WO2015078087A1 - 有源矩阵式有机发光二极管面板驱动电路及驱动方法 - Google Patents

有源矩阵式有机发光二极管面板驱动电路及驱动方法 Download PDF

Info

Publication number
WO2015078087A1
WO2015078087A1 PCT/CN2013/091235 CN2013091235W WO2015078087A1 WO 2015078087 A1 WO2015078087 A1 WO 2015078087A1 CN 2013091235 W CN2013091235 W CN 2013091235W WO 2015078087 A1 WO2015078087 A1 WO 2015078087A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
active matrix
electrically connected
gate
circuit
Prior art date
Application number
PCT/CN2013/091235
Other languages
English (en)
French (fr)
Inventor
温亦谦
李纯怀
朱立伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to GB1607193.8A priority Critical patent/GB2534763B/en
Priority to KR1020167013143A priority patent/KR101868715B1/ko
Priority to US14/241,068 priority patent/US9472135B2/en
Priority to JP2016533554A priority patent/JP6226443B2/ja
Publication of WO2015078087A1 publication Critical patent/WO2015078087A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/14Use of low voltage differential signaling [LVDS] for display data communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements

Definitions

  • the flat display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the existing flat display devices mainly include a liquid crystal display (liquid crystal Disp), and an organic electroluminescence device (OELD), which is also called an organic light emitting diode (OLED).
  • OELD organic electroluminescence device
  • the organic electroluminescent device has the characteristics of self-luminous, high brightness, wide viewing angle, high contrast, flexibility, low energy consumption, etc., and thus has received extensive attention, and has gradually replaced the conventional liquid crystal display device as a new generation display mode. It is widely used in mobile phone screens, computer monitors, full color TV sets and other fields. Unlike conventional liquid crystal displays, organic electroluminescent devices do not require a backlight and are provided with a very thin coating of organic material directly on the glass substrate. These coatings of organic materials emit light when current is passed through.
  • the existing organic light emitting diodes are classified according to driving methods, including: Passive-matrix organic light emitting diode (PMOLED) and active-matrix organic light emitting diode (AMOLED). ). Due to advances in process technology and materials for planar displays, active matrix organic light-emitting diodes have slowly become the mainstream of future flat display devices.
  • PMOLED Passive-matrix organic light emitting diode
  • AMOLED active-matrix organic light emitting diode Due to advances in process technology and materials for planar displays, active matrix organic light-emitting diodes have slowly become the mainstream of future flat display devices.
  • FIG. 1 is a driving circuit of an existing active matrix OLED panel.
  • the driving circuit is implemented by using two thin film transistors 100 , 200 and a storage capacitor 300 , and applying a control voltage after charging the storage capacitor 300 .
  • the second thin film transistor 200 is in the saturation region of the second thin film transistor 200, thereby supplying current to the active matrix organic light emitting diode panel and causing it to emit light.
  • the driving circuit of the structure is simple in structure, since the second thin film transistor 200 is affected by electrons for a long time, this will affect the threshold voltage V tb of the second thin film transistor 200, thereby changing the active matrix type organic light emitting diode panel.
  • the current causes the uniformity of the active matrix OLED panel to be affected, resulting in degradation of the display quality of the active matrix OLED panel. Summary of the invention
  • An object of the present invention is to provide an active matrix OLED panel driving circuit for performing a storage capacitor by using a pulse width modulation driving method by cutting data in a data signal into eight sub-signals having equal time. Charging improves the uniformity of the active matrix OLED panel and enhances the display shield of the active matrix OLED panel.
  • Another object of the present invention is to provide an active matrix organic light emitting diode panel driving method, which uses a pulse width modulation driving method to charge a storage capacitor of an internal pixel driving circuit, thereby improving an active matrix organic light emitting diode panel.
  • the consistency of the display improves the display quality of the active matrix OLED panel.
  • the present invention provides an active matrix OLED panel driving circuit, including: an active matrix OLED panel and a gate driver electrically connected to the active matrix OLED panel, and a source driver electrically connected to the active matrix type OLED panel, a timing controller electrically connected to the source driver, and a programmable gamma correction buffer circuit chip electrically connected to the source driver
  • the timing controller is further electrically connected to the gate driver and the programmable gamma correction buffer circuit, respectively; the timing controller controls the gate driver through two sets of gate control signals, and the source driver provides data
  • the signal is applied to the active matrix organic light emitting diode panel, and the data signal includes a plurality of data frames, each of which includes a plurality of sub data frames having equal time.
  • the active matrix OLED panel includes a plurality of internal pixel driving circuits, and each internal pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a storage capacitor, a gate line, and a data line
  • the first thin film transistor has a first cabinet, a first drain and a first source
  • the second thin film transistor has a second gate, a second drain and a second source, the first gate
  • the first source is electrically connected to the data line
  • the first drain is electrically connected to the second gate and one end of the storage capacitor, and the other end of the storage capacitor is electrically connected
  • the second source is used for connecting the driving power source
  • the second drain is used for connecting the organic light emitting device.
  • the gate driver provides a scan signal to the active matrix organic light emitting diode panel;
  • the gate driver includes a cabinet control circuit and a gate drive circuit electrically connected to the cabinet control circuit, the gate control The circuit is electrically connected to the timing controller, the gate driving circuit is electrically connected to the active matrix organic light emitting diode panel, and the *pole driving circuit comprises a plurality of pole driving chips;
  • the two sets of gate control signals are respectively a first set of porch 'pole control signals and a second set of bridge control signals, and the first set of gate control signals includes a first start control signal, a first clock control signal, and a first enable control signal, the second set of *pole control signals comprising a second start control signal, a second clock control signal, and a second enable control signal;
  • the first set of *pole control signals are used to control the gate driver to charge the active matrix organic light emitting diode panel, and the second set of gate control signals are used to control the gate driver to enable the Active matrix OLED panel discharge.
  • the source driver includes: a source control circuit and a source driving circuit electrically connected to the source control circuit, wherein the source control circuit is electrically connected to the timing controller, and the source driving circuit
  • the active matrix type organic light emitting diode panel is electrically connected, and the source driving circuit comprises: a source driving chip;
  • the timing controller controls the source driver by two source control signals, which are a low voltage differential signal and a source start control signal, respectively.
  • the programmable gamma correction buffer circuit has a static high voltage pin, and the voltage on the static high voltage pin is always higher than or equal to the programmable gamma correction buffer circuit chip output a voltage on the pin
  • the enable control signal input pin is electrically connected to the timing controller
  • the controller outputs a source enable control signal to the multiplexer, and causes the source enable control signal to control the multiplexer to output a 0V voltage signal to the programmable gamma correction buffer circuit Static high power When the pin is pressed, the output pin of the programmable
  • Each of the data frames includes eight sub-data frames having equal time; and the driving mode of the active matrix OLED panel driving circuit is a pulse width modulation mode.
  • the present invention also provides an active matrix OLED panel driving circuit, comprising: an active matrix OLED panel, a gate driver electrically connected to the active matrix OLED panel, and the active matrix a source driver electrically connected to the OLED panel, a timing controller electrically connected to the source driver, a programmable gamma correction buffer circuit electrically connected to the source driver, and the timing controller further Electrically connecting to the * pole driver and the programmable 1 mA correction snubber circuit respectively; the timing controller controls the gate driver through two sets of gate control signals, the source driver providing a data signal to the active matrix
  • the OLED panel, the data signal includes a plurality of data frames, and each of the data frames includes a plurality of sub-data frames having equal time;
  • the active matrix OLED panel includes a plurality of internal pixel driving circuits, and each internal pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a storage capacitor, a gate line, and a a first thin film transistor having a first gate,
  • the gate driver provides a scan signal to the active matrix type organic light emitting diode panel;
  • the gate driver includes a gate electrode control circuit and a germanium electrode driving circuit electrically connected to the gate electrode control circuit,
  • the porch-pole control circuit is electrically connected to the timing controller, the ⁇ -pole driving circuit is electrically connected to the active matrix OLED panel, and the gate driving circuit includes a plurality of tree-pole driving chips;
  • the two sets of cabinet control signals are a first set of gate control signals and a second set of gate control signals, respectively, and the first set of gate control signals includes a first start control signal. a first clock control signal and a first enable control signal, the second group of gate control signals including a second start control signal, a second clock control signal, and a second enable control signal; the first group of gate control signals Controlling the gate driver to charge the active matrix organic light emitting diode panel, the second group of drain control signals for controlling the gate driver to place the active matrix organic light emitting diode panel .Electricity.
  • the source driver includes: a source control circuit and a source driving circuit electrically connected to the source control circuit, wherein the source control circuit is electrically connected to the timing controller, and the source driving circuit
  • the active matrix type organic light emitting diode panel is electrically connected, and the source driving circuit comprises a plurality of source driving chips;
  • the timing controller controls the source driver by two source control signals, which are a low voltage differential signal and a source start control signal, respectively.
  • the programmable gamma correction buffer circuit has a static high voltage pin, and the voltage on the static high voltage pin is always higher than or equal to the programmable gamma correction buffer circuit chip a voltage on the output pin
  • the enable control signal input pin is electrically connected to the timing controller
  • the selective output pin and the static high voltage lead of the programmable gamma correction buffer circuit chip The foot is electrically connected, the high level input pin is used to input a high level signal, and the low level input pin is used to input a low level signal, the low level signal is 0V, when
  • the timing controller outputs a source enable control signal to the multiplexer, and causes the source enable control signal to control the multiplexer to output a 0V voltage signal to the programmable gamma correction
  • the static high voltage pin of the circuit chip is pun
  • Each of the data frames includes eight sub-data frames having equal time; and the driving mode of the active matrix OLED panel driving circuit is a pulse width modulation mode.
  • the invention also provides a driving method of an active matrix type organic light emitting diode panel, comprising the following steps:
  • Step 101 The timing controller of the active matrix OLED panel driving circuit provides a first group of gate control signals to the gate driver of the active matrix OLED panel driving circuit, where the gate driver is Providing a first scan signal to the active matrix type organic light emitting diode panel under the control of the timing controller;
  • Step 102 the timing controller provides a low voltage differential signal and a source start control signal to the source driver of the active matrix OLED panel driving circuit, and provides a source enable control signal to a programmable gamma correction buffer circuit chip, the source enable control signal controls an output high level signal of the programmable gamma correction buffer circuit chip to a source driver, and the source driver is in a timing controller and Providing a data signal to the active matrix organic light emitting diode panel under control of the programmed gamma correction buffer circuit chip, the data signal comprising a plurality of data frames, each of the data frames comprising a plurality of sub data frames having equal time ;
  • Step 103 The corresponding internal pixel driving circuit of the active matrix organic light emitting diode panel charges its corresponding storage capacitor according to the first scan signal and the data signal, and further charges the pixel corresponding to the internal pixel driving circuit;
  • Step 104 The timing controller provides a second group of gate control signals to the gate driver, and the gate driver provides a second scan signal to the active matrix organic light emitting diode panel under the control of the timing controller;
  • Step 105 The source enable control signal controls an output low level signal of the programmable Ma calibration buffer circuit chip to a source driver, and according to the second scan signal, the source driver is in a timing controller and Mary correction program under the control of the buffer control circuit of the wafer inside the pixel storage capacitor discharge driving circuit so as to control the internal circuit of the pixel corresponding to the pixel driving discharge t>
  • the active matrix OLED panel driving circuit includes: an active matrix OLED panel, a gate driver electrically connected to the active matrix OLED panel, and the active matrix organic light emitting diode a source driver electrically connected to the panel, a timing controller electrically connected to the source driver, and a programmable gamma electrically connected to the source driver
  • the calibrated snubber circuit, the timing controller is further electrically connected to the gate driver and the programmable gamma correction buffer circuit;
  • the active matrix OLED panel includes a plurality of internal pixel driving circuits, and each internal pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a storage capacitor, a gate line, and a data line
  • the first thin film transistor has a first gate electrode, a first drain, and a first source
  • the second thin film transistor has a second gate, a second drain, and a second source
  • the first The gate is electrically connected to the gate line
  • the first source is electrically connected to the data line
  • the first drain is electrically connected to the second gate and one end of the storage capacitor
  • the storage capacitor is further One end and a second source are used for connecting a driving power source
  • the second drain is used for connecting an organic light emitting diode
  • the gate driver includes a gate control circuit and a gate driving circuit electrically connected to the gate control circuit, the gate control circuit is electrically connected to the timing controller, and the gate driving circuit and the active device
  • the matrix type organic light emitting diode panel is electrically connected, and the gate driving circuit includes a plurality of gate driving chips;
  • the first set of *pole control signals includes a first start control signal, a first clock control signal and a first enable control signal
  • the second set of sigma-pole control signals includes a second start control signal and a second clock control signal And a second enable control signal
  • the source driver includes: a source control circuit and a source driving circuit electrically connected to the source control circuit, wherein the source control circuit is electrically connected to the timing controller, and the source driving circuit
  • the active matrix OLED panel is electrically connected, and the source driving circuit includes a plurality of source driving chips.
  • the active matrix OLED panel driving circuit further includes a multiplexer electrically connected to the timing controller, the multiplexer having a high level input pin and a low level input lead a programmable control signal input pin and a selective output pin, the programmable gamma correction buffer circuit has a static high voltage pin, and the voltage on the static high voltage pin is always higher than Or equal to the voltage on the output pin of the programmable gamma correction buffer circuit, the enable control signal input pin is electrically connected to the timing controller, and the selective output pin is programmable
  • the static high voltage pin of the calibrated snubber circuit is electrically connected, the high level input pin is used to input a high level signal, and the low level input pin is used to input a low level signal.
  • the low level signal is 0V; the source enable control signal controls the selection of a high level signal or a low level signal as an output signal of the selective output pin; the programmable gamma correction buffer circuit is quiet Consistent electrical voltages change its output pin high voltage output pin.
  • Each of the data frames includes eight sub-data frames having equal time; the active matrix
  • the driving method of the OLED panel driving circuit is a pulse width modulation method.
  • the active matrix type organic light emitting diode panel driving circuit and driving method of the present invention are controlled by setting a timing control circuit and a programmable gamma correction buffer circuit based on the existing 2T1C driving circuit.
  • the driver and the source driver realize the direct discharge function of the source driver, which saves the cost of developing a new source driver capable of realizing the discharge function, and simultaneously uses the pulse width modulation method as the active matrix type organic light emitting diode panel driving circuit.
  • FIG. 1 is a schematic diagram of a driving circuit of an organic light emitting diode in an active matrix organic light emitting diode panel
  • FIG. 2 is a schematic diagram of an active matrix type organic light emitting diode panel driving circuit of the present invention
  • FIG. 3 is a schematic diagram of an internal pixel driving circuit of the organic light emitting diode of FIG.
  • FIG. 4 is a schematic diagram showing the circuit connection of the gate control circuit of FIG. 2;
  • FIG. 5 is a schematic diagram of the connection between the timing controller and the programmable gamma correction buffer circuit of Figure 2 i3 ⁇ 4J
  • FIG. 6 is a sub-data of an active matrix type OLED panel driving circuit of the present invention
  • FIG. 7 is a timing chart of driving mode control of an active matrix OLED panel driving circuit of the present invention
  • FIG. 8 is a flowchart of a method for driving an active matrix organic light emitting diode panel according to the present invention. The preferred embodiment of the specific travel mode and the drawings are described in detail. Two '' 1 1 ⁇ '" Referring to FIG. 2 to FIG.
  • the present invention provides an active matrix OLED panel driving circuit, including: an active matrix OLED panel 2 , and an active matrix OLED panel 2 a gate driver 4, a source driver 6 electrically connected to the active matrix OLED panel 2, a timing controller 8 electrically connected to the source driver 6, and a source driver 6 a programmable gamma correction buffer circuit chip (Gamma IC) 10, the timing controller 8 is also electrically connected to the gate driver 4 and the programmable gamma correction buffer circuit 10, respectively.
  • the gate driver 4 is controlled by two sets of drain control signals, the source driver 6 providing a data signal to the active matrix organic light emitting diode panel 2, the data signal comprising a plurality of data frames, each of the data A frame includes several sub-data frames with equal time.
  • the active matrix OLED panel 2 includes a plurality of internal pixel driving circuits 20, as shown in FIG.
  • the invention drives the active matrix OLED panel 2 by pulse width modulation on the basis of the existing 2TI C driving circuit, and cuts each complete data frame into several sub-data frames with equal time to realize The required gray scale, with circuit control, does not affect the threshold voltage Vth of the driving thin film transistor (second thin film transistor 23).
  • Each internal pixel driving circuit 20 includes a first thin film transistor 22, a second thin film transistor 23, a storage capacitor 24, a gate line 25, and a data line 26.
  • the first thin film transistor 22 is a switching thin film transistor having a first gate gi, a first drain d1 and a first source si;
  • the second thin film transistor 23 is a driving thin film transistor having a second gate G2, second drain d2 and second source s2.
  • the first gate gl is electrically connected to the gate line 25
  • the first source si is electrically connected to the data line 26
  • the first drain dl and the second gate g2 and one end of the storage capacitor 24 are electrically connected.
  • the other end of the storage capacitor 24 and the second source s2 are used to connect the driving power source
  • the second drain d2 is used to connect the organic light emitting diode 27.
  • the first thin film transistor 22 When the gate line 25 is selected, the first thin film transistor 22 is turned on, the voltage of the data line 26 charges the storage capacitor 24 through the first thin film transistor 22, and the voltage of the storage capacitor 24 controls the drain current of the second thin film transistor 23; When the pole line 25 is not selected, the first thin film transistor 22 is turned off, and the charge stored on the storage capacitor 24 continues to maintain the voltage of the second gate g2 of the second thin film transistor 23 to maintain the second thin film transistor 23 at the frame time. The working state inside.
  • the cabinet driver 4 is electrically connected to the gate line 25 of each of the internal pixel driving circuits 20, and the source.
  • the driver 6 and the data line 26 of each of the internal pixel driving circuits 20 are electrically connected. connection.
  • the gate driver 4 supplies a scan signal to the active matrix organic light emitting diode panel 2.
  • the gate driver 4 includes a cabinet control circuit 42 and a gate driving circuit 44 electrically connected to the gate control circuit 42.
  • the gate control circuit 42 is electrically connected to the timing controller 8 for driving the cabinet.
  • the gate control signal sets, respectively a first set of gate control signal 82 and a second set of gate control signal 84, a first set of control signals pole bridge 82 comprises a first control start signal (STV) 821, a first a second control signal (STV2) 841, a second clock control signal (CKV2) Two enable control signals (OE2) 843.
  • STV first control start signal
  • STV2 first a second control signal
  • CKV2 second clock control signal
  • OE2 Two enable control signals
  • the first group of gate control signals 82 are used as input signals of the gate driver 4 for controlling the gate driver 4 to charge the active matrix organic light emitting diode panel 2
  • the two sets of ⁇ -pole control signals 84 are used as input signals to the pedestal 'pole driver 4 for controlling the ⁇ -pole driver 4 to discharge the active matrix OLED panel 2.
  • the output signals of the gate drivers 4 are respectively connected to the gate lines 25 of the respective internal pixel driving circuits 20.
  • the source driver 6 includes: a source control circuit 62 and a source driver circuit 64 electrically connected to the source control circuit 62.
  • the source control circuit 62 is electrically connected to the timing controller 8
  • the source driving circuit 62 is electrically connected to the active matrix organic light emitting diode panel 2, and the source driving circuit 64 includes a plurality of source driving chips 66.
  • the timing controller 8 controls the source driver 6 by two source control signals, which are a low voltage differential signal ( Mini-LVDS) 86 and a source start control signal (STB), respectively. .
  • Mini-LVDS low voltage differential signal
  • STB source start control signal
  • the active matrix OLED panel driving circuit further includes a timing controller
  • the multiplexer 12 has a high level input pin 17, a low level input pin 18 - enable control signal input pin and A selective output pin.
  • the programmable gamma correction snubber circuit 10 has a static high voltage pin (STATIC_H) 16, and the voltage on the static high voltage pin 16 is always higher than or equal to the programmable gamma correction snubber circuit.
  • Chip 10 outputs the voltage on pin 15, the output pin! 5 is the first to fourteenth output pins.
  • the enable control signal input pin of the multiplexer 12 is electrically connected to the timing controller 8, and the selective output pin and the static high voltage of the programmable gamma correction buffer circuit chip i0
  • the pin 16 is electrically connected, and the high level input pin 17 is used for inputting a high level signal, the high level is the power supply voltage V dd , and the low level input pin 18 is used for inputting a low power.
  • the flat signal, the low level signal is ov.
  • the timing controller 8 when the timing controller 8 outputs a source enable control signal 88 to the multiplexer 12, and causes the source enable control signal 88 to control the output of the multiplexer 12
  • the output voltage of the output pin 15 of the programmable gamma correction buffer circuit 10 is 0V, and further The source driver output is also 0V. Further, the voltage on the data line 26 is also 0V, because the programmable gamma correction buffer circuit 10 can be directly implemented by the source enable control signal 88.
  • the function of discharging the pole driver 6 saves the cost of developing a new source driver 6 capable of achieving a discharge function.
  • each of the data frames includes eight sub-data frames having equal time, which can reach 255 gray scales, and the pulse width can be realized by using special circuit control on the basis of the 2T1C circuit.
  • the modulation mode does not affect the threshold voltage Vth of the driving thin film transistor (second thin film transistor 23), thereby improving the uniformity of the active matrix organic light emitting diode panel.
  • the driving mode of the active matrix OLED panel driving circuit is a pulse width modulation mode, and the timing diagram thereof is shown in FIG. 7 , and the first group of tree gate control signals 82 and the second group of gate electrodes are passed through the gate driver 4 .
  • the control signal 84 and the source start control signal 87 of the source driver 6 are coupled with the source enable control signal 88 of the programmable gamma correction buffer circuit 10, thereby implementing the timing of the fixed sub-data inversion.
  • the effect of grayscale is produced.
  • the first set of the gate control signal 82 is a conventional control signal
  • the source start control signal 87 is a conventional source.
  • the control signal is mainly used to drive the signal of the source driver 6 to the active matrix organic light.
  • pulse width modulation can be realized by the second set of gate control signals 84 and the source enable signal 88.
  • the pulse width modulation mode is used as the driving method of the active matrix type organic light emitting diode panel driving circuit, and the threshold voltage Vth of the second thin film transistor 23 is not affected, and the active matrix type organic light emitting diode panel is not changed.
  • the current of 2 improves the uniformity of the active matrix OLED panel 2, and improves the display variety of the active matrix OLED panel 2.
  • the present invention further provides a driving method of an active matrix organic light emitting diode panel, the method comprising the following steps:
  • the timing controller 8 of the active matrix OLED panel 2 driving circuit provides a first set of gate control signals 82 to the gate driver 4, and the gate driver 4 is provided under the control of the timing controller 8.
  • a first scan signal is applied to the active matrix organic light emitting diode panel 2.
  • the active matrix OLED panel driving circuit includes: an active matrix OLED panel 2, a cabinet driver 4 electrically connected to the active matrix OLED panel 2, and the active matrix a source driver 6 electrically connected to the OLED panel 2, a timing controller 8 electrically connected to the source driver 6, and the source driver 6
  • the programmable gamma correction snubber circuit 10 is connected, and the timing controller 8 is also electrically connected to the gate driver 4 and the programmable gamma correction snubber circuit 10, respectively.
  • the active matrix OLED panel 2 includes a plurality of internal pixel driving circuits 20, as shown in FIG.
  • the invention drives the active matrix OLED panel 2 by pulse width modulation on the basis of the existing 2T1C driving circuit, and cuts each complete data frame into several sub-data frames with equal time to realize The required gray scale, with circuit control, does not affect the threshold voltage V th of the driving thin film transistor (second thin film transistor 23).
  • Each internal pixel driving circuit 20 includes a first thin film transistor 22, a second thin film transistor 23, a storage capacitor 24, a gate line 25, and a data line 26.
  • the first thin film transistor 22 is a switching thin film transistor having a first gate g], a first drain d1 and a first source si;
  • the second thin film transistor 23 is a driving thin film transistor having a second shed 'pole ⁇ 2, a second drain electrode (source electrode 12 and the second S 2.
  • the first gate line gl with the gate 25 is electrically connected to a first electrode si source 26 is electrically connected to the data line, a first The drain dl is electrically connected to the second cabinet g2 and one end of the storage capacitor 24.
  • the other end of the storage capacitor 24 and the second source s2 are used for connecting a driving power source, and the second drain d2 is used for connecting the organic Light-emitting diode 27.
  • the first thin film transistor 22 When the shed_pole line 25 is selected, the first thin film transistor 22 is turned on, the voltage of the data line 26 charges the storage capacitor 24 through the first thin film transistor 22, and the voltage of the storage capacitor 24 controls the drain current of the second thin film transistor 23; When the gate line 25 is not selected, the first thin film transistor 22 is turned off, and the charge stored on the storage capacitor 24 continues to maintain the voltage of the second gate g2 of the second thin film transistor 23 to keep the second thin film transistor 23 in the frame. Working status during the time.
  • the gate driver 4 is electrically connected to the slab pole 25 of each of the internal pixel driving circuits 20, and the source driver 6 and the data line 26 of each of the internal pixel driving circuits 20 are electrically connected. connection.
  • the gate driver 4 includes a shed-pole control circuit 42 and a tree-pole driving circuit 44 electrically connected to the gate control circuit 42.
  • the gate-control circuit 42 is electrically connected to the timing controller 8, and the gate is electrically connected.
  • the gate driving circuit 44 is electrically connected to the active matrix OLED panel 2, and the gate driving circuit 44 includes a plurality of gate driving chips 46 for internal pixel driving circuits.
  • the shed and the pole line 25 of 20 are electrically connected.
  • the first set of gate control signals 82 includes a first start control signal 821, a first clock control signal 822, and a first enable control signal 823.
  • the output signals of the gate drivers 4 are respectively connected to the gate lines 25 of the respective internal pixel driving circuits.
  • Step 102 The timing controller 8 provides a low voltage differential signal 86 and a source start control signal 87 to the source driver 6 of the active matrix OLED panel 2 driving circuit, and provides a source.
  • the control signal 88 can be applied to a programmable gamma correction buffer circuit 10, and the source enable control signal 88 controls the programmable gamma correction buffer circuit 10 Outputting a high level signal to the source driver 6, the source driver 6 providing a data signal to the active matrix organic light emitting diode panel 2 under the control of the timing controller 8 and the programmable gamma correction buffer circuit chip 10,
  • the data signal includes a plurality of data frames, each of the data frames including a plurality of sub-data frames having equal time. In this embodiment, each of the data anger includes eight sub-data frames having equal time.
  • the source driver 6 includes: a source control circuit 62 and a source driving circuit 64 electrically connected to the source control circuit 62.
  • the source control circuit 62 and the timing controller 8 electrically connect the source.
  • the driving circuit 62 is electrically connected to the active matrix organic light emitting diode panel 2, and the source driving circuit 64 includes a plurality of source driving chips 66.
  • the active matrix OLED panel driving circuit further includes a timing controller
  • the multiplexer 12 has a high level input pin 17, a low level input pin 18 - enable control signal input pin and A selective input 'extraction'.
  • the programmable gamma correction snubber circuit 10 has a static high voltage pin (STATIC_H) 16, and the voltage on the static high voltage pin 16 is always higher than or equal to the programmable calibrated snubber circuit.
  • the chip 10 outputs the voltage on the pin 15, and the output pin 5 is the first to fourteenth output pins.
  • the enable control signal input pin of the multiplexer 12 is electrically connected to the timing controller 8, and the selective output pin and the static high voltage of the programmable gamma correction buffer circuit 10
  • the pin 16 is electrically connected, and the high level input pin 17 is used for inputting a high level signal, the high level is the power supply voltage V dd , and the low level input pin 18 is used for inputting a low power. Flat signal, the low level signal is 0V.
  • the source enable control signal 88 controls the selection of a high level signal or a low level signal as an output signal of the selective output pin; the output of the static high voltage pin 16 of the programmable gamma correction buffer circuit 10 The voltage is consistent with the change in voltage output from its output pin 15.
  • the timing controller 8 when the timing controller 8 outputs a source enable control signal 88 to the multiplexer 2, and causes the source enable control signal 88 to control the output of the multiplexer 12
  • a 0V voltage signal is applied to the static high voltage pin 16 of the programmable gamma correction buffer circuit 10
  • the output pin 15 of the programmable gamma correction buffer circuit 10 outputs a voltage of 0V
  • the source driver output is also 0V.
  • the voltage on the data line 26 is also 0V. Therefore, controlling the programmable gamma correction buffer circuit 10 through the source enable control signal 88 can directly implement the source driver 6.
  • the function of discharging saves the cost of developing a new source driver 6 capable of achieving a discharge function.
  • Step 103 The active matrix organic light emitting according to the first scan signal and the data signal
  • the corresponding internal pixel driving circuit 20 of the diode panel 2 charges its corresponding storage capacitor 24, thereby charging the pixel corresponding to the internal pixel driving circuit 20.
  • the steps 101 to 103 are pixel charging processes.
  • Step 104 The timing controller 8 provides a second set of bridge control signals 84 to the porch-pole driver 4.
  • the gate driver 4 provides a second scan signal to the active matrix under the control of the timing controller 8.
  • the second set of tree polarity control signals 84 includes a second start control signal 841, a second clock control signal 842, and a second enable control signal 843.
  • Step 105 the source enable control signal 88 controls the output low level signal of the programmable Ma calibration buffer circuit 10 to the source driver 6, according to the second scan signal, the source driver 6 is in timing Under the control of the controller 8 and the programmable gamma correction buffer circuit "0", the storage capacitor 24 in the internal pixel drive circuit 20 is controlled to discharge, thereby controlling the pixel discharge corresponding to the internal pixel drive circuit 20.
  • the steps 104 to 105 are for discharging the pixels.
  • the time interval of the charging and discharging can be controlled by the timing controller 8, thereby implementing pulse width modulation.
  • each of the data frames includes eight sub-data frames having equal time, which can reach 255 gray scales.
  • the circuit control can be implemented with the special bead.
  • the width modulation mode does not affect the threshold voltage Vth of the driving thin film transistor (second thin film transistor 23), thereby improving the uniformity of the active matrix organic light emitting diode panel 2.
  • the driving mode of the active matrix OLED panel driving circuit is a pulse width modulation mode, and the timing diagram thereof is shown in FIG. 7 , and the first group of gate control signals 82 and the second group of cabinets are passed through the shed-pole driver 4 .
  • the pole control signal 84 and the source start control signal 87 of the source driver 6 are coupled with the source enable control signal 88 connected to the programmable gamma correction buffer circuit 10, thereby implementing the timing of the fixed sub-data frame.
  • the effect of grayscale is produced.
  • the first set of gate control signals 82 is a conventional control signal
  • the source start control signal 87 is a conventional source control signal, which is mainly used to drive the signal of the source driver 6 to the active matrix organic light emitting diode.
  • the pulse width modulation can be realized by the second set of the gate control signal 84 and the source enable signal 88.
  • the active matrix OLED panel driving circuit and the driving method of the present invention control the gate driver and the source by setting a timing control circuit and a programmable calibrating buffer circuit based on the existing 2T1C driving circuit.
  • the driver realizes the direct discharge function of the source driver, saves the cost of developing a new source driver capable of realizing the discharge function, and simultaneously uses the pulse width modulation method as the driving side of the active matrix type organic light emitting diode panel driving circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种有源矩阵式有机发光二极管面板驱动电路及驱动方法,驱动电路包括:有源矩阵式有机发光二极管面板(2)、分别与有源矩阵式有机发光二极管面板(2)电性连接的栅极驱动器(4)和源极驱动器(6)、分别与源极驱动器(6)电性连接的时序控制器(8)和可编程伽玛校正缓冲电路晶片(10),时序控制器(8)还分别与栅极驱动器(4)及可编程伽玛校正缓冲电路晶片(10)电性连接;时序控制器(8)通过两组栅极控制信号控制所述栅极驱动器(4),源极驱动器(6)提供数据信号给有源矩阵式有机发光二极管面板(2),所述数据信号包括多个数据帧,每一所述数据帧包括数个具有相等时间的子数据帧。

Description

平面显示装置具有机身薄、 省电、 无辐射等众多优点, 得到了广泛的 应用。 现有的平面显示装置主要包括液晶显示器 ( Liquid Crystal Disp】ay, LCD ) 及有机电致.发光-器件 ( Organic Electroluminescence Device , OELD ) , 也称为有机发光二极管 ( Organic Light Emitting Diode, OLED ) 。
有机电致发光器件具备自发光, 高亮度、 宽视角、 高对比度、 可挠 曲、 低能耗等特性, 因此受到广泛的关注, 并作为新一代的显示方式, 已 开始逐渐取代传统液晶显示装置, 被广泛应用在手机屏幕、 电脑显示器、 全彩电视机等领域。 有机电致发光器件与传统的液晶显示器不同, 其无需 背光源, 直接在玻璃基板上设置非常薄的有机材料涂层, 当有电流通过 时, 这些有机材料涂层就会发光。
现有的有机发光二极管按驱动方式分类, 包括: 无源矩阵式有机发光 二极管 ( Passive- matrix organic light emitting diode , PMOLED )与有源 巨 阵式有机发光二极管 ( Active- matrix organic light emitting diode, AMOLED ) 。 由于平面显示的制程技术及材料的进步, 有源矩阵式有机发 光二极管已慢慢地成为未来平面显示装置的主流„
请参阅图 1 , 为现有的有源矩阵式有机发光二极管面板的驱动电路, 该驱动电路采用两个薄膜晶体管 100、 200和一个存储电容 300 实现, 通 过在存储电容 300充电后施加一控制电压于第二薄膜晶体管 200的棚 ·极, 使第二薄膜晶体管 200处于饱和区, 由此为有源矩阵式有机发光二极管面 板提供电流并使其发光。 该结构的驱动电路虽然结构简单, 但由于第二薄 膜晶体管 200长时间受到电子的影响, 这将影响到第二薄膜晶体管 200的 阈值电压 Vtb, 进而会改变有源矩阵式有机发光二极管面板的电流, 使得有 源矩阵式有机发光二极管面板的一致性 (uniformity)受到影响, 造成有源矩 阵式有机发光二极管面板显示品质下降。 发明内容
本发明的目的在于提供一种有源矩阵式有机发光二极管面板驱动电 路, 通过将数据信号中的数据顿切为八个具有相等时间的子顿信号, 以脉 冲宽度调制驱动方式来对存储电容进行充电, 提高了有源矩阵式有机发光 二极管面板的一致性, 提升了有源矩阵式有机发光二极管面板的显示品 盾。
本发明的另一目的在于提供一种有源矩阵有机发光二极管面板驱动方 法, 该方法采用脉冲宽度调制驱动方式来对内部像素驱动电路的存储电容 进行充电, 提高了有源矩阵式有机发光二极管面板的一致性, 提升了有源 矩阵式有机发光二极管面板的显示品质。
为实现上述目的, 本发明提供一种有源矩阵式有机发光二极管面板驱 动电路, 包括: 有源矩阵式有机发光二极管面板 与该有源矩阵式有机发 光二极管面板电性连接的柵极驱动器、 与该有源矩阵式有机发光二极管面 板电性连接的源极驱动器、 与该源极驱动器电性连接的时序控制器, 与该 源极驱动器电性连接的可编程伽玛校正缓沖电路晶片, 所述时序控制器还 分别与柵极驱动器及可编程伽玛校正緩冲电路晶片电性连接; 所述时序控 制器通过两组柵极控制信号控制所述柵极驱动器, 所述源极驱动器提供数 据信号给有源矩阵式有机发光二极管面板, 所述数据信号包括多个数据 帧, 每一所述数据顿包括数个具有相等时间的子数据帧。
所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电路, 每 一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体管、 一存 储电容、 一柵极线及一数据线, 所述第一薄膜晶体管具有第一櫥极, 第一 漏极及第一源极, 所述第二薄膜晶体管具有第二栅极、 第二漏极及第二源 极, 所述第一栅极与栅极线电性连接, 所述第一源极与数据线电性连接, 所述第一漏极分别与第二柵极、 存储电容的一端电性连接, 所述存储电容 的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接有机发光 一二才及官。
所述栅极驱动器提供扫描信号给所述有源矩阵式有机发光二极管面 板; 所述柵极驱动器包括櫥极控制电路及与櫥极控制电路电性连接的柵极 驱动电路, 所述栅极控制电路与时序控制器电性连接, 所述栅极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述 *极驱动电路包括 数个极极驱动芯片;
所述两组柵极控制信号分别为第一组棚 '极控制信号与第二组橋极控制 信号, 第一组柵极控制信号包括第一起始控制信号、 第一时钟控制信号及 第一使能控制信号, 第二组 *极控制信号包括第二起始控制信号、 第二时 钟控制信号及第二使能控制信号;
所述第一组 *极控制信号用于控制所述柵极驱动器使所述有源矩阵式 有机发光二极管面板充电, 所述第二组栅极控制信号用于控制所述柵极驱 动器使所述有源矩阵式有机发光二极管面板放电。
所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的源 极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极驱 动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动电 路包括^:个源极驱动芯片;
所述时序控制器通过两个源极控制信号控制所述源极驱动器, 该两个 源极控制信号分别为低压差分信号及源极起始控制信号。
还包括一与时序控制器电性连接的多路复用器, 所述多路复用器具有 一高电平输入引脚、 一低电平输入引脚, 一使能控制信号输入引脚及一选 择性输出引脚, 所述可编程伽玛校正缓冲电路晶片具有一静态高电压引 脚, 所述静态高电压引脚上的电压恒高于或等于所述可编程伽玛校正缓冲 电路晶片输出引脚上的电压, 所述使能控制信号输入引脚与所述时序控制 器电性连接, 所述选择性输出引脚与所述可编程伽玛校正缓冲电路晶片的 静态高电压引脚电性连接, 所述高电平输入引脚用于输入一高电平信号, 所述低电平输入引脚用于输入一低电平信号, 所述低电平信号为 ov, 当 所述时序控制器输出一源极使能控制信号至多路复用器, 并使该源极使能 控制信号控制所述多路复用器输出一 0V 电压信号至所述可编程伽玛校正 緩冲电路晶片的静态高电压引脚时, 所述可编程伽玛校正缓冲电路晶片的 输出引脚输出的电压为 0V, 所述输出引脚包括第一至第十四输出引脚。
每一所述数据帧包括八个具有相等时间的子数据帧; 所述有源矩阵式 有机发光二极管面板驱动电路的驱动方式为脉冲宽度调制方式。
本发明还提供一种有源矩阵式有机发光二极管面板驱动电路, 包括: 有源矩阵式有机发光二极管面板、 与该有源矩阵式有机发光二极管面板电 性连接的柵极驱动器 与该有源矩阵式有机发光二极管面板电性连接的源 极驱动器、 与该源极驱动器电性连接的时序控制器、 与该源极驱动器电性 连接的可编程伽玛校正缓冲电路晶片, 所述时序控制器还分别与 *极驱动 器及可编程 1 ^玛校正缓冲电路晶片电性连接; 所述时序控制器通过两组柵 极控制信号控制所述栅极驱动器, 所述源极驱动器提供数据信号给有源矩 阵式有机发光二极管面板, 所述数据信号包括多个数据帧, 每一所述数据 帧包括数个具有相等时间的子数据帧; 其中, 所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电 路, 每一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体 管、 一存储电容、 一栅极线及一数据线, 所述第一薄膜晶体管具有第一櫥 极、 第一漏极及第一源极, 所述第二薄膜晶体管具有第二栅极、 第二漏极 及第二源极, 所述第一栅极与栅极线电性连接, 所述第一源极与数据线电 性连接, 所述第一漏极分别与第二柵极, 存储电容的一端电性连接, 所述 存储电容的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接 有机发光二极管。
所述栅极驱动器提供扫描信号给所述有源矩阵式有机发光二极管面 板; 所述柵极驱动器包括棚 ·极控制电路及与棚 ·极控制电路电性连接的楣-极 驱动电路, 所述棚 '极控制电路与时序控制器电性连接, 所述楣 ·极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述柵极驱动电路包括 数个树极驱动芯片;
所述两组櫥极控制信号分别为第一组柵极控制信号与第二组栅极控制 信号, 第一组柵极控制信号包括第一起始控制信号。 第一时钟控制信号及 第一使能控制信号, 第二组栅极控制信号包括第二起始控制信号、 第二时 钟控制信号及第二使能控制信号; 所述第一组柵极控制信号用于控制所述 栅极驱动器使所述有源矩阵式有机发光二极管面板充电, 所述第二组槲极 控制信号用于控制所述柵极驱动器使所述有源矩阵式有机发光二极管面板 放.电。
所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的源 极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极驱 动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动电 路包括数个源极驱动芯片;
所述时序控制器通过两个源极控制信号控制所述源极驱动器, 该两个 源极控制信号分别为低压差分信号及源极起始控制信号。
还包括一与时序控制器电性连接的多路复用器, 所述多路复用器具有 一高电平输入引脚、 一低电平输入引脚, 一使能控制信号输入引脚及一选 择性输出引脚, 所述可编程伽玛校正緩冲电路晶片具有一静态高电压引 脚, 所述静态高电压引脚上的电压恒高于或等于所述可编程伽玛校正緩沖 电路晶片输出引脚上的电压, 所述使能控制信号输入引脚与所述时序控制 器电性连接, 所述选择性输出引脚与所述可编程伽玛校正缓沖电路晶片的 静态高电压引脚电性连接, 所述高电平输入引脚用于输入一高电平信号, 所述低电平输入引脚用于输入一低电平信号, 所述低电平信号为 0V , 当 所述时序控制器输出一源极使能控制信号至多路复用器, 并使该源极使能 控制信号控制所述多路复用器输出一 0V 电压信号至所述可编程伽玛校正 緩冲电路晶片的静态高电压引脚时, 所述可编程伽玛校正缓沖电路晶片的 输出引脚输出的电压为 0V, 所述输出引脚包括第一至第十四输出引脚。
每一所述数据帧包括八个具有相等时间的子数据帧; 所述有源矩阵式 有机发光二极管面板驱动电路的驱动方式为脉冲宽度调制方式。
本发明还提供一种有源矩阵式有机发光二极管面板的驱动方法, 包括 以下步骤:
步骤 101、 有源矩阵式有机发光二极管面板驱动电路的时序控制器提 供一第一组栅极控制信号给所述有源矩阵式有机发光二极管面板驱动电路 的栅极驱动器, 所述栅极驱动器在时序控制器的控制下提供一第一扫描信 号给有源矩阵式有机发光二极管面板;
步骤 102、 所述时序控制器提供一低压差分信号及一源极起始控制信 号给所述有源矩阵式有机发光二极管面板驱动电路的源极驱动器, 并提供 一源极使能控制信号给一可编程铷玛校正緩冲电路晶片, 所述源极使能控 制信号控制所述可编程伽玛校正緩冲电路晶片的输出高电平信号至源极驱 动器, 源极驱动器在时序控制器及可编程伽玛校正緩冲电路晶片的控制下 提供一数据信号给有源矩阵有机发光二极管面板, 所述数据信号包括多个 数据帧, 每一所述数据帧包括数个具有相等时间的子数据帧;
步骤 103、 根据该第一扫描信号及数据信号, 所述有源矩阵有机发光 二极管面板中相应的内部像素驱动电路对其对应的存储电容进行充电, 进 而对该内部像素驱动电路对应的像素充电;
步骤 104、 所述时序控制器提供第二组柵极控制信号给柵极驱动器, 所述槲极驱动器在时序控制器的控制下提供一第二扫描信号给有源矩阵式 有机发光二极管面板;
步骤 105、 所述源极使能控制信号控制所述可编程 玛校正緩冲电路 晶片的输出低电平信号至源极驱动器, 根据所述第二扫描信号, 源极驱动 器在时序控制器及可编程 玛校正緩冲电路晶片的控制下控制所述内部像 素驱动电路中的存储电容放电, 进而控制该内部像素驱动电路对应的像素 放电 t>
所述有源矩阵式有机发光二极管面板驱动电路包括: 有源矩阵式有机 发光二极管面板、 与该有源矩阵式有机发光二极管面板电性连接的栅极驱 动器、 与该有源矩阵式有机发光二极管面板电性连接的源极驱动器、 与该 源极驱动器电性连接的时序控制器、 与该源极驱动器电性连接的可编程伽 玛校正缓冲电路晶片, 所述时序控制器还分别与栅极驱动器及可编程伽玛 校正缓冲电路晶片电性连接;
所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电路, 每 一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体管、 一存 储电容、 一栅极线及一数据线, 所述第一薄膜晶体管具有第一棚 ·极、 第一 漏极及第一源极, 所述第二薄膜晶体管具有第二栅极、 第二漏极及第二源 极, 所述第一栅极与栅极线电性连接, 所述第一源极与数据线电性连接, 所述第一漏极分别与第二柵极、 存储电容的一端电性连接, 所述存储电容 的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接有机发光 二极管;
所述栅极驱动器包括柵极控制电路及与柵极控制电路电性连接的栅极 驱动电路, 所述柵极控制电路与时序控制器电性连接, 所述柵极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述栅极驱动电路包括 数个栅极驱动芯片;
所述第一组 *极控制信号包括第一起始控制信号、 第一时钟控制信号 及第一使能控制信号, 第二组楣-极控制信号包括第二起始控制信号、 第二 时钟控制信号及第二使能控制信号;
所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的源 极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极驱 动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动电 路包括数个源极驱动芯片。
所述有源矩阵式有机发光二极管面板驱动电路还包括一与时序控制器 电性连接的多路复用器, 所述多路复用器具有一高电平输入引脚、 一低电 平输入引脚, 一使能控制信号输入引脚及一选择性输出引脚, 所述可编程 ^玛校正緩冲电路晶片具有一静态高电压引脚, 所述静态高电压引脚上的 电压恒高于或等于所述可编程伽玛校正缓冲电路晶片输出引脚上的电压, 所述使能控制信号输入引脚与所述时序控制器电性连接, 所述选择性输出 引脚与所述可编程 玛校正緩沖电路晶片的静态高电压引脚电性连接, 所 述高电平输入引脚用于输入一高电平信号, 所述低电平输入引脚用于输入 一低电平信号, 所述低电平信号为 0V; 所述源极使能控制信号控制选择 高电平信号或低电平信号作为选择性输出引脚的输出信号; 所述可编程铷 玛校正缓冲电路晶片的静态高电压引脚输出的电压与其输出引脚输出的电 压变化一致。
每一所述数据桢包括八个具有相等时间的子数据帧; 所述有源矩阵式 有机发光二极管面板驱动电路的驱动方式为脉冲宽度调制方式。
本发明的有益效果: 本发明的有源矩阵式有机发光二极管面板驱动电 路及驱动方法, 通过在现有的 2T1C驱动电路基础上设置时序控制电路和 可编程伽玛校正緩冲电路控制楣 ·极驱动器和源极驱动器, 实现该源极驱动 器直接放电功能, 节省了开发新的能实现放电功能的源极驱动器的成本, 同时, 以脉冲宽度调制方式作为有源矩阵式有机发光二极管面板驱动电路 的驱动方式并将一个完整的数据帧分为八个时间相同的子数据帧, 可达到 255 灰阶, 且不影响有源矩阵式有机发光二极管面板的阈值电压 Vth, 进而 不改变有源矩阵式有机发光二极管面板的电流, 提高有源矩阵式有机发光 二极管面板的一致性, 提.升有源矩阵式有机发光二极管面板的显示品质。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1 为现有的有源矩阵式有机发光二极管面板中有机发光二极管的驱 动电路的示意图;
图 2为本发明有源矩阵式有机发光二极管面板驱动电路的示意图; 图 3为图 2中有机发光二极管的内部像素驱动电路示意图;
图 4为图 2中栅极控制电路的电路连接示意图;
图 5为图 2中时序控制器与可编程伽玛校正缓冲电路晶片的连接示意 i¾J
图 6为本发明有源矩阵式有机发光二极管面板驱动电路中八个子数据 图 7为本发明有源矩阵式有机发光二极管面板驱动电路的驱动方式控 制时序图;
图 8为本发明有源矩阵式有机发光二极管面板驱动方法的流程图。 具体实旅方式 的优选实 i例及 附图进行详^描述。二 ' ' 1 1 ― ' " 请参阅图 2 至图 5 , 本发明提供一种有源矩阵式有机发光二极管面板 驱动电路, 包括: 有源矩阵式有机发光二极管面板 2、 与该有源矩阵式有 机发光二极管面板 2 电性连.接的柵极驱动器 4、 与该有源矩阵式有机发光 二极管面板 2电性连接的源极驱动器 6、 与该源极驱动器 6电性连接的时 序控制器 8、 与该源极驱动器 6 电性连接的可编程伽玛校正缓冲电路晶片 ( Gamma IC ) 10, 所述时序控制器 8还分别与栅极驱动器 4及可编程伽 玛校正缓冲电路晶片 10 电性连接, 所述时序控制器 %通过两组槲极控制 信号控制所述櫪极驱动器 4, 所述源极驱动器 6提供数据信号给有源矩阵 式有机发光二极管面板 2, 所述数据信号包括多个数据帧, 每一所述数据 帧包括数个具有相等时间的子数据帧。
所述有源矩阵式有机发光二极管面板 2 包括数个内部像素驱动电路 20, 如图 3 所示。 本发明在现有的 2TI C驱动电路基础上, 采用脉冲宽度 调制的方式驱动有源矩阵式有机发光二极管面板 2, 将每个完整的数据帧 切为数个具有相等时间的子数据帧, 以实现所需的灰阶, 并配以电路控 制, 进而不影响驱动薄膜晶体管 (第二薄膜晶体管 23 ) 的阈值电压 Vth。 每一内部像素驱动电路 20 包括一第一薄膜晶体管 22、 一第二薄膜晶体管 23、 一存储电容 24、 一栅极线 25及一数据线 26。 所述第一薄膜晶体管 22 为开关薄膜晶体管, 其具有第一栅极 gi、 第一漏极 dl 及第一源极 si ; 所述 第二薄膜晶体管 23 为驱动薄膜晶体管, 其具有第二柵极 g2、 第二漏极 d2 及第二源极 s2。 所述第一柵极 gl 与柵极线 25 电性.连.接, 第一源极 si 与数 据线 26电性连接, 第一漏极 dl 与第二栅极 g2及存储电容 24的一端电性 连接, 所述存储电容 24 的另一端及第二源极 s2 用于连接驱动电源, 所述 第二漏极 d2用于连接有机发光二极管 27。
当櫥极线 25被选中时, 第一薄膜晶体管 22开启, 数据线 26的电压 通过第一薄膜晶体管 22对存储电容 24充电, 存储电容 24的电压控制第 二薄膜晶体管 23的漏极电流; 当极极线 25未被选中时, 第一薄膜晶体管 22截止, 储存在存储电容 24上的电荷继续维持第二薄膜晶体管 23的第二 柵极 g2电压, 以保持第二薄膜晶体管 23在该帧时间内的工作状态。
所述櫥极驱动器 4与每一所述内部像素驱动电路 20的柵极线 25均电 性连接, 所述源极.驱动器 6与每一所述内部像素驱动电路 20的数据线 26 均电性连接。 所述栅极驱动器 4提供扫描信号给所述有源矩阵式有机发光 二极管面板 2。 所述栅极驱动器 4包括櫥极控制电路 42及与柵极控制电路 42电性连接的柵极驱动电路 44, 所述柵极控制电路 42与时序控制器 8电 性连接, 所述櫥极驱动电路 44 与所述有源矩阵式有机发光二极管面板 2 电性连接, 所述栅极驱动电路 44 包括数个栅极驱动芯片 46, 该些栅极驱 动芯片 46用于与内部像素驱动电路 20的櫪极线 25电性连.接„
所述两组柵极控制信号分别为第一组栅极控制信号 82 与第二组栅极 控制信号 84 , 第一组橋极控制信号 82 包括第一起始控制信号 (STV ) 821、 第一时钟控制信号 ( CKV ) 822及第一使能控制信号 ( OE ) 823, 第 二组栅极控制信号 84包括第二起始控制信号 ( STV2 ) 841、 第二时钟控制 信号 ( CKV2 ) 842及第二使能控制信号 ( OE2 ) 843。
如图 4所示, 所述第一组栅极控制信号 82作为所述栅极驱动器 4的 输入信号用于控制栅极驱动器 4使所述有源矩阵式有机发光二极管面板 2 充电, 所述第二组楣 ·极控制信号 84作为所述棚 '极驱动器 4 的输入信号用 于控制楣-极驱动器 4使所述有源矩阵式有机发光二极管面板 2放电。 所述 柵极驱动器 4 的输出信号分别连接各所述内部像素驱动电路 20 的櫥极线 25。
所述源极.驱动器 6包括: 源极控制电路 62及与源极控制电路 62电性 连 的源极驱动电路 64, 所述源极控制电路 62与所述时序控制器 8 电性 连接, 所述源极驱动电路 62 与所述有源矩阵式有机发光二极管面板 2 电 性连接, 所述源极驱动电路 64 包括数个源极驱动芯片 66。 所述时序控制 器 8通过两个源极控制信号控制所述源极驱动器 6, 该两个源极控制信号 分别为低压差分信号 ( Mini— LVDS ) 86及源极起始控制信号 ( STB ) 87。
所述有源矩阵式有机发光二极管面板驱动电路还包括一与时序控制器
8 电性连接的多路复用器(MUX ) 12, 所述多路复用器 12 具有一高电平 输入引脚 17、 一低电平输入引脚 18 —使能控制信号输入引脚及一选择 性输出引脚。
所述可编程枷玛校正緩沖电路晶片 10 具有一静态高电压引脚 ( STATIC— H ) 16, 所述静态高电压引脚 16上的电压恒高于或等于所述可 编程^玛校正缓冲电路晶片 10输出引脚 15 上的电压, 所述输出引脚 !5 为第一至第十四输出引脚。
所述多路复用器 12 的使能控制信号输入引脚与所述时序控制器 8 电 性连接, 所述选择性输出引脚与所述可编程伽玛校正缓冲电路晶片 i0 的 静态高电压引脚 16电性连接, 所述高电平输入引脚 17用于输入一高电平 信号, 该高电平为电源电压 Vdd, 所述低电平输入引脚 18 用于输入一低电 平信号, 所述低电平信号为 ov。
如图 5所示, 当所述时序控制器 8输出一源极使能控制信号 88至多 路复用器 12, 并使该源极使能控制信号 88控制所述多路复用器 12输出一 OV电压信号至所述可编程伽玛校正缓冲电路晶片 10的静态高电压引脚 16 时, 所述可编程枷玛校正緩冲电路晶片 10 的输出引脚 15 输出的电压为 0V, 进而所述源极驱动器输出也为 0V, 进一步地, 所述数据线 26上的电 压也为 0V, 因 ,¾通过源极使能控制信号 88控制可编程伽玛校正緩冲电路 晶片 10可以直接实现该源极驱动器 6放电的功能, 节省了开发新的能实 现放电功能的源极驱动器 6的成本。
请参阅图 6 , 在本实施例中, 每一所述数据帧包括八个具有相等时间 的子数据幀, 可以达到 255 灰阶, 在 2T1C电路基础上, 搭配特殊的电路 控制即可实现脉冲宽度调制方式, 进而不影响驱动薄膜晶体管 (第二薄膜 晶体管 23 ) 的阈值电压 Vth, 从而改善有源矩阵有机发光二极管面板的一 致性。
所述有源矩阵式有机发光二极管面板驱动电路的驱动方式为脉冲宽度 调制方式, 其时序图如图 7所示, 通过槲极驱动器 4的第一组树极控制信 号 82和第二组柵极控制信号 84以及源极驱动器 6的源极起始控制信号 87 与连.接可编程铷玛校正缓冲电路晶片 10的源极使能控制信号 88相互配合 实现, 进而实现在固定子数据愤的时序下, 产生灰阶的效果。 图中, 第一 组棚极控制信号 82为传统的控制信号, 源极起始控制信号 87为传统的源 极.控制信号, 主要用于将源极驱动器 6 的信号驱动至有源矩阵有机发光二 极管面板 2上, 同时借以第二组柵极控制信号 84配合源极使能信号 88, 即可实现脉冲宽度调制。
本实施例中, 以脉冲宽度调制方式作为有源矩阵式有机发光二极管面 板驱动电路的驱动方式, 可以不影响第二薄膜晶体管 23 的阈值电压 Vth, 进而不改变有源矩阵式有机发光二极管面板 2 的电流, 提高有源矩阵式有 机发光二极管面板 2的一致性, 提升有源矩阵式有机发光二极管面板 2的 显示品廣。
请参阅图 2 至图 8, 本发明还提供一种有源矩阵有机发光二极管面板 的驱动方法, 该方法包括以下步骤:
步骤 101、 有源矩阵式有机发光二极管面板 2驱动电路的时序控制器 8提供一第一组柵极控制信号 82给柵极驱动器 4, 所述栅极驱动器 4在时 序控制器 8 的控制下提供一第一扫描信号给有源矩阵有机发光二极管面板 2。 所述有源矩阵式有机发光二极管面板驱动电路包括: 有源矩阵式有机 发光二极管面板 2、 与该有源矩阵式有机发光二极管面板 2 电性连接的櫥 极驱动器 4、 与该有源矩阵式有机发光二极管面板 2 电性连接的源极驱动 器 6、 与该源极驱动器 6电性连接的时序控制器 8 与该源极驱动器 6电 性连接的可编程珈玛校正缓冲电路晶片 10, 所述时序控制器 8还分别与栅 极驱动器 4及可编程珈玛校正缓冲电路晶片 10电性连接。
所述有源矩阵式有机发光二极管面板 2 包括数个内部像素驱动电路 20, 如图 3 所示。 本发明在现有的 2T1C驱动电路基础上, 采用脉冲宽度 调制的方式驱动有源矩阵式有机发光二极管面板 2, 将每个完整的数据帧 切为数个具有相等时间的子数据帧, 以实现所需的灰阶, 并配以电路控 制, 进而不影响驱动薄膜晶体管 (第二薄膜晶体管 23 ) 的阈值电压 Vth。 每一内部像素驱动电路 20 包括一第一薄膜晶体管 22、 一第二薄膜晶体管 23、 一存储电容 24、 一栅极线 25及一数据线 26。 所述第一薄膜晶体管 22 为开关薄膜晶体管, 其具有第一栅极 g】、 第一漏极 dl 及第一源极 si ; 所述 第二薄膜晶体管 23 为驱动薄膜晶体管, 其具有第二棚 '极§2、 第二漏极 (12 及第二源极 S2。 所述第一柵极 gl 与栅极线 25 电性连接, 第一源极 si 与数 据线 26电性连接, 第一漏极 dl 与第二櫥极 g2及存储电容 24的一端电性 连接, 所述存储电容 24 的另一端及第二源极 s2 用于连接驱动电源, 所述 第二漏极 d2用于连接有机发光二极管 27。
当棚 _极线 25被选中时, 第一薄膜晶体管 22开启, 数据线 26的电压 通过第一薄膜晶体管 22对存储电容 24充电, 存储电容 24的电压控制第 二薄膜晶体管 23的漏极电流; 当栅极线 25未被选中时, 第一薄膜晶体管 22截止, 储存在存储电容 24上的电荷继续维持第二薄膜晶体管 23的第二 柵极 g2电压, 以保持第二薄膜晶体管 23在该帧时间内的工作状态。
所述柵极驱动器 4与每一所述内部像素驱动电路 20的棚 ·极线 25均电 性连接, 所述源极驱动器 6与每一所述内部像素驱动电路 20的数据线 26 均电性连接。 所述栅极驱动器 4 包括棚 _极控制电路 42及与柵极控制电路 42电性连接的树极驱动电路 44, 所述櫪极.控制电路 42与时序控制器 8电 性连接, 所述柵极驱动电路 44 与所述有源矩阵式有机发光二极管面板 2 电性连接, 所述栅极驱动电路 44 包括数个栅极驱动芯片 46, 该些栅极驱 动芯片 46用于与内部像素驱动电路 20的棚 ·极线 25电性连接。
如图 4 所示, 所述第一组栅极控制信号 82 包括第一起始控制信号 821、 第一时钟控制信号 822及第一使能控制信号 823。 所述栅极驱动器 4 的输出信号分别连接各所述内部像素驱动电路的栅极线 25。
步骤 102、 所述时序控制器 8提供一低压差分信号 86及一源极起始控 制信号 87给所述有源矩阵式有机发光二极管面板 2驱动电路的源极驱动 器 6, 并提供一源极使能控制信号 88 给一可编程伽玛校正缓冲电路晶片 10, 所述源极使能控制信号 88控制所述可编程伽玛校正緩冲电路晶片 10 的输出高电平信号至源极驱动器 6, 源极驱动器 6在时序控制器 8及可编 程伽玛校正緩沖电路晶片 10 的控制下提供一数据信号给有源矩阵有机发 光二极管面板 2, 所述数据信号包括多个数据帧, 每一所述数据帧包括数 个具有相等时间的子数据帧。 在本实施例中, 每一所述数据愤包括八个具 有相等时间的子数据帧。
所述源极驱动器 6包括: 源极控制电路 62及与源极控制电路 62电性 连接的源极驱动电路 64, 所述源极控制电路 62与所述时序控制器 8 电性 所述源极驱动电路 62 与所述有源矩阵式有机发光二极管面板 2 电 性连接, 所述源极驱动电路 64包括 ·数个源极驱动芯片 66。
所述有源矩阵式有机发光二极管面板驱动电路还包括一与时序控制器
8 电性连接的多路复用器(MUX ) 12, 所述多路复用器 12 具有一高电平 输入引脚 17、 一低电平输入引脚 18 —使能控制信号输入引脚及一选择 性输 '出引 「。
所述可编程枷玛校正緩沖电路晶片 10 具有一静态高电压引脚 ( STATIC— H ) 16, 所述静态高电压引脚 16上的电压恒高于或等于所述可 编程 玛校正緩冲电路晶片 10输出引脚 15 上的电压, 所述输出引脚 】5 为第一至第十四输出引脚。
所述多路复用器 12 的使能控制信号输入引脚与所述时序控制器 8 电 性连接, 所述选择性输出引脚与所述可编程伽玛校正缓冲电路晶片 10 的 静态高电压引脚 16电性连接, 所述高电平输入引脚 17用于输入一高电平 信号, 该高电平为电源电压 Vdd, 所述低电平输入引脚 18 用于输入一低电 平信号, 所述.低电平信号为 0V。 所述源极使能控制信号 88控制选择高电 平信号或低电平信号作为选择性输出引脚的输出信号; 所述可编程伽玛校 正缓冲电路晶片 10的静态高电压引脚 16输出的电压与其输出引脚 15输 出的电压变化一致。
如图 5所示, 当所述时序控制器 8输出一源极使能控制信号 88至多 路复用器】2, 并使该源极使能控制信号 88控制所述多路复用器 12输出一 0V电压信号至所述可编程伽玛校正缓冲电路晶片 10的静态高电压引脚 16 时, 所述可编程伽玛校正缓冲电路晶片 10 的输出引脚 15 输出的电压为 0V, 进而所述源极驱动器输出也为 0V, 进一步地, 所述数据线 26上的电 压也为 0V, 因而通过源极使能控制信号 88控制可编程铷玛校正缓冲电路 晶片 10可以直接实现该源极驱动器 6放电的功能, 节省了开发新的能实 现放电功能的源极驱动器 6的成本。
步骤 103、 根据该第一扫描信号及数据信号, 所述有源矩阵有机发光 二极管面板 2中相应的内部像素驱动电路 20对其对应的存储电容 24进行 充电, 进而对该内部像素驱动电路 20对应的像素充电。
所述步骤 101至 103为像素充电过程。
步骤 104、 所述时序控制器 8提供第二组橋极控制信号 84给棚-极驱动 器 4, 所述柵极驱动器 4在时序控制器 8的控制下提供一第二扫描信号给 有源矩阵式有机发光二极管面板 2。
所述第二组树极控制信号 84包括第二起始控制信号 841、 第二时钟控 制信号 842及第二使能控制信号 843。
步骤 105、 所述源极使能控制信号 88控制所述可编程 玛校正緩冲电 路晶片 10的输出低电平信号至源极驱动器 6, 根据所述第二扫描信号, 源 极驱动器 6在时序控制器 8及可编程^玛校正缓沖电路晶片 〗0的控制下 控制所述内部像素驱动电路 20中的存储电容 24放电, 进而控制该内部像 素驱动电路 20对应的像素放电。
所述步骤 104至 105为像素放电过.程„ 所述充电、 放电的时间间隔可 以由时序控制器 8控制, 进而实现脉冲宽度调制。
请参阅图 6, 在本实施例中, 每一所述数据帧包括八个具有相等时间 的子数据幀, 可以达到 255 灰阶, 在 2T1C电路基 上, 搭配特珠的电路 控制即可实现脉冲宽度调制方式, 进而不影响驱动薄膜晶体管 (第二薄膜 晶体管 23 ) 的阈值电压 Vth, 从而改善有源矩阵有机发光二极管面板 2 的 一致性。
所述有源矩阵式有机发光二极管面板驱动电路的驱动方式为脉冲宽度 调制方式, 其时序图如图 7所示, 通过棚-极驱动器 4的第一组柵极控制信 号 82和第二组櫥极控制信号 84以及源极驱动器 6的源极起始控制信号 87 与连接可编程枷玛校正緩冲电路晶片 10的源极使能控制信号 88相互配合 实现, 进而实现在固定子数据帧的时序下, 产生灰阶的效果。 图中, 第一 组栅极控制信号 82为传统的控制信号, 源极起始控制信号 87为传统的源 极控制信号, 主要用于将源极驱动器 6 的信号驱动至有源矩阵有机发光二 极管面板 2上, 同时借以第二组棚极控制信号 84配合源极使能信号 88, 即可实现脉冲宽度调制。
综上所述, 本发明的有源矩阵式有机发光二极管面板驱动电路及驱动 方法, 通过在现有的 2T1C驱动电路基础上设置时序控制电路和可编程 玛校正缓冲电路控制栅极驱动器和源极驱动器, 实现该源极驱动器直接放 电功能, 节省了开发新的能实现放电功能的源极驱动器的成本, 同时, 以 脉冲宽度调制方式作为有源矩阵式有机发光二极管面板驱动电路的驱动方 式并将一个完整的数据帧分为八个时间相同的子数据帧, 可达到 255 灰 阶, 且不影响有源矩阵式有机发光二极管面板的阈值电压 Vth, 进而不改变 有源矩阵式有机发光二极管面板的电流, 提高有源矩阵式有机发光二极管 面板的一致性, 提升有源矩阵式有机发光二极管面板的显示品质。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求 一种有源矩阵式有机发光二极管面板驱动电路, 包括: 有源矩阵 式有机发光二极管面板、 与该有源矩阵式有机发光二极管面板电性连接的 柵极驱动器、 与该有源矩阵式有机发光二极管面板电性连接的源极驱动 器、 与该源极驱动器电性连接的时序控制器、 与该源极驱动器电性连接的 可编程枷玛校正緩冲电路晶片, 所述时序控制器还分别与 *极驱动器及可 编程伽玛校正緩冲电路晶片电性连接; 所述时序控制器通过两组柵极控制 信号控制所述楣-极驱动器, 所述源极驱动器提供数据信号给有源矩阵式有 机发光二极管面板, 所述数据信号包括多个数据帧, 每一所述数据帧包括
' ' 如权^;要求 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电路, 每一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体管、 一 存储电容、 一栅极线及一数据线, 所述第一薄膜晶体管具有第一橋极、 第 一漏极及第一源极, 所述第二薄膜晶体管具有第二楣-极、 第二漏极及第二 源极, 所述第一 *极与槲极线电性连接, 所述第一源极与数据线电性连 接, 所述第一漏极分别与第二柵极、 存储电容的一端电性连接, 所述存储 电容的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接有机 发光二极管。
3、 如权利要求 1 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 所述栅极驱动器提供扫描信号给所述有源矩阵式有机发光二极管面 板; 所述栅极驱动器包括 *极控制电路及与櫥极控制电路电性连接的栅极 驱动电路, 所述櫥极控制电路与时序控制器电性连接, 所述栅极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述极极驱动电路包括 数个柵极驱动芯片;
所述两组柵极控制信号分别为第一组櫥极控制信号与第二组柵极控制 信号, 第一组柵极控制信号包括第一起始控制信号、 第一时钟控制信号及 第一使能控制信号, 第二组 *极控制信号包括第二起始控制信号、 第二时 钟控制信号及第二使能控制信号; 所述第一组柵极控制信号用于控制所述 柵极驱动器使所述有源矩阵式有机发光二极管面板充电, 所述第二组柵极 控制信号用于控制所述楣 ·极驱动器使所述有源矩阵式有机发光二极管面板 放电。 4 , 如权利要求 1 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的 源极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极 驱动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动 电路包括数个源极驱动芯片;
所述时序控制器通过两个源极控制信号控制所述源极驱动器, 该两个 源极控制信号分别为低压差分信号及源极起始控制信号。
5 , 如权利要求 1 所述的有源矩阵式有机发光二极管面板驱动电路, 还包括一与时序控制器电性连接的多路复用器, 所述多路复用器具有一高 电平输入引脚、 一低电平输入引脚、 一使能控制信号输入引脚及一选择性 输出引脚, 所述可编程伽玛校正緩冲电路晶片具有一静态高电压引脚, 所 述静态高电压引脚上的电压恒高于或等于所述可编程伽玛校正缓冲电路晶 片输出引脚上的电压, 所述使能控制信号输入引脚与所述时序控制器电性 连接, 所述选择性输出引脚与所述可编程伽玛校正缓冲电路晶片的静态高 电压引脚电性连接, 所述高电平输入引脚用于输入一高电平信号, 所述低 电平输入引脚用于输入一低电平信号, 所述低电平信号为 0V, 当所述时 序控制器输出一源极使能控制信号至多路复用器, 并使该源极使能控制信 号控制所述多路复用器输出一 0V 电压信号至所述可编程伽玛校正缓冲电 路晶片的静态高电压引脚时, 所述可编程伽玛校正緩冲电路晶片的输出引 脚输出的电压为 0V, 所述输出引脚包括第一至第十四输出引脚。
6、 如权利要求 1 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 每一所述数据帧包括八个具有相等时间的子数据帧; 所述有源矩阵 式有机发光二极管面板驱动电路的驱动方式为脉冲宽度调制方式。
7、 一种有源矩阵式有机发光二极管面板驱动电路, 包括: 有源矩阵 式有机发光二极管面板、 与该有源矩阵式有机发光二极管面板电性连接的
*极驱动器、 与该有源矩阵式有机发光二极管面板电性连接的源极驱动 器、 与该源极驱动器电性连接的时序控制器、 与该源极驱动器电性连接的 可编程伽玛校正缓冲电路晶片, 所述时序控制器还分别与柵极驱动器及可 编程伽玛校正緩冲电路晶片电性连接; 所述时序控制器通过两组柵极控制 信号控制所述槲极驱动器, 所述源极驱动器提供数据信号给有源矩阵式有 机发光二极管面板, 所述数据信号包括多个数据帧, 每一所述数据帧包括 数个具有相等时间的子数据幀;
其中, 所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电 路, 每一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体 管, 一存储电容、 一 *极线及一数据线, 所述第一薄膜晶体管具有第一櫥 极、 第一漏极及第一源极, 所述第二薄膜晶体管具有第二栅极、 第二漏极 及第二源极, 所述第一栅极与栅极线电性连接, 所述第一源极与数据线电 性连接, 所述第一漏极分别与第二橋极、 存储电容的一端电性连接, 所述 存储电容的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接
—一 He权利要求 7 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 所述栅极驱动器提供扫描信号给所述有源矩阵式有机发光二极管面 板; 所述柵极驱动器包括 *极控制电路及与櫥极控制电路电性连接的栅极 驱动电路, 所述柵极控制电路与时序控制器电性连接, 所述栅极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述柵极驱动电路包括 所述. 柵极控制信号分别为第一组櫥极控制信号与第二组 *极控制 信号, 第一组栅极控制信号包括第一起始控制信号、 第一时钟控制信号及 第一使能控制信号, 第二组栅极控制信号包括第二起始控制信号、 第二时 钟控制信号及第二使能控制信号; 所述第一组橋极控制信号用于控制所述 柵极驱动器使所述有源矩阵式有机发光二极管面板充电, 所述第二组柵极 控制信号用于控制所述栅极驱动器使所述有源矩阵式有机发光二极管面板 放电。
9、 如权利要求 7 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的 源极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极 驱动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动 电路包括数个源极驱动芯片;
所述时序控制器通过两个源极控制信号控制所述源极驱动器, 该两个 源极控制信号分别为低压差分信号及源极起始控制信号。
10、 如权利要求 7 所述的有源矩阵式有机发光二极管面板驱动电路, 还包括一与时序控制器电性连接的多路复用器, 所述多路复用器具有一高 电平输入引脚、 一低电平输入引脚、 一使能控制信号输入引脚及一选择性 输出引脚, 所述可编程伽玛校正缓冲电路晶片具有一静态高电压引脚, 所 述静态高电压引脚上的电压恒高于或等于所述可编程铷玛校正緩冲电路晶 片输出引脚上的电压, 所述使能控制信号输入引脚与所述时序控制器电性 连接, 所述选择性输出引脚与所述可编程伽玛校正緩冲电路晶片的静态高 电压引脚电性连接, 所述高电平输入引脚用于输入一高电平信号, 所述低 电平输入引脚用于输入一低电平信号, 所述低电平信号为 0V, 当所述时 序控制器输出一源极使能控制信号至多路复用器, 并使该源极使能控制信 号控制所述多路复用器输出一 0V 电压信号至所述可编程伽玛校正缓冲电 路晶片的静态高电压引脚时, 所述可编程伽玛校正緩冲电路晶片的输出引 脚输出的电压为 0V, 所述输出引脚包括第一至第十四输出引脚。
1 1、 如权利要求 7 所述的有源矩阵式有机发光二极管面板驱动电路, 其中, 每一所述数据帧包括八个具有相等时间的子数据帧; 所述有源矩阵 式有机发光二极管面板驱动电路的驱动方式为脉冲宽度调制方式。
12、 一种有源矩阵式有机发光二极管面板的驱动方法, 包括以下步 骤:
步骤 101、 有源矩阵式有机发光二极管面板驱动电路的时序控制器提 供一第一组柵极控制信号给所述有源矩阵式有机发光二极管面板驱动电路 的 *极驱动器, 所述櫥极驱动器在时序控制器的控制下提供一第一扫描信 号给有源矩阵式有机发光二极管面板;
步骤 102、 所述时序控制器提供一低压差分信号及一源极起始控制信 号给所述有源矩阵式有机发光二极管面板驱动电路的源极驱动器, 并提供 一源极使能控制信号给一可编程伽玛校正缓冲电路晶片, 所述源极使能控 制信号控制所述可编程伽玛校正缓冲电路晶片的输出高电平信号至源极驱 动器, 源极驱动器在时序控制器及可编程伽玛校正緩冲电路晶片的控制下 提供一数据信号给有源矩阵有机发光二极管面板, 所述数据信号包括多个 数据帧, 每一所述数据帧包括数个具有相等时间的子数据帧;
步骤 103、 根据该第一扫描信号及数据信号, 所述有源矩阵有机发光 二极管面板中相应的内部像素驱动电路对其对应的存储电容进行充电, 进 而对该内部象素驱动电路对应的傢素充电;
步骤 104、 所述时序控制器提供第二组柵极控制信号给栅极驱动器, 所述柵极驱动器在时序控制器的控制下提供一第二扫描信号给有源矩阵式 有机发光二极管面板;
步骤 105、 所述源极使能控制信号控制所述可编程 玛校正緩冲电路 晶片的输出低电平信号至源极驱动器, 根据所述第二扫描信号, 源极驱动 器在时序控制器及可编程珈玛校正缓冲电路晶片的控制下控制所述内部像 素驱动电路中的存储电容放电, 进而控制该内部像素驱动电路对应的像素 放电。
】3、 如权利要求 12 所述的有源矩阵式有机发光二极管面板的驱动方 法, 其中, 所述有源矩阵式有机发光二极管面板驱动电路包括: 有源矩阵 式有机发光二极管面板、 与该有源矩阵式有机发光二极管面板电性连接的 *极驱动器、 与该有源矩阵式有机发光二极管面板电性连接的源极驱动 器、 与该源极驱动器电性连.接的时序控制器、 与该源极驱动器电性连接的 可编程伽玛校正緩冲电路晶片, 所述时序控制器还分别与栅极驱动器及可 编程. 玛校正緩冲电路晶片电性连接;
所述有源矩阵式有机发光二极管面板包括数个内部像素驱动电路, 每 一内部像素驱动电路包括: 一第一薄膜晶体管、 一第二薄膜晶体管, 一存 储电容、 一栅极线及一数据线, 所述第一薄膜晶体管具有第一柵极、 第一 漏极及第一源极, 所述第二薄膜晶体管具有第二栅极、 第二漏极及第二源 极, 所述第一楣 -极与柵极线电性连接, 所述第一源极与数据线电性连接, 所述第一漏极分别与第二柵极、 存储电容的一端电性连接, 所述存储电容 的另一端及第二源极用于连接驱动电源, 所述第二漏极用于连接有机发光 二极管;
所述栅极驱动器包括树极控制电路及与櫥极控制电路电性连接的栅极 驱动电路, 所述櫥极控制电路与时序控制器电性连接, 所述栅极驱动电路 与所述有源矩阵式有机发光二极管面板电性连接, 所述柵极驱动电路包括 所述 组 *极控制信号包括第一起始控制信号、 第一时钟控制信号 及第一使能控制信号, 第二组柵极控制信号包括第二起始控制信号、 第二 时钟控制信号及第二使能控制信号;
所述源极驱动器包括: 源极控制电路及与源极控制电路电性连接的源 极驱动电路, 所述源极控制电路与所述时序控制器电性连接, 所述源极驱 动电路与所述有源矩阵式有机发光二极管面板电性连接, 所述源极驱动电 路包括数个源极驱动芯片。
14、 如权利要求 12 所述的有源矩阵式有机发光二极管面板的驱动方 法, 其中, 所述有源矩阵式有机发光二极管面板驱动电路还包括一与时序 控制器电性连接的多路复用器, 所述多路复用器具有一高电平输入引脚、 一低电平输入引脚、 一使能控制信号输入引脚及一选择性输出引脚, 所述 可编程伽玛校正緩沖电路晶片具有一静态高电压引脚, 所述静态高电压引 脚上的电压恒高于或等于所述可编程伽玛校正缓冲电路晶片输出引脚上的 电压, 所述使能控制信号输入引脚与所述时序控制器电性连接, 所述选择 性输出引脚与所述可编程铷玛校正緩冲电路晶片的静态高电压引脚电性连 接, 所述高电平输入引脚用于输入一高电平信号, 所述低电平输入引脚用 于输入一低电平信号, 所述低电平信号为 0V; 所述源极使能控制信号控 制选择高电平信号或低电平信号作为选择性输出引脚的输出信号; 所述可 编程伽玛校正缓冲电路晶片的静态高电压引脚输出的电压与其输出引脚输 出的电压变化一致。
】5、 如权利要求 12 所述的有源矩阵式有机发光二极管面板的驱动方 法, 其中, 每一所述数据帧包括八个具有相等时间的子数据桢; 所述有源 矩阵式有机发光二极管面板驱动电路的驱动方式为脉沖宽度调制方式。
PCT/CN2013/091235 2013-11-29 2013-12-31 有源矩阵式有机发光二极管面板驱动电路及驱动方法 WO2015078087A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1607193.8A GB2534763B (en) 2013-11-29 2013-12-31 AMOLED (active matrix organic light emitting diode) panel driving circuit
KR1020167013143A KR101868715B1 (ko) 2013-11-29 2013-12-31 능동매트릭스형 유기발광다이오드 패널 구동회로 및 구동방법
US14/241,068 US9472135B2 (en) 2013-11-29 2013-12-31 AMOLED (active matrix organic light emitting diode) panel driving circuit and driving method
JP2016533554A JP6226443B2 (ja) 2013-11-29 2013-12-31 アクティブマトリクス型有機発光ダイオードパネルの駆動回路及び駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310632727.7A CN103745685B (zh) 2013-11-29 2013-11-29 有源矩阵式有机发光二极管面板驱动电路及驱动方法
CN201310632727.7 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015078087A1 true WO2015078087A1 (zh) 2015-06-04

Family

ID=50502698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091235 WO2015078087A1 (zh) 2013-11-29 2013-12-31 有源矩阵式有机发光二极管面板驱动电路及驱动方法

Country Status (6)

Country Link
US (1) US9472135B2 (zh)
JP (1) JP6226443B2 (zh)
KR (1) KR101868715B1 (zh)
CN (1) CN103745685B (zh)
GB (2) GB2582458B (zh)
WO (1) WO2015078087A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102147465B1 (ko) * 2013-12-13 2020-08-25 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
KR101737865B1 (ko) 2014-07-30 2017-05-22 엘지디스플레이 주식회사 유기발광표시패널
CN104766578B (zh) * 2015-04-14 2018-06-15 深圳市华星光电技术有限公司 一种多电压产生装置及液晶显示器
CN105206225B (zh) * 2015-10-12 2017-09-01 深圳市华星光电技术有限公司 Oled栅极驱动电路架构
CN105243991B (zh) * 2015-10-27 2018-01-26 深圳市华星光电技术有限公司 Amoled驱动装置
CN105405384A (zh) * 2015-12-31 2016-03-16 深圳市华星光电技术有限公司 显示控制电路及显示设备
TWI595468B (zh) * 2017-02-20 2017-08-11 友達光電股份有限公司 有機發光二極體面板及其相關的電源驅動系統
CN107680535B (zh) * 2017-09-29 2019-10-25 深圳市华星光电半导体显示技术有限公司 Amoled显示面板的扫描驱动***
US10593266B2 (en) 2017-10-31 2020-03-17 Samsung Electronics Co., Ltd. Display driving circuit and display device including the same
CN108492784B (zh) * 2018-03-29 2019-12-24 深圳市华星光电半导体显示技术有限公司 扫描驱动电路
CN110164351A (zh) * 2019-04-22 2019-08-23 北京集创北方科技股份有限公司 驱动电路、驱动装置、显示设备以及驱动方法
CN110264941A (zh) * 2019-06-04 2019-09-20 上海乾申软件科技有限公司 用于水上滑道比赛计时的led显示屏控制装置及显示***
KR20230155700A (ko) * 2022-05-04 2023-11-13 경희대학교 산학협력단 강유전성 박막 트랜지스터를 이용한 디스플레이 화소 회로 및 그 구동 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065640A (ko) * 2002-01-30 2003-08-09 삼성전자주식회사 유기 전계발광 표시장치 및 그의 구동방법
CN1776793A (zh) * 2004-11-17 2006-05-24 三星Sdi株式会社 有机发光显示器和驱动有机发光显示器和像素电路的方法
CN1811884A (zh) * 2004-12-24 2006-08-02 三星Sdi株式会社 有机发光二极管显示器及其驱动方法
CN101325041A (zh) * 2007-06-12 2008-12-17 三星电子株式会社 驱动装置、安装有其的显示设备、驱动显示设备的方法
KR20090090117A (ko) * 2008-02-20 2009-08-25 삼성모바일디스플레이주식회사 디멀티플렉서 및 이를 이용한 유기전계발광 표시장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748160A (en) * 1995-08-21 1998-05-05 Mororola, Inc. Active driven LED matrices
JP3838063B2 (ja) * 2000-09-29 2006-10-25 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の駆動方法
KR100832613B1 (ko) * 2003-05-07 2008-05-27 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 El 표시 장치
US7215306B2 (en) * 2003-12-22 2007-05-08 Wintek Corporation Driving apparatus for an active matrix organic light emitting display
JP4854182B2 (ja) * 2004-04-16 2012-01-18 三洋電機株式会社 表示装置
JP2005331891A (ja) * 2004-05-21 2005-12-02 Eastman Kodak Co 表示装置
JP4437110B2 (ja) * 2004-11-17 2010-03-24 三星モバイルディスプレイ株式會社 有機発光表示装置,有機発光表示装置の駆動方法及び画素回路の駆動方法
JP5008302B2 (ja) * 2004-12-06 2012-08-22 株式会社半導体エネルギー研究所 表示装置
KR100747261B1 (ko) * 2005-09-05 2007-08-07 엘지전자 주식회사 유기전계발광소자 및 그 표시장치, 그 구동방법
KR101158130B1 (ko) * 2006-03-17 2012-06-19 엘지디스플레이 주식회사 액정표시장치의 구동 회로
JP2007323036A (ja) * 2006-06-05 2007-12-13 Samsung Sdi Co Ltd 有機電界発光表示装置及びその駆動方法
KR101310912B1 (ko) * 2006-06-30 2013-09-25 엘지디스플레이 주식회사 유기발광다이오드 표시소자 및 그의 구동 방법
US20100231617A1 (en) * 2007-11-08 2010-09-16 Yoichi Ueda Data processing device, liquid crystal display devce, television receiver, and data processing method
CN101458914B (zh) * 2009-01-09 2011-11-23 友达光电股份有限公司 面板驱动装置与方法、及液晶显示器
KR101147427B1 (ko) * 2010-03-02 2012-05-22 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그의 구동 방법
KR20130078224A (ko) * 2011-12-30 2013-07-10 주식회사 실리콘웍스 프로그래머블 감마보정회로 및 상기 회로를 포함하는 소스구동 집적회로
KR102018125B1 (ko) * 2012-12-27 2019-09-04 엘지디스플레이 주식회사 감마 전압 발생 장치 및 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065640A (ko) * 2002-01-30 2003-08-09 삼성전자주식회사 유기 전계발광 표시장치 및 그의 구동방법
CN1776793A (zh) * 2004-11-17 2006-05-24 三星Sdi株式会社 有机发光显示器和驱动有机发光显示器和像素电路的方法
CN1811884A (zh) * 2004-12-24 2006-08-02 三星Sdi株式会社 有机发光二极管显示器及其驱动方法
CN101325041A (zh) * 2007-06-12 2008-12-17 三星电子株式会社 驱动装置、安装有其的显示设备、驱动显示设备的方法
KR20090090117A (ko) * 2008-02-20 2009-08-25 삼성모바일디스플레이주식회사 디멀티플렉서 및 이를 이용한 유기전계발광 표시장치

Also Published As

Publication number Publication date
CN103745685A (zh) 2014-04-23
GB2534763B (en) 2020-10-14
GB2582458B (en) 2021-05-12
JP2017504049A (ja) 2017-02-02
GB2582458A (en) 2020-09-23
GB2534763A (en) 2016-08-03
US9472135B2 (en) 2016-10-18
JP6226443B2 (ja) 2017-11-08
US20160005355A1 (en) 2016-01-07
CN103745685B (zh) 2015-11-04
GB202004554D0 (en) 2020-05-13
KR101868715B1 (ko) 2018-07-17
KR20160074592A (ko) 2016-06-28

Similar Documents

Publication Publication Date Title
WO2015078087A1 (zh) 有源矩阵式有机发光二极管面板驱动电路及驱动方法
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
KR100476368B1 (ko) 유기 전계발광 표시패널의 데이터 구동 장치 및 방법
CN103247256B (zh) 像素和使用该像素的有机发光二极管显示器
KR101788432B1 (ko) 픽셀 회로, 유기 전계 발광 표시 패널, 표시 장치 및 그 구동 방법
CN107170408A (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2018032899A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
JP2006048041A (ja) スレッショルド電圧の補償を備えた画素駆動回路
TW201635265A (zh) 像素電路及其驅動方法和主動式矩陣有機發光顯示裝置
TW201335912A (zh) 像素與使用其之有機發光顯示器
CN101536070B (zh) 像素电路及显示装置
CN104167167A (zh) 像素电路及其驱动方法、显示装置
TW201501103A (zh) 有機發光顯示裝置及其驅動方法
CN104809983A (zh) 像素单元驱动电路、驱动方法及像素单元
WO2014172994A1 (zh) 有源矩阵有机发光二极管面板的驱动方法及像素单元
KR102415732B1 (ko) 서브 픽셀 회로, 유기전계발광표시장치 및 이의 구동방법
CN109584804A (zh) 像素电路及其驱动方法、显示装置
TW200532621A (en) Driver apparatus, display device and drive control method
CN105427808A (zh) 一种像素驱动电路及其驱动方法、显示装置
CN205451748U (zh) 像素驱动电路和显示装置
KR100635495B1 (ko) 점등 테스트부를 구비한 평판 표시 장치
CN104485072B (zh) 像素电路及其驱动方法和有源矩阵有机发光显示器
KR102077794B1 (ko) 유기전계발광 표시장치와 그의 에이징 방법
JP5121926B2 (ja) 表示装置、画素回路およびその駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14241068

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201607193

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131231

ENP Entry into the national phase

Ref document number: 20167013143

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016533554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898423

Country of ref document: EP

Kind code of ref document: A1