WO2015083572A1 - 圧電デバイス - Google Patents

圧電デバイス Download PDF

Info

Publication number
WO2015083572A1
WO2015083572A1 PCT/JP2014/081018 JP2014081018W WO2015083572A1 WO 2015083572 A1 WO2015083572 A1 WO 2015083572A1 JP 2014081018 W JP2014081018 W JP 2014081018W WO 2015083572 A1 WO2015083572 A1 WO 2015083572A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
piezoelectric
piezoelectric device
width
piezoelectric film
Prior art date
Application number
PCT/JP2014/081018
Other languages
English (en)
French (fr)
Inventor
圭一 梅田
今西 敏雄
ヴィレ カーヤカリ
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015083572A1 publication Critical patent/WO2015083572A1/ja
Priority to US15/173,810 priority Critical patent/US10312427B2/en
Priority to US16/385,621 priority patent/US20190245133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • H04R17/025Microphones using a piezoelectric polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/308Membrane type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a piezoelectric device.
  • Electronic devices such as mobile phones may be equipped with a plurality of microphones (hereinafter referred to as “microphones”).
  • a mobile phone may be provided with a microphone for detecting ambient sound (environmental sound) for noise canceling in addition to a microphone for detecting a transmission sound during a call.
  • ambient sound environmental sound
  • noise canceling in addition to a microphone for detecting a transmission sound during a call.
  • MEMS microphones Micro Electro Mechanical Systems
  • the present invention has been made in view of such circumstances, and an object thereof is to improve the sensitivity of the MEMS microphone.
  • the piezoelectric device is disposed along a portion supported by the support portion on the diaphragm, a support portion that supports at least a part of the end portion of the diaphragm,
  • the piezoelectric film, the lower electrode disposed on the surface of the piezoelectric film on the vibration plate side, and the surface on the opposite side of the vibration film of the piezoelectric film, the width along the portion being narrower than the width of the portion.
  • an upper electrode provided.
  • the sensitivity of the MEMS microphone can be improved.
  • FIG. 1 is a view showing an appearance of a piezoelectric device according to an embodiment of the present invention.
  • the piezoelectric device 100 is a device for configuring a MEMS microphone that converts sound pressure into an electrical signal, and includes a diaphragm 110, a support unit 111, and a piezoelectric unit 112.
  • the piezoelectric device 100 is divided into two by a minute slit 113 of about 1 ⁇ m or less, for example.
  • the diaphragm 110 is a thin film that vibrates due to sound pressure, and is formed of silicon (Si).
  • the diaphragm 110 has a substantially square shape, and lower portions of a pair of opposing sides 114 and 115 are supported by the support portion 111. That is, the diaphragm 110 has a double-supported beam structure.
  • Si forming the vibration plate 110 is a degenerate semiconductor and has a function as a lower electrode of the piezoelectric portion 112 as described later. Note that a degenerate semiconductor is one in which a dopant is implanted into Si at a high concentration (1 ⁇ 10 19 cm ⁇ 3 or more).
  • a degenerate semiconductor can be formed by implanting phosphorus (P), arsenic (As), or antimony (Sb) as an n-type dopant (donor) into Si at 1 ⁇ 10 19 cm ⁇ 3 or more. it can. Note that a degenerate semiconductor may be formed by injecting a p-type dopant (acceptor) into Si.
  • the piezoelectric unit 112 is disposed along a portion of the diaphragm 111 supported by the support unit 111.
  • the width of the piezoelectric portion 112 (the width of a piezoelectric film 210 described later) (A) is the width (B) of the portion of the diaphragm 111 supported by the support portion 111 (that is, the side 114).
  • the width is narrower.
  • the width (A) of the piezoelectric portion 112 can be about 100 ⁇ m
  • the width (B) of the portion of the vibrating portion 111 supported by the support portion 111 can be about 300 ⁇ m. In the configuration illustrated in FIG.
  • the four piezoelectric portions 112 are disposed on the vibration plate 110, but the number of the piezoelectric portions 112 is not limited thereto.
  • the end of the piezoelectric portion 112 is disposed on the side 114 or 115, but the end may be disposed away from the side 114 or 115.
  • FIG. 2 is a cross-sectional view of the piezoelectric device 100 taken along line XY shown in FIG.
  • the support part 111 includes a base body 200 and an insulating layer 201.
  • the base body 200 is made of, for example, silicon (Si).
  • the insulating layer 201 is formed of, for example, silicon oxide (SiO 2 ).
  • the diaphragm 110 is formed on the support portion 111 formed in this way.
  • the piezoelectric portion 112 disposed along the portion of the diaphragm 110 supported by the support portion 111 includes a piezoelectric film 210, an upper electrode 211, and wirings 212 and 213.
  • the piezoelectric film 210 is disposed on the diaphragm 110 so as to vibrate with the vibration of the diaphragm 110.
  • the piezoelectric film 210 is a piezoelectric thin film that converts a force applied by vibration into a voltage, and is formed of, for example, scandium aluminum nitride (ScAlN).
  • ScAlN is obtained by substituting a part of aluminum (Al) in aluminum nitride (AlN) with scandium (Ac).
  • Al is replaced with Sc so that Sc is about 40 atomic% when the total atomic concentration of Al atoms and Sc atoms is 100 atomic%. Can be.
  • the thickness of the piezoelectric film 210 can be set to, for example, about 500 nm. Further, the ratio of the width (D) of the vibration part of the piezoelectric film 210 to the width (C) from the center of the vibration plate 110 to the support part 111 can be, for example, about 40%. For example, the width C can be about 300 ⁇ m and the width D can be about 120 ⁇ m.
  • An upper electrode 211 is disposed above the piezoelectric film 210.
  • the upper electrode 211 is formed using, for example, aluminum (Al) and can have a thickness of about 50 nm. Further, the upper electrode 211 can have a structure having a tensile stress. Since the piezoelectric film 210 made of ScAlN has a compressive stress, by giving the upper electrode 211 a tensile stress, the stress in the piezoelectric portion 112 is corrected and deformation of the diaphragm 110 can be suppressed.
  • the wiring 212 is electrically connected to the upper electrode 211.
  • the wiring 213 is electrically connected to the lower electrode (the diaphragm 110).
  • the wirings 212 and 213 are formed using, for example, gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), or the like.
  • the piezoelectric film 210 vibrates with the vibration of the diaphragm 110 due to sound pressure.
  • a voltage corresponding to the vibration of the piezoelectric film 210 is output via the wirings 212 and 213 of the piezoelectric body 112.
  • the piezoelectric device 100 is provided with four piezoelectric bodies 112. These four piezoelectric bodies 112 can be electrically connected in parallel as shown in FIG. 3, for example.
  • the connection shown in FIG. 3A is an example, and various connection forms can be adopted as necessary.
  • four piezoelectric bodies 112 may be connected in series.
  • a connection form in which series and parallel connections are combined may be used.
  • the width of the piezoelectric portion 112 (width of the piezoelectric film 210) (A) is the width of the portion of the diaphragm 111 supported by the support portion 111 (B ) (That is, the width of the side 114).
  • the sound pressure is reduced.
  • the stress applied to the piezoelectric portion 112 is increased by the vibration of the diaphragm 110 due to the above.
  • the stress applied per unit area of the piezoelectric part 112 increases, and the voltage sensitivity and generated energy in the piezoelectric part 112 can be increased. That is, the sensitivity of the MEMS microphone configured using the piezoelectric device 100 can be improved.
  • FIG. 4 is a diagram illustrating an example of the relationship between the width of the piezoelectric portion 112 and the voltage sensitivity in the piezoelectric device 100.
  • the horizontal axis represents the ratio (%) of the width (A) of the piezoelectric part 112 to the width (B) of the diaphragm 110
  • the vertical axis represents the output voltage per sound pressure (Pa) in the piezoelectric part 112 ( mV) is a voltage sensitivity (mV / Pa).
  • the voltage sensitivity increases as the ratio of the width of the piezoelectric portion 112 to the diaphragm 110 decreases. Therefore, in the piezoelectric device 100 of this embodiment, voltage sensitivity can be improved.
  • FIG. 6 is a diagram showing an example of the relationship between the width of the piezoelectric portion 112 and the generated energy.
  • the horizontal axis represents the ratio (%) of the width (A) of the piezoelectric part 112 to the width (B) of the diaphragm 110
  • the vertical axis represents the generated energy per sound pressure (fJ / Pa) in the piezoelectric part 112. ).
  • the generated energy increases as the ratio of the width of the piezoelectric portion 112 to the diaphragm 110 decreases. Therefore, in the piezoelectric device 100 of this embodiment, the generated energy can be increased.
  • the width (A) of the piezoelectric portion 112 is determined in consideration of a trade-off between improvement in voltage sensitivity and increase in impedance.
  • the voltage sensitivity in the piezoelectric device 100 also changes.
  • the diaphragm 110 is formed of a degenerate semiconductor, changes in the Young's modulus of the diaphragm 110 due to temperature can be suppressed. That is, changes in voltage sensitivity due to temperature in the piezoelectric device 100 can be suppressed.
  • FIG. 6 is a diagram illustrating an example of the relationship between temperature and Young's modulus.
  • the horizontal axis represents temperature (° C.) and the vertical axis represents Young's modulus (GPa).
  • FIG. 6 shows three temperature characteristics (P 1) to (P 4) with different doping concentrations in the diaphragm 110.
  • P1 in FIG. 6 shows temperature characteristics when Si is not doped.
  • P2 in FIG. 6 shows temperature characteristics when an n-type dopant is implanted into Si at a concentration of 1 ⁇ 10 19 cm ⁇ 3 .
  • P3 in FIG. 6 shows temperature characteristics when an n-type dopant is implanted into Si at a concentration of 5 ⁇ 10 19 cm ⁇ 3 .
  • the piezoelectric device 100 shows temperature characteristics when an n-type dopant is implanted into Si at a concentration of 8 ⁇ 10 19 cm ⁇ 3 .
  • the doping concentration in Si is 1 ⁇ 10 19 cm ⁇ 3 or more, that is, a degenerate semiconductor. Changes in the Young's modulus due to temperature can be suppressed. Therefore, by forming the diaphragm 110 with a degenerate semiconductor, it is possible to suppress changes in voltage sensitivity of the piezoelectric device 100 due to temperature.
  • FIG. 7 is a diagram illustrating another configuration example of the piezoelectric device.
  • symbol is attached
  • the lower portions of all the sides 710 to 713 of the diaphragm 110 are supported by the support portion 111. That is, the diaphragm 110 has an all-round support beam structure.
  • the cross-sectional configuration along the line XY shown in FIG. 7 is the same as the configuration shown in FIG.
  • the piezoelectric device 100 has a double-supported beam structure in which a diaphragm 113 is provided with a slit 113. Therefore, in the piezoelectric device 100, the diaphragm 110 can be easily bent and voltage sensitivity can be improved. On the other hand, the diaphragm 110 is deformed by the stress of the piezoelectric film 210 and the upper electrode 211, and the amount of sound leakage from the slit 113 is changed. However, the voltage sensitivity may vary. On the other hand, as shown in FIG. 7, the piezoelectric device 700 is not provided with the slit 113 in the piezoelectric device 100. Therefore, in the piezoelectric device 700, sound leakage from the slit does not occur, and variations in voltage sensitivity can be suppressed.
  • FIG. 8 is a diagram showing another configuration example of the piezoelectric device.
  • symbol is attached
  • a slit 810 is provided along a substantially center line 810 that is substantially parallel to the sides 114 and 115 supported by the support portion 111.
  • the diaphragm 110 is divided into four by the slit 810. That is, the diaphragm 110 has a cantilever structure.
  • the diaphragm 110 can be more easily bent and the voltage sensitivity can be improved than in the case of the piezoelectric device 100 shown in FIG.
  • FIG. 9 is a diagram illustrating an example of a configuration in which the vicinity of the center of the diaphragm 110 is thinned in the piezoelectric device 100 illustrated in FIG.
  • the thickness of the region 901 near the center can be made thinner than the thickness of the region 900 in which the piezoelectric film 210 is disposed.
  • the diaphragm 110 can be easily bent and the voltage sensitivity can be improved.
  • the slit 810 in the piezoelectric device 800 shown in FIG. 8 is not provided, deformation of the diaphragm 110 can be suppressed and variation in voltage sensitivity can be suppressed.
  • the voltage sensitivity can be improved without affecting the voltage output characteristics of the piezoelectric portion 112 by reducing only the region 901 near the center without changing the thickness of the region 900.
  • the region near the center of the diaphragm 110 may be thinned.
  • FIG. 10 is a diagram showing another configuration example of the piezoelectric device.
  • symbol is attached
  • the diaphragm 110 has a substantially circular shape. Also in this case, the width (A) of the piezoelectric portion 112 is narrower than the width (B) of the portion of the diaphragm 111 that is supported by the support portion 111. As described above, the diaphragm 110 is not limited to a substantially square shape, and may have an arbitrary shape. In FIG.
  • the four piezoelectric portions 112 are disposed on the vibration plate 110, but the number of the piezoelectric portions 112 is not limited to this and may be an arbitrary number.
  • three piezoelectric portions 112 may be disposed on a diaphragm 110 having a substantially circular shape.
  • the piezoelectric device is formed such that the width (A) of the piezoelectric portion 110 is narrower than the width (B) of the portion of the diaphragm 111 supported by the support portion 111.
  • the stress applied per unit area of the piezoelectric part 112 increases, and the voltage sensitivity and generated energy in the piezoelectric part 112 can be increased. That is, the sensitivity of the MEMS microphone configured using the piezoelectric device 100 can be improved.
  • the diaphragm 110 can be formed of a degenerate semiconductor. Therefore, the change by the temperature of the Young's modulus of the diaphragm 110 can be suppressed, and the change by the temperature of the voltage sensitivity in the piezoelectric device can be suppressed.
  • the diaphragm 110 formed of a degenerate semiconductor can be used as the lower electrode of the piezoelectric portion 112.
  • the size of the piezoelectric device 100 can be reduced as compared with the case where the lower electrode is formed separately from the diaphragm 110.
  • the diaphragm 110 has a double-supported beam structure, whereby the diaphragm 110 can be easily bent and the voltage sensitivity in the piezoelectric device can be improved.
  • the diaphragm 110 when the diaphragm 110 has a double-supported beam structure, the substantially center line 810 that is substantially parallel to the sides 114 and 115 supported by the support portion 111.
  • the diaphragm 110 can be separated. Thereby, the diaphragm 110 can be further easily bent, and the voltage sensitivity in the piezoelectric device can be improved.
  • the diaphragm 110 has a full support beam structure, thereby suppressing deformation of the diaphragm 110, and variation in voltage sensitivity due to deformation of the diaphragm 110. Can be suppressed.
  • the diaphragm 110 by making the region 901 near the center of the diaphragm 110 thinner, the diaphragm 110 can be easily bent and the voltage sensitivity in the piezoelectric device can be improved. it can.
  • the upper electrode 211 formed on the upper side of the piezoelectric film 210 having compressive stress can be given tensile stress. Thereby, the stress in the piezoelectric portion 112 is corrected, and deformation of the diaphragm 110 can be suppressed.
  • this embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • the piezoelectric device is used as a MEMS microphone by vibrating the diaphragm with sound pressure.
  • the use of the piezoelectric device is not limited to this, and any medium around the diaphragm is used. It can be used as a sensor for detecting the vibration of the.
  • Piezoelectric device 110 Diaphragm 111 Support part 112 Piezoelectric part 113,810 Slit 200 Base 201 Insulating layer 210 Piezoelectric film 211 Upper electrode 212, 213 Wiring

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Micromachines (AREA)

Abstract

 MEMSマイクの感度を向上させる。圧電デバイスは、振動板と、振動板の端部の少なくとも一部を支持する支持部と、振動板上において、支持部によって支持された部分に沿って配設され、該部分に沿う幅が該部分の幅より狭い、圧電体膜と、圧電体膜の振動板側の面に配設された下部電極と、圧電体膜の振動板とは反対側の面に配設された上部電極と、を備える。

Description

圧電デバイス
 本発明は、圧電デバイスに関する。
 携帯電話等の電子機器には、複数のマイクロフォン(以下、「マイク」という。)が搭載されることがある。例えば、携帯電話には、通話時の送話音を検出するためのマイクに加えて、ノイズキャンセリング用に周囲の音(環境音)を検出するためのマイクが設けられていることがある。このように、電子機器に複数のマイクを搭載することが多くなるにつれて、マイクの小型化への要求は高まっている。
 このような背景のもと、近年、MEMS(Micro Electro Mechanical Systems)技術を用いて製造されたマイク(以下、「MEMSマイク」という。)が注目されている(例えば、特許文献1)。
特表2004-506394号公報
 ところで、電子機器にマイクを搭載するにあたっては、マイクのサイズの小型化に加えて、マイクの高感度化も要求される。従って、MEMSマイクにおいても、感度を向上させることが求められている。
 本発明はこのような事情に鑑みてなされたものであり、MEMSマイクの感度を向上させることを目的とする。
 本発明の一側面に係る圧電デバイスは、振動板と、振動板の端部の少なくとも一部を支持する支持部と、振動板上において、支持部によって支持された部分に沿って配設され、該部分に沿う幅が該部分の幅より狭い、圧電体膜と、圧電体膜の振動板側の面に配設された下部電極と、圧電体膜の振動板とは反対側の面に配設された上部電極と、を備える。
 本発明によれば、MEMSマイクの感度を向上させることができる。
本発明の一実施形態である圧電デバイスの外観を示す図である。 圧電デバイスの断面図である。 圧電デバイスの電極の配線の一例を示す図である。 圧電デバイスの電極の配線の他の一例を示す図である。 圧電デバイスの電極の配線の他の一例を示す図である。 圧電部の幅と電圧感度との関係の一例を示す図である。 圧電部の幅と発生エネルギーとの関係の一例を示す図である。 温度とヤング率との関係の一例を示す図である。 圧電デバイスの他の構成例を示す図である。 圧電デバイスの他の構成例を示す図である。 振動板の中央付近を薄くした構成の一例を示す図である。 圧電デバイスの他の構成例を示す図である。 圧電デバイスの他の構成例を示す図である。
 以下、図面を参照して本発明の一実施形態について説明する。図1は、本発明の一実施形態である圧電デバイスの外観を示す図である。圧電デバイス100は、音圧を電気信号に変換するMEMSマイクを構成するためのデバイスであり、振動板110、支持部111、及び圧電部112を含んでいる。また、圧電デバイス100は、例えば1μm以下程度の微小なスリット113によって2分割されている。
 振動板110は、音圧により振動する薄膜であり、シリコン(Si)により形成される。振動板110は、略方形の形状を有しており、対向する1組の辺114,115の下部が、支持部111によって支持される。即ち、振動板110は、両持ち梁構造となっている。振動板110を形成するSiは、縮退半導体であり、後述するように、圧電部112の下部電極としての機能を有する。なお、縮退半導体とは、Siにドーパントを高濃度(1×1019cm-3以上)注入したものである。具体的には、Siに、n型ドーパント(ドナー)としてリン(P)やヒ素(As)、アンチモン(Sb)を1×1019cm-3以上注入することにより、縮退半導体を形成することができる。なお、Siにp型ドーパント(アクセプタ)を注入することにより縮退半導体を形成してもよい。
 圧電部112は、振動板111上における、支持部111によって支持された部分に沿って配設される。図1に示すように、圧電部112の幅(後述する圧電体膜210の幅)(A)は、振動板111における支持部111によって支持された部分の幅(B)(即ち、辺114の幅)より狭くなっている。例えば、圧電部112の幅(A)は100μm程度、振動部111における支持部111によって支持された部分の幅(B)は300μm程度とすることができる。なお、図1に示す構成では、振動板110上に4つの圧電部112が配設されているが、圧電部112の数はこれに限られない。また、図1に示す構成では、圧電部112は、端部が辺114または辺115の上に配設されているが、端部が辺114または辺115から離れて配設されてもよい。
 図2は、図1に示すX-Y線における、圧電デバイス100の断面図である。支持部111は、基体200及び絶縁層201を含んでいる。
 基体200は、例えば、シリコン(Si)により形成される。また、絶縁層201は、例えば、酸化シリコン(SiO)により形成される。このように形成される支持部111の上に、振動板110が形成される。
 振動板110上における、支持部111によって支持された部分に沿って配設された圧電部112は、圧電体膜210、上部電極211、配線212,213を含んでいる。
 圧電体膜210は、振動板110の振動に伴って振動するように振動板110上に配設される。圧電体膜210は、振動によって加えられる力を電圧に変換する圧電体の薄膜であり、例えば、窒化スカンジウムアルミニウム(ScAlN)により形成される。ScAlNは、窒化アルミニウム(AlN)におけるアルミニウム(Al)の一部をスカンジウム(Ac)に置換したものである。例えば、圧電体膜210に用いるScAlNは、Alの原子数とScの原子数を合計した原子濃度を100原子%としたときに、Scが40原子%程度となるようにAlをScに置換したものとすることができる。圧電体膜210の厚さは、例えば、500nm程度とすることができる。また、振動板110の中央から支持部111までの幅(C)に対する、圧電体膜210の振動部分の幅(D)の割合は、例えば40%程度とすることができる。例えば、幅Cを300μm程度、幅Dを120μm程度とすることができる。
 圧電体膜210の上側には、上部電極211が配設される。上部電極211は、例えば、アルミニウム(Al)を用いて形成され、50nm程度の厚さとすることができる。また、上部電極211は、引張応力を有する構造とすることができる。ScAlNによる圧電体膜210は圧縮応力を有するため、上部電極211に引張応力を持たせることにより、圧電部112における応力が補正され、振動板110の変形を抑制することができる。
 配線212は、上部電極211と電気的に接続される。また、配線213は、下部電極(振動板110)と電気的に接続される。配線212,213は、例えば、金(Au)や白金(Pt)、チタン(Ti)、アルミニウム(Al)等を用いて形成される。
 以上に説明した構成の圧電デバイス100においては、音圧による振動板110の振動に伴って、圧電体膜210が振動する。そして、圧電体膜210の振動に応じた電圧が圧電体112の配線212,213を介して出力される。図1に示したように、圧電デバイス100には、4つの圧電体112が設けられている。これら4つの圧電体112は、例えば、図3に示すように、電気的に並列に接続することができる。なお、図3Aに示した接続は一例であり、必要に応じて様々な接続形態を採用することができる例えば、4つの圧電体112を直列に接続してもよい。また、例えば、図3Bや図3Cに示すように、直列と並列の接続を組合せた接続形態でもよい。
 また、圧電デバイス100においては、図1に示したように、圧電部112の幅(圧電体膜210の幅)(A)は、振動板111における支持部111によって支持された部分の幅(B)(即ち、辺114の幅)より狭くなっている。このような構造により、圧電部112が振動板110と同一の幅を有する(即ち、圧電部112の幅(A)=振動板110の幅(B)である)場合と比較して、音圧による振動板110の振動によって圧電部112に加えられる応力が大きくなる。従って、圧電部112の単位面積あたりに加えられる応力が大きくなり、圧電部112における電圧感度や発生エネルギーを高めることができる。即ち、圧電デバイス100を用いて構成されるMEMSマイクの感度を向上させることができる。
 図4は、圧電デバイス100における、圧電部112の幅と電圧感度との関係の一例を示す図である。図4において、横軸は、振動板110の幅(B)に対する圧電部112の幅(A)の割合(%)、縦軸は、圧電部112における、音圧(Pa)あたりの出力電圧(mV)を示す電圧感度(mV/Pa)である。図4に示すように、振動板110に対する圧電部112の幅の割合が小さくなるにつれて、電圧感度が高くなっている。従って、本実施形態の圧電デバイス100では、電圧感度を向上させることができる。
 また、図6は、圧電部112の幅と発生エネルギーとの関係の一例を示す図である。図5において、横軸は、振動板110の幅(B)に対する圧電部112の幅(A)の割合(%)、縦軸は、圧電部112における、音圧あたりの発生エネルギー(fJ/Pa)である。図5に示すように、振動板110に対する圧電部112の幅の割合が小さくなるにつれて、発生エネルギーが大きくなっている。従って、本実施形態の圧電デバイス100では、発生エネルギーを大きくすることができる。
 なお、圧電部112の幅を細くすると、圧電部112における静電容量値が小さくなる。静電容量値が小さくなると、インピーダンス上昇によって増幅回路とのインピーダンスミスマッチが生じたり、寄生容量の影響を受けやすくなったりすることがある。そのため、圧電部112の幅(A)は、電圧感度の向上と、インピーダンス上昇等とのトレードオフを考慮したうえで、決定される。
 ところで、振動板110のヤング率が温度によって変化すると、圧電デバイス100における電圧感度も変化することとなる。この点について、本実施形態では、振動板110が縮退半導体によって形成されているため、振動板110のヤング率の温度による変化を抑制することができる。即ち、圧電デバイス100における電圧感度の温度による変化を抑制することができる。
 図6は、温度とヤング率との関係の一例を示す図である。図6において、横軸は温度(℃)、縦軸はヤング率(GPa)である。図6には、振動板110におけるドーピング濃度の異なる3つの温度特性(P1)~(P4)が示されている。図6の(P1)は、Siへのドープが行われていない場合の温度特性を示している。図6の(P2)は、Siに対してn型ドーパントを1×1019cm-3の濃度で注入した場合の温度特性を示している。
図6の(P3)は、Siに対してn型ドーパントを5×1019cm-3の濃度で注入した場合の温度特性を示している。図6の(P4)は、Siに対してn型ドーパントを8×1019cm-3の濃度で注入した場合の温度特性を示している。図6に示すように、Siへのドープが行われていない場合(P1)のヤング率と比較して、Siにおけるドーピング濃度を1×1019cm-3以上、即ち縮退半導体とすることにより、ヤング率の温度による変化を抑制することができる。従って、振動板110を縮退半導体で形成することにより、圧電デバイス100における電圧感度の温度による変化を抑制することができる。
 図7は、圧電デバイスの他の構成例を示す図である。なお、図1に示した圧電デバイス100と同一の構成要素については、同一の符号を付して説明を省略する。図7に示すように、圧電デバイス700においては、振動板110の全ての辺710~713の下部が、支持部111によって支持されている。即ち、振動板110は、全周支持梁構造となっている。なお、図7に示すX-Y線における断面の構成は、図2に示した構成と同等である。
 図1に示した圧電デバイス100においては、振動板110にスリット113を設けた両持ち梁構造となっている。そのため、圧電デバイス100では、振動板110がたわみやすく、電圧感度を向上させることができる一方、圧電膜210や上部電極211の応力によって振動板110が変形し、スリット113からの音漏れ量が変化し、電圧感度にばらつきが生じる場合がある。これに対して、図7に示すように、圧電デバイス700では、圧電デバイス100におけるスリット113が設けられていない。従って、圧電デバイス700では、スリットからの音漏れが発生せず、電圧感度のばらつきを抑制することができる。
 図8は、圧電デバイスの他の構成例を示す図である。なお、図1に示した圧電デバイス100と同一の構成要素については、同一の符号を付して説明を省略する。図8に示すように、圧電デバイス800においては、スリット113に加えて、支持部111により支持される辺114,115と略平行な略中心線810に沿うスリット810が設けられている。このスリット810により、振動板110は4分割されている。即ち、振動板110は、片持ち梁構造となっている。このように、振動板110を片持ち梁構造とすることにより、図1に示した圧電デバイス100の場合よりも、振動板110をさらにたわみやすくし、電圧感度を向上させることができる。
 図9は、図1に示した圧電デバイス100において、振動板110の中央付近を薄くした構成の一例を示す図である。図9に示すように、振動板110において、圧電体膜210が配設された領域900の厚さより、中央付近の領域901の厚さを薄く形成することができる。このように、振動板110の中央付近の領域901を薄くすることにより、振動板110をたわみやすくし、電圧感度を向上させることができる。また、図8に示した圧電デバイス800におけるスリット810が設けられていないため、振動板110の変形を抑制し、電圧感度のばらつきを抑制することができる。
 なお、振動板110における、圧電体膜210が配設された領域900の厚さを変更すると、振動板110の振動に伴う圧電体膜210の伸縮の状態が変化し、圧電部112の電圧出力特性が変化する。具体的には、振動板110における、圧電体膜210が配設された領域900の厚さを薄くすると、例えば圧電体膜210が下側にたわんだ際に、圧電体膜210の下側の収縮量が大きくなり、圧電体膜210の上側の伸張による電圧出力が相殺され、圧電部112からの出力電圧が低くなってしまうことがある。そのため、領域900の厚さは変更せずに、中央付近の領域901のみ薄くすることにより、圧電部112の電圧出力特性に影響を及ぼすことなく、電圧感度を向上させることができる。
 また、図1に示した構成に限られず、図7や図8に示した構成においても、振動板110の中央付近の領域を薄くすることとしてもよい。
 図10は、圧電デバイスの他の構成例を示す図である。なお、図1に示した圧電デバイス100と同一の構成要素については、同一の符号を付して説明を省略する。図10に示すように、圧電デバイス1000においては、振動板110は略円形の形状を有している。この場合においても、圧電部112の幅(A)は、圧電部112あたりの、振動板111における支持部111によって支持された部分の幅(B)より狭くなっている。このように、振動板110は、略方形の形状に限られず、任意の形状とすることができる。なお、図10においては振動板110上に4つの圧電部112が配設されているが、圧電部112の数はこれに限らず、任意の数とすることができる。例えば、図11に示すように、略円形の形状を有する振動板110の上に、3つの圧電部112を配設することとしてもよい。
 以上、本発明の実施形態について説明した。本実施形態によれば、圧電デバイスは、圧電部110の幅(A)が、振動板111における支持部111によって支持された部分の幅(B)より狭くなるように形成されている。これにより、圧電部112の単位面積あたりに加えられる応力が大きくなり、圧電部112における電圧感度や発生エネルギーを高めることができる。即ち、圧電デバイス100を用いて構成されるMEMSマイクの感度を向上させることができる。
 また、本実施形態によれば、振動板110を縮退半導体により形成することができる。これにより、振動板110のヤング率の温度による変化を抑制し、圧電デバイスにおける電圧感度の温度による変化を抑制することができる。
 また、本実施形態によれば、縮退半導体により形成される振動板110を圧電部112の下部電極として用いることができる。これにより、振動板110とは別に下部電極を形成する場合と比較して、圧電デバイス100のサイズを小さくすることが可能となる。
 また、本実施形態によれば、図1に示したように、振動板110を両持ち梁構造とすることにより、振動板110をたわみやすくし、圧電デバイスにおける電圧感度を向上させることができる。
 さらに、本実施形態によれば、図8に示したように、振動板110を両持ち梁構造とする場合において、支持部111により支持される辺114,115と略平行な略中心線810により、振動板110を分離した構成とすることができる。これにより、振動板110をさらにたわみやすくし、圧電デバイスにおける電圧感度を向上させることができる。
 また、本実施形態によれば、図7に示したように、振動板110を全周支持梁構造とすることにより、振動板110の変形を抑制し、振動板110の変形による電圧感度のばらつきを抑制することができる。
 また、本実施形態によれば、図9に示したように、振動板110の中央付近の領域901を薄くすることにより、振動板110をたわみやすくし、圧電デバイスにおける電圧感度を向上させることができる。
 また、本実施形態によれば、圧縮応力を有する圧電体膜210の上側に形成された上部電極211に引張応力を持たせることができる。これにより、圧電部112における応力が補正され、振動板110の変形を抑制することができる。
 なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。
 例えば、本実施形態では、圧電デバイスは、音圧により振動板を振動させることによりMEMSマイクとして用いる例を説明したが、圧電デバイスの用途はこれに限られず、振動板の周囲にある任意の媒体の振動を検出するセンサに用いることが可能である。
 100,700,800,1000 圧電デバイス
 110 振動板
 111 支持部
 112 圧電部
 113,810 スリット
 200 基体
 201 絶縁層
 210 圧電体膜
 211 上部電極
 212,213 配線

Claims (8)

  1.  振動板と、
     前記振動板の端部の少なくとも一部を支持する支持部と、
     前記振動板上において、前記支持部によって支持された部分に沿って配設され、該部分に沿う幅が該部分の幅より狭い、圧電体膜と、
     前記圧電体膜の前記振動板側の面に配設された下部電極と、
     前記圧電体膜の前記振動板とは反対側の面に配設された上部電極と、
     を備える圧電デバイス。
  2.  請求項1に記載の圧電デバイスであって、
     前記振動板は、縮退半導体により形成される、
     圧電デバイス。
  3.  請求項2に記載の圧電デバイスであって、
     前記振動板は、前記下部電極として機能する、
     圧電デバイス。
  4.  請求項1~3の何れか一項に記載の圧電デバイスであって、
     前記振動板は略方形の形状を有し、
     前記支持部は、前記振動板における対向する1組の辺を支持するように形成され、
     前記圧電体膜は、前記振動板における前記1組の辺の各辺に沿って配設されている、
     圧電デバイス。
  5.  請求項4に記載の圧電デバイスであって、
     前記振動板は、前記1組の辺と略平行な略中心線にて分離されて形成されている、
     圧電デバイス。
  6.  請求項1~3の何れか一項に記載の圧電デバイスであって、
     前記振動板は略方形の形状を有し、
     前記支持部は、前記振動板における全ての辺を支持するように形成され、
     前記圧電体膜は、前記振動板における前記全ての辺の各辺に沿って配設されている、
     圧電デバイス。
  7.  請求項1~6の何れか一項に記載の圧電デバイスであって、
     前記振動板は、前記圧電体膜が配設された領域の厚さより、該領域より中央側の領域の厚さが薄く形成されている、
     圧電デバイス。
  8.  請求項1~7の何れか一項に記載の圧電デバイスであって、
     前記圧電体膜は圧縮応力を有し、
     前記上部電極は引張応力を有する、
     圧電デバイス。
PCT/JP2014/081018 2013-12-06 2014-11-25 圧電デバイス WO2015083572A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/173,810 US10312427B2 (en) 2013-12-06 2016-06-06 Piezoelectric device
US16/385,621 US20190245133A1 (en) 2013-12-06 2019-04-16 Piezoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/098,630 2013-12-06
US14/098,630 US20150162523A1 (en) 2013-12-06 2013-12-06 Piezoelectric device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/173,810 Continuation US10312427B2 (en) 2013-12-06 2016-06-06 Piezoelectric device

Publications (1)

Publication Number Publication Date
WO2015083572A1 true WO2015083572A1 (ja) 2015-06-11

Family

ID=53272057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081018 WO2015083572A1 (ja) 2013-12-06 2014-11-25 圧電デバイス

Country Status (2)

Country Link
US (3) US20150162523A1 (ja)
WO (1) WO2015083572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524058B2 (en) 2016-09-29 2019-12-31 Fujifilm Corporation Piezoelectric microphone
JP2021097302A (ja) * 2019-12-16 2021-06-24 新日本無線株式会社 Mems素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3110628B1 (en) 2014-02-28 2019-07-03 The Regents of the University of California Variable thickness diaphragm for a wideband robust piezoelectric micromachined ultrasonic transducer (pmut)
DE102014103229B3 (de) * 2014-03-11 2015-07-23 Epcos Ag BAW-Resonator mit Temperaturkompensation
WO2016111583A1 (ko) * 2015-01-08 2016-07-14 한국기술교육대학교 산학협력단 마이크로폰
KR102430582B1 (ko) * 2017-11-28 2022-08-08 엘지디스플레이 주식회사 표시 장치
US10993043B2 (en) * 2019-09-09 2021-04-27 Shin Sung C&T Co., Ltd. MEMS acoustic sensor
CN114830520A (zh) * 2019-12-17 2022-07-29 株式会社村田制作所 换能器
KR20220022945A (ko) * 2020-08-19 2022-03-02 삼성전자주식회사 지향성 음향 센서
CN113286222B (zh) * 2021-07-26 2021-10-01 成都纤声科技有限公司 Mems芯片、耳机和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143797U (ja) * 1981-03-05 1982-09-09
JPH0843430A (ja) * 1994-07-28 1996-02-16 Fujikura Ltd 圧電型振動センサとその製法
JPH11226011A (ja) * 1998-02-18 1999-08-24 Matsushita Electric Ind Co Ltd 音響センサおよび生体計測装置
JP2004147319A (ja) * 2002-10-21 2004-05-20 Sonitron Nv 改良されたトランスデューサー
JP2012217035A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 電子機器
JP2013239858A (ja) * 2012-05-14 2013-11-28 Kyocera Corp 電子機器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320664A (en) * 1980-02-25 1982-03-23 Texas Instruments Incorporated Thermally compensated silicon pressure sensor
JPH06314948A (ja) 1993-04-28 1994-11-08 Murata Mfg Co Ltd 圧電振動子
DE69423667T2 (de) 1993-03-01 2000-11-23 Murata Mfg. Co., Ltd. Piezoelektrischer Vibrator und diesen verwendenden Beschleunigungssensor
US5686826A (en) * 1996-03-15 1997-11-11 Kulite Semiconductor Products Ambient temperature compensation for semiconductor transducer structures
DE60118208T2 (de) 2000-08-11 2007-04-12 Knowles Electronics, LLC, Itasca Breitbandiger miniaturwandler
JP4478910B2 (ja) 2001-05-11 2010-06-09 宇部興産株式会社 圧電薄膜共振子
WO2002093740A1 (fr) * 2001-05-11 2002-11-21 Ube Electronics, Ltd. Resonateur d'onde acoustique en volume a couche mince
US7253488B2 (en) * 2002-04-23 2007-08-07 Sharp Laboratories Of America, Inc. Piezo-TFT cantilever MEMS
JP5089860B2 (ja) * 2004-12-03 2012-12-05 富士フイルム株式会社 圧電アクチュエータ及び液体吐出ヘッド
JP4622574B2 (ja) * 2005-02-21 2011-02-02 株式会社デンソー 超音波素子
US7856885B1 (en) * 2006-04-19 2010-12-28 University Of South Florida Reinforced piezoresistive pressure sensor
US8369555B2 (en) 2006-10-27 2013-02-05 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Piezoelectric microphones
US7758979B2 (en) 2007-05-31 2010-07-20 National Institute Of Advanced Industrial Science And Technology Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
JP5190841B2 (ja) 2007-05-31 2013-04-24 独立行政法人産業技術総合研究所 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー
US8029105B2 (en) * 2007-10-17 2011-10-04 Eastman Kodak Company Ambient plasma treatment of printer components
JP2009284111A (ja) 2008-05-20 2009-12-03 Funai Electric Advanced Applied Technology Research Institute Inc 集積回路装置及び音声入力装置、並びに、情報処理システム
JP2009302661A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 圧電デバイス
JP5707323B2 (ja) * 2008-06-30 2015-04-30 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan 圧電型memsマイクロフォン
WO2010113803A1 (ja) * 2009-03-30 2010-10-07 株式会社山武 静電容量型圧力センサ
JP2011125071A (ja) 2009-12-08 2011-06-23 Panasonic Electric Works Co Ltd 発電デバイス
JP2011228794A (ja) 2010-04-15 2011-11-10 Nec Corp 電気音響変換器
JP5609244B2 (ja) 2010-04-28 2014-10-22 パナソニック株式会社 振動発電デバイス
JP2013118234A (ja) * 2011-12-02 2013-06-13 Taiyo Yuden Co Ltd 圧電アクチュエータ及びその製造方法
KR20130077393A (ko) * 2011-12-29 2013-07-09 삼성전기주식회사 관성센서 및 그 제조방법
EP2639845B1 (fr) * 2012-03-12 2014-11-19 Sorin CRM SAS Capsule intracorporelle autonome à récupération d'énergie piézoélectrique
DE102012212112A1 (de) * 2012-07-11 2014-01-30 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonstruktur
WO2014185281A1 (ja) * 2013-05-13 2014-11-20 株式会社村田製作所 振動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143797U (ja) * 1981-03-05 1982-09-09
JPH0843430A (ja) * 1994-07-28 1996-02-16 Fujikura Ltd 圧電型振動センサとその製法
JPH11226011A (ja) * 1998-02-18 1999-08-24 Matsushita Electric Ind Co Ltd 音響センサおよび生体計測装置
JP2004147319A (ja) * 2002-10-21 2004-05-20 Sonitron Nv 改良されたトランスデューサー
JP2012217035A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 電子機器
JP2013239858A (ja) * 2012-05-14 2013-11-28 Kyocera Corp 電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524058B2 (en) 2016-09-29 2019-12-31 Fujifilm Corporation Piezoelectric microphone
JP2021097302A (ja) * 2019-12-16 2021-06-24 新日本無線株式会社 Mems素子
JP7499020B2 (ja) 2019-12-16 2024-06-13 日清紡マイクロデバイス株式会社 Mems素子

Also Published As

Publication number Publication date
US20160284974A1 (en) 2016-09-29
US10312427B2 (en) 2019-06-04
US20190245133A1 (en) 2019-08-08
US20150162523A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2015083572A1 (ja) 圧電デバイス
US9611135B1 (en) System and method for a differential comb drive MEMS
US9266716B2 (en) MEMS acoustic transducer with silicon nitride backplate and silicon sacrificial layer
KR101740113B1 (ko) 주변압에서의 변화 및 압력파를 센싱하기 위한 mems 센서 구조체
US10589987B2 (en) System and method for a MEMS transducer
US9143870B2 (en) Microphone system with mechanically-coupled diaphragms
CN106303867B (zh) Mems麦克风
JP2009517940A (ja) 音響的な信号を受信および/または発生させるためのマイクロマシニング構造体、マイクロマシニング構造体を製造するための方法、およびマイクロマシニング構造体の使用法
CN109640233B (zh) 微机电扬声器
US8436435B2 (en) MEMS capacitive microphone
CN110169085B (zh) 与mems传声器组合的非声学传感器的***
WO2011114398A1 (ja) Memsデバイス
WO2014159552A1 (en) Mems acoustic transducer with silicon nitride backplate and silicon sacrificial layer
JP2007194913A (ja) コンデンサマイクロホン及びその製造方法
JP4811035B2 (ja) 音響センサ
JP2008252847A (ja) 静電型トランスデューサ
JP6307171B2 (ja) Memsマイクロホン
JP2019041349A (ja) Mems素子
JP2007324805A (ja) センサ装置およびダイアフラム構造体
CN114014254A (zh) 一种mems结构
KR101108853B1 (ko) 마이크로폰 모듈
WO2009095856A2 (en) A mems structure and a method of manufacturing the same
TWI610879B (zh) 具有防止訊號衰減功能之微機電裝置及其製造方法與防止訊號衰減的方法
KR101108829B1 (ko) 마이크로폰 모듈
WO2018061805A1 (ja) 圧電式マイクロフォン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP