casing, and the outer layer is provided with annular outer reinforcing ribs and axial outer portions respectively for restraining radial and axial deformation of the tunnel model cavity respectively outside the casing a reinforcing rib;
  • an electrode mounting hole, an electromagnetic coil support, a borehole radar detecting hole and a transient electromagnetic lead probe mounting hole are respectively arranged on the face of the tunnel model, and the seismic wave method is arranged on the face of the tunnel model
  • the measuring point and the receiving measuring point, the cross section of the inner layer shell of the tunnel model cavity is a symmetrical structure composed of a five-circle arc of five-hearted circle, and the whole cross-section is in the shape
  • the electrode mounting hole is cylindrical, and the electrode mounting hole is reserved on the face of the tunnel model according to the requirements of the direct current method or the excitation polarization measuring line arrangement, and the electrode is installed in the electrode mounting hole according to actual needs.
  • the electromagnetic coil support reserves four brackets on the face of the tunnel model according to the requirements of the transient electromagnetic coil arrangement, and the four brackets form a rectangle.
  • the model test shell is a reinforced concrete structure, and the geometric factor ratio G of the entire model test device is 6, and the geometric factor ratio is the ratio of the prototype geometry to the model geometry.
  • the water-bearing geological structure device comprises a free-molded water-conducting structure with controllable permeability coefficient, an inlet pipe, an outlet pipe, an inlet flow control device, an outlet flow control device, a water tank and a water velocity controllable device, wherein the inlet pipe And the outlet pipes are respectively installed on both sides of the water-containing structural shell, the influent flow control device is fixed on the inlet pipe, the outlet flow control device is disposed on the outlet pipe, and one end of the inlet pipe is connected with the water tank, the inlet pipe and
  • the water outlet pipe is located in the water-containing structural casing, and is respectively provided with a plurality of water inlets and water outlets forming a plurality of water channels; the water-containing structural casing is also connected with the water wave velocity controllable device based on pneumatic dusting.
  • the inlet pipe and the outlet pipe are respectively connected to the water-containing structural casing through the flow control device of the water, and the portions of the inlet pipe and the outlet pipe located inside the aquifer casing are respectively divided into pipes in a plurality of directions by the flow direction control device.
  • the water wave speed controllable device includes a computer, the computer being respectively connected to an air compressor and an acoustic emission transducer, the air compressor being connected to one end of a porous tube inserted into the water-containing structural outer casing, and the porous tube There are a number of parallel tubes at one end, and the acoustic emission transducer is located inside the aqueous structural housing.
  • the inflow water flow control device includes a flow controller, the flow controller is connected to a computer, the flow controller is further connected to the frequency converter, the frequency converter is connected with the variable frequency motor, the frequency conversion motor and the water flow rate
  • the water inlet flow meter is connected to the computer, and the water inlet flow meter is installed in the water inlet pipe.
  • the flow rate control device includes a flow controller, the flow controller is connected to a computer, the flow controller is further connected to the frequency converter, the frequency converter is connected to the variable frequency motor, and the variable frequency motor is connected with the water flow meter.
  • the water flow meter is connected to a computer, and the water flow meter is installed in the water outlet pipe.
  • the flow control device of the water is a three-channel solenoid valve, and the three-channel solenoid valve is connected to a computer.
  • the aqueous structural shell is molded by a water permeable material having a permeability and a controlled permeability coefficient.
  • the material of the water-containing structural outer casing comprises cement, water slag, stone, FRP rib, according to 1 part of cement, 1.25-2.05 parts of water slag, 0.50-1.25 parts of stone, and 0.3-0.75 parts by mass of water.
  • the manufacturing method adopted by the aqueous structure device is as follows:
  • Step (1) Pouring the water-containing structural shell: According to the type and shape of the water-containing structure to be produced, select the appropriate mold and template, and arrange the FRP bars in the mold according to the set spacing; according to the requirements of the set permeability coefficient, select Mix the cement, slag and stone first in the mixer, then add water, then stir evenly; then pour into the mold and template, and shake the tamping, pouring and forming; demoulding after setting time, according to concrete Maintenance regulations are maintained for several days;
  • Step (2) Install a water wave speed controllable device based on pneumatic agitation: add excess plastic powder to the water in the water-containing structural shell through an air compressor to make a suspension, and the acoustic emission transducer is fixed at a fixed distance.
  • the porous tube is fixed, and the computer is respectively connected with the air compressor and the acoustic emission transducer, and the air compressor is connected with the porous tube;
  • Step (4) Hoisting and burying of the aquifer structure device: Excavating the filled and excavated model to a suitable depth using a rotary excavation device according to the specified position on the physical model test device for setting the length, width and height of the multi-functional tunnel advanced geological prediction The aquifer structure device is hoisted to the excavated position, and the similar materials of the excavated surrounding rock are buried and compacted;
  • Step (5) setting the elastic wave velocity of the water, the flow rate and the flow direction of the water by the computer, and controlling the corresponding device to perform the work.
  • two holes of 3 cm in diameter need to be reserved on both sides of the water-containing structural shell, respectively, as the positions for the inlet and outlet water and the water pipe installation;
  • a hole of 2 cm in diameter is installed as a porous pipe connecting pipe in the water-containing structure; it is also necessary to reserve a 0.2x0.2 m square hole in the water-containing structural shell and make a cap suitable for its size, which is filled as a filling solid.
  • the numerical control automatic construction device comprises a horizontal rail fixed to the top of the model test shell, a double beam gantry crane moving along the guide rail on the horizontal rail, a 360 2 rotatable earthmoving device mounted on the double beam gantry crane and Anomalous body handling device, and integrated CNC operating system for ranging, feedback and real-time display functions; double-beam cranes move along horizontal rails, 360 2 rotatable earthmoving devices move along double-girder cranes or vertically Move down.
  • the double-beam gantry crane is composed of a full-door main beam and leg supports fixed at two ends of the full-door main beam, the main beam is a double-beam structure, a trolley track is designed on the main beam, and each single beam of the main beam They are all designed as box beam structures.
  • the leg support comprises two inclined legs, an end beam of the bottom and a running mechanism.
  • the two inclined legs form an A-shaped bracket, and the two inclined legs are connected to the running mechanism through the end beam of the bottom.
  • the two sides of the traveling mechanism are designed with steel plate buckles for preventing the semi-detachment of the suspension.
  • the 360° rotatable earthmoving device comprises a four-wheeled trolley, a rotating mechanism, a guiding rod, a grab bucket and a main hydraulic system; the four-wheeled trolley moves on a trolley rail of the full-door main beam, and the guiding rod passes through the four
  • the guide rod hole on the wheel trolley is connected with the four-wheeled trolley, the guide rod is connected with the grab bucket through a rotating mechanism, the guide rod is retractable, and the main hydraulic system is used for driving the rotation and normal operation of the grab bucket and the telescopic movement of the drive guide rod.
  • the abnormal body handling device includes a hanging hoist and a traveling member connected to the hanging hoist, and the traveling member moves along one of the single beams of the double beam gantry crane main beam.
  • the integrated numerical control operating system can realize ranging, feedback function and real-time display of the working state of the entire device, and the integrated numerical control operating system is designed with two modes of automatic control and manual control.
  • the horizontal probing hole has a total of 3 pairs, one of which is located in front of the main tunnel face, for the placement of the transient electromagnetic probe, the installation of the resistivity CT method, and the delivery of the bored radar antenna.
  • the other two pairs of drilled holes with measuring electrodes are used throughout the model test device, which are located at the upper left and upper right, lower left and lower right of the model test device, respectively, for the detection of resistivity CT method and borehole radar method.
  • the main control room is used to control and display each operation in the test, and communicates with the hydrogeological structure device and the numerical control automation device.
  • An integrated geophysical advance detection method using the above-described detection model test device is:
  • Pre-buried geological anomaly After determining the three-dimensional position of the pre-buried geological anomaly in the model test, the self-controlled automatic construction device is used to carry out rapid three-dimensional positioning excavation in the surrounding rock of the tunnel, and the hydrogeological structure device is transported. And buried in a predetermined position in front of the main tunnel model, backfilling and compacting the tunnel surrounding rock;
  • connection and detection test of the detection device including:
  • Detection method selection and equipment connection Select detection methods according to test needs, such as: induced polarization method, transient electromagnetic method, seismic method, borehole radar method, resistivity CT method, and connect the supporting detection equipment For use in geophysical advance detection tests;
  • Electrode and horizontal detection drilling According to the selected detection method, select the electrode or horizontal detection hole to be used in the corresponding method, where: The excitation polarization method needs to use the main tunnel face and the tunnel cavity The electrode, the borehole radar method and the resistivity CT method need to select any two holes according to the three-dimensional position of the embedded hydrogeological structure device to ensure that the hydrogeological structure device is between the horizontal detection holes;
  • the present invention proposes an integrated geophysical advanced detection model test device with an oversized scale-integrated induced polarization method, transient electromagnetic method, seismic method, borehole radar method and resistivity CT method, and the entire model test device is reasonably
  • the tunnel surrounding rock, the main tunnel model, the model test shell, the hydrogeological structure device, the numerical control automatic construction device, and the main control room are designed to realize the multi-geophysical comprehensive detection;
  • the present invention proposes a similar material that satisfies the similar requirements of multiple fields of seismic wave field, electromagnetic field and DC electric field. It is composed of silty clay, cement and gravel, and satisfies the seismic wave field by controlling the water content and compaction.
  • the electromagnetic field and DC electric field detection methods require a resistivity of 200 ⁇ ⁇ and a wave speed of 1000 m/s, so that the actual geological conditions can be more accurately simulated;
  • the invention proposes a hydrogeological structure device with controllable parameters, the water-containing geological structure device comprises a water speed controllable device based on a pneumatic stirring device, a water flow and flow direction control system and a controllable permeability coefficient of free die casting.
  • the outer shell of the hydrologic geological structure device realizes the controllable regulation of the wave velocity of the water body and the control of the flow rate and flow direction of the water body, meets the requirements of the multi-geophysical field of the seismic method, the electromagnetic method and the direct current method, and realizes the flow rate of the moving water and
  • the control of flow direction can realize the simulation of different water filling states of bad geological bodies through the control of water quantity.
  • the control of flow direction is used to solve the requirements of dynamic water simulation by induced polarization method.
  • the dark river and cave can be simulated by freely molding different shapes. , a variety of unfavorable geological bodies and their combinations;
  • the present invention proposes a numerically controlled automatic construction device for large geophysical detection experiments, which comprises a double beam gantry crane, a horizontal guide rail, a 3609 rotatable earthmoving device, a geological anomalous body handling device, a main hydraulic system, and Comprehensive ranging and feedback and real-time display of numerical control operating system, the device not only realizes automatic fast three-dimensional precise positioning and excavation technology in the surrounding rock of large geophysical exploration test tunnel, but also realizes the replacement of materials and geological anomalies in the model test. Repeated, and has the characteristics of low energy consumption, high efficiency, strong operability and high safety;
  • the entire model device is reserved with a variety of space for pre-detection equipment and design lines. It can easily and quickly install and disassemble electrodes and arrange instruments. It can satisfy the induced polarization method, transient electromagnetic method, seismic method, and drilling radar. The requirements for the layout of a variety of advanced forecasting methods for the method of resistivity and CT.
  • FIG. 1 is a schematic view of a large-scale integrated geophysical advanced detection model test device of the present invention
  • FIG. 2 is a schematic cross-sectional view showing the overall structure of the main tunnel model of the present invention
  • Figure 3 is a schematic view of the hydrogeological structure device of the present invention
  • Figure 4 is a schematic view of the numerical control automatic construction device of the present invention.
  • Figure 5 is a schematic view showing the three-dimensional distribution of the probe borehole of the present invention.
  • Fig. 6 is a schematic view showing the installation of the face of the main tunnel model of the present invention for the excitation polarization method or the direct current prediction electrode.
  • Main tunnel model 2 model test shell 3, hydrologic geological structure device 4, numerical control automatic construction device S, horizontal detection borehole 30 and main control room 6; tunnel surrounding rock 1 is filled in model test shell 3, main tunnel model 2 is located in the middle of the front of the model test casing 3, the hydrogeological structure device 4 is placed in front of the main tunnel model 2, the numerical control automatic construction device 5 is installed on the top of the model test casing 3, and the horizontal detection bore 30 is placed inside the model test device.
  • the main control room 6 is located outside the model test casing 3 and communicates with the model test main tunnel model 2, the hydrogeological structure device 4 and the numerical control automation construction device 5.
  • a tunnel surrounding rock 1, in the model test device, its function is to simulate the tunnel surrounding rock 1 in the actual tunnel construction, which is a resistivity and wave velocity that can simultaneously satisfy the seismic wave field, electromagnetic field and DC electric field detection. Requires a similar material with a simple structure and convenient operation, combined with seismic method, electromagnetic method and electrical method to detect physical model test.
  • the similar material is prepared by mixing the soil, cement and gravel. It consists of the following raw materials: 100 parts of silty clay, 12 parts of cement and 20 parts of gravel.
  • the mixed material is put into the model, the layer is stacked, and the artificial compaction is performed to achieve a predetermined compaction degree of 0.85.
  • the similar material of the surrounding rock of the tunnel is measured to have a resistivity of 200 ⁇ and a wave velocity of 1000 m/s. It can simultaneously meet the resistivity and wave velocity requirements of seismic wave field, electromagnetic field and DC electric field detection, so as to more accurately simulate the actual geological conditions.
  • a main tunnel model 2 is composed of a tunnel model cavity 7 and a tunnel model face 8 .
  • the tunnel model cavity 7 is divided into two inner and outer layers: the inner layer is: "ring rib pebble shell” structure, including the shell 9 and the annular inner reinforcing rib 10; the outer layer is a "space steel grid” structure, including the outer ring The reinforcing rib 11 and the axial outer reinforcing rib 12 are provided.
  • the tunnel model face 8 is provided with an electrode 4 mounting hole, an electromagnetic coil bracket, a borehole radar detecting hole and a transient electromagnetic lead probe mounting hole, and is detailed with a mark for recording the seismic wave excitation point and the receiving point. position.
  • the "ring rib pebble shell” structure is composed of a casing 9 and an annular inner reinforcing rib 10.
  • the cross section of the casing 9 is a symmetrical structure composed of a five-circle arc of five hearts.
  • the vertical distance between the upper and lower sides of the casing 9 is about 2.0 m
  • the horizontal distance between the left and right is about 1.7 m
  • the wall thickness of the casing 9 is about 3cm
  • the entire cross-section is similar to pebbles
  • the upper tip is wide and the periphery is round.
  • the structure has high strength, high rigidity and good stability. It can withstand more top load and lateral load than ordinary tunnel model structure.
  • the annular inner reinforcing rib 10 is located inside the casing 9, restraining the radial deformation of the casing 9, and integrally reinforcing the casing 9, and is arranged in an inner ring shape, and the rib is spaced apart from the rib by lm, and the width of each reinforcing rib is about It is 10cm and the height is about 5cm.
  • the casing 9 and the annular inner reinforcing rib 10 are integrally cast at the time of production to be integrated.
  • the "space steel mesh” structure is located outside the casing 9, and is composed of an annular outer reinforcing rib 11 and an axial outer reinforcing rib 12.
  • the annular outer reinforcing rib 11 has a width of about 2 cm and a height of about 10 cm, and the rib is spaced apart from the rib by 20 cm;
  • the axial outer reinforcing rib 12 has a width of about 2 cm and a height of about 10 cm, and is axially passed along the outer surface of the casing 9.
  • the mounting holes of the electrode 4 are reserved on the tunnel model face 8 according to the requirements of the direct current method and the induced polarization method line arrangement, and there are a total of holes in the face from top to bottom on the face (from above)
  • the order to the bottom is 1, 2, 3, 4, 5)
  • the spacing of each row is 0.4m
  • the center-to-center spacing of adjacent rows of each row is 0.15m, of which there are 6 holes in the first and fifth rows, the second 3, 4 rows each have 10 holes, a total of 42 holes
  • each electrode 4 mounting hole is cylindrical, the opening diameter is 3cm, and the wall of the tube wall is 10cm long, which is convenient for placing the power supply and measuring electrode 4.
  • the electromagnetic coil assembly is composed of four brackets reserved on the tunnel model face 8 according to the transient electromagnetic coil arrangement.
  • the four bracket connections form a rectangle, and the advanced forecaster can use the four brackets quickly.
  • the arrangement of the transmitting coils is conveniently completed.
  • the drilling radar detection hole and the transient electromagnetic lead probe placement hole are respectively located at the legs on both sides of the tunnel model, both of which are cylindrical, the opening diameter is 0.2m, and the wall of the tube wall is lm long; since the two holes are the same size and position, It is possible to place a drilling radar antenna or a transient electromagnetic lead probe into any of the holes during actual detection. It should be pointed out that when the drilled radar antenna or the transient electromagnetic lead probe needs to be placed in a deeper position, it is only necessary to connect a PE pipe or a PVC pipe with the same diameter and sufficient length to each hole.
  • the detailed mark is the excitation point and the receiving point used for the advanced detection of the seismic wave method by the ruler on the face of the tunnel model.
  • the layout is arranged on the face of the tunnel model 8 A vertical survey line and a horizontal survey line, wherein there are 20 measuring points on the vertical survey line, the distance between the measuring points is 0.1m, and there are 16 measuring points on the horizontal measuring line, and the measuring point spacing is 0.1m.
  • the wall surface of the tunnel model 8 has a wall thickness of 5 ⁇ , and the cross section of the face is exactly the same as that of the casing 9, and the two are cast together as a whole during production.
  • the tunnel model test device that can realize the advanced detection of multi-geophysical field is completely made of GFRP composite material. It is light and high-strength, winding one-time forming and integral pouring. The surface of the model is smooth and the internal density of the material is uniform. Strong electromagnetic wave transmission performance, and does not produce any electromagnetic interference, can provide an ideal test platform for advanced forecasters to conduct experiments and multi-geophysical instrument testing within the model.
  • the power supply electrode 4 and the measurement electrode are simply inserted into the electrode 4 mounting hole on the tunnel model face 8 and tapped with a hammer to make the electrode 4 and the face.
  • the rock and soil in front of the face are in good contact, and then the electrode 4 is connected to the cable 23 through the wire 28, so that the advancement of the electric method can be started.
  • the transmitting coil is wound around four electromagnetic coil brackets fixed on the face of the tunnel model 8 , and the receiving coil can be arbitrarily moved inside the transmitting coil, and the transient electromagnetic lead detecting probe can be The transient electromagnetic lead probe moves anywhere to collect the signal.
  • the drilling radar antenna can move the signal reflected from the front rock and soil body if it moves freely in the hole. .
  • the shock hammer is used to strike the mark on the face of the tunnel model 8 and the detector is placed at other positions of the mark for signal acquisition.
  • a model test shell 3 consisting of a reinforced concrete structure with a size of 17 m (length) x 7.6 m (width) x6m (height), the value of the 1"1S1 G of the entire model test device is 6 (the ratio of the prototype geometry to the model geometry), and the outer wall thickness is 0.4m, in order to resist the bending of the wall At the bottom joint, 0.7m thick reinforced concrete is used as the bottom plate, and the main tunnel and the detection hole are reserved on the wall. From the size of the main tunnel model 2 and the model test casing 3, the model test device is a large-scale model test platform, which can be closer to the actual detection conditions and can more accurately reflect the detection law.
  • the hydrogeological structure device 4 includes a free-molded water-conducting outer casing with a controllable permeability coefficient, and two sides of the water-containing structural shell are respectively installed with an inlet pipe 22 and an outlet pipe 19, and the inlet pipe 22 is provided with
  • the water flow control device 14 is provided with an outlet flow control device 13 on the outlet pipe 19, one end of the inlet pipe 22 is connected to the water tank 15, and a plurality of inlet pipe 22 and outlet pipe 19 are located in the water-containing structural casing.
  • the water inlet and outlet of the waterway; the water-containing structural shell is also connected to a water wave speed controllable device based on pneumatic dusting.
  • the inlet pipe 22 and the outlet pipe 19 are respectively connected to the aquifer structure by the flow control means of the water, and the portions of the inlet pipe 22 and the outlet pipe 19 located inside the aquifer casing are respectively divided into pipes in a plurality of directions by the flow direction control means of the water.
  • the water wave speed controllable device comprises a computer 17 connected to the air compressor 16 and the acoustic emission transducer 21, respectively, and the air compressor 16 is connected to the end of the porous tube 20 inserted into the aqueous structure outer casing, the porous tube 20 The other end has a plurality of parallel tubes, and the acoustic emission transducer 21 is located inside the aqueous structural housing.
  • the influent flow control device 14 includes a flow controller, the flow controller is connected to the computer 17, the flow controller is also connected to the frequency converter, the frequency converter is connected with the variable frequency motor, the frequency conversion motor is connected with the water flow meter, and the water flow meter is The computer 17 is connected, and the water inlet flow meter is installed in the inlet pipe 22.
  • the outlet flow control device 13 includes a flow controller, the flow controller is connected to the computer 17, the flow controller is also connected to the frequency converter, the frequency converter is connected with the frequency conversion motor, the frequency conversion motor is connected with the water flow meter, and the water flow meter is connected with the computer 17.
  • the outlet flow meter is installed in the outlet pipe 19.
  • the water flow direction control device is a three-channel solenoid valve 18, and the three-channel solenoid valve 18 is connected to the computer 17.
  • the water-containing structural shell is molded by a permeable material having a permeability and a controlled permeability coefficient.
  • the materials of the water-containing structural shell include cement, slag, stone, FRP ribs, according to 1 part of cement, 7_K slag 1.2S-2.0S parts, 0.50-1.25 parts of stone, 0.3-0.75 parts of water by mass ratio casting.
  • the manufacturing method adopted by the hydrogeological structure device 4 the steps are as follows:
  • Step (1) pouring the water-containing structural shell: According to the type and shape of the hydrogeological structure device to be fabricated, select the appropriate mold and template, and arrange the FRP bars in the mold according to the set spacing; according to the set permeability coefficient , select the mix ratio, mix the cement, slag and stones in the mixer first, then add water, stir evenly; then pour Just inside the mold and the template, and vibrate and compact, pouring and forming; after the time is set, the mold is released, and it is cured for several days according to the concrete conservation regulations;
  • Step (2) installing a water wave speed controllable device based on a pneumatic dusting device: adding excess plastic powder to the water in the water-containing structural casing through the air compressor 16 to form a suspension, and the acoustic emission transducer 21 is at a fixed distance
  • the porous tube 20 is fixed, and the computer 17 is connected to the air compressor 16 and the acoustic emission transducer 21, respectively, and the air compressor 16 is connected to the porous tube 20;
  • the water flow flow control device is connected; the water flow direction control device is connected to the computer 17, and the water flow direction control device is installed at both ends of the water-containing structural outer casing; and the water inlet pipe 22 and the water outlet pipe 19 are respectively connected with the water-containing structural outer casing;
  • Step (5) The water wave velocity of the water, the flow rate of the water, and the flow direction are set by the computer 17, and the corresponding device is controlled to operate.
  • step (1) when the water-containing structural shell is poured, firstly, two holes of 3 cm in diameter are required to be placed on both sides of the water-containing structural shell, respectively, as the positions for the inlet and outlet water and the water pipe installation; and a diameter of 2 ⁇ is required to be reserved in the outer casing.
  • the hole as the position of the connecting pipe of the porous pipe 20 in the hydrogeological structure device; it is also necessary to reserve a square hole of 0.2x0.2 m in the water-containing structural shell, and make a cover suitable for its size, which is filled as a filling solid
  • fix the finished cover to the outer casing with bolts and seal the reserved square hole When using the material, after filling, fix the finished cover to the outer casing with bolts and seal the reserved square hole.
  • the working principle of the water wave speed controllable device based on pneumatic powder spraying is that the wave speed of water is higher than expected, so the plastic powder suspension is used to control the wave speed.
  • the content of the plastic powder has an effect on the wave velocity. The higher the content, the lower the wave velocity; the content of the plastic powder in the plastic powder suspension is controlled by the power of the air compressor 16, and when the power is high, The porous tube 20 produces more uniform bubbles, and the more plastic powder is blown in the suspension, the higher the content of the plastic powder in the suspension.
  • the wave speed can be controlled by feedback adjustment: excessive plastic powder is added to the water, and the computer-controlled air compressor 16 operates at a power of 200 KW to generate uniform bubbles in the porous tube 20 to keep the plastic powder suspended in the water;
  • the acoustic emission probe works to test the elastic wave velocity of the suspension and feed back to the computer 17 in real time.
  • the computer 17 adjusts the operating power of the air compressor 16 (50-370 KW) to reduce or increase.
  • the content of plastic powder in the water increases or decreases the wave speed, realizing the real-time controllable adjustment of the water wave velocity.
  • the working principle of the influent flow control device 14 and the outlet flow regulating device 13 The flow controller is controlled by the computer 17, and the flow controller controls the variable frequency motor through the inverter of the inlet end and the outlet end, respectively, and controls the amount of water in and out, the inlet and outlet flow meter Real-time feedback is made to the computer 17 for the amount of water in and out.
  • the flow controller controls the inverter in real time according to the feedback information received by the computer 17, and the flow controller displays the real-time flow and the total amount of water.
  • the water-containing structural shell is molded by means of a concrete-like casting method using a permeability-permeable, water-permeable material with a good permeability.
  • the shape of the outer shell is molded by wood formwork, which can freely mold different shapes. According to the shape of different geological bodies of the dark river, cave, and fault zone to be simulated, different wood form shapes can be selected to simulate the dark river, cave and fault zone. And other different geological bodies.
  • the numerical control automatic construction device 5 includes a horizontal guide rail 25 fixed at the top of the model test side wall, and a double beam gantry crane 24 moving along the guide rail direction on the horizontal guide rail 25, installed in the double beam gantry crane 24
  • the double beam gantry crane 24 moves along the horizontal rail 25, and the 3602 rotatable earthmoving device 26 moves along the double gantry crane 24 or vertically downward.
  • the double-beam gantry crane 24 is composed of a full-door main beam and leg supports fixed at both ends of the full-door main beam.
  • the main beam is a double-beam structure, and the trolley beam is designed on the main beam, and each single beam of the main beam is designed as Box beam structure.
  • the leg support includes two inclined legs, an end beam at the bottom, and a running mechanism.
  • the two inclined legs form an A-shaped bracket, and the two inclined legs are connected to the running mechanism through the end beams at the bottom.
  • the steel plate buckles on both sides of the traveling mechanism are designed to prevent the crane from coming off the track.
  • the 360 9 rotatable earthmoving device 26 comprises a four-wheeled trolley, a rotating mechanism, a guiding rod, a grab bucket and a main hydraulic system.
  • the four-wheeled trolley moves on the trolley track of the full-door main beam, and the guiding rod passes through the four-wheeled vehicle.
  • the guide rod hole on the trolley is connected with the four-wheeled trolley, the guide rod is connected with the grab by a rotating mechanism, the main hydraulic system is used for driving the rotation and normal operation of the grab and the telescopic stretching of the driving guide rod; the earth-boring device solves the deep digging soil and earth problems, but also solve the transport problem of soil on top of the model, as well as the problem of soil backfill, together with the grab can rotate 3609, to be completed by different anomalies trending buried.
  • the abnormal body handling device 27 includes a hanging hoist and a traveling component of the hanging hoist.
  • the device is mounted on one of the single beams of the main beam, and travels along the single beam, and is usually retracted to one side of the beam when not in use. When you need to move to the specified position, you can lift the abnormal body and complete the handling, burying, and removal of the abnormal body.
  • the integrated numerical control operating system can realize ranging, feedback function and real-time display of the working state of the whole device.
  • the integrated digital control operating system is designed with two modes: automatic control and manual control.
  • the double beam gantry crane 24 moves along the horizontal rail 25 to the coordinate X, 360Q rotatable earthmoving device 26 along the double beam gantry crane 24 moves to coordinate ⁇ , 360 ⁇ can be rotated
  • the earthmoving device 26 is moved vertically downward to the coordinate Z.
  • the horizontal detecting borehole 30 has a total of three pairs, one of which is located in front of the main tunnel face 8 for the placement of the transient electromagnetic probe, the installation and drilling of the resistivity CT method electrode.
  • the delivery of the hole radar antenna, the other 2 pairs of electrodes with electrodes are installed throughout the model test device, located at the upper left and upper right, lower left and lower right of the model test device, for the detection of resistivity CT method and borehole radar method. .
  • Pre-buried geological anomalies After determining the three-dimensional position of the pre-buried geological anomaly in the model test, the automatic construction device is used to first perform rapid three-dimensional positioning excavation in the surrounding rock of the model test tunnel, and then the water-bearing structure is transported and buried in a predetermined position, and finally The surrounding rock material of the tunnel is backfilled and compacted.
  • Equipment connection Connect the radar host, notebook, 2 drilled radar antennas, power supply and other supporting detection equipment.
  • a borehole radar antenna is used as the receiving antenna and delivered to the deepest part of one of the horizontal detection boreholes.
  • Another borehole radar antenna is used as the transmit antenna and is also delivered to the other deepest part of the horizontal probe borehole.
  • the two bored radar antennas are delivered to the deepest part of the original horizontal borehole.
  • the original transmit antenna acts as the receive antenna
  • the original receive antenna acts as the transmit antenna for the same time for n radar data acquisition.
  • the collected radar data is subjected to geophysical inversion processing to obtain the radar detection response waveform of the hydrogeological structure device, thereby obtaining the information such as the position size of the hydrogeological structure device in the detection area, and verifying the comparison with the actual situation.
  • Large-scale integrated geophysical advanced detection model test device for tunnel construction which includes tunnel surrounding rock 1, main tunnel model 2, model test shell 3, hydrogeological structure device 4, numerical control automatic construction device 5, horizontal detection drilling hole 30 and The main control room 6; the tunnel surrounding rock 1 is filled in the model test casing 3, the main tunnel model 2 is located in the middle of the front of the model test casing 3, and the hydrogeological structure device 4 is placed in front of the main tunnel model 2, the numerical control automatic construction device 5 Installed on the top of the model test shell 3, the horizontal probe bore 30 is placed inside the model test device, the main control chamber 6 is located outside the model test shell 3, and the model test main tunnel model 2, the hydrogeological structure device 4 and the numerical control automation construction device S communication.
  • Embodiment 1 The ratio of the surrounding rock of the tunnel, the arrangement of the other devices, and the preparation method are referred to in Embodiment 1.
  • Pre-buried geological anomalies After determining the three-dimensional position of the pre-buried geological anomaly in the model test, the automatic construction device is used to first perform rapid three-dimensional positioning excavation in the surrounding rock of the model test tunnel, and then the water-bearing structure is transported and buried in a predetermined position, and finally The surrounding rock material of the tunnel is backfilled and compacted.
  • the excitation model is required to use the 5th row of electrodes on the face 8 of the tunnel model and the tunnel cavity on the tunnel face 0. 5tn, lm, 1. 5m, 2m, 2. 5m , preset detection electrodes at 3m, 3. 5m, 4m, 4. 5m, 5m, 5. 5m.
  • the detection electrode at the tunnel cavity O.Sm on the tunnel cavity is used as the power supply electrode, and the 5 rows of electrodes on the face of the tunnel serve as the receiving electrodes, and the signals are sequentially received from the first row to the fifth row.
  • the detecting electrode at the tunnel cavity is lm, 1.5 m. 2m, 2. 5m, 3m 3. 5m, 4m, 4. 5m, 5m, 5. 5m from the tunnel cavity as the power supply electrode.
  • 5 rows of electrodes on the face 8 of the tunnel model serve as receiving electrodes, and receive signals sequentially from the first row to the fifth row, and perform 2nd, 3rd, ..., 11th detections;
  • the collected probe data is subjected to geophysical inversion processing to obtain the response result of the hydrogeological structure device, so that the three-dimensional position and size of the detected hydrogeological structure device are obtained, and compared with the actual situation.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种隧道施工大型综合地球物理超前探测模型试验装置,它包括隧道围岩(1)、主隧道模型(2)、模型试验外壳(3)、含水地质构造装置(4)、数控自动化施工装置(5),以及主控室(6);该模型试验装置是一种大比例尺的,满足地震波法、电磁法与直流电法探测的综合地球物理超前探测模型试验装置,利用该地球物理超前探测模型试验装置,可研究隧道掌子面前方存在的含水地质构造装置的地球物理响应特征,并对含水地质构造装置的多种地球物理超前探测的正反演方法进行验证,研究某些地球物理探测方法结果与涌水量的关系,为实际工程中含水地质构造装置的超前预报和涌水量预测奠定试验基础。还公开一种隧道施工大型综合地球物理超前探测方法。

Description

一种隧道施工大型综合地球物理超前探测模型试验装置 技术领域
本发明涉及一种地球物理超前探测模型试验装置, 尤其涉及一种隧道施工大型综合地球 物理超前探测模型试验装置。
背景技术
进入 21世纪, 全世界基础设施建设迎来了 "地下空间"开发的高潮, 作为地下工程的主要 结构形式, 隧道建设规模和数量越来越多。 隧道主要分为公路铁路交通隧道、 水利输调水隧 道、 市政管线隧道、 矿山隧道等。 对于在复杂地质条件下修建的隧道工程, 由于在前期地质 勘査阶段难以査清线路区域的地质情况, 导致在施工中经常发生突水突泥、 塔防、 大变形等 地质灾害, 严重影响了施工安全。例如: 日本青函海底隧道于 1969年与 1976年两度因突水 事故而淹没, 33人丧生, 1300多人伤残, 工期被延误 2年多; 中国圆梁山隧道在建设的过 程中, 共发生大规模突泥突石、 涌水涌沙 71次, 严重威胁了施工安全, 延误了工期。 因此, 十分有必要对隧道掌子面前方的地质情况实施超前探测, 探明溶洞、 暗河、 断层等可能诱发 地质灾害的地质构造。
隧道超前地质预报是利用钻探和地球物理探测等手段,探测隧道开挖面前方的地质情况, 在施工前掌握前方的岩隧道围岩结构与性质,以及溶洞、暗河、断层等不良地质构造的情况, 为进一步的施工提供指导, 以避免施突水突泥、塌方、大变形等地质灾害,保证施工的安全。 在隧道施工期超前地质预报的研究和实践中, 人们发现由于地球物理反演解译的多解性和探 测环境的复杂性导致单一方法的探测效果不理想, 经常出现定性判断不准确, 定位精度低等 问题, 导致误报、 漏报或错报, 给施工安全造成严重隐患。 为了提高超前地质预报的可靠性 与准确性, 人们往往将多种预报方法互相结合, 实施综合超前地质预报, 各种预报结果相互 验证, 相互补充, 可有效的改善探测效果。
为了揭示典型不良地质的地球物理响应特征, 建立隧洞前方不良地质三维定位与水量估 算定量识别方法, 研发新型物理探测技术, 验证探测效果, 评价装备性能, 建立一种隧道施 工大型综合地球物理超前探测模型试验装置是非常重要的。 地球物理探测模型试验可构建已 知的地质条件, 模拟真实的探测环境和探测对象, 对于验证探测性能效果具有十分重要的作 用。 地球物理探测的物理模型试验是指将介质体的物理原型遵循物理的和几何的相似准则, 依照一定的比例因子在试验室内建造相似模型, 以模拟实际地质条件中和真实的探测环境。 通过对模型中的地球物理场的观测, 建立起介质的模型结构、 构造、 物理性质及其变化规律 与地球物理场的特征及其变化之间的关系。 利用这一关系, 就可以根据介质体的物理原型上 观测到的地球物理场对物理原型进行研究和探测。 地球物理探测试验是固体地球物理和勘探 地球物理的基础理论和方法技术研究的重要途径和手段。
就目前模型试验的发展来看, 现有的模型试验存在探测手段单一、 规模与比例尺小、 模 拟地质类型单一、 材料不可重复等局限性, 例如: 文献《采空区二维超声波物理模型实验研 究》, 赵家福, 吉林大学学报, 文中的模型试验装置只是针对于地震法, 且其模型是由一个 80cmx20cmx0.3cm 的有机玻璃板和水槽组成, 比例尺过小; 文献《隧道全空间瞬变电磁响 应的物理模拟》, 漆泰岳, 现代隧道技术, 文中的模型试验只是针对于瞬变电磁法, 其模型尺 寸为 4mx2mxl.Sm, 且其内部材料固定, 可模拟地质类型单一。
根据对己有技术的调研, 我们认为对于隧道施工综合超前地质预报物理模拟技术及装备 而言, 面临的主要问题如下: ①由于需要实现地震波法、 电磁法与直流电法三种探测方法的 相似性物理模拟,每种探测方法的相似性原理彼此不同,对试验材料的参数要求也彼此不同, 很难找到一种能够同时满足三种探测方法的相似材料; (D为了真实的模拟实际地质条件和探 测环境, 并能满足地震波场、 电磁场与直流电场传播的边界要求, 要求物理模型试验装置的 尺寸和规模比例尺大; ③实际施工中存在着溶洞、 暗河、 断层等多种含水地质构造装置, 为 了分类研究典型含水地质构造装置的地球物理响应与探测识别效果, 要求物理模型试验中可 模拟不同类型的含水地质构造装置; ©由于物理模型试验的成本较高, 若仅能模拟单一的地 质情况, 地质异常体和相似材料不可更换与重复利用, 则大大增加了研究成本, 因此要求实 现不同类型异常体的快速布置, 以模拟不同的地质情况; ©现有物理模型试验装置基本只是 针对某一种探测手段设计, 然而地球物理探测具有多解性和探测环境复杂性的特点, 要求物 理试验装置具有地震波法、 电磁法与直流电法等多种探测方法, 并将这些探测手段的结果进 行对比验证, 但是各种探测手段的观测***在物理模型中如何布置, 彼此不干扰, 是一个难 题。
发明内容
本发明的目的就是为了解决上述问题, 提供一种隧道施工大型综合地球物理超前探测模 型试验装置, 该装置能够满足集成激发极化法、 瞬变电磁法、 地震法、 钻孔雷达法、 电阻率 CT法的探测要求, 实现多元地球物理综合探测。
为了实现上述目的, 本发明采用如下技术方案:
一种隧道施工大型综合地球物理超前探测模型试验装置,它包括隧道围岩、主隧道模型、 模型试验外壳、 含水地质构造装置、 数控自动化施工装置、 水平探测钻孔和主控室; 隧道围 岩填充于模型试验外壳内, 模型试验主隧道模型位于模型试验外壳的前方正中间位置, 含水 地质构造装置安置在主隧道模型前方, 数控自动化施工装置安装在模型试验外壳的顶部, 水 平探测钻孔设置于模型试验装置内部, 主控室位于模型试验外壳外部, 与含水地质构造装置 和数控自动化施工装置通信。
所述隧道围岩,用于模拟实际隧道施工中的隧道围岩情况,它是一种同时满足地震波场、 电磁场与直流电场探测所需电阻率和波速要求的相似材料, 所述相似材料由下列组分按如下 质量份混合压实而成:
土 100份
水泥 4-20份
石子 10-25份,
其中土的含水率控制在 8%~16%, 整个相似材料压实度控制在 0. 75〜0. 95; 所述土与石 子为相似材料的骨料, 水泥为胶结剂, 石子为 3〜4目, 水泥以千粉直接掺入; 所述相似材料 的波速为 230〜1260m/s,电阻率为 20~340Ω m。
一种上述隧道围岩的制备方法, 按以下步骤进行:
( 1 ) 按照所需材料电阻率、 波速参数, 按照波速与电阻率与含水率、 压实度关系曲线, 按数值找出合适的含水率与压实度;
(2 ) 现挖地下土样若干, 通过烘干、 日照或加水方法, 使土体含水率达到预定含水率, 砾石通过筛子筛选出 3〜4目粒径石子若干;
(3 ) 分别称取各原材料放入搅拌机中, 充分拌合;
(4)将混合材料放入模型中, 分层堆料, 进行人工夯实, 达到预定压实度。
所述主隧道模型包括连接的隧道模型掌子面和隧道模型腔体, 隧道模型腔体和隧道模型 掌子面成为一个整体; 所述隧道模型腔体分为内外两层, 内层包括壳体和位于壳体内部用于 约束壳体径向变形的环形内加强肋, 外层设有位于壳体外部分别用于约束隧道模型腔体径向 和轴向变形的环形外加强肋和轴向外加强肋;所述隧道模型掌子面上分别布置有电极安装孔、 电磁法线圈支架、 钻孔雷达探测孔和瞬变电磁超前探头安置孔, 所述隧道模型掌子面上布置 有地震波法激发测点和接收测点, 所述隧道模型腔体内层壳体的橫截面是由五心圆的六段圆 弧构成的对称结构, 整个横截面呈上窄下宽、 周边圆滑的卵石形状。 所述钻孔雷达探测孔和瞬变电磁超丽探头安置扎分别位于隧道模型掌子面两侧底脚, 两 者均为圆筒状, 尺寸相同。
所述电极安装孔为圆筒状, 电极安装孔按照直流电法或者激发极化法测线布置的要求在 隧道模型掌子面上预留, 电极根据实际需要安装在电极安装孔中。
所述电磁法线圈支架按照瞬变电磁法线圈布置的要求在隧道模型掌子面上预留四个支架, 所述四个支架构成矩形。
所述模型试验外壳为钢筋混凝土结构, 整个模型试验装置的几何因素比值 G为 6, 所述 几何因素比值是原型几何尺寸与模型几何尺寸之比。
所述含水地质构造装置, 包括自由模铸的渗透系数可控的含水构造外壳、 进水管、 出水 管、 进水流量控制装置、 出水流量控制装置、 水箱和水波速可控装置, 其中, 进水管和出水 管分别装设于含水构造外壳的两侧, 进水流量控制装置固定于进水管上, 出水流量控制装置 设置在出水管上, 所述进水管的一端与水箱连接, 所述进水管和所述出水管位于含水构造外 壳内的部分分别设有若干个形成多个水道的进水口和出水口; 所述含水构造外壳还与基于气 动喷粉的水波速可控装置连接。
所述进水管和出水管分别通过水的流向控制装置连接到含水构造外壳上, 所述进水管和 出水管位于含水构造外壳内部的部分通过水的流向控制装置分别分为若干方向的管道。
所述水波速可控装置包括计算机, 所述计算机分别与空气压缩机和声发射换能器连接, 所述空气压缩机与***含水构造外壳的多孔排管一端连接, 所述多孔排管的另外一端有若干 平行的管道, 所述声发射换能器位于含水构造外壳的内部。
所述进水流量控制装置, 包括流量控制器, 所述流量控制器与计算机连接, 所述流量控 制器还与变频器连接, 所述变频器与变频电机连接, 所述变频电机与进水流量计连接, 所述 进水流量计与计算机连接, 所述进水流量计安装在进水管内。
所述出水流量控制装置, 包括流量控制器, 所述流量控制器与计算机连接, 所述流量控 制器还与变频器连接, 所述变频器与变频电机连接, 所述变频电机与出水流量计连接, 所述 出水流量计与计算机连接, 所述出水流量计安装在出水管内。
所述水的流向控制装置为三通道电磁阀, 所述三通道电磁阀与计算机连接。
所述含水构造外壳采用渗透性好的可控渗透系数的透水材料模铸而成。 所述含水构造外 壳的材料包括水泥、 水渣、 石子、 FRP筋, 按照水泥 1份, 水渣 1.25-2.05份, 石子 0.50-1.25 份, 水 0.3-0.75份质量配合比模铸而成。 所述含水构造装置所采用的制造万法, 步骤如卜:
步骤 (1 ): 浇筑含水构造外壳: 根据要制作的含水构造类型和形状选择合适的刚模具和 模板,在刚模具内将 FRP筋按照设定的间距布置绑扎;按照设定渗透系数要求,选择配合比, 将水泥、 水渣和石子先在搅拌机搅拌均匀, 然后加入水, 再搅拌均匀; 然后倒入刚模具和模 板内, 并震动捣实, 浇筑成型; 设定时间过后脱模, 按照混凝土养护规定养护若干天;
步骤 (2): 安装基于气动搅拌的水波速可控装置: 将过量塑料粉通过空气压缩机加入到 含水构造外壳内的水中制成悬浊液,声发射换能器按照固定距离固定好,将多孔排管固定好, 将计算机分别与空气压缩机和声发射换能器连接, 将空气压缩机与多孔排管连接;
步骤 (3 ): 安装进出水流量控制装置和水的流向控制装置: 将流量控制器分别与两个变 频器连接, 将两个变频器分别与变频电机连接, 将变频电机分别与进水流量计和出水流量计 连接; 水的流向控制装置与计算机连接好, 水的流向控制装置安装在含水构造外壳的两端; 将进水管和出水管分别与含水构造外壳连接好;
步骤 (4): 含水构造装置吊装与埋设: 在设定长宽高的多功能隧道超前地质预报物理模 型试验装置上按照指定位置使用旋挖装置将填挖好的模型开挖到合适深度, 将含水构造装置 用行吊吊到开挖好的位置, 将挖开的围岩相似材料埋上, 夯实;
步骤(5 ):通过计算机设定水的弹性波波速、水的流量及流向,控制相应装置进行工作。 所述步骤 (1 ) 中含水构造外壳侥筑时, 首先, 需要在含水构造外壳两侧预留两个直径 3cm的洞, 分别作为进出水和口水管安装的位置; 同时需要在外壳预留一个直径 2cm的洞, 作为含水构造内的多孔排管连接管安装的位置;还需要在含水构造外壳预留 0.2x0.2m的方形 孔, 并制作适合其大小的盖, 该方形孔作为填充固体填充材料时使用, 填充完后, 用螺栓将 制作好的盖固定到外壳上, 将预留的方形孔封上。
所述数控自动化施工装置, 包括固定在模型试验外壳顶端的水平导轨, 在水平导轨上沿 导轨方向移动的双梁门式吊车,安装在双梁门式吊车上的 3602可旋转取土装置和异常体搬运 装置, 以及用于实现测距、 反馈和实时显示功能的综合数控操作***; 双梁门式吊车沿水平 导轨移动, 3602可旋转取土装置沿双梁门式吊车移动或者垂直向下移动。
所述双梁门式吊车由全门式主梁和固定在全门式主梁两端的腿部支撑组成, 所述主梁为 双梁结构, 主梁上设计有小车轨道, 主梁的每根单梁均设计为箱型梁结构。
所述腿部支撑包括两条斜腿、 底部的端梁和行走机构, 两条斜腿组成 A型支架, 两条斜 腿通过底部的端梁与行走机构连接。 所述行走机构两侧设计有防止吊半脱离轨道的钢板卡扣。
所述 360°可旋转取土装置包括四轮小车、 旋转机构、 导向杆、 抓斗以及主液压***; 所述四轮小车在全门式主梁的小车轨道上移动, 导向杆通过设置在四轮小车上的导向杆 孔与四轮小车连接, 导向杆通过旋转机构与抓斗连接, 导向杆可伸缩, 主液压***用于驱动 抓斗的旋转与正常工作以及驱动导向杆的伸缩。
所述异常体搬运装置包括吊葫芦以及与吊葫芦连接的行走部件, 所述行走部件沿双梁门 式吊车主梁的其中一个单梁移动。
所述综合数控操作***能够实现测距、 反馈功能以及实时显示整个装置的工作状态, 所 述综合数控操作***设计有自动控制与手动控制两种模式。
所述水平探测钻孔, 共有 3对, 其中 1对钻孔位于主隧道掌子面前方, 用于瞬变电磁法 超前探头的安置、 电阻率 CT法电极的安装和钻孔雷达法天线的递送, 另外 2对安装有测量 电极的钻孔贯穿整个模型试验装置, 分别位于模型试验装置的左上和右上、 左下和右下, 用 于电阻率 CT法与钻孔雷达法的探测。
所述主控室, 用于控制与显示试验中每一个操作, 与含水地质构造装置和数控自动化施 工装置通信。
一种使用上述探测模型试验装置的综合地球物理超前探测方法为:
整个探测步骤如下-
( 1 )预埋地质异常体: 在确定好预埋地质异常体在模型试验中的三维位置后, 利用自数 控自动化施工装置, 在隧道围岩中进行快速三维定位挖掘, 将含水地质构造装置搬运并埋设 到主隧道模型前方的预定位置中, 将隧道围岩回填并夯实;
(2)探测装置的连接与探测试验, 具体包括:
1)探测方法选择及其设备连接; 根据试验需要选择探测方法, 如: 激发极化法、 瞬变电 磁法、 地震法、 钻孔雷达法、 电阻率 CT法, 并将其配套探测设备连接好, 供地球物理超前 探测试验使用;
2 )电极与水平探测钻孔的选择; 根据选择好的探测方法, 选择对应方法需使用的电极或 者水平探测钻孔, 其中: 激发极化法需使用主隧道掌子面上和隧道腔体上布设的电极, 钻孔 雷达法和电阻率 CT法需根据预埋的含水地质构造装置的三维位置, 选择任意 2个钻孔, 保 证含水地质构造装置在水平探测钻孔之间;
3 )探测及其探测结果验证; 通过探测设备与电极或者钻孔的配合使用, 进行各种地球物 理超前探测, 并将采集到的探测数据进仃地球物理反演处理, 得到含水地质构造装置的响应 结果, 从而得到探测到的含水地质构造装置三维位置、 大小等信息, 并与实际埋设的含水地 质构造装置三维位置、 大小等信息进行验证, 判断各种探测方法的准确性。
本发明的有益效果:
1.本发明提出了一种比例尺超大的集成激发极化法、瞬变电磁法、地震法、钻孔雷达法、 电阻率 CT法的综合地球物理超前探测模型试验装置, 整个模型试验装置合理地设计了隧道 围岩、主隧道模型、模型试验外壳、含水地质构造装置、数控自动化施工装置, 以及主控室, 实现了多元地球物理综合探测;
2.本发明提出了一种同时满足地震波场、 电磁场与直流电场多场相似要求的相似材料, 它是由粉质粘土、 水泥和碎石组成, 通过控制含水率和压实度, 满足地震波场、 电磁场与直 流电场探测方法所需电阻率 200Ωιυ和波速 1000m/s的要求, 从而能更精确的模拟实际地质 情况;
3.本发明提出了一种可控参数的含水地质构造装置, 含水地质构造装置包括基于气动搅 拌装置的水速可控装置、 水的流量及流向控制***及自由模铸的渗透系数可控的含水地质构 造装置外壳,它实现了对水体波速的可控调节,以及对水体流量及流向的控制,满足地震法、 电磁法、 直流电法的多元地球物理场要求, 实现了对动水的流量及流向的控制, 通过水量的 控制可实现对不良地质体不同充水状态的模拟, 通过流向的控制解决了激发极化法对动水模 拟的要求; 通过自由模铸不同形状可模拟暗河、 溶洞、 断裂带多种不良地质体及其组合;
4.本发明提出了一种用于大型地球物理探测试验的数控自动化施工装置, 它包括双梁门 式吊车、 水平导轨、 3609可旋转取土装置、 地质异常体搬运装置、 主液压***, 以及综合测 距与反馈及实时显示数控操作***, 该装置不仅实现了在大型地球物理探测试验隧道围岩中 的全自动快速三维精确定位挖掘技术, 实现了模型试验中材料、 地质异常体可更换可重复, 而且具有能耗小, 效率高, 可操作性强, 安全性高特点;
5.整个模型装置预留有多种超前探测设备安放的空间以及设计线路, 可以方便快捷的安 装和拆卸电极、 布置仪器, 能够满足激发极化法、 瞬变电磁法、 地震法、 钻孔雷达法、 电阻 率 CT法多种超前预报方法装置布设的要求。
附图说明
图 1是本发明大型综合地球物理超前探测模型试验装置示意图;
图 2是本发明主隧道模型整体结构剖切面示意图; 图 3是本发明含水地质构造装置不葸图;
图 4是本发明数控自动化施工装置示意图;
图 5是本发明探测钻孔的三维分布示意图;
图 6是本发明主隧道模型掌子面用于激发极化法或直流电法超前预报电极安装示意图。 其中, 1、 隧道围岩; 2、 主隧道模型; 3、 模型试验外壳; 4、 含水地质构造装置; S、 数控自动化施工装置; 6、 主控室; 7、 隧道模型腔体; 8、 隧道模型掌子面; 9、 壳体; 10、 环形内加强肋; 11、 环形外加强肋; 12、 轴向外加强肋; 13、 出水流量控制装置; 14、 进水 流量控制装置; 15、水箱; 16、空气压缩机; 17、计算机; 18、三通道电磁阀; 19、 出水管; 20、 多孔排管; 21、 声发射换能器; 22、 进水管; 23、 电缆; 24、 双梁门式吊车; 25、 水平 导轨; 26、 3602 可旋转取土装置; 27、 异常体搬运装置; 28、 导线; 29、 电极; 30、 水平 探测钻孔。
具体实»式
下面结合附图与实施例对本发明作进一步说明:
实施例 1:
如图 i所示, 一种隧道施工大型综合地球物理超前探测模型试验装置, 它包括隧道围岩
1、 主隧道模型 2、 模型试验外壳 3、 含水地质构造装置 4、 数控自动化施工装置 S、 水平探 测钻孔 30和主控室 6; 隧道围岩 1填充于模型试验外壳 3内,主隧道模型 2位于模型试验外 壳 3的前方正中间位置, 含水地质构造装置 4安置在主隧道模型 2前方, 数控自动化施工装 置 5安装在模型试验外壳 3的顶部, 水平探测钻孔 30设置于模型试验装置内部, 主控室 6 位于模型试验外壳 3外部, 与模型试验主隧道模型 2、 含水地质构造装置 4和数控自动化施 工装置 5通信。
一种隧道围岩 1, 在模型试验装置中, 它的作用是模拟实际隧道施工中的隧道围岩 1情 况, 它是一种能同时满足地震波场、 电磁场与直流电场探测所需电阻率和波速要求, 结构简 单、 操作方便的地震法、 电磁法、 电法联合探测物理模型试验的相似材料。
相似材料是由土、 水泥和碎石, 经混合均匀制备而成, 它由以下重量份原料组成: 粉质 粘土 100份, 水泥 12份, 碎石 20份。
上述隧道围岩相似材料的制备方法, 按以下步骤进行:
( 1 )按照所需材料电阻率、 波速参数, 按照波速与电阻率与含水率、 压实度关系, 找出 合适的含水率 12%与压实度 0. 85; ( 2 ) 现挖地下土样若干, 通过烘十、 ϋ照 加水方法, 使土体含水率达到预定含水率 12%, 砾石通过筛子筛选出 3〜4目粒径石子若干;
( 3 )分别称取各原材料放入搅拌机中,其中粉质粘土 100份, 水泥 12份,碎石 20份, 充分拌合;
(4)将混合材料放入模型中, 分层堆料, 进行人工夯实, 达到预定压实度 0. 85。 测得隧道围岩相似材料电阻率为 200ΩΓΠ,波速为 1000m/s, 能同时满足地震波场、 电磁 场与直流电场探测所需电阻率和波速要求, 从而能更精确的模拟实际地质情况。
如图 2所示, 一种主隧道模型 2, 由隧道模型腔体 7和隧道模型掌子面 8两部分构成。 其中, 隧道模型腔体 7分为内外两层: 内层为: "环肋卵石壳"结构, 包括壳体 9和环形内加 强肋 10; 外层为 "空间钢网格"结构, 包括环形外加强肋 11和轴向外加强肋 12。 隧道模型 掌子面 8上设有电极 4安装孔、 电磁法线圈支架、 钻孔雷达探测孔和瞬变电磁超前探头安置 孔, 并刻有详细的标记用于记录地震波法激发点和接收点的位置。
"环肋卵石壳"结构由壳体 9和环形内加强肋 10两部分构成。 所述壳体 9的横截面是 由五心圆的六段圆弧构成的对称结构, 壳体 9内部空间上下垂直距离约为 2.0m, 左右水平距 离约为 1.7m, 壳体 9壁厚约 3cm, 整个截面形状类似卵石, 上尖下宽, 周边圆滑, 该结构强 度高、 刚度大、 稳定性好, 比普通的隧道模型结构能承受更大的顶部荷载和侧向荷载。 所述 环形内加强肋 10位于壳体 9内部, 约束壳体 9的径向变形, 对壳体 9起整体加强作用, 呈 内环形布置, 肋与肋之间间隔 lm, 每根加强肋宽度约为 10cm, 高度约为 5cm。 壳体 9和环 形内加强肋 10在制作时整体浇筑, 成为一体。
"空间钢网格"结构位于壳体 9外部, 由环形外加强肋 11和轴向外加强肋 12两部分构 成。 所述环形外加强肋 11宽度约为 2cm, 高度约为 10cm, 肋与肋之间间隔 20cm; 轴向外 加强肋 12宽度约为 2cm, 高度约为 10cm, 沿壳体 9外表面轴向通长分布, 共 8段; 环形外 加强肋 11和轴向外加强肋 12共同构成"空间钢网格"结构, 该结构可大大增强隧道模型承载 外压的能力、 减小隧道模型的径向压缩和轴向不均匀变形, 在制作时整体饶筑, 成为一体。
如图 6所示, 电极 4安装孔按照直流电法、 激发极化法测线布置的要求在隧道模型掌子 面 8上预留, 在掌子面上从上到下总共有排孔(从上到下顺序依次为 1、 2、 3、 4、 5), 各排 间距 0.4m, 每一排相邻两孔中心间距为 0.15m, 其中第 1、 5排各有 6个孔, 第 2、 3、 4排 各有 10个孔,共计 42个孔;每个电极 4安装孔为圆筒状,开口直径 3cm,筒壁母线长 10cm, 便于安放供电和测量电极 4。 电磁法线圈支架按照瞬变电磁法线圈布置的妥求由在隧道模型掌子面 8上预留的四个支 架构成, 四个支架连线恰好形成一个矩形, 超前预报人员可利用四个支架快速便捷地完成发 射线圈的布置。
钻孔雷达探测孔和瞬变电磁超前探头安置孔分别位于隧道模型两侧底脚, 均为圆筒状, 开口直径 0.2m, 筒壁母线长 lm; 由于两个孔的尺寸相同、 位置相当, 在实际探测时钻孔雷 达天线或瞬变电磁超前探头安放到其中任何一个孔中都是可以的。 需要指出的是, 当钻孔雷 达天线或瞬变电磁超前探头需要安放到更深的位置时, 只须在每个孔口外接一根口径相同、 长度足够的 PE管或 PVC管即可。
详细的标记是在隧道模型掌子面上利用直尺精确标定的地震波法超前探测用到的激发测 点和接收测点, 按照地震波法测线布置的要求, 在隧道模型掌子面 8上布置一条垂直测线和 一条水平测线, 其中垂直测线上有 20个测点, 测点间距 0.1m, 水平测线上有 16个测点, 测 点间距 0.1m。
隧道模型掌子面 8壁厚为 5 η, 掌子面截面与所述壳体 9尺寸完全相同, 在制作时二者 浇筑成为一个整体。
可实现多地球物理场超前探测的隧道模型试验装置完全由 GFRP复合材料缠绕浇筑而成, 质轻高强, 缠绕一次成型、 整体浇筑, 模型表面光滑、 材料内部密度均匀性好, 制作完成后 具有较强的电磁波透射性能, 而且不会产生任何的电磁干扰, 可为超前预报人员在模型内部 开展试验和多元地球物理仪器测试提供一个理想的试验平台。
在进行激发极化法或直流电法超前预报之前, 只需将供电电极 4、 测量电极***隧道模 型掌子面 8上的电极 4安装孔, 用铁锤轻轻敲击, 使电极 4与掌子面前方岩土体良好接触, 然后将电极 4通过导线 28连接到电缆 23上, 便可以开始电法超前预报的工作。
在进行瞬变电磁法超前预报之前, 将发射线圈缠绕固定在隧道模型掌子面 8上的四个电 磁法线圈支架上, 接收线圈可以在发射线圈内部任意移动、 瞬变电磁超前探测探头可以在瞬 变电磁超前探头安置孔当中任意移动来采集信号。
在进行钻孔雷达法超前预报之前, 只须将钻孔雷达天线放入钻孔雷达探测孔中, 连接好 仪器, 钻孔雷达天线在孔内任意移动便可以采集前方岩土体反射回来的信号。
在进行地震波法超前预报工作时, 利用激震锤在隧道模型掌子面 8上做好的标记上进行 敲击, 将检波器放在标记的其他位置上进行信号采集。
一种模型试验外壳 3, 它是由钢筋混凝土结构组成, 整个模型的尺寸是 17m (长) x7.6m (宽) x6m (高), 整个模型试验装置的儿 1«」1S素 值 G为 6 (原型几何尺寸与模型几何尺寸 之比), 其外墙厚度为 0.4m, 为了抵抗墙体所受弯矩, 在底部连接处采用 0.7m厚加筋混凝土 施做底板, 且墙体上预留有主隧道和探测钻孔。 从主隧道模型 2和模型试验外壳 3的尺寸看 来, 该模型试验装置是一种大比例尺的模型试验平台, 能更接近实际探测条件, 能够更真实 的反映探测规律。
如图 3所示, 含水地质构造装置 4, 包括自由模铸的渗透系数可控的含水构造外壳, 含 水构造外壳的两侧分别安装有进水管 22和出水管 19, 进水管 22上设有进水流量控制装置 14, 出水管 19上设有出水流量控制装置 13, 进水管 22的一端与水箱 15连接, 进水管 22 和出水管 19位于含水构造外壳内的部分分别设有若干个形成多个水道的进水口和出水口;含 水构造外壳还与基于气动喷粉的水波速可控装置连接。
进水管 22和出水管 19分别通过水的流向控制装置连接到含水构造外壳上, 进水管 22 和出水管 19位于含水构造外壳内部的部分通过水的流向控制装置分别分为若干方向的管道。
水波速可控装置包括计算机 17, 计算机 17分别与空气压缩机 16和声发射换能器 21连 接, 空气压縮机 16与***含水构造外壳的多孔排管 20—端连接, 多孔排管 20的另外一端 有若干平行的管道, 声发射换能器 21位于含水构造外壳的内部。
进水流量控制装置 14, 包括流量控制器, 流量控制器与计算机 17连接, 流量控制器还 与变频器连接, 变频器与变频电机连接, 变频电机与进水流量计连接, 进水流量计与计算机 17连接, 进水流量计安装在进水管 22内。
出水流量控制装置 13, 包括流量控制器, 流量控制器与计算机 17连接, 流量控制器还 与变频器连接, 变频器与变频电机连接, 变频电机与出水流量计连接, 出水流量计与计算机 17连接, 出水流量计安装在出水管 19内。
水的流向控制装置为三通道电磁阀 18, 三通道电磁阀 18与计算机 17连接。
含水构造外壳采用渗透性好的可控渗透系数的透水材料模铸而成。 含水构造外壳的材料 包括水泥、 水渣、 石子、 FRP筋, 按照水泥 1份, 7_K渣 1.2S-2.0S份, 石子 0.50-1.25份, 水 0.3-0.75份质量配合比模铸而成。
含水地质构造装置 4所采用的制造方法, 步骤如下:
步骤 (1 ) : 浇筑含水构造外壳: 根据要制作的含水地质构造装置类型和形状选择合适的 刚模具和模板, 在刚模具内将 FRP筋按照设定的间距布置绑扎; 按照设定渗透系数要求, 选 择配合比, 将水泥、 水渣和石子先在搅拌机搅泮均匀, 然后加入水, 再搅拌均匀; 然后倒入 刚模具和模板内, 并震动捣实, 浇筑成型; 设足时间过后脱模, 按照混凝土养护规定养护若 干天;
步骤(2 ) : 安装基于气动喷粉装置的水波速可控装置: 将过量塑料粉通过空气压缩机 16 加入到含水构造外壳内的水中制成悬浊液,声发射换能器 21按照固定距离固定好,将多孔排 管 20固定好, 将计算机 17分别与空气压缩机 16和声发射换能器 21连接, 将空气压缩机 16与多孔排管 20连接;
步骤 (3 ): 安装进出水流量控制装置 13 和水的流向控制装置: 将流量控制器分别与两 个变频器连接, 将两个变频器分别与变频电机连接, 将变频电机分别与进水流量计和出水流 量计连接;水的流向控制装置与计算机 17连接好,水的流向控制装置安装在含水构造外壳的 两端; 将进水管 22和出水管 19分别与含水构造外壳连接好;
步骤 (4) : 含水地质构造装置吊装与埋设: 在设定长宽高的多功能隧道超前地质预报物 理模型试验装置上按照指定位置使用旋挖装置将填挖好的模型开挖到合适深度, 将含水地质 构造装置用行吊吊到开挖好的位置, 将挖开的围岩相似材料埋上, 夯实;
步骤 (5 ): 通过计算机 17 设定水的弹性波波速、 水的流量及流向, 控制相应装置进行 工作。
步骤 (1 ) 中含水构造外壳浇筑时, 首先, 需要在含水构造外壳两侧预留两个直径 3cm 的洞, 分别作为进出水和口水管安装的位置; 同时需要在外壳预留一个直径 2α 的洞, 作为 含水地质构造装置内的多孔排管 20连接管安装的位置;还需要在含水构造外壳预留 0.2x0.2m 的方形孔, 并制作适合其大小的盖, 该方形孔作为填充固体填充材料时使用, 填充完后, 用 螺栓将制作好的盖固定到外壳上, 将预留的方形孔封上。
基于气动喷粉的水波速可控装置的工作原理是, 由于水的波速比预期要高, 因此采用塑 料粉悬浊液对其波速进行可控调节。 塑料粉悬浊液中, 塑料粉的含量会对波速有影响, 含量 越高,波速越低; 塑料粉在塑料粉悬浊液中的含量是通过空气压缩机 16的功率来控制, 功率 高时, 多孔排管 20产生的均匀气泡多, 在悬浊液中吹起的塑料粉越多, 悬浊液中塑料粉的含 量也就越高。 因此, 波速可控采用反馈调节: 在水中加入过量的塑料粉, 电脑控制空气压缩 机 16以 200KW的功率工作, 在多孔排管 20中产生均匀气泡, 使塑料粉在水里保持悬浊; 同时声发射探头工作, 测试悬浊液的弹性波波速, 并实时反馈给计算机 17, 当波速比预计值 高或者低时, 计算机 17调整空气压缩机 16的工作功率(50-370KW) , 减少或增加水中塑料 粉的含量, 使波速升高或降低, 实现水的波速实时可控调节。 进水流量控制装置 14和出水流量授制装置 13的工作原理: 通过计算机 17控制流量控 制器, 流量控制器分别通过进水端和出水端的变频器控制变频电机, 控制进出水量, 进出水 流量计对进出水量向计算机 17进行实时反馈, 流量控制器根据计算机 17接收到的反馈信息 对变频器进行实时控制, 同时流量控制器显示实时流量和总体水量。
含水构造外壳采用渗透性好的可控渗透系数的透水材料通过类似于混凝土浇筑的方式模 铸而成。外壳形状采用木模板模铸而成,能自由模铸不同的形状,根据需模拟的暗河、溶洞、 断裂带不同地质体的形状选择不同的木模板形状,能模拟暗河、溶洞、断裂带等不同地质体。
如图 4所示, 数控自动化施工装置 5, 包括固定在模型试验边墙顶端的水平导轨 25, 在 水平导轨 25上沿导轨方向移动的双梁门式吊车 24, 安装在双梁门式吊车 24上的 3602可旋 转取土装置 26和异常体搬运装置 27, 以及用于实现测距、 反馈和实时显示功能的综合数控 操作***。
双梁门式吊车 24沿水平导轨 25移动, 3602可旋转取土装置 26沿双梁门式吊车 24移 动或者垂直向下移动。双梁门式吊车 24由全门式主梁和固定在全门式主梁两端的腿部支撑组 成, 主梁为双梁结构, 主梁上设计有小车轨道, 主梁的每根单梁均设计为箱型梁结构。
腿部支撑包括两条斜腿、 底部的端梁和行走机构, 两条斜腿组成 A型支架, 两条斜腿通 过底部的端梁与行走机构连接。 行走机构两侧设计有防止吊车脱离轨道的钢板卡扣。
3609可旋转取土装置 26包括四轮小车、 旋转机构、 导向杆、 抓斗以及主液压***, 所 述四轮小车在全门式主梁的小车轨道上移动, 导向杆通过设置在四轮小车上的导向杆孔与四 轮小车连接, 导向杆通过旋转机构与抓斗连接, 主液压***用于驱动抓斗的旋转与正常工作 以及驱动导向杆的伸缩; 该取土装置解决了深部挖土及取土的难题, 同时也解决了土在模型 顶部的搬运问题, 以及土回填的问题, 加上该抓斗可 3609旋转, 可完成不同走向的异常体埋 设。
异常体搬运装置 27包括一个吊葫芦, 以及吊葫芦的行走部件,该装置安装在主梁上其中 的一个单梁上, 沿该单梁行走, 平时不用的时候会退至梁的一侧, 工作的时候可根据需要移 动至指定位置吊起异常体, 并可完成异常体的搬运、 埋设、 取出动作。
综合数控操作***能够实现测距、 反馈功能以及实时显示整个装置的工作状态, 综合数 控操作***设计有自动控制与手动控制两种模式。
确定预埋异常体在模型土体中的三维坐标(X, Y, Ζ)后, 双梁门式吊车 24沿水平导轨 25移动到坐标 X, 360Q可旋转取土装置 26沿双梁门式吊车 24移动到坐标 Υ, 360^可旋转 取土装置 26垂直向下移动至坐标 Z。
如图 5所示, 水平探测钻孔 30, 共有 3对, 其中 1对钻孔位于主隧道掌子面 8前方, 用 于瞬变电磁法超前探头的安置、 电阻率 CT法电极的安装和钻孔雷达法天线的递送, 另外 2 对安装有电极的钻孔贯穿整个模型试验装置, 分别位于模型试验装置的左上和右上、 左下和 右下, 用于电阻率 CT法与钻孔雷达法的探测。
钻孔雷达法的探测: 其具体探测试验步骤为:
1: 预埋地质异常体。在确定好预埋地质异常体在模型试验中的三维位置后, 利用自动化 施工装置, 首先在模型试验隧道围岩中进行快速三维定位挖掘, 然后将含水构造搬运并埋设 到预定位置中, 最后将隧道围岩材料回填并夯实。
2: 探测装置的连接与试验。
( 1 )选择水平探测钻孔: 根据预埋的含水构造三维位置, 选择任意 2个钻孔, 保证含水 地质构造装置在 2个水平探测钻孔之间, 供跨孔雷达法探测。
( 2 )设备的连接: 连接好雷达主机、 笔记本、 2个钻孔雷达天线、 电源及其它配套探测 设备。
( 3 )探测及其探测结果验证。
首先, 把一个钻孔雷达天线作为接收天线, 并递送到其中一个水平探测钻孔最深部, 另 外一个钻孔雷达天线作为发射天线, 也递送到另外一个水平探测钻孔最深部。
接着, 利用笔记本控制雷达主机进行第一次雷达数据采集, 然后把发射天线往钻孔外移 动探测间距 m, 接收天线不动, 再进行第二次雷达数据采集, 接着再把发射天线每次往外移 动探测间距 m, 直至移动到远离探测区域, 进行第三次、 第四次……第 n次探测, n、 m均 为自然数。
同样, 再把 2个钻孔雷达天线递送到原水平探测钻孔的最深部, 原发射天线作为接收天 线不动, 原接收天线作为发射天线同理进行 n次雷达数据采集。
最后, 将采集到的雷达数据进行地球物理反演处理, 得到含水地质构造装置的雷达探测 响应波形图, 从而得到探测区域含水地质构造装置的位置大小等信息, 并与实际情况进行对 比验证。
实施例 2:
一种隧道施工大型综合地球物理超前探测模型试验装置, 它包括隧道围岩 1、 主隧道模 型 2、 模型试验外壳 3、 含水地质构造装置 4、 数控自动化施工装置 5、 水平探测钻孔 30和 主控室 6; 隧道围岩 1填充于模型试验外壳 3内, 主隧道模型 2位于模型试验外壳 3的前方 正中间位置, 含水地质构造装置 4安置在主隧道模型 2前方, 数控自动化施工装置 5安装在 模型试验外壳 3的顶部, 水平探测钻孔 30设置于模型试验装置内部, 主控室 6位于模型试 验外壳 3外部, 与模型试验主隧道模型 2、 含水地质构造装置 4和数控自动化施工装置 S通 信。
隧道围岩的配比、 其他装置的布设及制备方法引用实施例 1。
激发极化法: 其具体探测试验步骤为-
1: 预埋地质异常体。在确定好预埋地质异常体在模型试验中的三维位置后, 利用自动化 施工装置, 首先在模型试验隧道围岩中进行快速三维定位挖掘, 然后将含水构造搬运并埋设 到预定位置中, 最后将隧道围岩材料回填并夯实。
2: 探测装置的连接与试验。
( 1 )选择探测电极; 激发极化法需要利用隧道模型掌子面 8上的 5排电极和隧道腔体 上距隧道模型掌子面 0. 5tn、 lm、 1. 5m、 2m、 2. 5m, 3m、 3. 5m, 4m、 4. 5m、 5m、 5. 5m处预设的 探测电极。
( 2 ) 设备的连接; 连接激发极化法主机、 电源, 并将用到的所有探测电极与主机相连。
( 3 )探测及其探测结果验证。
首先, 由隧道腔体上距隧道模型掌子面 O.Sm处的探测电极作为供电电极, 掌子面上的 5 排电极作为接收电极, 从第一排到第五排依次接收信号, 进行第一次探测:
同理, 由隧道腔体上距隧道模型掌子面 lm、 1. 5m. 2m、 2. 5m、 3m 3. 5m, 4m、 4. 5m, 5m、 5. 5m处的探测电极作为供电电极, 隧道模型掌子面 8上的 5排电极作为接收电极, 从第一排 到第五排依次接收信号, 进行第 2、 3、 ……、 11次探测;
最后,将采集到的探测数据进行地球物理反演处理,得到含水地质构造装置的响应结果, 从而得到探测到的含水地质构造装置三维位置、 大小等信息, 并与实际情况进行对比验证。
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明保护范围的限 制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims

权利要求书
1、一种隧道施工大型综合地球物理超前探测模型试验装置,其特征是:它包括隧道围岩、 主隧道模型、 模型试验外壳、 含水地质构造装置、 数控自动化施工装置、 水平探测钻孔和主 控室; 隧道围岩填充于模型试验外壳内, 模型试验主隧道模型位于模型试验外壳的前方正中 间位置, 含水地质构造装置安置在主隧道模型前方, 数控自动化施工装置安装在模型试验外 壳的顶部, 水平探测钻孔设置于模型试验装置内部, 主控室位于模型试验外壳外部, 与含水 地质构造装置和数控自动化施工装置通信。
2、如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是:所述隧道围岩,用于模拟实际隧道施工中的隧道围岩情况,它是一种同时满足地震波场、 电磁场与直流电场探测所需电阻率和波速要求的相似材料, 所述相似材料由下列组分按如下 质量份混合压实而成:
土 100份
水泥 4-20份
石子 10-25份,
其中土的含水率控制在 8%〜16%, 整个相似材料压实度控制在 0. 75〜0. 95; 所述土与石 子为相似材料的骨料, 水泥为胶结剂, 石子为 3〜4目, 水泥以干粉直接掺入; 所述相似材料 的波速为 230〜1260m/s,电阻率为 20〜340Ω m。
3、如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是- 所述主隧道模型包括连接的隧道模型掌子面和隧道模型腔体, 隧道模型腔体和隧道模型 掌子面成为一个整体; 所述隧道模型腔体分为内外两层, 内层包括壳体和位于壳体内部用于 约束壳体径向变形的环形内加强肋, 外层设有位于壳体外部分别用于约束隧道模型腔体径向 和轴向变形的环形外加强肋和轴向外加强肋;所述隧道模型掌子面上分别布置有电极安装孔、 电磁法线圈支架、 钻孔雷达探测孔和瞬变电磁超前探头安置孔, 所述隧道模型掌子面上布置 有地震波法激发测点和接收测点, 所述隧道模型腔体内层壳体的横截面是由五心圆的六段圆 弧构成的对称结构, 整个横截面呈上窄下宽、 周边圆滑的卵石形状。
4、如权利要求 3所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是: 所述钻孔雷达探测孔和瞬变电磁超前探头安置孔分别位于隧道模型掌子面两侧底脚, 两 者均为圆筒状, 尺寸相同。
5、如权利要求 3所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是: 所述电极安装孔为圆筒状, 电极安装孔按照直流电法或者激发极化法测线布置的要求在 隧道模型掌子面上预留, 电极根据实际需要安装在电极安装孔中。 权利要求书
6、如权利要求 3所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是:所述电磁法线圈支架按照瞬变电磁法线圈布置的要求在隧道模型掌子面上预留四个支架, 所述四个支架构成矩形。
7、如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是: 所述模型试验外壳为钢筋混凝土结构, 整个模型试验装置的几何因素比值 G为 6, 所述 几何因素比值是原型几何尺寸与模型几何尺寸之比。
8、如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是: 所述含水地质构造装置, 包括自由模铸的渗透系数可控的含水构造外壳、 进水管、 出水 管、 进水流量控制装置、 出水流量控制装置、 水箱和水波速可控装置, 其中, 进水管和出水 管分别装设于含水构造外壳的两侧, 进水流量控制装置固定于进水管上, 出水流量控制装置 设置在出水管上, 所述进水管的一端与水箱连接, 所述进水管和所述出水管位于含水构造外 壳内的部分分别设有若干个形成多个水道的进水口和出水口; 所述含水构造外壳还与基于气 动喷粉的水波速可控装置连接。
9、如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特征 是: 所述进水管和出水管分别通过水的流向控制装置连接到含水构造外壳上, 所述进水管和 出水管位于含水构造外壳内部的部分通过水的流向控制装置分别分为若干方向的管道。
10、 如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是:所述水波速可控装置包括计算机,所述计算机分别与空气压缩机和声发射换能器连接, 所述空气压缩机与***含水构造外壳的多孔排管一端连接, 所述多孔排管的另外一端有若干 平行的管道, 所述声发射换能器位于含水构造外壳的内部。
11、 如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述进水流量控制装置, 包括流量控制器, 所述流量控制器与计算机连接, 所述流量 控制器还与变频器连接, 所述变频器与变频电机连接, 所述变频电机与进水流量计连接, 所 述进水流量计与计算机连接, 所述进水流量计安装在进水管内。
12、 如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述出水流量控制装置, 包括流量控制器, 所述流量控制器与计算机连接, 所述流量 控制器还与变频器连接, 所述变频器与变频电机连接, 所述变频电机与出水流量计连接, 所 述出水流量计与计算机连接, 所述出水流量计安装在出水管内。
13、 如权利要求 9所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 权利要求书
征是: 所述水的流向控制装置为三通道电磁阀, 所述三通道电磁阀与计算机连接。
14、 如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述含水构造外壳采用渗透性好的可控渗透系数的透水材料模铸而成, 所述含水构造 外壳的材料包括水泥、水渣、石子、 FRP筋,按照水泥 1份,水渣 1.25-2.05份,石子 0.50-1.25 份, 水 0.3-0.75份质量配合比模铸而成。
15、 如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述数控自动化施工装置, 包括固定在模型试验外壳顶端的水平导轨, 在水平导轨上 沿导轨方向移动的双梁门式吊车,安装在双梁门式吊车上的 360S可旋转取土装置和异常体搬 运装置, 以及用于实现测距、 反馈和实时显示功能的综合数控操作***; 双梁门式吊车沿水 平导轨移动, 360Q可旋转取土装置沿双梁门式吊车移动或者垂直向下移动。
16、如权利要求 15所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述双梁门式吊车由全门式主梁和固定在全门式主梁两端的腿部支撑组成, 所述主梁 为双梁结构, 主梁上设计有小车轨道, 主梁的每根单梁均设计为箱型梁结构。
17、如权利要求 16所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述腿部支撑包括两条斜腿、 底部的端梁和行走机构, 两条斜腿组成 A型支架, 两条 斜腿通过底部的端梁与行走机构连接。
18、如权利要求 17所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述行走机构两侧设计有防止吊车脱离轨道的钢板卡扣。
19、如权利要求 15所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述 360°可旋转取土装置包括四轮小车、 旋转机构、 导向杆、 抓斗以及主液压***; 所述四轮小车在全门式主梁的小车轨道上移动, 导向杆通过设置在四轮小车上的导向杆 孔与四轮小车连接, 导向杆通过旋转机构与抓斗连接, 导向杆可伸缩, 主液压***用于驱动 抓斗的旋转与正常工作以及驱动导向杆的伸缩。
20、如权利要求 15所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述异常体搬运装置包括吊葫芦以及与吊葫芦连接的行走部件, 所述行走部件沿双梁 门式吊车主梁的其中一个单梁移动。
21、如权利要求 15所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述综合数 操作***能够实现测距、 反馈功能以及实时显示整个装置的工作状态, 所述综合数控操作***设计有自动控制与手动控制两种模式。 权利要求书
22、 如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述水平探测钻孔, 共有 3对, 其中 1对钻孔位于主隧道掌子面前方, 用于瞬变电磁 法超前探头的安置、 电阻率 CT法电极的安装和钻孔雷达法天线的递送, 另外 2对安装有测 量电极的钻孔贯穿整个模型试验装置, 分别位于模型试验装置的左上和右上、 左下和右下, 用于电阻率 CT法与钻孔雷达法的探测。
23、 如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述主控室, 用于控制与显示试验中每一个操作, 与含水地质构造装置和数控自动化 施工装置通信。
24、 如权利要求 1所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述隧道围岩的制备方法, 按以下步骤进行-
( 1 ) 按照所需材料电阻率、 波速参数, 按照波速与电阻率与含水率、 压实度关系曲线, 按数值找出合适的含水率与压实度;
(2 ) 现挖地下土样若干, 通过烘干、 日照或加水方法, 使土体含水率达到预定含水率, 砾石通过筛子筛选出 3〜4目粒径石子若干;
( 3) 分别称取各原材料放入搅拌机中, 充分拌合;
(4)将混合材料放入模型中, 分层堆料, 进行人工夯实, 达到预定压实度。
25、 如权利要求 8所述的一种隧道施工大型综合地球物理超前探测模型试验装置, 其特 征是: 所述含水构造装置所采用的制造方法, 步骤如下- 步骤 (1 ): 浇筑含水构造外壳: 根据要制作的含水构造类型和形状选择合适的刚模具和 模板,在刚模具内将 FRP筋按照设定的间距布置绑扎;按照设定渗透系数要求,选择配合比, 将水泥、 水渣和石子先在搅拌机搅拌均匀, 然后加入水, 再搅拌均匀; 然后倒入刚模具和模 板内, 并震动捣实, 浇筑成型; 设定时间过后脱模, 按照混凝土养护规定养护若干天;
步骤(2 ): 安装基于气动搅拌的水波速可控装置: 将过量塑料粉通过空气压缩机加入到 含水构造外壳内的水中制成悬浊液,声发射换能器按照固定距离固定好,将多孔排管固定好, 将计算机分别与空气压缩机和声发射换能器连接, 将空气压縮机与多孔排管连接;
步骤 (3 ): 安装进出水流量控制装置和水的流向控制装置: 将流量控制器分别与两个变 频器连接, 将两个变频器分别与变频电机连接, 将变频电机分别与进水流量计和出水流量计 连接; 水的流向控制装置与计算机连接好, 水的流向控制装置安装在含水构造外壳的两端; 将进水管和出水管分别与含水构造外壳连接好;
步骤 (4): 含水构造装置吊装与埋设: 在设定长宽高的多功能隧道超前地质预报物理模 权利要求书 型试验装置上按照指定位置使用旋挖装置将填挖好的模型开挖到合适深度, 将含水构造装置 用行吊吊到开挖好的位置, 将挖开的围岩相似材料埋上, 夯实;
步骤(5 ):通过计算机设定水的弹性波波速、水的流量及流向,控制相应装置进行工作。
26、如权利要求 2S所述的一种隧道施工大型综合地球物理超前探测模型试验装置,其特 征是: 所述步骤(1 ) 中含水构造外壳浇筑时, 首先, 需要在含水构造外壳两侧预留两个直径 3cm的洞, 分别作为进出水和口水管安装的位置; 同时需要在外壳预留一个直径 2cm的洞, 作为含水构造内的多孔排管连接管安装的位置;还需要在含水构造外壳预留 0.2x0.2m的方形 孔, 并制作适合其大小的盖, 该方形孔作为填充固体填充材料时使用, 填充完后, 用螺栓将 制作好的盖固定到外壳上, 将预留的方形孔封上。
27、 一种使用上述探测模型试验装置的综合地球物理超前探测方法, 其特征是: 整个探测步骤如下:
( 1 )预埋地质异常体: 在确定好预埋地质异常体在模型试验中的三维位置后, 利用自数 控自动化施工装置, 在隧道围岩中进行快速三维定位挖掘, 将含水地质构造装置搬运并埋设 到主隧道模型前方的预定位置中, 将隧道围岩回填并夯实;
( 2 )探测装置的连接与探测试验, 具体包括-
1 )探测方法选择及其设备连接: 根据试验需要选择探测方法, 如: 激发极化法、 瞬变电 磁法、 地震法、 钻孔雷达法、 电阻率 CT法, 并将其配套探测设备连接好, 供地球物理超前 探测试验使用;
2 )电极与水平探测钻孔的选择: 根据选择好的探测方法, 选择对应方法需使用的电极或 者水平探测钻孔, 其中: 激发极化法需使用主隧道掌子面上和隧道腔体上布设的电极, 钻孔 雷达法和电阻率 CT法需根据预埋的含水地质构造装置的三维位置, 选择任意 2个钻孔, 保 证含水地质构造装置在水平探测钻孔之间;
3)探测及其探测结果验证: 通过探测设备与电极或者钻孔的配合使用, 进行各种地球物 理超前探测, 并将采集到的探测数据进行地球物理反演处理, 得到含水地质构造装置的响应 结果, 从而得到探测到的含水地质构造装置三维位置、 大小等信息, 并与实际埋设的含水地 质构造装置三维位置、 大小等信息进行验证, 判断各种探测方法的准确性。
PCT/CN2014/000100 2014-01-07 2014-01-26 一种隧道施工大型综合地球物理超前探测模型试验装置 WO2015103720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,547 US9989671B2 (en) 2014-01-07 2014-01-26 Tunnel construction large-scale integrated geophysical advanced detection model test device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420008786.7 2014-01-07
CN201410007171.7A CN103744129B (zh) 2014-01-07 2014-01-07 一种隧道施工大型综合地球物理超前探测模型试验装置
CN201420008786.7U CN203881961U (zh) 2014-01-07 2014-01-07 一种隧道施工大型综合地球物理超前探测模型试验装置
CN201410007171.7 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015103720A1 true WO2015103720A1 (zh) 2015-07-16

Family

ID=53523422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000100 WO2015103720A1 (zh) 2014-01-07 2014-01-26 一种隧道施工大型综合地球物理超前探测模型试验装置

Country Status (2)

Country Link
US (1) US9989671B2 (zh)
WO (1) WO2015103720A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024575A (zh) * 2017-06-08 2017-08-08 浙江工业大学 模拟全断面隧道施工引发地表变形的试验装置及试验方法
CN107036515A (zh) * 2017-06-08 2017-08-11 浙江工业大学 模拟台阶法隧道施工引发地表变形的试验装置及试验方法
CN110133726A (zh) * 2019-04-25 2019-08-16 中铁二院工程集团有限责任公司 铁路隧道航空电磁法勘探测线布置方法
CN110805073A (zh) * 2019-08-27 2020-02-18 中交公路长大桥建设国家工程研究中心有限公司 一种沉管隧道含淤泥碎石垫层模型试验平台及试验方法
CN111308119A (zh) * 2020-03-13 2020-06-19 山东大学 一种隧道掌子面前方含水溶洞的测量方法
CN112485409A (zh) * 2021-01-14 2021-03-12 重庆交通大学 用于隧道模拟开挖的试验模型及方法
CN113466944A (zh) * 2021-08-13 2021-10-01 中铁二院工程集团有限责任公司 一种隧道软岩变形段落查找能干层的地球物理方法
CN113671488A (zh) * 2021-07-29 2021-11-19 广州大学 一种地下隐蔽缺陷模拟检测***及其检测方法
CN114166442A (zh) * 2021-10-19 2022-03-11 温州大学 一种基于振动台模拟地震荷载下盾构隧道管片初始错台的试验装置
CN114280154A (zh) * 2021-12-21 2022-04-05 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN115132048A (zh) * 2022-06-28 2022-09-30 中铁四院集团西南勘察设计有限公司 一种在已建隧道区域近接施工的模拟试验装置及试验方法
US20220349147A1 (en) * 2020-03-18 2022-11-03 Shandong University Platform, system and method for simulating critical rock collapse of surrounding rock in underground engineering
CN115469355A (zh) * 2022-08-30 2022-12-13 武汉理工大学 隧道地质探测试验装置及方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248299B2 (en) * 2015-11-10 2019-04-02 Dassault Systemes Canada Inc. Ensuring tunnel designs stay within specified design parameters and tolerances
CN105699031B (zh) * 2016-01-25 2018-04-24 大连理工大学 一种模拟隐伏断层断裂效应的隧道振动台试验装置
CN106706454B (zh) * 2017-01-17 2022-07-05 中国科学院武汉岩土力学研究所 钙质砂交通荷载多功能路基模型试验装置
CN108037535B (zh) * 2017-10-26 2019-04-26 西安科技大学 基于电法的地铁盾构超前探测室内试验装置
CN108845030A (zh) * 2018-05-03 2018-11-20 张家港申乾工程技术服务有限公司 一种在大口径管道内检测管道周边介质状态的方法
CN109064864B (zh) * 2018-08-01 2024-05-24 中国华能集团有限公司 一种模拟地热尾水回灌路径的装置及其使用方法
CN109002674A (zh) * 2018-10-09 2018-12-14 浙江省水利水电勘测设计院 一种隧洞群施工进度仿真方法及***
CN109626935A (zh) * 2019-01-28 2019-04-16 中国矿业大学 一种低强度膨胀性弱胶结软岩相似材料配制方法
CN111580180B (zh) * 2019-02-18 2021-10-08 中国石油化工股份有限公司 基于目标的古暗河储集体模型优化方法
CN109933577B (zh) * 2019-03-08 2020-12-18 山东大学 基于tbm岩-机参数动态交互机制的隧洞可掘进预测方法及***
CN110174227A (zh) * 2019-06-26 2019-08-27 广西大学 地震与波流耦合作用下悬浮隧道动力响应试验装置及方法
CN110532703B (zh) * 2019-09-02 2021-02-26 北京交通大学 一种用于海域段海底隧道的海床安全性管理方法及***
WO2021042668A1 (zh) * 2019-09-06 2021-03-11 山东大学 Tbm搭载式隧道围岩结构虚拟再现***与方法
CN111289346A (zh) * 2020-02-14 2020-06-16 重庆交通大学 含断层破碎带隧道围岩变形破坏的三维模型试验方法
CN111537356B (zh) 2020-04-23 2020-11-27 中国科学院地质与地球物理研究所 模拟地下洞室地震动力反应的试验装置及方法
CN113049203B (zh) * 2021-03-03 2022-07-01 盐城市房屋安全鉴定中心 一种砌体墙平面外抗震性能实验***及其实验方法
CN113466946A (zh) * 2021-06-10 2021-10-01 谢春玉 一种扩张式地球物理电磁测量用辅助装置
CN113553704A (zh) * 2021-07-13 2021-10-26 中煤科工集团北京土地整治与生态修复科技研究院有限公司 露天采坑治理完成后巷道稳定性的判断方法
CN113534289B (zh) * 2021-07-15 2022-11-29 武汉长盛煤安科技有限公司 基于物联网的随掘超前智能综合探测实时预警装置及方法
CN113513324A (zh) * 2021-07-29 2021-10-19 中国水利水电第六工程局有限公司 斜井开挖方法
CN113960695A (zh) * 2021-09-18 2022-01-21 山东大学 一种复杂城市环境富水岩溶精细探查方法
CN113933904B (zh) * 2021-09-26 2023-07-04 中国矿业大学 一种矿井瞬变电磁三分量探测装置
CN114019137B (zh) * 2021-10-09 2022-12-16 河海大学 一种隧道工程富水致灾构造水文地质参数反演试验***及方法
CN114000866B (zh) * 2022-01-04 2022-07-15 中国矿业大学(北京) 岩体结构特征随钻测试装置及方法
CN114412571B (zh) * 2022-01-18 2022-09-23 中国矿业大学 一种煤矿水文动态监测***
CN114386290A (zh) * 2022-01-27 2022-04-22 青岛理工大学 基于双模盾构施工引起地表沉降五维空间效应试验***的方法
CN114524661B (zh) * 2022-02-25 2023-01-24 淮阴工学院 一种隧道温度场模型试验地层相似材料及其制备方法
CN115877327B (zh) * 2023-03-03 2023-05-09 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) 一种用于矿山地质环境监测的装置
CN116297713B (zh) * 2023-03-23 2024-01-23 广州市市政工程试验检测有限公司 一种预应力孔道注浆饱满度的检测方法及装置
CN117473792B (zh) * 2023-12-22 2024-03-12 天津矿智科技有限公司 一种瓦斯抽采孔的优化设计方法、***、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883400B1 (ko) * 2008-06-05 2009-02-12 경인시설안전기술단(주) 터널의 누수감지 및 안전진단장치
CN101603423A (zh) * 2009-07-09 2009-12-16 煤炭科学研究总院西安研究院 一种在煤矿巷道内顺层超前探测含水构造的直流电法方法
JP2011180081A (ja) * 2010-03-03 2011-09-15 Tosetsu Doboku Consultant:Kk 孔壁の形状および孔壁に形成された空洞を検出する孔壁・空洞形状検出方法ならびに孔壁の形状および孔壁に形成された空洞を検出する孔壁・空洞形状検出システム
CN103018789A (zh) * 2012-12-07 2013-04-03 山东大学 网格剖分电阻率法超前探测三维模拟装置及方法
CN202975362U (zh) * 2012-12-07 2013-06-05 山东大学 网格剖分电阻率法超前探测三维模拟装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519771B2 (en) * 2015-03-11 2019-12-31 Shangdong University Rock breaking seismic source and active source three-dimensional seismic combined advanced detection system using tunnel boring machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883400B1 (ko) * 2008-06-05 2009-02-12 경인시설안전기술단(주) 터널의 누수감지 및 안전진단장치
CN101603423A (zh) * 2009-07-09 2009-12-16 煤炭科学研究总院西安研究院 一种在煤矿巷道内顺层超前探测含水构造的直流电法方法
JP2011180081A (ja) * 2010-03-03 2011-09-15 Tosetsu Doboku Consultant:Kk 孔壁の形状および孔壁に形成された空洞を検出する孔壁・空洞形状検出方法ならびに孔壁の形状および孔壁に形成された空洞を検出する孔壁・空洞形状検出システム
CN103018789A (zh) * 2012-12-07 2013-04-03 山东大学 网格剖分电阻率法超前探测三维模拟装置及方法
CN202975362U (zh) * 2012-12-07 2013-06-05 山东大学 网格剖分电阻率法超前探测三维模拟装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036515A (zh) * 2017-06-08 2017-08-11 浙江工业大学 模拟台阶法隧道施工引发地表变形的试验装置及试验方法
CN107024575A (zh) * 2017-06-08 2017-08-08 浙江工业大学 模拟全断面隧道施工引发地表变形的试验装置及试验方法
CN107024575B (zh) * 2017-06-08 2023-03-28 浙江工业大学 模拟全断面隧道施工引发地表变形的试验装置及试验方法
CN107036515B (zh) * 2017-06-08 2023-03-28 浙江工业大学 模拟台阶法隧道施工引发地表变形的试验装置及试验方法
CN110133726A (zh) * 2019-04-25 2019-08-16 中铁二院工程集团有限责任公司 铁路隧道航空电磁法勘探测线布置方法
CN110133726B (zh) * 2019-04-25 2024-03-22 中铁二院工程集团有限责任公司 铁路隧道航空电磁法勘探测线布置方法
CN110805073A (zh) * 2019-08-27 2020-02-18 中交公路长大桥建设国家工程研究中心有限公司 一种沉管隧道含淤泥碎石垫层模型试验平台及试验方法
CN111308119A (zh) * 2020-03-13 2020-06-19 山东大学 一种隧道掌子面前方含水溶洞的测量方法
US20220349147A1 (en) * 2020-03-18 2022-11-03 Shandong University Platform, system and method for simulating critical rock collapse of surrounding rock in underground engineering
CN112485409A (zh) * 2021-01-14 2021-03-12 重庆交通大学 用于隧道模拟开挖的试验模型及方法
CN112485409B (zh) * 2021-01-14 2024-04-12 重庆交通大学 用于隧道模拟开挖的试验模型及方法
CN113671488B (zh) * 2021-07-29 2023-06-13 广州大学 一种地下隐蔽缺陷模拟检测***及其检测方法
CN113671488A (zh) * 2021-07-29 2021-11-19 广州大学 一种地下隐蔽缺陷模拟检测***及其检测方法
CN113466944A (zh) * 2021-08-13 2021-10-01 中铁二院工程集团有限责任公司 一种隧道软岩变形段落查找能干层的地球物理方法
CN114166442A (zh) * 2021-10-19 2022-03-11 温州大学 一种基于振动台模拟地震荷载下盾构隧道管片初始错台的试验装置
CN114280154A (zh) * 2021-12-21 2022-04-05 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN114280154B (zh) * 2021-12-21 2023-08-18 重庆交大建设工程质量检测中心有限公司 一种预应力混凝土管道灌浆密实度叠加成像检测方法
CN115132048A (zh) * 2022-06-28 2022-09-30 中铁四院集团西南勘察设计有限公司 一种在已建隧道区域近接施工的模拟试验装置及试验方法
CN115132048B (zh) * 2022-06-28 2023-11-28 中铁四院集团西南勘察设计有限公司 一种在已建隧道区域近接施工的模拟试验装置及试验方法
CN115469355A (zh) * 2022-08-30 2022-12-13 武汉理工大学 隧道地质探测试验装置及方法

Also Published As

Publication number Publication date
US20150338549A1 (en) 2015-11-26
US9989671B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2015103720A1 (zh) 一种隧道施工大型综合地球物理超前探测模型试验装置
CN103744129B (zh) 一种隧道施工大型综合地球物理超前探测模型试验装置
CN105239563B (zh) 一种后注浆配套旋挖钻机干法成孔灌注桩结构及施工方法
CN103510551B (zh) 一种桥梁深水基础三向静动力加载模型试验平台
CN104631470B (zh) 高水位大粒径砂砾石地质深基坑组合支护施工方法
CN103195058B (zh) 便于溶洞发育地区桥桩采用多护筒施工的方法
CN203846485U (zh) 长桩冲击钻成孔施工装置
CN106638719B (zh) 灌注桩成桩质量自动监测控制装置及方法
CN103437358A (zh) 灌注桩混凝土浇注控制***及方法
CN107724383B (zh) 旋挖灌注桩施工方法
CN103924585B (zh) 风电嵌岩桩的施工方法
CN104110028B (zh) 一种干作业钻孔无水法灌注混凝土的灌注桩施工方法
CN203881961U (zh) 一种隧道施工大型综合地球物理超前探测模型试验装置
CN111380760A (zh) 一种隧道***开挖模型试验***及方法
CN105672314A (zh) 一种半逆作法钢管立柱桩施工方法
CN110146209A (zh) 一种矩形顶管顶进时的摩阻力测试装置及方法
CN107130592A (zh) 一种长螺旋钻和冲击钻双机复合成孔灌注桩施工工法
CN112709529A (zh) 一种硬质岩层钻孔桩径向分级成孔施工方法及应用
CN106013267B (zh) 一种竖向抗拉拔混凝土模型桩及其建造方法及应用
CN110514184A (zh) 一种用于深层地层变形量测简易装置及其量测方法
CN111155542B (zh) 一种基于引孔技术的pba工法隧道止水帷幕施工方法
CN113006163A (zh) 含溶洞基坑开挖模型试验装置及试验方法
CN103410181B (zh) 与黄土高填方同步施工的监测仪器先埋后引式分步埋设法
CN203658602U (zh) 大型隧道超前预报模型试验的含水构造装置
CN116066109A (zh) 一种市政隧道施工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14397547

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878021

Country of ref document: EP

Kind code of ref document: A1