WO2015081648A1 - 一种合成分子筛ssz-13的方法 - Google Patents

一种合成分子筛ssz-13的方法 Download PDF

Info

Publication number
WO2015081648A1
WO2015081648A1 PCT/CN2014/075043 CN2014075043W WO2015081648A1 WO 2015081648 A1 WO2015081648 A1 WO 2015081648A1 CN 2014075043 W CN2014075043 W CN 2014075043W WO 2015081648 A1 WO2015081648 A1 WO 2015081648A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssz
source
molecular sieve
tetravalent silicon
silicon source
Prior art date
Application number
PCT/CN2014/075043
Other languages
English (en)
French (fr)
Inventor
陈标华
张润铎
徐瑞年
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US15/316,119 priority Critical patent/US9962688B2/en
Publication of WO2015081648A1 publication Critical patent/WO2015081648A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • aluminosilicate molecular sieves are recognized as the most important and most effective crystal composition. X-ray diffraction measurements showed that most of the aluminosilicate crystals had distinct and distinct crystal structures and ordered pore structures. Different kinds of molecular sieves have different characteristic pore crystal structures.
  • the molecular sieve SSZ-13 is a CHA topology.
  • U.S. Patent No. 4,544,538 discloses the synthesis of molecular sieve SSZ-13 for the first time.
  • SSZ-13 molecular sieves can be synthesized under the conditions of ruthenium, osmium, iridium-trimethyl-1-adamantamine ( ⁇ + ) organic cations as structure directing agents.
  • benzyltrimethyl quaternary ammonium ion is not the most suitable structure directing agent because it is irritating and harmful to human body.
  • the present invention discloses a novel method for synthesizing crystalline molecular sieve SSZ-13, which can avoid the use of benzyltrimethyl quaternary ammonium ion (BzTMA+) or ruthenium, osmium, iridium-trimethyl-1-adamantanamine cation As a structure directing agent, a high quality crystalline molecular sieve SSZ-13 can be finally obtained.
  • BzTMA+ benzyltrimethyl quaternary ammonium ion
  • ruthenium, osmium, iridium-trimethyl-1-adamantanamine cation As a structure directing agent, a high quality crystalline molecular sieve SSZ-13 can be finally obtained.
  • the present invention adopts the following technical solutions:
  • a method of synthesizing crystalline molecular sieve SSZ-13 which comprises contacting the following raw materials in water under crystallization conditions:
  • the tetravalent silicon source includes, but is not limited to, silicon-containing oxides and silicates, preferably, silicates, silica sols, tetraethyl orthosilicates, deposited silicas and clays, more preferably silica sols.
  • the trivalent aluminum source is a trivalent aluminum oxide or an aluminate, preferably sodium metaaluminate, aluminum oxide or aluminum hydroxide.
  • the alkali metal compound is a sodium-containing compound, preferably sodium hydroxide or sodium chloride, and more preferably wherein the choline cation is choline hydroxide and choline chloride, preferably choline chloride.
  • the SSZ-13 seed crystal is SSZ-13 molecular sieve (as prepared by the invention) synthesized by using a choline cation as a structure directing agent.
  • the preparation method of the present invention wherein the molar ratio of water to the tetravalent silicon source is from 3:1 to 15:1.
  • the molar ratio of the tetravalent silicon source to the trivalent aluminum source is greater than 3 (i.e., silicon to aluminum ratio), preferably 50 or higher.
  • the molar ratio of each raw material is: tetravalent silicon source / trivalent aluminum source 10-60
  • the hydroxide ion/tetravalent silicon source is 0.3-0.6.
  • the molar ratio of each raw material is:
  • the quality of the SSZ-13 seed crystal is 1%-10% of the mass of the tetravalent silicon source.
  • the reaction mixture is heated and crystallized, wherein the reaction temperature is maintained at 100 ° C -20 (TC:, the crystallization process is at least 4 days, and the product crystals are washed at 90 ° C - Drying at 150 ° C for 8-12 hours, then calcining at 500-600 ° C for 6-10 hours in a muffle furnace to obtain SSZ-13 molecular sieve crystals.
  • TC the crystallization process is at least 4 days
  • the product crystals are washed at 90 ° C - Drying at 150 ° C for 8-12 hours, then calcining at 500-600 ° C for 6-10 hours in a muffle furnace to obtain SSZ-13 molecular sieve crystals.
  • the preferred reaction temperature is maintained at 140 ° C:, the crystallization process is 5-35 days, the product The crystals were washed with water and dried at 120 ° C for 10-11 hours, and then calcined at 550 ° C for 8 hours in a muffle furnace to obtain SSZ-13 molecular sieves.
  • the method for synthesizing the crystalline molecular sieve SSZ-13 according to the present invention specifically selects a choline cation as the sole structure directing agent, or does not add a structure directing agent, only adds a seed crystal of the molecular sieve SSZ-13 thereto, or uses choline
  • the combination of the cation and the seed crystal of the molecular sieve SSZ-13 uses three technical schemes for completing the crystal molecular sieve SSZ-13.
  • the choline chloride is synthesized at a lower cost (compared to benzyltrimethyl quaternary ammonium ion BzTMA+) and has almost no toxicity and irritation as a structure directing agent (SDA).
  • SDA structure directing agent
  • the precursor mixture has sufficient time to crystallize out with micropores Structure of SSZ-13 silica-alumina molecular sieve.
  • the molar ratio of each raw material is preferably as follows:
  • Another method of the present invention also provides a method for synthesizing a crystalline SSZ-13 molecular sieve without the use of a structure directing agent (SDA), as follows:
  • These include (1) at least one source of tetravalent silicon; (2) at least one source of trivalent aluminum; (3) at least one alkali metal compound; (4) sufficient seed crystal capable of forming molecular sieve SSZ-13; 5) a large amount of hydroxide ions constituting a strong alkali environment; (6) water for causing the raw material mixture to form a precursor of the sol-gel.
  • the precursor mixture is allowed to crystallize for a sufficient time to crystallize the above-mentioned SSZ-13 crystal molecular sieve having a microporous structure.
  • the molar ratio of each raw material is preferably as follows:
  • the quality of the SSZ-13 seed crystal is 1%-10% of the mass of the tetravalent silicon source.
  • the quality of the SSZ-13 seed crystal is 5%-8% of the mass of the tetravalent silicon source.
  • the present invention provides a method for synthesizing a crystalline SSZ-13 molecular sieve as a material of the (4) starting material of a choline cation and a molecular sieve SSZ-13.
  • the mass ratio of the two is 2-3.
  • the method of the present invention enables the production of a synthetic microporous molecular sieve.
  • the pore microporous molecular sieve is defined as a molecular sieve having an open pore structure of less than 5 persons, and is generally considered to be a molecular sieve having a maximum opening of 8 or less.
  • the extremely small pore size gives the molecular sieve a stronger hydrothermal stability. This property makes microporous molecular sieves more advantageous than conventional pore size molecular sieves.
  • the microporous molecular sieve SSZ-13 of the present invention is an aluminosilicate molecular sieve.
  • the SSZ-13 in the present invention controls the silicon-aluminum molar ratio from 3:1 to 50:1 by adjusting the tetravalent silicon source and the trivalent aluminum source; different silicon-aluminum ratios can be obtained by changing the relative proportions of the reactants.
  • High silicon to aluminum ratios can also be addressed by post-processing molecular sieves, such as by dealuminization, or by adding silicon to increase the silicon to aluminum ratio.
  • the specific operation is known to those skilled in the art, and the present invention is not particularly limited thereto.
  • the amount of each component in the precursor mixture of the present invention can be adjusted according to the desired SSZ-13 molecular sieve.
  • the present invention gives a relatively high silicon to aluminum ratio under the synthesis conditions employed, and the molar ratio of the tetravalent silicon source to the trivalent aluminum source is greater than 3:1, which can be 50:1 or higher.
  • some of the other positive trivalent or tetravalent components are also brought into the mixture, such as cerium oxide, ferric oxide.
  • the most typical silicon sources include colloidal silica, silicate, hydrated silica gel, tetraethyl orthosilicate, deposited silica and clay.
  • Silica sols (such as the silica sol of AS-40) are the best solution for the silicon source: It has been found in repeated experiments that the use of hydrated colloidal silica as a reactant can relatively reduce the reaction time and increase the amount of crystallization of the experiment. Therefore, it is preferable to use a silica sol of AS-40 which can be purchased commercially as a silicon source.
  • a typical aluminum source includes sodium metaaluminate, aluminum oxide, aluminum hydroxide or other aluminum compounds.
  • the alkali metal compound (such as an alkali metal ion-containing salt, alkali, etc.), especially sodium ion, according to the present invention
  • the sub is often used as a negative charge in the equilibrium molecular sieve framework structure.
  • the general negative charge is generated by the fact that a trivalent atom replaces a tetravalent atom in the structure.
  • the trivalent atom is an aluminum atom.
  • the tetravalent atom is a silicon atom.
  • each aluminum atom requires a positron to balance the charge. Therefore, in theory, the number of alkali metal ions should be the same as the number of aluminum atoms.
  • the amount of sodium ions exceeded the theoretical value to significantly reduce the reaction time.
  • the reaction mixture contains one or more alkali metals.
  • the present invention provides a novel structure directing agent for the synthesis of SSZ-13 molecular sieves, i.e., choline cations. It is also named hydroxyethyltrimethylammonium cation. Choline has a wide range of applications in animal husbandry, and choline chloride is a type of vitamin B. However, the use of choline cations as structure directing agents has not yet been seen.
  • the present invention preferably uses choline chloride as the sole structure directing agent in a particular operation.
  • the present invention also requires hydroxide ions to create an alkaline environment in preparation for the preparation of molecular sieves.
  • the alkali environment is a necessary condition for synthesizing molecular sieve SSZ-13.
  • the amount of hydroxide is determined to be capable of forming a necessary alkali environment.
  • the molar ratio of hydroxide ion to tetravalent silicon source is preferably 0.4- 0.6.
  • the molar ratio of each raw material is preferably as follows:
  • the reaction mixture was kept in the reaction temperature environment until the crystal of the SSZ-13 molecular sieve was formed.
  • the reaction temperature in the step of hydrothermal synthesis of the present invention is maintained at 100 ° C to 200 ° C, preferably at 140 ° C.
  • the crystallization process takes at least 4 days, and it can be from 5 It can be up to 35 days.
  • the hydrothermal synthesis reaction is generally carried out in a static autoclave.
  • the SSZ-13 molecular sieve crystals are formed, and the solid product is separated by standard separation techniques such as filtration.
  • the product crystals were washed with water and dried at 90 ° C to 150 ° C for 8 to 12 hours to obtain a synthesized SSZ-13 molecular sieve crystal.
  • the SSZ-13 molecular sieve can spontaneously nucleate from the reaction mixture.
  • the addition of SSZ-13 molecular sieve seed crystals to the reaction mixture accelerates the crystallization process and reduces the formation of other aluminosilicate by-products.
  • the molecular sieve SSZ-13 crystal is added to the reaction mixture, the amount of the structure directing agent can be greatly reduced or not used, but the addition of some structure directing agent can better synthesize SSZ-13.
  • the mass of the seed crystal added is from 1% to 10%, preferably from 5 to 8%, by mass of the silica in the reaction mixture.
  • the mass ratio of the two is preferably 2-3:1, and a higher quality molecular sieve SSZ-13 can be obtained in this amount range.
  • the molecular sieve SSZ-13 prepared by the invention can be directly used in the reaction of MTO (methanol to olefins, such as ethylene and propylene), or can be used as a molecular sieve membrane for carbon dioxide in methane separation, and in environmental protection applications, for example. : Absorption of carbon monoxide and light hydrocarbons.
  • MTO methanol to olefins, such as ethylene and propylene
  • Example 1 is an XRD spectrum of a sample of SSZ-13 molecular sieve prepared in Example 1 (A);
  • Example 2 is an XRD spectrum of a sample of SSZ-13 molecular sieve prepared in Example 1 (B);
  • Figure 3 is an XRD spectrum of a sample of SSZ-13 molecular sieve prepared in Example 2 (A);
  • Example 4 is an XRD spectrum of a sample of SSZ-13 molecular sieve prepared in Example 2 (B);
  • Example 5 is an XRD spectrum of a sample of SSZ-13 molecular sieve prepared in Example 3.
  • the final colloid is divided into two parts (A and B), and A and B are transferred to a stainless steel high pressure autoclave lined with Teflon, and placed in an oven at 130 ° C (for A) And 150 ° C (for B) and kept for 6 days.
  • the mixture was transferred to a stainless steel high pressure autoclave lined with a polytetrafluoroethylene liner and placed in an oven at 140 ° C for 6 days.
  • the product was washed with deionized water, collected by filtration, dried in a vacuum oven at 100 ° C for 12 hours, and then calcined in a muffle furnace at 550 ° C for 8 hours to remove the structure directing agent, that is, SSZ-13 molecular sieve, wherein SSZ
  • the XRD spectrum of the -13 molecular sieve is shown in Figure 6.
  • Seed crystal / tetravalent silicon source (Wt.%) 4
  • the tetravalent silicon source is deposited silica
  • the trivalent aluminum source is pseudo-boehmite
  • the alkali metal compound is sodium hydroxide
  • the hydroxide ion is provided in the form of sodium hydroxide.
  • the XRD spectrum of the SSZ-13 molecular sieve prepared in this example also showed characteristic diffraction peaks at the same position as in Figures 1-6, and it was verified that the same SSZ-13 molecular sieve was obtained by the preparation method of the present example. However, it is not provided here, and those skilled in the art can foresee that the object of the present invention can be achieved by the above technical solutions, and the desired SSZ-13 molecular sieve can be obtained.
  • Seed crystal / tetravalent silicon source (Wt.%) 10
  • the tetravalent silicon source is tetraethyl orthosilicate
  • the trivalent aluminum source is sodium metaaluminate
  • the alkali metal compound is sodium hydroxide
  • the hydroxide ion is provided in the form of sodium hydroxide.
  • the tetravalent silicon source is sodium silicate
  • the trivalent aluminum source is pseudo-boehmite
  • the alkali metal compound is sodium hydroxide
  • the hydroxide ion is provided in the form of sodium hydroxide.
  • Tetravalent silicon source / trivalent aluminum source 40 Alkali metal compound / trivalent aluminum source 2.3
  • the tetravalent silicon source is a silica sol
  • the trivalent aluminum source is alumina
  • the alkali metal compound is sodium chloride
  • the hydroxide ion is provided in the form of ammonia water.
  • the XRD spectrum of the SSZ-13 molecular sieve prepared in this example showed characteristic diffraction peaks at the same position as in Figures 1-6, and it was verified that the same SSZ-13 molecular sieve was obtained by the preparation method of the present example.
  • Example 3 Compared with Example 3, the only difference is that the mass ratio of choline chloride to SSZ-13 seed crystal in this example is 2:1.
  • Example 3 Compared with Example 3, the only difference is that the mass ratio of choline chloride to SSZ-13 seed crystal in this example is 3:1.
  • Example 3 Compared with Example 3, the only difference is that the mass ratio of choline chloride to SSZ-13 seed crystal in this example is 2.5:1.
  • the present invention discloses a novel method for synthesizing crystalline molecular sieve SSZ-13, which comprises contacting the following raw materials in water under crystallization conditions: (1) at least one source of tetravalent silicon; (2) At least one source of trivalent aluminum; (3) at least one alkali metal compound; (4) choline cation and/or SSZ-13 seed crystal; (5) hydroxide ion.
  • the novel method for synthesizing crystal molecular sieve SSZ-13 of the invention can It is avoided to use benzyltrimethyl quaternary ammonium ion (BzTMA+) or ruthenium, osmium, iridium-trimethyl-1-adamantanamine cation as a structure directing agent, and finally obtain a high quality crystalline molecular sieve SSZ-13. Since the invention adopts an inexpensive non-toxic structure directing agent, the preparation method of the present invention has the advantages of low cost and low toxicity, and can be popularized and applied, and has strong industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

公开一种合成晶体分子筛SSZ-13的方法,其特征在于,所述方法包括在结晶条件下使下列原料物质在水中进行接触:(1)至少一种四价硅源;(2)至少一种三价铝源;(3)至少一种碱金属化合物;(4)胆碱阳离子和/或SSZ-13晶种;(5)氢氧根离子。该方法能够避免使用苄基三甲基季铵离子(BzTMA+)或Ν,Ν,Ν-三甲基-1-金刚烷胺阳离子作为结构导向剂,并且最终得到高质量的晶体分子筛SSZ-13。由于采用了廉价无毒的结构导向剂,该方法还具备采用廉价且无毒模板剂生产价格低,可推广应用的优点。

Description

一种合成分子筛 SSZ-13的方法
技术领域
本发明分子筛领域, 具体提供了一种廉价合成分子筛 SSZ-13的方法。 背景技术
在自然产生和人工合成的分子筛中, 铝硅酸盐分子筛是公认的最重要最 有效的晶体组成。 X射线衍射检测显示大部分铝硅酸盐晶体有明确的和不同的 晶体结构和有序的孔道结构。不同种类的分子筛有不同的特征孔道晶体结构。
FAU, MFI, BEA, CHA等等。 众所周知, 分子筛 SSZ-13是 CHA拓扑结构, 在 1985年 10月 1日, 美国专利 No. 4,544,538首次公开了分子筛 SSZ-13的合成方 法。 在美国专利 No. 4,544,538中, 在 Ν,Ν,Ν-三甲基 -1-金刚烷胺( ΤΜΑΑ+ ) 有机阳离子作为结构导向剂的条件下可以合成出 SSZ-13分子筛。 但是由于所 用的结构导向剂价格较贵使得合成 SSZ-13分子筛的成本过高, 结果限制了分 子筛 SSZ-13在商业生产的应用。此专利找出一个不使用高价 ΤΜΑΑ+作为结构 导向剂的合成 SSZ-13分子筛的方法。
在 2006年 9月 25日 Zones申请的专利 No. 60/826,882的申请说明书中提到, 他找到了一种减少使用 TMAA+的剂量作为结构导向剂的合成 SSZ-13分子筛 的方法。通过加入苯甲基季铵离子和 TMAA+阳离子一起作为反应物的结构导 向剂可显著的减少 TMAA+阳离子的使用剂量。虽然这种合成方法有效的降低 了成本但还是使用了昂贵的 TMAA+阳离子。
在 2006年 12月 27日 Miller提交的专利 No. 60/882,010的申请说明书中提出 一种用苄基三甲基季铵离子(BzTMA+ )部分代替 Ν,Ν,Ν-三甲基 -1-金刚烷胺 阳离子作为结构导向剂的 SSZ-13分子筛的合成方法。
虽然苄基三甲基季铵离子的价格相对较低但因为它会对人体有刺激性和 一定伤害使得苄基三甲基季铵离子并不能成为最合适的结构导向剂。
有鉴于此, 特提出本发明。 发明内容
本发明公开了一种新的合成晶体分子筛 SSZ-13的方法, 该方法能够避免 使用苄基三甲基季铵离子 (BzTMA+ )或 Ν,Ν,Ν-三甲基 -1-金刚烷胺阳离子作 为结构导向剂, 还能最终得到高质量的晶体分子筛 SSZ-13。
为实现上述目的, 本发明采用如下技术方案:
一种合成晶体分子筛 SSZ-13的方法,所述方法包括在结晶条件下使下列 原料物质在水中进行接触:
( 1 ) 至少一种四价硅源;
( 2 ) 至少一种三价铝源;
( 3 ) 至少一种碱金属化合物;
( 4 )胆碱阳离子和 /或 SSZ-13晶种;
( 5 ) 氢氧根离子。
其中, 所述的四价硅源包括但不限于含硅氧化物和硅酸盐, 优选为, 硅 酸盐, 硅溶胶, 正硅酸乙酯, 沉积二氧化硅和粘土, 更优选硅溶胶。
其中, 所述三价铝源为三价铝氧化物或铝酸盐, 优选为偏铝酸钠, 氧化 铝或氢氧化铝。
所述碱金属化合物为含钠化合物, 优选氢氧化钠或者氯化钠, 更优选为 其中, 所述的胆碱阳离子为氢氧化胆碱和氯化胆碱, 优选氯化胆碱。 其中, 所述的 SSZ-13晶种为采用胆碱阳离子作为结构导向剂合成的 SSZ-13分子筛 (如本发明所制备)。
本发明所述的制备方法, 其中水和四价硅源的摩尔比为 3: 1到 15:1。 四价硅源和三价铝源的摩尔比大于 3 (即硅铝比), 优选为 50或者更高。 本发明所述方法, 当采用结构导向剂时, 各原料物质的摩尔比为: 四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
胆碱阳离子 /四价硅源 0.05-0.1
氢氧根离子 /四价硅源 0.3-0.6。 当不采用结构导向剂时, 各原料物质的摩尔比为:
四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
氢氧根离子 /四价硅源 0.3-0.6;
SSZ-13晶种质量为四价硅源质量的 1%-10%。
当胆碱阳离子与 SSZ-13晶种同时用于合成晶体分子筛 SSZ-13时, 二者的 质量比为 2-3。
本发明所述的方法, 投料结束后, 对反应混合物进行加热晶化, 其中, 反应温度保持在 100°C -20(TC:, 结晶过程最少 4天, 产物结晶体经过水洗后在 90°C -150°C烘干 8-12小时, 然后马弗炉中 500-600 °C煅烧 6-10小时得 SSZ-13分 子筛晶体。 优选反应温度保持在 140°C:, 结晶过程 5-35天, 产物结晶体经过水 洗后在 120°C烘干 10-11小时, 然后马弗炉中 550°C煅烧 8小时得 SSZ-13分子筛 曰曰 。
以下将对本申请技术方案作进一步详细介绍。
本发明所述的合成晶体分子筛 SSZ-13的方法具体选择了以胆碱阳离子作 为唯一的结构导向剂, 或者不加入结构导向剂, 仅向其中加入分子筛 SSZ-13 的晶种, 或者以胆碱阳离子与分子筛 SSZ-13的晶种结合使用完成晶体分子筛 SSZ-13的三种技术方案。
作为本发明的技术方案之一, 提供了以更低成本(相比于苄基三甲基季 铵离子 BzTMA+ ) 和几乎没有毒性和刺激性的氯化胆碱作为结构导向剂 ( SDA ) 来合成 SSZ-13分子筛。
具体方法如下:
a ) 预备反应的混合物:
其中包括(1 )至少一种四价硅源; (2 )至少一种三价铝源; (3 )至少一 种碱金属化合物; (4 )作为唯一的结构导向剂 (SDA ) 的胆碱阳离子; (5 )
b)在加热晶化的过程中, 使前驱体混合物有足够的时间晶化出具有微孔 结构的 SSZ-13硅铝分子筛。
为了优化整体合成方法, 发明人在大量试验研究的基础上, 对各原料的 摩尔用量比作如下优选限定:
四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
胆碱阳离子 /四价硅源 0.05-0.1
氢氧根离子 /四价硅源 0.3-0.6。
优选:
四价硅源 /三价铝源 20-40
碱金属化合物 /四价硅源 0.4-0.47
胆碱阳离子 /四价硅源 0.08-0.1
氢氧根离子 /四价硅源 0.4-0.6。
作为本发明的另一技术方 还提供了不需要结构导向剂 (SDA )合成 晶体 SSZ-13分子筛的方法, 具体如下:
其中包括(1 )至少一种四价硅源; (2 )至少一种三价铝源; (3 )至少一 种碱金属化合物; (4 )足够的能够形成分子筛 SSZ-13的晶种; (5 )构成强碱 环境的大量氢氧根离子; (6 )用于促使原料混合物形成溶胶凝胶的前驱体的 水。
b )其次在加热晶化的过程中, 使前驱体混合物有足够的时间晶化出具有 微孔结构的上述 SSZ-13晶体分子筛。
为了优化整体合成方法, 发明人在大量试验研究的基础上, 对各原料的 摩尔用量比作如下优选限定:
四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
氢氧根离子 /四价硅源 0.3-0.6;
SSZ-13晶种质量为四价硅源质量的 1%-10%。
优选:
四价硅源 /三 20-40 碱金属化合物 /四价硅源 0.4-0.47
氢氧根离子 /四价硅源 0.4-0.6;
SSZ-13晶种质量为四价硅源质量的 5%-8%。
此外, 本发明还提供了胆碱阳离子与分子筛 SSZ-13 的晶种同时作为第 ( 4 )种原料用于合成晶体 SSZ-13分子筛的方法。 当胆碱阳离子和 /与晶种同 时用于合成晶体分子筛 SSZ-13时, 二者的质量比为 2-3。
本发明所述的方法能够得到一种合成微孔分子筛。 小孔微孔分子筛的定 义是分子筛的开孔结构小于 5人,一般认为是最大开孔小于等于 8元环的分子 筛。 极小的孔径使使分子筛展现了更强的水热稳定性。 这个特性使微孔分子 筛比普通孔径分子筛在应用时更有优势。
本发明涉及的微孔分子筛 SSZ-13是一种铝硅酸盐分子筛。 本发明中的 SSZ-13通过调节四价硅源和三价铝源, 控制硅铝摩尔比范围从 3: 1到 50:1 ; 不同的硅铝比可以通过改变反应物的相对比例得到。 高硅铝比也可以通过后 处理分子筛, 例如采用脱铝的方式来满足需求, 或者通过加入硅来提高硅铝 比。 具体的操作为本领域技术人员所掌握, 本发明对此不作特别限定。
本发明前驱体混合物中各组分的量是可根据所需要的 SSZ-13分子筛进行 调整。 本发明在所采用的合成条件下给出一个相对较高的硅铝比, 四价硅源 与三价铝源的摩尔比大于 3: 1, 该比例可达到 50: 1或者更高。 当使用商业硅 源或者铝源作为反应原料时, 其中的一些其它正三价或者正四价成分也会被 带入到混合物中, 例如二氧化锗, 三氧化二铁。
其中, 最典型的硅源包括胶态氧化硅, 硅酸盐, 水化硅胶, 正硅酸乙酯, 沉积二氧化硅和粘土。 硅溶胶(如 AS-40的硅溶胶)作为硅源是最佳方案: 在 反复实验中发现使用水合胶态氧化硅作为反应物可以相对减少反应时间并且 增加实验的结晶量。因此最好选用可以通过商业渠道购买的 AS-40的硅溶胶作 为硅源。
本发明技术方案中, 典型的铝源包括偏铝酸钠, 氧化铝, 氢氧化铝或者 其他铝化合物。
本发明所述的碱金属化合物(如含碱金属离子的盐、 碱等), 特别是钠离 子常被用作平衡分子筛骨架结构中的负电荷。 一般的负电荷产生是由于一个 三价原子在结构中代替了四价的原子。 在铝硅酸盐分子筛中, 三价原子是铝 原子四价原子是硅原子。 当结构中的硅原子被铝原子取代时, 每一个铝原子 需要一个正电子来平衡电荷。 因此在理论上碱金属离子的数量应和铝原子的 数量相同。 在具体实验中, 要使钠离子的数量超过了理论数值, 才能显著的 减少反应时间。 反应混合物包含了一种或多种碱金属。
本发明提供了一种全新的结构导向剂来合成 SSZ-13分子筛, 即胆碱阳离 子。 同时也被命名为羟乙基三甲基铵阳离子。 胆碱在畜牧业中有着广泛的应 用,氯化胆碱是维生素 B的一种。但目前尚未见胆碱阳离子作为结构导向剂的 应用。 本发明在具体操作中优选使用氯化胆碱作为唯一的结构导向剂。
除以上原料外, 本发明还需要氢氧根离子来创造一个碱环境为制备分子 筛做准备。 在目前发明中显示碱环境是合成分子筛 SSZ-13的必要条件, 氢氧 根的用量以能够形成必要的碱环境为准, 本发明优选氢氧根离子与四价硅源 的摩尔比为 0.4-0.6。
为了优化整体合成方法, 发明人在大量试验研究的基础上, 对各原料的 摩尔用量比作如下优选限定:
正四价硅元素化合物 /正三价铝元素化合物 10-60
碱金属钠 /正四价硅元素化合物 0.33-0.47
胆碱阳离子和 /或晶种 /正四价硅元素化合物 0.05-0.1
氢氧根离子 /正四价硅元素化合物 0.3-0.6。
其中, 更优选:
四价硅源 /三价铝源 20-40
碱金属化合物 /四价硅源 0.4-0.47
胆碱阳离子 /四价硅源 0.08-0.1
氢氧根离子 /四价硅源 0.4-0.6。
按上述比例备料结束后, 保持反应混合物处于反应温度环境的状态直到 SSZ-13分子筛的结晶体形成。 本发明在水热合成的步骤中反应温度保持在 100°C至 200°C, 最好是在 140 °C恒定。 结晶过程最少需要 4天, 也有可以从 5 天至 35天不等。 为使反应混合物在自生成压力下进行反应, 水热合成反应一 般是在静态压力釜中进行。
经过所需的反应时间后 SSZ-13分子筛晶体形成,后通过标准分离技术(比 如过滤)把固体产品分离出。 产物结晶体经过水洗后在 90°C至 150°C烘干 8至 12小时得到合成的 SSZ-13分子筛晶体。
在水热合成步骤中, SSZ-13分子筛可以从反应混合物中自发成核。 在反 应混合物中加入 SSZ-13 分子筛晶种既可以加速结晶过程也可以减少其他铝 硅酸盐副产物的形成。当在反应混合物中加入分子筛 SSZ-13晶体后结构导向 剂的需求量也可以大大降低甚至可以不使用, 但加入一些结构导向剂可以更 好地合成 SSZ-13。 仅加入晶种时, 所加入晶种的质量为反应混合物中氧化硅 质量的 1%至 10%, 优选 5-8%。 当胆碱阳离子和 /与晶种同时用于合成晶体分 子筛 SSZ-13时, 二者的质量比优选为 2-3:1, 该用量范围内, 能够得到更高 质量的分子筛 SSZ-13。
本发明制备得到的分子筛 SSZ-13可在直接使用在 MTO (甲醇制烯烃, 如 乙烯和丙烯)反应中, 也可以制成分子筛膜应用在分离甲烷中的二氧化碳, 以及环境保护的应用中, 比如: 吸收一氧化碳和轻质烃类。 在最新的研究发 现分子筛 SSZ-13和过渡金属 (Cu, Fe )进行离子交换后可以在 NH3-SCR脱除 NOx的反应中显示出极为优异的催化活性。 此外, 由于本发明采用了廉价无 毒的结构导向剂, 因此本发明所述的制备方法还具备生产价格低, 可推广应 用的优点。 附图说明
图 1为实施例 1(A)制备的 SSZ-13分子筛样品的 XRD谱图;
图 2为实施例 1(B)制备的 SSZ-13分子筛样品的 XRD谱图;
图 3为实施例 2(A)制备的 SSZ-13分子筛样品的 XRD谱图;
图 4为实施例 2(B)制备的 SSZ-13分子筛样品的 XRD谱图;
图 5为实施例 3制备的 SSZ-13分子筛样品的 XRD谱图;
图 6为实施例 4制备的 SSZ-13分子筛样品的 XRD谱图。 具体实施方式
以下实施例用于说明本发明, 但不用来限制本发明的范围。
以下实施例中所用化学试剂均为巿售商品。
实施例 1
将 0.492克偏铝酸钠 (铝源)和 3.6克氢氧化钠溶解在 15.8克去离子水中, 搅拌使之完全溶解。 将混合物中加入 2.3克氯化胆碱, 搅拌 15分钟使之完全溶 解。 在快速搅拌条件下缓慢滴加 18克 LUDOX-AS-40硅溶胶(硅源)。
在室温下搅拌一个小时, 最后的胶体分成两部分( A和 B ), A和 B分别转 移到有聚四氟乙烯内衬的不锈钢高压反应釜中, 放入 140°C的烘箱并保持 4天 (对于 A ) 和 6天 (对于 B )。
产物用去离子水洗涤,经过滤收集,在真空干燥箱中 100 °C下干燥 12小时, 然后马弗炉中 550°C煅烧 8小时来去除结构导向剂, 即得 SSZ-13分子筛, 其中 A、 B两组制备的 SSZ-13分子筛的 XRD谱图见图 1和图 2。
实施例 2
将 0.853克偏铝酸钠 (铝源)和 3.0克氢氧化钠溶解在 15.8克去离子水中, 搅拌使之完全溶解。 将混合物中加入 1.8克氯化胆碱, 搅拌 15分钟使之完全溶 解。 在快速搅拌条件下缓慢滴加 17.25克 LUDOX-AS-40胶态氧化硅 (硅源)。
在室温下搅拌一个小时, 最后的胶体分成两部分( A和 B ), A和 B分别转 移到有聚四氟乙烯内衬的不锈钢高压反应釜中, 放入 130°C的烘箱 (对于 A ) 和 150°C (对于 B ) 并保持 6天。
产物用去离子水洗涤, 经过滤收集, 在真空干燥箱 100°C下干燥 12小时, 然后在马弗炉中 550°C下煅烧 8小时去除结构导向剂, 即得 SSZ-13分子筛, 其 中八、 B两组制备的 SSZ-13分子筛的 XRD谱图见图 3和图 4。
实施例 3
将 0.492克偏铝酸钠 (铝源)和 3.0克氢氧化钠溶解在 15.8克去离子水中, 搅拌使之完全溶解。将混合物中加入 1.2克氯化胆碱,用 15分钟使之完全混合。 加入 0.36克 SSZ-13晶种, 用 5分钟使之完全混合。 在快速搅拌条件下缓慢滴加 18.0克 LUDOX-AS-40硅溶胶(硅源)。 在室温下搅拌一个小时, 将混合物转移到有聚四氟乙烯内衬的不锈钢高 压反应釜中, 放入 140°C的烘箱保持 4天。
产物用去离子水洗涤, 经过滤收集, 在真空干燥箱 100°C下干燥 12小时, 然后在马弗炉中 550°C煅烧 8小时去除结构导向剂即得 SSZ-13分子筛, 其中 SSZ-13分子筛的 XRD谱图见图 5。
实施例 4
将 0.492克偏铝酸钠 (铝源)和 3.0克氢氧化钠溶解在 15.8克去离子水中, 搅拌使之完全溶解。 将混合物中加入 0.72克 SSZ-13晶种, 搅拌 15分钟使之完 全溶解。 在快速搅拌条件下缓慢滴加 18.0克 LUDOX-AS-40硅溶胶(硅源)。
在室温下搅拌一个小时, 将混合物转移到有聚四氟乙烯内衬的不锈钢高 压反应釜中, 放入 140°C的烘箱保持 6天。
产物用去离子水洗涤, 经过滤收集, 在真空干燥箱 100°C下干燥 12小时, 然后在马弗炉中 550°C煅烧 8小时来去除结构导向剂, 即得 SSZ-13分子筛, 其 中 SSZ-13分子筛的 XRD谱图见图 6。
实施例 5
与实施例 4相比, 区别点仅在于, 本实施例中各原料的具体选择及摩尔用 量比不同, 具体为:
四价硅源 /三价铝源 10
碱金属化合物 /四价硅源 0.33
氢氧根离子 /四价硅源 0.33
H20/四价硅源 3
晶种 /四价硅源 (Wt.%) 4
本实施例中, 四价硅源为沉积二氧化硅, 三价铝源为拟薄水铝石, 碱金 属化合物为氢氧化钠, 氢氧根离子以氢氧化钠形式提供。 本实施例制备的 SSZ-13分子筛 XRD谱图与图 1-6相比, 也同样在相同位置显示出特征衍射峰, 验证了本实施例所述制备方法得到了同样的 SSZ-13分子筛, 篇幅所限, 此处 不再提供, 本领域技术人员可以预见, 采用上述技术方案均可以实现本发明 的目的, 得到预期的 SSZ-13分子筛。 实施例 6
与实施例 4相比, 区别点仅在于, 本实施例中各原料的具体选择及摩尔用 量比不同, 具体为:
四价硅源 /三价铝源 60
碱金属化合物 /四价硅源 0.47
氢氧根离子 /四价硅源 0.47
H20/Si02 11
晶种 /四价硅源 (Wt.%) 10
本实施例中, 四价硅源为正硅酸乙酯, 三价铝源为偏铝酸钠, 碱金属化 合物为氢氧化钠, 氢氧根离子以氢氧化钠形式提供。 本实施例制备的 SSZ-13 分子筛 XRD谱图与图 1-6相比, 在相同的位置显示出特征衍射峰, 验证了本实 施例所述制备方法得到了同样的 S S Z - 13分子筛。
实施例 7
与实施例 1相比, 区别点仅在于, 本实施例中各原料的具体选择及摩尔用 量比不同, 具体为:
四价硅源 /三价铝源 20
碱金属化合物 /四价硅源 0.4
氢氧根离子 /四价硅源 0.4
H20/四价硅源 11
氯化胆酰 /四价硅源 0.08
本实施例中, 四价硅源为硅酸钠, 三价铝源为拟薄水铝石, 碱金属化合 物为氢氧化钠, 氢氧根离子以氢氧化钠形式提供。 本实施例制备的 SSZ-13分 子筛 XRD谱图与图 1-6相比, 在相同的位置显示出特征衍射峰, 验证了本实施 例所述制备方法得到了同样的 SSZ-13分子筛。
实施例 8
与实施例 1相比, 区别点仅在于, 本实施例中各原料的具体选择及摩尔用 量比不同, 具体为:
四价硅源 /三价铝源 40 碱金属化合物 /三价铝源 2.3
氢氧根离子 /四价硅源 0.5
H20/四价硅源 5
氢氧化胆碱 /四价硅源 0.1
本实施例中, 四价硅源为硅溶胶, 三价铝源为氧化铝, 碱金属化合物为 氯化钠, 氢氧根离子以氨水形式提供。 本实施例制备的 SSZ-13分子筛 XRD谱 图与图 1-6相比, 在相同的位置显示出特征衍射峰, 验证了本实施例所述制备 方法得到了同样的 SSZ-13分子筛。
实施例 9
与实施例 3相比, 区别点仅在于, 本实施例中氯化胆碱与 SSZ-13晶种的质 量比为 2:1。
实施例 10
与实施例 3相比, 区别点仅在于, 本实施例中氯化胆碱与 SSZ-13晶种的质 量比为 3:1。
实施例 11
与实施例 3相比, 区别点仅在于, 本实施例中氯化胆碱与 SSZ-13晶种的质 量比为 2.5: 1。 虽然, 上文中已经用一般性说明及具体实施方案对本发明作了详尽的描 述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本领域技术人员 而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些修改或 改进, 均属于本发明要求保护的范围。 实用性 本发明公开了一种新的合成晶体分子筛 SSZ-13 的方法, 所述方法包括 在结晶条件下使下列原料物质在水中进行接触: (1 )至少一种四价硅源; (2 ) 至少一种三价铝源;(3 )至少一种碱金属化合物;(4 )胆碱阳离子和 /或 SSZ-13 晶种; (5 ) 氢氧根离子。 本发明所述新的合成晶体分子筛 SSZ-13 的方法能 够避免使用苄基三甲基季铵离子(BzTMA+ )或 Ν,Ν,Ν-三甲基 -1-金刚烷胺阳 离子作为结构导向剂, 并且最终得到高质量的晶体分子筛 SSZ-13。 由于本发 明采用了廉价无毒的结构导向剂, 因此本发明所述的制备方法还具备采用廉 价且无毒模板剂生产价格低, 可推广应用的优点, 具有很强的工业实用性。

Claims

权 利 要 求 书
1.一种合成晶体分子筛 SSZ-13的方法, 其特征在于, 所述方法包括在结 晶条件下使下列原料物质在水中进行接触:
( 1 ) 至少一种四价硅源;
( 2 ) 至少一种三价铝源;
( 3 ) 至少一种碱金属化合物;
( 4 )胆碱阳离子和 /或 SSZ-13晶种;
( 5 ) 氢氧根离子。
2.根据权利要求 1 所述的方法, 其特征在于, 所述的四价硅源包括但不 限于含硅氧化物和硅酸盐。
3.根据权利要求 2所述的方法, 其特征在于, 所述的四价硅源为硅酸盐、 硅溶胶、 正硅酸乙酯、 沉积二氧化硅和粘土中的一种或几种。
4.根据权利要求 3所述的方法, 其特征在于, 所述的四价硅源为硅溶胶。
5.根据权利要求 1-4任一项所述的方法, 其特征在于, 所述三价铝源为三 价铝氧化物或铝酸盐。
6.根据权利要求 5所述的方法, 其特征在于, 所述三价铝源为偏铝酸钠、 氧化铝或氢氧化铝。
7.根据权利要求 1-6任一项所述的方法, 其特征在于, 所述碱金属化合物 为含钠化合物。
8.根据权利要求 7 所述的方法, 其特征在于, 所述碱金属化合物为氢氧 化钠或者氯化钠。
9.根据权利要求 1-8任一项所述的方法, 其特征在于, 所述的胆碱阳离子 为氢氧化胆碱和 /或氯化胆碱。
10. 根据权利要求 9所述的方法, 其特征在于, 所述的胆碱阳离子为氯 化胆碱。
11.根据权利要求 1-10任一项所述的方法, 其特征在于, 所述的 SSZ-13 晶种为采用胆碱阳离子作为结构导向剂合成的 SSZ-13分子筛。
12.根据权利要求 1-10任一项所述的方法, 其特征在于,
尔比为:
四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
胆碱阳离子 /四价硅源 0.05-0.1
氢氧根离子 /四价硅源 0.3-0.6。
13.根据权利要求 1-11任 项所述的方法, 其特征在于, 各原料物质的摩 尔比为:
四价硅源 /三价铝源 10-60
碱金属化合物 /四价硅源 0.33-0.47
氢氧根离子 /四价硅源 0.3-0.6
SSZ-13晶种质量为四价硅源 量的 1%-10%'
14.根据权利要求 1-11任一项所述的方法, 其特征在于, 当胆碱阳离子与 SSZ-13晶种同时用于合成晶体分子筛 SSZ-13时, 二者的质量比为 2-3: 1。
15、 权利要求 1-14任一项所述方法, 其特征在于: 备料结束后, 对反应 混合物进行加热晶化, 其中, 反应温度保持在 100°C -20(TC, 结晶过程最少 4 天, 产物结晶体经过水洗后在 90°C -150°C烘干 8-12 小时, 然后马弗炉中 500-600 °C煅烧 6-10小时得 SSZ-13分子筛晶体。
PCT/CN2014/075043 2013-12-04 2014-04-10 一种合成分子筛ssz-13的方法 WO2015081648A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/316,119 US9962688B2 (en) 2013-12-04 2014-04-10 Method for synthesizing molecular sieve SSZ-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310645906.4 2013-12-04
CN201310645906.4A CN103601211B (zh) 2013-12-04 2013-12-04 一种合成分子筛ssz-13的方法

Publications (1)

Publication Number Publication Date
WO2015081648A1 true WO2015081648A1 (zh) 2015-06-11

Family

ID=50119501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075043 WO2015081648A1 (zh) 2013-12-04 2014-04-10 一种合成分子筛ssz-13的方法

Country Status (3)

Country Link
US (1) US9962688B2 (zh)
CN (1) CN103601211B (zh)
WO (1) WO2015081648A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579449A (zh) * 2018-05-14 2018-09-28 南京工业大学 一种快速合成高硅ssz-13分子筛膜的方法
CN112619694A (zh) * 2019-10-09 2021-04-09 中国石油天然气股份有限公司 烯烃催化剂的制备方法
CN114261974A (zh) * 2021-12-31 2022-04-01 南京谊明新材料科技有限公司 一种ssz-39分子筛及其制备方法
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601211B (zh) * 2013-12-04 2015-07-22 北京化工大学 一种合成分子筛ssz-13的方法
CN104386706B (zh) * 2014-11-04 2016-07-06 南开大学 以锌胺络合物为模板剂合成cha型分子筛的方法
CN105645426B (zh) * 2014-11-18 2017-09-01 中触媒有限公司 一种ssz‑13分子筛的合成方法
CN104709917B (zh) * 2015-02-11 2016-09-14 浙江大学 一种通过固相研磨合成ssz-13分子筛的方法
CN105236441A (zh) * 2015-09-14 2016-01-13 天津大学 以四乙基氢氧化铵与n,n,n-三甲基金刚烷氢氧化铵混合作为模板剂合成cha的方法
EP3393972A4 (en) * 2015-12-22 2019-06-12 BASF Corporation PROCESS FOR THE PREPARATION OF IRON EXCHANGE ZEOLITE COMPOSITION (III)
CN106927474B (zh) * 2015-12-30 2018-10-30 中触媒新材料股份有限公司 一种ssz-13分子筛及其制备方法与应用
CN106925340A (zh) * 2015-12-31 2017-07-07 中国石油天然气股份有限公司 甲醇制烯烃催化剂及其制备方法
CN107282096B (zh) * 2016-04-01 2020-09-25 中触媒新材料股份有限公司 一种ssz-13分子筛催化剂及其制备方法与应用
CN106276953B (zh) * 2016-08-26 2018-02-06 天津南化催化剂有限公司 一种ssz‑13分子筛的制备方法
CN106467306B (zh) * 2016-08-30 2018-09-07 山东齐鲁华信高科有限公司 一步法合成ssz-39分子筛的方法
CN107954437B (zh) * 2016-10-14 2020-11-27 中国石油化工股份有限公司 Itq-24沸石分子筛的制备方法
CN106745034A (zh) * 2017-02-23 2017-05-31 华中科技大学 一种双模板剂一步合成ssz‑13分子筛的方法及其应用
CN108928832B (zh) * 2017-05-22 2020-08-07 中国石油化工股份有限公司 无锗iwr沸石分子筛的制备方法
CN109110777A (zh) * 2017-06-22 2019-01-01 中国科学院宁波材料技术与工程研究所 一种ssz-13分子筛的合成方法
CN108059172B (zh) * 2017-12-13 2020-07-10 山东齐鲁华信高科有限公司 H-ssz-13分子筛的制备方法
CN108128784B (zh) * 2017-12-28 2020-11-06 南京理工大学 Cu-Ce-La-SSZ-13分子筛催化剂的制备方法
CN108190907B (zh) * 2018-02-06 2021-02-19 四川润和催化新材料股份有限公司 一种ssz-13分子筛及其制备方法
CN110407229B (zh) * 2018-04-28 2021-04-06 中国石油化工股份有限公司 合成cha结构分子筛的方法及cha结构分子筛
CN110407231B (zh) * 2018-04-28 2021-04-06 中国石油化工股份有限公司 合成含铜cha结构分子筛的方法及含铜cha结构分子筛
CN110407230B (zh) * 2018-04-28 2021-04-06 中国石油化工股份有限公司 合成cha结构分子筛的方法及cha结构分子筛
KR20210046808A (ko) * 2018-09-11 2021-04-28 바스프 코포레이션 골격 유형 aei를 갖는 제올라이트성 물질의 제조 방법
CN109224879B (zh) * 2018-09-17 2021-04-27 南京工业大学 一种cha分子筛膜的制备方法
JP2022514690A (ja) 2018-12-19 2022-02-14 ビーエーエスエフ ソシエタス・ヨーロピア Cha型ゼオライト材料、及びシクロアルキルアンモニウム化合物とヒドロキシアルキルアンモニウム化合物との組み合わせを使用するその製造方法
CN110028081A (zh) * 2019-04-19 2019-07-19 大连理工大学 一种合成纳米级多级孔ssz-13分子筛的方法
CN110407221B (zh) * 2019-06-21 2020-12-04 合肥派森新材料技术有限公司 一种菱沸石分子筛的制备方法、scr催化剂的制备方法
CN111298831B (zh) * 2019-11-25 2022-10-25 上海绿强新材料有限公司 一种用于mto催化反应的ssz-13分子筛的制备方法
CN113387369B (zh) * 2020-03-12 2022-10-14 瑞科稀土冶金及功能材料国家工程研究中心有限公司 Cu-SSZ-13分子筛的制备方法
CN111484037A (zh) * 2020-03-31 2020-08-04 中国科学院青岛生物能源与过程研究所 一种通过y分子筛转晶合成不同硅铝比ssz-13分子筛的方法
CN111871454A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种氮氧化物净化cha沸石分子筛及其催化剂制备方法与应用
CN111871452A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种用于柴油车尾气净化cha型分子筛、催化剂及制备方法与应用
CN111871450A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种cha结构分子筛及其尾气脱硝催化剂的制备方法与应用
CN111960434B (zh) * 2020-08-10 2021-09-14 中触媒新材料股份有限公司 一种cha型菱沸石分子筛及其合成方法与应用
CN111871453A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种cha结构分子筛及合成方法与氮氧化物选择还原催化剂及应用
CN111871455A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种cha型铝硅分子筛及scr催化剂的制备方法与应用
CN112028086B (zh) * 2020-08-25 2022-07-12 华中科技大学 一种纳米Cu-SSZ-13分子筛及其一步合成方法与应用
CN114477203B (zh) * 2020-10-23 2024-01-12 中国石油化工股份有限公司 一种多孔分子筛及其合成方法
JP2023551654A (ja) 2020-11-20 2023-12-12 エコヴィスト・カタリスト・テクノロジーズ・リミテッド・ライアビリティ・カンパニー 有機テンプレートを組み合わせて使用するチャバザイトゼオライトの合成
CN114538461B (zh) * 2020-11-26 2023-08-08 中国科学院大连化学物理研究所 一种ssz-13硅铝分子筛及其制备方法与应用
CN112499644B (zh) * 2020-12-10 2021-09-14 安徽纳蓝环保科技有限公司 一种低SiO2/Al2O3的Cu-CHA分子筛及其制备方法
CN112830499B (zh) * 2021-01-15 2022-12-13 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN114314605A (zh) * 2022-03-10 2022-04-12 中汽研(天津)汽车工程研究院有限公司 一种ssz-13分子筛的制备方法
CN114538467B (zh) * 2022-04-14 2023-08-25 安徽纳蓝环保科技有限公司 一种ssz-13分子筛、调控其晶体形貌的方法及应用
CN114832645B (zh) * 2022-05-26 2023-10-20 江西师范大学 一种无氟无铝凝胶中ssz-13分子筛膜的制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079735A (en) * 1980-07-07 1982-01-27 Chevron Res Novel zeolite designated CZH-5
US4683214A (en) * 1984-09-06 1987-07-28 Mobil Oil Corporation Noble metal-containing catalysts
CN101573293A (zh) * 2006-12-27 2009-11-04 雪佛龙美国公司 分子筛ssz-13的制备
US20120004485A1 (en) * 2010-07-01 2012-01-05 Uop Llc Uzm-5, uzm-5p, and uzm-6 crystalline aluminosilicate zeolites and methods for preparing the same
CN103601211A (zh) * 2013-12-04 2014-02-26 北京化工大学 一种合成分子筛ssz-13的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
EP2521615A1 (en) * 2009-10-14 2012-11-14 Basf Se Copper containing levyne molecular sieve for selective reduction of nox
US9334171B2 (en) * 2010-06-18 2016-05-10 Basf Se Alkali-free synthesis of zeolitic materials of the LEV-type structure
CN107001179A (zh) * 2015-08-24 2017-08-01 沙特基础工业全球技术公司 作为将氯甲烷转化为烯烃的催化剂的ssz‑13

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079735A (en) * 1980-07-07 1982-01-27 Chevron Res Novel zeolite designated CZH-5
US4683214A (en) * 1984-09-06 1987-07-28 Mobil Oil Corporation Noble metal-containing catalysts
CN101573293A (zh) * 2006-12-27 2009-11-04 雪佛龙美国公司 分子筛ssz-13的制备
US20120004485A1 (en) * 2010-07-01 2012-01-05 Uop Llc Uzm-5, uzm-5p, and uzm-6 crystalline aluminosilicate zeolites and methods for preparing the same
CN103601211A (zh) * 2013-12-04 2014-02-26 北京化工大学 一种合成分子筛ssz-13的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAS, T.K. ET AL.: "Studies on the synthesis of ETS-10 II. Use of organic templates", MICROPOROUS MATERIALS, vol. 5, no. 6, 29 February 1996 (1996-02-29), pages 401 - 410 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579449A (zh) * 2018-05-14 2018-09-28 南京工业大学 一种快速合成高硅ssz-13分子筛膜的方法
CN108579449B (zh) * 2018-05-14 2019-12-17 南京工业大学 一种快速合成高硅ssz-13分子筛膜的方法
CN112619694A (zh) * 2019-10-09 2021-04-09 中国石油天然气股份有限公司 烯烃催化剂的制备方法
CN112619694B (zh) * 2019-10-09 2023-06-30 中国石油天然气股份有限公司 烯烃催化剂的制备方法
CN114261974A (zh) * 2021-12-31 2022-04-01 南京谊明新材料科技有限公司 一种ssz-39分子筛及其制备方法
CN114261974B (zh) * 2021-12-31 2024-06-04 南京谊明新材料科技有限公司 一种ssz-39分子筛及其制备方法
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN114772610B (zh) * 2022-05-07 2024-03-12 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法

Also Published As

Publication number Publication date
US20170113210A1 (en) 2017-04-27
CN103601211A (zh) 2014-02-26
US9962688B2 (en) 2018-05-08
CN103601211B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2015081648A1 (zh) 一种合成分子筛ssz-13的方法
TWI490167B (zh) 使用奈米結晶質zsm-5晶種製備zsm-5沸石之方法
JP5542669B2 (ja) Izm−2結晶固体およびその調製方法
WO2018227849A1 (zh) 分子筛scm-14、其合成方法及其用途
JP4673379B2 (ja) ゲルマニウム・ゼオライトを製造する方法
JP7005399B2 (ja) テンプレートである1,6-ビス(メチルピペリジニウム)ヘキサンジブロミドの存在下でのizm-2ゼオライトの合成方法
JP6445685B2 (ja) ゼオライトssz−52を調製するための方法
JP6178847B2 (ja) アルミノシリケートゼオライトssz−56の製造方法
WO2010008755A2 (en) Preparation of zeolites using novel structure directing agents
JP2002512583A (ja) 置換ピペリジニウムカチオンを用いるゼオライト製造法
JP2010202506A (ja) 水酸化物媒介ゲルを使用したモレキュラー・シーブssz−74の合成
JP2009513475A (ja) Ifr構造を有するオール−シリカゼオライトの製造法
CN106587102B (zh) Zsm-12型沸石分子筛的合成方法
JP2006206433A (ja) アミン化合物の混合物によるzbm−30ゼオライトの新規合成方法
WO2015021611A1 (zh) 一种ZSM-22分子筛及Me-ZSM-22的合成方法
JP2001058816A (ja) NaY型ゼオライト
JP6100361B2 (ja) モレキュラーシーブssz−87及びその合成
JP2014530164A (ja) 新規な構造指向剤を用いるlta型ゼオライトを調製するための方法
CN104098108B (zh) 一种矩形形貌的zsm-5分子筛及其制备方法
US8834836B2 (en) Method for producing MTW-type zeolite
CN112551543B (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
JP2005536436A (ja) ドープされた反応物を用いるドープされたペンタシル型ゼオライトの製造方法
CN101279745A (zh) 制备mel-结构型沸石的方法
CN112209403B (zh) Scm-25/mfi共结晶分子筛、其制备方法及其用途
JP4470003B2 (ja) 高シリカモルデナイトおよびその合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15316119

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14868157

Country of ref document: EP

Kind code of ref document: A1