WO2015079780A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2015079780A1
WO2015079780A1 PCT/JP2014/074546 JP2014074546W WO2015079780A1 WO 2015079780 A1 WO2015079780 A1 WO 2015079780A1 JP 2014074546 W JP2014074546 W JP 2014074546W WO 2015079780 A1 WO2015079780 A1 WO 2015079780A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
endoscope
bending
hole
Prior art date
Application number
PCT/JP2014/074546
Other languages
English (en)
French (fr)
Inventor
悠輔 中川
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201480064970.6A priority Critical patent/CN105792723A/zh
Priority to EP14865935.2A priority patent/EP3075298A4/en
Publication of WO2015079780A1 publication Critical patent/WO2015079780A1/ja
Priority to US15/163,784 priority patent/US10568491B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00075Insertion part of the endoscope body with externally roughened shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion

Definitions

  • the present invention relates to a flexible endoscope in which an optical fiber of an optical transmission module disposed at a hard tip portion is inserted through an insertion portion.
  • the endoscope has an image sensor such as a CCD at the distal end of an elongated flexible insertion portion.
  • an imaging device having a high pixel number for an endoscope has been studied.
  • the amount of signal transmitted from the image sensor to the signal processing device (processor) increases. Therefore, instead of electric signal transmission through metal wiring by electric signals, thin signals by optical signals are used.
  • Optical signal transmission via an optical fiber is preferred.
  • an E / O module electric-optical converter
  • O / E module optical-electrical converter
  • Japanese Patent Laid-Open No. 2013-025092 discloses an optical element that inputs or outputs an optical signal, a substrate on which the optical element is mounted, and an optical fiber insertion device that transmits an optical signal input and output from the optical element.
  • An optical transmission module is disclosed that includes a holding portion having a through-hole and arranged side by side in the thickness direction of the optical element.
  • the optical fiber is not strong in the longitudinal direction. For this reason, when the flexible insertion part of an endoscope deform
  • Embodiment of this invention aims at providing the endoscope which can transmit an optical signal stably.
  • An endoscope includes an insertion portion in which a rigid distal end portion, a bending portion for changing the direction of the rigid distal end portion, and a flexible portion are continuously provided, and the insertion portion is inserted.
  • An optical fiber that transmits an optical signal, an optical element in which an imaging element, a light emitting unit that converts an electrical signal output from the imaging element into the optical signal, and a light-emitting element having a through hole are provided.
  • a holding member disposed so that the through hole is positioned on the portion, and having a light transmission module disposed on the hard tip portion, and the tip portion on the through hole of the holding member.
  • the length of the optical fiber that is inserted and fixed in the bending portion is longer than the length of the bending portion.
  • an endoscope having an optical transmission module that can transmit an optical signal stably can be provided.
  • the endoscope 2 includes an insertion portion 80, an operation portion 84 disposed on the proximal end side of the insertion portion 80, and a universal cord extending from the operation portion 84.
  • 92 is a flexible endoscope including a connector 92 disposed on the base end side of the universal cord 92.
  • the insertion portion 80 includes a hard tip portion 81, a curved portion 82 for changing the direction of the hard tip portion 81, and an elongated flexible soft portion 83 in order.
  • the rigid tip 81 is provided with an imaging optical unit 90L, an imaging element 90, and an optical transmission module 1 that is an E / O module that converts an imaging signal (electric signal) from the imaging element 90 into an optical signal.
  • the image sensor 90 is a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device).
  • the optical transmission module 1 includes an optical element 10, a wiring board 20, a holding member (also referred to as a ferrule) 40, and an optical fiber 50.
  • the optical element 10, the wiring board 20, and the holding member 40 are arranged side by side in the thickness direction (Z direction) of the optical element 10.
  • the optical fiber 50 may be arranged in a form of being accommodated in a protective tube (not shown). In this case, the optical fiber 50 can be freely moved to some extent inside the protective tube.
  • the optical element 10 is a surface emitting laser chip having a light emitting unit 11 that outputs light of an optical signal.
  • the ultra-small optical element 10 having a planar size of 250 ⁇ m ⁇ 300 ⁇ m has a light emitting part 11 having a diameter of 20 ⁇ m and an electrode 12 for supplying a driving signal to the light emitting part 11 on the main surface.
  • the optical fiber 50 having a diameter of 125 ⁇ m includes a core having a diameter of 50 ⁇ m for transmitting light and a clad covering the outer periphery of the core.
  • the distal end portion of the optical fiber 50 is inserted into the through hole 40H of the substantially rectangular parallelepiped holding member 40 bonded onto the optical element 10 and fixed with an adhesive 55.
  • the optical fiber 50 By inserting the optical fiber 50 into the through hole 40H, the light emitting portion 11 of the optical element 10 and the optical fiber 50 are positioned.
  • the flat wiring board 20 having the first main surface 20SA and the second main surface 20SB has a hole 20H serving as an optical path.
  • the optical element 10 is flip-chip mounted on the first main surface 20SA in a state where the light emitting portion 11 is disposed at a position facing the hole 20H of the wiring board 20. That is, the wiring board 20 has a plurality of electrodes 12 of the optical element 10 and an electrode pad 21 to which each is bonded.
  • an FPC board, a ceramic board, a glass epoxy board, a glass board, a silicon board, or the like is used as the base of the wiring board 20.
  • an Au bump that is the electrode 12 of the optical element 10 is ultrasonically bonded to the electrode pad 21 of the wiring board 20.
  • an adhesive such as an underfill material or a sidefill material may be injected into the joint portion.
  • the wiring board 20 transmits to the electrode pad 21 an electrode pad (not shown) connected by the imaging element 90 (FIG. 3) and the metal wiring 90M (FIG. 3) and an electric signal transmitted from the imaging element 90. It has wiring (not shown). Further, the wiring board 20 may include a processing circuit for converting an electrical signal transmitted from the image sensor 90 into a drive signal for the optical element 10.
  • the holding member 40 is formed with a columnar through hole 40H having substantially the same inner diameter as the outer diameter of the optical fiber 50 to be inserted.
  • substantially the same means that the diameters of both are substantially the same so that the outer peripheral surface of the optical fiber 50 and the wall surface of the through hole 40H are in contact with each other.
  • the inner diameter of the through hole 40H is made larger by 1 ⁇ m to 5 ⁇ m than the outer diameter of the optical fiber 50.
  • the through-hole 40H may have a prismatic shape as long as the optical fiber 50 can be held by the wall surface in addition to the cylindrical shape.
  • the material of the holding member 40 is a metal member such as ceramic, Si, glass, or SUS.
  • the holding member 40 may have a substantially cylindrical shape or a substantially conical shape.
  • the holding member 40 is joined to the second main surface 20SB of the wiring board 20 via the adhesive layer 30 in a state where the through hole 40H is disposed at a position facing the hole 20H of the wiring board 20.
  • the adhesive layer 30 made of a thermosetting resin is not disposed in a region where the through hole 40H and the hole 20H are opposed to each other.
  • the operation unit 84 is provided with an angle knob 85 for operating the bending portion 82 and an O / E module 91 which is an optical transmission module for converting an optical signal into an electrical signal.
  • the connector 93 has an electrical connector portion 94 that is connected to a processor (not shown), and a light guide connection portion 95 that is connected to a light source.
  • the light guide connection portion 95 is connected to an optical fiber bundle that guides illumination light to the hard tip portion 81.
  • the electrical connector portion 94 and the light guide connecting portion 95 may be integrated.
  • the imaging signal is converted into an optical signal by the optical transmission module 1 of the rigid distal end portion 81 and transmitted to the operation unit 84 through the thin optical fiber 50 inserted through the insertion unit 80. Then, the optical signal is converted again into an electrical signal by the O / E module 91 provided in the operation unit 84 and transmitted to the electrical connector unit 94 via the metal wiring 50M through which the universal cord 92 is inserted. That is, a signal is transmitted through the optical fiber 50 in the small-diameter insertion portion 80, and is inserted through the metal wiring 50M that is thicker than the optical fiber 50 in the universal cord 92 that is not inserted into the body and has a small outer diameter restriction. Is transmitted.
  • the optical fiber 50 may be inserted through the universal cord 92 up to the electrical connector portion 94.
  • the optical fiber 50 may be inserted up to the connector 93.
  • the optical fiber 50 When the insertion portion 80 is deformed, stress is applied to the optical fiber 50 inserted through the insertion portion 80 of the endoscope 2. In particular, the optical fiber 50 is subjected to a large stress due to the bending operation of the bending portion 82.
  • the path length L through which the optical fiber 50 is inserted when the bending portion 82 is in a straight state (A) is L0.
  • the path length L is shortened, so that there is a possibility that compressive stress is applied to the optical fiber 50.
  • the path length L becomes long, and thus there is a possibility that tensile stress is applied to the optical fiber 50.
  • the maximum bending angle ⁇ of the bending portion 82 varies depending on the specification, but may be 360 degrees or more.
  • the length of the bending portion 82 of the optical fiber 50 is longer than the length L0 of the bending portion, in other words, the inside of the bending portion 82 is inserted.
  • the length of the part is designed to have so-called “play”. That is, as shown in FIG. 5, the optical fiber 50 passes through the inside of the bending portion 82 while meandering with respect to the length L0 when the bending portion 82 is in a straight line state.
  • the length of the bent portion 82 of the optical fiber 50 is designed to be equal to or greater than L0 + ⁇ Lmax.
  • ⁇ Lmax is the amount of deformation when the maximum bending angle ⁇ max is reached.
  • the length of the optical fiber 50 in the curved portion 82 is L0 + 2 ⁇ ⁇ Lmax or more.
  • L0 + 5 ⁇ ⁇ Lmax or less is preferable.
  • the endoscope 2 can transmit an optical signal stably.
  • the length of the optical fiber 50 in the portion through which the flexible portion 83 is inserted is preferably longer than the length of the flexible portion 83, for example, 110% or more and 150% or less of the length of the flexible portion 83. Particularly preferred. If it is equal to or higher than the lower limit, strong stress is not applied to the optical fiber 50 due to deformation of the flexible portion 83, and if the optical fiber 50 is equal to or lower than the upper limit, the optical fiber 50 is entangled with other members such as an operation wire. There is no risk of getting stuck.
  • the endoscope 2 further includes a wire 71 having one end fixed to the light transmission module 1 disposed at the hard tip portion 81.
  • the wire 71 is a wire that is shorter in the bending portion 82 than the optical fiber 50 and hardly undergoes elastic deformation. And since the optical fiber 50 is being fixed by the wire 71 and the fixing
  • the fixing portion 71P is made of an adhesive, a binding band, a heat shrinkable tube, a clip, or the like. Moreover, as the fixing
  • the endoscope 2 cannot be bent any more when the wire 71 is extended due to the bending deformation of the bending portion 82. For this reason, even if the bending portion 82 undergoes unexpected deformation, no strong stress is applied to the optical fiber 50. Further, when the optical fiber 50 is disposed in the protective tube, a strong stress is not applied to the protective tube, so that a strong stress is not applied to the optical fiber 50 inside the protective fiber. .
  • the path length L is increased by ⁇ L. Then, the optical fiber 50 is large and sagging in the bending portion 82. However, since it is fixed by the fixing portion 71P, the portion of the optical fiber 50 through which the flexible portion 83 is inserted is not affected by the bending deformation. Further, the portion of the optical fiber 50 that is disposed in the curved portion 82 does not move to the flexible portion 83.
  • optical fiber 50 may be entangled with other members inserted through the insertion portion 80, such as an operation wire.
  • an existing member inserted through the bending portion 82 for example, an electrical wiring, a channel, an air supply tube, a water supply tube, or the like may be used.
  • the optical fiber 50 may meander in a wave shape, or may be wound around the wire 71 and spirally meandered. In the case of winding, as shown in FIG. 7, it is desirable to give a little margin between the optical fiber 50 and the wire 71, and the winding pitch (winding period) P is preferably 10 mm or more. In this case, the wire 71 may be thicker or thinner than the optical fiber 50.
  • the position of the optical fiber 50 with the soft part 83 may be fixed at a predetermined interval.
  • An endoscope 2A according to this modification includes an optical transmission module 1A shown in FIG.
  • the optical element 10A and the holding member 40A are disposed on one side of the wiring board 20A.
  • the electrode 12A of the optical element 10A and the electrode pad 21A of the wiring board 20A are connected by a wire bonding wiring 49.
  • the holding member 40A having a recess in which the optical element 10A is accommodated is joined to the wiring board 20A via an adhesive layer (not shown) so that the through hole 40H faces the light emitting part 11 of the optical element 10A.
  • the optical transmission module 1A does not need to be provided with a hole serving as an optical path in the wiring board, and is easy to manufacture because only two positions of the optical element 10A and the holding member 40A are required. Further, since it is not necessary to increase the thickness of the optical element 10A, the optical transmission module 1A can be reduced in size. Furthermore, although the bonding area between the holding member 40A and the wiring board 20A is small and the bonding strength is weak, there is no possibility that the bonded portion of the holding member 40A is peeled off due to stress relaxation to the optical fiber 50.
  • the endoscope 2B includes a plurality of guide members 74 that define the position of the optical fiber 50 inserted through the insertion portion 80 in the bending portion 82. As shown in FIG. 9, the substantially disc-shaped guide member 74 has a recess 50H through which the optical fiber 50 is inserted and a hole 74H through which other members are inserted.
  • the plurality of guide members 74 are arranged inside the insertion portion 80 (curved portion 82) at predetermined intervals so that the concave portions 50H are alternately positioned above and below (opposing positions). Yes. For this reason, the optical fiber 50 inserted through each recess 50H is inserted through the insertion portion 80 while meandering.
  • the arrangement interval of the guide members 74 is, for example, 1/2 to 1/5 of the length of the bending portion 82.
  • the optical fiber 50 releases the stress by changing the insertion path as shown by the dotted line.
  • the plurality of guide members 74 may be arranged so that the optical fibers 50 inserted through the respective recesses 50H meander.
  • the guide member has a function of separating the position of the optical fiber 50 that is inserted through the insertion portion 80 from the position of the other member because it is difficult to be entangled with the other member.
  • it has the function which prescribes
  • the member 74A or the like may be used.
  • the guide member 74 may be disposed in the soft portion 83. In the soft part 83. The arrangement interval of the guide members 74 may be longer than the bending portion 82.
  • a single multi-lumen tube that passes through the bending portion 82 may be used as the guide member. That is, in the case of a multi-lumen tube, only one guide member is sufficient.
  • the endoscope 2C has two curved portions 82A1 and 82A3 so that a specific direction of a narrow space in which the rigid distal end portion 81 is inserted can be observed.
  • the curved portions 82A1 and 82A3 are connected, for example, via an intermediate portion 82A2.
  • the optical fiber 50 is not only fixed to the insertion portion 80 by the fixing portion 71P2 at the base end portion of the bending portion 82A3, but also inserted by the fixing portion 71P1 at the intermediate portion 82A2 between the two bending portions. The position with the part 80 is fixed.
  • the endoscope 2C includes two bending portions 82A1 and 82A3, and each of the bending portions 82A1 and 82A3 is bent and deformed.
  • the optical fiber 50 inserted through the endoscope 2 receives a large stress as in the endoscope 1 or other members. There is no risk of getting tangled. For this reason, the endoscope 2C can transmit an optical signal stably.
  • an endoscope having three or more curved portions has the same effect as the endoscope 2C as long as the position of the optical fiber 50 and the insertion portion 80 is fixed between the plurality of curved portions. Needless to say.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

安定して光信号を伝送できる内視鏡2を提供する。内視鏡2は、硬性先端部81と、硬性先端部81の方向を変えるための湾曲部82と、軟性部83と、が連設された挿入部80と、挿入部80を挿通している光信号を伝送する光ファイバ50と、を具備し、撮像素子90と、撮像素子90が出力する電気信号を光信号に変換する発光部11が形成された光素子10と、貫通孔40Hを有し発光部11の上に貫通孔40Hが位置するように配置されている保持部材40と、が配設されている光伝送モジュール1を、硬性先端部81に有する内視鏡2であって、保持部材40の貫通孔40Hに先端部が挿入され固定されている光ファイバ50の、湾曲部82における長さが、湾曲部82の長さL0よりも長い。

Description

内視鏡
 本発明は、硬性先端部に配設された光伝送モジュールの光ファイバが挿入部を挿通している軟性内視鏡に関する。
 内視鏡は、細長い可撓性の挿入部の先端部にCCD等の撮像素子を有する。近年、高画素数の撮像素子の内視鏡への使用が検討されている。高画素数の撮像素子を使用した場合には、撮像素子から信号処理装置(プロセッサ)へ伝送する信号量が増加するため、電気信号によるメタル配線を介した電気信号伝送に替えて光信号による細い光ファイバを介した光信号伝送が好ましい。光信号伝送には、電気信号を光信号に変換するE/Oモジュール(電気-光変換器)と、光信号を電気信号に変換するO/Eモジュール(光-電気変換器)とが用いられる。
 例えば、特開2013-025092号公報には、光信号の入力または出力を行う光素子と、光素子が実装される基板と、光素子から入出力される光信号を伝送する光ファイバ挿入用の貫通孔を有し、光素子の厚さ方向に並べて配置される保持部と、を備える光伝送モジュールが開示されている。
 ここで、光ファイバは、長手方向に対する強度が強くはない。このため、内視鏡の可撓性の挿入部が変形することにより、光ファイバに長手方向に引張応力/圧縮応力が繰り返して印加されると、破損したり、折れたりする可能性がある。また、挿入部80にある他部材と光ファイバとが絡まり合い、光ファイバが破損する可能性もある。光ファイバが破損等すると光信号の伝送が困難になる。
特開2013-025092号公報
 本発明の実施形態は、安定して光信号を伝送できる内視鏡を提供することを目的とする。
 本発明の実施形態の内視鏡は、硬性先端部と、前記硬性先端部の方向を変えるための湾曲部と、軟性部と、が連設された挿入部と、前記挿入部を挿通している光信号を伝送する光ファイバと、を具備し、撮像素子と、前記撮像素子が出力する電気信号を前記光信号に変換する発光部が形成された光素子と、貫通孔を有し前記発光部の上に前記貫通孔が位置するように配置されている保持部材と、が配設されている光伝送モジュールを、前記硬性先端部に有し、前記保持部材の前記貫通孔に先端部が挿入され固定されている前記光ファイバの、前記湾曲部における長さが、前記湾曲部の長さよりも長い。
 本発明の実施形態によれば、安定して光信号を伝送できる光伝送モジュールを有する内視鏡を提供できる。
第1実施形態の内視鏡の斜視図である。 第1実施形態の内視鏡の光伝送モジュールの断面図である。 第1実施形態の内視鏡の湾曲部の動作を示す断面図である。 第1実施形態の内視鏡の湾曲部の動作を示す断面図である。 第1実施形態の内視鏡の湾曲部の構成を示す断面図である。 第1実施形態の内視鏡の湾曲部の構成を示す断面図である。 第1実施形態の内視鏡の湾曲部の構成を示す断面図である。 第1実施形態の変形例の内視鏡の光伝送モジュールの断面図である。 第2実施形態の内視鏡のガイド部材の上面図である。 第2実施形態の内視鏡の湾曲部の構成を示す断面図である。 第2実施形態の内視鏡の別のガイド部材の上面図である。 第3実施形態の内視鏡の湾曲部の構成を示す断面図である。
<第1実施形態>
 図1に示すように、本実施形態の内視鏡2は、挿入部80と、挿入部80の基端部側に配設された操作部84と、操作部84から延設されたユニバーサルコード92と、ユニバーサルコード92の基端部側に配設されたコネクタ93と、を具備する軟性の内視鏡である。
 挿入部80は、硬性先端部81と、硬性先端部81の方向を変えるための湾曲部82と、細長い可撓性の軟性部83と、が順に連設されている。
 硬性先端部81には、撮像光学ユニット90Lと、撮像素子90と、撮像素子90からの撮像信号(電気信号)を光信号に変換するE/Oモジュールである光伝送モジュール1が配設されている。撮像素子90は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、又は、CCD(Charge Coupled Device)等である。
 図2に示すように、光伝送モジュール1は、光素子10と、配線板20と、保持部材(フェルールともいう)40と、光ファイバ50と、を具備する。光伝送モジュール1では、光素子10と配線板20と保持部材40とが、光素子10の厚さ方向(Z方向)に並べて配置されている。また、光ファイバ50は、図示しない保護チューブ内に収容される形で配置されてもよい。この場合、光ファイバ50は、保護チューブの内部においてある程度は自由に可動する形態となる。
 光素子10は、光信号の光を出力する発光部11を有する面発光レーザーチップである。例えば、平面視寸法が250μm×300μmと超小型の光素子10は、直径が20μmの発光部11と、発光部11に駆動信号を供給する電極12とを主面に有する。
 一方、例えば、径が125μmの光ファイバ50は、光を伝送する径が50μmのコアと、コアの外周を覆うクラッドとからなる。
 光素子10の上に接着されている略直方体の保持部材40の貫通孔40Hに、光ファイバ50の先端部が挿入され、接着剤55で固定されている。光ファイバ50を貫通孔40Hに挿入することで、光素子10の発光部11と光ファイバ50との位置決めが行われる。
 第1の主面20SAと第2の主面20SBとを有する平板状の配線板20には、光路となる、孔20Hがある。そして、第1の主面20SAには光素子10が、その発光部11が配線板20の孔20Hと対向する位置に配置された状態で、フリップチップ実装されている。すなわち、配線板20は光素子10の複数の電極12と、それぞれが接合された電極パッド21を有する。配線板20の基体には、FPC基板、セラミック基板、ガラスエポキシ基板、ガラス基板、シリコン基板等が使用される。
 例えば、光素子10の電極12であるAuバンプが、配線板20の電極パッド21と超音波接合されている。なお、接合部にはアンダーフィル材やサイドフィル材等の接着剤が注入されてもよい。
 配線板20に、半田ペースト等を印刷し、光素子10を所定位置に配置した後、リフロー等で半田を溶融して実装してもよい。なお、配線板20は撮像素子90(図3)とメタル配線90M(図3)で接続されている電極パッド(不図示)及び撮像素子90から伝送されてくる電気信号を電極パッド21に伝達する配線(不図示)を有する。また、配線板20は、撮像素子90から伝送されてくる電気信号を光素子10の駆動信号に変換するための処理回路が含まれていてもよい。
 すでに説明したように、保持部材40には、挿入される光ファイバ50の外径と、内径が略同じ円柱状の貫通孔40Hが形成されている。ここで「略同じ」とは、光ファイバ50の外周面と貫通孔40Hの壁面とが当接状態となるような、双方の径が実質的に「同じ」サイズであることを意味する。例えば、光ファイバ50の外径に対して、貫通孔40Hの内径は1μm~5μmだけ大きく作製される。
 貫通孔40Hは、円柱状のほか、その壁面で光ファイバ50を保持できれば、角柱状であってもよい。保持部材40の材質はセラミック、Si、ガラス又はSUS等の金属部材等である。なお、保持部材40は、略円柱状又は略円錐状等であってもよい。
 保持部材40は、貫通孔40Hが配線板20の孔20Hと対向する位置に配置された状態で、配線板20の第2の主面20SBに接着層30を介して接合されている。なお、例えば、熱硬化性樹脂からなる接着層30は、貫通孔40Hと孔20Hとの対向領域には配設されていない。
 そして、操作部84には湾曲部82を操作するアングルノブ85が配設されているとともに、光信号を電気信号に変換する光伝送モジュールであるO/Eモジュール91が配設されている。コネクタ93は、プロセッサ(不図示)と接続される電気コネクタ部94と、光源と接続されるライトガイド接続部95と、を有する。ライトガイド接続部95は硬性先端部81まで照明光を導光する光ファイババンドルと接続されている。なおコネクタ93は、電気コネクタ部94とライトガイド接続部95とが一体となっていても良い。
 内視鏡2では、撮像信号は硬性先端部81の光伝送モジュール1で光信号に変換されて、挿入部80を挿通する細い光ファイバ50を介して操作部84まで伝送される。そして、操作部84に配設されているO/Eモジュール91により光信号は再び電気信号に変換され、ユニバーサルコード92を挿通するメタル配線50Mを介して電気コネクタ部94に伝送される。すなわち、細径の挿入部80内においては光ファイバ50を介して信号が伝送され、体内に挿入されず外径の制限の小さいユニバーサルコード92内においては光ファイバ50よりも太いメタル配線50Mを介して伝送される。
 なお、O/Eモジュール91がコネクタ部94に配置されている場合には、光ファイバ50は電気コネクタ部94までユニバーサルコード92を挿通していてもよい。また、O/Eモジュール91がプロセッサに配設されている場合には、光ファイバ50はコネクタ93まで挿通していてもよい。
 内視鏡2の挿入部80を挿通している光ファイバ50には、挿入部80が変形すると応力が印加される。光ファイバ50が大きな応力を受けるのは、特に、湾曲部82の湾曲操作による変形である。
 図3に示すように、湾曲部82が直線状態の(A)のときの光ファイバ50が挿通している経路長LをL0とする。これに対して、湾曲部82が(B)方向に湾曲すると、経路長Lは短くなるため、光ファイバ50には圧縮応力が印加されるおそれがある。一方、湾曲部82が(C)方向に湾曲すると、経路長Lは長くなるため、光ファイバ50には引張応力が印加されるおそれがある。
 ここで、図4に示すように、湾曲部82が(B)方向に湾曲し、湾曲角が角度φの場合について説明する。前提として、スコープが湾曲しても、スコープ中央(x=0)の長さはL0のまま変わらないものとする。光ファイバ50の挿通経路が湾曲部82の中心線Oから、偏移量x離れていると、経路長Lは、L0からL1に減少する。
 L1=L0ーΔL  (式1)
 但し、ΔL=2πx(φ/360)
 すなわち、ΔLは、偏移量x、及び湾曲角φに依存する。例えば、偏移量x=5mm、湾曲角φ=180度ではΔL≒15mmである。なお、湾曲部82の最大湾曲角φは、仕様により異なるが、360度以上の場合もある。
 図5に示すように、内視鏡2では、光ファイバ50の湾曲部82における長さが、湾曲部の長さL0よりも長くなるように、言い替えれば、湾曲部82の内部を挿通している部分の長さが、いわゆる「遊び」をもつように、設計されている。すなわち、図5に示すように、湾曲部82が直線状態のときの長さL0に対して、光ファイバ50は蛇行しながら湾曲部82の内部を挿通している。
 光ファイバ50の湾曲部82における長さは、L0+ΔLmax以上になるように設計されている。ΔLmaxは最大湾曲角φmaxのときの変形量である。
 なお、想定外の変形を考慮すると、光ファイバ50の湾曲部82における長さは、L0+2×ΔLmax以上であることがより好ましい。ただし、他部材との絡み合いを防止するため、L0+5×ΔLmax以下であることが好ましい。
 図6に示すように、湾曲部82が湾曲変形しても、光ファイバ50に強い応力が印加されることがない。このため、内視鏡2は、安定して光信号を伝送できる。
 また、軟性部83を挿通している部分の光ファイバ50の長さも、軟性部83の長さよりも長いことが好ましく、例えば、軟性部83の長さの110%以上150%以下であることが特に好ましい。前記下限以上であれば軟性部83の変形により光ファイバ50に強い応力が印加されることがなく、前記上限以下、光ファイバ50が、挿入部80にある他部材、例えば、操作ワイヤ等と絡まったりするおそれがない。
 図5に示すように、内視鏡2は、硬性先端部81に配設されている光伝送モジュール1に一端が固定されている線材71を更に有する。線材71は湾曲部82における長さが、光ファイバ50よりも短く、弾性変形しにくいワイヤである。そして、光ファイバ50は、湾曲部82の基端部側において線材71と固定部71Pにより固定されているため、挿入部80との位置が固定されている。
 固定部71Pは、接着剤、結束バンド、熱収縮チューブ、又は、クリップ等からなる。また、固定部71Pとしては、光ファイバ50を既存の部材に巻き付けることで、動きにくい構成としてもよい。固定部71Pの位置は湾曲部82の基端部近傍であれば、軟性部83の湾曲部側でも、よい。なお、光ファイバ50が保護チューブ(不図示)の内部に配置されている場合は、光ファイバではなく保護チューブの外表面に固定部71Pを設ければよい。
 内視鏡2は、湾曲部82の湾曲変形により、線材71が伸びきると、それ以上は湾曲できない。このため、湾曲部82が想定外の変形をしても、光ファイバ50に強い応力が印加されることがない。また、光ファイバ50が保護チューブ内に配置されている場合は、保護チューブへ強い応力が印加されることがないので、その内部にある光ファイバ50に対して強い応力が印加されることはない。
 また、図3に示すように、湾曲部82が(C)方向に湾曲すると、経路長Lは、ΔLだけ増加する。すると、光ファイバ50は、湾曲部82において大きく、たるんだ状態になる。しかし、固定部71Pにより固定されているため、光ファイバ50の軟性部83を挿通している部分には湾曲変形の影響は及ばない。また、光ファイバ50の湾曲部82に配置されている部分が軟性部83に移動することがない。
 このため、光ファイバ50が、挿入部80を挿通している他部材、例えば、操作ワイヤ等と絡まったりするおそれがない。
 なお、線材71として、湾曲部82を挿通している既存の部材、例えば、電気配線、チャンネル、送気チューブ又は送水チューブ等を利用してもよい。
 光ファイバ50は、波状に蛇行していてもよいし、線材71に巻回させて螺旋状に蛇行していてもよい。巻回させる場合は、図7に示すように、光ファイバ50と線材71との間に少し余裕をもたせることが望ましく、巻回のピッチ(巻き周期)Pは10mm以上であることが望ましい。この場合、線材71は光ファイバ50より太くてもよいし細くてもよい。
 また、軟性部83においても、光ファイバ50を所定間隔で軟性部83との位置を固定していてもよい。
<第1実施形態の変形例>
 本変形例の内視鏡2Aは、図8に示す光伝送モジュール1Aを有する。
 光伝送モジュール1Aでは、配線板20Aの片面に光素子10Aと保持部材40Aとが配設されている。光素子10Aの電極12Aと、配線板20Aの電極パッド21Aとは、ワイヤボンディング配線49で接続されている。
 光素子10Aが収容された凹部のある保持部材40Aは、貫通孔40Hが光素子10Aの発光部11と対向するように配線板20Aに接着層(不図示)を介して接合されている。
 光伝送モジュール1Aは、配線板に光路となる孔を設ける必要がなく、また、光素子10Aと保持部材40Aとの2者の位置合わせですむため製造が容易である。また、光素子10Aの厚さ分だけ厚くならずに済むため、光伝送モジュール1Aを小型化できる。さらに、保持部材40Aと配線板20Aとの接着面積が小さく、接着強度が弱い構成ではあるが、光ファイバ50への応力緩和により、保持部材40Aの接着箇所が剥れるおそれがない。
<第2実施形態>
 第2実施形態の内視鏡2Bは、内視鏡1、1Aと類似しているので、同じ機能の構成要素には同じ符号を付し説明は省略する。
 内視鏡2Bは、挿入部80を挿通している光ファイバ50の位置を規定する複数のガイド部材74を湾曲部82に具備する。図9に示すように、略円板状のガイド部材74は、光ファイバ50が挿通する凹部50Hと、その他部材が挿通する孔部74Hとを有する。
 そして、図10に示すように、複数のガイド部材74は、凹部50Hが交互に上下(対向位置)に位置するように、所定間隔で挿入部80(湾曲部82)の内部に配設されている。このため、それぞれの凹部50Hを挿通している光ファイバ50は、大きく蛇行しながら挿入部80を挿通している。ガイド部材74の配置間隔は、例えば、湾曲部82の長さの1/2~1/5である。
 そして、引張応力が印加されると、光ファイバ50は点線で示したように挿通経路を変えることで、応力を開放する。
 なお、複数のガイド部材74は、それぞれの凹部50Hを挿通する光ファイバ50が蛇行するように配置されていればよい。また、ガイド部材は、共に挿入部80を挿通している光ファイバ50の位置と他部材の位置とを分離する機能を有していることが、他部材と絡まり合いにくいため好ましい。そして、光ファイバ50の位置を規定する機能を有していれば、例えば、図11に示す、光ファイバ50が挿通する孔部50HAと、その他部材が挿通する複数の孔部74HAとを有するガイド部材74A等でもよい。
 また、軟性部83にも、ガイド部材74が配設されていてもよい。軟性部83における。ガイド部材74の配置間隔は、湾曲部82よりも長くてもよい。
 さらに、ガイド部材として、湾曲部82を挿通している1本のマルチルーメンチューブを用いてもよい。すなわち、マルチルーメンチューブの場合には、ガイド部材は1本でよい。
<第3実施形態>
 第3実施形態の内視鏡2Cは、内視鏡1、1A、1Bと類似しているので、同じ機能の構成要素には同じ符号を付し説明は省略する。
 図12に示すように、内視鏡2Cは、硬性先端部81が挿入されている狭い空間の特定方向を観察可能なように、2つの湾曲部82A1、82A3を有する。湾曲部82A1、82A3は、例えば、中間部82A2を介して連設されている。
 光ファイバ50は、湾曲部82A3の基端部において、固定部71P2により挿入部80との位置が固定されているだけでなく、2つの湾曲部の間の中間部82A2においても固定部71P1により挿入部80との位置が固定されている。
 内視鏡2Cは、2つの湾曲部82A1、82A3を有し、それぞれが湾曲変形するが、内部を挿通している光ファイバ50は、内視鏡1と同様に大きな応力を受けたり、他部材に絡まったりするおそれがない。このため、内視鏡2Cは、安定して光信号を伝送できる。
 なお、3個以上の湾曲部を有する内視鏡であっても、複数の湾曲部の間において、光ファイバ50が挿入部80との位置が固定されていれば内視鏡2Cと同じ効果を有することは言うまでも無い。
 本発明は、上述した実施形態及び変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせ及び応用が可能である。
 本出願は、2013年11月28日に日本国に出願された特願2013-246147号を優先権の基礎として出願するものであり、上記開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。
1、1A・・・光伝送モジュール
2、2A~2C・・・内視鏡
10・・・光素子
20・・・配線板
40・・・保持部材
40H・・・貫通孔
50・・・光ファイバ
50H・・・凹部
50M・・・メタル配線
55・・・接着剤
71・・・線材
71P・・・固定部
74・・・ガイド部材
80・・・挿入部
81・・・硬性先端部
82・・・湾曲部
83・・・軟性部
90・・・撮像素子
91・・・O/Eモジュール

Claims (6)

  1.  硬性先端部と、前記硬性先端部の方向を変えるための湾曲部と、軟性部と、が連設された挿入部と、前記挿入部を挿通している光信号を伝送する光ファイバと、を具備し
     撮像素子と、前記撮像素子が出力する電気信号を前記光信号に変換する発光部が形成された光素子と、貫通孔を有し前記発光部の上に前記貫通孔が位置するように配置されている保持部材と、が配設されている光伝送モジュールを、前記硬性先端部に有する内視鏡であって、
     前記保持部材の前記貫通孔に先端部が挿入され固定されている前記光ファイバの、前記湾曲部における長さが、前記湾曲部の長さよりも長いことを特徴とする内視鏡。
  2.  前記光ファイバが、前記湾曲部の基端部側において、前記挿入部との位置が固定されていることを特徴とする請求項1に記載の内視鏡。
  3.  一端が前記硬性先端部において固定されている、湾曲部内における長さが、前記光ファイバよりも短い線材を具備し、
     前記光ファイバが、前記湾曲部の基端部側において前記線材に固定されていることを特徴とする請求項2に記載の内視鏡。
  4.  湾曲部内における前記光ファイバの位置を規定するガイド部材を具備し、
     湾曲部内を蛇行しながら挿通している前記光ファイバが、基端部側でガイド部材と固定されていることを特徴とする請求項2に記載の内視鏡。
  5.  第1の主面と第2の主面とを有し、前記光素子と前記第1の主面が固定されており、前記保持部材と前記第2の主面が固定されており、前記貫通孔及び前記発光部と対向する位置に孔のある配線板を具備することを特徴とする請求項1から請求項4のいずれか1項に記載の内視鏡。
  6.  連設された複数の前記湾曲部を有し
     前記複数の湾曲部の間において、前記光ファイバが前記挿入部との位置が固定されていることを特徴とする請求項1から請求項5のいずれか1項に記載の内視鏡。
PCT/JP2014/074546 2013-11-28 2014-09-17 内視鏡 WO2015079780A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480064970.6A CN105792723A (zh) 2013-11-28 2014-09-17 内窥镜
EP14865935.2A EP3075298A4 (en) 2013-11-28 2014-09-17 Endoscope
US15/163,784 US10568491B2 (en) 2013-11-28 2016-05-25 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246147 2013-11-28
JP2013246147A JP6230388B2 (ja) 2013-11-28 2013-11-28 内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/163,784 Continuation US10568491B2 (en) 2013-11-28 2016-05-25 Endoscope

Publications (1)

Publication Number Publication Date
WO2015079780A1 true WO2015079780A1 (ja) 2015-06-04

Family

ID=53198736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074546 WO2015079780A1 (ja) 2013-11-28 2014-09-17 内視鏡

Country Status (5)

Country Link
US (1) US10568491B2 (ja)
EP (1) EP3075298A4 (ja)
JP (1) JP6230388B2 (ja)
CN (1) CN105792723A (ja)
WO (1) WO2015079780A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139406A1 (ja) * 2017-01-24 2018-08-02 オリンパス株式会社 内視鏡および内視鏡の製造方法
WO2018138778A1 (ja) * 2017-01-24 2018-08-02 オリンパス株式会社 内視鏡
US10838194B2 (en) 2015-12-28 2020-11-17 Olympus Corporation Optical transmission module and endoscope
US11445898B2 (en) 2016-08-26 2022-09-20 Olympus Corporation Optical module for endoscope, endoscope, and manufacturing method for optical module for endoscope

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017115413A1 (ja) * 2015-12-28 2018-10-25 オリンパス株式会社 光伝送モジュールおよび内視鏡
WO2019058634A1 (ja) * 2017-09-25 2019-03-28 オリンパス株式会社 光モジュール
CN116211218A (zh) * 2022-12-21 2023-06-06 浙江优亿医疗器械股份有限公司 一种改进的可视器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126111A (ja) * 1998-10-29 2000-05-09 Olympus Optical Co Ltd 内視鏡
JP2008253774A (ja) * 2008-03-31 2008-10-23 Olympus Corp 内視鏡装置
JP2013025092A (ja) 2011-07-21 2013-02-04 Olympus Corp 光素子モジュール、光伝送モジュール、および光伝送モジュールの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672697B1 (fr) * 1991-02-08 1994-06-03 Alcatel Nv Dispositif optoelectronique monte sur substrat et connecte par fibre optique, et son procede de fabrication.
WO1993023111A1 (en) * 1992-05-21 1993-11-25 Applied Medical Resources Corporation Steerable endoscope with buckling element
JP3462770B2 (ja) * 1998-10-28 2003-11-05 住友電気工業株式会社 光ファイバケーブル
US6529662B1 (en) * 1999-08-31 2003-03-04 The Furukawa Electric Co., Ltd. Optical fiber cable
JP2001174744A (ja) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
US7435215B2 (en) * 2003-01-28 2008-10-14 Olympus Corporation Endoscope
JP2008036356A (ja) * 2006-08-10 2008-02-21 Olympus Corp 電子内視鏡装置及び電子内視鏡システム
JP5155496B2 (ja) * 2010-10-08 2013-03-06 オリンパスメディカルシステムズ株式会社 撮像装置
JP5872911B2 (ja) * 2012-01-16 2016-03-01 オリンパス株式会社 撮像ユニットおよび撮像システム
JP5996215B2 (ja) * 2012-02-28 2016-09-21 オリンパス株式会社 光電変換モジュールおよび光伝送ユニット
JP5904829B2 (ja) * 2012-03-12 2016-04-20 オリンパス株式会社 内視鏡システム
US9907457B2 (en) * 2013-02-01 2018-03-06 Deka Products Limited Partnership Endoscope with pannable camera
JP5769892B2 (ja) * 2013-04-19 2015-08-26 オリンパス株式会社 内視鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126111A (ja) * 1998-10-29 2000-05-09 Olympus Optical Co Ltd 内視鏡
JP2008253774A (ja) * 2008-03-31 2008-10-23 Olympus Corp 内視鏡装置
JP2013025092A (ja) 2011-07-21 2013-02-04 Olympus Corp 光素子モジュール、光伝送モジュール、および光伝送モジュールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075298A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10838194B2 (en) 2015-12-28 2020-11-17 Olympus Corporation Optical transmission module and endoscope
US11445898B2 (en) 2016-08-26 2022-09-20 Olympus Corporation Optical module for endoscope, endoscope, and manufacturing method for optical module for endoscope
WO2018139406A1 (ja) * 2017-01-24 2018-08-02 オリンパス株式会社 内視鏡および内視鏡の製造方法
WO2018138778A1 (ja) * 2017-01-24 2018-08-02 オリンパス株式会社 内視鏡
WO2018138962A1 (ja) * 2017-01-24 2018-08-02 オリンパス株式会社 内視鏡
US10819960B2 (en) 2017-01-24 2020-10-27 Olympus Corporation Endoscope
US10972707B2 (en) 2017-01-24 2021-04-06 Olympus Corporation Endoscope and method of manufacturing endoscope

Also Published As

Publication number Publication date
CN105792723A (zh) 2016-07-20
JP2015104387A (ja) 2015-06-08
US20160262599A1 (en) 2016-09-15
EP3075298A4 (en) 2017-07-26
EP3075298A1 (en) 2016-10-05
JP6230388B2 (ja) 2017-11-15
US10568491B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
JP6230388B2 (ja) 内視鏡
JP6203010B2 (ja) 内視鏡
US9385249B2 (en) Optical element module, optical transmission module, and method of manufacturing optical transmission module
US9207412B2 (en) Optical transmission module and endoscope
JP5767414B2 (ja) 内視鏡用撮像ユニット
US20150318924A1 (en) Optical transmission module and imaging device
WO2018173323A1 (ja) 内視鏡
US20180078114A1 (en) Endoscope and optical transmission module
JP6485840B2 (ja) 光伝送モジュールおよび内視鏡
WO2016185537A1 (ja) 内視鏡、および光伝送モジュール
WO2018138962A1 (ja) 内視鏡
WO2019207650A1 (ja) 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法
JP2015097588A (ja) 光伝送モジュール及び内視鏡
US9629524B2 (en) Image pickup unit for endoscope having first and second leads with differing distances to image pickup device
WO2014091970A1 (ja) 半導体装置接続構造、超音波モジュールおよび超音波モジュールを搭載した超音波内視鏡システム
US10470642B2 (en) Optical transmitter and endoscope
WO2020021637A1 (ja) 内視鏡先端構造、および内視鏡
JP6502475B2 (ja) 光伝送モジュール、撮像装置および光伝送モジュール用構造体
WO2017072862A1 (ja) 撮像ユニットおよび内視鏡
US20210382250A1 (en) Manufacturing method for image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
JP2641179B2 (ja) 固体撮像素子への配線構造
JP2010068931A (ja) 内視鏡、およびその内蔵物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865935

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014865935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865935

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE