WO2015098634A1 - 水不溶性高分子化合物の分解物の連続的製造方法 - Google Patents

水不溶性高分子化合物の分解物の連続的製造方法 Download PDF

Info

Publication number
WO2015098634A1
WO2015098634A1 PCT/JP2014/083342 JP2014083342W WO2015098634A1 WO 2015098634 A1 WO2015098634 A1 WO 2015098634A1 JP 2014083342 W JP2014083342 W JP 2014083342W WO 2015098634 A1 WO2015098634 A1 WO 2015098634A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
acid catalyst
solid acid
insoluble
adsorbed
Prior art date
Application number
PCT/JP2014/083342
Other languages
English (en)
French (fr)
Inventor
聡 篠原
崇行 馬場
孝治 木平
Original Assignee
株式会社海月研究所
丸和油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社海月研究所, 丸和油脂株式会社 filed Critical 株式会社海月研究所
Priority to AU2014371389A priority Critical patent/AU2014371389B2/en
Priority to US15/107,983 priority patent/US10239915B2/en
Priority to CN201480071005.1A priority patent/CN106061991B/zh
Priority to EP14873187.0A priority patent/EP3088409B1/en
Priority to JP2015554772A priority patent/JP6431851B2/ja
Priority to KR1020167019784A priority patent/KR102312148B1/ko
Publication of WO2015098634A1 publication Critical patent/WO2015098634A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • C07K1/122Hydrolysis with acids different from HF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4741Keratin; Cytokeratin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose

Definitions

  • the present invention relates to a method for continuously producing a degradation product of a water-insoluble polymer compound (protein or polysaccharide) by solubilizing and reducing the molecular weight of the water-insoluble polymer compound (protein or polysaccharide).
  • jellyfish have become a serious social problem in large numbers around the coast of Japan, causing serious damage to the fishery and gathering at the intakes of factories and power plants, and cost for their removal and disposal. Therefore, it is desirable that jellyfish can be effectively used as a collagen raw material as described above. So far, jellyfish used as a collagen raw material are mainly small jellyfishes that are easily liquefied, and the present situation is that jellyfishes such as bizen jellyfish and large amounts of water-insoluble proteins are not effectively used.
  • solubilization and low molecular weight formation of water-insoluble proteins are performed by heat treatment, acid or alkali treatment, proteolytic enzyme (protease) treatment, and the like.
  • heat treatment has a problem that it undergoes heat denaturation depending on the type of protein.
  • the acid or alkali treatment may destroy the amino acid, and the waste liquid treatment after the treatment is costly and labor intensive.
  • Proteolytic enzyme treatment requires setting and control of temperature and pH in order to match the optimum conditions of the enzyme used, and if the enzyme remains in the treated product, it must be deactivated or removed.
  • Patent Document 3 a method of hydrolyzing protein using a solid acid catalyst is known (Patent Document 3), and is also used for the production of jellyfish collagen peptide (Patent Document 4).
  • Patent Document 4 a method of hydrolyzing protein using a solid acid catalyst.
  • lignocellulose decomposition techniques include acid saccharification and enzymatic saccharification, but acid saccharification using sulfuric acid has the advantage of fast reaction, but overdegradation of the product (monosaccharide) becomes a problem. There is a problem of environmental burden in the waste liquid treatment of acid.
  • cellulose is a strong polymer that is insoluble in water by hydrogen bonding between polymers in which ⁇ -glucose molecules are polymerized by 1,4-glucoside bonds. Since it has a simple crystal structure, there is a problem that the contact area with the cellulase enzyme is small and the reaction is slow.
  • an object of the present invention is to produce a new functional material by easily solubilizing and reducing the molecular weight of a water-insoluble polymer compound such as a water-insoluble protein or a water-insoluble polysaccharide by an easy operation. .
  • the present inventors have processed water-insoluble protein with a solid acid catalyst, and surprisingly, the water-insoluble protein degradation product is mainly non-solid acid catalyst. It was found to be obtained in the adsorption fraction. Then, after repeating the operation of recovering the non-adsorbed fraction, the water-insoluble proteolysate was successfully produced in high yield continuously by combining the adsorbed fraction eluted from the solid acid catalyst.
  • the present invention has been completed.
  • the present invention includes the following inventions.
  • a method for producing a degradation product of a water-insoluble polymer compound comprising the following steps: (A) a step of bringing a solid acid catalyst into contact with a water-insoluble polymer compound, followed by heat treatment, and collecting a supernatant; (B) Subsequent to step (A), an aqueous medium is added to the solid acid catalyst, and the mixture is stirred and heated, and then the supernatant is recovered.
  • step (C) Following the step (B), the step of washing the solid acid catalyst with an aqueous medium and recovering the washing solution, (D) A step of combining the supernatant liquid collected in step (A), the supernatant liquid collected in step (B), and the washing liquid in step (C) to obtain a fraction that is not adsorbed on the solid acid catalyst, (E) Following the step (D), a step of eluting the components adsorbed from the solid acid catalyst and collecting the eluate to obtain a fraction adsorbed on the solid acid catalyst.
  • the water-insoluble polymer compound is a water-insoluble protein or a water-insoluble polysaccharide.
  • step (A) and (B) are repeated a plurality of times until the yield of the decomposition product of the water-insoluble polymer compound in the non-adsorbed fraction is 50% or more.
  • Any one of the methods Any one of the methods.
  • the solid acid catalyst is at least one selected from the group consisting of a cation exchanger, zeolite, and diatomaceous earth.
  • a method for producing a decomposition product of a water-insoluble polymer compound is provided.
  • the method of the present invention it is possible to continuously produce a degradation product of a water-insoluble polymer compound from a material that could not be effectively used until now at high efficiency and at low cost.
  • the method of the present invention can perform a reliable hydrolysis treatment without unnecessary modification of the polymer compound. There is no need for complicated operations or special control.
  • FIG. 1 shows an embodiment of a method for recovering a solid acid catalyst non-adsorbed fraction (supernatant) in a continuous production method of a water-insoluble protein degradation product which is an embodiment of the present invention.
  • Transition of recovery amount of water-insoluble protein degradation product (bizen jellyfish umbrella collagen peptide) in non-adsorbed fraction of solid acid catalyst (Fig. 3a: reaction time 24 hours, Fig. 3b: reaction time 48 hours) and comparison of absorption amount by reaction time FIG. 3c is shown.
  • FIG. 3a reaction time 24 hours
  • Fig. 3b reaction time 48 hours
  • FIG. 4a shows the molecular weight distribution of the water-insoluble proteolysate (bizen jellyfish umbrella collagen peptide) in the solid acid catalyst non-adsorbed fraction (reaction time 24 hours, upper figure: first to sixth recovery liquids, lower figure: Recovery liquids 7 to 12 times, pullulan standard molecular weight M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • 4b shows the molecular weight distribution of the water-insoluble protein degradation product (bizen jellyfish umbrella collagen peptide) in the solid acid-catalyzed non-adsorbed fraction (reaction time 48 hours, pullulan standard product molecular weights M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • the molecular weight distribution of the water-insoluble protein degradation product (bizen jellyfish umbrella collagen peptide) in the solid acid catalyst adsorption fraction is shown (upper figure: reaction time 24 hours, lower figure: reaction time 48 hours, pullulan standard product molecular weight M1: 112kDa , M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • the transition of the recovery amount of the water-insoluble protein degradation product (sericin peptide) in the solid acid catalyst non-adsorbed fraction is shown.
  • control substance M1 5.9kDa (Showa Denko Shodex STANDARD P-82, M2: 3 sugar (raffinose), M3: Disaccharide (sucrose), M4: Monosaccharide (glucose)).
  • FIG. 1 shows an outline of the manufacturing process.
  • A a step of bringing a solid acid catalyst into contact with a water-insoluble polymer compound, followed by heat treatment, and collecting a supernatant;
  • B Subsequent to step (A), an aqueous medium is added to the solid acid catalyst, and the mixture is stirred and heated, and then the supernatant is recovered.
  • step (C) Following the step (B), the step of washing the solid acid catalyst with an aqueous medium and recovering the washing solution, (D) A step of combining the supernatant liquid collected in step (A), the supernatant liquid collected in step (B), and the washing liquid in step (C) to obtain a fraction that is not adsorbed on the solid acid catalyst, (E) Following the step (D), a step of eluting the components adsorbed from the solid acid catalyst and collecting the eluate to obtain a fraction adsorbed on the solid acid catalyst.
  • the “water-insoluble polymer compound” used in the method of the present invention is preferably a water-insoluble protein or a water-insoluble polysaccharide.
  • the “decomposition product of the water-insoluble polymer compound” may be any product in which the water-insoluble polymer compound is solubilized and decomposed, and the average molecular weight and molecular weight distribution are not limited.
  • Process (A) In the step (A), after bringing the solid acid catalyst into contact with the water-insoluble polymer compound, heat treatment is performed, and the supernatant is recovered.
  • water-insoluble means a state in which it is not solubilized in water.
  • the water-insoluble polymer compound includes a water-insoluble protein or a water-insoluble polysaccharide, and may be animal or vegetable, and the type is not particularly limited.
  • water-insoluble proteins include collagen, sericin, fibroin, keratin, casein, albumin, globulin, elastin, myosin, actin, whey protein, soy protein, wheat protein, sesame protein, egg protein and the like.
  • collagen of jellyfish is preferable, and jellyfish is not limited, but belongs to Scyphozoa, Rhizostomeae. Sakasa jellyfish.
  • water-insoluble polysaccharide examples include cellulose, hemicellulose, lignocellulose, inulin, pectin, glucan, carrageenan, agarose, chitin and chitosan.
  • the water-insoluble polymer compound raw material is coarsely pulverized using a cutting machine, mincing machine, cutter, etc. as a pretreatment, and further pulverized in order to promote solubilization and molecular weight reduction by contact with the fixed acid catalyst It is preferable to keep it.
  • the powderization can be performed by a machine usually used by those skilled in the art, such as a hammer mill, a bead mill, a roller mill, a pin mill, and a blender.
  • the water-insoluble polymer compound subjected to the pretreatment as described above may be wetted with an aqueous medium before contact with the solid acid catalyst. Wetting is preferably performed for about 1 to 36 hours, depending on the type of water-insoluble polymer compound.
  • the solid acid catalyst used in the present invention is preferably at least one selected from the group consisting of a cation exchanger, zeolite and diatomaceous earth, and more preferably a cation exchanger. These solid acid catalysts can be used alone or in combination of two or more.
  • the cation exchanger is preferably a resin having at least one of a sulfone group and a carboxyl group, and the sulfone group and the carboxyl group may be a sulfopropyl group and a carboxymethyl group, respectively.
  • the counter ion of the cation exchanger is other than proton, it is preferable to use it after substitution with the proton type.
  • the sulfonic acid type cation exchanger is an ion exchanger having a cation exchange ability containing a sulfonic acid group (—SO 3 H), and as a preferred form, a cation exchange resin containing a sulfonic acid group and a sulfonic acid group
  • cation exchange membranes containing Preferred cation exchange resins include those containing a hydrophilic vinyl polymer as a base material such as TOYOPEARL SP-650C and SP-550C manufactured by Tosoh Corporation, and perfluorosulfonic acid such as Nafion (registered trademark).
  • the polytetrafluoroethylene copolymer containing can be mentioned.
  • any zeolite that is generally used as a zeolite catalyst can be used, and is not particularly limited, and examples thereof include Zeorum (registered trademark) manufactured by Tosoh Corporation.
  • Any diatomaceous earth can be used as long as it can function as an acid catalyst, and is not particularly limited. Examples thereof include diatomaceous earth (granular) manufactured by Wako Pure Chemical Industries, Ltd.
  • the shape of the solid acid catalyst used in the present invention may be either granular or powdery. Further, those having an average particle diameter of about 2 ⁇ m to 2 mm and an ion exchange capacity of about 0.01 to 1 eq / L can be preferably used.
  • the solid acid catalyst is preferably a porous body.
  • the above-mentioned TOYOPEARL SP-650C and SP-550C manufactured by Tosoh Corporation are porous bodies in which a sulfonic acid group is introduced as an ion exchange group into a filler for gel filtration chromatography.
  • the pore size of the porous body varies depending on the molecular weight of the target water-insoluble polymer compound, and is, for example, 0.01 to 0.75 ⁇ m, preferably 0.05 to 0.6 ⁇ m. .
  • the amount of the aqueous medium at the time of contacting the water-insoluble polymer compound and the solid acid catalyst is 1 to 50 times by mass ratio with respect to the solid acid catalyst, preferably including the aqueous medium used for wetting the water-insoluble polymer compound, preferably 5 to 15 times.
  • the decomposition product of the water-insoluble polymer compound is mainly recovered in the non-adsorbed fraction (supernatant liquid) of the solid acid catalyst, if the amount of the aqueous medium is below the above range, a centrifugal separation operation is required, which is preferable. Absent.
  • the aqueous medium used for wetting the water-insoluble polymer compound and contacting the water-insoluble polymer compound with the solid acid catalyst is not particularly limited as long as it does not prevent the reaction between the water-insoluble polymer compound and the solid acid catalyst.
  • water ion exchange water, purified water, RO water, tap water, well water, etc.
  • phosphate carbonate, acetate, borate, citrate, tris, etc.
  • Inorganic salt aqueous solutions such as sodium chloride, potassium chloride, and calcium chloride.
  • the salt concentration is preferably a low concentration of about 1 mM to 0.1 M.
  • the amount of the water-insoluble polymer compound can be appropriately determined according to the catalytic ability of the solid acid catalyst.
  • the mass ratio of the solid acid catalyst is 0.01 to 0.5 times, preferably 0.05 to 0. .2 times.
  • the heat treatment after the contact between the solid acid catalyst and the water-insoluble polymer compound is essential for allowing the water-insoluble polymer compound to proceed solubilizing and reducing the molecular weight satisfactorily.
  • the heating temperature is 40 to 160 ° C., preferably 60 to 120 ° C., more preferably 80 to 100 ° C.
  • the heating time depends on the heating temperature, but is 0.1 to 168 hours, preferably 10 to 72 hours, More preferably, it is 24 to 48 hours.
  • the water-insoluble polymer compound is a water-insoluble protein, it is important to reduce the molecular weight only to the decomposition to the peptide, but when treated at a high temperature for a long time, the water-insoluble protein is hydrolyzed to the amino acid. Since there exists a possibility that it may decompose
  • the contact between the water-insoluble polymer compound and the solid acid catalyst is preferably carried out by a batch method.
  • the batch method is used, the solid acid catalyst and the water-insoluble polymer compound in the container are mixed well and then heated. Heating is preferably performed after sealing the container. The heating conditions are as described above.
  • One or more containers may be used in the batch method.
  • the supernatant liquid is recovered.
  • the supernatant liquid can be collected by methods such as sedimentation separation, flotation separation, filtration, membrane separation, and centrifugation, but sedimentation separation is simple and preferable.
  • An example of a method for collecting the supernatant is shown in FIG.
  • the solid acid catalyst is heavier than the aqueous medium, so if it is left standing, it usually settles in about 15 minutes, but in actual operation, a drain valve is installed slightly above the bottom of the tank (slightly above the position of the precipitated solid acid catalyst). Then, the supernatant can be recovered by draining from there.
  • a supernatant liquid containing a decomposition product of a water-insoluble polymer compound is allowed to pass through, but a filter having a pore size that does not allow a solid acid catalyst to pass through is installed at the bottom of the tank, and the supernatant liquid can be recovered by draining from there. .
  • the series of operations in this step are performed a plurality of times.
  • the number of times can be appropriately changed according to the type of the water-insoluble polymer compound and the target yield of this step, and can be exemplified by about 4 to 5 times.
  • the number of repetitions is such that the yield of the decomposition product of the water-insoluble polymer compound in the non-adsorbed fraction obtained by combining the supernatant of this step, the supernatant of the next step (B) and the washing solution of the next step (C) is 50 % Or more, preferably 65% or more, more preferably 70% or more, and most preferably 80% or more.
  • the total amount of the water-insoluble polymer compound to be treated is equal to each other from the viewpoint of solubilization / lowering efficiency of the water-insoluble polymer compound by the solid acid catalyst. It is preferable to carry out separately.
  • Process (B) In step (B), following step (A), an aqueous medium is added to the solid acid catalyst, and the mixture is stirred and heated, and then the supernatant is recovered.
  • the water-insoluble polymer compound that has not been solubilized in step (A) and is attached to the surface of the solid acid catalyst can be recovered by solubilization and low molecular weight.
  • the heat treatment in this step may be performed according to the heat treatment conditions (temperature and time) at the time of contacting the solid acid catalyst and the water-insoluble polymer compound. Moreover, it is preferable to perform the collection operation in this step a plurality of times.
  • the number of times can be appropriately changed according to the type of the water-insoluble polymer compound, the yield of the decomposition product of the water-insoluble polymer compound in the step (A), and the final target yield, but about 3 to 6 times are exemplified. it can.
  • the number of repetitions is such that the yield of the decomposition product of the water-insoluble polymer compound in the non-adsorbed fraction obtained by combining the supernatant of step (A), the supernatant of step (B) and the washing solution of the next step (C) is 50 % Or more, preferably 65% or more, more preferably 70% or more, and most preferably 80% or more.
  • the supernatant liquid may be collected in the same manner as in step (A).
  • Process (C) In the step (C), following the step (B), the solid acid catalyst is washed with an aqueous medium, and the washing liquid is recovered. In this step, heat treatment is not performed, and the solid acid catalyst may be washed once with an aqueous medium.
  • step (D) In step (D), the supernatant liquid recovered in step (A), the supernatant liquid recovered in step (B), and the cleaning liquid recovered in step (C) are combined to obtain a non-adsorbed fraction on the solid acid catalyst. .
  • a water-insoluble polymer compound that is solubilized and poorly differentiated by reaction with the solid acid catalyst and is non-adsorbed on the solid acid catalyst can be obtained in high yield.
  • step (E) In step (E), following step (D), the components adsorbed from the solid acid catalyst are eluted, and the eluate is recovered to obtain a fraction adsorbed on the solid acid catalyst.
  • aqueous solution containing a salt such as sodium chloride at a high concentration (0.1 M or more), an acid such as hydrochloric acid or trifluoroacetic acid, a base such as triethylamine, or the like can be used.
  • a decomposition product of the water-insoluble polymer compound can be obtained in a high yield from the above steps (A) to (D), but this step further allows the reaction with the solid acid catalyst.
  • the degradation products of the water-insoluble polymer compound solubilized and reduced in molecular weight a degradation product of the water-insoluble polymer compound adsorbed on the solid acid catalyst can be obtained, and the yield can be further improved.
  • the non-adsorbed fraction obtained in the step (D) and the adsorbed fraction obtained in the step (E) may be dried to obtain a final product, or may be mixed and dried to obtain a final product.
  • the drying method is not particularly limited, and examples thereof include natural drying, freeze drying, blast drying, hot air drying, vacuum drying, and drying by microwave irradiation.
  • RO water was added to the remaining cation exchange resin, made up to 100 ml, and stirred well. After reacting at 80 ° C. for 24 hours, the supernatant was recovered. This operation was further repeated 6 times (collection was completed 6 to 11 times). The remaining cation exchange resin was washed with 30 ml of RO water. The collected supernatant and washings were mixed to obtain a collagen peptide solution having a molecular weight (Mp) of 12 kDa or less that was not adsorbed on the cation exchange resin.
  • Mp molecular weight
  • FIG. 3a shows the transition of the amount of collagen peptide (non-adsorbed peptide) in the collected supernatant (reaction time: 24 hours).
  • RO water was added to the remaining cation exchange resin, made up to 100 ml, and stirred well. After reacting at 80 ° C. for 48 hours, the supernatant was recovered. This operation was repeated two more times (collection completed 6-8 times). The remaining cation exchange resin was washed with 80 ml of RO water. The collected supernatant and washings were mixed to obtain a collagen peptide solution having a molecular weight (Mp) of 12 kDa or less that was not adsorbed on the cation exchange resin.
  • Mp molecular weight
  • FIG. 3b shows the transition of the amount of collagen peptide (non-adsorbed peptide) in the collected supernatant (reaction time 48 hours).
  • (3-2) Measurement of peptide amount The amount of collagen peptide obtained in (2) was measured using a BCA protein assay kit manufactured by PIERCE. BCA protein assay reagent A and BCA protein assay reagent B were mixed at a ratio of 50: 1 and used as BCA reagent. 100 ⁇ l of the sample and 2 ml of BCA reagent were mixed and incubated at 37 ° C. for 15 minutes, and then the absorbance was measured at 562 nm. For the absorbance measurement, a digital colorimeter mini photo 10 manufactured by Sangen Co., Ltd. was used. The amount of peptide was calculated from the standard curve of the ragen peptide prepared in (3-1).
  • Table 1 and Table 2 show the measurement results in the 24-hour reaction.
  • the amount of collagen peptide (non-adsorbed peptide) in the collected supernatant was 3.65 g, and the yield was 73%. Further, the amount of collagen peptide (adsorbed peptide) in the collected eluate was 0.86 g, and the yield was 17%.
  • Table 3 and Table 4 show the measurement results in the 48 hour reaction.
  • the amount of collagen peptide (non-adsorbed peptide) in the collected supernatant was 3.58 g, and the yield was 72%.
  • the amount of collagen peptide (adsorbed peptide) in the collected eluate was 0.77 g, and the yield was 15%.
  • reaction time of 24 hours and 48 hours there is no significant difference in the yield between the reaction time of 24 hours and 48 hours, but the reaction time of 48 hours can be said to be efficient because the number of times of recovery is small.
  • Fig. 4 shows the molecular weight distribution of collagen peptide (non-adsorbed peptide) in the supernatant (pullulan standard molecular weight ⁇ M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • a sharp peak was obtained at 5.9 kDa or less in terms of pullulan molecular weight in the first and second recovery, but thereafter a broad peak was obtained on the polymer side (FIG. 4a).
  • the peak slightly shifted from the polymer side to the low molecule side (FIG. 4b).
  • FIG. 5 shows the molecular weight distribution of collagen peptides (adsorbed peptides) in the eluate (pullulan standard molecular weights M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • the adsorbed peptide had a lower molecular weight than the non-adsorbed peptide, and the peak top was 5.9 kDa or less.
  • the molecular weight distribution was almost the same for the 24-hour reaction and the 48-hour reaction without being affected by the reaction time.
  • Example 2 Sericin Solubilization / Low Molecularization (1) Solubilization / Low molecularization of sericin by solid acid catalyst After wetting 1g of sericin powder (manufactured by Takahara) with 90ml of RO water overnight, mix with 10ml of cation exchange resin (TOYOPEARL SP-550C). Stir well. After solubilization by reacting at 80 ° C. for 24 hours, cooling was performed, and a supernatant containing sericin peptide was recovered. Next, the sericin powder was wetted overnight in the same manner as described above, then added to the cation exchange resin after collecting the supernatant, diluted to 100 ml with RO water, and stirred well.
  • cation exchange resin TOYOPEARL SP-550C
  • the mixture was reacted at 80 ° C. for 24 hours, and the supernatant was collected again. This operation was repeated three more times (collection completed 1 to 5 times). A total of 5 g of sericin powder was used in an equal amount each time.
  • RO water was added to the remaining cation exchange resin, made up to 100 ml, and stirred well. After reacting at 80 ° C. for 24 hours, the supernatant was recovered. This operation was further repeated 6 times (collection was completed 6 to 11 times).
  • the remaining cation exchange resin was washed with 60 ml of RO water. The collected supernatant and washing solution were mixed to obtain a sericin peptide solution having a molecular weight (Mp) of 5.9 kDa or less that was not adsorbed on the cation exchange resin.
  • Mp molecular weight
  • FIG. 6 shows the transition of the amount of sericin peptide (non-adsorbed peptide) in the collected supernatant.
  • Fig. 7 shows the molecular weight distribution of sericin peptide (non-adsorbed peptide) in the supernatant (pullulan standard molecular weight M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • pulseulan standard molecular weight M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa In the first and second recovery, a sharp peak was obtained at 5.9 kDa or less in terms of pullulan molecular weight, but thereafter a broad peak was obtained on the polymer side.
  • FIG. 8 shows the molecular weight distribution of sericin peptide (adsorbed peptide) in the eluate (pullulan standard product molecular weights M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • the peak top of the adsorbed peptide was not much different from the first and second collections of the non-adsorbed peptide and the 7th to 12th.
  • the keratin powder was wetted overnight as described above, and then the supernatant was added to the recovered cation exchange resin, diluted to 100 ml with RO water, and stirred well. The reaction was carried out at 100 ° C. for 48 hours, and the supernatant was collected again. This operation was repeated three more times (collection completed 1 to 5 times). A total of 5 g of keratin powder was used each time. RO water was added to the remaining cation exchange resin, made up to 100 ml, and stirred well. After reacting at 100 ° C. for 48 hours, the supernatant was recovered. This operation was repeated two more times (collection completed 6-8 times). The remaining cation exchange resin was washed with 80 ml of RO water. The collected supernatant and washings were mixed to obtain a keratin peptide solution having a molecular weight (Mp) of 5.9 kDa or less that was not adsorbed on the cation exchange resin.
  • Mp molecular weight
  • the amount of keratin peptide (non-adsorbed peptide) in the collected supernatant was 2.65 g, and the yield was 53%.
  • the amount of keratin peptide (adsorbed peptide) in the collected eluate was 0.20 g, and the yield was 4%.
  • FIG. 9 shows the molecular weight distribution of the keratin peptide (non-adsorbed peptide) in the supernatant (pullulan standard product molecular weight M1: 112 kDa, M2: 47.3 kDa, M3: 22.8 kDa, M4: 11.8 kDa, M5: 5.9 kDa).
  • a sharp peak was obtained at a pullulan molecular weight conversion of 5.9 kDa or less.
  • FIG. 10 shows the molecular weight distribution of keratin peptides (adsorbed peptides) in the eluate.
  • the peak top of the adsorbed peptide was not much different from the non-adsorbed peptide.
  • Example 4 Solubilization and low molecular weight of agar (1) Solubilization and low molecular weight of agar with solid acid catalyst 1 g of agar powder (Kanto Chemical) was suspended in 90 ml of RO water and cation exchange resin (TOYOPEARL) SP-550C) was mixed with 10 ml and stirred well. After solubilization by reaction at 100 ° C. for 24 hours, cooling was performed, and a supernatant containing agar oligosaccharides was collected. Next, the agar powder was wetted overnight as described above, and then the supernatant was added to the recovered cation exchange resin, made up to 100 ml with RO water, and stirred well. The reaction was carried out at 100 ° C. for 24 hours, and the supernatant was collected again. This operation was repeated three more times (collection completed 1 to 5 times). A total of 5 g of each agar powder was used.
  • TOYOPEARL cation exchange resin
  • RO water was added to the remaining cation exchange resin, made up to 100 ml, and stirred well. After reacting at 100 ° C. for 24 hours, the supernatant was recovered. This operation was repeated two more times (collection completed 6-8 times). The remaining cation exchange resin was washed with 80 ml of RO water. The collected supernatant and washings were mixed to obtain an agar oligosaccharide solution that was not adsorbed on the cation exchange resin.
  • FIG. 11 shows the transition of the amount of agar oligosaccharide (non-adsorbed oligosaccharide) in the collected supernatant.
  • Table 7 shows the measurement results.
  • the amount of agar oligosaccharide (non-adsorbed oligosaccharide) in the collected supernatant was 4.15 g, and the yield was 83%.
  • FIG. 12 shows the molecular weight distribution of the agar oligosaccharide (non-adsorbed oligosaccharide) in the supernatant (control substance M1: 5.9 kDa (M1: Shodex STANDARD P-82, M2: trisaccharide (raffinose), (M3: disaccharide (sucrose), M4: 1 sugar (glucose))
  • M1 Shodex STANDARD P-82
  • M2 trisaccharide (raffinose)
  • M3 disaccharide
  • sucrose disaccharide
  • M4 1 sugar (glucose)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Insects & Arthropods (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明は、水不溶性タンパク質や水不溶性多糖類などの水不溶性高分子化合物を容易な操作で、かつ効率よく可溶化および低分子化し、新たな機能性材料を製造することを課題とする。 本発明によれば、次の各工程:水不溶性高分子化合物に固体酸触媒を接触させて加熱処理を行った後、上澄み液を回収する工程、上澄み液回収後の固体酸触媒に水性媒体を加えて攪拌し、加熱処理した後、さらに上澄み液を回収する工程、該固体酸触媒を水性媒体にて洗浄し、洗浄液を回収する工程、回収した上澄み液と洗浄液を合わせて固体酸触媒に非吸着の画分を得る工程、該固体酸触媒から吸着した成分を溶出し、溶出液を回収して固体酸触媒に吸着した画分を得る工程を含む、水不溶性高分子化合物の分解物の製造方法が提供される。

Description

水不溶性高分子化合物の分解物の連続的製造方法
 本発明は、水不溶性高分子化合物(タンパク質または多糖類)を可溶化および低分子化し、水不溶性高分子化合物(タンパク質または多糖類)の分解物を連続的に製造する方法に関する。
 近年、医薬品、飲食品、化粧品の材料として、機能性タンパク質や機能性ペプチドが着目されている。なかでも、骨・関節疾患に伴う症状の緩和作用、美肌作用、骨形成作用などを有するコラーゲンおよびその分解物であるコラーゲンペプチドはその代表例として挙げられる。コラーゲンまたはコラーゲンペプチドの原料は、主に魚、牛、豚、鶏の皮、骨、腱などであるが、クラゲ類もその一つとして用いられており、クラゲ類を凍結・解凍・低温貯蔵・攪拌などの処理工程を経てクラゲ類から未変性のコラーゲンを効率的に回収する方法が提案されている(特許文献1、2等)。
 クラゲ類は、近年、日本沿岸各地での多量発生が深刻な社会問題となっており、漁業に多大な損害をもたらすほか、工場や発電所等の取水口に集まり、その除去や廃棄処理にコストがかかるため、上記のようにコラーゲン原料としてクラゲの有効利用が図れることが望ましい。これまでコラーゲン原料として用いられるクラゲ類は、小型で液化しやすいミズクラゲが主であり、ビゼンクラゲなどの大型でかつ水不溶性タンパク質が多いクラゲ類は有効利用されていないのが現状である。
 一般に、水不溶性タンパク質の可溶化および低分子化は、加熱処理、酸またはアルカリ処理、タンパク分解酵素(プロテアーゼ)処理などにより行われている。しかしながら、加熱処理はタンパク質の種類によって熱変性を受けるという問題がある。酸またはアルカリ処理ではアミノ酸を破壊してしまうおそれがあり、処理後の廃液処理にもコストや労力がかかる。また、タンパク分解酵素処理は、使用する酵素の至適条件に合わせるために温度やpHの設定・制御が必要であり、処理物に酵素が残存すると失活や酵素除去の操作も必要となる。
 また、固体酸触媒を用いてタンパク質を加水分解する方法が知られており(特許文献3)、クラゲコラーゲンペプチドの製造にも用いられている(特許文献4)。しかしながら、これらの例はいずれも可溶性タンパク質を対象とするものであり、水不溶性タンパク質の可溶化および低分子化を行ったものではない。
 一方、木質系バイオマス資源の有効活用として、セルロース、ヘミセルロース、リグニンから構成されるリグノセルロースの分解技術が検討されているが、上記の水不溶性タンパク質と同様の問題が存在する。例えば、リグノセルロースの分解技術として、酸糖化法や酵素糖化法があるが、硫酸を用いた酸糖化法では反応が速いという利点はあるものの、生成物(単糖)の過分解が問題となり、酸の廃液処理には環境負荷の問題がある。また、セルラーゼ酵素を用いた酵素糖化法では、環境負荷が少ないという利点はあるものの、セルロースはβ-グルコース分子が1,4グルコシド結合により重合した高分子同士が水素結合し、水に不溶性の強固な結晶構造を有していることから、セルラーゼ酵素との接触面積が少なく、反応が遅いという問題がある。
特開2007-051191号 特開2008-031106号 特開2009-120511号 特開2013-95708号
 従って、本発明は、水不溶性タンパク質や水不溶性多糖類などの水不溶性高分子化合物を容易な操作で、かつ効率よく可溶化および低分子化し、新たな機能性材料を製造することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、水不溶性タンパク質を固体酸触媒により処理したところ、水不溶性タンパク質分解物が、驚くべきことに、主に固体酸触媒の非吸着画分に得られることを見出した。そして、非吸着画分を回収する操作を繰り返した後、さらに固体酸触媒から溶出させた吸着画分も合わせることによって、水不溶性タンパク質分解物を高収率で連続的に製造することに成功し、本発明を完成させるに至った。
 すなわち、本発明は以下の発明を包含する。
(1)以下の工程を含む水不溶性高分子化合物の分解物の製造方法:
 (A) 水不溶性高分子化合物に固体酸触媒を接触させた後、加熱処理を行い、上澄み液を回収する工程、
 (B)工程(A)に続いて、該固体酸触媒に水性媒体を加えて攪拌し、加熱処理した後、上澄み液を回収する工程、
 (C)工程(B)に続いて、該固体酸触媒を水性媒体にて洗浄し、洗浄液を回収する工程、
 (D)工程(A)で回収した上澄み液と、工程(B)で回収した上澄み液と、工程(C)の洗浄液を合わせて固体酸触媒に非吸着の画分を得る工程、
 (E)工程(D)に続いて、該固体酸触媒から吸着した成分を溶出し、溶出液を回収して固体酸触媒に吸着した画分を得る工程。
(2)水不溶性高分子化合物が、水不溶性タンパク質または水不溶性多糖類である、(1)に記載の方法。
(3)水不溶性高分子化合物を固体酸触媒に接触させる前に水性媒体に浸潤させる工程をさらに含む、(1)または(2)に記載の方法。
(4)水不溶性高分子化合物の量が、固体酸触媒に対して質量比で0.01~0.5倍である、(1)~(3)のいずれかに記載の方法。
(5)前記工程(A)において、水不溶性高分子化合物と固体酸触媒の接触時の水性媒体の量を固体酸触媒に対して質量比で1~50倍となるように調整する、(1)~(4)のいずれかに記載の方法。
(6)前記工程(A)および(B)の加熱処理を、40~160℃で0.1~168時間行う、(1)~(5)のいずれかに記載の方法。
(7)前記工程(A)および(B)の操作を、非吸着画分における水不溶性高分子化合物の分解物の収率が50%以上になるまでそれぞれ複数回繰り返す、(1)~(6)のいずれかに記載の方法。
(8)固体酸触媒が、陽イオン交換体、ゼオライト、および珪藻土から成る群より選ばれる少なくとも1種である、(1)~(7)のいずれかに記載の方法。
 本発明によれば、水不溶性高分子化合物の分解物の製造方法が提供される。本発明の方法を用いることによって、これまで有効利用できなかった材料から水不溶性高分子化合物の分解物を高効率かつ低コストで連続的に製造することが可能である。また、本発明の方法は、従来の加熱処理、酸またはアルカリ処理、タンパク分解または糖分解酵素処理とは異なって、高分子化合物の不要な変性がなく確実な加水分解処理が行え、製造工程において煩雑な操作や特別な制御の必要もない。
 本願は、2013年12月25日に出願された日本国特許出願2013-267662号の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。
本発明の一態様である水不溶性タンパク質分解物の連続的製造方法の工程図を示す。 本発明の一態様である水不溶性タンパク質分解物の連続的製造方法における固体酸触媒非吸着画分(上澄み液)の回収方法の一態様を示す。 固体酸触媒非吸着画分における水不溶性タンパク質分解物(ビゼンクラゲ傘部コラーゲンペプチド)の回収量の推移(図3a:反応時間24時間、図3b:反応時間48時間)および反応時間による吸収量の比較(図3c)を示す。 図4aは、固体酸触媒非吸着画分における水不溶性タンパク質分解物(ビゼンクラゲ傘部コラーゲンペプチド)の分子量分布を示す(反応時間24時間、上の図:回収液1~6回目、下の図:回収液7~12回目、プルラン標準品分子量M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。図4bは、固体酸触媒非吸着画分における水不溶性タンパク質分解物(ビゼンクラゲ傘部コラーゲンペプチド)の分子量分布を示す(反応時間48時間、プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒吸着画分における水不溶性タンパク質分解物(ビゼンクラゲ傘部コラーゲンペプチド)の分子量分布を示す(上の図:反応時間24時間、下の図:反応時間48時間、プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒非吸着画分における水不溶性タンパク質分解物(セリシンペプチド)の回収量の推移を示す。 固体酸触媒非吸着画分における水不溶性タンパク質分解物(セリシンペプチド)の分子量分布を示す(上の図:回収液1~6回目、下の図:回収液7~12回目、プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒吸着画分における水不溶性タンパク質分解物(セリシンペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒非吸着画分における水不溶性タンパク質分解物(ケラチンペプチド)の分子量分布を示す(上の図:回収液1~5回目、下の図:回収液6~8回目、プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒吸着画分における水不溶性タンパク質分解物(ケラチンペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。 固体酸触媒非吸着画分における水不溶性多糖類分解物(寒天オリゴ糖)の回収量の推移を示す。 固体酸触媒非吸着画分における水不溶性多糖類分解物(寒天オリゴ糖)の分子量分布を示す(対照物質M1: 5.9kDa(昭和電工社製Shodex STANDARD P-82, M2:3糖(ラフィノース), M3:2糖(スクロース), M4:1糖(グルコース))。
 以下に、本発明について詳細に述べる。
 本発明は、水不溶性高分子化合物の分解物の製造方法であって、以下の工程を包含する。図1にその製造工程の概略を示す。
 (A) 水不溶性高分子化合物に固体酸触媒を接触させた後、加熱処理を行い、上澄み液を回収する工程、
 (B)工程(A)に続いて、該固体酸触媒に水性媒体を加えて攪拌し、加熱処理した後、上澄み液を回収する工程、
 (C)工程(B)に続いて、該固体酸触媒を水性媒体にて洗浄し、洗浄液を回収する工程、
 (D)工程(A)で回収した上澄み液と、工程(B)で回収した上澄み液と、工程(C)の洗浄液を合わせて固体酸触媒に非吸着の画分を得る工程、
 (E)工程(D)に続いて、該固体酸触媒から吸着した成分を溶出し、溶出液を回収して固体酸触媒に吸着した画分を得る工程。
 本発明の方法に用いる「水不溶性高分子化合物」としては、水不溶性タンパク質または水不溶性多糖類が好ましい。また、本発明において「水不溶性高分子化合物の分解物」は、水不溶性高分子化合物が可溶化・分解されたものであればよく、平均分子量や分子量分布は問わない。
工程(A)
 工程(A)では、水不溶性高分子化合物に固体酸触媒を接触させた後、加熱処理を行い、上澄み液を回収する。本発明において「水不溶性」とは水に可溶化していない状態をいう。
 水不溶性高分子化合物には水不溶性タンパク質または水不溶性多糖類が含まれ、動物性であっても植物性であってもよく、また種類も特に限定はされない。水不溶性タンパク質としては、例えば、コラーゲン、セリシン、フィブロイン、ケラチン、カゼイン、アルブミン、グロブリン、エラスチン、ミオシン、アクチン、ホエータンパク質、大豆タンパク質、小麦タンパク質、胡麻タンパク質、卵タンパク質などが挙げられる。なかでも、クラゲ類のコラーゲンが好ましく、クラゲ類は、限定はされないが、鉢虫網(Scyphozoa)根口クラゲ目(Rhizostomeae)に属する、ビゼンクラゲ、エチゼンクラゲ、タコクラゲ、ムラサキクラゲ、エビクラゲ、イボクラゲ、スナイロクラゲ、サカサクラゲなどが挙げられる。また、水不溶性多糖類としては、セルロース、ヘミセルロース、リグノセルロース、イヌリン、ペクチン、グルカン、カラギーナン、アガロース、キチン、キトサンなどが挙げられる。水不溶性高分子化合物原料は、固定酸触媒との接触による可溶化・低分子化を促進させるために、前処理として裁断機、ミンチ機、カッター等を用いて粗粉砕を行い、さらに粉末化しておくことが好ましい。粉末化は、例えば、ハンマーミル、ビーズミル、ローラーミル、ピンミル、ブレンダーなどの当業者が通常用いる機械により行うことができる。
 上記のような前処理を行った水不溶性高分子化合物は、固体酸触媒との接触前に水性媒体に湿潤させてもよい。湿潤は水不溶性高分子化合物の種類によるが、1~36時間程度行うことが好ましい。
 本発明において用いる固体酸触媒は、陽イオン交換体、ゼオライトおよび珪藻土からなる群から選ばれる少なくとも一種であることが好ましく、陽イオン交換体であることがより好ましい。これらの固体酸触媒は、1種のみを用いることも、2種以上を組み合わせて用いることもできる。
 陽イオン交換体は、スルホン基、カルボキシル基の少なくとも1種を有する樹脂であることが好ましく、スルホン基、カルボキシル基は、それぞれスルホプロピル基、カルボキシメチル基であってもよい。陽イオン交換体のカウンターイオンがプロトン以外である場合、プロトン型に置換した後に使用することが好ましい。スルホン酸型陽イオン交換体とは、スルホン酸基(-SO3H)を含む陽イオン交換能を有するイオン交換体であり、好ましい形態として、スルホン酸基を含む陽イオン交換樹脂およびスルホン酸基を含む陽イオン交換膜を挙げることができる。好ましい陽イオン交換樹脂としては、東ソー株式会社製TOYOPEARL SP-650C、SP-550C等のように親水性ビニルポリマーを基材として含むものや、ナフィオン(登録商標)等のようにパーフルオロスルホン酸を含むポリテトラフルオロエチレン共重合体を挙げることができる。
 ゼオライトは、一般にゼオライト触媒として利用されているゼオライトであればいずれも用いることができ、特に限定はされないが、例えば、東ソー株式会社製ゼオラム(登録商標)などが挙げられる。
 珪藻土は、酸触媒として機能し得るものであればいずれも用いることができ、特に限定はされないが、例えば、和光純薬工業株式会社製けいそう土(顆粒状)などが挙げられる。
 本発明に用いる固体酸触媒の形状は、粒状、粉末状のいずれであってもよい。また、その平均粒子径は2μm~2mm程度、イオン交換容量は0.01~1eq/L程度のものが好適に使用できる。
 前記固体酸触媒は、多孔質体であることが好ましい。例えば前述の東ソー株式会社製TOYOPEARL SP-650C、SP-550Cは、ゲル濾過クロマトグラフィー用充填剤にイオン交換基としてスルホン酸基を導入した多孔質体である。多孔質体の細孔サイズは、対象とする水不溶性高分子化合物の分子量によって適切な細孔サイズが異なるが、例えば、0.01~0.75μm、好ましくは0.05~0.6μmである。
 水不溶性高分子化合物と固体酸触媒の接触時の水性媒体の量は、水不溶性高分子化合物の湿潤に用いる水性媒体も合わせて、固体酸触媒に対して質量比で1~50倍、好ましくは5~15倍である。本発明の方法では、水不溶性高分子化合物の分解物を主として固体酸触媒の非吸着画分(上澄み液)に回収するため、水性媒体の量が上記範囲を下回ると遠心分離操作が必要となり好ましくない。また、水性媒体の量が上記範囲を上回ると作業効率が悪くなるので好ましくない。本発明において、水不溶性高分子化合物の湿潤および水不溶性高分子化合物と固体酸触媒の接触に用いられる水性媒体は、水不溶性高分子化合物と固体酸触媒の反応を妨げるものでない限り特に限定されるものではないが、例えば、水(イオン交換水、精製水、RO水、水道水、井戸水など)、リン酸塩、炭酸塩、酢酸塩、ホウ酸酸塩、クエン酸塩、トリスなどの緩衝液、塩化ナトリウム、塩化カリウム、塩化カルシウム等の無機塩水溶液などが挙げられる。また、塩濃度は、1mM~0.1M程度の低濃度であることが好ましい。
 水不溶性高分子化合物の量は、固体酸触媒の触媒能に応じて適宜決定できるが、例えば、固体酸触媒に対して質量比で0.01~0.5倍、好ましくは0.05~0.2倍である。
 固体酸触媒と水不溶性高分子化合物の接触した後の加熱処理は、水不溶性高分子化合物の可溶化および低分子化反応を良好に進行させるために必須である。加熱温度は、40~160℃、好ましくは60~120℃、より好ましくは80~100℃であり、加熱時間は加熱温度に依存するが、0.1~168時間、好ましくは10~72時間、より好ましくは24~48時間である。例えば、水不溶性高分子化合物が、水不溶性タンパク質である場合、その低分子化はペプチドまでの分解に留めることが重要であるが、高温で長時間処理した場合、水不溶性タンパク質がアミノ酸にまで加水分解されるおそれがあるため、処理温度が高温であるほど、処理時間を短時間とするのが好ましい。
 本発明において水不溶性高分子化合物と固体酸触媒の接触は、バッチ法で行うことが好ましい。バッチ法で行う際には、容器内の固体酸触媒と水不溶性高分子化合物をよく混合した後、加熱する。加熱は、容器を密栓した後に行うことが好ましい。加熱条件は、前述の通りである。バッチ法で使用する容器は1つであってもよく複数でもよい。
 上記加熱処理を行った後、上澄み液を回収する。上澄み液の回収は、沈降分離、浮上分離、ろ過、膜分離、遠心分離などの方法により行うことができるが、沈降分離が簡便であり好ましい。上澄み液回収の方法の例を図2に示す。固体酸触媒は水性媒体よりも重いため静置すれば通常15分程度で沈殿するが、実操業では、タンク底より少し上(沈殿した固体酸触媒の位置より少し上)に排液バルブを設置し、そこから排液して上澄み液を回収すればよい。あるいは、水不溶性高分子化合物の分解物を含む上澄み液は通過させるが、固体酸触媒は通過させない孔径を有するフィルターをタンク底に設置し、そこから排液して上澄み液を回収することもできる。
 本工程における上記の一連の操作(水不溶性高分子化合物と固体酸触媒の接触、加熱処理、上澄み液の回収)は複数回行う。回数については水不溶性高分子化合物の種類や本工程の目標収率に応じて適宜変更できるが、4~5回程度が例示できる。繰り返し回数は、本工程の上澄み液と次の工程(B)の上澄み液と次の工程(C)の洗浄液を合わせた非吸着画分における水不溶性高分子化合物の分解物の収率が、50%以上、好ましくは65%以上、より好ましくは70%以上、最も好ましくは80%以上となるように決定すればよい。各回の水不溶性高分子化合物と固体酸触媒の接触は、固体酸触媒による水不溶性高分子化合物の可溶化・低分子化効率の観点から、処理すべき水不溶性高分子化合物の全量を等量ずつ分けて行うことが好ましい。
工程(B)
 工程(B)では、工程(A)に続いて、該固体酸触媒に水性媒体を加えて攪拌し、加熱処理した後、上澄み液を回収する。本工程により、工程(A)で可溶化されずに固体酸触媒表面に付着している水不溶性高分子化合物を可溶化および低分子化して回収することができる。本工程の加熱処理は、前記の固体酸触媒と水不溶性高分子化合物の接触時の加熱処理条件(温度および時間)に従って行えばよい。また、本工程の回収操作も複数回行うことが好ましい。回数については水不溶性高分子化合物の種類、工程(A)における水不溶性高分子化合物の分解物の収率、および最終的な目標収率に応じて適宜変更できるが、3~6回程度が例示できる。繰り返し回数は、工程(A)の上澄み液と工程(B)の上澄み液と次の工程(C)の洗浄液を合わせた非吸着画分における水不溶性高分子化合物の分解物の収率が、50%以上、好ましくは65%以上、より好ましくは70%以上、最も好ましくは80%以上となるように決定すればよい。上澄み液の回収は、工程(A)と同様に行えばよい。
工程(C)
 工程(C)では、工程(B)に続いて、固体酸触媒を水性媒体にて洗浄し、洗浄液を回収する。本工程では加熱処理は行わず、固体酸触媒を水性媒体にて1回洗浄すればよい。
工程(D)
 工程(D)では、工程(A)で回収した上澄み液と、工程(B)で回収した上澄み液と、工程(C)で回収した洗浄液を合わせて固体酸触媒に非吸着の画分を得る。本工程により、固体酸触媒との反応で可溶化・低分化し、かつ固体酸触媒に非吸着の水不溶性高分子化合物を高収率で得ることができる。
工程(E)
 工程(E)では、工程(D)に続いて、固体酸触媒から吸着した成分を溶出し、溶出液を回収して固体酸触媒に吸着した画分を得る。溶出には、塩化ナトリウムなどの塩を高濃度(0.1M以上)に含む水溶液または塩酸やトリフルオロ酢酸などの酸、トリエチルアミンなどの塩基などを用いることができる。本発明の方法によれば、上記工程(A)から(D)までで水不溶性高分子化合物の分解物を高収率で得ることができるが、さらに本工程により、固体酸触媒との反応で可溶化・低分子化した水不溶性高分子化合物の分解物のうち、固体酸触媒に吸着した水不溶性高分子化合物の分解物をも得ることができ、さらに収率を向上させることができる。
 工程(D)で得られた非吸着画分と、工程(E)で得られた吸着画分は、それぞれ乾燥して最終製品としてもよく、また、混合してから乾燥して最終製品としてもよい。乾燥方法としては、特に限定されるものではなく、自然乾燥、凍結乾燥、送風乾燥、温風乾燥、真空乾燥、マイクロ波照射による乾燥などの方法が挙げられる。
 以下、実施例によって本発明を更に具体的に説明するが、これらの実施例は本発明を限定するものでない。
(実施例1)ビゼンクラゲ傘部不溶性コラーゲンの可溶化・低分子化
(1) ビゼンクラゲ傘部不溶性コラーゲンの調製
 福岡県柳川市、有明海にて採取したビゼンクラゲを傘部と口腕部に分離した。傘部の内側にある茶色い皮を剥いだ後、水道水で洗浄し、さらに微酸性電解水、オゾン水で洗浄殺菌した。個体を1kg切り取り、1mm~1cmの角状断片に破砕した。ガーゼで濾過をし、不溶性コラーゲンを含む固体を得た。得られた固体を9倍量のRO水で懸濁し、濾過により固体を回収した。この操作をさらに2回繰り返し、洗浄・脱塩をした。回収した固体は凍結乾燥を行い、乾燥後にブレンダーにて粉末化し、不溶性コラーゲン粉末を得た。
(2) 固体酸触媒によるビゼンクラゲ傘部不溶性コラーゲンの可溶化・低分子化
(2-1)反応時間24時間
 (1)で調製した不溶性コラーゲン粉末1gを90mlのRO水で1晩湿潤させた後、陽イオン交換樹脂(TOYOPEARL SP-550C)10mlと混合し、よく撹拌した。80℃、24時間反応させ可溶化した後、冷却を行い、コラーゲンペプチドを含む上澄み液を回収した。次に、(1)で調製したビゼンクラゲ傘部の不溶性コラーゲン粉末を上記と同様にして1晩湿潤させた後、前記の上澄み液回収後の陽イオン交換樹脂に添加し、RO水で100mlにメスアップした後、よく撹拌した。80℃、24時間反応させ、再び上澄み液を回収した。この操作をさらに3回繰り返した(回収1~5回完了)。ビゼンクラゲ傘部の不溶性コラーゲン粉末は各回等量ずつ合計5g使用した。
 残った陽イオン交換樹脂にRO水を加え、100mlにメスアップし、よく撹拌した。80℃、24時間反応させた後、上澄み液を回収した。この操作をさらに6回繰り返した(回収6~11回完了)。残った陽イオン交換樹脂を30 mlのRO水で洗浄した。回収した上澄み液と洗浄液を混合し、陽イオン交換樹脂に吸着していない分子量(Mp)12kDa以下のコラーゲンペプチド液を得た。
 図3aに、回収した上澄み液中のコラーゲンペプチド(非吸着ペプチド)の量の推移(反応時間24時間)を示した。
 次に、洗浄後の陽イオン交換樹脂に0.5M NaCl30mlを添加し、樹脂からコラーゲンペプチドを含む分解物を溶出させた。これをさらに3回繰り返し、全ての溶出液を混合し、陽イオン交換樹脂に吸着していた分子量(Mp)12kDa以下のコラーゲンペプチド液を得た。
(2-2)反応時間48時間
 (1)で調製した不溶性コラーゲン粉末1gを90mlのRO水で1晩湿潤させた後、陽イオン交換樹脂(TOYOPEARL SP-550C)10mlと混合し、よく撹拌した。80℃、48時間反応させ可溶化した後、冷却を行い、コラーゲンペプチドを含む上澄み液を回収した。次に、(1)で調製したビゼンクラゲ傘部の不溶性コラーゲン粉末を上記と同様にして1晩湿潤させた後、前記の上澄み液回収後の陽イオン交換樹脂に添加し、RO水で100mlにメスアップした後、よく撹拌した。80℃、48時間反応させ、再び上澄み液を回収した。この操作をさらに3回繰り返した(回収1~5回完了)。ビゼンクラゲ傘部の不溶性コラーゲン粉末は各回等量ずつ合計5g使用した。
 残った陽イオン交換樹脂にRO水を加え、100mlにメスアップし、よく撹拌した。80℃、48時間反応させた後、上澄み液を回収した。この操作をさらに2回繰り返した(回収6~8回完了)。残った陽イオン交換樹脂を80 mlのRO水で洗浄した。回収した上澄み液と洗浄液を混合し、陽イオン交換樹脂に吸着していない分子量(Mp)12kDa以下のコラーゲンペプチド液を得た。
 図3bに、回収した上澄み液中のコラーゲンペプチド(非吸着ペプチド)の量の推移(反応時間48時間)を示した。
 次に、洗浄後の陽イオン交換樹脂に0.5M NaCl50mlを添加し、樹脂からコラーゲンペプチドを含む分解物を溶出させた。これをさらに2回繰り返し、全ての溶出液を混合し、陽イオン交換樹脂に吸着していた分子量(Mp)12kDa以下のコラーゲンペプチド液を得た。
(3)ペプチド混合物の定量
(3-1)コラーゲンペプチド標準サンプルの調製
 ビゼンクラゲ傘部の不溶性コラーゲン粉末1gを100mlのRO水で1晩湿潤させた後、陽イオン交換樹脂(TOYOPEARL SP-550C)100gと混合し、よく撹拌した。80℃、24時間反応させ可溶化した後、冷却を行い、RO水500mlで洗浄した。洗浄後の樹脂を5%トリエチルアミン/10%アセトニトリル100mlで3回抽出した。得られた抽出液を混合した後、ロータリーエバポレーターで濃縮乾固した。乾固した抽出物をRO水で溶解し、凍結乾燥した。得られた乾燥物を3.00、1.50、0.75、0.375、0.188mg/mlとなるように調整し、コラーゲンペプチド定量用の標準検量線に用いた。
(3-2)ペプチド量の測定
 (2)で得られたコラーゲンペプチド量の測定は、PIERCE社製 BCA protein assay kitを使用した。BCA protein assay reagent AとBCA protein assay reagent Bを50:1で混合し、これをBCA reagentとした。サンプル100μlとBCA reagent 2mlを混合し、37℃で15分間インキュベートした後、562 nmで吸光度を測定した。吸光度測定には三紳社製デジタル比色計mini photo 10を使用した。(3-1)で作成したラーゲンペプチド標準検量線からペプチド量を算出した。
 24時間反応における測定結果を表1および表2に示す。回収した上澄み液中のコラーゲンペプチド(非吸着ペプチド)量は3.65g、収率は73%であった。また、回収した溶出液中のコラーゲンペプチド(吸着ペプチド)量は0.86 g、収率は17%であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 48時間反応における測定結果を表3および表4に示す。回収した上澄み液中のコラーゲンペプチド(非吸着ペプチド)量は3.58g、収率は72%であった。また、回収した溶出液中のコラーゲンペプチド(吸着ペプチド)量は0.77 g、収率は15%であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記のとおり、反応時間24時間と48時間では、収率には大きな差がないが、反応時間が48時間のほうが、回収回数が少なくてすみ、効率的であるといえる。
(4)ペプチド混合物の分子量分布の解析
 (2)で得られたコラーゲンペプチドの分子量分布はゲル濾過クロマトグラフィーを用いて測定した。測定条件を以下に示す。
 a) HPLC装置:ポンプGL Sciences社製 GL-7410、オートサンプラーGL Sciences 社製GL-7420、カラム恒温槽GL Sciences社製CO631C、UV検出器 島津社製SPD-10AVと日立社製L-4200、RI検出器GL Sciences社製GL-7454、真空デガッサーGastorr社製AG-14を用いた。
 b) カラム:東ソー社製TSKgel G3000SWXL(7.8×300mm, 5μm)
 c) 移動相:50mMリン酸ナトリウム緩衝液/50mM塩化ナトリウム(pH 7.0)
 d) 流速:0.5ml/min
 e) 温度:20℃
 f) 測定波長:215nm、280nm
 g) 分子量測定用標準品:昭和電工社製Shodex STANDARD P-82を0.1%となるように調製し、分子量測定用標準液とした。
 図4に、上澄み液中のコラーゲンペプチド(非吸着ペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。反応時間24時間では、回収1回目、2回目はプルラン分子量換算5.9kDa以下にシャープなピークが得られたが、それ以降は高分子側にブロードなピークが得られた(図4a)。反応時間48時間では、ピークが高分子側から低分子側に若干シフトした(図4b)。
 図5に、溶出液中のコラーゲンペプチド(吸着ペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。吸着ペプチドは非吸着ペプチドよりも分子量が低く、ピークトップは5.9kDa以下であった。また、反応時間の影響は受けず、24時間反応と48時間反応でほぼ同じ分子量分布であった。
(実施例2)セリシンの可溶化・低分子化
(1) 固体酸触媒によるセリシンの可溶化・低分子化
 セリシン粉末(高原社製)1gを90mlのRO水で1晩湿潤させた後、陽イオン交換樹脂(TOYOPEARL SP-550C)10mlと混合し、よく撹拌した。80℃、24時間反応させ可溶化した後、冷却を行い、セリシンペプチドを含む上澄み液を回収した。次にセリシン粉末を上記と同様にして1晩湿潤させた後、上記の上澄み液回収後の陽イオン交換樹脂に添加し、RO水で100mlにメスアップした後、よく撹拌した。80℃、24時間反応させ、再び上澄み液を回収した。この操作をさらに3回繰り返した(回収1~5回完了)。セリシン粉末は各回等量ずつ合計5g使用した。残った陽イオン交換樹脂にRO水を加え、100mlにメスアップし、よく撹拌した。80℃、24時間反応させた後、上澄み液を回収した。この操作をさらに6回繰り返した(回収6~11回完了)。残った陽イオン交換樹脂を60mlのRO水で洗浄した。回収した上澄み液と洗浄液を混合し、陽イオン交換樹脂に吸着していない分子量(Mp)5.9kDa以下のセリシンペプチド液を得た。
 図6に、回収した上澄み液中のセリシンペプチド(非吸着ペプチド)の量の推移を示した。
 次に、洗浄後の陽イオン交換樹脂に0.5M NaCl 60mlを添加し、樹脂からセリシンペプチドを含む分解物を溶出させた。これをさらに3回繰り返し、全ての溶出液を混合し、陽イオン交換樹脂に吸着していた分子量(Mp)5.9kDa以下のセリシンペプチド液を得た。
(2)ペプチド混合物の定量
(2-1)セリシンペプチド標準サンプルの調製
 (1)で得られた陽イオン交換樹脂に非吸着のセリシンペプチド液を凍結乾燥した。得られた乾燥物を0.75、0.375、0.188、0.094mg/mlとなるように調整し、セリシンペプチド定量用の標準検量線に用いた。
(2-2)セリシンペプチド量の測定
 (1)で得られたセリシンペプチド量の測定は、上記のセリシンペプチド定量用の標準検量線を用いる以外は、実施例1の(3-2)と同様にして行った。
 上記の測定結果を表5および表6に示す。回収した上澄み液中のセリシンペプチド(非吸着ペプチド)量は3.36g、収率は67%であった。また、回収した溶出液中のセリシンペプチド(吸着ペプチド)量は0.21g、収率は4%であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(3)ペプチド混合物の分子量分布の解析
 (1)で得られたセリシンペプチドの分子量分布は、実施例1と同様の測定条件に従い、ゲル濾過クロマトグラフィーを用いて測定した。
 図7に、上澄み液中のセリシンペプチド(非吸着ペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。回収1回目、2回目はプルラン分子量換算5.9kDa以下に、シャープなピークが得られたが、それ以降は高分子側にブロードなピークが得られた。
 図8に、溶出液中のセリシンペプチド(吸着ペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。吸着ペプチドのピークトップは非吸着ペプチドの回収1~2回目、7~12回目と大差はなかった。
(実施例3)ケラチンの可溶化・低分子化
(1)固体酸触媒によるケラチンの可溶化・低分子化
 ケラチン粉末(ナカライテスク)1gを90mlのRO水で1晩湿潤させた後、陽イオン交換樹脂(TOYOPEARL SP-550C)10mlと混合し、よく撹拌した。100℃、48時間反応させ可溶化した後、冷却を行い、ケラチンペプチドを含む上澄み液を回収した。次にケラチン粉末を上記と同様にして1晩湿潤させた後、上記の上澄み液を回収後の陽イオン交換樹脂に添加し、RO水で100mlにメスアップした後、よく撹拌した。100℃、48時間反応させ、再び上澄み液を回収した。この操作をさらに3回繰り返した(回収1~5回完了)。ケラチン粉末各回等量ずつ合計5g使用した。残った陽イオン交換樹脂にRO水を加え、100mlにメスアップし、よく撹拌した。100℃、48時間反応させた後、上澄み液を回収した。この操作をさらに2回繰り返した(回収6~8回完了)。残った陽イオン交換樹脂を80mlのRO水で洗浄した。回収した上澄み液と洗浄液を混合し、陽イオン交換樹脂に吸着していない分子量(Mp)5.9kDa以下のケラチンペプチド液を得た。
 次に、洗浄後の陽イオン交換樹脂に0.5M NaCl 50mlを添加し、樹脂からケラチンペプチドを含む分解物を溶出させた。これをさらに2回繰り返し、全ての溶出液を混合し、陽イオン交換樹脂に吸着していた分子量(Mp)5.9kDa以下のケラチンペプチド液を得た。
(2)ペプチド混合物の定量
(2-1)ケラチンペプチド標準サンプルの調製
 (1)で得られたイオン交換樹脂に吸着していたケラチンペプチド液(溶出液)を凍結乾燥した。得られた乾燥物を0.75、0.375、0.188、0.094mg/mlとなるように調整し、ケラチンペプチド定量用の標準検量線に用いた。
(2-2)ケラチンペプチド量の測定
 (1)で得られたケラチンペプチドのうち、溶出液中のケラチンペプチドは、上記のケラチンペプチド定量用の標準検量線を用いる以外は、実施例1の(3-2)と同様にして行った。また、上澄み液(洗浄液を含む)中のケラチンペプチドは、上澄み液を凍結乾燥し、乾燥重量を測定した。
 回収した上澄み液中のケラチンペプチド(非吸着ペプチド)量は2.65g、収率53%であった。また、回収した溶出液中のケラチンペプチド(吸着ペプチド)量は0.20g、収率は4%であった。
(3)ペプチド混合物の分子量分布の解析
 (1)で得られたケラチンペプチドの分子量分布は、実施例1と同様の測定条件に従い、ゲル濾過クロマトグラフィーを用いて測定した。
 図9に、上澄み液中のケラチンペプチド(非吸着ペプチド)の分子量分布を示す(プルラン標準品分子量 M1:112kDa, M2:47.3kDa, M3:22.8kDa, M4:11.8kDa, M5:5.9kDa)。回収1~5回目、6~8回目のいずれもプルラン分子量換算5.9kDa以下に、シャープなピークが得られた。
 図10に、溶出液中のケラチンペプチド(吸着ペプチド)の分子量分布を示す。吸着ペプチドのピークトップは非吸着ペプチドと大差はなかった。
(実施例4)寒天の可溶化・低分子化
(1)固体酸触媒による寒天の可溶化・低分子化
 寒天粉末(関東化学)1gを90mlのRO水に懸濁し、陽イオン交換樹脂(TOYOPEARL SP-550C)10mlと混合し、よく撹拌した。100℃、24時間反応させ可溶化した後、冷却を行い、寒天オリゴ糖を含む上澄み液を回収した。次に寒天粉末を上記と同様にして1晩湿潤させた後、上記の上澄み液を回収後の陽イオン交換樹脂に添加し、RO水で100mlにメスアップした後、よく撹拌した。100℃、24時間反応させ、再び上澄み液を回収した。この操作をさらに3回繰り返した(回収1~5回完了)。寒天粉末各回等量ずつ合計5g使用した。
 残った陽イオン交換樹脂にRO水を加え、100mlにメスアップし、よく撹拌した。100℃、24時間反応させた後、上澄み液を回収した。この操作をさらに2回繰り返した(回収6~8回完了)。残った陽イオン交換樹脂を80mlのRO水で洗浄した。回収した上澄み液と洗浄液を混合し、陽イオン交換樹脂に吸着していない寒天オリゴ糖液を得た。
 図11に、回収した上澄み液中の寒天オリゴ糖(非吸着オリゴ糖)の量の推移を示した。
 次に、洗浄後のイオン交換樹脂に0.5M NaCl 50mlを添加し、樹脂から寒天オリゴ糖を含む分解物を溶出した。これをさらに2回繰り返し、全ての溶出液を混合し、陽イオン交換樹脂に吸着していた寒天オリゴ糖液を得た。
(2)オリゴ糖混合物の定量
 (1)で得られた寒天オリゴ糖のうち、上澄み液(洗浄液を含む)中の寒天オリゴ糖は、上澄み液を凍結乾燥し、乾燥重量を測定した。また、溶出液中の寒天オリゴ糖は、次に示すフェノール硫酸法により算出した。まず、サンプル1.0mlに5%フェノール液を1.0ml加え混合した。次に濃硫酸5.0mlを速やかに直接滴下するように加え混合した。室温にて10分放置し、その後は水浴中で10分冷却した。470nmにて吸光度を測定した。吸光度測定には三紳社製デジタル比色計mini photo 10を使用した。標準品には、50、100、150mg/mlに調製したグルコースを用い、標準検量線に用いた。
 上記の測定結果を表7に示す。回収した上澄み液中の寒天オリゴ糖(非吸着オリゴ糖)量は4.15g、収率83%であった。
Figure JPOXMLDOC01-appb-T000007
 また、回収した溶出液中に寒天オリゴ糖は検出されず、収率0%であった。
(3)オリゴ糖混合物の分子量分布の解析
 (1)で得られた寒天オリゴ糖の分子量分布はゲル濾過クロマトグラフィーを用いて測定した。測定には、カラムに東ソー社製TSKgel G-OLIGO-PW(7.8×300mm)を使用する以外は、実施例1と同様の測定条件に従い測定した。また、対照物質として分子量測定用標準品(昭和電工社製Shodex STANDARD P-82(分子量5.9kDa))、1糖(グルコース)、2糖(スクロース)、3糖(ラフィノース)用いた。
 図12に、上澄み液中の寒天オリゴ糖(非吸着オリゴ糖)の分子量分布を示す(対照物質M1: 5.9kDa(M1:昭和電工社製Shodex STANDARD P-82, M2:3糖(ラフィノース), M3:2糖(スクロース), M4:1糖(グルコース))。回収1~5回目のいずれも3糖(ラフィノース)以上にブロードなピークに得られた。
 本発明は、医薬品、飲食品、化粧品等の材料となる機能性ペプチドまたは機能性オリゴ糖の製造分野において利用できる。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。

Claims (8)

  1.  以下の工程を含む水不溶性高分子化合物の分解物の製造方法:
     (A)水不溶性高分子化合物に固体酸触媒を接触させた後、加熱処理を行い、上澄み液を回収する工程、
     (B)工程(A)に続いて、該固体酸触媒に水性媒体を加えて攪拌し、加熱処理した後、上澄み液を回収する工程、
     (C)工程(B)に続いて、該固体酸触媒を水性媒体にて洗浄し、洗浄液を回収する工程、
     (D)工程(A)で回収した上澄み液と、工程(B)で回収した上澄み液と、工程(C)の洗浄液を合わせて固体酸触媒に非吸着の画分を得る工程、
     (E)工程(D)に続いて、該固体酸触媒から吸着した成分を溶出し、溶出液を回収して固体酸触媒に吸着した画分を得る工程。
  2.  水不溶性高分子化合物が、水不溶性タンパク質または水不溶性多糖類である、請求項1に記載の方法。
  3.  水不溶性高分子化合物を固体酸触媒に接触させる前に水性媒体に浸潤させる工程をさらに含む、請求項1または2に記載の方法。
  4.  水不溶性高分子化合物の量が、固体酸触媒に対して質量比で0.01~0.5倍である、請求項1~3のいずれかに記載の方法。
  5.  前記工程(A)において、水不溶性高分子化合物と固体酸触媒の接触時の水性媒体の量を固体酸触媒に対して質量比で1~50倍となるように調整する、請求項1~4のいずれかに記載の方法。
  6.  前記工程(A)および(B)の加熱処理を、40~160℃で0.1~168時間行う、請求項1~5のいずれかに記載の方法。
  7.  前記工程(A)および(B)の操作を、非吸着画分における水不溶性高分子化合物の分解物の収率が50%以上になるまでそれぞれ複数回繰り返す、請求項1~6のいずれかに記載の方法。
  8.  固体酸触媒が、陽イオン交換体、ゼオライト、および珪藻土から成る群より選ばれる少なくとも1種である、請求項1~7のいずれかに記載の方法。
PCT/JP2014/083342 2013-12-25 2014-12-17 水不溶性高分子化合物の分解物の連続的製造方法 WO2015098634A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2014371389A AU2014371389B2 (en) 2013-12-25 2014-12-17 Continuous production method for decomposition product from water-insoluble macromolecular compound
US15/107,983 US10239915B2 (en) 2013-12-25 2014-12-17 Method for continuous production of degradation product of water-insoluble polymeric compound
CN201480071005.1A CN106061991B (zh) 2013-12-25 2014-12-17 水不溶性高分子化合物的分解物的连续制造方法
EP14873187.0A EP3088409B1 (en) 2013-12-25 2014-12-17 Continuous production method for decomposition product from water-insoluble macromolecular compound
JP2015554772A JP6431851B2 (ja) 2013-12-25 2014-12-17 水不溶性高分子化合物の分解物の連続的製造方法
KR1020167019784A KR102312148B1 (ko) 2013-12-25 2014-12-17 수불용성 고분자 화합물의 분해물의 연속적 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-267662 2013-12-25
JP2013267662 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098634A1 true WO2015098634A1 (ja) 2015-07-02

Family

ID=53478498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083342 WO2015098634A1 (ja) 2013-12-25 2014-12-17 水不溶性高分子化合物の分解物の連続的製造方法

Country Status (7)

Country Link
US (1) US10239915B2 (ja)
EP (1) EP3088409B1 (ja)
JP (1) JP6431851B2 (ja)
KR (1) KR102312148B1 (ja)
CN (1) CN106061991B (ja)
AU (1) AU2014371389B2 (ja)
WO (1) WO2015098634A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998096A (ja) * 1982-11-01 1984-06-06 ジエネンテク,インコ−ポレイテツド ヒト白血球インタ−フエロン製剤からの不純物の除去法
JPH04211100A (ja) * 1990-03-15 1992-08-03 Snow Brand Milk Prod Co Ltd 分泌性コンポネント含有組成物
JP2000212108A (ja) * 1999-01-14 2000-08-02 Tosoh Corp ホモアリルアルコ―ル類の製造方法
JP2007051191A (ja) 2005-08-17 2007-03-01 Fukui Prefecture クラゲ類からのコラーゲン回収方法
WO2007100052A1 (ja) * 2006-03-01 2007-09-07 National University Corporation Hokkaido University セルロースの加水分解および/または加水分解物の還元用触媒およびセルロースから糖アルコールの製造方法
WO2008001696A1 (fr) * 2006-06-26 2008-01-03 Tokyo Institute Of Technology Procédé de production d'un polysaccharide et/ou d'un monosaccharide par l'hydrolyse d'un autre polysaccharide
JP2008031106A (ja) 2006-07-28 2008-02-14 Fukui Prefectural Univ クラゲ類からのコラーゲン回収方法
JP2009120511A (ja) 2007-11-13 2009-06-04 Institute Of Physical & Chemical Research タンパク質加水分解方法および装置、ならびに、タンパク質分析方法および装置
JP2011046686A (ja) * 2009-06-10 2011-03-10 National Institute Of Advanced Industrial Science & Technology タンパク質リフォールディング条件設定キット
JP2011213634A (ja) * 2010-03-31 2011-10-27 Equos Research Co Ltd セルロースの分解方法及びセルロース分解用カーボン系固体酸触媒
JP2012031107A (ja) * 2010-07-30 2012-02-16 Koyo Chemical Kk ヘテロ二糖、キトビオース、及びジ‐n‐アセチルキトビオースの製造方法、並びにそれらの用途
JP2012041395A (ja) * 2010-08-16 2012-03-01 Kagawa Univ 糖鎖の製造方法
JP2012097118A (ja) * 1995-06-07 2012-05-24 Ortho-Mcneil Pharmaceutical Inc アゴニストペプチド二量体
JP2013006142A (ja) * 2011-06-23 2013-01-10 Toshiba Corp 植物系材料の加水分解用触媒及び糖類の製造方法
JP2013095708A (ja) 2011-11-01 2013-05-20 Nicca Chemical Co Ltd クラゲコラーゲンペプチド混合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958557B1 (ko) 2006-06-26 2010-05-18 도쿄엘렉트론가부시키가이샤 기판 처리 방법 및 기판 처리 장치
US8062428B2 (en) * 2007-11-06 2011-11-22 University Of Central Florida Research Foundation, Inc. Solid acid catalyzed hydrolysis of cellulosic materials
WO2010058590A1 (ja) * 2008-11-19 2010-05-27 独立行政法人理化学研究所 タンパク質の加水分解方法、加水分解装置、及び加水分解産物の分析装置
CN101692617A (zh) * 2009-08-26 2010-04-07 南京邮电大学 多径信号载波相位误差估计装置
CN101691617A (zh) 2009-09-11 2010-04-07 南京工业大学 一种植物秸秆降解制备可溶性糖的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998096A (ja) * 1982-11-01 1984-06-06 ジエネンテク,インコ−ポレイテツド ヒト白血球インタ−フエロン製剤からの不純物の除去法
JPH04211100A (ja) * 1990-03-15 1992-08-03 Snow Brand Milk Prod Co Ltd 分泌性コンポネント含有組成物
JP2012097118A (ja) * 1995-06-07 2012-05-24 Ortho-Mcneil Pharmaceutical Inc アゴニストペプチド二量体
JP2000212108A (ja) * 1999-01-14 2000-08-02 Tosoh Corp ホモアリルアルコ―ル類の製造方法
JP2007051191A (ja) 2005-08-17 2007-03-01 Fukui Prefecture クラゲ類からのコラーゲン回収方法
WO2007100052A1 (ja) * 2006-03-01 2007-09-07 National University Corporation Hokkaido University セルロースの加水分解および/または加水分解物の還元用触媒およびセルロースから糖アルコールの製造方法
WO2008001696A1 (fr) * 2006-06-26 2008-01-03 Tokyo Institute Of Technology Procédé de production d'un polysaccharide et/ou d'un monosaccharide par l'hydrolyse d'un autre polysaccharide
JP2008031106A (ja) 2006-07-28 2008-02-14 Fukui Prefectural Univ クラゲ類からのコラーゲン回収方法
JP2009120511A (ja) 2007-11-13 2009-06-04 Institute Of Physical & Chemical Research タンパク質加水分解方法および装置、ならびに、タンパク質分析方法および装置
JP2011046686A (ja) * 2009-06-10 2011-03-10 National Institute Of Advanced Industrial Science & Technology タンパク質リフォールディング条件設定キット
JP2011213634A (ja) * 2010-03-31 2011-10-27 Equos Research Co Ltd セルロースの分解方法及びセルロース分解用カーボン系固体酸触媒
JP2012031107A (ja) * 2010-07-30 2012-02-16 Koyo Chemical Kk ヘテロ二糖、キトビオース、及びジ‐n‐アセチルキトビオースの製造方法、並びにそれらの用途
JP2012041395A (ja) * 2010-08-16 2012-03-01 Kagawa Univ 糖鎖の製造方法
JP2013006142A (ja) * 2011-06-23 2013-01-10 Toshiba Corp 植物系材料の加水分解用触媒及び糖類の製造方法
JP2013095708A (ja) 2011-11-01 2013-05-20 Nicca Chemical Co Ltd クラゲコラーゲンペプチド混合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATOSHI SUGANUMA ET AL.: "Kotaisan o Mochiita Cellulose no Toka", DAI 100 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 17 September 2007 (2007-09-17), pages 85, XP008183771 *

Also Published As

Publication number Publication date
US20160326213A1 (en) 2016-11-10
CN106061991B (zh) 2019-12-13
KR20160102256A (ko) 2016-08-29
JPWO2015098634A1 (ja) 2017-03-23
AU2014371389B2 (en) 2019-12-05
CN106061991A (zh) 2016-10-26
AU2014371389A1 (en) 2016-07-21
EP3088409A4 (en) 2017-11-08
JP6431851B2 (ja) 2018-11-28
US10239915B2 (en) 2019-03-26
KR102312148B1 (ko) 2021-10-12
EP3088409B1 (en) 2019-02-06
EP3088409A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
CN108823273B (zh) 一种具有抗氧化活性的牡丹籽粕多肽及其制备方法和应用
Tang et al. Recovery of protein from brewer's spent grain by ultrafiltration
CN110699411B (zh) 一种蛋壳膜多肽的制备方法
CN110357983B (zh) 一种海参岩藻聚糖硫酸酯和硫酸软骨素低聚糖的制备方法
KR20160126095A (ko) 쌀 단백질 조성물과 그 제조방법
Zhao et al. Extracting xylooligosaccharides in wheat bran by screening and cellulase assisted enzymatic hydrolysis
Choi et al. Enzymatic extraction of starch from broken rice using freeze‐thaw infusion with food‐grade protease
CN101319208A (zh) 一种菠萝蛋白酶的制造方法
CN101693746B (zh) 应用膜分离分级制备不同分子量大豆多糖的方法
JP6431851B2 (ja) 水不溶性高分子化合物の分解物の連続的製造方法
CN101845089B (zh) 一种适合规模化生产眼镜蛇蛇毒神经毒素并降低神经毒性的方法
US4552845A (en) Method for separating lysozyme from egg-white
CN101362792B (zh) 乳铁蛋白的亲和分离材料和乳铁蛋白的亲和纯化方法
KR100390529B1 (ko) 참치정소로부터 핵산복합물질을 추출하는 방법 및 이방법에 의해 얻어진 핵산복합물질
CN110590968B (zh) 一种银耳低聚糖的制备方法及其应用
CN115368486A (zh) 一种三元低共熔溶剂及其在克氏原螯虾壳甲壳素提取中的应用
CN107163163A (zh) 一种硫酸软骨素产品的加工方法
Srivastav et al. Hyaluronic Acid Generated by Streptococcus zooepidemicus is Recovered Utilising PEG Citrate Aqueous Two Phase Systems
Wei et al. The Extraction, Separation Technology, and New Product Development of Sulfated Polysaccharides from Sea Cucumber
Yan Three phase partitioning-based strategies for highly efficient separation of bioactive polysaccharides from natural resources
CN116655738A (zh) 基于菌酶联合制备的蛋壳膜抗氧化肽及其制备方法和应用
CN112920255B (zh) 一种新型蓝圆鲹黄嘌呤氧化酶抑制肽及其制备方法
CN115353574B (zh) 高硫酸化度的硫酸软骨素cs-e及其提取方法
CN112521430B (zh) 一种适用于化妆品的硫酸化海带寡糖的规模化制备方法
Sarkar et al. Integrated approach for the sustainable extraction of carbohydrates and proteins from microalgae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107983

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167019784

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014371389

Country of ref document: AU

Date of ref document: 20141217

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014873187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873187

Country of ref document: EP