WO2015098783A1 - Radical curable composition, plastic sheet, plastic sheet roll, and molded product - Google Patents

Radical curable composition, plastic sheet, plastic sheet roll, and molded product Download PDF

Info

Publication number
WO2015098783A1
WO2015098783A1 PCT/JP2014/083808 JP2014083808W WO2015098783A1 WO 2015098783 A1 WO2015098783 A1 WO 2015098783A1 JP 2014083808 W JP2014083808 W JP 2014083808W WO 2015098783 A1 WO2015098783 A1 WO 2015098783A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic sheet
meth
acrylate
curable composition
alicyclic structure
Prior art date
Application number
PCT/JP2014/083808
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 弘章
由佳 堤
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to KR1020167018316A priority Critical patent/KR20160104633A/en
Priority to CN201480071335.0A priority patent/CN105849143A/en
Publication of WO2015098783A1 publication Critical patent/WO2015098783A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to a radically curable composition for forming a plastic sheet, and more specifically, a sheet roll formed by winding up a plastic sheet can be easily formed.
  • the present invention relates to a radical curable composition for forming a plastic sheet having excellent hardness.
  • a glass substrate is often used as a display substrate.
  • a chemically strengthened glass substrate having a thickness of about 0.5 to 2 mm is widely used as a protective plate.
  • a glass substrate having a thickness of about 0.2 to 1.1 mm is widely used.
  • a glass substrate having a thickness of about 0.2 to 0.7 mm is widely used in liquid crystal displays and organic electroluminescence (organic EL) displays.
  • plastic substrates have begun to be used from the viewpoint of weight reduction and safety and for the purpose of manufacturing flexible displays.
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Such plastic substrates have not only optical performance such as light transmittance and birefringence, but also thermal properties such as heat resistance and linear expansion coefficient, mechanical properties such as surface hardness and bending elastic modulus, water absorption and specific gravity, and resistance to resistance. High processability such as chemicals and solvent resistance is required.
  • a molded product obtained by photocuring a specific photopolymerizable composition is also seen.
  • a photopolymerizable composition comprising a polyfunctional urethane (meth) acrylate having an alicyclic structure and a polyfunctional (meth) acrylate having an alicyclic structure gives a resin molded article having high pencil hardness.
  • Patent Document 1 monofunctional (meth) acrylate having an alicyclic structure, polyfunctional urethane (meth) acrylate having an alicyclic structure, and polyfunctional (meth) acrylate having an alicyclic structure It is disclosed that the photopolymerizable composition gives a resin molded article having excellent optical properties and thermomechanical properties (see, for example, Patent Document 2).
  • plastic sheets having a high surface hardness are obtained, these are produced by casting a photocurable composition between two glass plates by a batch method. A sheet is manufactured, and a flat plastic sheet is obtained. Therefore, further three-dimensional molding cannot be performed on the obtained plastic sheet.
  • the “three-dimensional molding process” means that the conventional plastic sheet can only obtain a flat molded product, but is molded in a direction other than the plane, for example, a substantially vertical direction. It means a molding method for obtaining a molded product.
  • Japanese Patent Application Laid-Open No. 2009-127019 discloses cracks when continuously manufacturing a plastic sheet, when it is wound around a roll, when it is transported between rolls, and even when a support sheet is peeled off.
  • a method is described in which the bending elastic modulus of the predetermined region at both ends is lower than the bending elastic modulus of the predetermined region at the center with respect to the width direction of the plastic sheet.
  • it is difficult to obtain a sheet that is optically and mechanically uniform because only the edges are cured.
  • the reaction rate of at least a part of the plastic sheet exceeds 80%, and it has been difficult to perform a subsequent three-dimensional molding process using such a plastic sheet.
  • An object of the present invention is to provide a radical curable composition for forming a sheet, and further, using such a radical curable composition, a plastic sheet, a plastic sheet roll, and a three-dimensional molded product are also obtained. It is intended to provide.
  • the present invention contains a polyfunctional urethane (meth) acrylate having an alicyclic structure, a polyfunctional (meth) acrylate having an alicyclic structure, and a polymerization initiator.
  • a (meth) acrylic resin having an alicyclic structure By adding a (meth) acrylic resin having an alicyclic structure to the radical curable composition, the viscosity of the radical curable composition can be increased, so that a plastic sheet obtained by curing can be wound up. It has been found that a plastic sheet roll can be formed easily, and a thicker film can be formed, and a plastic sheet excellent in optical properties and surface hardness of a three-dimensional molded product to be a final cured product can be obtained.
  • the present invention has been completed.
  • the gist of the present invention is the following (1) to (10).
  • a radical curable composition containing the following components (A), (B), (C) and (D).
  • (D) Polymerization initiator (2) The content of (meth) acrylic resin (C) having alicyclic structure has the alicyclic structure.
  • the radical curability according to (1) wherein the amount is 1 to 50 parts by weight with respect to 100 parts by weight of the total of the functional urethane (meth) acrylate (A) and the polyfunctional (meth) acrylate (B) having the alicyclic structure.
  • Composition. (3) The radical curable composition according to the above (1) or (2), wherein the (meth) acrylic resin (C) having an alicyclic structure has a weight average molecular weight of 50,000 to 3,000,000. (4) Any one of (1) to (3) above, wherein the (meth) acrylic resin (C) having an alicyclic structure is a homopolymer of a mono (meth) acrylate (c1) having an alicyclic structure.
  • the reaction rate becomes 75% or more. Molded product [II] obtained by curing as described above.
  • the radically curable composition of the present invention can form a plastic sheet having a desired film thickness, and can form a rolled plastic sheet roll. It is easy to obtain a plastic sheet that is excellent in optical properties and surface hardness of the molded product that is the final cured product. Moreover, the viscosity of a radically curable composition can be made high by adjusting content of a component (C). Therefore, the plastic sheet formed from the radically curable composition of the present invention is useful for applications such as a protective plate for a display, a three-dimensional component around a display unit in a copying machine, an automobile, a home appliance, and the like.
  • (meth) acrylate is a generic term for acrylate and methacrylate
  • (meth) acryl is a generic term for acrylic and methacrylic
  • polyfunctional here means having two or more (meth) acryloyl groups in a molecule
  • the radically curable composition of the present invention contains the following components (A), (B), (C) and (D).
  • Component (A) is a urethane (meth) acrylate containing two or more (meth) acryloyl groups in the molecule. Since it is polyfunctional, the curing rate is improved and a plastic sheet can be obtained with high productivity. Moreover, a crosslinked resin can be formed by radical polymerization reaction by heat or light, and a plastic sheet with high surface hardness can be obtained. In addition, component (A) has a urethane group in the molecule, and a flexible plastic sheet excellent in mechanical strength such as flexural modulus and impact resistance can be obtained by hydrogen bonding. The improvement of the surface hardness is manifested particularly with a tetrafunctional or higher urethane (meth) acrylate. Moreover, polyfunctional urethane (meth) acrylate (A) has an alicyclic structure in a molecule
  • the number average molecular weight of component (A) is preferably 200 to 5,000. More preferably, it is 400 to 3,000, and still more preferably 500 to 1,000. When the number average molecular weight is too small, curing shrinkage increases and birefringence tends to occur. On the other hand, if it is too large, the crosslinkability tends to decrease and the heat resistance tends to decrease.
  • the polyfunctional urethane (meth) acrylate having an alicyclic structure as the component (A) is prepared by using a polyisocyanate compound having an alicyclic structure and a hydroxyl group-containing (meth) acrylate, if necessary, using a catalyst such as dibutyltin dilaurate. Can be obtained by reaction.
  • polyisocyanate compound having an alicyclic structure examples include, for example, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, hydrogenated xyly
  • examples include a diisocyanate, a hydrogenated diphenylmethane diisocyanate, and a trimer compound of isophorone diisocyanate. Of these, isophorone diisocyanate is preferred because of its good light resistance.
  • hydroxyl group-containing (meth) acrylate examples include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3- (meth) Examples include acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol tri (meth) acrylate.
  • pentaerythritol tri (meth) acrylate dipentaerythritol penta (meth) acrylate, and dipentaerythritol tri (meth) acrylate are preferable in terms of surface hardness. Particularly preferred is pentaerythritol tri (meth) acrylate.
  • the polyfunctional urethane (meth) acrylate (A) having an alicyclic structure obtained by a reaction between a polyisocyanate compound having an alicyclic structure and a hydroxyl group-containing (meth) acrylate includes two or more kinds in the radical curable composition. You may mix and use. Among these reactants, acrylate is preferable from the viewpoint of curing rate, tetrafunctional or higher is more preferable from the viewpoint of heat resistance, and alicyclic rings represented by the following formulas (1) to (4) from the viewpoint of surface hardness. A tetrafunctional or higher functional urethane acrylate having a structure is particularly preferred.
  • R 1 is hydrogen or a methyl group.
  • component (B) is also a polyfunctional (meth) acrylate, it gives a highly heat-resistant plastic sheet. Although the effect of improving heat resistance is greater than that of the component (A) urethane (meth) acrylate, this monomer alone is too brittle because it becomes a glass-like crosslinked resin. Therefore, it is preferable to mix and copolymerize the urethane (meth) acrylate of component (A) and the polyfunctional (meth) acrylate of component (B) at a specific ratio. Thereby, a plastic sheet having good surface hardness, heat resistance and flexibility can be obtained.
  • component (B) is preferably bifunctional and more preferably methacrylate.
  • component (B) also has an alicyclic structure, which also reduces the saturated water absorption rate of the plastic sheet.
  • pentadecane di (meth) acrylate, bis (hydroxymethyl) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ]
  • pentadecane di (meth) acrylate, bis (hydroxy) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ]
  • pentadecane acrylate methacrylate, bis (hydroxymethyl) pentacyclo [6.5.1.1 3,6 . 0 2,7 .
  • pentadecane acrylate methacrylate, 2,2-bis [4- ( ⁇ -methacryloyloxyethoxy) cyclohexyl] propane, 1,3-bis (methacryloyloxymethyl) cyclohexane, 1,3-bis (methacryloyloxyethyl) Bifunctional (meth) acrylates such as oxymethyl) cyclohexane, 1,4-bis (methacryloyloxymethyl) cyclohexane, 1,4-bis (methacryloyloxyethyloxymethyl) cyclohexane, 1,3,5-tris (methacryloyloxymethyl) ) Trifunctional (meth) acrylates such as cyclohexane and 1,3,5-tris (methacryloyloxyethyloxymethyl) cyclohexane, among which bifunctional (meth) acrylates from the viewpoint of flexibility
  • the bifunctional methacrylate is more preferable
  • R 2 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, R 3 is hydrogen or a methyl group, a is 1 or 2, and b is 0 or 1.
  • R 4 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and R 5 is hydrogen or a methyl group.
  • R 6 is hydrogen or a methyl group
  • R 7 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms
  • R 8 is hydrogen or a methyl group.
  • a preferable range of the blending ratio is 15:85 to 45:55 (weight ratio), and more preferably 20:80 to 40:60 (weight ratio).
  • the (meth) acrylic resin having an alicyclic structure as the component (C) is effective for increasing the viscosity of the radical curable composition.
  • a homopolymer of mono (meth) acrylate (c1) having an alicyclic structure is preferable in terms of compatibility, and in particular, poly (dicyclopentanyl) (Meth) acrylate), poly (adamantyl (meth) acrylate) and the like are preferable.
  • the weight average molecular weight of the acrylic resin (C) having an alicyclic structure is preferably 50,000 to 3,000,000, particularly 100,000 to 2,000,000, more preferably 300,000 to 1,500,000. If the weight average molecular weight is too small, a large amount of the acrylic resin (C) is required, so that the surface hardness tends to decrease, and if it is too large, the solubility becomes poor and the productivity tends to decrease.
  • said weight average molecular weight means the weight average molecular weight (Mw) of standard polystyrene conversion using GPC (gel permeation chromatography).
  • Such an acrylic resin (C) can be produced by a polymerization method by irradiation with active energy rays in addition to a solution polymerization method, and a polymerization method by ultraviolet irradiation is particularly preferable in terms of control of molecular weight.
  • the content of the acrylic resin (C) having an alicyclic structure is 1 to 50 parts by weight with respect to a total of 100 parts by weight of the components (A) and (B), from the viewpoint of thick film formation by increasing the viscosity. It is preferably 1 to 30 parts by weight, more preferably 1 to 15 parts by weight. When the content is too small, the increase in viscosity is insufficient and the film thickness tends to be difficult, and when the content is too large, the viscosity becomes too high and the productivity tends to decrease.
  • the radically curable composition of the present invention contains a polymerization initiator (D).
  • a polymerization initiator examples include a photopolymerization initiator (Dl) and a thermal polymerization initiator (Dh).
  • Dl photopolymerization initiator
  • Dh thermal polymerization initiator
  • Examples of the photopolymerization initiator (Dl) include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethyl. Examples include benzoyldiphenylphosphine oxide. Among these, radical cleavage type photopolymerization initiators such as 1-hydroxycyclohexyl phenyl ketone and 2,4,6-trimethylbenzoyldiphenylphosphine oxide are preferable. These photopolymerization initiators (Dl) may be used alone or in combination of two or more.
  • thermal polymerization initiator (Dh) A known compound can be used as the thermal polymerization initiator (Dh).
  • hydroperoxide such as hydroperoxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, dicumyl peroxide
  • Dialkyl peroxides such as t-butyl peroxybenzoate, peroxyesters such as t-butylperoxy (2-ethylhexanoate), diacyl peroxides such as benzoyl peroxide, and peroxycarbonates such as diisopropyl peroxycarbonate And peroxides such as peroxyketal and ketone peroxide.
  • photopolymerization initiators (Dl) and thermal polymerization initiators (Dh) can be used in combination.
  • the content of the polymerization initiator (D) is usually from 0.1 to 5 parts by weight, more preferably from 0.2 to 4 parts by weight, particularly preferably 0 to 100 parts by weight in total of the components (A) and (B) It is preferably 3 to 3 parts by weight. If the content is too large, the retardation of the plastic sheet increases and the light transmittance at 400 nm tends to decrease. On the other hand, when the amount is too small, the polymerization rate is decreased, and the polymerization may not proceed sufficiently.
  • a mercapto group containing compound (E) at the point which raises a crosslinking density.
  • the mercapto group-containing compound (E) include pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakisthiopropionate, pentaerythritol tetrakis (3-sulfanylbutanoate), 1,3,5 -Tris (2- (3-sulfanylbutanoyloxy) ethyl) and the like.
  • mercapto group-containing compounds are preferably used in a proportion of usually 10 parts by weight or less, more preferably 5 parts by weight or less, in particular, with respect to 100 parts by weight of the total of component (A) and component (B). 4 parts by weight or less is preferable. When there is too much this usage-amount, there exists a tendency for the heat resistance and rigidity of the plastic sheet obtained to fall.
  • the curable composition may contain a small amount of auxiliary components as long as the physical properties of the plastic sheet of the present invention are not impaired.
  • auxiliary components for example, monomers having an ethylenically unsaturated bond other than components (A) and (B), polymerization inhibitors, antioxidants, ultraviolet absorbers, antifoaming agents, leveling agents, bluing agents, dyes and pigments And fillers.
  • a photoinitiator (Dl) and a thermal-polymerization initiator (Dh) a photoinitiator (Dl) and a thermal-polymerization initiator (Dh).
  • Monomers having an ethylenically unsaturated bond other than components (A) and (B) include methyl methacrylate, 2-hydroxyethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meta ) Acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, norbornene (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyl methanol and (meth) acrylate condensation composition, etc.
  • Monofunctional (meth) acrylates such as mono (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol Poly (ethylene glycol) di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-hydroxy 1 , 3-di (meth) acryloxypropane, 2,2-bis [4- (meth) acryloyloxyphenyl] propane, polyfunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, acrylamide, methacrylamide, Examples thereof include (meth) acrylic acid derivatives such as acrylonitrile and methacrylonitrile, and styrene compounds such as styren
  • the compounding amount of the monomer having an ethylenically unsaturated bond other than the components (A) and (B) is 30 parts by weight or less with respect to a total of 100 parts by weight of the component (A) and the component (B). It is preferably 20 parts by weight or less, particularly 10 parts by weight or less. If the amount is too large, the heat resistance of the plastic sheet tends to decrease.
  • antioxidants examples include 2,6-di-t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,4,6-tri-t-butylphenol, and 2,6-di- t-butyl-4-s-butylphenol, 2,6-di-t-butyl-4-hydroxymethylphenol, n-octadecyl- ⁇ - (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) ) Propionate, 2,6-di-t-butyl-4- (N, N-dimethylaminomethyl) phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 2,4 -Bis (n-octylthio) -6- (4-hydroxy-3 ', 5'-di-t-butylanilino) -1,3,5-triazine, 4,4-methylene-bis (2,6-di-)
  • the blending ratio of the antioxidant is usually preferably 0.001 to 1 part by weight, particularly preferably 0.01 to 0.5 part by weight based on 100 parts by weight of the total of component (A) and component (B). Parts by weight.
  • the amount of the antioxidant is too small, the light resistance of the plastic sheet tends to be lowered, and when the amount is too large, the light transmittance tends to be lowered.
  • the radical curable composition of this invention can be manufactured by the method similar to well-known. For example, by mixing the components (A), (B), (C) and (D) with the component (E) and auxiliary components as necessary, and stirring and mixing until uniform at a temperature of 20 to 50 ° C. Can be manufactured. Thus, the radical curable composition of the present invention is obtained.
  • the radical curable composition of the present invention preferably has a viscosity at 23 ° C. of 100 to 20,000 mPa ⁇ s, more preferably 400 to 10,000 mPa ⁇ s, still more preferably 800 to 6,000 mPa ⁇ s. is there. If the viscosity is too low, the thick film formability tends to decrease, and conversely if it is too high, the productivity tends to decrease. Examples of the method for adjusting the viscosity include appropriately controlling the types and blending amounts of the components (A), (B) and (C).
  • composition viscosity at this time is a value measured using a cone / plate viscometer (TPE-100, manufactured by Toki Sangyo) at a Peltier plate temperature of 23 ° C. and a cone rotor of use: 3 ° ⁇ R14. is there.
  • the plastic sheet [I] of the present invention is obtained by curing a radically curable composition by heating or irradiation with active energy rays so that the reaction rate is usually 50% or more and less than 75%.
  • Such a plastic sheet [I] is produced by a batch-type optical molding method, that is, a mold in which two transparent glasses are opposed to each other through a spacer for thickness control. It can be obtained by injecting a radical curable composition, curing by irradiation with heat or active energy rays, and demolding. However, from the viewpoint of productivity and long run property, it is preferably continuous by roll-to-roll. It can be obtained by the photoforming method of the formula. Such a continuous photoforming method can be performed as follows.
  • the radical curable composition layer is formed on the support film so as to have a desired film thickness, and the support film is in contact with the upper part.
  • the laminated body is prepared, and the laminated body is heated or irradiated with active energy rays to cure the radical curable composition, and then, as necessary, from both sides of the cured resin layer (plastic sheet).
  • the plastic film [I] can be obtained by peeling the support film.
  • the feeding direction of the support film in this step can be any of the horizontal direction, the vertical direction with respect to the horizontal, and the direction angled from the horizontal. From the viewpoint of production efficiency, a method of forming the film surface continuously and feeding it in the horizontal direction is preferable.
  • the layer structure of the laminate is, for example, a three-layer structure of support film / curable composition [I] / support film, or support film / curable composition [I] / support film / curable composition [I]. / A five-layer structure of the support film is also possible.
  • a three-layer structure of supporting film / curable composition [I] / supporting film is preferable in that the curing process described later proceeds efficiently.
  • a plastic sheet roll which is a roll body of the plastic sheet [I] can be obtained by winding the obtained plastic sheet [I] around a branch pipe.
  • the support film may be any film as long as it does not inhibit curing due to radical polymerization, and among them, a gas barrier resin film is preferable from the viewpoint of not inhibiting curing due to oxygen.
  • the oxygen permeability is 200 cc / m 2 ⁇ day ⁇ atm or less in an environment of 20 ° C. and dry conditions when the thickness of the gas barrier resin film is 20 ⁇ m. It is preferable in that it can be cured well (that is, radical polymerization) and can be cured efficiently, and is particularly preferably 100 cc / m 2 ⁇ day ⁇ at or less, more preferably 20 cc / m 2 ⁇ day ⁇ It is preferably at or below. If this value is too high, good curing cannot be achieved due to oxygen inhibition, and the degree of polymerization and conversion tend to decrease. The lower limit is usually 0.01 cc / m 2 ⁇ day ⁇ atm.
  • Such measurement of oxygen permeability is obtained by measurement using an oxygen permeability meter according to the measurement method shown in JIS K 716-2: 2006.
  • the glass transition temperature of the resin constituting the support film is usually 0 ° C. or higher, particularly It is preferably 30 ° C or higher, more preferably 50 ° C or higher. If the glass transition temperature is too low, the glass transition temperature may melt and break when subjected to heat. In addition, the upper limit of this glass transition temperature is 400 degreeC normally.
  • the thickness of the support film used in the present invention is usually 100 ⁇ m or less, particularly 10 to 75 ⁇ m, more preferably 15 to 50 ⁇ m from the viewpoint of light transmittance. If the thickness is too thick, the light transmittance tends to be lowered, and if it is too thin, there is a tendency that breakage occurs during the operation or the safety is impaired.
  • the support film examples include polyester resin films such as polyethylene terephthalate film, nylon resin films such as nylon 6, biaxially stretched nylon, acrylonitrile resin films such as modified polyacrylonitrile, and polyvinyl alcohols.
  • polyester resin films such as polyethylene terephthalate film
  • nylon resin films such as nylon 6, biaxially stretched nylon
  • acrylonitrile resin films such as modified polyacrylonitrile
  • polyvinyl alcohols examples include resin films, vinyl alcohol resin films such as ethylene-vinyl alcohol resin films, and such uniaxially stretched and biaxially stretched vinyl alcohol resin films.
  • vinyl alcohol A resin film and further a biaxially stretched vinyl alcohol resin film is preferred.
  • Such a vinyl alcohol-based resin film is formed from a vinyl alcohol-based resin, and the vinyl alcohol-based resin only needs to have a vinyl alcohol unit formed by saponifying a vinyl ester unit.
  • the average saponification degree is 90 mol% or more, particularly preferably 95 mol% or more, and more preferably 97 mol% or more.
  • Examples of the vinyl alcohol resin of the vinyl alcohol resin film include a polyvinyl alcohol resin (hereinafter sometimes abbreviated as PVA resin) and an ethylene-vinyl alcohol copolymer (hereinafter abbreviated as EVOH). May be included).
  • PVA resin polyvinyl alcohol resin
  • EVOH ethylene-vinyl alcohol copolymer
  • examples of the PVA resin include PVA obtained by homopolymerizing vinyl acetate and saponification thereof, and modified PVA.
  • Examples of such modified PVA include copolymer modified products and post-modified products. it can.
  • a biaxially stretched PVA resin film is particularly preferable from the viewpoint of heat resistance.
  • the film thickness of the support film is usually 10 to 200 ⁇ m, preferably 15 to 100 ⁇ m, more preferably 15 to 50 ⁇ m. If the film thickness is too thin, the yield due to breakage tends to decrease, and if it is too thick, the weight of the roll-shaped material tends to be too large.
  • the external haze of the support film is a value obtained by subtracting the internal haze from the total haze of the object measured using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH-4000” in accordance with JIS K 7361-1: 1997.
  • This internal haze measures haze (Hz1) by sandwiching only liquid paraffin between two glass plates in advance, and then measures haze (Hz2) by sandwiching a film wetted with liquid paraffin.
  • the value calculated by taking the difference of (1) is usually 0.4 or less, preferably 0.4 to 0.01, particularly preferably 0.2 to 0.01.
  • the resulting plastic sheet [I] has a tendency to increase the haze value of a molded product [II] obtained by three-dimensionally molding the plastic sheet [I].
  • the radical curable composition is usually cured by irradiation with active energy rays or heat (that is, radical polymerization).
  • active energy ray irradiation when curing by active energy ray irradiation, when irradiating the active energy ray to the curable composition, ultraviolet rays having a wavelength of 200 to 400 nm are usually used, and the irradiation light amount is usually 0.1 to 0.8 J / cm 2.
  • a more preferable range of the irradiation light amount is 0.1 to 0.7 J / cm 2 , and further preferably 0.15 to 0.5 J / cm 2 .
  • the illuminance of the active energy ray is usually 10 to 2,000 mW / cm 2 , particularly preferably 50 to 1,000 mW / cm 2 . If the illuminance is too small, the productivity tends to decrease. Conversely, if the illuminance is too large, the control of the degree of curing tends to be difficult.
  • the active energy ray source is not particularly limited as long as it is usually used in photocuring, and examples thereof include a metal halide lamp, a high-pressure mercury lamp lamp, an electrodeless mercury lamp, and LED-UV.
  • a metal halide lamp In order to prevent polymerization from running away due to infrared rays generated from a light source, it is also possible to use a filter that blocks infrared rays, a mirror that does not reflect infrared rays, or the like for the lamp.
  • the heat treatment temperature is usually 30 to 140 ° C.
  • the heat treatment time is usually 0.1 second to 30 minutes. If the heat treatment temperature is too low, the curing rate is slow, and if the temperature is too high, unintended side reactions and excessive curing can be considered. Further, if the heat treatment time is too long, curing tends to be excessive, and the three-dimensional molding process in the subsequent process tends to be difficult, and if it is too short, curing tends to be insufficient.
  • a support film can be peeled from both surfaces of the obtained plastic sheet [I], and only plastic sheet [I] can be taken out.
  • the obtained plastic sheet [I] can be used for a desired molding process as it is, but can also be wound around a branch pipe and stored as a plastic sheet roll. Without peeling off the support film, it can be wound into a branch pipe to form a plastic sheet roll.
  • polyolefin films such as polyethylene and polypropylene, polyethylene terephthalate, etc. It is also possible to wind together a polyester film, release paper, etc. as a separator.
  • the above-mentioned branch pipe has a diameter of usually 3 to 12 inches, preferably 3 to 6 inches.
  • the plastic sheet [I] of the present invention obtained above is obtained by curing a radically curable composition by heating or active energy ray irradiation so that the reaction rate is usually 50% or more and less than 75%. Yes, preferably 55 to 70%, particularly preferably 60 to 70%. If the reaction rate is too low, the film thickness tends to change during storage, and if it is too high, subsequent three-dimensional molding tends to be difficult.
  • the reaction rate can be measured as follows. That is, a test piece having a length of 50 mm and a width of 50 mm is freeze-pulverized and then measured with “AVANCE DPX-400” manufactured by BRUKER BIOSPIN using a solid NMR probe. The observation nucleus is measured at 13C, the rotation speed is 5,000 Hz, and room temperature. The carbonyl carbon in the unpolymerized (meth) acryloyl group is detected on the high magnetic field side (166 ppm), and the polymerized carbonyl carbon is detected on the low magnetic field side (176 ppm). The reaction rate (%) is calculated from these peak area ratios.
  • the thickness of the plastic sheet [I] of the present invention is usually from 50 to 10,000 ⁇ m, particularly from 100 to 5,000 ⁇ m, more preferably from 400 to 3,000 ⁇ m, particularly preferably from 500 to 1,000 ⁇ m. It is preferable. If the thickness is too thin, the subsequent three-dimensional forming process tends to be difficult, and if it is too thick, roll formation tends to be difficult.
  • the plastic sheet [I] of the present invention preferably has a light transmittance of 80% or more, particularly 85% or more, more preferably 90% or more, from the viewpoint of increasing the brightness of the display.
  • the upper limit of the light transmittance is 99%.
  • the plastic sheet [I] of the present invention has a surface pencil hardness of usually 2B or more, particularly B or more, more preferably F or more, and preferably 2H or less, particularly H or less. If the pencil hardness is too low, the plastic sheet is likely to be damaged and the quality of the display tends to deteriorate. If the pencil hardness is too high, subsequent three-dimensional molding tends to be difficult.
  • the plastic sheet [I] of the present invention generally has a total haze of 3% or less, particularly 2% or less, more preferably 1.5% or less, from the viewpoint of high definition display. Further, the external haze is usually 0.5% or less, particularly 0.3% or less, and further preferably 0.15% or less.
  • the external haze is a value obtained by subtracting internal haze from the total haze of an object measured using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd.
  • Such internal haze measures haze (Hz1) by sandwiching only liquid paraffin between two glass plates in advance, and then measures haze (Hz2) by sandwiching a film coated with liquid paraffin on the surface. Value calculated by taking the difference).
  • the reaction rate is usually 75% or more by normal heating or active energy ray irradiation. It can be set as the molded product [II] formed by curing.
  • the plastic sheet [I] of the present invention is not completely cured, it is a sheet that can be molded, and is subjected to a molding process corresponding to the design in order to have a desired design, and then usually By heating or irradiation with active energy rays, curing can be further advanced to obtain a molded product [II].
  • a known molding method can be used for the molding process. Examples thereof include a mold forming method such as press forming, vacuum forming, and pressure forming, and a method of cutting out an arbitrary shape using a cutter, a knife, or the like.
  • a mold forming method such as press forming, vacuum forming, and pressure forming
  • a method of cutting out an arbitrary shape using a cutter, a knife, or the like in particular, in the present invention, in the conventional plastic sheet, only a flat molded product can be obtained, whereas a three-dimensional molded product molded in a direction other than the plane, for example, a substantially vertical direction, is used. Can be obtained. Therefore, it is preferable to use a molded product formed by giving an arbitrary design to a plane in a direction other than the plane, for example, a substantially vertical direction.
  • the plastic sheet [I] molded into a desired shape by molding is usually further cured by irradiation with active energy rays or heat to form the molded product [II] of the present invention.
  • active energy ray it is preferable that the active energy ray is irradiated with an ultraviolet ray having a wavelength of 200 to 400 nm and photocured with a normal irradiation light quantity of 0.5 to 40 J / cm 2 .
  • a more preferable range of the irradiation light amount is 5 to 35 J / cm 2 , and more preferably 10 to 30 J / cm 2 .
  • the illuminance of the active energy ray is usually 10 to 2,000 mW / cm 2 , particularly preferably 50 to 1,000 mW / cm 2 . If the illuminance is too small, the productivity tends to decrease. Conversely, if the illuminance is too large, yellowing tends to occur.
  • the active energy ray source is not particularly limited as long as it is usually used in photocuring, and examples thereof include a metal halide lamp, a high-pressure mercury lamp lamp, an electrodeless mercury lamp, LED-UV, and the like.
  • a filter that blocks infrared rays, a mirror that does not reflect infrared rays, or the like for the lamp.
  • heat treatment may be performed to improve the degree of polymerization or release stress strain. At this time, it is preferable to perform heat treatment usually at 50 to 250 ° C. in the air or in vacuum.
  • the heat treatment temperature is usually 30 to 140 ° C.
  • the heat treatment time is usually 0.1 seconds to 10 hours. If the heat treatment temperature is too low, curing tends to be insufficient. If the heat treatment time is too short, curing tends to be insufficient, and if it is too long, productivity is lowered and an unintended side reaction may proceed.
  • the obtained molded product [II] of the present invention is obtained by curing by irradiation with active energy rays so that the reaction rate is usually 75% or more, preferably 80% or more, particularly preferably 85% or more. is there. If the reaction rate is too low, the surface hardness of the molded product tends to be insufficient.
  • the reaction rate can be measured by the same method as described above.
  • the thickness of the molded product [II] of the present invention is usually 50 to 10,000 ⁇ m, particularly 100 to 5,000 ⁇ m, more preferably 400 to 3,000 ⁇ m, and particularly 500 to 1,000 ⁇ m. preferable. If the thickness is too thin, the mechanical properties tend to deteriorate, and if it is too thick, the optical properties tend to decrease.
  • the molded product [II] of the present invention preferably has a light transmittance of usually 80% or more, particularly 85% or more, and more preferably 90% or more from the viewpoint of increasing the brightness of the display.
  • the upper limit of the light transmittance is 99%.
  • the molded product [II] of the present invention preferably has a surface pencil hardness of usually 2H or more, particularly 3H or more, more preferably 4H or more. If the pencil hardness is too low, the plastic sheet tends to be damaged and the quality of the display tends to deteriorate.
  • the molded product [II] of the present invention preferably has a total haze of 3% or less, particularly 2% or less, and more preferably 1.5% or less from the viewpoint of high definition display. Further, the external haze is usually 0.5% or less, particularly 0.3% or less, and further preferably 0.15% or less. In addition, this external haze means the value by the same measuring method as the said plastic sheet [I].
  • a plastic sheet having a desired film thickness can be formed, and a rolled plastic sheet roll can be easily formed. Further, the optical properties and surface hardness of the molded product to be a final cured product can be obtained. An excellent plastic sheet can be obtained, and is useful for applications such as a protective plate for a display and a three-dimensional component around a display unit in a copying machine, an automobile, a home appliance, and the like.
  • Pencil hardness The pencil hardness of the plastic sheet was measured according to JIS K 5600-5-4: 1999. The load was measured at 50 g or 750 g.
  • Saturated water absorption (%) was calculated from the weight increase after immersion in water at 23 ° C. for 20 days using a 50 mm ⁇ 50 mm test piece.
  • the compounding component was prepared as follows.
  • a flask equipped with a thermometer, stirrer, water-cooled condenser and nitrogen gas inlet 192.0 g (0.86 mol) of isophorone diisocyanate and pentaerythritol triacrylate [mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (hydroxyl value) 120 mg KOH / g)] 808.0 g (1.73 mol) was charged, 0.01 g of hydroquinone methyl ether as a polymerization inhibitor and 0.01 g of dibutyltin dilaurate as
  • C-2 After blending dicyclopentanyl methacrylate and dicyclopentanyl acrylate at a weight ratio of 1: 1, 1% 1-hydroxycyclohexyl phenyl ketone was further added as a photopolymerization initiator, and after defoaming treatment, Sealed in a tare of biaxially stretched polyvinyl alcohol film so as not to enter air bubbles, adjusted to a thickness of 0.7 mm, and then placed a 2.8 mm glass plate on the top of the tare. Then, irradiation was performed so that a wavelength of 360 nm was 20 J / cm 2 with an illuminance of 50 mW / cm 2 .
  • C-3 After adding 0.5% 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator to dicyclopentanyl acrylate and defoaming it, it is sealed in a tare of a biaxially stretched polyvinyl alcohol film to prevent bubbles from entering. After adjusting the thickness to be 1.0 mm, a 2.8 mm glass plate is placed on the upper part of the tare, and a metal halide lamp is placed on the glass plate, and the 360 nm wavelength is 20 J / cm 2 at an illuminance of 50 mW / cm 2.
  • C ′ The following were prepared as a (meth) acrylic resin (C ′) for comparison.
  • C′-1) Poly n-butyl methacrylate (weight average molecular weight (Mw): 760,000)
  • C′-2) Polymethyl methacrylate (weight average molecular weight (Mw): 990,000)
  • a coating film was continuously formed on a 25 ⁇ m-thick biaxially stretched polyvinyl alcohol film continuously conveyed in the horizontal direction using an applicator having a clearance of 880 ⁇ m.
  • a biaxially stretched polyvinyl alcohol film having a thickness of 25 ⁇ m was separately bonded onto the coating film, and a 50 mW / w was measured on the 25 ⁇ m thickness of the biaxially stretched polyvinyl alcohol film by a metal halide lamp with an ultraviolet ray measuring device at a wavelength of 360 nm. in the irradiation intensity of cm 2, the exposure amount is conveyed with ultraviolet irradiation so as to be 250 mJ / cm 2.
  • the biaxially stretched polyvinyl alcohol film having a thickness of 25 ⁇ m on both sides is peeled off, and only the cured plastic sheet (the thickness of the sheet is described in Table 1) is wound around a branch pipe to obtain a roll-shaped composition (plastic film roll). It was.
  • Various physical properties of the obtained plastic sheet were evaluated, and the results are shown in Table 2.
  • the plastic sheet obtained by the Example is denoted by [I]
  • the plastic sheet obtained by the comparative example is denoted by [I ′].
  • the molded product [II] model is not molded so as to impart designability in a direction perpendicular to the plastic sheet plane. However, when the designability is imparted, the surface of the plastic sheet [I] If impurities do not adhere, the presence or absence of the design does not affect various physical properties of the molded product [II], and therefore, the molded product is equivalent to the molded product formed by imparting the design property.
  • the molded product obtained in the example is denoted as [II]
  • the molded product obtained in the comparative example is denoted as [II ′].
  • Table 2 The evaluation results of Examples and Comparative Examples are shown in Table 2.
  • a radical curable composition comprising a polyfunctional urethane (meth) acrylate having an alicyclic structure, a polyfunctional (meth) acrylate having an alicyclic structure, and a polymerization initiator is further added to
  • a (meth) acrylic resin having a ring structure By containing a (meth) acrylic resin having a ring structure, the viscosity of the radically curable composition can be increased, so that a sheet roll formed by winding up the plastic sheet [I] obtained by curing is formed.
  • the plastic sheet using the radical curable composition of the present invention can be advantageously used for various optical materials and electronic materials.
  • liquid crystal substrates, organic / inorganic EL substrates, electronic paper substrates, light guide plates, phase difference plates, touch panels, etc. various display members, optical recording substrates and film / coating applications for optical disks, thin films, etc.
  • It can be used for energy applications such as battery substrates and solar cell substrates, optical communication applications such as optical waveguides, and various optical films, sheets and coatings such as functional films and sheets, antireflection films and optical multilayer films.
  • it is highly expected as a display protective plate or a capacitive touch panel substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The objective of the present invention is to provide a radical curable composition the three-dimensionally formed plastic sheet of which, which is a final cured product thereof, has excellent optical properties and surface hardness, and which is for forming a plastic sheet that is easy to wind. This radical curable composition comprises components (A), (B), (C), and (D): (A) a polyfunctional urethane (meth)acrylate having an alicyclic structure, (B) a polyfunctional (meth)acrylate having an alicyclic structure (except (A)), (C) a (meth)acrylic resin having an alicyclic structure, and (D) a polymerization initiator.

Description

ラジカル硬化性組成物、プラスチックシート、プラスチックシートロール及び成形物Radical curable composition, plastic sheet, plastic sheet roll and molded product
 本発明は、プラスチックシートを形成するためのラジカル硬化性組成物に関し、更に詳しくは、プラスチックシートを巻き取ってなるシートロールが形成しやすく、更に、最終硬化物となる成形物の光学特性、表面硬度に優れたプラスチックシートを形成するためのラジカル硬化性組成物に関するものである。 The present invention relates to a radically curable composition for forming a plastic sheet, and more specifically, a sheet roll formed by winding up a plastic sheet can be easily formed. The present invention relates to a radical curable composition for forming a plastic sheet having excellent hardness.
 従来、ディスプレイ用の基板としてはガラスを基板とするものが多く使われてきた。例えば、保護板では厚さ0.5~2mm程度の化学強化ガラス基板が汎用されている。また、タッチパネル基板では厚さ0.2~1.1mm程度のガラス基板が汎用されている。更に、液晶ディスプレイや有機エレクトロルミネッセンス(有機EL)ディスプレイでは厚さ0.2~0.7mm程度のガラス基板が汎用されている。 Conventionally, a glass substrate is often used as a display substrate. For example, a chemically strengthened glass substrate having a thickness of about 0.5 to 2 mm is widely used as a protective plate. As the touch panel substrate, a glass substrate having a thickness of about 0.2 to 1.1 mm is widely used. Furthermore, a glass substrate having a thickness of about 0.2 to 0.7 mm is widely used in liquid crystal displays and organic electroluminescence (organic EL) displays.
 一方では、近年、軽量化や安全性の観点から、また、フレキシブルディスプレイの製造を目的に、プラスチック製の基板も使用され始めている。実際には、ポリメチルメタクリレート(PMMA)、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、あるいはこれらの樹脂シートにハードコートを施した基板が使われている。このようなプラスチック基板には、光線透過率や複屈折などの光学性能はもとより、耐熱性や線膨張係数などの熱特性、表面硬度や曲げ弾性率などの機械特性、吸水率や比重、及び耐薬品、耐溶剤性などの高度な加工適性が要求される。 On the other hand, in recent years, plastic substrates have begun to be used from the viewpoint of weight reduction and safety and for the purpose of manufacturing flexible displays. In practice, polymethyl methacrylate (PMMA), polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or a substrate obtained by applying a hard coat to these resin sheets is used. Such plastic substrates have not only optical performance such as light transmittance and birefringence, but also thermal properties such as heat resistance and linear expansion coefficient, mechanical properties such as surface hardness and bending elastic modulus, water absorption and specific gravity, and resistance to resistance. High processability such as chemicals and solvent resistance is required.
 これらの諸特性を満足するために、熱可塑性あるいは熱硬化性を問わず数多くの樹脂が提案されている。特に、これらの樹脂からなるシートをハードコート処理して表面硬度を向上させた基板が提案されているが、ガラスを超える表面硬度は得られていないのが現状である。 In order to satisfy these various properties, many resins have been proposed regardless of thermoplasticity or thermosetting. In particular, a substrate in which the surface hardness is improved by subjecting a sheet made of these resins to hard coating has been proposed, but the surface hardness exceeding that of glass is not obtained at present.
 また、近年では、特定の光重合性組成物を光硬化して得られる成形体も見受けられる。例えば、脂環構造を有する多官能ウレタン(メタ)アクリレートと脂環構造を有する多官能(メタ)アクリレートよりなる光重合性組成物が、鉛筆硬度の高い樹脂成形体を与えることが開示されており(例えば、特許文献1参照。)、また、脂環構造を有する単官能(メタ)アクリレート、脂環構造を有する多官能ウレタン(メタ)アクリレート、及び脂環構造を有する多官能(メタ)アクリレートよりなる光重合性組成物が、光学特性や熱機械特性に優れる樹脂成形体を与えることが開示されている(例えば、特許文献2参照。)。 In recent years, a molded product obtained by photocuring a specific photopolymerizable composition is also seen. For example, it is disclosed that a photopolymerizable composition comprising a polyfunctional urethane (meth) acrylate having an alicyclic structure and a polyfunctional (meth) acrylate having an alicyclic structure gives a resin molded article having high pencil hardness. (For example, refer to Patent Document 1), monofunctional (meth) acrylate having an alicyclic structure, polyfunctional urethane (meth) acrylate having an alicyclic structure, and polyfunctional (meth) acrylate having an alicyclic structure It is disclosed that the photopolymerizable composition gives a resin molded article having excellent optical properties and thermomechanical properties (see, for example, Patent Document 2).
日本国特開2006-193596号公報Japanese Unexamined Patent Publication No. 2006-193596 日本国特開2007-204736号公報Japanese Laid-Open Patent Publication No. 2007-204736
 しかしながら、特許文献1及び2の開示技術では、高い表面硬度を有するプラスチックシートは得られているものの、これらは、バッチ式により、2枚のガラス板の間で光硬化性組成物を注型成形しプラスチックシートを製造するものであり、平板なプラスチックシートを得るものである。そのため得られたプラスチックシートに対して更に立体成形加工を施すことはできない。かかる「立体成形加工」とは、従来のプラスチックシートにおいては平面の成形物しか得られなかったことに対し、平面以外の方向、例えば、略垂直な方向にも成形が為され、三次元的な成形物が得られる成形方法を意味する。 However, in the techniques disclosed in Patent Documents 1 and 2, although plastic sheets having a high surface hardness are obtained, these are produced by casting a photocurable composition between two glass plates by a batch method. A sheet is manufactured, and a flat plastic sheet is obtained. Therefore, further three-dimensional molding cannot be performed on the obtained plastic sheet. The “three-dimensional molding process” means that the conventional plastic sheet can only obtain a flat molded product, but is molded in a direction other than the plane, for example, a substantially vertical direction. It means a molding method for obtaining a molded product.
 近年では、軽量化や意匠性を付与する観点からプラスチックシートに立体成形加工を行う要求も高まっている。
 また、プラスチックシートの製造においても、バッチ式ではなく連続式で行う方法も検討されている。例えば、支持フィルム上に、光硬化性組成物を塗布し、活性エネルギー線照射することも考えられるが、上記のような光硬化性組成物を用いて行った場合には、光硬化性組成物の粘度が低いため塗工性が悪く、良好なプラスチックシート、特に厚膜のプラスチックシートを得ることができない。更に、単に、上記の光硬化性組成物を塗布し活性エネルギー線照射しても、硬化して得られたプラスチックシートはロール状態にて保管することができるほど柔軟性を有するものではなく、また、立体成形加工できるものでもない。
In recent years, there has been an increasing demand for three-dimensional molding processing on plastic sheets from the viewpoint of weight reduction and design.
Also, in the production of plastic sheets, a method of performing a continuous method instead of a batch method has been studied. For example, it is conceivable to apply a photocurable composition on a support film and irradiate with an active energy ray. However, when the photocurable composition is used as described above, the photocurable composition is used. Therefore, the coating property is poor and a good plastic sheet, especially a thick film plastic sheet cannot be obtained. Furthermore, the plastic sheet obtained by curing by simply applying the photocurable composition and irradiating with active energy rays is not flexible enough to be stored in a roll state. It is not something that can be three-dimensionally molded.
 なお、日本国特開2009-127019号公報には、プラスチックシートを連続的に製造する場合において、ロールに巻き取る時やロール間を搬送する時にも、更には支持シートを剥離する時にも、クラックや割れが生じないプラスチックシートを提供することを目的として、プラスチックシートの幅方向に対して、両端部の所定領域の曲げ弾性率を中央部の所定領域の曲げ弾性率よりも低くする方法が記載されているが、かかる開示技術では、端部のみの硬化を考慮するものであり、光学的にも機械的にも均一なシートは得難いものであった。更に、プラスチックシートの少なくとも一部分の反応率は80%を超えるものであり、かかるプラスチックシートを用いて、後の立体成形加工を行うことは困難なものであった。 Note that Japanese Patent Application Laid-Open No. 2009-127019 discloses cracks when continuously manufacturing a plastic sheet, when it is wound around a roll, when it is transported between rolls, and even when a support sheet is peeled off. For the purpose of providing a plastic sheet that does not crack or break, a method is described in which the bending elastic modulus of the predetermined region at both ends is lower than the bending elastic modulus of the predetermined region at the center with respect to the width direction of the plastic sheet. However, according to such disclosed technology, it is difficult to obtain a sheet that is optically and mechanically uniform because only the edges are cured. Furthermore, the reaction rate of at least a part of the plastic sheet exceeds 80%, and it has been difficult to perform a subsequent three-dimensional molding process using such a plastic sheet.
 そこで、本発明ではこのような背景下において、プラスチックシートを巻き取ってなるプラスチックシートロールが形成しやすく、更に、最終硬化物となる立体成形された成形物の光学特性、表面硬度に優れたプラスチックシートを形成するためのラジカル硬化性組成物を提供することを目的とするものであり、更に、かかるラジカル硬化性組成物を用いて、プラスチックシート、プラスチックシートロール及び立体成形された成形物をも提供することを目的とするものである。 Therefore, in the present invention, in such a background, it is easy to form a plastic sheet roll obtained by winding up a plastic sheet, and further, a plastic excellent in optical characteristics and surface hardness of a three-dimensional molded product to be a final cured product. An object of the present invention is to provide a radical curable composition for forming a sheet, and further, using such a radical curable composition, a plastic sheet, a plastic sheet roll, and a three-dimensional molded product are also obtained. It is intended to provide.
 しかるに本発明者らが上記課題を解決すべく鋭意検討を行った結果、脂環構造を有する多官能ウレタン(メタ)アクリレート、脂環構造を有する多官能(メタ)アクリレート及び重合開始剤を含有するラジカル硬化性組成物に、更に脂環構造を有する(メタ)アクリル系樹脂を含有させることにより、ラジカル硬化性組成物の粘度を高くすることができ、そのため硬化して得られるプラスチックシートを巻き取ってなるプラスチックシートロールが形成しやすくなり、更に厚膜化も可能となり、また、最終硬化物となる立体成形された成形物の光学特性、表面硬度に優れたプラスチックシートを得ることができることを見出し、本発明を完成した。 However, as a result of intensive studies by the present inventors to solve the above problems, the present invention contains a polyfunctional urethane (meth) acrylate having an alicyclic structure, a polyfunctional (meth) acrylate having an alicyclic structure, and a polymerization initiator. By adding a (meth) acrylic resin having an alicyclic structure to the radical curable composition, the viscosity of the radical curable composition can be increased, so that a plastic sheet obtained by curing can be wound up. It has been found that a plastic sheet roll can be formed easily, and a thicker film can be formed, and a plastic sheet excellent in optical properties and surface hardness of a three-dimensional molded product to be a final cured product can be obtained. The present invention has been completed.
 即ち、本発明の要旨は、以下の(1)~(10)である。
(1)下記成分(A)、(B)、(C)及び(D)を含有するラジカル硬化性組成物。
 (A)脂環構造を有する多官能ウレタン(メタ)アクリレート
 (B)脂環構造を有する多官能(メタ)アクリレート(但し、前記(A)を除く。)
 (C)脂環構造を有する(メタ)アクリル系樹脂
 (D)重合開始剤
(2)前記脂環構造を有する(メタ)アクリル系樹脂(C)の含有量が、前記脂環構造を有する多官能ウレタン(メタ)アクリレート(A)及び前記脂環構造を有する多官能(メタ)アクリレート(B)の合計100重量部に対して、1~50重量部である前記(1)記載のラジカル硬化性組成物。
(3)前記脂環構造を有する(メタ)アクリル系樹脂(C)の重量平均分子量が、5万~300万である前記(1)または(2)記載のラジカル硬化性組成物。
(4)前記脂環構造を有する(メタ)アクリル系樹脂(C)が脂環構造を有するモノ(メタ)アクリレート(c1)のホモポリマーである前記(1)~(3)のいずれか1つに記載のラジカル硬化性組成物。
(5)更に、下記成分(E)を含有する前記(1)~(4)のいずれか1つに記載のラジカル硬化性組成物。
 (E)メルカプト基含有化合物
(6)23℃における粘度が、100~20,000mPa・sである前記(1)~(5)のいずれか1つに記載のラジカル硬化性組成物。
That is, the gist of the present invention is the following (1) to (10).
(1) A radical curable composition containing the following components (A), (B), (C) and (D).
(A) Polyfunctional urethane (meth) acrylate having an alicyclic structure (B) Polyfunctional (meth) acrylate having an alicyclic structure (excluding (A) above)
(C) (Meth) acrylic resin having alicyclic structure (D) Polymerization initiator (2) The content of (meth) acrylic resin (C) having alicyclic structure has the alicyclic structure. The radical curability according to (1), wherein the amount is 1 to 50 parts by weight with respect to 100 parts by weight of the total of the functional urethane (meth) acrylate (A) and the polyfunctional (meth) acrylate (B) having the alicyclic structure. Composition.
(3) The radical curable composition according to the above (1) or (2), wherein the (meth) acrylic resin (C) having an alicyclic structure has a weight average molecular weight of 50,000 to 3,000,000.
(4) Any one of (1) to (3) above, wherein the (meth) acrylic resin (C) having an alicyclic structure is a homopolymer of a mono (meth) acrylate (c1) having an alicyclic structure The radically curable composition described in 1.
(5) The radical curable composition according to any one of (1) to (4), further comprising the following component (E):
(E) Mercapto group-containing compound (6) The radically curable composition according to any one of (1) to (5), wherein the viscosity at 23 ° C. is 100 to 20,000 mPa · s.
(7)前記(1)~(6)のいずれか1つに記載のラジカル硬化性組成物を、反応率が50%以上75%未満となるように硬化して得られるプラスチックシート[I]。
(8)厚さが50~10,000μmである前記(7)記載のプラスチックシート[I]。
(9)前記(7)または(8)記載のプラスチックシート[I]が巻き取られて形成されるプラスチックシートロール。
(10)前記(7)または(8)記載のプラスチックシート[I]、または、前記(9)記載のプラスチックシートロールから巻き出したプラスチックシートを成形加工した後、反応率が75%以上となるように硬化して得られる成形物[II]。
(7) A plastic sheet [I] obtained by curing the radically curable composition according to any one of (1) to (6) so that the reaction rate is 50% or more and less than 75%.
(8) The plastic sheet [I] according to the above (7), which has a thickness of 50 to 10,000 μm.
(9) A plastic sheet roll formed by winding the plastic sheet [I] according to (7) or (8).
(10) After molding the plastic sheet [I] described in (7) or (8) or the plastic sheet unwound from the plastic sheet roll described in (9), the reaction rate becomes 75% or more. Molded product [II] obtained by curing as described above.
 本発明のラジカル硬化性組成物は、成分(A)~(D)を含有することにより、好みの膜厚のプラスチックシートを形成することができ、かつ、巻き取ってなるプラスチックシートロールが形成しやすく、更に、最終硬化物となる成形物の光学特性、表面硬度に優れたプラスチックシートを得ることができる。また、成分(C)の含有量を調整することにより、ラジカル硬化性組成物の粘度を高くすることができる。よって、本発明のラジカル硬化性組成物により形成されたプラスチックシートは、ディスプレイ用の保護板や、コピー機、自動車、家電等における表示部周辺の立体化部品等の用途に有用である。 By containing the components (A) to (D), the radically curable composition of the present invention can form a plastic sheet having a desired film thickness, and can form a rolled plastic sheet roll. It is easy to obtain a plastic sheet that is excellent in optical properties and surface hardness of the molded product that is the final cured product. Moreover, the viscosity of a radically curable composition can be made high by adjusting content of a component (C). Therefore, the plastic sheet formed from the radically curable composition of the present invention is useful for applications such as a protective plate for a display, a three-dimensional component around a display unit in a copying machine, an automobile, a home appliance, and the like.
 以下に、本発明を詳細に説明する。
 なお、本発明において、「(メタ)アクリレート」は、アクリレートとメタクリレートの、「(メタ)アクリル」は、アクリルとメタクリルの総称である。また、ここでいう多官能とは、分子内に2個以上の(メタ)アクリロイル基を有することを意味する。
The present invention is described in detail below.
In the present invention, “(meth) acrylate” is a generic term for acrylate and methacrylate, and “(meth) acryl” is a generic term for acrylic and methacrylic. Moreover, polyfunctional here means having two or more (meth) acryloyl groups in a molecule | numerator.
<ラジカル硬化性組成物の説明>
 本発明のラジカル硬化性組成物は、下記成分(A)、(B)、(C)及び(D)を含有するものである。
(A)脂環構造を有する多官能ウレタン(メタ)アクリレート
(B)脂環構造を有する多官能(メタ)アクリレート(但し、前記(A)を除く。)
(C)脂環構造を有する(メタ)アクリル系樹脂
(D)重合開始剤
<Description of radical curable composition>
The radically curable composition of the present invention contains the following components (A), (B), (C) and (D).
(A) Polyfunctional urethane (meth) acrylate having an alicyclic structure (B) Polyfunctional (meth) acrylate having an alicyclic structure (excluding (A) above)
(C) (Meth) acrylic resin (D) polymerization initiator having alicyclic structure
 成分(A)は、分子内に(メタ)アクリロイル基を2個以上含有するウレタン(メタ)アクリレートである。多官能であるため、硬化速度が向上し、生産性良くプラスチックシートを得ることができる。また、熱または光によるラジカル重合反応により架橋樹脂を形成し、表面硬度の高いプラスチックシートを得ることができる。また、成分(A)は分子内にウレタン基を有し、水素結合により、曲げ弾性率や耐衝撃性などの機械強度に優れたフレキシブルなプラスチックシートを得ることができる。表面硬度の向上は、特に、4官能以上のウレタン(メタ)アクリレートで発現する。また、多官能ウレタン(メタ)アクリレート(A)は脂環構造を分子内に有しており、この脂環構造によりプラスチックシートの吸水率が低減することとなる。 Component (A) is a urethane (meth) acrylate containing two or more (meth) acryloyl groups in the molecule. Since it is polyfunctional, the curing rate is improved and a plastic sheet can be obtained with high productivity. Moreover, a crosslinked resin can be formed by radical polymerization reaction by heat or light, and a plastic sheet with high surface hardness can be obtained. In addition, component (A) has a urethane group in the molecule, and a flexible plastic sheet excellent in mechanical strength such as flexural modulus and impact resistance can be obtained by hydrogen bonding. The improvement of the surface hardness is manifested particularly with a tetrafunctional or higher urethane (meth) acrylate. Moreover, polyfunctional urethane (meth) acrylate (A) has an alicyclic structure in a molecule | numerator, and the water absorption rate of a plastic sheet will reduce by this alicyclic structure.
 成分(A)の数平均分子量は、200~5,000であることが好ましい。より好ましくは400~3,000、更に好ましくは500~1,000である。数平均分子量が小さすぎると、硬化収縮が増大し、複屈折が発生しやすい傾向にある。逆に、大きすぎると、架橋性が低下し、耐熱性が低下する傾向にある。 The number average molecular weight of component (A) is preferably 200 to 5,000. More preferably, it is 400 to 3,000, and still more preferably 500 to 1,000. When the number average molecular weight is too small, curing shrinkage increases and birefringence tends to occur. On the other hand, if it is too large, the crosslinkability tends to decrease and the heat resistance tends to decrease.
 成分(A)である脂環構造を有する多官能ウレタン(メタ)アクリレートは、脂環構造を有するポリイソシアネート化合物と、水酸基含有(メタ)アクリレートを、必要に応じてジブチルチンジラウレートなどの触媒を用いて反応させることにより得ることができる。 The polyfunctional urethane (meth) acrylate having an alicyclic structure as the component (A) is prepared by using a polyisocyanate compound having an alicyclic structure and a hydroxyl group-containing (meth) acrylate, if necessary, using a catalyst such as dibutyltin dilaurate. Can be obtained by reaction.
 脂環構造を有するポリイソシアネート化合物の具体例としては、例えば、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、水添化キシリレンジイソシアネート、水添化ジフェニルメタンジイソシアネート、イソホロンジイソシアネートの3量体化合物などが挙げられる。中でも耐光性が良い点でイソホロンジイソシアネートが好ましい。 Specific examples of the polyisocyanate compound having an alicyclic structure include, for example, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, hydrogenated xyly Examples include a diisocyanate, a hydrogenated diphenylmethane diisocyanate, and a trimer compound of isophorone diisocyanate. Of these, isophorone diisocyanate is preferred because of its good light resistance.
 水酸基含有(メタ)アクリレートの具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。中でも表面硬度の点でペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートが好ましい。特に好ましくはペンタエリスリトールトリ(メタ)アクリレートである。 Specific examples of the hydroxyl group-containing (meth) acrylate include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3- (meth) Examples include acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol tri (meth) acrylate. Of these, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol tri (meth) acrylate are preferable in terms of surface hardness. Particularly preferred is pentaerythritol tri (meth) acrylate.
 脂環構造を有するポリイソシアネート化合物と、水酸基含有(メタ)アクリレートとの反応により得られる脂環構造を有する多官能ウレタン(メタ)アクリレート(A)は、ラジカル硬化性組成物中、2種以上を混合して用いてもよい。これらの反応物の中では、硬化速度の点からアクリレートが好ましく、耐熱性の観点から4官能以上がより好ましく、表面硬度の点から、下記式(1)~(4)で表される脂環構造を有する4官能以上のウレタンアクリレートが特に好ましい。 The polyfunctional urethane (meth) acrylate (A) having an alicyclic structure obtained by a reaction between a polyisocyanate compound having an alicyclic structure and a hydroxyl group-containing (meth) acrylate includes two or more kinds in the radical curable composition. You may mix and use. Among these reactants, acrylate is preferable from the viewpoint of curing rate, tetrafunctional or higher is more preferable from the viewpoint of heat resistance, and alicyclic rings represented by the following formulas (1) to (4) from the viewpoint of surface hardness. A tetrafunctional or higher functional urethane acrylate having a structure is particularly preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、Rは水素又はメチル基である。 In Formula (3), R 1 is hydrogen or a methyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 成分(B)も、多官能の(メタ)アクリレートであるため、高耐熱性のプラスチックシートを与える。成分(A)のウレタン(メタ)アクリレートよりも耐熱性向上の効果は大きいが、この単量体のみでは、あまりにもガラスライクな架橋樹脂となるためもろくなる。したがって、成分(A)のウレタン(メタ)アクリレートと成分(B)の多官能(メタ)アクリレートとを特定の割合で配合し共重合させることが好ましい。これにより、表面硬度、耐熱性、フレキシブル性に良好なプラスチックシートを得ることができる。成分(B)の官能基数が過剰に多すぎると、耐熱性とフレキシブル性のバランスがくずれる傾向にあるため、成分(B)は2官能であることが好ましく、また、メタクリレートであることがより好ましい。また、成分(B)も脂環構造を有しており、この脂環構造もプラスチックシートの飽和吸水率を低減することとなる。 Since component (B) is also a polyfunctional (meth) acrylate, it gives a highly heat-resistant plastic sheet. Although the effect of improving heat resistance is greater than that of the component (A) urethane (meth) acrylate, this monomer alone is too brittle because it becomes a glass-like crosslinked resin. Therefore, it is preferable to mix and copolymerize the urethane (meth) acrylate of component (A) and the polyfunctional (meth) acrylate of component (B) at a specific ratio. Thereby, a plastic sheet having good surface hardness, heat resistance and flexibility can be obtained. If the number of functional groups in component (B) is excessively large, the balance between heat resistance and flexibility tends to be lost, so component (B) is preferably bifunctional and more preferably methacrylate. . In addition, component (B) also has an alicyclic structure, which also reduces the saturated water absorption rate of the plastic sheet.
 成分(B)の脂環構造を有する多官能(メタ)アクリレート(但し、(A)を除く。)としては、例えば、ビス(ヒドロキシ)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシ)トリシクロ[5.2.1.02,6]デカン=アクリレートメタクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=アクリレートメタクリレート、ビス(ヒドロキシ)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、ビス(ヒドロキシ)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=アクリレートメタクリレート、ビス(ヒドロキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=アクリレートメタクリレート、2,2-ビス[4-(β-メタクリロイルオキシエトキシ)シクロヘキシル]プロパン、1,3-ビス(メタクリロイルオキシメチル)シクロヘキサン、1,3-ビス(メタクリロイルオキシエチルオキシメチル)シクロヘキサン、1,4-ビス(メタクリロイルオキシメチル)シクロヘキサン、1,4-ビス(メタクリロイルオキシエチルオキシメチル)シクロヘキサンなどの2官能(メタ)アクリレート、1,3,5-トリス(メタクリロイルオキシメチル)シクロヘキサン、1,3,5-トリス(メタクリロイルオキシエチルオキシメチル)シクロヘキサンなどの3官能(メタ)アクリレートがあげられ、これらの中でも、フレキシブル性の点から2官能(メタ)アクリレートが好ましく、耐熱性の点から2官能メタクリレートがより好ましい。更に光学性能の点から下記一般式(5)、(6)及び(7)からなる群より選ばれる少なくとも1種以上の2官能(メタ)アクリレートが好ましく、中でも2官能メタクリレートが特に好ましい。 Examples of the polyfunctional (meth) acrylate (excluding (A)) having an alicyclic structure of the component (B) include bis (hydroxy) tricyclo [5.2.1.0 2,6 ] decane = Di (meth) acrylate, bis (hydroxymethyl) tricyclo [5.2.1.0 2,6 ] decane = di (meth) acrylate, bis (hydroxy) tricyclo [5.2.1.0 2,6 ] decane = Acrylate methacrylate, bis (hydroxymethyl) tricyclo [5.2.1.0 2,6 ] decane = acrylate methacrylate, bis (hydroxy) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] pentadecane = di (meth) acrylate, bis (hydroxymethyl) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] pentadecane = di (meth) acrylate, bis (hydroxy) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] pentadecane = acrylate methacrylate, bis (hydroxymethyl) pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] pentadecane = acrylate methacrylate, 2,2-bis [4- (β-methacryloyloxyethoxy) cyclohexyl] propane, 1,3-bis (methacryloyloxymethyl) cyclohexane, 1,3-bis (methacryloyloxyethyl) Bifunctional (meth) acrylates such as oxymethyl) cyclohexane, 1,4-bis (methacryloyloxymethyl) cyclohexane, 1,4-bis (methacryloyloxyethyloxymethyl) cyclohexane, 1,3,5-tris (methacryloyloxymethyl) ) Trifunctional (meth) acrylates such as cyclohexane and 1,3,5-tris (methacryloyloxyethyloxymethyl) cyclohexane, among which bifunctional (meth) acrylates from the viewpoint of flexibility The bifunctional methacrylate is more preferable from the viewpoint of heat resistance. Furthermore, at least one bifunctional (meth) acrylate selected from the group consisting of the following general formulas (5), (6) and (7) is preferable from the viewpoint of optical performance, and bifunctional methacrylate is particularly preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、Rは炭素数1~6、好ましくは炭素数1~3のエーテル結合を含んでもよいアルキレン基、Rは水素又はメチル基、aは1又は2、bは0又は1である。 In the formula (5), R 2 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, R 3 is hydrogen or a methyl group, a is 1 or 2, and b is 0 or 1.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(6)中、Rは炭素数1~6、好ましくは炭素数1~3のエーテル結合を含んでもよいアルキレン基、Rは水素又はメチル基である。 In the formula (6), R 4 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and R 5 is hydrogen or a methyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(7)中、Rは水素又はメチル基、Rは炭素数1~6、好ましくは炭素数1~3のエーテル結合を含んでもよいアルキレン基、Rは水素又はメチル基である。 In the formula (7), R 6 is hydrogen or a methyl group, R 7 is an alkylene group which may contain an ether bond having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and R 8 is hydrogen or a methyl group.
 成分(A)と成分(B)の配合割合は、(A):(B)=10:90~50:50(重量比)であることが好ましい。成分(A)が少なすぎると、表面硬度が低下する傾向があり、逆に、成分(B)が多すぎると、飽和吸水率が増加する傾向がある。配合割合の好ましい範囲は、15:85~45:55(重量比)、より好ましくは、20:80~40:60(重量比)である。 The blending ratio of component (A) and component (B) is preferably (A) :( B) = 10: 90 to 50:50 (weight ratio). If the amount of component (A) is too small, the surface hardness tends to decrease. Conversely, if the amount of component (B) is too large, the saturated water absorption rate tends to increase. A preferable range of the blending ratio is 15:85 to 45:55 (weight ratio), and more preferably 20:80 to 40:60 (weight ratio).
 成分(C)の脂環構造を有する(メタ)アクリル系樹脂は、ラジカル硬化性組成物の粘度を高くするのに有効であり、例えば、ポリ(イソボルニル(メタ)アクリレート)、ポリ(アダマンチル(メタ)アクリレート)、ポリ(ノルボルネン(メタ)アクリレート)、ポリ(ジシクロペンタニル(メタ)アクリレート)等の脂環構造を有するモノ(メタ)アクリレート(c1)のホモポリマーや、ポリ(ジシクロペンタニルメタノールと(メタ)アクリレートの縮合組成)、等が挙げられるが、中でも相溶性の点で脂環構造を有するモノ(メタ)アクリレート(c1)のホモポリマーが好ましく、特にはポリ(ジシクロペンタニル(メタ)アクリレート)、ポリ(アダマンチル(メタ)アクリレート)等が好ましい。 The (meth) acrylic resin having an alicyclic structure as the component (C) is effective for increasing the viscosity of the radical curable composition. For example, poly (isobornyl (meth) acrylate), poly (adamantyl (meta) ) Acrylate), poly (norbornene (meth) acrylate), poly (dicyclopentanyl (meth) acrylate) and other homopolymers of mono (meth) acrylate (c1) having an alicyclic structure, and poly (dicyclopentanyl) (Condensation composition of methanol and (meth) acrylate), etc. Among them, a homopolymer of mono (meth) acrylate (c1) having an alicyclic structure is preferable in terms of compatibility, and in particular, poly (dicyclopentanyl) (Meth) acrylate), poly (adamantyl (meth) acrylate) and the like are preferable.
 脂環構造を有するアクリル系樹脂(C)の重量平均分子量は、5万~300万であることが好ましく、特には10万~200万、更には30万~150万であることが好ましい。かかる重量平均分子量が小さすぎるとアクリル系樹脂(C)の配合量が多く必要となり、故に表面硬度が低下する傾向があり、大きすぎると溶解性が乏しくなり、生産性が低下する傾向がある。
 尚、上記の重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)を用いて、標準ポリスチレン換算の重量平均分子量(Mw)を意味する。
The weight average molecular weight of the acrylic resin (C) having an alicyclic structure is preferably 50,000 to 3,000,000, particularly 100,000 to 2,000,000, more preferably 300,000 to 1,500,000. If the weight average molecular weight is too small, a large amount of the acrylic resin (C) is required, so that the surface hardness tends to decrease, and if it is too large, the solubility becomes poor and the productivity tends to decrease.
In addition, said weight average molecular weight means the weight average molecular weight (Mw) of standard polystyrene conversion using GPC (gel permeation chromatography).
 かかるアクリル系樹脂(C)は、溶液重合法の他、活性エネルギー線照射による重合法等で製造することができるが、特には分子量の制御の点で紫外線照射による重合法が好ましい。 Such an acrylic resin (C) can be produced by a polymerization method by irradiation with active energy rays in addition to a solution polymerization method, and a polymerization method by ultraviolet irradiation is particularly preferable in terms of control of molecular weight.
 脂環構造を有するアクリル系樹脂(C)の含有量は、高粘度化による厚膜形成性の点で、成分(A)及び(B)の合計100重量部に対して1~50重量部であることが好ましく、特には1~30重量部、更には1~15重量部であることが好ましい。かかる含有量が少なすぎると高粘度化が不充分となり厚膜化が困難となる傾向があり、多すぎると粘度が高くなりすぎ生産性が低下することとなる傾向がある。 The content of the acrylic resin (C) having an alicyclic structure is 1 to 50 parts by weight with respect to a total of 100 parts by weight of the components (A) and (B), from the viewpoint of thick film formation by increasing the viscosity. It is preferably 1 to 30 parts by weight, more preferably 1 to 15 parts by weight. When the content is too small, the increase in viscosity is insufficient and the film thickness tends to be difficult, and when the content is too large, the viscosity becomes too high and the productivity tends to decrease.
 本発明のラジカル硬化性組成物は、重合開始剤(D)を含有する。かかる重合開始剤としては、光重合開始剤(Dl)や熱重合開始剤(Dh)が挙げられる。特に本発明においては、硬化反応が効率よく進行したり、生産性が良好である点から光によって硬化することが好ましいため、光重合開始剤(Dl)を含有することが好ましい。
 光重合開始剤(Dl)としては、例えば、ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホシフィンオキシド等が挙げられる。これらの中でも、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドなどのラジカル開裂型の光重合開始剤が好ましい。これらの光重合開始剤(Dl)は単独で用いても、2種以上を併用してもよい。
The radically curable composition of the present invention contains a polymerization initiator (D). Examples of such a polymerization initiator include a photopolymerization initiator (Dl) and a thermal polymerization initiator (Dh). In particular, in the present invention, it is preferable to cure by light from the viewpoint that the curing reaction proceeds efficiently or productivity is good, and therefore it is preferable to contain a photopolymerization initiator (Dl).
Examples of the photopolymerization initiator (Dl) include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethyl. Examples include benzoyldiphenylphosphine oxide. Among these, radical cleavage type photopolymerization initiators such as 1-hydroxycyclohexyl phenyl ketone and 2,4,6-trimethylbenzoyldiphenylphosphine oxide are preferable. These photopolymerization initiators (Dl) may be used alone or in combination of two or more.
 熱重合開始剤(Dh)としては、公知の化合物を用いることができる。例えば、ハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド、ジt-ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ(2-エチルヘキサノエート)等のパーオキシエステル、ベンゾイルパーオキシド等のジアシルパーオキサイド、ジイソプロピルパーオキシカーボネート等のパーオキシカーボネート、パーオキシケタール、ケトンパーオキサイド等の過酸化物が挙げられる。
 これら光重合開始剤(Dl)および熱重合開始剤(Dh)は併用することも可能である。
A known compound can be used as the thermal polymerization initiator (Dh). For example, hydroperoxide such as hydroperoxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, dicumyl peroxide Dialkyl peroxides such as t-butyl peroxybenzoate, peroxyesters such as t-butylperoxy (2-ethylhexanoate), diacyl peroxides such as benzoyl peroxide, and peroxycarbonates such as diisopropyl peroxycarbonate And peroxides such as peroxyketal and ketone peroxide.
These photopolymerization initiators (Dl) and thermal polymerization initiators (Dh) can be used in combination.
 重合開始剤(D)の含有量は、成分(A)と成分(B)の合計100重量部に対して通常0.1~5重量部、更には0.2~4重量部、特には0.3~3重量部であることが好ましい。含有量が多すぎると、プラスチックシートのリタデーションが増大し、また400nmにおける光線透過率が低下する傾向にある。一方、少なすぎると重合速度が低下し、重合が十分に進行しないおそれがある。 The content of the polymerization initiator (D) is usually from 0.1 to 5 parts by weight, more preferably from 0.2 to 4 parts by weight, particularly preferably 0 to 100 parts by weight in total of the components (A) and (B) It is preferably 3 to 3 parts by weight. If the content is too large, the retardation of the plastic sheet increases and the light transmittance at 400 nm tends to decrease. On the other hand, when the amount is too small, the polymerization rate is decreased, and the polymerization may not proceed sufficiently.
 更に本発明においては、架橋密度を上げる点でメルカプト基含有化合物(E)を含有することが好ましい。メルカプト基含有化合物(E)としては、例えば、ペンタエリスルトールテトラキスチオグリコレート、ペンタエリスルトールテトラキスチオプロピオネート、ペンタエリトール=テトラキス(3-スルファニルブタノアート)、1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)などが挙げられる。これらのメルカプト基含有化合物は、成分(A)と成分(B)の合計100重量部に対して、通常10重量部以下の割合で使用されることが好ましく、更には5重量部以下、特には4重量部以下が好ましい。かかる使用量が多すぎると、得られるプラスチックシートの耐熱性や剛性が低下する傾向がある。 Furthermore, in this invention, it is preferable to contain a mercapto group containing compound (E) at the point which raises a crosslinking density. Examples of the mercapto group-containing compound (E) include pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakisthiopropionate, pentaerythritol tetrakis (3-sulfanylbutanoate), 1,3,5 -Tris (2- (3-sulfanylbutanoyloxy) ethyl) and the like. These mercapto group-containing compounds are preferably used in a proportion of usually 10 parts by weight or less, more preferably 5 parts by weight or less, in particular, with respect to 100 parts by weight of the total of component (A) and component (B). 4 parts by weight or less is preferable. When there is too much this usage-amount, there exists a tendency for the heat resistance and rigidity of the plastic sheet obtained to fall.
 本発明においては、硬化性組成物として、本発明のプラスチックシートの物性を損ねない範囲で、少量の補助成分を含んでいてもよい。例えば、成分(A)及び(B)以外のエチレン性不飽和結合を有する単量体、重合禁止剤、酸化防止剤、紫外線吸収剤、消泡剤、レべリング剤、ブルーイング剤、染顔料、フィラーなどである。また、活性エネルギー線照射による硬化と加熱による硬化とを併用する場合には、光重合開始剤(Dl)および熱重合開始剤(Dh)とを併用することが好ましい。 In the present invention, the curable composition may contain a small amount of auxiliary components as long as the physical properties of the plastic sheet of the present invention are not impaired. For example, monomers having an ethylenically unsaturated bond other than components (A) and (B), polymerization inhibitors, antioxidants, ultraviolet absorbers, antifoaming agents, leveling agents, bluing agents, dyes and pigments And fillers. Moreover, when using together hardening by active energy ray irradiation and hardening by a heating, it is preferable to use together a photoinitiator (Dl) and a thermal-polymerization initiator (Dh).
 成分(A)及び(B)以外のエチレン性不飽和結合を有する単量体としては、メチルメタクリレート、2-ヒドロキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ノルボルネン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルメタノールと(メタ)アクリレートの縮合組成、等の脂環構造を有するモノ(メタ)アクリレートなどの単官能(メタ)アクリレート、エチレングリコールジ(メタ)アクリレレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコール以上のポリエチレングリコールのジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-(メタ)アクリロイルオキシフェニル]プロパン、 トリメチロールプロパントリ(メタ)アクリレートなどの多官能(メタ)アクリレート、アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリルなどの(メタ)アクリル酸誘導体、スチレン、クロルスチレン、ジビニルベンゼン、α-メチルスチレンなどのスチレン系化合物が挙げられる。 Monomers having an ethylenically unsaturated bond other than components (A) and (B) include methyl methacrylate, 2-hydroxyethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meta ) Acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, norbornene (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyl methanol and (meth) acrylate condensation composition, etc. Monofunctional (meth) acrylates such as mono (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol Poly (ethylene glycol) di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-hydroxy 1 , 3-di (meth) acryloxypropane, 2,2-bis [4- (meth) acryloyloxyphenyl] propane, polyfunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate, acrylamide, methacrylamide, Examples thereof include (meth) acrylic acid derivatives such as acrylonitrile and methacrylonitrile, and styrene compounds such as styrene, chlorostyrene, divinylbenzene and α-methylstyrene.
 成分(A)及び(B)以外のエチレン性不飽和結合を有する単量体の配合量は、成分(A)と成分(B)の合計100重量部に対して、30重量部以下、更には20重量部以下、特には10重量部以下であることが好ましい。配合量が多すぎるとプラスチックシートの耐熱性が低下する傾向にある。 The compounding amount of the monomer having an ethylenically unsaturated bond other than the components (A) and (B) is 30 parts by weight or less with respect to a total of 100 parts by weight of the component (A) and the component (B). It is preferably 20 parts by weight or less, particularly 10 parts by weight or less. If the amount is too large, the heat resistance of the plastic sheet tends to decrease.
 酸化防止剤としては、例えば、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、2,4,6-トリ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-s-ブチルフェノール、2,6-ジ-t-ブチル-4-ヒドロキシメチルフェノール、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、2,6-ジ-t-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、4,4-メチレン-ビス(2,6-ジ-t-ブチルフェノール)、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-t-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-t-ブチルフェノール)、2,2-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシヒドロキシヒドロシンナミド、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、カルシウム(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)モノエチルフォスフォネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジーt-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジーt-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス-2[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアネート、テトラキス[メチレン-3-(3′,5′-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスファイト-ジエチルエステル等の化合物が挙げられ、これらの化合物は、単独または2種以上併用してもよい。これらの中でも、テトラキス[メチレン-3-(3′,5′-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが、色相を抑制する効果が大きくなる点から特に好ましい。 Examples of the antioxidant include 2,6-di-t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,4,6-tri-t-butylphenol, and 2,6-di- t-butyl-4-s-butylphenol, 2,6-di-t-butyl-4-hydroxymethylphenol, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) ) Propionate, 2,6-di-t-butyl-4- (N, N-dimethylaminomethyl) phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 2,4 -Bis (n-octylthio) -6- (4-hydroxy-3 ', 5'-di-t-butylanilino) -1,3,5-triazine, 4,4-methylene-bis (2,6-di-) t-Butyl Fe 1,6-hexanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], bis (3,5-di-tert-butyl-4-hydroxybenzyl) Sulfide, 4,4′-di-thiobis (2,6-di-t-butylphenol), 4,4′-tri-thiobis (2,6-di-t-butylphenol), 2,2-thiodiethylenebis [ 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydroxyhydrocinnamide, N , N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, calcium (3,5-di-t-butyl-4-hydroxybenzyl) monoethylphenol Sulfonate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-t-butyl-4-hydroxyphenyl) ) Isocyanurate, tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris-2 [3 (3,5-di-t-butyl-4-hydroxyphenyl) Propionyloxy] ethyl isocyanate, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4-hydroxyphenyl) propionate] methane, 3,5-di-t-butyl-4-hydroxybenzyl phosphite -Compounds such as diethyl ester, etc., and these compounds may be used alone or in combination of two or more thereof. Styrene-3- (3 ', 5'-di -t- butyl-4-hydroxyphenyl) propionate] methane, particularly from the viewpoint of the effect of suppressing the hue increases.
 酸化防止剤の配合割合は、成分(A)と成分(B)の合計100重量部に対して、通常0.001~1重量部であることが好ましく、特に好ましくは0.01~0.5重量部である。かかる酸化防止剤が少なすぎるとプラスチックシートの耐光性が低下する傾向があり、多すぎると光線透過率が低下する傾向にある。 The blending ratio of the antioxidant is usually preferably 0.001 to 1 part by weight, particularly preferably 0.01 to 0.5 part by weight based on 100 parts by weight of the total of component (A) and component (B). Parts by weight. When the amount of the antioxidant is too small, the light resistance of the plastic sheet tends to be lowered, and when the amount is too large, the light transmittance tends to be lowered.
 本発明のラジカル硬化性組成物は、公知と同様の方法で製造することができる。例えば、成分(A)、(B)、(C)及び(D)と、必要により成分(E)や補助成分を配合し、通常20~50℃の温度において均一になるまで撹拌混合することにより製造することができる。
 かくして本発明のラジカル硬化性組成物が得られる。
The radical curable composition of this invention can be manufactured by the method similar to well-known. For example, by mixing the components (A), (B), (C) and (D) with the component (E) and auxiliary components as necessary, and stirring and mixing until uniform at a temperature of 20 to 50 ° C. Can be manufactured.
Thus, the radical curable composition of the present invention is obtained.
 本発明のラジカル硬化性組成物は、23℃における粘度が100~20,000mPa・sであることが好ましく、より好ましくは400~10,000mPa・s、更に好ましくは800~6,000mPa・sである。粘度が低すぎると厚膜形成性が低下する傾向があり、逆に、高すぎると生産性が低下する傾向がある。かかる粘度に調整する方法としては、成分(A)、(B)及び(C)の種類や配合量を適宜コントロールすることなどが挙げられる。なお、このときの組成物粘度は、コーン・プレート型粘度計(TPE-100 東機産業製)を使用し、ペルチェプレート温度:23℃、使用コーンロータ:3°×R14にて測定した値である。 The radical curable composition of the present invention preferably has a viscosity at 23 ° C. of 100 to 20,000 mPa · s, more preferably 400 to 10,000 mPa · s, still more preferably 800 to 6,000 mPa · s. is there. If the viscosity is too low, the thick film formability tends to decrease, and conversely if it is too high, the productivity tends to decrease. Examples of the method for adjusting the viscosity include appropriately controlling the types and blending amounts of the components (A), (B) and (C). The composition viscosity at this time is a value measured using a cone / plate viscometer (TPE-100, manufactured by Toki Sangyo) at a Peltier plate temperature of 23 ° C. and a cone rotor of use: 3 ° × R14. is there.
<プラスチックシート[I]、成形物[II]の製造方法>
 次に、かかるラジカル硬化性組成物を用いた本発明のプラスチックシート[I]、更にはそれを成形することにより得られる成形物[II]の製造方法について説明する。
<Method for producing plastic sheet [I] and molded product [II]>
Next, a method for producing the plastic sheet [I] of the present invention using such a radically curable composition, and further a molded product [II] obtained by molding it will be described.
 本発明のプラスチックシート[I]は、ラジカル硬化性組成物を加熱または活性エネルギー線照射により、反応率が通常50%以上75%未満となるように硬化して得られる。 The plastic sheet [I] of the present invention is obtained by curing a radically curable composition by heating or irradiation with active energy rays so that the reaction rate is usually 50% or more and less than 75%.
 かかるプラスチックシート[I]は、一般的に行われるバッチ式の光成形方法、即ち、厚さ制御のためのスペーサーを介して、2枚の透明ガラスを対向させた型を作製し、そのキャビティにラジカル硬化性組成物を注入し、加熱または活性エネルギー線を照射して硬化させ、脱型することにより得ることもできるが、好ましくは生産性、ロングラン性の点から、ロール・ツー・ロールによる連続式の光成形方法により得ることができる。
 かかる連続式光成形方法は、次のように行うことができる。
Such a plastic sheet [I] is produced by a batch-type optical molding method, that is, a mold in which two transparent glasses are opposed to each other through a spacer for thickness control. It can be obtained by injecting a radical curable composition, curing by irradiation with heat or active energy rays, and demolding. However, from the viewpoint of productivity and long run property, it is preferably continuous by roll-to-roll. It can be obtained by the photoforming method of the formula.
Such a continuous photoforming method can be performed as follows.
 例えば、必要とする塗膜厚を与えるクリアランスを有したアプリケーターを用い、支持フィルム上に、所望の膜厚となるように上記ラジカル硬化性組成物層を形成し、その上部に支持フィルムを接するように配した積層体を作製し、かかる積層体に加熱または活性エネルギー線を照射して、ラジカル硬化性組成物を硬化させた後、必要に応じて、かかる硬化樹脂層(プラスチックシート)の両面から支持フィルムを剥離してプラスチックシート[I]を得ることができる。かかる工程における支持フィルムの送り方向は、水平方向、水平に対して垂直方向、水平から角度をつけた方向のいずれにおいても可能である。製造効率の観点から、フィルム面を水平にし、かつ水平方向に送りつつ連続的に成形する方法が好ましい。 For example, using an applicator having a clearance that gives the required coating thickness, the radical curable composition layer is formed on the support film so as to have a desired film thickness, and the support film is in contact with the upper part. The laminated body is prepared, and the laminated body is heated or irradiated with active energy rays to cure the radical curable composition, and then, as necessary, from both sides of the cured resin layer (plastic sheet). The plastic film [I] can be obtained by peeling the support film. The feeding direction of the support film in this step can be any of the horizontal direction, the vertical direction with respect to the horizontal, and the direction angled from the horizontal. From the viewpoint of production efficiency, a method of forming the film surface continuously and feeding it in the horizontal direction is preferable.
 上記積層体の層構成は、例えば、支持フィルム/硬化性組成物[I]/支持フィルムの3層構造や、支持フィルム/硬化性組成物[I]/支持フィルム/硬化性組成物[I]/支持フィルムの5層構造等も可能である。後述する硬化工程が効率良く進行する点で好ましくは支持フィルム/硬化性組成物[I]/支持フィルムの3層構造である。 The layer structure of the laminate is, for example, a three-layer structure of support film / curable composition [I] / support film, or support film / curable composition [I] / support film / curable composition [I]. / A five-layer structure of the support film is also possible. A three-layer structure of supporting film / curable composition [I] / supporting film is preferable in that the curing process described later proceeds efficiently.
 更に本発明においては、得られるプラスチックシート[I]を、支管に巻き取ることにより、プラスチックシート[I]のロール体であるプラスチックシートロールを得ることができる。 Furthermore, in the present invention, a plastic sheet roll which is a roll body of the plastic sheet [I] can be obtained by winding the obtained plastic sheet [I] around a branch pipe.
 上記支持フィルムとしては、ラジカル重合による硬化を阻害しないものであればよいが、中でも、酸素による硬化阻害を生じさせないという点から、ガスバリア性樹脂フィルムであることが好ましい。 The support film may be any film as long as it does not inhibit curing due to radical polymerization, and among them, a gas barrier resin film is preferable from the viewpoint of not inhibiting curing due to oxygen.
 かかるガスバリア性樹脂フィルムとしては、酸素透過性がガスバリア性樹脂フィルムの厚みが20μmにおいて、20℃、ドライ条件の環境下で、200cc/m・day・atm以下であることが酸素阻害を生じることなく良好な硬化(すなわちラジカル重合)を実施することができ、効率的に硬化を行うことができる点で好ましく、特には100cc/m・day・at以下、更には20cc/m・day・at以下であることが好ましい。かかる値が高すぎると酸素阻害により良好な硬化ができず、重合度や転化率の低下を招く傾向がある。なお、下限値としては通常0.01cc/m・day・atmである。 As such a gas barrier resin film, the oxygen permeability is 200 cc / m 2 · day · atm or less in an environment of 20 ° C. and dry conditions when the thickness of the gas barrier resin film is 20 μm. It is preferable in that it can be cured well (that is, radical polymerization) and can be cured efficiently, and is particularly preferably 100 cc / m 2 · day · at or less, more preferably 20 cc / m 2 · day · It is preferably at or below. If this value is too high, good curing cannot be achieved due to oxygen inhibition, and the degree of polymerization and conversion tend to decrease. The lower limit is usually 0.01 cc / m 2 · day · atm.
 かかる酸素透過性の測定は、JIS K 7126-2:2006に示された測定方法に準じて、酸素透過度計を用いて測定して求められる。 Such measurement of oxygen permeability is obtained by measurement using an oxygen permeability meter according to the measurement method shown in JIS K 716-2: 2006.
 また、本発明においては、ラジカル硬化時に発生する熱を考慮した場合に、耐熱性に優れた支持フィルムであることが好ましく、支持フィルムを構成する樹脂のガラス転移温度が通常0℃以上、特には30℃以上、更には50℃以上であることが好ましい。かかるガラス転移温度が低すぎると熱を受けた際に溶けて破断する可能性がある。なお、かかるガラス転移温度の上限は、通常400℃である。 Further, in the present invention, when considering the heat generated during radical curing, it is preferably a support film having excellent heat resistance, and the glass transition temperature of the resin constituting the support film is usually 0 ° C. or higher, particularly It is preferably 30 ° C or higher, more preferably 50 ° C or higher. If the glass transition temperature is too low, the glass transition temperature may melt and break when subjected to heat. In addition, the upper limit of this glass transition temperature is 400 degreeC normally.
 本発明で用いられる支持フィルムの厚さは、光線透過率の点から通常100μm以下であり、特には10~75μm、更には15~50μmであることが好ましい。かかる厚さが厚すぎると光線透過率の低下を招く傾向があり、薄すぎると作業時に破断が発生したり安全性を損なう傾向がある。 The thickness of the support film used in the present invention is usually 100 μm or less, particularly 10 to 75 μm, more preferably 15 to 50 μm from the viewpoint of light transmittance. If the thickness is too thick, the light transmittance tends to be lowered, and if it is too thin, there is a tendency that breakage occurs during the operation or the safety is impaired.
 上記のような支持フィルムとしては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂フィルム、ナイロン6、2軸延伸ナイロンのようなナイロン系樹脂フィルム、変性ポリアクリロニトリル等のアクリルニトリル系樹脂フィルム、ポリビニルアルコール系樹脂フィルム、エチレン-ビニルアルコール系樹脂フィルム等のビニルアルコール系樹脂フィルムまたはかかる一軸延伸や二軸延伸ビニルアルコール系樹脂フィルム等が挙げられるが、酸素透過性が非常に低い点で、特にビニルアルコール系樹脂フィルム、更には二軸延伸ビニルアルコール系樹脂フィルムであることが好ましい。 Examples of the support film include polyester resin films such as polyethylene terephthalate film, nylon resin films such as nylon 6, biaxially stretched nylon, acrylonitrile resin films such as modified polyacrylonitrile, and polyvinyl alcohols. Examples thereof include resin films, vinyl alcohol resin films such as ethylene-vinyl alcohol resin films, and such uniaxially stretched and biaxially stretched vinyl alcohol resin films. Particularly, in terms of very low oxygen permeability, vinyl alcohol A resin film, and further a biaxially stretched vinyl alcohol resin film is preferred.
 かかるビニルアルコール系樹脂フィルムは、ビニルアルコール系樹脂より製膜されてなるものであり、ビニルアルコール系樹脂とは、ビニルエステル単位がケン化されてなるビニルアルコール単位を有するものであればよく、好ましくは平均ケン化度が90モル%以上、特に好ましくは95モル%以上、更に好ましくは97モル%以上である。 Such a vinyl alcohol-based resin film is formed from a vinyl alcohol-based resin, and the vinyl alcohol-based resin only needs to have a vinyl alcohol unit formed by saponifying a vinyl ester unit. The average saponification degree is 90 mol% or more, particularly preferably 95 mol% or more, and more preferably 97 mol% or more.
 上記ビニルアルコール系樹脂フィルムのビニルアルコール系樹脂としては、例えば、ポリビニルアルコール系樹脂(以下、PVA系樹脂と略記することがある)や、エチレン-ビニルアルコール系共重合体(以下、EVOHと略記することがある)を挙げることができる。更に、PVA系樹脂としては、酢酸ビニルを単独重合し、それをケン化したPVAと、変性PVAを挙げることができ、かかる変性PVAとしては、共重合変性品と後変性品とを挙げることができる。上記の中でも特には、耐熱性の点で二軸延伸PVA系樹脂フィルムであることが好ましい。 Examples of the vinyl alcohol resin of the vinyl alcohol resin film include a polyvinyl alcohol resin (hereinafter sometimes abbreviated as PVA resin) and an ethylene-vinyl alcohol copolymer (hereinafter abbreviated as EVOH). May be included). Furthermore, examples of the PVA resin include PVA obtained by homopolymerizing vinyl acetate and saponification thereof, and modified PVA. Examples of such modified PVA include copolymer modified products and post-modified products. it can. Among these, a biaxially stretched PVA resin film is particularly preferable from the viewpoint of heat resistance.
 支持フィルムの膜厚は、通常10~200μmであり、好ましくは15~100μm、更に好ましくは15~50μmである。膜厚は薄すぎると破断による歩留まりが低下する傾向があり、厚すぎるとロール状物の重量が大きくなりすぎる傾向がある。 The film thickness of the support film is usually 10 to 200 μm, preferably 15 to 100 μm, more preferably 15 to 50 μm. If the film thickness is too thin, the yield due to breakage tends to decrease, and if it is too thick, the weight of the roll-shaped material tends to be too large.
 上記支持フィルムの外部ヘイズは、JIS K 7361-1:1997に準拠し、日本電色工業株式会社製ヘイズメーター「NDH-4000」を用いて測定した対象物の全ヘイズから内部ヘイズを引いた値(かかる内部ヘイズは、予めガラス板2枚の間に流動パラフィンのみを挟んでヘイズ(Hz1)を測定し、次に流動パラフィンで表面を濡らしたフィルムを挟んでヘイズ(Hz2)を測定し、これらの差をとることで算出した値)にて通常0.4以下であり、好ましくは0.4~0.01であり、特に好ましくは0.2~0.01である。かかる外部ヘイズ値が大きすぎる場合、得られるプラスチックシート[I]これを立体成形した成形物[II]のヘイズ値が大きくなるという傾向がある。 The external haze of the support film is a value obtained by subtracting the internal haze from the total haze of the object measured using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH-4000” in accordance with JIS K 7361-1: 1997. (This internal haze measures haze (Hz1) by sandwiching only liquid paraffin between two glass plates in advance, and then measures haze (Hz2) by sandwiching a film wetted with liquid paraffin. The value calculated by taking the difference of (1) is usually 0.4 or less, preferably 0.4 to 0.01, particularly preferably 0.2 to 0.01. When the external haze value is too large, the resulting plastic sheet [I] has a tendency to increase the haze value of a molded product [II] obtained by three-dimensionally molding the plastic sheet [I].
 上記ラジカル硬化性組成物は、通常活性エネルギー線照射または熱により硬化(すなわちラジカル重合)するものである。
 活性エネルギー線照射による硬化を行う場合、硬化性組成物に活性エネルギー線を照射するに当たっては、通常、波長200~400nmの紫外線を用いて、照射光量が通常0.1~0.8J/cmで光硬化する。照射光量のより好ましい範囲は0.1~0.7J/cm、更に好ましくは0.15~0.5J/cmである。照射光量が多すぎると硬化過剰となり後工程の立体成形加工が困難となる傾向があり、少なすぎると重合が不充分となる傾向にある。活性エネルギー線の照度は、通常10~2,000mW/cm、特には50~1,000mW/cmであることが好ましい。照度が小さすぎると生産性が低下する傾向があり、逆に、大きすぎると硬化度合いの制御が困難となる傾向がある。
The radical curable composition is usually cured by irradiation with active energy rays or heat (that is, radical polymerization).
When curing by active energy ray irradiation, when irradiating the active energy ray to the curable composition, ultraviolet rays having a wavelength of 200 to 400 nm are usually used, and the irradiation light amount is usually 0.1 to 0.8 J / cm 2. Light cure. A more preferable range of the irradiation light amount is 0.1 to 0.7 J / cm 2 , and further preferably 0.15 to 0.5 J / cm 2 . If the amount of irradiation light is too large, curing tends to be excessive and the three-dimensional molding process in the subsequent process tends to be difficult, and if too small, polymerization tends to be insufficient. The illuminance of the active energy ray is usually 10 to 2,000 mW / cm 2 , particularly preferably 50 to 1,000 mW / cm 2 . If the illuminance is too small, the productivity tends to decrease. Conversely, if the illuminance is too large, the control of the degree of curing tends to be difficult.
 活性エネルギー線源としては、光硬化で通常用いられるものであればよく、例えば、メタルハライドランプ、高圧水銀灯ランプ、無電極水銀ランプ、LED-UV等が挙げられる。光源から発生する赤外線により重合が暴走するのを防ぐため、ランプに赤外線を遮断するフィルターや赤外線を反射しない鏡等を用いることも可能である。 The active energy ray source is not particularly limited as long as it is usually used in photocuring, and examples thereof include a metal halide lamp, a high-pressure mercury lamp lamp, an electrodeless mercury lamp, and LED-UV. In order to prevent polymerization from running away due to infrared rays generated from a light source, it is also possible to use a filter that blocks infrared rays, a mirror that does not reflect infrared rays, or the like for the lamp.
 熱による硬化を行う場合、かかる熱処理温度は、通常、30~140℃である。熱処理時間は通常0.1秒~30分である。熱処理温度が低すぎると硬化速度が遅く、また、温度が高すぎると意図しない副反応や硬化過剰が考えられる。また、熱処理時間が長すぎると硬化過剰となり後工程の立体成形加工が困難となる傾向があり、短すぎると硬化が不充分となる傾向にある。 When performing curing by heat, the heat treatment temperature is usually 30 to 140 ° C. The heat treatment time is usually 0.1 second to 30 minutes. If the heat treatment temperature is too low, the curing rate is slow, and if the temperature is too high, unintended side reactions and excessive curing can be considered. Further, if the heat treatment time is too long, curing tends to be excessive, and the three-dimensional molding process in the subsequent process tends to be difficult, and if it is too short, curing tends to be insufficient.
 上記の硬化(すなわちラジカル重合)の後、得られたプラスチックシート[I]の両面から支持フィルムを剥離してプラスチックシート[I]のみを取り出すことができる。
 得られたプラスチックシート[I]は、そのまま、所望の成形加工に供することもできるが、一旦支管に巻き取り、プラスチックシートロールとして保管することもできる。
 上記支持フィルムを剥離することなく、支管に巻き取り、プラスチックシートロールとすることも可能であり、また、ブロッキングや摩擦での擦り傷等を防ぐために、ポリエチレンやポリプロピレン等のポリオレフィンフィルムや、ポリエチレンテレフタレート等のポリエステルフィルム、離型紙などを、セパレーターとして共に巻き取ることも可能である。
After said hardening (namely, radical polymerization), a support film can be peeled from both surfaces of the obtained plastic sheet [I], and only plastic sheet [I] can be taken out.
The obtained plastic sheet [I] can be used for a desired molding process as it is, but can also be wound around a branch pipe and stored as a plastic sheet roll.
Without peeling off the support film, it can be wound into a branch pipe to form a plastic sheet roll. Also, in order to prevent blocking or abrasion due to friction, polyolefin films such as polyethylene and polypropylene, polyethylene terephthalate, etc. It is also possible to wind together a polyester film, release paper, etc. as a separator.
 上記支管は、例えば、径が通常3~12インチのものを用いるものであり、好ましくは更には3~6インチのものである。 The above-mentioned branch pipe has a diameter of usually 3 to 12 inches, preferably 3 to 6 inches.
 上記にて得られる本発明のプラスチックシート[I]は、ラジカル硬化性組成物を通常加熱または活性エネルギー線照射により、反応率が通常50%以上75%未満となるように硬化してなるものであり、好ましくは55~70%、特に好ましくは60~70%である。かかる反応率が低すぎると保存時の膜厚変化が生じやすくなる傾向があり、高すぎると後の立体成形加工が困難となる傾向がある。 The plastic sheet [I] of the present invention obtained above is obtained by curing a radically curable composition by heating or active energy ray irradiation so that the reaction rate is usually 50% or more and less than 75%. Yes, preferably 55 to 70%, particularly preferably 60 to 70%. If the reaction rate is too low, the film thickness tends to change during storage, and if it is too high, subsequent three-dimensional molding tends to be difficult.
 なお、反応率は、下記の通りにて測定することができる。
 即ち、長さ50mm×幅50mmの試験片を凍結粉砕した後、BRUKER・BIOSPIN社製「AVANCE DPX-400」で、固体NMRプローブを用いて測定する。観測核は13C、回転数は5,000Hz、室温で測定する。重合していない(メタ)アクリロイル基中のカルボニル炭素は高磁場側(166ppm)に、重合したカルボニル炭素は低磁場側(176ppm)に検出される。これらのピーク面積比より反応率(%)を算出する。
The reaction rate can be measured as follows.
That is, a test piece having a length of 50 mm and a width of 50 mm is freeze-pulverized and then measured with “AVANCE DPX-400” manufactured by BRUKER BIOSPIN using a solid NMR probe. The observation nucleus is measured at 13C, the rotation speed is 5,000 Hz, and room temperature. The carbonyl carbon in the unpolymerized (meth) acryloyl group is detected on the high magnetic field side (166 ppm), and the polymerized carbonyl carbon is detected on the low magnetic field side (176 ppm). The reaction rate (%) is calculated from these peak area ratios.
 また、本発明のプラスチックシート[I]の厚さは、通常50~10,000μmであり、特には100~5,000μm、更には400~3,000μm、殊には500~1,000μmであることが好ましい。かかる厚さが薄すぎると後の立体成形加工が困難となる傾向があり、厚すぎるとロール化が困難となる傾向がある。 The thickness of the plastic sheet [I] of the present invention is usually from 50 to 10,000 μm, particularly from 100 to 5,000 μm, more preferably from 400 to 3,000 μm, particularly preferably from 500 to 1,000 μm. It is preferable. If the thickness is too thin, the subsequent three-dimensional forming process tends to be difficult, and if it is too thick, roll formation tends to be difficult.
 本発明のプラスチックシート[I]は、ディスプレイの高輝度化の点から、光線透過率が通常80%以上であり、特には85%以上、更には90%以上であることが好ましい。なお一般的に光線透過率の上限は99%である。 The plastic sheet [I] of the present invention preferably has a light transmittance of 80% or more, particularly 85% or more, more preferably 90% or more, from the viewpoint of increasing the brightness of the display. In general, the upper limit of the light transmittance is 99%.
 本発明のプラスチックシート[I]は、表面の鉛筆硬度が通常2B以上であり、特にはB以上、更にはF以上であり、2H以下、特にはH以下であることが好ましい。鉛筆硬度が低すぎると、プラスチックシートが傷つきやすく、ディスプレイの品質が低下する傾向にあり、高すぎると後の立体成形加工が困難となる傾向がある。 The plastic sheet [I] of the present invention has a surface pencil hardness of usually 2B or more, particularly B or more, more preferably F or more, and preferably 2H or less, particularly H or less. If the pencil hardness is too low, the plastic sheet is likely to be damaged and the quality of the display tends to deteriorate. If the pencil hardness is too high, subsequent three-dimensional molding tends to be difficult.
 本発明のプラスチックシート[I]は、ディスプレイの高精細化の点から、全ヘイズが通常3%以下であり、特には2%以下、更には1.5%以下であることが好ましい。
 また、外部ヘイズが通常0.5%以下であり、特には0.3%以下、更には0.15%以下であることが好ましい。
 なお、かかる外部ヘイズは、JIS K 7361-1:1997に準拠し、日本電色工業株式会社製ヘイズメーター「NDH-4000」を用いて測定した対象物の全ヘイズから内部ヘイズを引いた値(かかる内部ヘイズは、予めガラス板2枚の間に流動パラフィンのみを挟んでヘイズ(Hz1)を測定し、次に流動パラフィンを表面に塗布したフィルムを挟んでヘイズ(Hz2)を測定し、これらの差をとることで算出した値)を意味する。
The plastic sheet [I] of the present invention generally has a total haze of 3% or less, particularly 2% or less, more preferably 1.5% or less, from the viewpoint of high definition display.
Further, the external haze is usually 0.5% or less, particularly 0.3% or less, and further preferably 0.15% or less.
The external haze is a value obtained by subtracting internal haze from the total haze of an object measured using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K 7361-1: 1997 ( Such internal haze measures haze (Hz1) by sandwiching only liquid paraffin between two glass plates in advance, and then measures haze (Hz2) by sandwiching a film coated with liquid paraffin on the surface. Value calculated by taking the difference).
 本発明においては、上記プラスチックシート[I]またはプラスチックシートロールから巻き出してなるプラスチックシート[I]を成形加工した後、通常加熱または活性エネルギー線照射により、反応率が通常75%以上となるように硬化してなる成形物[II]とすることができる。 In the present invention, after the plastic sheet [I] unrolled from the plastic sheet [I] or the plastic sheet roll is molded, the reaction rate is usually 75% or more by normal heating or active energy ray irradiation. It can be set as the molded product [II] formed by curing.
 上記の本発明のプラスチックシート[I]は、完全硬化していないため、成形が可能なシートとなっており、所望の意匠を有せしめるためにかかる意匠に対応した成形加工を行い、その後、通常加熱または活性エネルギー線照射により、更に硬化を進め、成形物[II]とすることができるのである。 Since the plastic sheet [I] of the present invention is not completely cured, it is a sheet that can be molded, and is subjected to a molding process corresponding to the design in order to have a desired design, and then usually By heating or irradiation with active energy rays, curing can be further advanced to obtain a molded product [II].
 上記成形加工には、公知の成形方法を用いることが可能である。例えば、プレス成形、真空成形、圧空成形等の金型成形方法や、カッターやナイフ等を用いて任意の形状を切り出す方法等、が挙げられる。
 特に本発明においては、従来のプラスチックシートにおいては平面の成形物しか得られなかったことに対し、平面以外の方向、例えば、略垂直な方向にも成形が為された三次元的な成形物を得ることが可能となる。したがって、平面に対し、平面以外の方向、例えば、略垂直な方向に任意の意匠を付与するなどして成形された成形物とすることが好ましい。
A known molding method can be used for the molding process. Examples thereof include a mold forming method such as press forming, vacuum forming, and pressure forming, and a method of cutting out an arbitrary shape using a cutter, a knife, or the like.
In particular, in the present invention, in the conventional plastic sheet, only a flat molded product can be obtained, whereas a three-dimensional molded product molded in a direction other than the plane, for example, a substantially vertical direction, is used. Can be obtained. Therefore, it is preferable to use a molded product formed by giving an arbitrary design to a plane in a direction other than the plane, for example, a substantially vertical direction.
 成形加工により所望の形状に成形したプラスチックシート[I]は、通常活性エネルギー線照射または熱によりさらに硬化し、本発明の成形物[II]となる。
 活性エネルギー線による硬化を行う場合、上記活性エネルギー線照射に際しては、通常波長200~400nmの紫外線を用いて、通常照射光量0.5~40J/cmで光硬化することが好ましい。照射光量のより好ましい範囲は5~35J/cm、更に好ましくは10~30J/cmである。照射光量が多すぎると生産性が低下する傾向があり、少なすぎると表面硬度が低下する傾向にある。活性エネルギー線の照度は、通常10~2,000mW/cm、特には50~1,000mW/cmであることが好ましい。照度が小さすぎると生産性が低下する傾向があり、逆に、大きすぎると黄変が生じる傾向がある。
The plastic sheet [I] molded into a desired shape by molding is usually further cured by irradiation with active energy rays or heat to form the molded product [II] of the present invention.
When curing with an active energy ray, it is preferable that the active energy ray is irradiated with an ultraviolet ray having a wavelength of 200 to 400 nm and photocured with a normal irradiation light quantity of 0.5 to 40 J / cm 2 . A more preferable range of the irradiation light amount is 5 to 35 J / cm 2 , and more preferably 10 to 30 J / cm 2 . When the amount of irradiation light is too large, the productivity tends to decrease, and when it is too small, the surface hardness tends to decrease. The illuminance of the active energy ray is usually 10 to 2,000 mW / cm 2 , particularly preferably 50 to 1,000 mW / cm 2 . If the illuminance is too small, the productivity tends to decrease. Conversely, if the illuminance is too large, yellowing tends to occur.
 なお、活性エネルギー線源としては、光硬化で通常用いられるものであればよく、例えば、上記と同様に、メタルハライドランプ、高圧水銀灯ランプ、無電極水銀ランプ、LED-UV等が挙げられる。光源から発生する赤外線により重合が暴走するのを防ぐため、ランプに赤外線を遮断するフィルターや赤外線を反射しない鏡等を用いることも可能である。 It should be noted that the active energy ray source is not particularly limited as long as it is usually used in photocuring, and examples thereof include a metal halide lamp, a high-pressure mercury lamp lamp, an electrodeless mercury lamp, LED-UV, and the like. In order to prevent polymerization from running away due to infrared rays generated from a light source, it is also possible to use a filter that blocks infrared rays, a mirror that does not reflect infrared rays, or the like for the lamp.
 また、より重合度の向上のため、あるいは応力ひずみ開放のために熱処理してもよい。このとき、大気下や真空下で、通常50~250℃で加熱処理することが好ましい。 Also, heat treatment may be performed to improve the degree of polymerization or release stress strain. At this time, it is preferable to perform heat treatment usually at 50 to 250 ° C. in the air or in vacuum.
 加熱による硬化を行う場合、かかる熱処理温度は通常30~140℃である。熱処理時間は通常0.1秒~10時間である。熱処理温度が低すぎると硬化が不十分となる傾向がある。熱処理時間が短すぎると硬化が不十分となる傾向があり、また、長すぎると生産性が低下するとともに、意図しない副反応が進行する場合がある。 When curing by heating, the heat treatment temperature is usually 30 to 140 ° C. The heat treatment time is usually 0.1 seconds to 10 hours. If the heat treatment temperature is too low, curing tends to be insufficient. If the heat treatment time is too short, curing tends to be insufficient, and if it is too long, productivity is lowered and an unintended side reaction may proceed.
 得られる本発明の成形物[II]は、活性エネルギー線照射により、反応率が通常75%以上となるように硬化してなるものであり、好ましくは80%以上、特に好ましくは85%以上である。反応率が低すぎると成形物の表面硬度が不充分となる傾向がある。 The obtained molded product [II] of the present invention is obtained by curing by irradiation with active energy rays so that the reaction rate is usually 75% or more, preferably 80% or more, particularly preferably 85% or more. is there. If the reaction rate is too low, the surface hardness of the molded product tends to be insufficient.
 なお、反応率は、上述と同様の方法にて測定することができる。 The reaction rate can be measured by the same method as described above.
 また、本発明の成形物[II]の厚さは、通常50~10,000μm、特には100~5,000μm、更には400~3,000μm、殊には500~1,000μmであることが好ましい。かかる厚さが薄すぎると機械特性が低下する傾向があり、厚すぎると光学特性が低下する傾向がある。 The thickness of the molded product [II] of the present invention is usually 50 to 10,000 μm, particularly 100 to 5,000 μm, more preferably 400 to 3,000 μm, and particularly 500 to 1,000 μm. preferable. If the thickness is too thin, the mechanical properties tend to deteriorate, and if it is too thick, the optical properties tend to decrease.
 本発明の成形物[II]は、ディスプレイの高輝度化の点から、光線透過率が通常80%以上、特には85%以上、更には90%以上であることが好ましい。なお一般的に光線透過率の上限は99%である。 The molded product [II] of the present invention preferably has a light transmittance of usually 80% or more, particularly 85% or more, and more preferably 90% or more from the viewpoint of increasing the brightness of the display. In general, the upper limit of the light transmittance is 99%.
 本発明の成形物[II]は、表面の鉛筆硬度が通常2H以上、特には3H以上、更には4H以上であることが好ましい。鉛筆硬度が低すぎると、プラスチックシートが傷つきやすく、ディスプレイの品質が低下する傾向にある。 The molded product [II] of the present invention preferably has a surface pencil hardness of usually 2H or more, particularly 3H or more, more preferably 4H or more. If the pencil hardness is too low, the plastic sheet tends to be damaged and the quality of the display tends to deteriorate.
 本発明の成形物[II]は、ディスプレイの高精細化の点から、全ヘイズが3%以下、特には2%以下、更には1.5%以下であることが好ましい。
 また、外部ヘイズが通常0.5%以下であり、特には0.3%以下、更には0.15%以下であることが好ましい。
 なお、かかる外部ヘイズは、上記プラスチックシート[I]と同一の測定方法による値を意味する。
The molded product [II] of the present invention preferably has a total haze of 3% or less, particularly 2% or less, and more preferably 1.5% or less from the viewpoint of high definition display.
Further, the external haze is usually 0.5% or less, particularly 0.3% or less, and further preferably 0.15% or less.
In addition, this external haze means the value by the same measuring method as the said plastic sheet [I].
 かくして本発明においては、好みの膜厚のプラスチックシートを形成することができ、かつ、巻き取ってなるプラスチックシートロールが形成しやすく、更に、最終硬化物となる成形物の光学特性、表面硬度に優れたプラスチックシートを得ることができるものであり、ディスプレイ用の保護板や、コピー機、自動車、家電等における表示部周辺の立体化部品等の用途に有用である。 Thus, in the present invention, a plastic sheet having a desired film thickness can be formed, and a rolled plastic sheet roll can be easily formed. Further, the optical properties and surface hardness of the molded product to be a final cured product can be obtained. An excellent plastic sheet can be obtained, and is useful for applications such as a protective plate for a display and a three-dimensional component around a display unit in a copying machine, an automobile, a home appliance, and the like.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 なお、例中「部」、「%」とあるのは、重量基準を意味する。
 各物性の測定方法は以下の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
In the examples, “parts” and “%” mean weight basis.
The measuring method of each physical property is as follows.
(1)鉛筆硬度
 JIS K 5600-5-4:1999に準じて、プラスチックシートの鉛筆硬度を測定した。なお、荷重については50gまたは750gにて測定した。
(1) Pencil hardness The pencil hardness of the plastic sheet was measured according to JIS K 5600-5-4: 1999. The load was measured at 50 g or 750 g.
(2)全ヘイズ(%)
 JIS K 7361-1:1997に準拠し、日本電色工業(株)製ヘイズメーター「NDH-4000」を用いて測定した。
(2) Total haze (%)
Based on JIS K 7361-1: 1997, measurement was performed using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd.
(3)光線透過率(%)
 日本電色工業株式会社製ヘイズメーター「NDH-4000」を用いて、全光線透過率(%)を測定した。
(3) Light transmittance (%)
Total light transmittance (%) was measured using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd.
(4)飽和吸水率(%)
 50mm×50mmサイズの試験片を用いて、23℃、20日間水に浸漬した後の重量増加から飽和吸水率(%)を算出した。
(4) Saturated water absorption (%)
Saturated water absorption (%) was calculated from the weight increase after immersion in water at 23 ° C. for 20 days using a 50 mm × 50 mm test piece.
 また、下記の通り配合成分を用意した。
〔脂環構造を有する多官能ウレタン(メタ)アクリレート(A)〕
(A-1):下記に示す方法で得られたイソホロン構造(一般式(1))を有する6官能のウレタンアクリレート(日本合成化学工業株式会社製)
 温度計、攪拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート192.0g(0.86モル)と、ペンタエリスリトールトリアクリレート〔ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物(水酸基価120mgKOH/g)〕808.0g(1.73モル)を仕込み、重合禁止剤としてハイドロキノンメチルエーテル0.01g、反応触媒としてジブチルスズジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、イソホロン構造(一般式(1))を有する6官能のウレタンアクリレートを得た。
Moreover, the compounding component was prepared as follows.
[Polyfunctional urethane (meth) acrylate (A) having an alicyclic structure]
(A-1): A hexafunctional urethane acrylate having an isophorone structure (general formula (1)) obtained by the method shown below (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
In a flask equipped with a thermometer, stirrer, water-cooled condenser and nitrogen gas inlet, 192.0 g (0.86 mol) of isophorone diisocyanate and pentaerythritol triacrylate [mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (hydroxyl value) 120 mg KOH / g)] 808.0 g (1.73 mol) was charged, 0.01 g of hydroquinone methyl ether as a polymerization inhibitor and 0.01 g of dibutyltin dilaurate as a reaction catalyst were allowed to react at 60 ° C. for 8 hours. The reaction was terminated at a point of time of 0.3% or less to obtain a hexafunctional urethane acrylate having an isophorone structure (general formula (1)).
〔脂環構造を有する多官能(メタ)アクリレート(B)〕
(B-1):ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジメタクリレート(新中村化学工業株式会社製「DCP」)
(B-2):ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=アクリレート(新中村化学工業株式会社製「DCP-A」)
[Polyfunctional (meth) acrylate (B) having an alicyclic structure]
(B-1): Bis (hydroxymethyl) tricyclo [5.2.1.0 2,6 ] decane = dimethacrylate (“DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.)
(B-2): Bis (hydroxymethyl) tricyclo [5.2.1.0 2,6 ] decane = acrylate (“DCP-A” manufactured by Shin-Nakamura Chemical Co., Ltd.)
〔脂環構造を有する(メタ)アクリル系樹脂(C)〕
(C-1):
 ジシクロペンタニルメタクリレートに、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン1%を加え、それを脱泡処理した後、気泡が入らないように2軸延伸ポリビニルアルコールフィルムの風袋に密封し、厚さが0.5mmとなるように調整した後、その風袋上部に2.8mmのガラス板を載せ、その上からメタルハライドランプで、360nm波長が50mW/cmの照度で20J/cmとなるように照射した。
 その後、2軸延伸ポリビニルアルコールフィルムの風袋より硬化物のみを取り出し、粉砕機で粉砕加工した。モノマー反応率が83%、重量平均分子量(Mw)が11万の(メタ)アクリル系樹脂粉体を得た。
[(Meth) acrylic resin (C) having an alicyclic structure]
(C-1):
After adding 1% of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator to dicyclopentanyl methacrylate and defoaming it, it is sealed in a tare of a biaxially stretched polyvinyl alcohol film so as not to contain bubbles. Is adjusted to 0.5 mm, and then a 2.8 mm glass plate is placed on the top of the tare, and a 360 nm wavelength is set to 20 J / cm 2 at a illuminance of 50 mW / cm 2 with a metal halide lamp. Irradiated.
Thereafter, only the cured product was taken out from the tare of the biaxially stretched polyvinyl alcohol film and pulverized with a pulverizer. A (meth) acrylic resin powder having a monomer reaction rate of 83% and a weight average molecular weight (Mw) of 110,000 was obtained.
(C-2):
 ジシクロペンタニルメタクリレートとジシクロペンタニルアクリレートを重量比で1:1になるように配合し、更に光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン1%を加え、それを脱泡処理した後、気泡が入らないように2軸延伸ポリビニルアルコールフィルムの風袋に密封し、厚さが0.7mmとなるように調整した後、その風袋上部に2.8mmのガラス板を載せ、その上からメタルハライドランプで、360nm波長が50mW/cmの照度で20J/cmとなるように照射した。
 その後、2軸延伸ポリビニルアルコールフィルムの風袋より硬化物のみを取り出し、粉砕機で粉砕加工した。モノマー反応率が93%、重量平均分子量(Mw)が73万の(メタ)アクリル系樹脂粉体を得た。
(C-2):
After blending dicyclopentanyl methacrylate and dicyclopentanyl acrylate at a weight ratio of 1: 1, 1% 1-hydroxycyclohexyl phenyl ketone was further added as a photopolymerization initiator, and after defoaming treatment, Sealed in a tare of biaxially stretched polyvinyl alcohol film so as not to enter air bubbles, adjusted to a thickness of 0.7 mm, and then placed a 2.8 mm glass plate on the top of the tare. Then, irradiation was performed so that a wavelength of 360 nm was 20 J / cm 2 with an illuminance of 50 mW / cm 2 .
Thereafter, only the cured product was taken out from the tare of the biaxially stretched polyvinyl alcohol film and pulverized with a pulverizer. A (meth) acrylic resin powder having a monomer reaction rate of 93% and a weight average molecular weight (Mw) of 730,000 was obtained.
(C-3):
 ジシクロペンタニルアクリレートに、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン0.5%を加え、それを脱泡処理した後、気泡が入らないように2軸延伸ポリビニルアルコールフィルムの風袋に密封し、厚さが1.0mmとなるように調整した後、その風袋上部に2.8mmのガラス板を載せ、その上からメタルハライドランプで、360nm波長が50mW/cmの照度で20J/cmとなるように照射した。
 その後、2軸延伸ポリビニルアルコールフィルムの風袋より硬化物のみを取り出し、粉砕機で粉砕加工した。モノマー反応率が98%、重量平均分子量(Mw)が83万の(メタ)アクリル系樹脂粉体を得た。
(C-3):
After adding 0.5% 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator to dicyclopentanyl acrylate and defoaming it, it is sealed in a tare of a biaxially stretched polyvinyl alcohol film to prevent bubbles from entering. After adjusting the thickness to be 1.0 mm, a 2.8 mm glass plate is placed on the upper part of the tare, and a metal halide lamp is placed on the glass plate, and the 360 nm wavelength is 20 J / cm 2 at an illuminance of 50 mW / cm 2. Irradiated to
Thereafter, only the cured product was taken out from the tare of the biaxially stretched polyvinyl alcohol film and pulverized with a pulverizer. A (meth) acrylic resin powder having a monomer reaction rate of 98% and a weight average molecular weight (Mw) of 830,000 was obtained.
(C-4):
 シクロヘキシルアクリレートに、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン0.5%を加え、それを脱泡処理した後、気泡が入らないように2軸延伸ポリビニルアルコールフィルムの風袋に密封し、厚さが1.0mmとなるように調整した後、その風袋上部に2.8mmのガラス板を載せ、その上からメタルハライドランプで、360nm波長が50mW/cmの照度で20J/cmとなるように照射した。
 その後、2軸延伸ポリビニルアルコールフィルムの風袋より硬化物のみを取り出し、粉砕機で粉砕加工した。モノマー反応率が88%、重量平均分子量(Mw)が82万の(メタ)アクリル系樹脂粉体を得た。
(C-4):
After adding 0.5% 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator to cyclohexyl acrylate and defoaming it, it was sealed in a tare of a biaxially stretched polyvinyl alcohol film to prevent bubbles from entering. Is adjusted to 1.0 mm, and then a 2.8 mm glass plate is placed on the top of the tare, and a 360 nm wavelength is set to 20 J / cm 2 at an illuminance of 50 mW / cm 2 from above with a metal halide lamp. Irradiated.
Thereafter, only the cured product was taken out from the tare of the biaxially stretched polyvinyl alcohol film and pulverized with a pulverizer. A (meth) acrylic resin powder having a monomer reaction rate of 88% and a weight average molecular weight (Mw) of 820,000 was obtained.
 比較用の(メタ)アクリル系樹脂(C’)として下記のものを用意した。
(C’-1):ポリn-ブチルメタクリレート(重量平均分子量(Mw):76万)
(C’-2):ポリメチルメタクリレート(重量平均分子量(Mw):99万)
The following were prepared as a (meth) acrylic resin (C ′) for comparison.
(C′-1): Poly n-butyl methacrylate (weight average molecular weight (Mw): 760,000)
(C′-2): Polymethyl methacrylate (weight average molecular weight (Mw): 990,000)
〔重合開始剤(D)〕
(D-1):1-ヒドロキシシクロヘキシルフェニルケトン
[Polymerization initiator (D)]
(D-1): 1-hydroxycyclohexyl phenyl ketone
〔メルカプト基含有化合物(E)〕
(E-1):ペンタエリトール=テトラキス(3-スルファニルブタノアート)(昭和電工株式会社製「カレンズMT PE-1」)
[Mercapto group-containing compound (E)]
(E-1): pentaerythritol tetrakis (3-sulfanylbutanoate) (“Karenz MT PE-1” manufactured by Showa Denko KK)
<実施例1~5、比較例1~2>
[ラジカル硬化性組成物の調製]
 表1に示す通り各成分を混合し、60℃にて均一になるまで撹拌した後、42μmのフィルターで濾過してラジカル重合性組成物を得た。なお、このときの組成物粘度は、コーン・プレート型粘度計(商品名「TPE-100」、東機産業株式会社製)を使用し、ペルチェプレート温度:23℃、使用コーンロータ:3°×R14にて測定した値で、いずれの水準も2,500mPa・sであった。
<Examples 1 to 5, Comparative Examples 1 and 2>
[Preparation of radical curable composition]
Each component was mixed as shown in Table 1, stirred at 60 ° C. until uniform, and then filtered through a 42 μm filter to obtain a radical polymerizable composition. The composition viscosity at this time was determined using a cone / plate viscometer (trade name “TPE-100”, manufactured by Toki Sangyo Co., Ltd.), Peltier plate temperature: 23 ° C., cone rotor used: 3 ° × As measured by R14, all levels were 2500 mPa · s.
[プラスチックシート及びプラスチックシートロールの作製]
 水平方向に連続的に搬送される25μm厚の2軸延伸ポリビニルアルコールフィルム上に、880μmのクリアランスを有するアプリケーターを用いて連続的に塗膜を形成した。かかる塗膜上に別途25μm厚の2軸延伸ポリビニルアルコールフィルムを貼合し、その25μm厚の2軸延伸ポリビニルアルコールフィルムの上から、メタルハライドランプにより、360nm波長での紫外線測定器にて、50mW/cmの照射強度で、露光量が250mJ/cmになるよう紫外線照射しながら搬送した。その後、両面の25μm厚の2軸延伸ポリビニルアルコールフィルムを剥離し、硬化したプラスチックシート(シートの厚さは表1に記載)のみを支管に巻き取り、ロール状組成物(プラスチックフィルムロール)を得た。
 得られたプラスチックシートについて諸物性を評価し、その結果を表2に示す。
 なお、実施例で得られたプラスチックシートを[I]、比較例で得られたプラスチックシートを[I’]と表記する。
[Production of plastic sheet and plastic sheet roll]
A coating film was continuously formed on a 25 μm-thick biaxially stretched polyvinyl alcohol film continuously conveyed in the horizontal direction using an applicator having a clearance of 880 μm. A biaxially stretched polyvinyl alcohol film having a thickness of 25 μm was separately bonded onto the coating film, and a 50 mW / w was measured on the 25 μm thickness of the biaxially stretched polyvinyl alcohol film by a metal halide lamp with an ultraviolet ray measuring device at a wavelength of 360 nm. in the irradiation intensity of cm 2, the exposure amount is conveyed with ultraviolet irradiation so as to be 250 mJ / cm 2. Thereafter, the biaxially stretched polyvinyl alcohol film having a thickness of 25 μm on both sides is peeled off, and only the cured plastic sheet (the thickness of the sheet is described in Table 1) is wound around a branch pipe to obtain a roll-shaped composition (plastic film roll). It was.
Various physical properties of the obtained plastic sheet were evaluated, and the results are shown in Table 2.
In addition, the plastic sheet obtained by the Example is denoted by [I], and the plastic sheet obtained by the comparative example is denoted by [I ′].
[成形物[II]の作製]
 上記のプラスチックシートロールより一定量を切り出した。かかるプラスチックシートを360nmで約5,000mW/cmの照度で20J/cmになるように紫外線を照射し硬化し成形物[II]モデルを得た。その後、かかる成形物[II]モデルを真空乾燥機を用いて、200℃設定、0.1Torr以下の真空下で、乾燥機周囲金属躯体に接するように配置して6hrのアニールを行った。
 得られた成形物[II]モデルについて諸物性を評価し、その結果を表2に示す。
 なお、かかる成形物[II]モデルは、プラスチックシート平面に対して垂直方向に意匠性を付与するような成形を行っていないが、意匠性を付与する際にプラスチックシート[I]表面に凹凸や不純物が付着しなければ、意匠性の有無は成形物[II]の諸物性に影響しないため、意匠性を付与して成形した成形物と同等の成形物である。実施例で得られた成形物を[II]、比較例で得られた成形物を[II’]と表記する。
 実施例及び比較例の評価結果は表2に示す。
[Preparation of molded product [II]]
A certain amount was cut out from the plastic sheet roll. This plastic sheet was cured by irradiating it with ultraviolet rays so as to be 20 J / cm 2 at 360 nm and an illuminance of about 5,000 mW / cm 2 to obtain a molded product [II] model. Thereafter, the molded product [II] model was placed in contact with the metal casing surrounding the dryer under a vacuum of 200 ° C. and 0.1 Torr or less using a vacuum dryer, and annealed for 6 hours.
Various physical properties of the obtained molded product [II] model were evaluated, and the results are shown in Table 2.
The molded product [II] model is not molded so as to impart designability in a direction perpendicular to the plastic sheet plane. However, when the designability is imparted, the surface of the plastic sheet [I] If impurities do not adhere, the presence or absence of the design does not affect various physical properties of the molded product [II], and therefore, the molded product is equivalent to the molded product formed by imparting the design property. The molded product obtained in the example is denoted as [II], and the molded product obtained in the comparative example is denoted as [II ′].
The evaluation results of Examples and Comparative Examples are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記結果からも分かるように、脂環構造を有する多官能ウレタン(メタ)アクリレート、脂環構造を有する多官能(メタ)アクリレート及び重合開始剤を含有してなるラジカル硬化性組成物に、更に脂環構造を有する(メタ)アクリル系樹脂を含有させることにより、ラジカル硬化性組成物の粘度を高くすることができ、そのため硬化して得られるプラスチックシート[I]を巻き取ってなるシートロールが形成しやすくなり、更に、最終硬化物となる成形物[II]の光学特性、表面硬度に優れたプラスチックシートを得ることができた。 As can be seen from the above results, a radical curable composition comprising a polyfunctional urethane (meth) acrylate having an alicyclic structure, a polyfunctional (meth) acrylate having an alicyclic structure, and a polymerization initiator is further added to By containing a (meth) acrylic resin having a ring structure, the viscosity of the radically curable composition can be increased, so that a sheet roll formed by winding up the plastic sheet [I] obtained by curing is formed. In addition, it was possible to obtain a plastic sheet excellent in the optical properties and surface hardness of the molded product [II] as the final cured product.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年12月27日出願の日本特許出願(特願2013-271516)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 27, 2013 (Japanese Patent Application No. 2013-271516), the contents of which are incorporated herein by reference.
 本発明のラジカル硬化性組成物を用いてなるプラスチックシートは、様々な光学材料、電子材料に有利に利用できる。例えば、液晶基板、有機/無機EL用基板、電子ペーパー用基板、導光板、位相差板、タッチパネル等、各種ディスプレイ用部材、光ディスク基板や光ディスク用フィルム・コーティングを初めとする記憶・記録用途、薄膜電池基板、太陽電池基板などのエネルギー用途、光導波路などの光通信用途、更には機能性フィルム・シート、反射防止膜、光学多層膜等各種光学フィルム・シート・コーティング用途に利用できる。中でも、特にディスプレイの保護板や静電容量方式のタッチパネル基板をとして非常に期待される。 The plastic sheet using the radical curable composition of the present invention can be advantageously used for various optical materials and electronic materials. For example, liquid crystal substrates, organic / inorganic EL substrates, electronic paper substrates, light guide plates, phase difference plates, touch panels, etc., various display members, optical recording substrates and film / coating applications for optical disks, thin films, etc. It can be used for energy applications such as battery substrates and solar cell substrates, optical communication applications such as optical waveguides, and various optical films, sheets and coatings such as functional films and sheets, antireflection films and optical multilayer films. In particular, it is highly expected as a display protective plate or a capacitive touch panel substrate.

Claims (10)

  1.  下記成分(A)、(B)、(C)及び(D)を含有するラジカル硬化性組成物。
     (A)脂環構造を有する多官能ウレタン(メタ)アクリレート
     (B)脂環構造を有する多官能(メタ)アクリレート(但し、前記(A)を除く。)
     (C)脂環構造を有する(メタ)アクリル系樹脂
     (D)重合開始剤
    A radical curable composition containing the following components (A), (B), (C) and (D).
    (A) Polyfunctional urethane (meth) acrylate having an alicyclic structure (B) Polyfunctional (meth) acrylate having an alicyclic structure (excluding (A) above)
    (C) (Meth) acrylic resin having alicyclic structure (D) Polymerization initiator
  2.  前記脂環構造を有する(メタ)アクリル系樹脂(C)の含有量が、前記脂環構造を有する多官能ウレタン(メタ)アクリレート(A)及び前記脂環構造を有する多官能(メタ)アクリレート(B)の合計100重量部に対して、1~50重量部である請求項1記載のラジカル硬化性組成物。 The content of the (meth) acrylic resin (C) having the alicyclic structure is such that the polyfunctional urethane (meth) acrylate (A) having the alicyclic structure and the polyfunctional (meth) acrylate having the alicyclic structure ( The radical curable composition according to claim 1, which is 1 to 50 parts by weight relative to 100 parts by weight of the total of B).
  3.  前記脂環構造を有する(メタ)アクリル系樹脂(C)の重量平均分子量が、5万~300万である請求項1または請求項2記載のラジカル硬化性組成物。 The radical curable composition according to claim 1 or 2, wherein the (meth) acrylic resin (C) having an alicyclic structure has a weight average molecular weight of 50,000 to 3,000,000.
  4.  前記脂環構造を有する(メタ)アクリル系樹脂(C)が脂環構造を有するモノ(メタ)アクリレート(c1)のホモポリマーである請求項1~請求項3のいずれか1項に記載のラジカル硬化性組成物。 The radical according to any one of claims 1 to 3, wherein the (meth) acrylic resin (C) having an alicyclic structure is a homopolymer of a mono (meth) acrylate (c1) having an alicyclic structure. Curable composition.
  5.  更に、下記成分(E)を含有する請求項1~請求項4のいずれか1項に記載のラジカル硬化性組成物。
     (E)メルカプト基含有化合物
    The radical curable composition according to any one of claims 1 to 4, further comprising the following component (E):
    (E) Mercapto group-containing compound
  6.  23℃における粘度が、100~20,000mPa・sである請求項1~請求項5のいずれか1項に記載のラジカル硬化性組成物。 The radical curable composition according to any one of claims 1 to 5, which has a viscosity at 23 ° C of 100 to 20,000 mPa · s.
  7.  請求項1~請求項6のいずれか1項に記載のラジカル硬化性組成物を、反応率が50%以上75%未満となるように硬化して得られるプラスチックシート。 A plastic sheet obtained by curing the radically curable composition according to any one of claims 1 to 6 so that the reaction rate is 50% or more and less than 75%.
  8.  厚さが50~10,000μmである請求項7記載のプラスチックシート。 The plastic sheet according to claim 7, wherein the plastic sheet has a thickness of 50 to 10,000 µm.
  9.  請求項7または請求項8記載のプラスチックシートが巻き取られて形成されるプラスチックシートロール。 A plastic sheet roll formed by winding the plastic sheet according to claim 7 or 8.
  10.  請求項7または請求項8記載のプラスチックシート、または、請求項9記載のプラスチックシートロールから巻き出したプラスチックシートを成形加工した後、反応率が75%以上となるように硬化して得られる成形物。 A molding obtained by molding the plastic sheet according to claim 7 or 8 or the plastic sheet unwound from the plastic sheet roll according to claim 9 and then curing the plastic sheet so that the reaction rate becomes 75% or more. object.
PCT/JP2014/083808 2013-12-27 2014-12-19 Radical curable composition, plastic sheet, plastic sheet roll, and molded product WO2015098783A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167018316A KR20160104633A (en) 2013-12-27 2014-12-19 Radical curable composition, plastic sheet, plastic sheet roll, and molded product
CN201480071335.0A CN105849143A (en) 2013-12-27 2014-12-19 Radical curable composition, plastic sheet, plastic sheet roll, and molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013271516 2013-12-27
JP2013-271516 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098783A1 true WO2015098783A1 (en) 2015-07-02

Family

ID=53478638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083808 WO2015098783A1 (en) 2013-12-27 2014-12-19 Radical curable composition, plastic sheet, plastic sheet roll, and molded product

Country Status (4)

Country Link
JP (1) JP2015143347A (en)
KR (1) KR20160104633A (en)
CN (1) CN105849143A (en)
WO (1) WO2015098783A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176012A (en) * 2015-03-20 2016-10-06 日本合成化学工業株式会社 Radical curable composition, plastic sheet, plastic sheet roll, and molded article
JP2017024227A (en) * 2015-07-17 2017-02-02 日本合成化学工業株式会社 Method for production of molded product, plastic sheet used therefor and production method for plastic sheet roll

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285083A (en) * 2001-03-28 2002-10-03 Mitsubishi Chemicals Corp Anchor-coating agent composition cured by active energy- ray and film-forming method
JP2006193596A (en) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The Resin molding, method for producing the same and its use
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2008116751A (en) * 2006-11-06 2008-05-22 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and laminate
JP2010116528A (en) * 2007-12-21 2010-05-27 Sumitomo Chemical Co Ltd Optical film and method for producing the optical film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186568A (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285083A (en) * 2001-03-28 2002-10-03 Mitsubishi Chemicals Corp Anchor-coating agent composition cured by active energy- ray and film-forming method
JP2006193596A (en) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The Resin molding, method for producing the same and its use
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2008116751A (en) * 2006-11-06 2008-05-22 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and laminate
JP2010116528A (en) * 2007-12-21 2010-05-27 Sumitomo Chemical Co Ltd Optical film and method for producing the optical film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176012A (en) * 2015-03-20 2016-10-06 日本合成化学工業株式会社 Radical curable composition, plastic sheet, plastic sheet roll, and molded article
JP2017024227A (en) * 2015-07-17 2017-02-02 日本合成化学工業株式会社 Method for production of molded product, plastic sheet used therefor and production method for plastic sheet roll

Also Published As

Publication number Publication date
JP2015143347A (en) 2015-08-06
KR20160104633A (en) 2016-09-05
CN105849143A (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5057775B2 (en) Resin molded body, method for producing resin molded body, and use thereof
TWI500669B (en) Hard coating film
TWI608935B (en) Plastic film laminate
KR102159761B1 (en) Adhesive agent composition, adhesive agent composition for polarizing plate, adhesive agent for polarizing plate, and polarizing plate manufactured using said adhesive agent
JP5882815B2 (en) Resin molded body and laminate formed using the same
JP5650347B1 (en) Resin molded body, protective plate for display and touch panel substrate, and self-repairing method of resin molded body
WO2014030846A1 (en) Hard coating film
JP2016002764A (en) Laminate, use thereof, and production method thereof
WO2013180511A1 (en) Method for manufacturing hard coating film
JP2015533677A (en) Hard coating film
KR101617387B1 (en) Coating composition and plastic film prepared therefrom
WO2014030847A1 (en) Laminated hard coating film
TW201339247A (en) Glass fiber composite resin substrate
JP6710905B2 (en) Plastic sheet, plastic sheet roll, molded article manufacturing method and molded article, and plastic sheet manufacturing method
WO2015076567A1 (en) Plastic film laminate
TW201538599A (en) Molded resin object and use thereof
WO2015098783A1 (en) Radical curable composition, plastic sheet, plastic sheet roll, and molded product
JP2017024227A (en) Method for production of molded product, plastic sheet used therefor and production method for plastic sheet roll
JP2008231386A (en) Transparent film
JP2016102198A (en) Support film for the production of cured resin sheet
WO2015056660A1 (en) Resin sheet and use thereof
JP6604012B2 (en) Radical curable composition, plastic sheet, plastic sheet roll and molded product
WO2018030339A1 (en) Thermosetting composition
JP6766456B2 (en) Radical curable compositions, plastic sheets, plastic sheet rolls and moldings
JP6753038B2 (en) Photocurable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018316

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14874830

Country of ref document: EP

Kind code of ref document: A1