WO2015101257A1 - 一种有机电致发光器件及其制备方法 - Google Patents

一种有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2015101257A1
WO2015101257A1 PCT/CN2014/095334 CN2014095334W WO2015101257A1 WO 2015101257 A1 WO2015101257 A1 WO 2015101257A1 CN 2014095334 W CN2014095334 W CN 2014095334W WO 2015101257 A1 WO2015101257 A1 WO 2015101257A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal compound
organic electroluminescent
electroluminescent device
alkaline earth
transport layer
Prior art date
Application number
PCT/CN2014/095334
Other languages
English (en)
French (fr)
Inventor
邱勇
段炼
李梦真
张国辉
刘嵩
Original Assignee
北京维信诺科技有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京维信诺科技有限公司, 清华大学 filed Critical 北京维信诺科技有限公司
Priority to EP14877046.4A priority Critical patent/EP3070758B1/en
Priority to KR1020167019897A priority patent/KR101974255B1/ko
Priority to JP2016558256A priority patent/JP6280234B2/ja
Priority to US15/109,406 priority patent/US10256417B2/en
Priority to PL14877046T priority patent/PL3070758T3/pl
Publication of WO2015101257A1 publication Critical patent/WO2015101257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/326Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising gallium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the invention relates to the field of organic electroluminescence technology, in particular to an organic electroluminescent device and a preparation method thereof.
  • OLED organic electroluminescent device
  • TFT-LCD thin film transistor liquid crystal display
  • OLED devices generally consist of an anode, a hole transport layer (HTL), an emissive layer (EL) and an electron transport layer (ETL), and a cathode.
  • the electron transport layer often uses a single organic material, but the OLED device prepared by using the single organic material as the electron transport layer tends to have a higher driving voltage and lower efficiency, thereby bringing about a large power consumption of the OLED panel. , long life and other issues.
  • the organic electroluminescent device in order to reduce the operating voltage of the device, it is necessary to improve the charge balance between electrons and holes, and to improve the efficiency of electron injection and transmission.
  • the present invention provides an organic electroluminescence device comprising an anode, a hole transport layer, an organic light-emitting layer, an electron transport layer and a cathode, the electron transport layer being doped with an organometallic complex and An active metal compound, wherein the active metal compound is an alkali metal compound, an alkaline earth metal compound or a lanthanide metal compound.
  • organometallic complex is a quinoline metal complex.
  • an electron transporting material Depositing an electron transporting material, an organometallic complex, and an active metal compound on the organic light-emitting layer to form an electron transporting layer, wherein the active metal compound is an alkali metal compound, an alkaline earth metal compound or a lanthanide metal compound; A cathode is evaporated on the electron transport layer.
  • the molar ratio of the electron transporting material, the organometallic complex, and the active metal compound in the electron transporting layer is 1: (0.01 to 5): (0.01 to 5).
  • the preparation method of the organic electroluminescent device of the invention is as follows:
  • an organic metal complex and an active metal compound are doped in the electron transport layer.
  • the electron transporting material has high mobility
  • the thermal stability of the organometallic complex is good
  • the electron transporting layer takes into account mobility and stability.
  • the active metal compound is heated in a vacuum to release an active metal, and the active metal can effectively reduce the electron transport material compound and the organometallic complex to form an N-doped structure, which is favorable for electron injection and transport.
  • a cathode structure with a lower driving voltage and higher efficiency is obtained.
  • the present invention releases an active metal by a reactive metal compound in a high-temperature vacuum environment, there is no limitation on the material of the cathode, and a wider material can be used as the cathode.
  • the anode is ITO (indium tin oxide); the material of the hole transport layer is NPB, the thickness is 50 nm; the material of the organic light-emitting layer is Alq 3 , and the thickness is 50 nm; the material constituting the electron transport layer is Bphen, and is doped Alq 3 (organometallic complex) and Li 3 N (alkali metal nitride), the thickness of the electron transport layer is 45 nm, and the ratio of Alq 3 and Li 3 N to Bebq 2 is respectively, that is, Bphen, Alq 3 , Li
  • the molar ratio between the three materials of 3 N is 1:1:1; the cathode material is Al and the thickness is 150 nm.
  • the anode is ITO; the material of the hole transport layer is NPB, the thickness is 50 nm; the material of the organic light-emitting layer is Alq 3 , and the thickness is 50 nm; the material constituting the electron transport layer is Bebq 2 , and is doped with Alq 3 (organic metal) Complex) and Li 3 N (alkali metal nitride), the total thickness of the electron transport layer is 90 nm, and Alq 3 and Li 3 N are respectively calculated as molar ratios relative to Bebq 2 , that is, Bebq 2 , Alq 3 , Li 3 N The molar ratio between the materials was 1:0.01:5; the cathode material was Al and the thickness was 150 nm.
  • the anode is the ITO; material of the hole transport layer of NPB, a thickness of 50 nm; light-emitting material of the organic layer is Alq 3, having a thickness of 50 nm; material constituting the electron transport layer is Bebq 2, and doped Alq 3 (organometallic Complex) and Li 3 N (alkali metal nitride), the total thickness of the electron transport layer is 90 nm, and Alq 3 and Li 3 N are respectively calculated as molar ratios relative to Bebq 2 , that is, Bebq 2 , Alq 3 , Li 3 N The molar ratio between the materials was 1:5:0.01; the cathode material was Al and the thickness was 150 nm.
  • the anode is ITO; the material of the hole transport layer is NPB, the thickness is 50 nm; the material of the organic light-emitting layer is Alq 3 , and the thickness is 50 nm; the material constituting the electron transport layer is Bebq 2 , and is doped with Alq 3 (organic metal) Complex) and Li 3 N (alkali metal nitride), the total thickness of the electron transport layer is 165 nm, and Alq 3 and Li 3 N are respectively calculated as molar ratios relative to Bebq 2 , that is, Bebq 2 , Alq 3 , Li 3 N The molar ratio between the materials was 1:5:5; the cathode material was Al and the thickness was 150 nm.
  • the anode is ITO (indium tin oxide); the material of the hole transport layer is NPB, the thickness is 50 nm; the material of the organic light-emitting layer is Alq 3 , and the thickness is 50 nm; the material constituting the electron transport layer is Bphen, and is doped Li 3 N (alkali metal/alkaline earth metal/lanthanide metal compound), the electron transport layer has a thickness of 30 nm, and Li 3 N is a molar ratio with respect to Bebq 2 , that is, a molar ratio between Bphen and Alq 3 materials. It is 1:1; the cathode material is Al and the thickness is 150 nm.
  • the device performance of the examples and comparative examples at a luminance of 1000 cd/m 2 was:
  • the devices prepared in Examples 1-7 have lower driving voltages and higher current efficiencies than the devices prepared in Comparative Examples 1, 2. It is indicated that the electron transport layer formed by co-evaporation of a high mobility electron transport material, an organometallic complex, an alkali metal/alkaline earth metal/lanthanide metal compound is only an electron transport material and an organometallic complex or an alkali metal/alkaline earth metal/lanthanide system. Electron transport formed by metal compounds has more device properties.
  • the present invention is a property in which an active metal compound is heated to release an active metal. It is known to those skilled in the art from the above examples that other unexemplified active metal compounds can be equally applied to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法。该有机电致发光器件,包括阳极(2)、空穴传输层(3)、有机发光层(4)、电子传输层(5)和阴极(6),该电子传输层(5)中掺杂有有机金属配合物和活泼金属化合物,其中,该活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物。其制备方法是:在ITO玻璃基片(1)上依次刻蚀阳极(2)图形、蒸镀空穴传输层(3)和有机发光层(4);在有机发光层(4)上共蒸镀电子传输材料、有机金属配合物、活泼金属化合物,形成电子传输层(5);在该电子传输层(5)上蒸镀阴极(6)。该有机电致发光器件可以获得驱动电压更低、效率更高的阴极结构,并可以使用更广泛的材料作为阴极。

Description

一种有机电致发光器件及其制备方法 技术领域
本发明涉及有机电致发光技术领域,具体地说,是一种有机电致发光器件及其制备方法。
背景技术
有机电致发光器件(OLED)是主动发光器件。相比现在的主流平板显示技术薄膜晶体管液晶显示器(TFT-LCD),OLED具有高对比度、广视角、低功耗、体积更薄等优点,有望成为继LCD之后的下一代平板显示技术,是目前平板显示技术中受到关注最多的技术之一。
OLED器件一般由阳极、空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)及阴极构成。其中,现有技术中电子传输层常使用单一有机材料,但是单一有机材料做电子传输层制备的OLED器件,往往驱动电压较高,效率较低,由此带来了OLED屏体功耗较大、寿命不长等问题。在有机电致发光器件中,为了降低器件的工作电压,改进电子与空穴之间的电荷平衡,提高电子的注入与传输效率是非常必要的。现有的提高电子注入效率的技术中,需要限定电子传输层后接阴极的材料,该阴极材料中需要有一种金属,该金属能在真空中将有机配合物中的金属离子还原成相应金属,这限制了阴极材料的选择。
技术问题
本发明要解决的技术问题是提供一种电子注入效率高的有机电致发光器件及其制备方法。
技术解决方案
为了解决上述技术问题,本发明提供了一种有机电致发光器件,包括阳极、空穴传输层、有机发光层、电子传输层和阴极,所述电子传输层中掺杂有有机金属配合物和活泼金属化合物,其中,所述活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物。
进一步地,所述有机金属配合物为喹啉金属配合物。
进一步地,所述喹啉金属配合物为Alq3或Gaq3
进一步地,所述碱金属化合物为碱金属氮化物或碱金属硼氢化物;所述碱土金属化合物为碱土金属氮化物或碱土金属硼氢化物;所述镧系金属化合物为镧系 金属氮化物或镧系金属硼氢化物。
进一步地,所述碱金属氮化物包括Li3N、Na3N、K3N或Rb3N;所述碱土金属氮化物包括Mg3N2、Ca3N2、Sr3N2或Ba3N2;所述镧系金属氮化物包括LaN;所述碱金属硼氢化物包括LiBH4、NaBH4或KBH4
进一步地,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:(0.01~5):(0.01~5)。
进一步地,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:1:1。
本发明还提供了一种有机电致发光器件的制备方法,包括:
在ITO玻璃基片上依次刻蚀阳极图形、蒸镀空穴传输层和有机发光层;
在所述有机发光层上共蒸镀电子传输材料、有机金属配合物、活泼金属化合物,形成电子传输层,其中,所述活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物;在所述电子传输层上蒸镀阴极。
进一步地,所述有机金属配合物为喹啉金属配合物。
进一步地,所述喹啉金属配合物为Alq3或Gaq3
进一步地,所述碱金属化合物为碱金属氮化物或碱金属硼氢化物;所述碱土金属化合物为碱土金属氮化物或碱土金属硼氢化物;所述镧系金属化合物为镧系金属氮化物或镧系金属硼氢化物。
进一步地,所述碱金属氮化物包括Li3N、Na3N、K3N或Rb3N;所述碱土金属氮化物包括Mg3N2、Ca3N2、Sr3N2或Ba3N2;所述镧系金属氮化物包括LaN;所述碱金属硼氢化物包括LiBH4、NaBH4或KBH4
进一步地,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:(0.01~5):(0.01~5)。
进一步地,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:1:1。
有益效果
本发明通过在电子传输层中掺杂有机金属配合物和活泼金属化合物,在高温真空环境中,活泼金属化合物会分解出活泼金属,活泼金属能有效还原电子传输材料化合物与有机金属配合物,形成活泼金属掺杂层。从而获得驱动电压更低、 效率更高的阴极结构,并可以使用更广泛的材料作为阴极。
附图说明
图1为本发明有机电致发光器件结构示意图。
本发明的实施方式
下面通过具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,本发明中的有机电致发光器件包括透明基板1、透明阳极2、空穴传输层3、有机发光层4、电子传输层5和阴极6,另外,还可以包括空穴注入层、电子注入层等,其结构与现有的有机电致发光器件相同。本发明是在电子传输层中掺杂有机金属配合物以及活泼金属化合物形成电子传输混合层。其中,有机金属配合物优选为热稳定性好的喹啉金属配合物,例如Alq3或Gaq3。活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物。其中,碱金属化合物可以为碱金属氮化物,例如Li3N、Na3N、K3N或Rb3N,也可以为碱金属硼氢化物,例如LiBH4、NaBH4或KBH4;碱土金属化合物可以为碱土金属氮化物,例如Mg3N2、Ca3N2、Sr3N2或Ba3N2,也可以碱土金属硼氢化物;镧系金属化合物可以为镧系金属氮化物,例如LaN,也可是镧系金属硼氢化物。
电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:(0.01~5):(0.01~5),优选为1:1:1。其中,电子传输材料可采用现有技术中常用的材料例如可以是Bphen、TPBi、Bebq2或Bepp2等,也可以是其它一类电子迁移率高的电子传输材料,例如公告号为CN101875637B的中国发明专利中公开的材料:
Figure PCTCN2014095334-appb-000001
或者公告号为CN 101891673B的中国发明专利中公开的材料:
Figure PCTCN2014095334-appb-000002
而本发明的有机电致发光器件制备方法为:
在ITO(铟锡氧化物)玻璃基片上依次刻蚀阳极图形、蒸镀空穴传输层和有机发光层;
在所述有机发光层上共蒸镀电子传输材料、有机金属配合物、活泼金属化合物,形成电子传输层,其中,所述活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物;
在所述电子传输层上蒸镀阴极。
本发明中,在电子传输层中掺杂有机金属配合物和活泼金属化合物。其中,电子传输材料具有高迁移率,有机金属配合物的热稳定性好,电子传输层兼顾了迁移率与稳定性。而活泼金属化合物在真空中加热能释放出活泼金属,活泼金属能有效还原电子传输材料化合物与有机金属配合物,形成N掺杂结构,有利于电子的注入和传输。从而获得驱动电压更低、效率更高的阴极结构。另外,由于本发明通过活泼金属化合物在高温真空环境下释放出活泼金属,因此对于阴极的材料没有限制,可以使用更广泛的材料作为阴极。
下面举具体实施例予以说明。
实施例1:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bebq2(15nm):Alq3(100%):Li3N(100%)/Al(150nm)
其中,阳极为ITO;空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bebq2,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的总厚度为45nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bebq2、Alq3、Li3N三种材料之间的摩尔比为1:1:1;阴极材料为Al,厚度为150nm。
本实施例的有机电致发光器件的制备方法如下:
1)根据设计在ITO基板刻蚀好固定阳极图形;
2)利用洗涤剂超声和去离子水超声的方法对已经刻蚀好固定图形的ITO玻璃基片进行清洗,并放置在红外灯下烘干;
3)把上述处理好的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层(NPB),该层成膜速率为0.1nm/s,膜厚为50nm;
4)在空穴传输层上蒸镀Alq3作为发光层,蒸镀速率为0.1nm/s,总膜厚为50nm;
5)在发光层上蒸镀电子传输层,蒸镀时将Bebq2、Alq3、Li3N材料共蒸镀,摩尔比例为1:1:1,蒸镀速率为0.1nm/s,总膜厚为45nm;
6)在上述电子传输层上继续蒸镀Al层作为器件的阴极层,Al层的蒸镀速率为1nm/s,厚度为150nm。
实施例2:
按照实施例1的有机电致发光器件的制备方法制备如下器件:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bphen(15nm):Alq3(100%):Li3N(100%)/Al(150nm)
其中,阳极为ITO(铟锡氧化物);空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bphen,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的厚度为45nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bphen、Alq3、Li3N三种材料之间的摩尔比为1:1:1;阴极材料为Al,厚度为150nm。
实施例3:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bphen(15nm):Alq3(100%):KBH4(50%)/Al(150nm)
其中,阳极为ITO(铟锡氧化物);空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bphen,并掺杂Alq3(有机金属配合物)和KBH4(碱金属硼氢化物),电子传输层的厚度为35nm,Alq3和Li3N相对于Bebq2分别计为摩尔比%,即Bphen、Alq3、Li3N三种材料之间的摩尔比为1:1:0.5;阴极材料为Al,厚度为150nm。
实施例4:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bebq2(15nm):Alq3(1%):Li3N(500%)/Al(150nm)
其中,阳极为ITO;空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bebq2,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的总厚度为90nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bebq2、Alq3、Li3N三种材料之间的摩尔比为1:0.01:5;阴极材料为Al,厚度为150nm。
实施例5:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bebq2(15nm):Alq3(500%):Li3N(1%)/Al(150nm)
其中,阳极为ITO;空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bebq2,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的总厚度为90nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bebq2、Alq3、Li3N三种材料之间的摩尔比为1:5:0.01;阴极材料为Al,厚度为150nm。
实施例6:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bebq2(15nm):Alq3(1%):Li3N(1%)/Al(150nm)
其中,阳极为ITO;空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bebq2,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的总厚度为15nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bebq2、Alq3、Li3N三种材料之间的摩尔比为1:0.01:0.01;阴极材料为Al,厚度为150nm。
实施例7:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bebq2(15nm):Alq3(500%):Li3N(500%)/Al(150nm)
其中,阳极为ITO;空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bebq2,并掺杂Alq3(有机金属配合物)和Li3N(碱金属氮化物),电子传输层的总厚度为165nm,Alq3和Li3N相对于Bebq2分别计为摩尔比,即Bebq2、Alq3、Li3N三种材料之间的摩尔比为1:5:5;阴极材料为Al,厚度为150nm。
对比例1:
按照实施例1的有机电致发光器件的制备方法制备如下器件:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bphen(15nm):Alq3(100%)/Al(150nm)
其中,阳极为ITO(铟锡氧化物);空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bphen,并掺杂Alq3(有机金属配合物),电子传输层的厚度为30nm,Alq3相对于Bebq2分别计为摩尔比,即Bphen、Alq3两种材料之间的摩尔比为1:1;阴极材料为Al,厚度为150nm。
对比例2:
按照实施例1的有机电致发光器件的制备方法制备如下器件:
ITO(150nm)/NPB(50nm)/Alq3(50nm)/Bphen(15nm):Li3N(100%)/Al(150nm)
其中,阳极为ITO(铟锡氧化物);空穴传输层的材料为NPB,厚度为50nm;有机发光层的材料为Alq3,厚度为50nm;构成电子传输层的材料为Bphen,并掺杂Li3N(碱金属/碱土金属/镧系金属化合物),电子传输层的厚度为30nm,Li3N相对于Bebq2分别计为摩尔比,即Bphen、Alq3两种材料之间的摩尔比为1:1;阴极材料为Al,厚度为150nm。
在1000cd/m2的亮度下,实施例和对比例的器件性能为:
Figure PCTCN2014095334-appb-000003
Figure PCTCN2014095334-appb-000004
由上表可以看出实施例1-7制备的器件比对比例1、2制备的器件拥有更低的驱动电压和更高的电流效率。说明通过高迁移率电子传输材料、有机金属配合物、碱金属/碱土金属/镧系金属化合物共蒸形成的电子传输层比只有电子传输材料和有机金属配合物或碱金属/碱土金属/镧系金属化合物形成的电子传输具有更有的器件性能。
本发明是利用活泼金属化合物受热后释放出活泼金属的性质,本领域的技术人员根据上述实施例可知,其它未例举的活泼金属化合物同样可以应用于本发明。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (14)

  1. 一种有机电致发光器件,包括阳极、空穴传输层、有机发光层、电子传输层和阴极,其特征在于,所述电子传输层中掺杂有有机金属配合物和活泼金属化合物,其中,所述活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述有机金属配合物为喹啉金属配合物。
  3. 根据权利要求2所述的有机电致发光器件,其特征在于,所述喹啉金属配合物为Alq3或Gaq3
  4. 根据权利要求1所述的有机电致发光器件,其特征在于,所述碱金属化合物为碱金属氮化物或碱金属硼氢化物;所述碱土金属化合物为碱土金属氮化物或碱土金属硼氢化物;所述镧系金属化合物为镧系金属氮化物或镧系金属硼氢化物。
  5. 根据权利要求4所述的有机电致发光器件,其特征在于,所述碱金属氮化物包括Li3N、Na3N、K3N或Rb3N;所述碱土金属氮化物包括Mg3N2、Ca3N2、Sr3N2或Ba3N2;所述镧系金属氮化物包括LaN;所述碱金属硼氢化物包括LiBH4、NaBH4或KBH4
  6. 根据权利要求1所述的有机电致发光器件,其特征在于,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:(0.01~5):(0.01~5)。
  7. 根据权利要求6所述的有机电致发光器件,其特征在于,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:1:1。
  8. 一种有机电致发光器件的制备方法,其特征在于,包括:
    在ITO玻璃基片上依次刻蚀阳极图形、蒸镀空穴传输层和有机发光层;
    在所述有机发光层上共蒸镀电子传输材料、有机金属配合物、活泼金属化合物,形成电子传输层,其中,所述活泼金属化合物为碱金属化合物、碱土金属化合物或镧系金属化合物;
    在所述电子传输层上蒸镀阴极。
  9. 根据权利要求8所述的有机电致发光器件的制备方法,其特征在于,所述有机金属配合物为喹啉金属配合物。
  10. 根据权利要求9所述的有机电致发光器件的制备方法,其特征在于,所述喹啉金属配合物为Alq3或Gaq3
  11. 根据权利要求8所述的有机电致发光器件的制备方法,其特征在于,所述碱金属化合物为碱金属氮化物或碱金属硼氢化物;所述碱土金属化合物为碱土金属氮化物或碱土金属硼氢化物;所述镧系金属化合物为镧系金属氮化物或镧系金属硼氢化物。
  12. 根据权利要求11所述的有机电致发光器件的制备方法,其特征在于,所述碱金属氮化物包括Li3N、Na3N、K3N或Rb3N;所述碱土金属氮化物包括Mg3N2、Ca3N2、Sr3N2或Ba3N2;所述镧系金属氮化物包括LaN;所述碱金属硼氢化物包括LiBH4、NaBH4或KBH4
  13. 根据权利要求8所述的有机电致发光器件的制备方法,其特征在于,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:(0.01~5):(0.01~5)。
  14. 根据权利要求13所述的有机电致发光器件的制备方法,其特征在于,所述电子传输层中电子传输材料、有机金属配合物、活泼金属化合物的摩尔比为1:1:1。
PCT/CN2014/095334 2013-12-31 2014-12-29 一种有机电致发光器件及其制备方法 WO2015101257A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14877046.4A EP3070758B1 (en) 2013-12-31 2014-12-29 Organic electroluminescent and preparation method thereof
KR1020167019897A KR101974255B1 (ko) 2013-12-31 2014-12-29 유기발광 다이오드 및 그 제조방법
JP2016558256A JP6280234B2 (ja) 2013-12-31 2014-12-29 有機電界発光素子及びその制作方法
US15/109,406 US10256417B2 (en) 2013-12-31 2014-12-29 Organic electroluminescent and preparation method thereof
PL14877046T PL3070758T3 (pl) 2013-12-31 2014-12-29 Organiczne urządzenie elektroluminescencyjne i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310747676.2A CN103700775B (zh) 2013-12-31 2013-12-31 一种有机电致发光器件及其制备方法
CN201310747676.2 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015101257A1 true WO2015101257A1 (zh) 2015-07-09

Family

ID=50362241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095334 WO2015101257A1 (zh) 2013-12-31 2014-12-29 一种有机电致发光器件及其制备方法

Country Status (8)

Country Link
US (1) US10256417B2 (zh)
EP (1) EP3070758B1 (zh)
JP (1) JP6280234B2 (zh)
KR (1) KR101974255B1 (zh)
CN (1) CN103700775B (zh)
PL (1) PL3070758T3 (zh)
TW (1) TWI580686B (zh)
WO (1) WO2015101257A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700775B (zh) 2013-12-31 2017-08-25 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
CN108717956B (zh) * 2018-05-31 2020-04-03 上海天马有机发光显示技术有限公司 有机发光显示面板及其显示装置
US20220209166A1 (en) * 2019-04-11 2022-06-30 Sharp Kabushiki Kaisha Light-emitting element and display device
CN112449034A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 一种移动终端
CN110911574A (zh) * 2019-11-29 2020-03-24 昆山国显光电有限公司 组合物、oled器件、oled显示面板及显示装置
CN111584731B (zh) * 2020-05-29 2022-09-16 合肥福纳科技有限公司 电子传输材料、薄膜、量子点发光二极管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916134A (zh) * 2012-10-31 2013-02-06 昆山维信诺显示技术有限公司 电子传输层、含该层的有机电致发光器件及其制造方法
CN101891673B (zh) 2009-11-13 2013-03-20 昆山维信诺显示技术有限公司 一种有机材料及其在有机电致发光器件中的应用
CN103078061A (zh) * 2013-01-23 2013-05-01 深圳市华星光电技术有限公司 一种二极管及显示面板
CN103247761A (zh) * 2012-02-14 2013-08-14 三星显示有限公司 具有提高效率特性的有机发光装置和有机发光显示器
CN101875637B (zh) 2009-11-13 2013-11-06 昆山维信诺显示技术有限公司 一种有机材料及其在有机电致发光器件中的应用
CN103700775A (zh) * 2013-12-31 2014-04-02 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69723538T2 (de) * 1996-11-29 2004-06-09 Idemitsu Kosan Co. Ltd. Organisches elektrolumineszentes Bauteil
JP4505067B2 (ja) * 1998-12-16 2010-07-14 淳二 城戸 有機エレクトロルミネッセント素子
CN100448058C (zh) 2005-04-13 2008-12-31 清华大学 一种有机电致发光器件
KR100806812B1 (ko) * 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 유기 el 소자 및 그 제조방법
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007123061A1 (ja) 2006-04-20 2007-11-01 Idemitsu Kosan Co., Ltd. 有機発光素子
US20090004573A1 (en) 2007-06-29 2009-01-01 Aton Thomas J System and method for making photomasks
CN101368264B (zh) * 2007-08-16 2012-01-04 清华大学 有机电致发光器件
US20090162644A1 (en) * 2007-12-19 2009-06-25 Ricks Michele L Organic element for low voltage electroluminescent devices
KR100931060B1 (ko) 2008-04-02 2009-12-10 단국대학교 산학협력단 유기 전계 발광 소자
EP2296204B1 (en) * 2008-07-01 2018-01-31 Toray Industries, Inc. Light-emitting element
TWI616512B (zh) * 2009-12-31 2018-03-01 Bejing Visionox Technology Co Ltd Organic material and organic electroluminescent device using the same
US8870523B2 (en) 2011-03-07 2014-10-28 General Electric Company Method for manufacturing a hot gas path component and hot gas path turbine component
JP5803648B2 (ja) * 2011-12-16 2015-11-04 セイコーエプソン株式会社 発光素子、発光装置、表示装置および電子機器
TWI577238B (zh) * 2012-04-25 2017-04-01 群康科技(深圳)有限公司 有機發光二極體及包含其之顯示裝置
JP5998745B2 (ja) * 2012-08-24 2016-09-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子の製造方法
US20140203246A1 (en) * 2013-01-23 2014-07-24 Shenzhen China Star Optoelectronics Technology Co., Ltd. Diode and Display Panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891673B (zh) 2009-11-13 2013-03-20 昆山维信诺显示技术有限公司 一种有机材料及其在有机电致发光器件中的应用
CN101875637B (zh) 2009-11-13 2013-11-06 昆山维信诺显示技术有限公司 一种有机材料及其在有机电致发光器件中的应用
CN103247761A (zh) * 2012-02-14 2013-08-14 三星显示有限公司 具有提高效率特性的有机发光装置和有机发光显示器
CN102916134A (zh) * 2012-10-31 2013-02-06 昆山维信诺显示技术有限公司 电子传输层、含该层的有机电致发光器件及其制造方法
CN103078061A (zh) * 2013-01-23 2013-05-01 深圳市华星光电技术有限公司 一种二极管及显示面板
CN103700775A (zh) * 2013-12-31 2014-04-02 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070758A4

Also Published As

Publication number Publication date
JP6280234B2 (ja) 2018-02-14
US20160380213A1 (en) 2016-12-29
US10256417B2 (en) 2019-04-09
CN103700775A (zh) 2014-04-02
KR20160101180A (ko) 2016-08-24
EP3070758A1 (en) 2016-09-21
EP3070758B1 (en) 2018-01-31
PL3070758T3 (pl) 2018-07-31
CN103700775B (zh) 2017-08-25
TWI580686B (zh) 2017-05-01
JP2016541129A (ja) 2016-12-28
EP3070758A4 (en) 2016-11-02
TW201546082A (zh) 2015-12-16
KR101974255B1 (ko) 2019-04-30

Similar Documents

Publication Publication Date Title
TWI580686B (zh) 一種有機電致發光元件及其製備方法
CN100580976C (zh) 有机发光显示器、阴极复合层及其制造方法
WO2017219424A1 (zh) 有机发光器件及其显示器
US20090108254A1 (en) Fabrication Method for Organic Electronic Device and Organic Electronic Device Fabricated by the Same Method
JP5094781B2 (ja) 有機el装置及びその製造方法
TW201409794A (zh) 倒置型有機發光二極體顯示裝置及其製備方法
WO2009021365A1 (fr) Oled et son procédé
Dong et al. An efficient solution-processed hole injection layer with phosphomolybdic acid in quantum dot light-emitting diodes
WO2016082357A1 (zh) 叠层有机电致发光器件及其制作方法和显示装置
CN103000818B (zh) 顶发射有机电致发光器件及其制备方法和应用
WO2017215077A1 (zh) 有机发光器件及显示面板
CN208422959U (zh) 一种新型oled器件及其显示、照明装置
CN108649128B (zh) 一种单组分电致白光器件及其制备方法
Fenenko et al. Influence of heat treatment on indium–tin-oxide anodes and copper phthalocyanine hole injection layers in organic light-emitting diodes
CN109004098A (zh) 一种新型oled器件及其显示、照明装置
CN105932177A (zh) 有机电致发光器件、发光层材料、掺杂方法及制备方法
Gong et al. Thermally stable inverted organic light-emitting diodes using Ag-doped 4, 7-diphenyl-1, 10-phenanthroline as an electron injection layer
WO2019095501A1 (zh) 一种oled器件及制备方法
CN107293645B (zh) 一种白光顶发光型有机发光二极管及其制备方法
CN109473565A (zh) 一种基于超薄低功函数金属的高透明度自封装顶发射电极及其制备方法
CN105789470A (zh) 一种白光有机电致发光器件及其制备方法
CN105789462A (zh) 掺杂cbp的蓝色有机电致发光器件及其制备方法
TWI472057B (zh) 有機發光二極體製造方法及其構造
Yang et al. 31.5: Invited Paper: Solution Processable Materials for Printed OLED Displays
CN112661708A (zh) 一种单层掺杂电子传输层绿光磷光器件及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877046

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014877046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877046

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016558256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15109406

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167019897

Country of ref document: KR

Kind code of ref document: A