WO2015065154A1 - 무선통신 시스템에서 신호를 전송하는 방법 및 장치 - Google Patents

무선통신 시스템에서 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2015065154A1
WO2015065154A1 PCT/KR2014/010514 KR2014010514W WO2015065154A1 WO 2015065154 A1 WO2015065154 A1 WO 2015065154A1 KR 2014010514 W KR2014010514 W KR 2014010514W WO 2015065154 A1 WO2015065154 A1 WO 2015065154A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
beamforming
antenna
transmitted
channel
Prior art date
Application number
PCT/KR2014/010514
Other languages
English (en)
French (fr)
Inventor
고현수
정재훈
강지원
변일무
이길봄
Original Assignee
(주)엘지전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지전자 filed Critical (주)엘지전자
Priority to CN201480060402.9A priority Critical patent/CN105684323B/zh
Priority to KR1020167006604A priority patent/KR102290759B1/ko
Priority to US15/029,194 priority patent/US10084521B2/en
Priority to JP2016522771A priority patent/JP6673824B2/ja
Priority to EP14858304.0A priority patent/EP3068060A4/en
Publication of WO2015065154A1 publication Critical patent/WO2015065154A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system. More specifically, the present invention relates to a signal using analog beamforming and digital bumpforming in a wireless access system supporting MU-MIM0 (mult i user-multiple input and multiple output). It is about the transmission method and the device supporting it.
  • MU-MIM0 mult i user-multiple input and multiple output
  • Multi-Input Multi-Out put (MIMO) technology improves the efficiency of data transmission and reception by using multiple transmit antennas and multiple receive antennas, eliminating the use of one transmit antenna and one receive antenna. It is a technique to let. If a single antenna is used, the receiving side receives data through a single antenna path, but if multiple antennas are used, the receiving end receives data through several paths. Therefore, the data transmission speed and the transmission amount can be improved, and the coverage can be increased.
  • a single user-MIMO (SU-MIM0) scheme in which one terminal receives a downlink signal in one cell and two or more terminals perform one
  • the cell may be divided into a multi-user-MIMO (MU-MIM0) scheme for receiving a downlink signal from a cell.
  • SU-MIM0 single user-MIMO
  • MU-MIM0 multi-user-MIMO
  • Channel estimation refers to a process of restoring a received signal by compensating for distortion of a signal generated by fading.
  • fading refers to a phenomenon in which a signal strength fluctuates due to multipath—time delay in a wireless communication system environment.
  • a reference signal known to both the transmitter and the receiver is required.
  • the reference signal may simply be referred to as a pilot (Pi lot) according to a reference signal (RS) or a standard applied.
  • the downlink reference signal is a coherent signal such as a Physical Downlink Shared CHannel (PDSCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid Indicator CHannel (PHICH), and a Physical Downlink Control CHannel (PDCCH). Pilot signal for coherent demodulation.
  • the downlink reference signal is applied to all stages in the cell. There is a common reference signal (CRS) shared by a word and a dedicated reference signal (DRS) for a specific terminal only.
  • LTE-based systems with extended antenna configurations e.g. LTE-supporting 8 transmit antennas
  • conventional communication systems supporting 4 transmit antennas e.g., systems according to the LTE release 8 or 9 standard).
  • DRS-based data demodulation is considered to support efficient reference signal operation and advanced transmission scheme. That is, in order to support data transmission through an extended antenna, DRSs for two or more layers may be defined. Since the DRS is precoded by the same precoder as the data, the receiver does not need to precode the data. Channel information for demodulation can be easily estimated.
  • the system according to the LTE-A standard may define a reference signal, that is, CSI-RS, for acquiring channel state information (CSI) at the receiving side.
  • CSI-RS channel state information
  • the present invention proposes a method and apparatus for transmitting a signal in a wireless communication system.
  • a method for transmitting a signal by a base station in a wireless access system supporting MU-MIMO (mul ti user-mul t iple input and mul t iple output) according to an embodiment of the present invention is analog bump forming. Generating a beam for a subgroup including a plurality of terminals by using; Distinguishing a signal transmitted to each terminal belonging to the subgroup using digital beamforming; And transmitting a signal generated based on the analog beamforming and the digital bumpforming to the terminal, wherein a weight of the analog bumpforming is determined based on channel state information obtained using an uplink reference signal. Can be.
  • a base station transmitting a signal in a wireless access system that supports multi-user input and multiple output (MU-MIMO) includes: a radio frequency (RF) unit; And a processor, wherein the processor is configured to generate a category for a subgroup including a plurality of terminals using analog bump forming, and to output a signal transmitted to each terminal belonging to the sub group using digital bump forming. Discriminate and transmit a signal generated based on the analog bumpforming and the digital beamforming to the terminal, and the weight of the analog beamforming is based on channel state information obtained using an uplink reference signal. Can be determined.
  • RF radio frequency
  • a transmission period of the uplink reference signal may be determined by adding a guard time to a time obtained by dividing a data symbol period.
  • the uplink reference signal may be generated by maintaining a sampling frequency of a data symbol and increasing a subcarrier space.
  • the uplink reference signals continuously transmitted may be partially overlapped with each other on the time axis.
  • the uplink reference signal may be transmitted at the same time as another control signal or data signal.
  • the method may further include transmitting transmission period information of the uplink reference signal to the terminal.
  • the uplink reference signal may be based on a sequence having similar correlation characteristics in frequency and time.
  • 1 illustrates a structure of a downlink radio frame.
  • 2 shows an example of a resource grid for one downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • FIG. 6 is a diagram illustrating a pattern of a conventional CRS and a DRS.
  • FIG. 7 illustrates an example of a DM RS pattern.
  • FIG. 8 is a diagram illustrating examples of a CSI-RS pattern.
  • FIG. 9 is a diagram for describing an example of a method in which a CSI-RS is periodically transmitted.
  • FIG. 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically.
  • FIG. 11 illustrates an example of an RF receiver used in a wireless access system.
  • FIG. 12 illustrates an example of an RF transmitter used in a wireless access system.
  • FIG. 13 shows an example of a duplex texturer.
  • FIG. 14 shows an example of a duplexer in a frequency band.
  • 15 and 16 illustrate examples of a transmitter and a receiver that can perform digital bump forming.
  • 17 and 18 show examples of a transmitter and a receiver that can perform analog bump forming.
  • Figure 19 shows an example of the structure of an individual antenna using one transceiver and one PA.
  • FIG. 20 shows an example of the structure of an individual antenna using one transceiver and a plurality of PS / PAs.
  • FIG. 21 shows an example of a structure of a shared antenna using one transceiver and a plurality of PS / PAs.
  • FIG. 22 shows an example of a structure using an individual antenna using one transceiver and a plurality of PS / PAs.
  • FIG. 23 shows an example of a shared antenna structure using one transceiver and a plurality of PS / PAs. 24 illustrates a first embodiment of distinguishing multiple users in hybrid beamforming according to the present invention.
  • FIG. 25 illustrates a second embodiment of discriminating multiple users in hybrid beamforming according to the present invention.
  • 26 shows an example of an antenna arrangement structure according to the present invention.
  • FIG 27 shows another example of an antenna array structure according to the present invention.
  • 29 illustrates an example in which a plurality of short OFDM symbols are longer than one conventional OFDM symbol period.
  • FIG. 30 shows an example of a method of transmitting the OFDM symbols so that they overlap.
  • Figure 31 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • each component or feature may be considered optional unless stated otherwise.
  • Each component or feature may be implemented in a form not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment, or may be replaced with other configurations or features of another embodiment.
  • Embodiments of the present invention will be described with reference to the relationship between data transmission and reception between a base station and a terminal.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station ion (BS)' may be replaced by terms such as fixed station ion, Node B, eNode B (eNB), and access point (AP).
  • Repeater Relay Node (RN), Relay It may be replaced by a term such as Station (RS).
  • RS Station
  • terminal may be replaced with terms such as UE Jser Equiment (Mob), Moble Station (MS), Moleb Subscriber Station (MSS), and Subscriber Station (SS).
  • the present invention and embodiments may be supported by standard documents disclosed in at least one of IEEE 802 systems, 3GPP systems, 3GPP LTE and LTE-Advanced (LTE-A) systems, and 3GPP2 systems, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all the terms disclosed in this document can be described by the standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • SC single carrier frequency division
  • Multiple Access such as Multiple Access
  • CDMA may be implemented with radio technologies such as UTRA Universal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communication (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX) ⁇ IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of UMTS Jniversal Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX is an IEEE 802.16e specification (WirelessMAN-OFDMA Reference System) and an advanced IEEE 802.16m specification. This can be explained by the WirelessMAN-OFDMA Advanced system. For clarity, the following description focuses on the 3GPP LTE and LTE-A standards, but the technical spirit of the present invention is not limited thereto.
  • a structure of a downlink radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a certain time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to FD! XFrequency Division Duplex (FD! X) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FIG. 1 is a diagram illustrating a structure of a type 1 radio frame.
  • a downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a TTKtransmission interval (TK).
  • TK TTKtransmission interval
  • the length of one subframe may be 1 ms and the length of one slot may be 0.5 ms.
  • One slot includes a plurality of 0FDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • the 0FDM symbol represents one symbol period.
  • the 0FDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of 0FDM symbols included in one slot may vary according to the configuration (conf igurat ion) of Cyclic Pref ix (CP).
  • CPs include extended CPs and normal CPC normal CPs.
  • the number of 0FDM symbols included in one slot may be seven.
  • the 0FDM symbol is configured by the extended CP, since the length of one 0FDM symbol is increased, the number of 0FDM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0FDM symbols included in one slot may be six.
  • an extended CP may be used to further enjoy inter-symbol interference.
  • one slot includes 7 OFDM symbols, so that one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downl ink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downl ink shared channel (PDSCH).
  • PDCCH physical downl ink control channel
  • PDSCH physical downl ink shared channel
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is an exemplary diagram illustrating an example of a resource grid for one downlink slot. This is the case in which an OFDM symbol consists of a normal CP.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks in the frequency domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers as an example, but the present invention is not limited thereto.
  • Each element on the resource grid is called a resource element (RE).
  • the resource element a (k, l) becomes a resource element located in the k th subcarrier and the 1 st OFDM symbol.
  • one resource block includes 12 X 7 resource elements (in the case of an extended CP, it includes 12 X 6 resource elements). Since the interval of each subcarrier is 15 kHz, one resource block includes about 180 kHz in the frequency domain.
  • NDL is the number of resource blocks included in a downlink slot. The value of NDL may be determined according to the downlink transmission bandwidth set by the scheduling of the base station.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three 0FDM symbols in the front of the first slot in one subframe correspond to the control region to which the control channel is allocated.
  • the remaining 0FDM symbols correspond to a data area to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • the basic unit of transmission is one subframe. That is, PDCCH and PDSCH are allocated over two slots.
  • Downlink control channels used in the 3GPP LTE system include, for example, a physical control format indicator channel (PCFICH), a physical downlink ink control channel (PDCCH), physical HARQ indicator channel (Physical Hybrid Automatic Repeat Request Indicator Channel; PHICH).
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink ink control channel
  • HARQ indicator channel Physical Hybrid Automatic Repeat Request Indicator Channel
  • the PCFICH is transmitted in the first 0FDM symbol of a subframe and includes information on the number of 0FDM symbols used for control channel transmission in the subframe.
  • PHICH is a response to uplink transmission.
  • HARQ ACK / NACK signal as a.
  • Control information transmitted through the PDCCH is referred to as Downlink Control Information (DCI).
  • the DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • PDCCH is a resource allocation and transmission format of the DL-SCH, resource allocation information of the UL-SCH, paging information of the paging channel (PCH), system information on the DL-SCH, and PDSCH Resource allocation of upper layer control messages, such as random access responses, sent to the user, a set of transmit power control commands for individual terminals in a given terminal group, transmit power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in a combination of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE processes multiple resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a Cyclic Redundancy Check (CRC) to the control information.
  • CRC is masked with an identifier called Radio Network Temporary Ident if ier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Ident if ier
  • the cel l-RNTI (C-RNTI) identifier of the UE may be masked on the CRC.
  • C-RNTI cel l-RNTI
  • a paging indicator identifier P-RNTI
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SIB system information block
  • RNTKSI-RNTI random access -RNTKRA-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a Physical Uplink Control Channel (PUCCH) including uplink control information.
  • a physical uplink ink shared channel (PUSCH) including user data is allocated to the data area.
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink ink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This resource block pair allocated to the PUCCH is said to be frequency-hopped at the slot boundary.
  • the MULT (Mul t iple Input Mult iple Output) system is a system that improves the transmission / reception efficiency of data by using multiple transmit antennas and multiple receive antennas. independence, a plurality of data pieces received through a plurality of antennas may be combined to receive the entire data.
  • the MIM0 technique includes a spatial diversity scheme and a spatial mult iplexing technique.
  • Spatial diversity scheme can increase the transmission reliability (rel iabi l i ty) or widen the cell radius through diversity gain, which is suitable for data transmission for a mobile terminal moving at high speed.
  • Spatial multiplexing can increase the data rate without increasing the bandwidth of the system by simultaneously transmitting different data.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • the theoretical channel is proportional to the number of antennas, unlike when only a plurality of antennas are used in a transmitter or a receiver.
  • the transmission capacity is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
  • the transmission information may be expressed as follows.
  • Each transmission information>, ' ", 3 ⁇ 4 may have different transmission powers. If each transmission power is ' , ⁇ ,', transmission information with adjusted transmission power may be expressed as follows. .
  • S may be expressed as follows using the diagonal matrix P of the transmission power.
  • W is also called 31 recording matrix.
  • the transmission signal X may be considered in different ways depending on two cases (for example, spatial diversity and spatial multiplexing).
  • spatial multiplexing different signals are multiplexed and the multiplexed signal is transmitted to the receiver, so that the elements of the information vector (s) have different values.
  • spatial diversity the same signal is repeatedly transmitted through a plurality of channel paths so that the elements of the information vector (s) have the same value.
  • a combination of spatial multiplexing and spatial diversity techniques can also be considered. That is, the same signal may be transmitted according to a spatial diversity scheme through three transmission antennas, for example, and the remaining signals may be spatially multiplexed and transmitted to a receiver.
  • the received signals, 3 ⁇ 4, ' ", and 1 ⁇ 4 « of each antenna may be expressed as vectors as follows.
  • channels may be classified according to transmit / receive antenna indexes.
  • the channel from the transmitting antenna j to the receiving antenna i will be denoted by. Note that at 3 ⁇ 4, the order of the index is the receive antenna index first, followed by the index of the transmit antenna.
  • FIG. 5 (b) shows a channel from NT transmit antennas to receive antenna i.
  • the channels may be bundled and displayed in the form of a vector and a matrix.
  • a channel arriving from a total of NT transmit antennas to a receive antenna i may be represented as follows.
  • all channels arriving from the NT transmit antennas to the NR receive antennas may be expressed as follows.
  • the real channel is added with white noise (AWGN) after passing through the channel matrix H.
  • AWGN white noise
  • the white noise, 2, ' '' ,% 3 ⁇ 4 added to each of the NR receive antennas can be expressed as
  • the received signal may be expressed as follows.
  • the number of rows and columns of the channel matrix H indicating the channel state is determined by the number of transmit / receive antennas.
  • the number of rows is equal to the number of receiving antennas NR
  • the number of columns is equal to the number of transmitting antennas NT. That is, the channel matrix H is NRXNT matrix.
  • the rank of a matrix is defined as the minimum number of rows or columns independent of each other. Thus, the tank of the matrix cannot be larger than the number of rows or columns.
  • the tank (ra «(H)) of the channel matrix H is limited as follows.
  • 'rank' indicates the number of paths that can independently transmit a signal
  • 'number of layers' indicates the number of signal streams transmitted through each path.
  • the transmitting end transmits a number of layers corresponding to the number of tanks used for signal transmission, unless otherwise specified, a tank has the same meaning as the number of layers.
  • a signal When a packet is transmitted in a wireless communication system, a signal may be distorted in the transmission process because the transmitted packet is transmitted through a wireless channel. In order to properly receive the distorted signal at the receiver, the distortion must be corrected in the received signal using the channel information. In order to find out the channel information, a signal known to both the transmitting side and the receiving side is transmitted, and a method of finding the channel information with the degree of distortion when the signal is received through the channel is mainly used. The signal is referred to as a pilot signal or a reference signal.
  • RSs can be classified into two types according to their purpose.
  • One is RS used for channel information acquisition, and the other is RS used for data demodulation. Since the former is an RS for allowing the terminal to acquire downlink channel information, the former should be transmitted over a wide band, and a terminal that does not receive downlink data in a specific subframe should be able to receive and measure the corresponding RS.
  • Such RS is also used for measurement such as handover.
  • the latter is an RS that is transmitted together with the corresponding resource when the base station transmits a downlink, and the terminal can estimate the channel by receiving the corresponding RS, thus demodulating the data. This RS should be transmitted in the area where data is transmitted.
  • 3GPP LTE Long Term Evolution
  • DRS dedicated RS
  • the CRS is used for obtaining information about channel state, measuring for handover, and the like, and may be referred to as cell-specific RS.
  • DRS is used for data demodulation and may be called UE-specific RS.
  • DRS is used only for data demodulation, and CRS can be used for both purposes of channel information acquisition and data demodulation.
  • the CRS is a cell-specific RS and is transmitted every subframe for a wideband.
  • the CRS may be transmitted for up to four antenna ports according to the number of transmit antennas of the base station. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and for four, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 6 shows a pattern of CRS and DRS on one resource block (12 subcarriers on 14 OFDM symbols X frequencies in time in case of a normal CP) in a system in which a base station supports four transmit antennas. It is a figure which shows.
  • resource elements RE denoted by 'R0', 'R1', 'R2' and * R3 ' indicate positions of CRSs with respect to antenna port indexes 0, 1, 2, and 3, respectively.
  • the resource element denoted as 'D' in FIG. 6 indicates the location of the DRS defined in the LTE system.
  • RS for up to eight transmit antennas should also be supported. Since the downlink RS in the LTE system is defined only for up to four antenna ports, the RS for these antenna ports is additionally defined when the base station has four or more up to eight downlink transmit antennas in the LTE-A system. Should be. As RS for up to eight transmit antenna ports, both RS for channel measurement and RS for data demodulation should be considered.
  • Backward compatibility means that the existing LTE terminal supports to operate correctly even in LTE-A system. From the point of view of RS transmission, the time when CRS defined in LTE standard is transmitted in every subframe in full band. When adding RSs for up to eight transmit antenna ports in the frequency domain, the RS overhead becomes too large. Therefore, in designing RS for up to 8 antenna ports, consideration should be given to reducing RS overhead.
  • RS newly introduced in LTE-A system can be classified into two types. One of them is RS, channel state information-reference signal for channel measurement for selection of transmission tank, modulation ion and coding scheme (MCS), precoding matrix index (PMI), etc.
  • MCS modulation ion and coding scheme
  • PMI precoding matrix index
  • CSI-RS Channel State Informat ion RS
  • DM RS demodulation-reference signal
  • CSI-RS for channel measurement purposes is for the purpose of channel measurement, unlike CRS in the existing LTE system used for data demodulation at the same time as channel measurement, handover measurement, etc. There is a feature to be designed.
  • the CSI-RS may also be used for the purpose of measuring handover. Since the CSI-RS is transmitted only for obtaining channel state information, unlike the CRS in the existing LTE system, the CSI-RS does not need to be transmitted every subframe. Thus, to reduce the overhead of the CSI-RS, the CSI-RS may be designed to be transmitted intermittently (eg, periodically) on the time axis.
  • a dedicated DM RS is transmitted to a terminal scheduled for data transmission.
  • the DM RS dedicated to a specific terminal may be designed to be transmitted only in a resource region in which the terminal is scheduled, that is, in a time-frequency region in which data for the terminal is transmitted.
  • FIG. 7 is a diagram illustrating an example of a DM RS pattern defined in an LTE-A system.
  • a position of a resource element in which a DM RS is transmitted on one resource block (12 subcarriers on 14 0FDM symbol X frequencies in time in case of a normal CP) in which downlink data is transmitted is shown.
  • the DM RS may be transmitted for four antenna ports (antenna port indexes 7, 8, 9, and 10) which are additionally defined in the LTE-A system.
  • DM RSs for different antenna ports can be distinguished by being located in different frequency resources (subcarriers) and / or different time resources (0 FDM symbols) (ie, can be multiplexed in FDM and / or TDM schemes). .
  • DM RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, may be multiplexed by CDM).
  • CDM multiplexed by CDM
  • DM RS CDM group 1 in the example of FIG.
  • DM RSs for antenna ports 7 and 8 may be located and they may be multiplexed by orthogonal codes.
  • DM RSs for antenna ports 9 and 10 may be located in resource elements indicated as DM RS group 2 in the example of FIG. 7, which may be multiplexed by an orthogonal code.
  • FIG. 8 is a diagram illustrating examples of a CSI-RS pattern defined in an LTE-A system.
  • FIG. 8 shows the location of a resource element on which a CSI-RS is transmitted on one resource block in which downlink data is transmitted (12 subcarriers on 14 OFDM symbols X frequencies in time in the case of a general CP).
  • one of the CSI-RS patterns of FIGS. 8 (a) to 8 (e) may be used.
  • the CSI-RS may be transmitted for eight antenna ports (antenna port indexes 15, 16, 17, 18, 19, 20, 21, and 22) that are additionally defined in the LTE-A system.
  • CSI-RSs for different antenna ports can be distinguished by being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols) (i.e., can be multiplexed in FDM and / or TDM schemes). .
  • CSI-RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, may be multiplexed by the CDM scheme).
  • CSI-RSs for antenna ports 15 and 16 may be located in resource elements (REs) indicated as CSI-RS CDM group 1, which may be multiplexed by an orthogonal code.
  • REs resource elements
  • CSI-RSs for antenna ports 17 and 18 may be located in resource elements indicated as CSI-RS CDM group 2, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 19 and 20 may be located in resource elements indicated as CSI-RS CDM group 3, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 21 and 22 may be located, and they may be multiplexed by an orthogonal code.
  • the RS patterns of FIGS. 6 to 8 are merely exemplary and are not limited to a specific RS pattern in applying various embodiments of the present invention. That is, even when RS patterns different from those of FIGS. 6 to 8 are defined and used, various embodiments of the present invention may be equally applied.
  • CSI-RS configuration (conf igurat ion)
  • one CSI-RS resource for signal measurement and one interference measurement resource (IMR) for interference measurement are associated with one (associat ion) CSI processes can be defined.
  • CSI information derived from different CSI processes is fed back to a network (eg, a base station) with independent periods and subframe offsets (subframe of fset).
  • each CSI process has an independent CSI feedback setting.
  • the CSI-RS resource, IMR resource associ at ion information, and CSI feedback configuration may be informed by the base station to the UE through higher layer signaling such as RRC for each CSI process. For example, it is assumed that the UE receives (sets) three CSI processes as shown in Table 1 below.
  • CSI-RS 0 and CSI-RS 1 indicate CSI-RSs received from cell 2, which is a neighboring cell participating in coordination with CSI-RSs, which are each received from cell 1, which is a serving cell of a terminal. If it is assumed that the IMR set for each CSI process of Table 1 is set as shown in Table 2,
  • IMR 0 cell 1 performs mut ing and cell 2 performs data transmission, and the terminal is configured to measure interference from other cells except cell 1 from IMR 0.
  • cell 2 performs muting and cell 1 performs data transmission, and the UE is configured to measure interference from cells other than cell 2 from IMR 1.
  • both the cell 1 and the cell 2 perform muting in IMR 2
  • the terminal is configured to measure interference from cells other than cell 1 and cell 2 from IMR 2.
  • Table 1 and Table 2 CSI information of CSI process 0 represents optimal RI, PMI, and CQI information when data is received from cell 1.
  • CSI information of CSI process 1 represents optimal RI, PMI, and CQI information when data is received from cell 2.
  • CSI information of CSI process 2 represents optimal RI, PMI, and CQI information when data is received from cell 1 and no interference is received from cell 2.
  • a plurality of CSI processes configured (configured) for one UE share a mutually dependent value. For example, in the case of joint transit (JT) in cell 1 and cell 2, the channel in CSI process 1 and cell 2 that treats cell 1 as the signal part is considered as the signal part. If the considered CSI process 2 is configured (set) for one UE, the tanks of the CSI process 1 and the CSI process 2 and the selected subband index should be the same to facilitate JT scheduling.
  • JT joint transit
  • the period or pattern in which the CSI-RS is transmitted may be configured by the base station (conf igurat ion).
  • the UE In order to measure CSI-RS, the UE must know the CSI—RS configuration (conf igurat ion) for each CSI-RS antenna port of the cell to which the UE belongs.
  • the CSI-RS configuration includes a downlink subframe index in which the CSI-RS is transmitted and a time-frequency position of the CSI-RS resource element (RE) in the transmission subframe (for example, FIGS.
  • CSI-RS sequence (a sequence used for CSI-RS purposes, and pseudo-random according to a predetermined rule based on slot number, cell ID, CP length, etc.). May be generated). That is, a plurality of CSI-RS configuration (conf igurat ion) can be used in any (given) base station, the base station can inform the CSI-RS configuration to be used for the terminal (s) in the sal among the plurality of CSI-RS configuration have.
  • the CSI-RSs for each antenna port may be multiplexed in FDM, TDM and / or CDM scheme using orthogonal frequency resources, orthogonal time resources, and / or orthogonal code resources. Can be.
  • the base station informs UEs in a cell of information about CSI-RS (CSI-RS configuration)
  • information about a time-frequency to which CSI-RS is mapped to each antenna port is mapped.
  • the time information includes subframe numbers in which the CSI-RS is transmitted, period in which the CSI-RS is transmitted, subframe offset in which the CSI-RS is transmitted, OFDM symbol number through which the CSI-RS resource element (RE) of a specific antenna is transmitted.
  • the information on the frequency may include a frequency spacing through which the CSI-RS resource element (RE) of a specific antenna is transmitted, an offset or shift value of the RE on the frequency axis, and the like.
  • the CSI-RS may be periodically transmitted with an integer multiple of one subframe (for example, 5 subframe periods, 10 subframe periods, 20 subframe periods, 40 subframe periods, or 80 subframe periods). have.
  • FIG. 9 illustrates that one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • subframe numbers 0 to 9 for example, before the CSI-RS of the base station
  • the offset value may have a different value for each base station so that CSI-RS of several cells may be evenly distributed in time.
  • the offset value may have one of 0 to 9.
  • the offset value may have one of 0 to 4,
  • the offset value When the CSI-RS is transmitted in a period of 15 ms, the offset value may have one of 0 to 19. When the CSI-RS is transmitted in a period of 40 ms, the offset value may have one of 0 to 39. For example, when the CSI-RS is transmitted in a period of 80 ms, the offset value may have one of 0 to 79. This offset value indicates the value of the subframe where the base station transmitting the CSI-RS in a predetermined period starts the CSI-RS transmission. When the base station informs the transmission period 0 and the offset value of the CSI-RS, the terminal may receive the CSI-RS of the base station at the corresponding subframe location using the value.
  • the terminal may measure the channel through the received CSI-RS, and as a result, may report information such as CQI, PMI, and / or RI (Rank Indicator) to the base station. Except where CQI, PMI, and RI are distinguished from each other in this document, these may be collectively called CQI (or CSI).
  • CQI or CSI
  • the CSI-RS transmission period and offset may be separately specified for every 5 CSI-RS configuration (conf igurat ion).
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the subframe in which the CSI-RS is transmitted may appear in a specific pattern.
  • the CSI-RS transmission pattern may be configured in units of 10 subframes 0, and 1 bit indicating whether to transmit the CSI-RS in each subframe. Can be specified as a ruler.
  • 10 illustrates a CSI-RS pattern transmitted at subframe indexes 3 and 4 within 10 subframes (subframe indexes 0 to 9). Such an indicator may be provided to the terminal through higher layer signaling.
  • the configuration for CSI-RS transmission may be configured in various ways as described above.
  • the base station may perform CSI-RS. It is necessary to inform the terminal of the setting. Embodiments of the present invention for informing the UE of the CSI-RS configuration will be described below.
  • FIG. 11 shows an example of an RF receiver used in a wireless access system.
  • an antenna 1101 receives an electromagnetic wave signal in the air and transmits it as an electrical change on a wire.
  • the band select filter (Band select f lter, 1102) performs band pass filtering to amplify only a desired frequency band. If multiple channels are used, the band select filter must pass all channels (in-band). If the same antenna is used, the duplexer can serve as a band select f i ter.
  • the LNA Low Noise Ampl i ier 1103 allows the signal to be amplified while suppressing the amplification to the noise when amplifying a reception signal that is buried in the air.
  • the IRF lmage reject filter (1104) performs bandpass filtering once again to prevent the fatal image frequency from being amplified in the LNA. In addition, it improves the stability of receiver by removing spurious frequencies and separating RF stage and IF stage.
  • the RF down mixer 1105 down-converts the frequency of the low noise amplified RF signal to the IF band.
  • the RF Local Oscillator (RF L0, 1106) supplies the L0 frequency for frequency synthesis to the RF down mixer.
  • channel selection can be made by changing the L0 frequency.
  • phase locked loop (PLL) 1107 holds the output frequency of the RF L0 so that it can be fixed at a constant frequency without being shaken. That is, RF L0 through Control input It precisely adjusts the voltage of VC0, which is used for frequency tuning, to move and fix the RF L0 output frequency to the desired frequency.
  • the signals converted to the IF frequency include several channels, and the channel select filter (Channel select f i ter, 1108) selects only the desired channels by bandpass filtering. Since the spacing between the channels is mostly narrow, a filter having good skirt characteristics is required.
  • the IF amplifier (ampl i ier) 1109 arbitrarily adjusts the gain of the IF AMP, such as VGA or AGC.
  • the IF Down mixer finishes channel selection and amplification at the IF stage and removes the carrier frequency to change to a baseband, which is a frequency band containing the original signal. In other words, downconversion mixing is performed.
  • the IF Local Oscillator (IF L0) supplies the L0 frequency to the IF Mixer for converting IF to baseband.
  • An additional IF PLL can be used to lock the L0 frequency.
  • FIG. 12 illustrates an example of an RF transmitter used in a wireless access system.
  • the driving amplifier (Drive Ampl i ier, DA, 1201) will be described.
  • the Tx stage has a constant input signal unlike the Rx stage.
  • PA Power Amp
  • PA Power Amp
  • the input signal must also have some level of power.
  • Drive AMP solves the lack of gain of power amp and at the same time plays a role to make enough input power to PA.
  • BSF Bit Select Filter
  • the power amplifier (Power Ampl if ier, PA, 1203) is the most important configuration in the RF, Tx section.
  • the PA performs power amplification so that a signal with sufficient power can be sent out at the final stage.
  • the isolator will be described.
  • the transmitting end is not the receiving end, since there is a possibility of the signal flowing back through the antenna, it is necessary to fix the echo of the signal so that the signal can be transmitted only in a specific direction. Signal flows in the output direction, and the signal coming in the reverse direction is terminated so that the signal is not transmitted in reverse. In other words, it is possible to prevent the PA from being damaged by preventing the signal from flowing back and disturbing the impedance of the PA output terminal.
  • BSF Bit Select Filter, 1205
  • nonlinear spurious frequency components may appear at the rear of the nonlinear amplifier.
  • bandpass filtering is performed to cut them out and release only the desired frequency band to the outside.
  • Duplexer can play this role if the system shares antenna with receiver.
  • the antenna 1206 serves to radiate the change of the electrical signal on the lead to electromagnetic waves in the air.
  • Multiplex refers to a configuration in which multiple signals are shared and distributed, and a multiplexer sends multiple signals through a single line and collects or distributes them again. .
  • Duplex is to share two signals in one path.
  • two signals usually refer to two types of transmission signals and received signals.
  • TDD and FDD may be mentioned in a manner in which transmission and reception signals are shared together using one transmission line or an antenna.
  • a duplexer is needed to arrange the transmission, reception, and three stages of the antenna to flow only as desired without mixing with each other. That is, the duplexer branches the transmitter and the receiver while using the same antenna. By using a duplexer, it is possible to share the antenna efficiently by extinguishing the transmitting and receiving end with one antenna.
  • the duplexer may be configured by attaching a BPF (Bandpass Filter) which passes only a transmitting end frequency and a BPF which passes only a receiving end frequency, and then properly matches the middle with an antenna.
  • BPF Bandpass Filter
  • S21 and S13 represent power transfer from antenna port 1 to port 2 and port 3. Each by filter characteristics It can have a high pass at the BPF pass frequency of.
  • S23 means power transfer between the transmitting end and the receiving end. It is suppressed to the lowest in both the transmit and receive frequency bands.
  • a Diplexer refers to branching between a transmitting end and a receiving end using the same antenna.
  • the diplexer can be configured using LPF and HPF. For example, when a signal is transmitted and received using a wired path, it may be used when only two transmission signals and a reception signal exist in the shielded line without other frequencies. In addition, it can be used to simultaneously digest Celular CDMA of 800MHz and PCS CDMA of 8GHz in Mul t-band terminal.
  • a phase shifter is a change in phase of a signal in an electrical or mechanical manner. It can be used in RF analog signal processing stages such as pan control and phase modulation of a phased array antenna.
  • the first method of changing the phase is to mechanically change the length of the track. For example, in a structure where two metal coaxial lines overlap, one can coaxially insert and remove one coaxial pipe. This method can be phase shifted continuously and has the advantage of low loss. On the other hand, mechanically, it takes a long time to change phase and has a large size.
  • the second method of changing the phase is a line conversion method.
  • This is one of the phase shifting methods of electrically changing the length.
  • a plurality of transmission lines having different lengths can be arranged, and the path can be changed by a switch.
  • This method can be miniaturized and has a very short phase shift time.
  • the 4-bit phase shifter of the line conversion method can change the phase shift in units of 22.5 from 0 to 337.5.
  • the third method of changing the phase is reflection. Reflective use is likewise one of the phase shifting methods of electrically changing length. Similar to the principle that when light strikes somewhere, it is reflected and the phase shifts, and the electrical signal changes phase by reflecting at the point where impedance changes. Specifically, the insertion phase can be adjusted according to the value of the device connected in the middle of the transmission line. This method has the disadvantage that the insertion loss is deteriorated and the impedance characteristic is also deteriorated.
  • the fourth method of changing the phase is a Loaded Line Type or a Hybrid Coupled Type. These are also one of the phase shifting methods of electrically changing the length. It is often used as a digital stomach acid transition.
  • Loaded Line Type is used for phase shifter with 45 ⁇ or less phase shift.
  • Hybrid Coupled Type is used for phase shifter with 45 or more s phase shift.
  • the phase can be varied using the reactance change when the PIN diode is turned on / of f.
  • the fifth method of changing the phase is the vector modulator phase shifter, which adjusts orthogonal magnitudes of two orthogonal components according to a desired phase so that the synthesizer meets them to obtain a signal having the required phase. to be.
  • 15 and 16 illustrate examples of a transmitter and a receiver that can perform digital bump forming.
  • the digital beamforming technique applies a signal processing technique at the baseband stage to change the phase and size for beamforming for each antenna port.
  • Such a digital beamforming technique has an advantage of enabling independent panforming and sophisticated beamforming for each frequency band. Therefore, the digital bumpforming technique requires an independent baseband signal processing block for each antenna port.
  • 17 and 18 show examples of a transmitter and a receiver that can perform analog bump forming.
  • the analog beamforming technique is characterized by forming a band by changing a phase and a magnitude value of each antenna element of a signal transmitted from a baseband in an RF stage. Because the shaping is done at the RF stage, the baseband hardware complexity is reduced by using a relatively small number of baseband signal processing blocks. On the other hand, the analog bumpforming technique has variable beamforming on the time axis and the same panforming on the entire frequency band has low beamforming freedom and low accuracy.
  • Massive MIM0 based wireless communication has advantages such as improved signal quality performance, energy efficiency, and multi-user interference by applying multiple antennas. As the number of antennas increases, many advantages can be obtained. On the other hand, as the number of antennas increases, the number of baseband signal processing blocks also increases, which increases signal processing and hardware complexity.
  • a hybrid beamforming method that combines a digital bumping method and an analog beamforming method has been proposed to reduce the hardware complexity and maintain the gain of the Massive MIM0.
  • the digital panforming method has a high magnetic induction capable of different panforming for each frequency band.
  • the analog bump forming method that forms the same band in the frequency band used is combined with the digital bump forming method, the degree of freedom for beamforming is lowered than when only the digital bump forming method is used. This lowers the degree of freedom of multi-user transmission and at the same time results in lower multi-user gains that can be obtained through Massive MIM0.
  • a first embodiment of the present invention relates to a hybrid bump forming method for multi-user transmission.
  • Hybrid beamforming is characterized in that simultaneously performing analog beamforming and digital beamforming.
  • it is important to maintain the beam's resolved ion and the freedom of massive multi-user transmission.
  • a hybrid bump forming method for satisfying two requirements is described.
  • Analog beamforming uses RF with phase shi fter.
  • Analog beamforming concentrates energy in a specific direction by overlapping beams radiated by a plurality of antenna elements to make a sharp beam (donut shape or pencil shape).
  • the pan shaping direction can be adjusted by changing the value of the phase shi ft.
  • Analog beamforming applies a phase change to one analog signal to transmit or receive through multiple antennas.
  • Analog bumpforming allows for variable phase changes over time.
  • N independent phase shi fters are used for analog bump forming, N independent beams that can be spatially distinguished can be formed at the same time.
  • N beams formed independently can be assigned to one user to form N paths, and N users can also be assigned to N multi-users for multi-user transmission.
  • N independent basebands are required to transmit N different data through N beams.
  • a broad beam emitted by a plurality of passive antennas is superimposed by digital processing to concentrate energy in a specific direction so as to be a sharp beam.
  • Sharp beams generated by beamforming are generated in the azimuth range in which the broad beam formed by the passive antenna is transmitted.
  • Digital beamforming in a MIMO system using a passive antenna combines beams formed by the passive antenna using digital domain processing to give direction. This directivity can be performed independently by narrowband.
  • digital beamforming adjusts coefficients in the digital domain, it is possible to form a beam having good resolut ion.
  • J-MIM0 transmission using a passive antenna generates a plurality of sharp beams by superimposing Digital Processing on broad beams formed by a plurality of passive antennas. Thereafter, when transmitting to specific users, simultaneous transmission is performed by selectively using orthogonal beams as much as possible in order to reduce indirect among users.
  • the beam of the analog domain is not spatially distinguished when multi-user is transmitted, but spatially is distinguished using the beam generated by the digital beamformer.
  • the degree of freedom for beamforming weight calculation in hybr id beamforming has the analog domain as well as the digital domain.
  • RF with variable phase shifter and power amplifier is introduced into the antenna element.
  • Hybrid beamforming that can simultaneously perform digital beamforming and analog beamforming can be implemented.
  • the existing techniques related to hybrid beamforming focus mainly on determining the optimal weight of hybrid beamforming from a single user perspective.
  • methods for calculating the optimal weight by considering the weight of the digit domain and the analog domain are proposed. These studies focus on calculating the optimal weight from a single user's perspective.
  • the mult iple beam generation in the analog domain is used for the purpose of collecting energy of multipath transmission, the optimal beamforming weight is calculated.
  • FIG. 19 shows an example of the structure of an individual antenna using one transceiver and one PA.
  • K N
  • N TRX tolerance iver
  • Each TRX is mapped with one antenna element, and each TRX has one PA.
  • Ful l digital beamforming may be performed using N antenna elements.
  • FIG. 20 illustrates an example of a structure of an individual antenna using one transceiver and a plurality of PS / PAs.
  • FIG. 20 shows an example of a structure of a shared antenna using one transceiver and a plurality of PS / PAs.
  • K > N antenna elements and N TRXs are used, and antennas are shared between TRXs.
  • Each TRX is mapped with M antenna elements, and each TRX has M PS / PAs.
  • Analog beamforming is performed using M antenna elements and digital beamforming is performed using N TRXs.
  • a plurality of analog beamforming may be performed through one antenna.
  • FIG. 22 illustrates an example of a structure using one transceiver and a plurality of PS / PAs and using an individual antenna.
  • K > N antenna elements, N TRXs, and independent antennas for each TRX are used.
  • Each TRX is mapped with M antenna elements, and each TRX has M PS / PAs.
  • the transmitter has a Mul t iple PS / PA while the receiver has a single RF receiver.
  • Analog beamforming is performed using M antenna elements in the TX stage, and digital beamforming is performed using N TRXs.
  • In the RX stage fixed beamforming is performed, and digital beamforming is performed using N TRXs.
  • FIG. 23 shows an example of a shared antenna structure using one transceiver and a plurality of PS / PAs.
  • K (> N) antenna elements and N TRXs are used to share antennas between TRXs.
  • Each TRX is mapped with M antenna elements, and each TRX has M PS / PAs.
  • the transmitter has a Mul t iple PS / PA, while the receiver has a single RF receiver.
  • Analog beamforming is performed using ⁇ antenna elements at the Tx end, and digital beamforming is performed using N TRXs.
  • a plurality of analog beamforming may be performed through one antenna.
  • fixed beamforming is performed, and digital beamforming is performed using N TRXs.
  • Embodiment 1-1 according to the present invention relates to a method for distinguishing multiple users using hybrid bump forming.
  • FIG. 24 illustrates a first embodiment for distinguishing multiple users in hybrid bump forming according to the present invention.
  • antenna elements are bundled to form a subgroup.
  • antenna elements may be configured as subgroups in the same manner as in FIGS. 20 and 22.
  • analog beamforming is performed for each subgroup.
  • “Analog Beams, which are formed in subgroups, are wide, wide, and wide.”
  • a beam is formed in various directions in order to be able to distinguish several spaces.
  • the signal processor of the digital domain allows multiple beams created by subgroups to be synthesized. Weights for synthesizing multiple beams can be generated by using the independent spatial channel characteristics of each user in the space of the analog beam. This can be used to distinguish multiple users.
  • four independent radio channels may be formed.
  • Four radio channels are mapped to four antenna ports.
  • Multiple stream transmission is performed using a transmission precoder supporting four antenna ports. .
  • 25 illustrates a second embodiment of distinguishing multiple users in hybrid bump forming according to the present invention.
  • signals generated from a plurality of Phase Shifter (PS) I Power Amp (PA) are synthesized and transmitted through one antenna element.
  • Analog beamforming is performed for each PS / PA, and beams are formed in various directions to distinguish the space. That is, when multiple PS / PAs are used, beams can be formed in various directions at the same time.
  • a plurality of PS / PAs may be configured in each antenna subgroup.
  • a plurality of beams may be formed for each antenna subgroup.
  • the signal processor of the digital domain can generate a signal for each PS / PA so that waveforms generated from the DAC can be transmitted as different analog signals (independent signals).
  • Precoding of the digital beamformer plays a role of synthesizing the analog beams generated from the antenna subgroup and the plurality of PS / PAs.
  • Embodiments 1-2 of the present invention relate to an analog bump forming method for hybrid bump forming effectively in multi-user transmission.
  • 20 and 22 have a degree of freedom of beam generation in each subgroup so that beams of different directions are simultaneously transmitted in each subgroup.
  • 21 and 23 may have a degree of freedom of beam generation in each PS / PA so that beams of different directions may be simultaneously transmitted in each PS / PA.
  • the structure of FIG. 25 allows beam generation in each subgroup and each PS / PA so that beams of different directions can be simultaneously transmitted in each subgroup and each PS / PA.
  • Analog beams are characterized by concentrating energy in a specific direction to improve the state of the channel. In other words, the channel condition is good and bad in areas where energy is concentrated and areas that are not.
  • SDMA and TDMA can be applied to transmit signals to users in the area covered by the transmission point using the beamforming technique.
  • Embodiments 1-3 illustrate an analog beamforming method for effective hybr id beamforming in multi-user transmission.
  • a plurality of beams are formed at the same time. If the beams that concentrate energy in different directions are transmitted at the same time, different beams can be used to transmit signals with less interference to users in different regions. But many If many beams are used in different directions at the same time in a subgroup, the narrower the distance between beams, the more likely the interference between beams will occur. In this case, it is effective to reduce the interference by taking a method of avoiding the interference between beams, because beams having a long distance between beams are selected and transmitted rather than transmitting different beams for each subgroup.
  • At least two subgroups generate beams in the same direction as a first method for selectively transmitting beams having a long distance between beams while subgroups simultaneously transmit beams.
  • Each PS / PA in a subgroup forms an independent beam.
  • signals of subgroups forming beams in the same direction are distinguished from multiple users by using digital beamforming.
  • the spread of good and bad channel conditions in the area covered by the transmission point is greater than that of using an omni antenna.
  • the beam can be transmitted independently for each subgroup, and the direction of the beam transmitted by each subgroup can be set differently according to time.
  • you change the direction of the beam every hour the measurement and reporting becomes complicated.
  • the transmission beam direction may be changed based on a subframe (base unit of time in scheduling).
  • a time unit for performing the same measurement can be specified in order to reflect the channel state change according to the change in the transmission beam direction.
  • a subframe set that performs the same measurement can be defined using a bit map, and can be indicated by a higher layer signal.
  • subgroups that generate beams in the same direction can maintain a combination of subgroups that perform the same beamforming even when the beam changes over time.
  • Embodiments 1-3 of the present invention relate to a digital bump forming method for effectively performing hybrid bump forming in multi-user transmission.
  • the characteristics of the antenna port are described first in terms of transmission and channel measurement.
  • the channel of the antenna port (for example, A antenna port 5 in LTE, AP 7-14, etc.) used for signal transmission is changed according to the transmission precoding weight applied to the frequency and time.
  • the antenna port (eg AP 15-22 defined in LTE) used for measurement has only time-varying channel characteristics by Doppler.
  • the hybrid BF may be considered as a MIM0 transmission method (Digital BF) having a plurality of antenna ports generated by analog beamforming.
  • the difference from the antenna port of the existing MIM0 system is that the channel state can be changed by analog beamforming.
  • the channel may be changed by the number of antenna subgroups, a method of configuring a subgroup, a beamforming method applied to the subgroup, or the like.
  • the shape and value of a precoding weight applied to digital beamforming in hybrid beamforming are first used for analog beamforming. It depends on the number of transmission beams generated and the precoding weight applied. For example, if the number of transmission beams is four, a transmission precoder having four antenna ports is used. In this case, the transmission precoding weight is selected in consideration of the transmission precoding weight used for analog beamforming. If the precoding weight of analog beamforming is maintained and changed for a certain time, the precodng weight of digital beamforming should be changed at least when the precoding of analog beamforming is changed.
  • digital beamforming may serve to compensate for the phase difference between the N channels generated by the A-Beam.
  • Digital beamforming may also be performed in narrowband units.
  • a transmission precoder is configured to transmit M independent signals.
  • Embodiment 1-4 relates to a scheduling method for supporting multi-user transmission in hybrid beamforming.
  • a set of target users is generated according to the analog beamforming weight.
  • users are distinguished by digital beamforming using a short term. Users who use analog beams directed in a similar direction are classified into beams made by synthesizing multiple analog beams through digital processing.
  • a second embodiment according to the present invention relates to a method of applying antenna subgrouting for efficient hybrid beamforming.
  • a training sequence for analog beamforming is transmitted.
  • the RF stage applies phase and magnitude values for each antenna element, and a training sequence for selecting an appropriate phase / size value is left.
  • analog beamforming is performed for each antenna subgroup.
  • analog beamforming may be performed in units of subgroups.
  • analog beamforming may be performed independently for each subgroup. For example, when one antenna subgroup includes four antenna elements, beamforming may be performed by applying independent phase and magnitude values to the four antenna elements. There is a degree of freedom for beamforming in different directions for each of the 16 subgroups.
  • the antenna subgroup is a set of antenna elements.
  • the antenna subgroup may be a basic unit for performing analog beamforming by performing a bundle of antenna elements (AEs).
  • AEs antenna elements
  • PS phase shifters
  • PA Power Ampl if ier
  • signal synthesizers are built into the AS. It can be designed to transmit / receive signals through one antenna and generate multiple analog beams in one AS.
  • AS may be performed in various combinations.
  • There are various arrangements such as Linear Array, Planar Array, Circular Array, etc. according to the method of arranging antennas.
  • UPA Uniform Planar Array
  • Various combinations can be considered depending on how many AEs are used as Vertical Domain (V-D) and Horizontal Domain OH)) to form a subgroup.
  • V-D Vertical Domain
  • H-D Horizontal Domain
  • a massive antenna having 64 AEs is assumed.
  • four combinations (1, 2, 4, 8) are obtained in each domain, and the subgroup has 16 combinations.
  • the AS configuration (the number of AEs of V-D * the number of AEs of H-D) is expressed as a multiple of 2 including the number of AEs of V-D and H-D as follows.
  • (1x1), (1x2), (1x4), (1x8), (2x1), (2x2), (2x4), (2x8), (4x1), (4x2), (4x4) ), (4x8), (8x1), (8x2), (8x4), and (8x8) AS combinations can be derived.
  • the first method according to the second embodiment of the present invention is to apply the same subgrouping pattern to at least one antenna subgroup. Furthermore, all antenna subgroups may apply the same subgrouting pattern.
  • the complexity for calculating the precoding weight of analog beamforming can be reduced.
  • the use of analog beamforming precoding weights having the same phase increments / magnitude increments of antenna subgroups has the advantage of reducing the complexity and overhead of reporting to perform beamforming.
  • At least one antenna subgroup among the antenna subgroups to which the same subgrouping pattern is applied applies an analog beamforming precoding weight having the same phase increment / magnitude increment.
  • all the antenna subgroups to which the same subrouting pattern is applied may apply analog beamforming precoding weights having the same phase increment / size increment.
  • the AS may apply different subgrouping patterns over time. Changing the subgrouping pattern means that the channel state changes. Considering the time relationship of measuring and applying channels, the subgrouping pattern should be maintained for at least the time that channel information is reported and used for data transmission. For example, when the CSI reporting period is 5ms, the subgrouping pattern is maintained for at least 10ms.
  • a time durat ion to which a plurality of subgrouping patterns is applied can be set as a single t set.
  • the set is maintained for at least one period of reporting.
  • M subgrouping patterns to change dynamically during N t ime, and keep the minimum time dynamically changing (for example, 10 subframe time intervals) as one cycle.
  • the same subgrouping scheme is applied to a selected antenna subgroup pattern for a predetermined time.
  • Information about a subgroup may be provided through higher layer signaling. For example, it may be provided as RRC signal ing. This may be terminal specific information or cell specific It may be information. Subgrouping can be set with several candidate methods and specified using indicators. The subgrouping method specified by the indicator is equally applied to one or more antenna subgroups.
  • the antenna subgroup is set to a block for generating an independent channel for signal transmission.
  • the AS may be defined as a block that creates an independent channel through which several signal sequences among a plurality of signal sequences generated in the baseband can be transmitted.
  • N ASs forming K analog beams
  • M independent signal strings are generated in the baseband
  • M independent signals are converted into analog through Digital-Analog-Converter (DAC).
  • DAC Digital-Analog-Converter
  • the method of measuring the channel and finding the precoding weight depends on the configuration of the antenna subgroup or the number of beams transmitted in the subgroup. If the UE measures the channel of the antenna elements and finds and reports an analogue beamforming precoding weight suitable for each subgroup, the UE finds and reports a weight value corresponding to the pattern of the subgroup, and for this purpose, a weight set used for each subgroup is defined. Can be. For example, in the configuration of (4 * 2) and (2 * 2), different weights should be applied.
  • the weight set applied depends on the antenna subgroup conf igurat ion. Further, when the UE measures and reports the appropriate weight to report the channel, it can be found in the weight value for the applied antenna subgrouping.
  • a weight set for antenna subgrouping may be indicated or may be defined by tie with an antenna subgrouping pattern.
  • a third embodiment of the present invention relates to channel state information for hybrid beamforming. Specifically, in the third embodiment, a channel state reporting method for supporting hybr id beamforming that performs digital beamforming after analog beamforming is performed will be described.
  • the coarse beam uses a beam having broad width and directs the beam in a spatially rough direction.
  • the fine beam is characterized by being able to accurately point the user's point using a sharp beam.
  • a beam width of 2Tx is wider than a beam of 16Tx.
  • the 3dB beamwidth point is defined as a point directed by different beams, the distance between the beams is wider between beams of the 16Tx antenna.
  • the beamforming weight value changes according to the change in the channel condition. The amount of change in the beamforming weight for the coarse beam is less sensitive to the change in the channel condition than the fine beam.
  • the resolut ion of beamforming may be determined according to characteristics of devices such as phase shifter and power amplifier iier.
  • red beamforming is possible depending on the situation of the UE, there is a limit to performing sophisticated beamforming due to the limitation of the device. Therefore, it is appropriate to use analog beamforming for generating a coarse beam.
  • digital beamforming is suitable for use in generating fine beam because it has the freedom to control the change of phase and amplitude in baseband in various ranges.
  • channel state information for analog beamforming is reported as a long term I wideband.
  • the channel state information for the digital beamforming has the same period as the analog beamforming state information or reports at a faster period.
  • channel state information for digital beamforming may be reported as wideband or subband.
  • the UE selects and reports a precoding weight for analog beamforming
  • information on the weight of the analog beamforming is reported using a small amount of bit intermittently, but based on the reported weight, the precoding to be used for future transmission is reported.
  • the robustness of reporting is important because it is determined, the method of using very low MCS as a method of robustly reporting the information of analog beamforming, and attaching CRC You can use this method to check for errors.
  • a transmission resource it may be reported through an uplink control channel or may use part of an uplink data channel.
  • the uplink control channel can be transmitted at a low coding rate to the QPSK modul at ion.
  • the precoding weight of analog beamforming is coded and transmitted separately from other channel state information, feedbcak information such as Hybr id ARQ A / N, and information such as SRS request.
  • a specific indi cator may be defined, which may be to indicat ion a value reflecting spatial information of a horzontal or verticacal domain.
  • precoding weight information for analog beamforming is measured and reported by a terminal. This information may be reported through a part of an uplink control channel or an uplink data sharing channel.
  • the channel state information for analog beamforming and the channel state information for digital beamforming are classified and reported according to the types of reporting information and the timing of reporting the information. For example, channel state information for analog beamforming is reported as long-term. On the other hand, channel state information for digital beamforming is reported as a short-term.
  • the channel state information for analog beamforming may be obtained by a terminal report or by using a signal (eg, an SRS) transmitted upward.
  • a signal eg, an SRS
  • the precoding used for analog beamforming is applied for a longer period than the period for applying digital beamforming.
  • channel state information for digital beamforming may be obtained by defining a channel formed by analog beamforming as an antenna port.
  • the channel state information thus obtained is reported through an uplink control channel or an uplink data sharing channel.
  • a synthesized channel formed by analog beamforming is defined as an antenna port, and a channel is measured by using a reference signal for the corresponding antenna port to perform digital beamforming. Calculate the CSI.
  • Channel state information for digital beamforming is reported through an uplink control channel or an uplink data sharing channel.
  • the measurement and reporting information of channel state information for performing digital beamforming depends on the beam pattern selected by analog beamforming . Is determined.
  • the number of beams generated by analog beamforming may be variable, and even if N beams are generated, the synthesis channel is changed when the beamforming weight is changed.
  • N beams are transmitted by analog beamforming
  • channels of N antenna ports are measured for digital beamforming, and an element is selected and reported in Precoding Mat ix for N antenna ports.
  • the precoding weight generated in analog beamforming is variable, multiple channels must be measured for digital beamforming.
  • a plurality of reference signal transmission instructions (including antenna port number, frequency / time / code resource allocation information, etc.) message is indicated to the terminal.
  • the number of antenna ports for measuring channels for digital beamforming is also variable.
  • a plurality of reference signal transmission instructions (including antenna port number, frequency / time / code resource allocation information, etc.) message is indicated to the terminal.
  • channel state measurement and reporting information for digital beamforming is determined according to a beamforming method of analog beamforming.
  • the transmission request calculates a CSI for performing digital beamforming by measuring a channel from a reference signal corresponding to the antenna port.
  • CSI feedback for digital beamforming is defined as a PUSCH / PUCCH repor ng mode.
  • codebook for performing digital beamforming may be changed according to the beam pattern selected by analog beamforming.
  • Hybr id beamforming is characterized by performing analog beamforming and digital beamforming at the same time.
  • the radiation pattern generated by analog beamforming determines signal transmission coverage.
  • a degree of freedom for adjusting the tilting angle of the antenna by analog beamforming is given. If the tilting angle is changed according to the distribution of users in Cel l, the system performance and energy efficiency can be improved.
  • the UE measures the channel and reports it to the base station, and the base station can be divided into a method of determining based on the reported information and a method of determining and measuring the uplink signal by the base station.
  • the terminal reports only one value of the RSRP measurement.
  • the base station In a first method, the base station generates a plurality of analog beams, and the terminal measures and reports the synthesized channel generated by beamforming to the base station.
  • the channel information to be measured by the UE is designated as an antenna port, and RSRP measurement is performed on a plurality of antenna ports.
  • a plurality of RSRP information measured by the terminal is reported through the associated reporting channel.
  • RSRP information may be reported together with antenna port information.
  • it may be considered to report only some RSRP of the information measured by the terminal.
  • the RSRP information and the related indicator are reported together.
  • the antenna port index may be listed in order, and the method of turning on the bi t f lag of the corresponding antenna port selected in the bi t column may be used.
  • channel information to be measured by the UE is designated as an antenna port, and RSRP measurement is performed on one antenna port.
  • the unit for performing measurement can be defined as a time unit. For example, specify the time unit to be measured through the upper signal, and report the information measured in the time unit.
  • a plurality of time units can be set. The measured information is reported in the order of reporting determined by time unit. If reported simultaneously, the order of the information can be specified. If reported from individual resources, it can be set per resource.
  • the UE synthesizes a channel using a promised analog beamforming set, measures a synthesized channel, and reports the synthesized channel to a base station.
  • the base station transmits an RS for an antenna element on which analog beamforming is not performed. Instructs the UE to perform a set of analog beamforming, and the UE combines the antenna element and the beamforming weight using the indicated set. do. RSRP measurement is performed based on the synthesized channel.
  • the terminal may report all the measured channel information to the base station. Alternatively, only some set information preferred by the terminal may be reported in order to compress the information.
  • the above-described methods may be performed according to the instructions of the base station or the capability of the terminal.
  • the terminal reports its capacity to the base station.
  • the base station may instruct the terminal having Capabi l ty to use the above-described reporting method.
  • the terminal may perform a new measurement method according to the indicator of the base station.
  • the third method relates to a method of measuring and determining by a base station. Specifically, the base station measures the channel state through the uplink signal and determines the weight of analog beamforming for downlink signal transmission.
  • the base station may determine the weight for performing analog beamforming through the receiving end. This may be performed in various forms by a hardware structure or a signal processing method for uplink signal processing. When multiple terminals simultaneously transmit signals, signals and channels for various purposes are synthesized in the received signals. Among them, a reference signal for channel measurement is divided to perform channel measurement for uplink transmission.
  • the analog beamforming weight is determined using a reference signal for data transmission.
  • the reference signal for data transmission is characterized by performing digital domain beamforming.
  • Various analog beamforming may be performed to find an optimal analog beamforming value.
  • a reference signal for data transmission of a corresponding user is extracted from a plurality of analog beamformed signals.
  • the channel state of the data transmission reference signal on which a plurality of analog beamforming is performed is measured, and an analog beamforming weight is selected based on the channel state.
  • a weight for performing analog beamforming may be determined by collecting received signals for each antenna element in uplink.
  • a reference signal for measuring a channel state of the terminal may be extracted from the received signal and used.
  • An analog beamforming weight for downlink transmission is determined based on the selected analog beamforming weights through the above examples.
  • the downlink transmission analog beamforming weight may change in units of time. Depending on the weight changing in time
  • the downlink synthesis channel also changes, requiring an RSRP measurement method.
  • the base station may designate a time unit for performing RSRP measurement to the terminal.
  • a fourth embodiment according to the present invention relates to a method for compensating for phase difference between narrow bands.
  • an unwanted beam is transmitted due to a phase difference between a high frequency and a low frequency in broadband transmission.
  • the basic concept of analog beamforming is to adjust the phase of the signal in the desired direction by varying the time at which the signal is transmitted (or received) according to the direction in which the signal is transmitted (or received) based on the multiple antenna columns. . Since the sin wave changes in phase with time, the transmission (or reception) delay can be synonymous with the phase change in the signal. However, the phase change due to the transmission (or reception) delay depends on the frequency used for transmission (or reception). In the same delay situation, low frequencies produce less phase change, while high frequencies produce large phase changes.
  • Analog beamforming has a feature of multiplying weights in an analog domain for transmission or reception of multiple antennas.
  • the beamforming weights are equally used in the transmission band.
  • the difference in phase change between the high frequency and the low frequency within the band is small, but when the transmission band is wide, the difference may occur greatly.
  • the difference in phase change in the transmission band is small when the center frequency used for transmission is low, while the difference may occur when the center frequency is high.
  • Hybr id beamforming is used in wideband transmission or high frequency band transmission.
  • the existing Cel lular system (ex. LTE) is mainly designed to transmit at a maximum bandwidth of 20 MHz in the vicinity of the 2 GHz band. Is being considered.
  • the basic principle of beamforming is to generate linear phase rotation between antennas so that transmit and receive signals have the same phase to achieve maximum gain when synthesized.
  • the linear phase rotation value that must be applied between antennas varies from band to band.
  • the linear phase value that is applied to the antennas differs from band to band.
  • maximum gain is not achieved.
  • the signal may be synthesized in a direction to attenuate the signal according to the amount of phase change.
  • Beam di rect ion mi smatch by phase difference may appear more sensitive as the beam becomes sharper.
  • Broad beams on the other hand, may be less sensitive to beam direct ion mismatch due to phase difference.
  • Massive MIMO can produce extremely sharp beams by synthesizing energy using many antennas. Therefore, in Massive MIMO, it is sensitive to the beam direct ion mismatch caused by the phase difference method 1.
  • phase difference occurs when the same phase rotation is applied to the broadband. In this case, the sharper the beam width, the higher the sensitivity. On the other hand, if the same phase is applied to the narrow band, less phase difference occurs, and the sensitivity of the phase di fference to the beam can be broadly lowered.
  • an embodiment of the present invention proposes an antenna configuration method and a Precoder configuration and application method of the digital beamformer for this purpose.
  • a broad beam is generated in an analog domain and a phase rotation is applied to a narrow band in a digit domain.
  • the number of elements performing beamforming in the analog domain is reduced to generate a broad beam, thereby lowering the sensitivity to beam di rect ion change due to phase difference.
  • phase difference occurring in the antenna elements is averaged in the synthesized channel. Digitized beamforming synthesized channels including the average phase difference is formed to form a sharp beam in a desired direction.
  • Embodiment 4-2 relates to an antenna array structure. Specifically, antenna subgrouping is performed in a row or column having two or more antenna elements.
  • Analog beamforming changes the phase and amplitude of the antenna element.
  • Subgroups of the antenna elements may be configured, and analog beamforming may be performed for each subgroup.
  • analog beamforming is performed using a small number of antenna elements. To this end, two or more antenna subgroups are configured.
  • 26 illustrates an example of an antenna array structure according to the present invention.
  • two subgroups may be obtained by forming a subgroup by combining five antenna elements.
  • two beams having a beamwidth wider than the beamwidth generated using the ten antenna elements are generated.
  • the beam generated in the subgroup is more robust against phase error than the beams of 10 antenna elements.
  • FIG 27 shows another example of an antenna array structure according to the present invention.
  • a fourth embodiment of the present invention relates to a method for compensating for the narrow band phase difference caused when analog beamforming is applied to a wide band.
  • a method of applying a beamforming weight having the same phase change between weights applied to each element may be applied.
  • W [WO Wl W2 W3 W4].
  • W1 and W2 are as follows.
  • Wl and W2 have the same phase change amount of precoding weight applied to each element as expj (a).
  • W1 to W4 are as follows.
  • W4 [expj ( ⁇ + ⁇ ) ex j ( ⁇ + ⁇ + a) expj ( ⁇ + ⁇ + 2 ⁇ ) expj ( ⁇ + ⁇ + 3 ⁇ ) expj (Y + ⁇ +4 a)]
  • a fourth embodiment of the present invention describes performing digital beamforming on a narrow band basis.
  • a new channel is formed through an analog beam.
  • Phase difference between channels created in each subgroup may occur. Compensate for phase difference by using digital domain precoder. If the channel is severely changed, the channel correlation of the subgroup is low, or the transmission band is wide, the phase difference between the channels of the subgroup may be different for each narrow band.
  • the digital beamformer corrects the phase between subgroups, and the digital domain precoding is performed in a narrow band. For example, it is assumed that a channel of Subband k generated by analog beamforming of Subgroup n is called Ch n (k), and that the phase of Ch n (k) is z—Ch n (k).
  • the channel of each antenna element may be approximated by a linear phase change. If the difference in phase shift between the antenna elements in the subband 1 and 2 channels is 2 ⁇ , the subband 1 and 2 channels may be expressed as follows.
  • [344] H (l) x [l exp j ( ⁇ - ⁇ ) expj (2 a-2 6) ex j (3 a -3 ⁇ ) expj (4 a -4 ⁇ ) expj (5 a -5 ⁇ ) expj (6 a -6 ⁇ ) expj (7 a -7 ⁇ ) expj (8 a -8 ⁇ ) expj (9 a -9 ⁇ )]
  • [346] H (2) x [l expj (a + ⁇ ) expj (2 a +2 ⁇ ) expj (3 a +3 ⁇ ) expj (4 a +4 ⁇ ) expj (5 a +5 ⁇ ) expj (6 a +6 ⁇ ) expj (7 a +7 ⁇ ) expj (8 a +8 ⁇ ) expj (9 a +9 ⁇ )]
  • a fourth exemplary embodiment of the present invention is a method for channel state reporting for supporting digital beamforming.
  • channel state information In order to support downlink digital beamforming, channel state information should be reported.
  • Channel status information can be reported directly using the Impl i feedback method (eg Rank Indicat ion I Precoding Matix ix Indicat ion I Channel Qual Inty cat ion, etc.) that reports the value converted into the promised Index.
  • Impl i feedback method eg Rank Indicat ion I Precoding Matix ix Indicat ion I Channel Qual Inty cat ion, etc.
  • Expl i ci t feedback method In both cases, channel information measured in narrowband is reported to the base station. In this case, it means channel state information estimated based on channel information synthesized by analog beamforming for each subgroup.
  • the UE may find and report a weight suitable for beamforming by measuring channel states of antenna elements of a subgroup.
  • the beamforming weight to be applied to the subgroup is reported to the base station.
  • the beamforming weight is assumed to be commonly applied to the transmission bandwidth, and then selected and reported.
  • a fifth embodiment of the present invention relates to a training sequence transmission method for analog BF in Hybr id BF.
  • the base station In order to form downlink, the base station should acquire downlink channel information. As a method for this, the base station measures (1) the downlink channel measured by the terminal and reports (2) the uplink channel measured by the base station for downlink transmission. How to use can be used.
  • An embodiment of the present invention describes a reference signal transmission method and a physical signal structure for the UE to measure a downlink channel in downlink Hybr id beamforming.
  • a reference signal of the digital configuration method is designed to obtain channel information of each antenna port by allocating orthogonal resources (frequency, time, code, etc.) between antenna ports.
  • the reference signal defined as the antenna port is not suitable for classifying and estimating channels of the antenna elements.
  • N antenna ports are N When mapped to TRX and each TRX is transmitted through M antenna elements, orthogonal resources allocated for one antenna port are transmitted through M antenna elements, and signals of M antenna elements are synthesized at a receiving end. It is received as a signal of one antenna port.
  • a transmission method of a downlink reference signal according to the present invention is described as follows.
  • An antenna element specifi c resource is allocated as a first method of transmitting reference signals for antenna elements in a digit domain. This method can apply the same time transmission or different time transmission. At this time, the phase of the reference signal for the antenna element may be reversed in consideration of analog beam forming.
  • a beam speci f i c resource may be allocated.
  • a reference signal generator may generate a reference signal sequence and synthesize the reference signal sequence with the signal generated by the TRX. 28 is an example of a reference signal generator structure according to an embodiment of the present invention.
  • a resource (n X M) classified for each antenna element may be used.
  • a resource M for classifying M elements may be used.
  • a reference signal may be synthesized and transmitted using antenna switching.
  • a channel of each antenna element can be estimated.
  • a training sequence for each antenna element is transmitted.
  • the physical structure uses a block to generate a reference signal that is distinct from the signal transmitted from the TRX.
  • the sequence indicates a sequence orthogonal between antenna elements.
  • it can be divided into frequency resources / code resources.
  • the sequence can be transmitted simultaneously with the data signal.
  • the antenna port refers to a signal synthesized by analog beamforming
  • the antenna element refers to a unit for performing analog beamforming.
  • channel measurement of antenna elements is required.
  • various methods of transmitting a reference signal may be considered.
  • Reference signals for the antenna element may be transmitted in the digital domain or in the analog domain.
  • the fifth embodiment of the present invention relates to a method in which analog beamforming is not performed while a reference signal is transmitted when a reference signal is transmitted in a digital domain.
  • a specific resource is allocated to each antenna element.
  • the resource means time, frequency, code, and the like.
  • the reference signal may be transmitted at different times for each antenna element.
  • the time is at least an OFDM symbol durat ion.
  • a reference signal for one antenna element is transmitted during one OFDM symbol durat ion, and a reference signal for another antenna element is transmitted at the next Durat ion.
  • a signal branched to each antenna element is a signal generated in one TRX. If each element transmits the same signal at the same time, it is difficult for the receiving end to obtain a reference signal corresponding to each antenna element.
  • the antenna turn on / of f method may be applied as a method of transmitting reference signals by time for each antenna element. For example, by lowering the gain of the power ampl if ier in the antenna element, the signal transmitted from the antenna element may be raised or lowered. At a certain point in time, the PA of a specific antenna element is increased and the PA of other antenna elements is lowered. This operation is performed in turn for each antenna element. Even if the same reference signal is transmitted from each antenna element, the antenna signal is turned on and off so that the reference signal is transmitted only from one antenna.
  • time orthogonal reference signal resources may be allocated among antenna elements included in the antenna subgroup, and frequency orthogonal or code resources may be allocated between antenna elements between antenna subgroups.
  • antenna element transmission is distinguished by time since the same reference signal is transmitted to each antenna element.
  • different reference signals can be transmitted. Therefore, subgroups can be allocated by transmitting reference signals with different frequency orthogonal or code resources. In addition, the reference signal may be transmitted by using different time resources.
  • a fifth embodiment of the present invention relates to a method for transmitting an analog beamformed reference signal when a reference signal is transmitted in a digital domain. For this purpose, a specific resource is allocated to each analog beam.
  • the transmission of a reference signal on which analog beamforming has been performed means that a reference signal for distinguishing a set with respect to a possible analog beamforming weight set is allocated.
  • a structure capable of independently allocating resources for each beamforming execution unit may be introduced to allocate a reference signal for distinguishing beamforming. Compared to a complexi ty for measuring precoding weight for performing analog beamforming by measuring channels for each antenna element, there is an advantage of having a significantly lower complexi ty.
  • a fifth embodiment of the present invention relates to a method of transmitting a reference signal for an antenna element in an analog domain.
  • a reference signal sequence is generated and synthesized with the signal generated by the TRX.
  • the reference signal may be allocated to a specific resource for each antenna element. For example, when allocating resources orthogonal to time, independent time resources are used for each antenna element. In this case, the length of the time resource may be designed to have a length smaller than one OFDM symbol.
  • a code resource may be allocated. Use different code resources for each antenna element It is possible to distinguish each antenna channel. In the case of using the ZC sequence, signals can be distinguished by using different cyc lic shi ft values.
  • N * M resources divided by antenna elements may be used. If a reference signal is used for distinguishing signals of each antenna element in the TRX, a method of sharing antenna element resources among the TRXs and independently assigning antenna element resources in the TRX may be used.
  • a training sequence allocated to each antenna element may be transmitted.
  • orthogonal resources separated in time for each antenna element may be allocated. In such a case, a very long time may be required for channel estimation of corresponding antenna elements for performing analog beamforming.
  • the training sequence is transmitted at a time different from the time when the signals for data transmission are transmitted due to the nature of the analog signal, the time for data transmission is shortened and system performance may be degraded.
  • the training sequence when transmitting a training sequence in the analog domain, may be transmitted while maintaining a data rate.
  • a training sequence for analog beamforming and an existing signal may be synthesized and transmitted in an analog domain.
  • the two signals are combined to overlap, and the synthesized signals are transmitted simultaneously.
  • Training sequences or existing signals are transmitted repeatedly, each covered by an orthogonal code.
  • h_n (t) means channel impulse response at time t.
  • s_k (t) denotes a training sequence transmitted through the k-th antenna element, and r—k (t) denotes an existing signal transmitted through the k-th antenna element.
  • t + N the channel and the received signal are represented by t + N.
  • a signal of one OFDM symbol may be repeated over two OFDM symbol intervals.
  • a signal may be repeatedly transmitted in one OFDM symbol period.
  • the repetitive synthesis of the signal in the analog domain can be determined in conjunction with the period of generating and repeating the signal in the digital domain.
  • the synthesized and transmitted signal may be restored to a desired signal through a simple sum / difference.
  • Y (t) + y (t + N) h_k (t) ® (s_k (t) + r (t) + s_k (t) -r_k (t)) + n (t) + n (t + N)
  • signals of each antenna element may be distinguished using orthogonality of time orthogonal resources or code resources.
  • a sixth embodiment of the present invention relates to an uplink reference signal for hybrid beamforming.
  • a training sequence for selecting a weight vector for performing downlink beamforming for multiple users in the UL is transmitted.
  • the feature of uplink received analog beamforming is that the base station selects an appropriate beamforming device for performing analog beamforming from the received signal. To this end, the base station needs a function of selecting an analog beamforming weight.
  • the analog beamforming weight selector selects an appropriate beamforming vector by applying a beamforming weight vector for performing signal word 1 analog beamforming received from each antenna element.
  • the base station may use the signals transmitted from the terminal, PRACH, SRS, DMRS, PUSCH, PUCCH, etc. may be candidates. It is preferable to select a precoding weight using a signal after t iming and frequency synchronizat ion of the transmission signal are performed. This is because t iming / Frequency synchronizat ion influences the precoding weight selection. Therefore, it is not preferable to use PRACH.
  • SRS may be used as a first example that is easy to apply.
  • the SRS is used as information for MCS for uplink transmission, transmission precoding determination, and band allocation by acquiring channel state information of the UE. It is also used as information for determining downlink transmission precoding.
  • Channel information is obtained from the SRS to perform digital beam forming.
  • a channel estimated through the SRS is obtained by signal processing of the digit domain.
  • the existing SRS is transmitted through one OFDM symbol, and allocates frequency and code resources in one OFDM symbol to obtain a multi-user channel and a single-user multi-antenna channel.
  • the frequency resources are divided into clusters (groups of contiguous subcarriers), and then re-allocated into inter leaved (odd or even subcarriers) in clustered frequency resources.
  • clusters groups of contiguous subcarriers
  • inter leaved odd or even subcarriers
  • Analog beamforming plays a role of collecting or lowering energy of a signal transmitted or received in a specific direction by using transmission or reception weights to the antenna element.
  • the weight may be selected based on channel state information. All.
  • the channel state information may be measured at the receiver and may be used for reception beamforming and transmission beamforming.
  • channel state information may be obtained from an uplink signal transmitted by the terminal, and a weight for reception may be calculated. This weight can be used as the transmission beamforming weight after proper calibrat ion. Multi-user interference is an important problem in acquiring channel state information through uplink signals transmitted by the terminal.
  • channel state information is obtained by training a signal at an analog stage.
  • the analog signal is characterized in that it is processed in the time domain.
  • the multi-user signals are distinguished by the orthogonality of the transmission sequence.
  • users performing digital beamforming in a system based on 0FDMA or SC-FDMA are able to accommodate a relatively large number of users because they are allocated resources for frequency domain.
  • the resource in the time domain may be divided and transmitted as an uplink reference signal.
  • the capacity of the multi-user classification is assumed to be N.
  • N the capacity of the multi-user classification
  • the signal distortion occurs due to the mult i-path of the spatial channel. Therefore, the guard guard should be set appropriately even if the signal cycle is short.
  • the divided time resources when dividing a plurality of time resources in an existing OFDM symbol durat ion, may also have a structure having guard time.
  • the eighth-first embodiment of the present invention relates to a method of dividing a plurality of time resources by designing a Durat ion shorter than an OFDM symbol durat ion.
  • the symbol durat ion consists of (Nf ft + Ncp) samples
  • the short OFDM symbol durat ion can consist of (Nfft + Ncp) / M samples. Or (Nfft / M) + (Ncp) 'smaple. That is, a signal having a durat ion of about Nf ft / M is generated and a short period of OFDM symb having a sample of Ncp / M or (Ncp) 'is formed.
  • the sampling frequency is the same as that of the existing OFDM symbol (to equal the sampling time), and the subcarrier spacing is increased by M times.
  • the UE increases the subcarrier spacing and generates an uplink reference signal by setting the same Samp 1 ing frequency, and converts the generated reference signal into an analog signal by DAC converting and transmits the RF signal by calling RF. .
  • a sixth embodiment of the present invention is a method of designing a signal having a short period of OFDM symbol durat ion to have a short period of CP.
  • the CP length is preferably based on the CP length applied to the existing OFDM symbol.
  • the plurality of short OFDM symbols is one existing OFDM symbol period.
  • 29 shows an example in which a plurality of short OFDM symbols are longer than one conventional OFDM symbol period.
  • Embodiment 6-3 proposes a method of transmitting an OFDM symbol so that it overlaps.
  • M signals having a short OFDM symbol period each is assigned to different users.
  • 30 shows an example of a method of transmitting so that OFDM symbols overlap.
  • the preceding short period OFDM symbol is assigned to user A and the subsequent short period OFDM symb is assigned to user B.
  • User A transmits a short of dm symbol according to the existing OFDM symbol transmission time
  • user B transmits a short OFDM symbol slightly earlier than the conventional OFDM symbol transmission time.
  • the short OFDM symbol transmitted by user A will be received in accordance with the start time when the existing OFDM symbols are received, and the short period OFDM symbol transmitted by user B will be received according to the last time received in the existing OFDM symbol. .
  • the base station can appropriately set the time window to minimize the interference between symbols.
  • a training sequence for performing analog BF is composed of a short period of OFDM symbol.
  • a sequence mapped to each subcarrier may use a sequence (eg, a ZC sequence) having similar correlat ion characteristics in frequency and time. Signals made by mapping such sequences are advantageous in performing de-spreading in the time domain because the frequency and time domain characteristics are similar.
  • the embodiment 6-5 relates to a method of transmitting a reference signal or training sequence for analog beamforming at a time different from a time interval in which an existing signal is transmitted.
  • the time for transmitting the training sequence may be performed according to the indicator given to the terminal by the base station.
  • the base station transmits the training sequence that the terminals should transmit.
  • the indicator can be distinguished from the transmission signal of another signal.
  • the training sequence is set to be transmitted separately from the existing SRS transmission cycle.
  • the terminal does not simultaneously transmit other signals at the time of transmitting the training sequence. For example, when a data signal or a RACH black control channel is to be transmitted at the time when the training sequence is transmitted, priority is given to the transmission of the training sequence.
  • a sixth embodiment of the present invention relates to a method for performing analog beamforming by dividing a multi-user signal in a digital domain.
  • a block capable of purely extracting a signal from an antenna element and designing a block for digital processing is estimated and estimated for each antenna element.
  • Weight is determined to perform analog beamforming based on the channel.
  • the terminal transmits a reference signal according to the instruction of the base station.
  • the base station makes a signal received from each antenna element into a digital signal and extracts a reference signal from the generated digital signal. Analog beamforming is performed based on the channel state of each antenna element obtained from the reference signal.
  • Such a block is distinguished from a block for data demodulat ion.
  • Data demodulat ion performs demodulat ion based on a signal obtained after performing analog beamforming, while a block for obtaining channel state information processes a signal based on signals extracted directly from an antenna element.
  • weights for performing analog beamforming are determined by collecting reference signals on which analog beamforming is performed.
  • a reference signal is extracted from the signals for which the analog beamforming is performed.
  • Signals transmitted from single users are subjected to multiple analog beamforming, and reference signals of the corresponding users are extracted from the multiple analog beamfogging signals.
  • Signal strengths of the extracted reference signals are measured to compare signal strengths according to analog beamforming values. By comparing the signal strength, the appropriate analog beamforming weight is monitored. Try to select analog beamforming weight for many users in the same way And stores the selected beamforming weight value. Group users who have selected the same weight and use it when receiving and transmitting data.
  • Figure 31 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • the relay When the relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station 3110 and a terminal 3120.
  • Base station 3110 includes a processor 3113, a memory 3114, and a Radio Frequency (RF) unit 3111, 3112.
  • the processor 3113 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 3114 is connected with the processor 3113 and stores various information related to the operation of the processor 3113.
  • the RF unit 3116 is connected with the processor 3113 and transmits and / or receives a radio signal.
  • the terminal 3120 includes a processor 3123, a memory 3124, and an RF unit 3121, 1422. Processor 3123 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 3124 is connected with the processor 3123 and stores various information related to the operation of the processor 3123.
  • the RF units 3121 and 3122 are connected to the processor 3123 and transmit and / or receive radio signals.
  • the base station 3110 and / or the terminal 3120 may have a single antenna or multiple antennas.
  • a specific operation described as performed by a base station may be performed by an upper node in some cases. That is, in a network consisting of a plurality of network nodes including a base station for communication with the terminal Obviously, the various operations performed may be performed by a base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as fixed station, Node B, eNodeB (eNB), access point, and the like.
  • an embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more ASICs, pp icat ion speci f ic integrated circuits, DSPs (digi tal signal processors), DSPDs (digi tal signal processing devices), PLDs (programmable). logic devices, FPGAs programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and so on.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 본 발명의 일 실시예에 따른 MU-MIMO (multi user-multiple input and multiple output)를 지원하는 무선 접속 시 스템에서 기지국이 신호를 전송하는 방법은, 아날로그 범포밍을 이용하여 복수의 단말을 포함하는 서브 그룹에 대한 범을 생성하는 단계; 디지털 빔포밍을 이용하여 서브 그룹에 속하는 각각의 단말로 전송되는 신호를 구별하는 단계; 및 아날로그 범포밍 및 디지털 범포밍을 기초로 생성된 신호를 단말로 전송하는 단계를 포함하 고,아날로그 범포밍의 가중치는 상향링크 참조 신호를 이용하여 획득한 채널 상태 정보를 기초로 결정될 수 있다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 신호를 전송하는 방법 및 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 MU-MIM0 (mult i user-multiple input and multiple output)를 지원하는 무선 접속 시스템에서 아날로그 빔포밍과 디지털 범포밍을 이용하여 신호를 전송하는 방법 및 이를 지원하 는 장치에 대한 것이다.
【배경기술】
[2] 다중 입출력 (MIMO: Multi -Input Multi -Out put) 기술은 한 개의 송신 안테나와 한 개의 수신 안테나를 사용했던 것에서 탈피하여 다중 송신 안테나와 다중 수신 안 테나를 사용하여 데이터의 송수신 효율을 향상시키는 기술이다. 단일 안테나를 사용 하면 수신측은 데이터를 단일 안테나 경로 (path)를 통해 수신하지만, 다중 안테나를 사용하면 수신단은 여러 경로를 통해 데이터를 수신한다. 따라서, 데이터 전송 속도 와 전송량을 향상시킬 수 있고, 커버리지 (coverage)를 증대시킬 수 있다.
[3] 단일-셀 (Single-cell) MIMO 동작은 하나의 셀에서 하나의 단말이 하향링크 신호를 수신하는 단일 사용자 -MIMO (Single User-MIMO; SU-MIM0) 방식과 두 개 이상의 단말이 한 셀에서 하향링크 신호를 수신하는 다중 사용자 -MIMO (Multi User-MIMO; MU-MIM0) 방식으로 나눌 수 있다.
[4] 채널 추정 (channel estimation)은 페이딩 (fading)에 의하여 생기는 신호의 왜 곡올 보상함으로써 수신된 신호를 복원하는 과정을 말한다. 여기서 페이딩이란 무선 통신 시스템 환경에서 다중경로 (multi path)—시간지연 (time delay)으로 인하여 신호의 강도가 급격히 변동되는 현상을 말한다. 채널추정을 위하여는 송신기와 수신기가 모 두 알고 있는 참조신호 (reference signal)가 필요하다. 또한, 참조 신호는 간단히 RS( Reference Signal) 또는 적용되는 표준에 따라 파일럿 (Pi lot)으로 지칭될 수도 있 다.
[5] 하향링크 참조신호 (downl ink reference signal)는 PDSCH(Physical Downlink Shared CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등의 코히어 런트 (coherent) 복조를 위한 파일럿 신호이다. 하향링크 참조신호는 셀 내의 모든 단 말이 공유하는 공용 참조신호 (Co麵 on Reference Signal ; CRS)와 특정 단말만을 위한 전용 참조신호 (Dedicated Reference Signal ; DRS)가 있다. 4 전송 안테나를 지원하는 기존의 통신 시스템 (예를 들어, LTE release (릴리즈) 8 또는 9 표준에 따른 시스템) 에 비하여 확장된 안테나 구성을 갖는 시스템 (예를 들어, 8 전송 안테나를 지원하는 LTE-A 표준에 따른 시스템)에서는, 효율적인 참조신호의 운용과 발전된 전송 방식을 지원하기 위하여 DRS 기반의 데이터 복조를 고려하고 있다. 즉, 확장된 안테나를 통 한 데이터 전송을 지원하기 위하여 2 이상의 레이어에 대한 DRS 를 정의할 수 있다, DRS 는 데이터와 동일한 프리코더에 의하여 프리코딩되므로 별도의 프리코딩 정보 없 이 수신측에서 데이터를 복조하기 위한 채널 정보를 용이하게 추정할 수 있다.
[6] 한편 하향링크 수신측에서는 DRS 를 통해서 확장된 안테나 구성에 대하여 프 리코딩된 채널 정보를 획득할 수 있는 반면, 프리코딩되지 않은 채널 정보를 획득하 기 위하여 DRS 이외의 별도의 참조신호가 요구된다. 이에 따라 LTE-A 표준에 따른 시스템에서는 수신측에서 채널 상태 정보 (Channel State Informat ion; CSI )를 획득하 기 위한 참조신호, 즉 CSI-RS를 정의할 수 있다.
【발명의 상세한 설명】
【기술적 과제】
[7] 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 신호를 전송하는 방법 및 장치를 제안하고자 한다.
[8] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하 는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
[9] 본 발명의 일 실시예에 따른 MU-MIMO (mul t i user-mul t iple input and mul t iple output )를 지원하는 무선 접속 시스템에서 기지국이 신호를 전송하는 방법은, 아날로 그 범포밍을 이용하여 복수의 단말을 포함하는 서브 그룹에 대한 빔을 생성하는 단 계; 디지털 빔포밍을 이용하여 상기 서브 그룹에 속하는 각각의 단말로 전송되는 신 호를 구별하는 단계; 및 상기 아날로그 빔포밍 및 상기 디지털 범포밍을 기초로 생성 된 신호를 상기 단말로 전송하는 단계를 포함하고, 상기 아날로그 범포밍의 가중치는 상향링크 참조 신호를 이용하여 획득한 채널 상태 정보를 기초로 결정될 수 있다. [10] 본 발명의 다른 실시예에 따른 MU-MIMO (mul t i user-mul t iple input and multiple output )를 지원하는 무선 접속 시스템에서 신호를 전송하는 기지국은 RF(Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, 아날로그 범 포밍을 이용하여 복수의 단말을 포함하는 서브 그룹에 대한 범을 생성하고, 디지털 범포밍을 이용하여 상기 서브 그룹에 속하는 각각의 단말로 전송되는 신호를 구별하 고, 상기 아날로그 범포밍 및 상기 디지털 빔포밍을 기초로 생성된 신호를 상기 단말 로 전송하도록 구성되고, 상기 아날로그 빔포밍의 가중치는 상향링크 참조 신호를 이 용하여 획득한 채널 상태 정보를 기초로 결정될 수 있다.
[11] 본 발명의 실시예들에 대해서 이하의 사항이 공통으로 적용될 수 있다.
[12] 상기 상향링크 참조 신호의 전송 주기는 데이터 심볼 주기를 분할한 시간에 보호 시간을 더하여 결정될 수 있다.
[13] 상기 상향링크 참조 신호는 데이터 심볼의 샘플링 주파수를 유지하고 서브캐 리어 공간을 증가시켜 생성될 수 있다.
[14] 연속되어 전송되는 상기 상향링크 참조 신호는 시간축으로 일부 겹쳐져서 전 송될 수 있다.
[15] 상기 상향링크 참조 신호는 다른 제어 신호 또는 데이터 신호와 이시에 전송 될 수 있다.
[16] 상기 상향링크 참조 신호의 전송 주기 정보를 단말로 전송하는 단계를 더 포 함할 수 있다.
[17] 상기 상향링크 참조 신호는 주파수와 시간에서 상관 특성이 유사한 시뭔스를 기초로 할 수 있다.
[18] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[19] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상 을 설명한다.
[20] 도 1은 하향링크 무선 프레임의 구조를 나타내는 도면이다. [21] 도 2 는 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)의 일례를 나타낸 예시도이다.
[22] 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
[23] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
[24] 도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
[25] 도 6은 기존의 CRS 및 DRS의 패턴을 나타내는 도면이다.
[26] 도 7 은 DM RS 패턴의 일례를 나타내는 도면이다.
[27] 도 8 은 CSI-RS 패턴의 예시들을 나타내는 도면이다.
[28] 도 9 는 CSI-RS 가 주기적으로 전송되는 방식.의 일례를 설명하기 위한 도면이 다.
[29] 도 10 은 CSI-RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도 면이다.
[30] 도 11은 무선 접속 시스템에서 이용되는 RF 수신부의 일례를 도시한다.
[31] 도 12는 무선 접속 시스템에서 이용되는 RF 송신부의 일례를 도시한다.
[32] 도 13은 듀풀텍서 구성의 일례이다.
[33] 도 14는 듀플렉서를 주파수 대역으로 도시한 일례이다.
[34] 도 15 및 도 16 은 디지털 범포밍을 수행할 수 있는 송신단 및 수신단 구성의 일례이다.
[35] 도 17 및 도 18 은 아날로그 범포밍을 수행할 수 있는 송신단 및 수신단 구성 의 일례이다.
[36] 도 19 는 하나의 트랜시버와 하나의 PA를 이용하는 Individual안테나의 구조 의 일례를 도시한다.
[37] 도 20 은 하나의 트랜시버와 복수의 PS/PA 를 이용하는 Individual 안테나의 구조의 일례를 도시한다.
[38] 도 21 은 하나의 트랜시버와 복수의 PS/PA 를 이용하는 shared 안테나의 구조 의 일례를 도시한다.
[39] 도 22는 하나의 트랜시버와 복수의 PS/PA를 이용하며 Individual안테나를 이 용하는 구조의 일례를 도시한다.
[40] 도 23 은 하나의 트랜시버와 복수의 PS/PA 를 이용하는 shared 안테나 구조의 일례를 도시한다. [41] 도 24 는 본 발명에 따른 하이브리드 빔포밍에서 다중 사용자를 구분하는 첫 번째 실시예를 도시한다.
[42] 도 25 는 본 발명에 따른 하이브리드 빔포밍에서 다중 사용자를 구분하는 두 번째 실시예를 도시한다.
[43] 도 26은 본 발명에 따른 안테나 배열 구조의 일례를 도시한다.
[44] 도 27은 본 발명에 따른 안테나 배열 구조의 다른 예를 도시한다.
[45] 도 28은 본 발명의 실시예에 따른 참조 신호 생성기 구조의 일례이다.
[46] 도 29 는 다수의 짧은 OFDM symbol 이 기존의 한 OFDM symbol 주기 보다 길어 지는 일례를 도시한다.
[47] 도 30은 OFDM symbol 이 겹쳐지도록 전송하는 방법의 일례를 도시한다.
[48] 도 31은 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태】
[49] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것 들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고 려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태 로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실 시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다.
[50] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수 신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하 는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국 에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[51] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Stat ion) '은 고정국 ( f ixed stat ion) , Node B, eNode B(eNB) , 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN) , Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal )'은 UE Jser Equi ment) , MS (Mob i le Station) , MSS(Mobi le Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
[52] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제 공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범 위에서 다른 형태로 변경될 수 있다.
[53] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[54] 본 발명와 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의 해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문 서에 의해 설명될 수 있다.
[55] 이하의 기술은 CDMA(Code Division Mult iple Access) , FDMA( Frequency Division Multiple Access) , TDMA(Time Division Mult iple Access) , 0FDMA(0rthogonal Frequency Division Multiple Access) , SCᅳ FDMA( Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA 는 UTRA Universal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Service) /EDGE (Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA 는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX)ᅳ IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA 는 UMTS Jniversal Mobile Telecommunications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTE (long term evolution)는 E—UTRA 를 사용하는 E-UMTS(EvolvedUMTS)의 일부로써, 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC-FDMA 를 채용한다. LTE-A( Advanced)는 3GPP LTE 의 진화이다. WiMAX 는 IEEE 802.16e 규격 (WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규 격 (WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 LTE-A 표준을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
[56] 도 1을 참조하여 하향링크 무선 프레임의 구조에 대하여 설명한다.
[57] 셀를라 OFDM 무선 패킷 통신 시스템에서, 상 /하향링크 데이터 패킷 전송은 서브프레임 (Subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포 함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FD!XFrequency Divi sion Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Divi sion Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[58] 도 1 은 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프 레임 (radio frame) 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임 은 시간 영역 (t ime domain)에서 2 개의 슬롯 (slot )으로 구성된다. 하나의 서브프레임 이 전송되는 데 걸리는 시간을 TTKtransmi ssion t ime interval )이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms 이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하 나의 슬롯은 시간 영역에서 복수의 0FDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA 를 사용하므로, 0FDM 심볼이 하나의 심볼 구간을 나타낸다. 0FDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarr ier)를 포함할 수 있다.
[59] 하나의 슬롯에 포함되는 0FDM 심볼의 수는 CP(Cycl ic Pref ix)의 구성 (conf igurat ion)에 따라 달라질 수 있다. CP 에는 확장된 CP(extended CP)와 일반 CPCnormal CP)가 있다. 예를 들어, 0FDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 7개일 수 있다. 0FDM 심볼이 확장된 CP에 의해 구 성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FDM 심볼의 수 는 일반 CP 인 경우보다 적다. 확장된 CP 의 경우에, 예를 들어, 하나의 슬롯에 포함 되는 0FDM 심볼의 수는 6 개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 즐이기 위해 확장된 CP 가 사용 될 수 있다. [60] 일반 CP 가사용되는 경우 하나의 슬롯은 7 개의 OFDM 심볼을 포함하므로, 하 나의 서브프레임은 14 개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2 개 또는 3 개의 OFDM 심볼은 PDCCH(physical downl ink control channel )에 할당되고, 나 머지 OFDM 심볼은 PDSCH(physical downl ink shared channel )에 할당될 수 있다.
[61] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임 의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하 게 변경될 수 있다.
[62] 도 2 는 하나의 하향링크 슬롯에 대한 자원 그리드 (resource gr id)의 일례를 나타낸 예시도이다. 이는 OFDM 심볼이 일반 CP로 구성된 경우이다. 도 2를 참조하면 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수 의 자원블록을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심볼을 포함하고, 하나의 자원블록은 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되 는 것은 아니다. 자원 그리드 상의 각 요소 (element )를 자원요소 (RE)라 한다. 예를 들어 , 자원 요소 a(k, l )은 k번째 부반송파와 1번째 OFDM 심볼에 위치한 자원 요소가 된다. 일반 CP 의 경우에, 하나의 자원블록은 12 X 7 자원요소를 포함한다 (확장된 CP 의 경우에는 12 X 6 자원요소를 포함한다) . 각 부반송파의 간격은 15kHz 이므로 하나 의 자원블록은 주파수영역에서 약 180kHz을 포함한다. NDL은 하향링크 슬롯에 포함되 는 자원블록의 수이다. NDL 의 값은 기지국의 스케줄링에 의해 설정되는 하향링크 전 송 대역폭 (bandwidth)에 따라 결정될 수 있다.
[63] 도 3 은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레 임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 0FDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 0FDM 심블들은 물리하향링크공유채널 (Physical Downl ink Shared Chancel ; PDSCH)이 할당되는 데이터 영역에 해당한다. 전송의 기본 단위는 하나의 서브프레임이 된다. 즉, 2 개의 슬롯에 걸쳐 PDCCH 및 PDSCH가 할당된 다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어 , 물리제어포 맷지시자채널 (Physical Control Format Indicator Channel; PCFICH) , 물리하향링크제 어채널 (Physical Downl ink Control Channel ; PDCCH) , 물리 HARQ 지시자채널 (Physical Hybrid automat ic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서 브프레임의 첫 번째 0FDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용 되는 0FDM 심볼의 개수에 대한 정보를 포함한다. PHICH 는 상향링크 전송의 응답으 로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링 크제어정보 (Downl ink Control Informat ion; DCI )라 한다. DCI는 상향링크 또는 하향 링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH 는 하향링크공유채널 (DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널 (UL-SCH)의 자원 할당 정보, 페이징채널 (PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속웅답 (Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP) 의 활성화 등을 포함할 수 있다. 복수의 PDCCH 가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채 널요소 (Control Channel Element ; CCE)의 조합으로 전송된다. CCE는 무선 채널의 상 태에 기초한 코딩 레이트로 PDCCH 를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대웅한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE 의 개수와 CCE 에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI 에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순 환잉여검사 (Cycl ic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자 (Radio Network Temporary Ident i f ier ; RNTI) 라 하는 식별자로 마스킹된다. PDCCH 가 특정 단말에 대한 것이면, 단말의 cel l-RNTI (C-RNTI ) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지 에 대한 것이면, 페이징 지시자 식별자 (Paging Indi cator Ident i f ier ; P-RNTI )가 CRC 에 마스킹될 수 있다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (SIB) )에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTKSI-RNTI )가 CRC 에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 웅답인 임의접속웅답 올 나타내기 위해, 임의접속 -RNTKRA-RNTI )가 CRC에 마스킹될 수 있다.
[64] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프 레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에 는 상향링크 제어 정보를 포함하는 물리상향링크제어채널 (Physical Upl ink Control Channel ; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향 링크공유채널 (Physical upl ink shared channel ; PUSCH)이 할당된다. 단일 반송파 특 성을 유지하기 위해서, 하나의 단말은 PUCCH 와 PUSCH 를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH 는 서브프레임에서 자원블록 쌍 (RB pair)에 할당된다. 자 원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이 를 PUCCH 에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수 -호핑 (frequency-hopped) 된다고 한다.
[65] 다중안테나 (MIM0) 시스템의 모델링
[66] MIM0( (Mul t iple Input Mult iple Output ) 시스템은 다중 송신 안테나와 다중 수 신 안테나를 사용하여 데이터의 송수신 효율을 향상시키는 시스템이다. MIM0 기술은 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고, 복수개의 안테나를 통해 수신되는 복수개의 데이터 조각들을 조합하여 전체 데이터를 수신할 수 있다.
[67] MIM0 기술에는 공간 다이버시티 (Spat ial diversi ty) 기법과 공간 다중화 (Spat ial mult iplexing) 기법 등이 있다. 공간 다이버시티 기법은 다이버시티 이득 (gain)을 통해 전송 신뢰도 (rel iabi l i ty)를 높이거나 셀 반경을 넓힐 수 있어, 고속 으로 이동하는 단말에 대한 데이터 전송에 적합하다. 공간 다중화 기법은 서로 다른 데이터를 동시에 전송함으로써 시스템의 대역폭을 증가시키지 않고 데이터 전송률을 증가시킬 수 있다.
[68] 도 5 는 다중안테나를 갖는 무선 통신 시스템의 구성도이다. 도 5(a)에 도시 된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송 신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례 하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파 수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레 이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트 (Ro)에 레이트 증가율 (Ri ) 이 곱해진 만큼 증가할 수 있다.
[69] 【수학식 1】
[70] ^ = min( Vr,A^)
[71] 예를 들어, 4 개의 송신 안테나와 4 개의 수신 안테나를 이용하는 MIM0 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4 배의 전송 레이트를 획득할 수 있 다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질 적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연 구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다 양한 무선 통신의 표준에 반영되고 있다.
[72] 현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다 중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다 중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 둥 다양한 관점에서 활발히 연구가 진행되 고 있다.
[73] 다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체 적으로 설명한다. 상기 시스템에는 NT 개의 송신 안테나와 NR 개의 수신 안테나가 존 재한다고 가정한다.
[74] 송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정 보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
[75] [수학식 2
I l r
SI , SV,SNT 1
[77] 각각의 전송 정보 > ,' ", ¾는 전송 전력이 다를 수 있다. 각각의 전송 전력을 , '· · ·, 라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
[78] 3】
[79]
Figure imgf000012_0001
[80] 또한, S는 전송 전력의 대각행렬 P를 이용해 다음과 같이 표현될 수 있다.
[81] 【수학식 4]
Figure imgf000012_0002
[83] 전송전력이 조정된 정보 백터 ( informat ion vector) S에 가증치 행렬 W가 적 용되어 실제 전송되는 NT 개의 송신신호 , ,' ' ',¾가 구성되는 경우를 고려해 보자. 가중치 행렬 W는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다. , ' 는 백터 X를 이용하여 다음과 같이 표현 될 수 있다.
[84]
[85]
Figure imgf000013_0001
[86] 여기에서, 는 i 번째 송신 테나와 j 번째 정보간의 가중치를 의미한다. W는 31리코딩 행렬이라고도 불린다.
[87] 한편, 송신신호 X 는 2 가지 경우 (예를 들어, 공간 다이버시티 및 공간 다중 화)에 따라 다른 방법으로 고려될 수 있다. 공간 다중화의 경우, 상이한 신호가 다중 화되고 다중화된 신호가 수신측으로 전송되어, 정보 백터 (들)의 요소 (element )가 상 이한 값을 가진다. 한편, 공간 다이버시티의 경우에는, 동일한 신호가 복수개의 채널 경로를 통하여 반복적으로 전송되어, 정보 백터 (들)의 요소가 동일한 값을 가진다. 물론, 공간 다중화 및 공간 다이버시티 기법의 조합 역시 고려할 수 있다. 즉, 동일 한 신호가 예를 들어 3 개의 전송 안테나를 통해 공간 다이버시티 기법에 따라 전송 되고, 나머지 신호들은 공간 다중화되어 수신측으로 전송될 수도 있다.
[88] NR 개의 수신 안테나가 있는 경우 각 안테나의 수신신호 , ¾,'", ¼«은 백 터로 다음과 같이 표현될 수 있다.
Figure imgf000013_0002
[91] 다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j 로부터 수신 안테나 i 를 거치 는 채널을 로 표시하기로 한다. ¾에서, 인텍스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다. [92] 도 5(b)에 NT 개의 송신 안테나에서 수신 안테나 i 로의 채널을 도시하였다. 상기 채널을 묶어서 백터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 NT 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
[93] 【수 7】 [94] =
Figure imgf000014_0001
"', ^]
[95] 따라서, NT 개의 송신 안테나로부터 NR 개의 수신 안테나로 도착하는 모든 채 널은 다음과 같이 표현될 수 있다.
[96] 【수학식 8】
Figure imgf000014_0002
[98] 실제 채널에는 채널 행렬 H를 거친 후에 백색잡음 (AWGN; Addi t ive Whi te Gaussian Noi se)이 더해진다. NR 개의 수신 안테나 각각에 더해지는 백색잡음 , 2,' ' ',%¾은 다음과 같이 표현될 수 있다ᅳ
[99] 【수학식 9】
[loo]씨 , 니]1
[101] 상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
[102] 【수학식 10】
Figure imgf000014_0003
[104] 채널 상태를 나타내는 채널 행렬 H의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬 H에서 행의 수는 수신 안테나의 수 NR 과 같고, 열의 수 는 송신 안테나의 수 NT와 같다. 즉, 채널 행렬 H는 행렬이 NRXNT된다. [105] 행렬의 탱크 (rank)는 서로 독립인 ( independent ) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 탱크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬 H의 탱크 (ra« (H))는 다음과 같이 제한된다.
[106] 【수학식 11】
[107] rank ) < m {NT , NR )
[108] MIMO 전송에 있어서 '랭크 (Rank)' 는 독립적으로 신호를 전송할 수 있는 경 로의 수를 나타내며, '레이어 ( layer)의 개수' 는 각 경로를 통해 전송되는 신호 스 트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 탱크 수에 대응 하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 탱크는 레이어 개수와 동일한 의미를 가진다.
[109] 참조 신호 (Reference Signal; RS)
[110] 무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해 서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수 신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보 정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정 보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pi lot Signal ) 또는 참조 신호 (Reference Signal )라고 한다.
[111] 다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수 신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송 신 안테나 별로 별도의 참조 신호가 존재하여야 한다.
[112] 이동 통신 시스템에서 참조신호 (RS)는 그 목적에 따라 크게 두 가지로 구분 될 수 있다. 하나는 채널 정보 획득을 위해 사용되는 RS 이고, 다른 하나는 데이터 복조를 위해 사용되는 RS 이다. 전자는 단말이 하향 링크 채널 정보를 획득하도록 하 기 위한 RS 이므로 광대역으로 전송되어야 하고, 특정 서브프레임에서 하향링크 데이 터를 수신하지 않는 단말이라도 해당 RS 를 수신하고 측정할 수 있어야 한다. 이러한 RS 는 핸드 오버 등을 위한 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크 를 보낼 때 해당 자원에 함께 보내는 RS 로서, 단말은 해당 RS 를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이러한 RS 는 데이터가 전송되는 영역에 전송되어야 한다. [113] 기존의 3GPP LTE (예를 들어, 3GPP LTE 릴리즈 -8) 시스템에서는 유니캐스트 (unicast) 서비스를 위해서 2 가지 종류의 하향링크 RS 를 정의한다. 그 중 하나는 공용 참조신호 (Common RS; CRS)이고, 다른 하나는 전용 참조신호 (Dedicated RS; DRS) 이다. CRS 는 채널 상태에 대한 정보 획득 및 핸드오버 등을 위한 측정 등을 위해서 사용되고, 셀 -특정 (cell-specific) RS 라고 칭할 수도 있다. DRS 는 데이터 복조를 위 해 사용되고, 단말—특정 (UE-specific) RS 라고 칭할 수도 있다. 기존의 3GPPLTE 시스 템에서 DRS 는 데이터 복조용으로만 사용되며 CRS 는 채널 정보 획득 및 데이터 복조 의 두 가지 목적으로 다 사용될 수 있다.
[114] CRS는 셀-특정으로 전송되는 RS 이며, 광대역 (wideband)에 대해서 매 서브프 레임마다 전송된다. CRS 는 기지국의 전송 안테나 개수에 따라서 최대 4 개의 안테나 포트에 대해서 전송될 수 있다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다.
[115] 도 6 은 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 하나의 자원블 록 (일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 X 주파수 상으로 12 부반송 파) 상에서 CRS 및 DRS의 패턴을 나타내는 도면이다. 도 6에서 'R0', 'R1', 'R2' 및 *R3' 로 표시된 자원 요소 (RE)는, 각각 안테나 포트 인텍스 0, 1, 2 및 3에 대한 CRS 의 위치를 나타낸다. 한편, 도 6 에서 'D'로 표시된 자원 요소는 LTE 시스템에서 정 의되는 DRS의 위치를 나타낸다.
[116] LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서는, 하향링크에서 최대 8 개의 송신 안테나를 지원할 수 있다. 따라서, 최대 8 개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서의 하향링크 RS는 최대 4개의 안테나 포트에 대해서 만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4 개 이상 최대 8 개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트들에 대한 RS 가 추가적으로 정의되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS로서 , 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 고려되어야 한다.
[117] LTE-A 시스템을 설계함에 있어서 중요한 고려 사항 중 하나는 역방향 호환성 (backward compatibility)이다. 역방향 호환성이란, 기존의 LTE 단말이 LTE-A 시스템 에서도 올바르게 동작하도톡 지원하는 것을 의미한다. RS 전송 관점에서 보았을 때, LTE 표준에서 정의되어 있는 CRS 가 전 대역으로 매 서브프레임마다 전송되는 시간- 주파수 영역에 최대 8개의 송신 안테나 포트에 대한 RS를 추가하는 경우, RS 오버헤 드가 지나치게 커지게 된다. 따라서, 최대 8 안테나 포트에 대한 RS 를 새롭게 설계 함에 있어서 RS 오버헤드를 줄이는 것이 고려되어야 한다.
[118] LTE-A 시스템에서 새롭게 도입되는 RS 는 크게 2 가지로 분류할 수 있다. 그 중 하나는 전송 탱크, 변조및코딩기법 (Modulat ion and Coding Scheme ; MCS) , 프리코딩 행렬인덱스 (프리코딩 Matrix Index ; PMI ) 등의 선택을 위한 채널 측정 목적의 RS 인 채널상태정보-참조신호 (Channel State Informat ion RS; CSI-RS)이고, 다른 하나는 최 대 8 개의 전송 안테나를 통해 전송되는 데이터를 복조하기 위한 목적의 RS 인 복조- 참조신호 (DeModulat ion RS; DM RS)이다.
[119] 채널 측정 목적의 CSI-RS 는, 기존의 LTE 시스템에서의 CRS 가 채널 측정, 핸 드오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리, 채널 측정 위주의 목적을 위해서 설계되는 특징이 있다. 물론 CSI-RS 역시 핸드오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목 적으로만 전송되므로, 기존의 LTE 시스템에서의 CRS 와 달리, 매 서브프레임마다 전 송되지 않아도 된다. 따라서, CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 (예를 들어, 주기적으로) 전송되도록 설계될 수 있다.
[120] 만약 어떤 하향링크 서브프레임 상에서 데이터가 전송되는 경우에는, 데이터 전송이 스케줄링된 단말에게 전용으로 (dedicated) DM RS가 전송된다. 특정 단말 전용 의 DM RS 는, 해당 단말이 스케줄링된 자원영역, 즉 해당 단말에 대한 데이터가 전송 되는 시간-주파수 영역에서만 전송되도록 설계될 수 있다.
[121] 도 7 은 LTE-A 시스템에서 정의되는 DM RS 패턴의 일례를 나타내는 도면이다. 도 7 에서는 하향링크 데이터가 전송되는 하나의 자원블록 (일반 CP 의 경우, 시간 상 으로 14 개의 0FDM 심볼 X 주파수 상으로 12 부반송파) 상에서 DM RS 가 전송되는 자원요소의 위치를 나타낸다. DM RS 는 LTE-A 시스템에서 추가적으로 정의되는 4 개의 안테나 포트 (안테나 포트 인덱스 7, 8, 9 및 10)에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 DM RS 는 상이한 주파수 자원 (부반송파) 및 /또는 상이한 시간 자 원 (0FDM 심볼)에 위치하는 것으로 구분될 수 있다 (즉, FDM 및 /또는 TDM 방식으로 다 중화될 수 있다) . 또한, 동일한 시간-주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 DM RS 들은 서로 직교 코드 (orthogonal code)에 의해서 구분될 수 있다 (즉, CDM 방식으로 다중화될 수 있다) . 도 7 의 예시에서 DM RS CDM 그룹 1 로 표시된 자원요소 (RE) 들에는 안테나 포트 7 및 8 에 대한 DM RS 들이 위치할 수 있고 이들 은 직교 코드에 의해 다중화될 수 있다. 마찬가지로, 도 7 의 예시에서 DM RS 그룹 2 로 표시된 자원요소들에는 안테나 포트 9 및 10 에 대한 DM RS들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다.
[122] 도 8 은 LTE-A 시스템에서 정의되는 CSI-RS 패턴의 예시들을 나타내는 도면 이다. 도 8 에서는 하향링크 데이터가 전송되는 하나의 자원블록 (일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 X 주파수 상으로 12 부반송파) 상에서 CSI-RS 가 전 송되는 자원요소의 위치를 나타낸다. 어떤 하향링크 서브프레임에서 도 8(a) 내지 8(e) 중 하나의 CSI-RS 패턴이 이용될 수 있다. CSI-RS 는 LTE-A 시스템에서 추가적 으로 정의되는 8 개의 안테나 포트 (안테나 포트 인덱스 15, 16, 17, 18, 19 , 20, 21 및 22) 에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 CSI-RS 는 상이한 주 파수 자원 (부반송파) 및 /또는 상이한 시간 자원 (OFDM 심볼)에 위치하는 것으로 구분 될 수 있다 (즉, FDM 및 /또는 TDM 방식으로 다중화될 수 있다) . 또한, 동일한 시간-주 파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 CSI-RS 들은 서로 직교 코드 (orthogonal code)에 의해서 구분될 수 있다 (즉, CDM 방식으로 다중화될 수 있다) . 도 8(a) 의 예시에서 CSI-RS CDM 그룹 1 로 표시된 자원요소 (RE) 들에는 안테나 포트 15 및 16 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 2 로 표시된 자원요소들에는 안테나 포 트 17 및 18 에 대한 CSI— RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화 될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 3 으로 표시된 자원요소들에는 안 테나 포트 19 및 20 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 4 로 표시된 자원요소들에 는 안테나 포트 21 및 22 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a)를 기준으로 설명한 동일한 원리가 도 8(b) 내지 8(e)에 적용될 수 있다.
[123] 도 6 내지 8 의 RS 패턴들은 단지 예시적인 것이며, 본 발명의 다양한 실시 예들을 적용함에 있어서 특정 RS 패턴에 한정되는 것이 아니다. 즉, 도 6 내지 8 과 다른 RS 패턴이 정의 및 사용되는 경우에도 본 발명의 다양한 실시예들은 동일하게 적용될 수 있다.
[124] CSI-RS 설정 (conf igurat ion) [125] 단말에게 설정된 복수 개의 CSI-RS 와 복수 개의 IMR 중에서, 신호 측정을 위한 하나의 CSI-RS 자원과, 간섭 measure 를 위한 하나의 Interference measurement resource ( IMR)을 연관하여 (associat ion) 하나의 CSI 프로세스가 정의될 수 있다. 단 말은 서로 다른 CSI 프로세스로부터 유도된 CSI 정보는 독립적인 주기 와 서브프레임 오프셋 (subframe of fset )을 가지고 네트워크 (예를 들어, 기지국)로 피드백 된다.
[126] 즉, 각각의 CSI 프로세스는 독립적인 CSI 피드백 설정을 갖는다. 이러한 CSI-RS resource와 IMR resource associ at ion 정보 및 CSI 피드백 설정등은 CSI 프로 세스 별로 RRC 등의 상위 계층 시그널링을 통해 기지국이 단말에게 알려줄 수 있다. 예를 들어, 단말은 표 1 과 같은 세 개의 CSI 프로세스를 설정 (설정)받는다고 가정한 다.
[127] 【표 1】
Figure imgf000019_0001
[128] 표 1에서 CSI-RS 0와 CSI-RS 1은 각각 단말의 serving 셀인 셀 1으로부터 수 신하는 CSI-RS와 협력에 참여하는 이웃 샐인 셀 2로부터 수신하는 CSI-RS를 나타낸 다. 만약 표 1 의 각각의 CSI 프로세스에 대하여 설정된 IMR 에 대하여 표 2 와 같이 설정되었다고 가정한다면,
[129] 【표 2]
Figure imgf000019_0002
[130] IMR 0에서 샐 1은 mut ing을 셀 2는 데이터 송신을 수행하며, 단말은 IMR 0 로부터 셀 1 을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. 마찬가지로, IMR 1에서 셀 2는 mut ing을 셀 1는 데이터 송신을 수행하며, 단말은 IMR 1 로부터 셀 2 을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. 또한, IMR 2 에서 셀 1 과 셀 2 모두 mut ing을 수행하며 , 단말은 IMR 2 로부터 샐 1과 샐 2을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. [131] 따라서 , 표 1 및 표 2 에서 나타낸 바와 같이 CSI 프로세스 0 의 CSI 정보는 샐 1으로부터 데이터를 수신하는 경우 최적 RI , PMI , CQI 정보를 나타낸다. CSI 프로 세스 1의 CSI 정보는 샐 2으로부터 데이터를 수신하는 경우 최적 RI , PMI , CQI 정보 를 나타낸다. CSI 프로세스 2 의 CSI 정보는 셀 1 으로부터 데이터를 수신하고, 셀 2 로부터 간섭을 전혀 받지 않는 경우 최적 RI , PMI , CQI 정보를 나타낸다.
[132] 하나의 단말에게 설정 (설정)된 복수의 CSI 프로세스는 서로 종속적인 값을 공유하는 것이 바람직하다. 예를 들어, 셀 1과 셀 2의 JT(joint transmi ssion)의 경 우, 샐 1의 채널을 시그널 파트 (signal part )로 간주하는 CSI 프로세스 1과 셀 2의 채널을 시그널 파트 (signal part )로 간주하는 CSI 로세스 2가 한 단말에게 설정 (설 정)되었을 경우 CSI 프로세스 1과 CSI 프로세스 2의 탱크 (rank) 및 선택된 서브밴드 인덱스가 같아야 JT스케줄링이 용이하다.
[133] CSI-RS 가 전송되는 주기나 패턴은 기지국이 설정 (conf igurat ion) 할 수 있다. CSI-RS 를 측정하기 위해서 단말은 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI— RS 설정 (conf igurat ion)을 알고 있어야 한다. CSI-RS 설정에는, CSI-RS 가 전송되는 하향링크 서브프레임 인덱스, 전송 서브프레임 내에서 CSI-RS 자 원요소 (RE)의 시간-주파수 위치 (예를 들어, 도 8(a) 내지 8(e)와 같은 CSI-RS 패턴)ᅳ 그리고 CSI-RS 시퀀스 (CSI-RS 용도로 사용되는 시퀀스로서, 슬롯 번호, 셀 ID, CP 길 이 등에 기초하여 소정의 규칙에 따라 유사 -랜덤 (pseudo-random)하게 생성됨 ) 등이 포함될 수 있다. 즉, 임의의 (given) 기지국에서 복수개의 CSI-RS 설정 (conf igurat ion)이 사용될 수 있고, 기지국은 복수개의 CSI-RS 설정 중에서 샐 내의 단말 (들)에 대해 사용될 CSI-RS 설정을 알려줄 수 있다.
[134] 또한, 각각의 안테나 포트에 대한 CSI-RS 는 구별될 필요가 있으므로, 각각 의 안테나 포트에 대한 CSI— RS 가 전송되는 자원은 서로 직교 (orthogonal )해야 한다. 도 8 과 관련하여 설명한 바와 같이, 각각의 안테나 포트에 대한 CSI-RS 들은 직교하 는 주파수 자원, 직교하는 시간 자원 및 /또는 직교하는 코드 자원을 이용하여 FDM, TDM 및 /또는 CDM 방식으로 다중화될 수 있다.
[135] CSI-RS 에 관한 정보 (CSI-RS 설정 (conf igurat ion) )를 기지국이 셀 내의 단말 들에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS 가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, 시간에 대한 정보에는, CSI-RS 가 전송되는 서브프레임 번호들 CSI-RS 가 전송되는 주기, CSI-RS가 전송되는 서브프레임 오프셋, 특정 안테나의 CSI-RS 자원요소 (RE)가 전송되는 OFDM 심볼 번호 등^포함될 수 있다. 주파수에 대한 정보에는 특정 안테나의 CSI-RS 자원요소 (RE)가 전송되는 주파수 간격 (spacing) , 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 포함될 수 있다.
[136] 도 9 는 CSI-RS 가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이 5 다. CSI-RS는 한 서브프레임의 정수 배의 주기 (예를 들어, 5 서브프레임 주기, 10 서 브프레임 주기, 20 서브프레임 주기, 40 서브프레임 주기 또는 80 서브프레임 주기) 를 가지고 주기적으로 전송될 수 있다.
[137] 도 9 에서는 하나의 무선 프레임이 10 개의 서브프레임 (서브프레임 번호 0 내지 9)로 구성되는 것을 도시한다. 도 9 에서는, 예를 들어, 기지국의 CSI-RS 의 전
10 송 주기가 10ms (즉, 10 서브프레임) 이고, CSI-RS 전송 오프셋 (Offset )은 3 인 경우 를 도시한다. 여러 셀들의 CSI-RS 가 시간 상에서 고르게 분포할 수 있도톡 상기 오 프셋 값은 기지국마다 각각 다른 값을 가질 수 있다. 10ms의 주기로 CSI-RS가 전송되 는 경우, 오프셋 값은 0~9 중 하나를 가질 수 있다. 이와 유사하게, 예를 들어 5ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~4 중 하나의 값을 가질 수 있고,
15 20ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~19 중 하나의 값올 가질 수 있고, 40ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~39 중 하나의 값을 가 질 수 있으며, 80ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~79 중 하나의 값을 가질 수 있다. 이 오프셋 값은, 소정의 주기로 CSI-RS 를 전송하는 기지국이 CSI-RS 전송을 시작하는 서브프레임의 값을 나타낸다. 기지국이 CSI-RS 의 전송 주기 0 와 오프셋 값을 알려주면, 단말은 그 값을 이용하여 해당 서브프레임 위치에서 기지 국의 CSI-RS 를 수신할 수 있다. 단말은 수신한 CSI-RS 를 통해 채널을 측정하고 그 결과로서 CQI , PMI 및 /또는 RI (Rank Indicator) 와 같은 정보를 기지국에게 보고할 수 있다. 본 문서에서 CQI , PMI 및 RI 를 구별하여 설명하는 경우를 제외하고, 이들올 통칭하여 CQI (또는 CSI ) 라 칭할 수 있다. 또한, CSI-RS 전송 주기 및 오프셋은 5 CSI-RS 설정 (conf igurat ion) 별로 별도로 지정될 수 있다.
[138] 도 10 은 CSI— RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도 면이다. 도 10 에서는 하나의 무선 프레임이 10 개의 서브프레임 (서브프레임 번호 0 내지 9)으로 구성되는 것을 도시한다. 도 10 에서와 같이 CSI-RS 가 전송되는 서브프 레임은 특정 패턴으로 나타날 수 있다. 예를 들어, CSI-RS 전송 패턴이 10 서브프레 0 임 단위로 구성될 수 있고, 각각의 서브프레임에서 CSI-RS 전송 여부를 1 비트 지시 자로 지정할 수 있다. 도 10 의 예시에서는 10 개의 서브프레임 (서브프레임 인덱스 0 내지 9) 내의 서브프레임 인덱스 3 및 4 에서 전송되는 CSI-RS 패턴을 도시하고 있다. 이러한 지시자는 상위 계층 시그널링을 통해 단말에게 제공될 수 있다.
[139] CSI-RS 전송에 대한 설정 (conf igurat ion)은 전술한 바와 같이 다양하게 구성 될 수 있으며, 단말이 올바르게 CSI-RS 를 수신하여 채널 측정을 수행하도록 하기 위 해서는, 기지국이 CSI-RS 설정을 단말에게 알려줄 필요가 있다. CSI-RS 설정을 단말 에게 알려주는 본 발명의 실시예들에 대해서 이하에서 설명한다
[140] RF 단의 구성
[141] 도 11은 무선 접속 시스템에서 이용되는 RF 수신부의 일례를 도시한다.
[142] 도 11 을 참조하면, 먼저 안테나 (Antenna, 1101)는 공기중의 전자기파 신호를 수신하여 도선상의 전기적 변화로 전달해준다.
[143] 다음으로, 안테나로 수신된 신호는 잡스런 주파수들이 섞여 있으므로, 대역 선택 필터 (Band select f i l ter , 1102)는 원하는 주파수 대역만 증폭시켜 줄 수 있도록 대역 통과 필터링을 한다. 대역 선택 필터는 채널을 여러 개 쓰는 경우 채널들 전체 ( in-band)를 통과시켜 주어야 하며, 동일한 안테나를 이용하는 경우에는 Duplexer 가 Band select f i l ter 역할 겸할 수 있다.
[144] 다음으로, LNA Low Noi se Ampl i f ier , 1103)은 공기중의 잡음이 묻어은 수신신 호를 증폭할 때 잡음까지 증폭되는 것을 최대한 억제하면서 신호가 증폭될 수 있도 록 한다.
[145] 다음으로, IRF lmage Reject Fi lter , 1104)는 LNA 에서 증폭된 신호중에서 치 명적인 image frequency가 Mixer로 전달되는 것올 막기 위해 다시 한번 대역통과 필 터링을 수행한다. 부가적으로 부가적으로 Spur ious 주파수들을 제거하고 RF 단과 IF 단을 분리하여 수신부의 안정성을 도모한다.
[146] 다음으로, RF down mixer (1105)는 저 잡음 증폭된 RF신호를 IF 대역으로 주 파수를 하향 변환해 준다.
[147] 다음으로, RF Local Osci l lator (RF L0, 1106)은 RF down mixer 에 주파수 합 성을 위한 L0 주파수를 공급한다. 채널 선택이 필요한 통신의 경우에는 L0 주파수를 변화시켜 채널 선택을 할 수 있다.
[148] 다음으로, Phase Locked Loop (PLL, 1107)은 RF L0의 출력 주파수가 흔들리지 않고 일정한 주파수에서 고정될 수 있도록 잡아준다. 즉, Control 입력을 통해 RF L0 로 사용되는 VC0 의 전압을 정교하게 조절해서 RF L0 출력 주파수를 원하는 주파수로 이동하고 고정시켜주는 주파수 튜닝 역할을 한다.
[149] 다음으로, IF 주파수로 변환된 신호들은 여러 채널들을 포함하고 있는데, 채 널 선택 필터 (Channel select f i l ter , 1108)는 이들 중에서 원하는 채널만을 대역통과 필터링하여 선택한다. 각 채널간의 간격은 대부분 좁기 때문에, 스커트 특성이 좋은 필터가 필요하다.
[150] RF단의 LNA만으로는 미약한 수신신호를 층분히 증폭시킬 수 없기 때문에 , 채 널 필터링을 거친 후에 IF AMP 를 통해 상당량의 신호 증폭을 수행해야 한다. 정교한 전력 조절이 필요한 경우 IF 증폭기 (ampl i f ier) (1109)는 IF AMP의 Gain을 VGA나 AGC 등 임의로 조절한다.
[151] 다음으로, IF Down mixer(lllO)는 IF 단에서 채널선택과 증폭올 마무리하고, 캐리어 주파수를 제거하여 원래 신호가 담긴 주파수 대역인 Baseband 로 변한다. 즉ᅳ 하향변환 Mixing을 수행한다.
[152] 다음으로, IF Local Osci l lator ( IF L0)는 IF를 Baseband로 변환하기 위한 IF Mixer에 L0주파수를 공급한다. L0주파수를 고정 시키기 위해 IF PLL이 부가적으로 이용할 수 있다.
[153] 도 12는 무선 접속 시스템에서 이용되는 RF 송신부의 일례를 도시한다.
[154] 먼저 구동 증폭기 (Drive Ampl i f ier , DA, 1201)를 설명한다. Tx단은 Rx 단과 달 리 일정한 입력신호를 가지고 있다. 입력 신호를 상당히 큰 전력의 신호로 증폭시켜 야 하는 역할을 담당하는 PA(Power Amp)는 구조상 층분한 Gain 을 가지고 있지 못한 경우가 많다. 또한 Power AMP 가 층분한 전력으로 증폭하기 위해서는 입력 신호 역시 어느 정도 수준의 전력을 가져야 한다. Drive AMP는 Power amp의 Gain부족을 해결하 고, 동시에 PA에 층분한 입력 전력을 만들어 주는 역할을 한다.
[155] 다음으로, BSF(Band Select Fi l ter , 1202)를 설명한다. Drive Amp는 비선형성 을 가진 증폭기이기 때문에 불필요한 주파수 출력성분이 나타날 수 있다. 그러한 주 파수 성분이 PA 에서 증폭되는 것을 피하기 위해 BSF 는 사용 중인 채널 대역들만 통 과시킨다.
[156] 다음으로 전력 증폭기 (Power Ampl i f ier , PA, 1203)는 RF , Tx 부에서 가장 중 요한 구성이다. PA 는 최종단에서 층분한 전력을 가진 신호를 내보낼 수 있도록 전력 증폭하는 기능을 수행한다. [157] 다음으로, Isolator를 설명한다. 송신단은 신호를 받는 단이 아니지만 안테나 를 통해 신호가 역으로 유입될 가능성이 존재하기 때문에, 특정 방향으로만 신호가 전달될 수 있도록 신호의 반향을 고정할 필요가 있다. 출력방향으로는 신호가 흐르고, 역방향으로 들어온 신호는 Terminat ion 시켜서 신호가 역으로 전달되지 않도록 한다. 즉, 신호가 역으로 유입되어 PA 출력단의 임피던스를 교란시키는 것을 막아서 PA 가 파손되는 것을 방지할 수 있다.
[158] 다음으로, BSF(Band Select Fi lter , 1205)를 설명한다. Drive Amp단과 마찬가 지로 비선형 증폭기 후단에 비선형적인 spurious 주파수 성분들이 나타날 수 있으므 로, 그 것들을 잘라내고 원하는 주파수 대역만 외부로 방출하기 위해 마지막으로 대 역 통과 필터링을 수행한다. 수신단과 안테나를 공유하는 시스템이라면 Duplexer 가 이 역할을 겸할 수 있다.
[159] 다음으로, 안테나 (Antenna, 1206)는 최종적으로 도선상의 전기적 신호 변화를 공기중의 전자기파로 복사 (Radiat ion) 시키는 역할을 한다.
[160] 이하에서는, 듀플렉서 (Duplexer)와 디플렉서 (Diplexer)를 설명한다.
[161] 멀티플렉스 (Mul t iplex)는 여러 개의 신호가 공유되고 분배되는 것이고, 멀 티 플렉서 (Mult iplexer)는 하나의 선로를 통해 여러 신호를 보내고, 그것을 다시 모 으거나 분배하는 구성을 말한다.
[162] 듀플렉스 (Duplex)는 하나의 경로를 두 개 신호를 공유하는 것이다. 하나의 시스템에서 두 개의 신호라면 보통 송신신호와 수신신호의 두 가지를 지칭한다. 하나 의 전송 선로나 안테나를 이용하여 송수신 신호가 함께 공유되는 방식으로 TDD, FDD 를 들 수 있다. FDD 방식에서 송신 주파수와 수신 주파수를 하나의 안테나에 공유하 고자 할 때, 송신단과 수신단, 그리고 안테나의 3 단이 서로 섞이지 않고 원하는 대 로만 흘러가도록 정리하기 위해서 듀플렉서가 필요하다. 즉, 듀플렉서는 같은 안테나 를 이용하면서 송신단과 수신단을 분기하는 역할을 수행한다. 듀플렉서를 이용함으로 써 하나의 안테나로 송수신단을 소화하여 안테나를 효율적으로 공유할 수 있다.
[163] 도 13은 듀플렉서 구성의 일례이다. 도 13을 참조하면, 듀플렉서는 송신단 주 파수만 통과시키는 BPF (대역통과 필터)와 수신단 주파수만 통과시키는 BPF 를 붙인 후, 그 중간을 안테나와 적절히 매칭하여 구성할 수 있다.
[164] 도 14는 듀플렉서를 주파수 대역으로 도시한 일례이다. S21와 S13는 안테나 포트 1 로부터 포트 2 및 포트 3 로의 전력 전달을 나타낸다. 필터 특성에 의해 각각 의 BPF 통과주파수에서 높은 통과도를 가질 수 있다. S23 은 송신단과 수신단간의 전 력전달을 의미 한다. 송 /수신 주파수 대역 모두에서 최하로 억압된다.
[165] 디플렉서 (Diplexer)는 같은 안테나를 이용하면서 송신단과 수신단을 분기하 는 것을 말한다. 디플렉서는 LPF와 HPF를 이용하여 구성될 수 있다. 예를 들면, 유선 경로를 이용하여 신호를 송수신하는 경우, 차폐된 선로 내에 다른 주파수 없이 송신 신호와 수신신호 두 가지만 존재하는 경우에 이용될 수 있다. 또한, Mul t i -band 단말 기에서 800MHz 대의 Cel lular CDMA와 8GHz 대의 PCS CDMA를 동시에 소화 하는 경우 에도 이용될 수 있다.
[166] 이하에서는 위상 이동기 (Phase shi ft )에 대해서 설명한다.
[167] 위상 이동기는 신호의 위상을 전기적 혹은 기계적인 방법으로 변화시키는 것 을 말한다. Phase Array Antenna의 범제어와 위상변조 등 RF 아날로그 신호 처리단에 서 이용될 수 있다.
[168] 위상을 바꾸는 첫번째 방법으로 기계적으로 선로의 길이를 바꾸는 방법을 들 수 있다. 예를 들면, 두 개의 금속 동축선로가 겹쳐진 구조에서, 한쪽의 동축 파이프 를 넣었다 뺐다 하면서 신축시켜 구현할 수 있다. 이러한 방법은 연속적으로 위상을 바꿀 수 있고 저손실의 장점이 있다. 반면, 기계적이므로 위상을 바꾸는데 시간이 걸 리고 크기가 큰 단점이 있다.
[169] 위상을 바꾸는 두번째 방법으로 선로 변환 방식이 있다. 이는, 전기적으로 길이를 바꾸는 위상천이 방법의 하나이다. 길이가 다른 복수의 전송선로를 배치하고, 스위치로 경로를 바꾸어 구현할 수 있다. 이 방법은 소형화가 가능하고 위상변환 시 간이 매우 짧은 장점이 있다. 반면, 디지털 방식이므로 연속적인 위상값의 변화가 불 가능하고, 기계식에 비해 손실이 큰 단점이 있다. 예를 들면, 선로 변환 방식의 4bit 위상 천이기는 0 ~ 337.5까지 22.5의 단위로 위상올 변화 시킬 수 있다.
[170] 위상을 바꾸는 세번째 방법으로 반사 이용 방식이 있다. 반사 이용 방식도 마찬가지로 전기적으로 길이를 바꾸는 위상천이 방법의 하나이다. 빛이 어딘가에 부 딪치면 반사되어 위상이 바뀌게 되는 원리와 마찬가지로 전기 신호는 임피던스가 변 화하는 지점에서 반사가 일어나 위상 변화한다. 구체적으로, 전송 선로 중간에 연결 한 소자 값에 따라 삽입위상을 조절할 수 있다. 이 방법은 삽입 손실이 악화되고 임 피던스 특성도 악화되는 단점이 있다. [171] 위상을 바꾸는 네번째 방법으로 Loaded Line Type 또는 Hybrid Coupled Type 이 있다. 이들도 전기적으로 길이를 바꾸는 위상천이 방법의 하나이다. 이는 디지털 방식의 위산 천이기로 자주 이용된다. Loaded Line Type 은 위상 천이량이 45 Ω 이하 인 위상천이기에 이용되고, Hybrid Coupled Type 은 위상 천이량이 45 s 이상인 위상 천이기에 이용된다. 예를 들면, PIN 다이오드를 on/of f 시켰을 때의 리액턴스 변화를 이용하여 위상을 가변시킬 수 있다.
[172] 위상을 바꾸는 다섯번째 방법으로 Vector Modulator Phase Shi fter을 들 수 있 다ᅳ 이는 직교하는 두 성분의 크기를 원하는 위상에 따라 조정하여 합성기에서 만나 게 해줌으로써, 필요한 위상을 가지는 신호를 얻는 방식이다.
[173] 하이브리드 범포밍 (Hybrid Beamforming)
[174] 도 15 및 도 16은 디지털 범포밍을 수행할 수 있는 송신단 및 수신단 구성의 일례이다.
[175] 디지털 빔포밍 기법은 Baseband 단에서 신호 처리 기법을 적용하여 각 안테 나 포트 별로 빔 형성을 위한 위상 및 크기를 변화시킨다. 이러한 디지털 빔포밍 기 법은 주파수 대역 별로 독립적인 범형성과 정교한 빔형성을 할 수 있는 장점이 있다. 따라세 디지털 범포밍 기법은 각 안테나 포트 별로 독립적인 Baseband 신호 처리 블 록이 요구된다.
[176] 도 17 및 도 18 은 아날로그 범포밍을 수행할 수 있는 송신단 및 수신단 구성 의 일례이다.
[177] 아날로그 빔포밍 기법은 Baseband 에서 전달된 신호를 RF 단에서 각 안테나 요소 별로 위상 및 크기 값을 변화 시켜 범을 형성하는 것을 특징으로 한다. 범형성 이 RF 단에서 이루어지기 때문에 상대적으로 적은 수의 Baseband 신호 처리 블록을 사용하여 Baseband 하드웨어 복잡도가 낮아지는 장점이 있다. 반면, 아날로그 범포밍 기법은 시간 축으로 가변적인 빔형성을 적용하고 주파수 축으로는 전대역에 동일한 범형성이 적용되어 빔포밍 자유도가 낮고ᅳ 생성된 범의 정확도가 낮은 단점이 있다.
[178] Massive MIM0 기반의 무선통신은 다중 안테나를 적용하여 신호 품질 성능을 개선하고, 에너지 효율을 향상시키며 다중 사용자 간섭을 제거할 수 있는 등의 장점 이 있다. 안테나의 수가 많아 질 수록 이러한 장점을 많이 얻을 수 있지만, 반면에 안테나 수가 증가할 수록 Baseband 신호 처리 블톡의 수도 증가하여 신호처리 및 하 드웨어 복잡도가 증가되는 단점이 있다. [179] 하드웨어 복잡도를 낮추면서도 Massive MIM0 의 이득은 유지하기 위한 방안으 로 디지털 범포밍 방법과 아날로그 빔포밍 방법이 결합된 하이브리드 빔포밍 방법이 제안되었다.
[180] 디지털 범포밍 방법은 주파수 대역 별로 서로 다른 범형성을 할 수 있는 자 유도가 높다. 하지만, 사용되는 주파수 대역에 동일한 범을 형성하는 아날로그 범포 밍 방법을 디지털 범포밍 방법에 결합하는 경우, 디지털 범포밍 방법만을 사용하는 경우 보다는 빔형성에 대한 자유도가 낮아진다. 이는 다중사용자 전송의 자유도를 낮 추게 되고, 동시에 Massive MIM0를 통해서 얻을 수 있는 다중 사용자 이득이 낮아지 는 결과로 이어 질 수 있게 된다.
[181] 따라서 하이브리드 빔형성이 적용되는 경우, 다중 사용자 전송 자유도를 유 지할 수 있는 최적 범포밍 계수 선택 방법이 요구된다.
[182] 제 1 실시예
[183] 본 발명의 제 1 실시예는 다중 사용자 전송을 위한 하이브리드 범포밍 방법에 대한 것이다.
[184] 하이브리드 빔포밍은 Analog beamforming과 Digi tal beamforming을 동시에 수 행하는 것을 특징으로 한다. Massive MIMO system 에 하이브리드 범포밍을 도입할 때 중요한 것은 Beam 의 Resolut ion 을 유지하는 것과 Massive 다중 사용자 전송의 자유 도를 유지하는 것이다. 제 1 실시예에서는 두 가지 요구 사항올 만족하기 위한 하이 브리드 범포밍 방법에 대해서 기술한다.
[185] 먼저, 아날로그 범포밍을 설명한다. 아날로그 빔포밍은 Phase shi fter를 갖는 RF 를 사용한다. 아날로그 빔포밍은 다수의 안테나 Element 들이 방사하는 Beam 들을 중첩시켜 특정 방향으로 에너지를 집중 시켜 Sharp 한 Beam (도너츠 형태 혹은 펜슬 형태) 이 되도톡 한다. 여기서, Phase shi ft 의 값을 변경하여 범형성 방향을 조절할 수 있다.
[186] 아날로그 빔포밍 은 하나의 Analog 신호에 위상 변화를 가해 다수의 안테나 를 통해 전송 또는 수신하도록 한다. 아날로그 범포밍은 시간에 따라 가변적인 위상 변화가 가능하다. 반면 Analog domain 에서 '신호의 위상을 변화하기 때문에, 동일 시 간에 전송 대역을 공유하는 신호들은 동일한 위상을 갖게 된다. 즉, 광대역 전송이 수행되고, 협대역 빔형성은 어렵게 된다. [187] 아날로그 범포밍 을 위해 N 개의 독립적인 Phase shi fter 를 사용한다면, 동 시에 공간적으로 구분 가능한 N 개의 독립적인 beam 을 형성할 수 있다. 독립적으로 형성된 N개의 Beam을 한 명의 사용자에게 할당하여 N개의 Path를 형성하도톡 할 수 있으며, N 명의 다중 사용자에게 각각 할당하여 다중 사용자 전송을 할 수도 있다. N 개의 Beam 을 통해 N 개의 서로 다른 Data 를 전송하기 위해서는 N 개의 독립적인 Baseband가 요구된다.
[188] 다음으로, 디지털 범포밍을 설명한다. 디지털 빔포밍은 Passive Antenna를 사 용하는 MIM0 전송과 연관된다.
[189] Passive Antenna를 사용하는 MIM0 전송을 살펴 보면, 다수의 Passive Antenna 가 방사하는 Broad한 Beam 들을 Digi tal Processing으로 중첩시켜 특정 방향으로 에 너지를 집중 시켜 Sharp 한 Beam 이 되도록 한다. Beamforming 에 의해 생성된 Sharp 한 Beam들은 Passive Antenna에 의해 형성된 Broad한 Beam이 전송되는 방위각 범위 에서 생성된다.
[190] Passive Antenna를 사용하는 MIMO system에서 Digi tal beamforming은, Digi tal domain processing을 사용하여 Passive Antenna에 의해 형성된 Beam들을 결합하여 지 향성을 준다. 이러한 지향성은 협대역별로 독립적으로 수행할 수 있다. 또한 Digi tal Beamforming은 Digital domain에서 계수를 조정하기 때문에 Resolut ion이 좋은 Beam 을 형성할 수 있다.
[191] Passive Antenna를 사용하는 J-MIM0 전송은, 다수의 Passive Antenna 에 의 해 형성된 Broad한 Beam들을 Digi tal Processing 중첩하여 다수의 Sharp한 Beam들을 생성한다. 이후, 특정 사용자들에게 전송할 때 사용자간 간접을 줄이기 위하여 가능 한 직교하는 Beam들을 선택적으로 사용하여 동시 전송을 수행한다. 즉, 다중 사용자 전송 시 Analog domain의 Beam은 공간적인 구분을 하지 않고, Digi tal Beamformer에 의 해서 생성된 Beam을 사용하여 공간적 구분을 한다.
[192] 상술한 아날로그 빔포밍과 디지털 빔포밍을 기반으로 다중 사용자 전송을 직 원하기 위한 하이브리드 범포밍 (hybrid beamforming) 방법을 설명한다.
[193] hybr id beamforming 에서 Beamforming 가중치 계산에 대한 자유도는 Digi tal domain 뿐만 아니라 Analog domain에서도 가진다 . Baseband operat ion을 통해 Digi tal beamforming을 수행하는 MIM0 시스템에서 Analog beamforming을 수행할 수 있도록 안 테나 엘리먼트에 가변적인 Phase shi fter 와 전력 증폭기를 갖는 RF 를 도입하면 Digital Beamforming 과 Analog Beamforming 을 동시에 수행할 수 있는 Hybrid beamforming을 구현할 수 있다.
[194] 기존에 hybrid beamforming 와 연관된 기술은 주로 단일 사용자 관점에서 hybrid beamforming 의 최적 가중치 결정에 초점을 맞추고 있다. hybr id beamforming 연구들에서는 Digi tal domain 과 Analog domain 의 Weight 을 동시에 고려하여 최적 Weight 을 산출하는 방법들이 제안되었다. 이러한 연구들에서는 단일 사용자 관점에 서 최적 Weight 을 산출하는 것에 초점을 맞추고 있다. 또한 Analog domain 에서 mult iple beam을 생성하는 것은 다중 경로 전송의 Energy를 모으기 위한 목적으로 사 용한 다는 것을 가정하고 최적 Beamforming Weight을 산출한다.
[195] 기존에 연구된 단일 사용자 관점의 hybrid beamforming의 최적 가중치를 다중 사용자 전송에 사용하기에는 어려움이 있다. 시간 영역에서 수행되는 Beamforming 의 경우 단일 사용자를 대표하는 Beamforming 일 수 있기 때문에, 사용자 별로 채널 상 황이 모두 다른 다중 사용자 전송이 고려되는 경우, 단일 사용자를 고려한 Beamforming weight을 산출하는 방식은 적용하기 어렵게 된다.
[196] 따라서, Massive MIM0 의 이점인 다수 다중 사용자 전송을 지원하기 위한 Hybrid beamforming 방법에 대한 연구가 요청된다.
[197] 이하에서는 본 발명에 따른 실시예들에서 가정하는 안테나 유형과 빔포밍 방 법을 설명한다.
[198] 도 19 는 하나의 트랜시버와 하나의 PA를 이용하는 Individual안테나의 구조 의 일례를 도시한다.
[199] 도 19를 참조하면, K(=N)개 Antenna element , N개 TRX( trance iver)가 이용된 다. 각 TRX는 하나의 Antenna Element와 Mapping되며 , 또한 각 TRX는 하나의 PA를 갖는다. 도 19 의 구조에서 N 개의 Antenna Element 를 사용하여 Ful l Digi tal Beamforming을 수행할 수 있다.
[200] 도 20 은 하나의 트랜시버와 복수의 PS/PA 를 이용하는 Individual 안테나의 구조의 일례를 도시한다.
[201] 도 20을 참조하면, K (> N) 개 Antenna element , N개 TRX 및 TRX별 독립적인 Antenna가 이용된다. 각 TRX는 M개의 Antenna element와 Mapping 되며 , 또한 각 TRX 는 M개의 PS/PA를 갖는다. M개의 Antenna element 를 사용하여 Analog Beamforming 을 수행하며 N개의 TRX를 이용하여 Digi tal Beamforming을 수행한다. [202] 도 21 은 하나의 트랜시버와 복수의 PS/PA를 이용하는 shared 안테나의 구조 의 일례를 도시한다.
[203] 도 21 을 참조하면, K (> N) 개 Antenna element , N 개 TRX를 이용하고, TRX 간 Antenna 공유한다. 각 TRX 는 M 개의 Antenna element 와 Mapping 되며, 또한 각 TRX는 M개의 PS/PA를 갖는다 . M개의 Antenna element를 사용하여 Analog Beamforming 을 수행하며 N개의 TRX를 이용하여 Digi tal Beamforming을 수행한다. 여기서 , 하나 의 Antenna를 통해 다수의 Analog Beamforming을 수행할 수 있다.
[204] 도 22는 하나의 트랜시버와 복수의 PS/PA를 이용하며 Individual안테나를 이 용하는 구조의 일례를 도시한다.
[205] 도 22 를 참조하면, K (> N) 개 Antenna element , N 개 TRX, TRX 별 독립적인 Antenna가 이용된다. 각 TRX는 M개의 Antenna element와 Mapping 되며 , 또한 각 TRX 는 M개의 PS/PA를 갖는다. 도 20과 달리 송신단은 Mul t iple PS/PA가 있는 반면 수 신단은 Single RF Receiver를 갖는다. TX단에서 M개의 Antenna element를 사용하여 Analog Beamforming을 수행하며 N개의 TRX를 이용하여 Digi tal Beamforming을 수행 한다. RX 단에서는 Fixed Beamforming 을 수행하며, N 개의 TRX 를 이용하여 Digi tal Beamforming을 수행한다.
[206] 도 23 은 하나의 트랜시버와 복수의 PS/PA 를 이용하는 shared 안테나 구조의 일례를 도시한다.
[207] 도 23 을 참조하면, K (> N) 개 Antenna element , N 개 TRX 를 이용하고, TRX 간 Antenna 를 공유한다. 각 TRX는 M개의 Antenna element와 Mapping 되며, 또한 각 TRX는 M개의 PS/PA를 갖는다. 도 21과 달리 송신단은 Mul t iple PS/PA가 있는 반면 , 수신단은 Single RF Receiver를 갖는다. Tx단에서 Μ개의 Antenna element를 사용하 여 Analog Beamforming을 수행하며 N개의 TRX를 이용하여 Digi tal Beamforming을 수 행한다. 또한, 하나의 Antenna를 통해 다수의 Analog Beamforming을 수행할 수 있다. RX 단에서는 Fixed Beamforming 을 수행하며, N 개의 TRX 를 이용하여 Digi tal Beamforming을 수행한다.
[208] 이하에서는, Hybrid Beamforming을 사용하여 다중 사용자를 구분하는 방법을 설명한다. 먼저, 넓은 지역을 여러개의 구역으로 나눈다. 구체적으로, Analog beamformer 를 사용하여 폭이 넓은 Beam 을 다수개 생성한다. 다음으로, 나눠진 구역 내에서는 좁은 지점으로 나눈다. 즉 유사한 곳을 지향하는 몇 개의 Analog beam 을 digi tal processing으로 합성하여, 폭이 좁은 Beam을 생성한다.
[209] 제 1-1 실시예
[210] 본 발명에 따른 제 1-1 실시예는 하이브리드 범포밍을 사용하여 다중 사용자 를 구분하는 방법에 대한 것이다.
[211] 도 24 는 본 발명에 따른 하이브리드 범포밍에서 다중 사용자를 구분하는 첫 번째 실시예를 도시한다.
[212] 먼저, Antenna Element를 묶어 Subgroup으로 구성한다. 예를 들면, 도 20 , 도 22와 같은 방법으로 Antenna Element 를 Subgroup으로 구성할 수 있다.
[213] 이후, Subgroup 별로 Analog beamforming을 수행한다. Subgroup 에서 형성되 —든——Analog Beam은 넓—은——범—폭을ᅳ 다「아^ 여러 공간을 구분할 수 있 도록 하기 위하여 다양한 방향으로 Beam을 형성한다 .
[214] Digi tal domain의 신호처리기는 Subgroup들이 만들어 내는 다수의 Beam이 합 성되도록 한다. Analog beam 이 지향하는 범위의 공간 안에 있는 사용자들 각각의 독 립적인 공간 채널 특성을 사용하여, 다수의 Beam 을 합성하기 위한 가중치를 생성할 수 있다. 이를 이용하여 다중 사용자들을 구분 할 수 있다.
[215] 예를 들어 Antenna subgroup #1-#4 에서 4 개의 독립적인 Beam 을 생성하면 (Analog beamforming) 4개의 독립적인 무선 채널을 형성할 수 있다. 4개의 무선 채널 은 4 개의 Antenna port 로 mapping 된다. 4 개의 Antenna port 를 지원하는 전송 Precoder를 사용하여 다중 Stream 전송 (digi tal beamforming)을 수행한다. .
[216] 도 25 는 본 발명에 따른 하이브리드 범포밍에서 다중 사용자를 구분하는 두 번째 실시예를 도시한다.
[217] 도 21 및 도 23 을 참조하면, 다수의 Phase Shi fter (PS) I Power Amp (PA)에 서 발생되는 신호는 합성되어, 하나의 Antenna Element 를 통해 전송된다. 각 PS/PA 별로 Analog Beamforming올 수행하며 , 공간을 구분하기 위하여 다양한 방향으로 Beam 을 형성한다. 즉, 다수의 PS/PA 가 사용되면 동시에 다양한 방향으로 Beam 을 형성할 수 있다.
[218] 또한 도 25와 같이 각 Antenna subgroup에 다수의 PS/PA를 구성할 수 있다. 이러한 경우 경우, 각 Antenna subgroup 별로 다수의 Beam을 형성할 수 있다. [219] Digi tal domain의 신호 처리기는 다수의 PS/PA 별로, DAC로부터 생성된 파형 이 서로 다른 Analog 신호 (독립적인 신호)로 전송될 수 있도록 신호를 생성할 수 있 다. Digi tal beamformer의 Precoding은 Antenna subgroup 및 다수의 PS/PA에서 생성 되는 Analog beam을 합성되도록 하는 역할을 한다.
[220] 예를 들어 , Antenna subgroup #1과 #2에서 각각 2개의 독립적인 Beam을 생 성하여 (Analog beamforming) 총 4개의 Beam이 생성될 때 (Analog beam) , 4개의 독 립적인 무선 채널을 형성할 수 있다. 4 개의 무선 채널은 4 개의 Antenna port 로 mapping된다. 4개의 Antenna port를 지원하는 전송 Precoder를 사용하여 다중 Stream 전송을 수행한다. (Digi tal beamforming)
[221] 제 1-2 실시예
[222] 본 발명에 따른 제 1-2 실시예는 다중 사용자 전송 시 효과적으로 하이브리드 범포밍을 위한 아날로그 범포밍 방법에 대한 것이다.
[223] 도 20 및 도 22 의 구조는 각 Subgroup 에 Beam 생성의 자유도를 갖도록 하여 각 Subgroup에서 서로 다른 방향의 Beam이 동시에 전송되도록 한다. 도 21 및 도 23 의 구조는 각 PS/PA 에 Beam 생성의 자유도를 갖도록 하여 각 PS/PA 에서 서로 다른 방향의 Beam 이 동시에 전송되도록 할 수 있다. 도 25 의 구조는 각 Subgroup 및 각 PS/PA에 Beam 생성의 자유도를 갖도록 하여 각 Subgroup 및 각 PS/PA에서 서로 다른 방향의 Beam이 동시에 전송되도톡 할 수 있다.
[224] 지역적으로 구분한다는 의미는 Analog beam이 지향하는 공간이 다르다는 것과 같은 의미다. Analog beam은 특정 방향으로 Energy를 집중 시켜 채널의 상태가 좋아 지도록 하는데 특징이 있다. 즉, Energy가 집중되는 지역과 그렇지 않은 지역은 채널 상태가 좋고 나쁨의 차이가 크게 된다. Beamforming 기법을 사용하여 Transmi ssion Point 가 cover 하는 지역 내에 있는 사용자들에게 신호를 전송하기 위하여 SDMA 와 TDMA 가 적용될 수 있다. 제 1-3 실시예에서는 다중 사용자 전송 시 효과적인 Hybr id beamforming을 위한 Analog beamforming 방법을 제안한다.
[225] 먼저 SDMA의 경우 다중 사용자 전송 시 효과적인 Hybr id beamforming을 위한 Analog beamforming 방법을 설명한다.
[226] SDMA 에서는 동일 시간에 다수의 beam 이 형성이 된다. 서로 다른 방향으로 Energy를 집중시키는 Beam을 동시에 전송한다면 서로 다른 Beam을 사용하여 다른 지 역에 있는 사용자들에게 적은 간섭으로 신호를 전송할 수 있게 된다. 그러나 많은 Subgroup에서 동시에 서로 다른 방향으로 많은 Beam을 사용하게 되면, Beam간 좁은 거리로 오히려 Beam 간 간섭이 발생할 가능성이 높아진다. 그렇다면 Subgroup 마다 서로 다른 Beam을 전송하기 보다는 Beam간 거리가 먼 Beam들을 선택하여 전송하도특 하여 Beam간 간섭을 피하는 방법을 취하는 것이 간섭을 줄이는데 효과적일 수 있다.
[227] SDMA에서 Subgroup들이 동시에 Beam을 전송하면서도 Beam간 거리가 먼 Beam 들을 선택적으로 전송하기 위한 첫번째 방법으로 적어도 2 개의 Subgroup 은 동일한 방향으로 Beam을 생성한다. Subgroup에 속한 각 PS/PA는 독립적인 Beam을 형성한다.
[228] SDMA에서 Subgroup들이 동시에 Beam을 전송하면서도 Beam간 거리가 먼 Beam 들을 선택적으로 전송하기 위한 두번째 방법으로 동일한 방향으로 Beam 을 형성하는 Subgroup들의 신호는 Digital beamforming을 사용하여 다중 자용자를 구분한다.
[229] 다음으로, TDMA의 경우 다중 사용자 전송 시 효과적인 Hybrid beamforming을 위한 Analog beamforming 방법을 설명한다.
[230] 한 방향으로 Energy 를 집중시키는 Beam 올 지속적으로 전송하는 경우 Transmission point가 cover하는 지역 안에서 채널 상태의 좋고, 나쁨의 퍼짐 정도가 Omni antenna를 사용하는 경우보다 더 크다. 이를 해소하기 위한 방법으로 시간 단위 로 Energy 를 집중하는 지역을 다르게 설정하는 것을 이용할 수 있다. 이 때, 각 Subgroup 마다 독립적으로 Beam 을 전송하고, 시간에 따라 각 Subgroup 이 전송하는 Beam 의 방향을 다르게 설정할 수 있다. 그러나 매 시간 마다 Beam 의 방향을 변경하 게 되는 경우, Measurement와 Report ing이 복잡해 지게 된다.
[231] 따라서, Measurement 와 CSI report ing 올 단순하게 하기 위한 첫번째 방법으 로 Subframe (Schedul ing 의 Time 영역 기본 단위) 기준으로 전송 Beam 방향을 변화 시킬 수 있다. 두번째 방법으로 전송 Beam 방향 변화에 따른 채널 상태 변화를 반영 하기 위하여 , 동일한 Measurement 를 수행하는 시간 단위를 지정할 수 있다. 예를 들 면, 동일한 Measurement를 수행하는 Subframe set을 Bi t map을 사용하여 정의하고, Higher layer signal 로 지시할 수 있다. 세번째 방법으로, 동일한 방향으로 Beam 을 생성하는 Subgroup들은, 시간에 따라 Beam을 변화 시킬 때에도 같은 Beamforming을 수행하는 Subgroup 조합을 유지할 수 있다.
[232] 제 1-3실시예
[233] 본 발명에 따른 제 1-3 실시예는 다중 사용자 전송 시 효과적으로 하이브리드 범포밍을 수행하기 위한 디지털 범포밍 방법에 대한 것이다. [234] 기존 MIMO 시스템에서 전송과 채널 측정 관점에서 Antenna port 의 특징을 먼 저 설명한다. 신호 전송에서 사용되는 Antenna port (예를 들면, LTE에서 A antenna port ) 5, AP 7-14 등)의 채널은 주파수 및 시간에 적용되는 전송 Precoding Weight에 따라 채널이 변경된다. 반면, Measurement에 사용되는 Antenna port (예를 들면. LTE 에서 정의하고 있는 AP 15-22 등)는 Doppler에 의한 시변 채널 특성 만을 갖는다.
[235] 하이브리드 빔포밍의 디지털 범포밍은 기존 MIM0 시스템에서와 유사한 방법 으로 접근할 수 있다. 즉, 앞에서 설명한 Analog Beamer 에 의해 생성되는 합성 채널 을 Antenna port 로 간주하면, Hybrid BF 은 Analog 빔포밍으로 만들어내는 다수의 Antenna port 를 갖는 MIM0 전송 방법 (Digi tal BF)으로 생각해 볼 수 있다. 기존 MIM0 시스템의 antenna port와의 차이는 Analog Beamforming에 의해 채널 상황이 바 뀔 수 있다는 점이다. 예를 들면, Antenna subgroup의 수, Subgroup을 구성하는 방법, Subgroup에 적용되는 Beamforming 방법 등으로 채널을 변화 시킬 수 있다.
[236] 하이브리드 범포밍 (hybrid beamforming)을 위한 효과적인 디지털 범포밍 (digi tal beamforming) 방법으로 먼저 하이브리드 빔포밍에서 디지털 범포밍을 위해 적용하는 Precoding Weight의 형태 및 Value는 아날로그 (analogue beamforming) 범포 밍에 의해 생성되는 전송 Beam의 수 및 적용되는 Precoding weight에 따라 결정한다. 예를 들어, 전송 Beam의 수가 4개인 경우 Antenna port 4개를 갖는 전송 Precoder 를 사용한다. 이 때 , 전송 Precoding weight은 analogue beamforming을 위해 사용되 는 전송 Precoding weight 을 고려하여 선택된다. 만약 analogue beamforming 의 Precoding weight 이 특정 시간 동안 유지되고 변경된다면, 최소한 analogue beamforming 의 Precoding 이 변경되는 시점에서 digi tal beamforming 의 Precodng weight은 변경되어야 한다.
[237] 두번째 방법으로, digi tal beamforming는 A-Beam에 의해 생성되는 N개의 채 널들간 위상차이를 보상하는 역할을 할 수 있다. 또한 digital beamforming은 협대역 단위로 수행될 수 있다. digi tal beamforming는 A-Beam에 의해 생성되는 N개의 채널 에 M (<=N)개의 독립적인 신호를 전송할 수 있다. M 개의 독립적인 신호를 전송하기 위하여 전송 Precoder를 구성한다.
[238] 제 1-4실시예
[239] 본 발명에 따른 제 1-4 실시예는 Hybrid beamforming 에서 다중 사용자 전송 지원을 위한 Schedul ing 방법에 대한 것이다. [240] 먼저 , Long-term으로는 Analog beamforming으로 사용자들을 구분하는 것이 바 람직하다. 구체적으로, Analog beamforming weight 에 따라 적용 대상 사용자 집합을 생성한다.
[241] 다음으로, Short-term으로는 Digi tal beamforming으로 사용자들을 구분한다. 유사한 방향으로 지향되는 Analog Beam 을 사용하는 사용자들은, 다수의 Analog beam 을 Digi tal Process ing을 통해 합성하여 만들어지는 Beam으로 구분한다.
[242] 제 2 실시예
[243] 본 발명에 따른 제 2 실시예는 효율적인 Hybr id Beamforming을 위한 Antenna subgrou ing 적용 방법에 대한 것이다.
[244] Analog beamforming 을 위한 Training Sequence 를 전송한다. Analog beamforming을 수행 시 RF단에서 각 Antenna element 별로 위상 및 크기 값을 적용하 는데, 적절한 위상 /크기 값을 선택하기 위한 Training Sequence가 잔송된다.
[245] 또는, Antenna subgroup 별 Analog beamforming 수행한다. Antenna element들 이 Antenna subgroup으로 구성될 때 , Subgroup 단위로 Analog beamforming을 수행할 수 있다. 이 때, 각 Subgroup 별로 서로 독립적인 Analog Beamforming 을 수행할 수 있다. 예를 들어 , 하나의 Antenna subgroup이 4개의 Antenna element로 구성된다고 할 때, 4 개의 Antenna element 에 서로 독립적인 위상 및 크기 값이 적용되어 Beamforming이 수행될 수 있다. 16개의 Subgroup 별로 서로 다른 방향의 Beamforming 을 수행할 수 있는 자유도가 있다.
[246] 본 발명에 따른 제 2 실시예에서는 hybr id beamforming 에서 Antenna element 들을 사용하여 analogue beamforming을 수행할 때 , 기본 단위가 되는 Subgroup을 지 정하고 지시하는 방법 및 analogue beamforming의 Precod ing weight을 수신단에서 찾 아서 보고하기 위한 수신단의 동작을 설명한다.
[247] 제 2-1 실시예
[248] 본 발명의 제 2-1 실시예는 Antenna Subgroup을 Antenna Element의 집합으로 하는 것이다.
[249] Antenna Subgroup (AS)은 Antenna Element (AE)의 묶음으로 Analog BeamForming( analogue beamforming)을 수행하는 기본 단위가 될 수 있다. 하드웨어 설계에 따라, AS에 다수의 Phase Shi fter(PS)/Power Ampl i f ier (PA)와 신호합성기를 구 현하고 하나의 안테나를 통해 신호가 전송 /수신되도록 설계하여 하나의 AS에서 다수 의 Analog Beam을 생성할 수도 있다.
[250] 무수히 많은 AE 를 가진 시스템에서 AS 은 다양한 조합으로 수행될 수 있다. 안테나들을 배열하는 방법에 따라서 Linear Array, Planar Array, Circular Array등 다양한 배열이 있는데, 설명의 편의를 위하여 Uniform Planar Array (UPA)를 예로 들 어 설명한다. 하나의 Subgroup 을 구성하기 위하여 Vertical Domain(V-D)과 Horizontal DomainOH))으로 몇 개의 AE가 사용되는지 정의하는 것에 따라 다양한 조 합을 생각해 볼 수 있다. 예를 들어, V-D으로 8개씩 , H-D으로 8개씩 배열되는 경우 총 64개의 AE가 있는 Massive Antenna를 가정한다. 이러한 경우, 각 domain에서 4 가지 조합 (1,2,4,8)을 얻게 되고, subgroup은 16가지 조합을 가진다.
[251] AS구성을 (V-D의 AE수 *H-D의 AE수) V-D 및 H-D의 AE수를 1을 포함한 2의 배수로 표시하면 다음과 같다.
[252] 64AE를 갖는 경우, (1x1), (1x2), (1x4), (1x8), (2x1), (2x2), (2x4), (2x8), (4x1), (4x2), (4x4) , (4x8), (8x1), (8x2) , (8x4), (8x8) 등의 AS조합이 도출될 수 있 다.
[253] 유사한 방식으로 32 AE (8x4)인 경우, (1x1), (1x2), (1x4), (2x1), (2x2), (2x4) , (4x1), (4x2), (4x4) , (8x1), (8x2) , (8x4) 12개의 AS조합이 도출될 수 있다.
[254] 16 AE (4x4)인 경우 (1x1), (1x2), (1x4), (2x1), (2x2), (2x4) , (4x1), (4x2), (4x4) 등의 9개의 AS조합이 도출될 수 있다.
[255] 다수의 AS 를 구성할 때, 각 AS 를 구성하는 Set 을 다르게 설정하여 다양한 Beam pattern 을 만들어 낼 수 있다. 그러나 이와 같은 경우, analogue beamforming 의 다양성을 얻는 장점이 있지만, 이에 따른 제약들이 존재할 수 있다. Subgroup 에 적당한 BF weight을 산출 경우, 각 Subgroup의 형태에 맞는 BF weight을 각각 찾아 야 하며, 단말 Side 에서 이와 같은 동작을 수행하는 경우 계산 복잡도뿐만 아니라 Reporting overhead 7} 늘어나게 되는 단점이 있다. 또한, analogue beamforming에 의 해 생성된 Beam 을 합성하는 Digital beamforming 을 수행하는 경우, analogue beamforming Beamforming gain °1다른 Beam간 Gain imbalance에 의해 성능이 열화 될 가능성이 있다. 따라서 각 AS를 구성하는 Set 은 최소한 Digital beamforming을 수행하는 단위 별로 동일하게 설정하는 것이 바람직하다. [256] 본 발명에 제 2-1 실시예에 따른 첫번째 방법은 적어도 하나 이상의 Antenna subgroup 은 동일한 Subgrouping pattern 을 적용하는 것이다. 나아가, 모든 Antenna subgroup에는 동일한 subgrou ing pattern을 적용할 수도 있다.
[257] Antenna subgroup 의 Subgrouping pattern 을 동일하게 하면, analogue beamforming의 Precoding Weight을 산출하기 위한 복잡도를 줄일 수 있는 장점이 있 다. 또한, Antenna subgroup 들이 동일한 위상 증분 /크기 증분을 갖는 analogue beamforming Precoding Weight을 사용하면 Beamforming을 수행하기 위해 계산해야 하 는 복잡도 및 보고의 Overhead를 줄일 수 있는 장점이 있다.
[258] 본 발명의 제 2-1 실시예에 따른 두번째 방법으로 동일한 Subgrouping pattern 이 적용되는 Antenna subgroup 들 중, 적어도 하나 이상의 Antenna subgroup 은 위상 증분 /크기 증분이 동일한 analogue beamformi ng Precoding weight을 적용하는 것이다. 나아가, 동일한 Subgrou ing pattern 이 적용되는 Antenna subgroup 모두 Antenna subgroup 은 위상 증분 /크기 증분이 동일한 analogue beamforming Precoding weight 을 적용할 수도 있다.
[259] AS는 시간에 따라 다른 Subgrouping pattern을 적용할 수 있다. Subgrouping pattern 이 바뀌는 것은 채널 상태가 변화되는 것을 의미한다. 채널을 측정하고 적용 하는 시간 관계를 고려할 때 Subgrouping pattern 은 최소한 채널 정보 정보가 Report ing 되고 데이터 전송에 사용되는 시간 동안은 유지하는 것이 바람직하다. 예 를 들어, CSI report ing 주기가 5ms이라고 할 때, Subgrouping pattern은 최소 10ms 은 동안은 유지한다.
[260] 다양한 Subgrouping pattern 을 Dynamic 하게 변화시키기 위한 방안으로 다수 의 Subgrouping pattern이 적용되는 Time durat ion을 하나의 t ime set으로 할 수 있 다. 이러한 경우 t ime set은 적어도 Report ing의 한 주기 동안은 유지된다. 예를 들 어, M가지 Subgrouping pattern이 N t ime 동안 Dynamic하게 변화하도록 적용할 수 있 는데, Dynamic 하게 변화하는 최소 시간 (예를 들어, 10 subframe 시간 구간)을 한 주 기로 하여 유지한다.
[261] 본 발명의 제 2-3 실시예에 따른 세번째 방법으로, 선택된 Antenna subgroup pattern에 일정 시간 동안 동일한 subgrouping 방식을 적용한다.
[262] Subgroup 에 대한 정보는 상위 계층 시그널링을 통하여 제공될 수 있다. 예를 들어, RRC signal ing으로 제공될 수 있다. 이는 단말 특정 정보일 수도 있고, 셀 특 정 정보 일 수도 있다. Subgroup ing 은 몇 가지 후보 방식을 설정하고, indicator 를 사용하여 지정할 수 있다. Indicator에 의해 지정된 Subgrouping 방식을 하나 이상의 Antenna subgroup들에 동일하게 적용한다.
[263] 본 발명의 제 3 실시예에 따른 네번째 방법으로, Subgroup 에 대한 정보는 상 위 정보를 통해 단말에게 지시된다.
[264] 제 2-2 실시예
[265] 본 발명의 제 2-2 실시예는 Antenna Subgroup 을 신호전송의 독립적인 채널을 생성하는 Block으로 설정하는 것이다.
[266] BaseBand(BB)에서 생성되는 신호와의 관계에서 AS 는 baseband 에서 생성되는 다수의 신호 열들 중 몇 개의 신호 열이 전송될 수 있는 독립적인 채널을 생성하는 Block으로 정의할 수 있다. 예를 들어, K개의 Analog Beam을 형성하는 AS는 N개가 있고, baseband 에서 M 개의 독립적인 신호 열들을 생성하여, 각각 Digi tal -Analog-Converter (DAC)를 통해 Analog로 변환된 M개의 독립적인 신호 열들 이 있다고 가정한다. 이 때, M개의 Analog신호는 ( K*N )개의 Analog beam올 통해 전 송된다.
[267] Antenna subgroup의 구성이나 Subgroup에서 전송하는 beam의 개수에 따라 채 널을 측정하고 Precoding weight 을 찾는 방법은 달라진다. 만약 단말이 Antenna element 들의 채널을 측정하여, 각 Subgroup 에 적당한 analogue beamforming precoding weight을 찾아서 보고하는 경우, Subgroup의 Pattern에 맞는 Weight 값을 찾아서 보고한다, 이를 위해서 각 Subgroup을 위해 사용되는 Weight set이 정의될 수 있다. 예를 들어, (4*2)의 구성과 (2*2)의 구성에서는 서로 다른 Weight 이 적용되어 야 한다.
[268] 즉, Antenna subgroup conf igurat ion 에 따라 적용되는 weight set 이 달라진 다. 나아가, 단말이 채널올 측정하여 적당한 Weight 을 찾아 보고하는 경우, 적용되 는 Antenna subgrouping 을 위한 weight 값에서 찾을 수 있다. 또한, Antenna subgrouping을 위한 weight set은 지시되거나, Antenna subgrouping pattern과 Tie 되어 정의될 수 있다.
[269] 제 3 실시예
[270] 본 발명에 따른 제 3 실시예는 hybrid beamforming를 위한 채널 상태 정보에 대한 것이다. , [271] 구체적으로 제 3 실시예에서는, Analog Beamforming 이 수행된 후 Digi tal beamforming을 수행하는 Hybr id beamforming을 지원하기 위한 채널 상태 보고 방법에 대해서 설명한다.
[272] Coarse Beam은 Broad 폭올 갖는 Beam을 사용하고 , 공간적으로 대략적인 방향 으로 Beam을 지향한다. 반면, Fine beam은 Sharp한 beam을 사용하여 사용자의 지점 을 정확히 지향할 수 있는 것을 특징으로 한다. 예를 들면, 2 Tx antenna 및 16Tx 를 사용하여 Beamforming을 하는 경우를 비교해 보면, 2Tx의 Beam은 16Tx의 Beam보다 Beam 폭이 넓다. 또한 3dB Beamwidth 지점을 서로 다른 Beam 이 지향하는 지점이라고 정의하면, Beam 들간 거리는 16Tx antenna 의 Beam 간 간격이 넓다. 가변적인 Beamforming을 수행할 때 채널 상황의 변화에 따라 Beamforming weight값이 변화하는 데, Coarse beam을 위한 Beamforming weight의 변화량은 Fine beam 보다 채널 상황의 변화에 덜 민감하게 변화한다.
[273] Analog beamforming은 Phase shi f ter와 Power ampl i f ier 등 소자의 특성에 따 라 Beamforming 의 Resolut ion 이 결정될 수 있다. 단말의 상황에 따라 적웅적인 Beamforming이 가능하지만, 소자의 한계로 인하여 정교한 Beamforming을 수행하기에 는 한계가 있다. 따라서 Analog beamforming은 Coarse Beam을 생성하기 위한 용도로 활용하는 것이 적당하다.
[274] 반면, Digi tal Beamforming은 BaseBand에서 Phase와 Ampl i tude의 변화를 다 양한 범위에서 조절할 수 있는 자유도가 있기 때문에 Fine beam 을 생성하기 위한 용 도로 사용하기에 적당하다.
[275] 본 발명에 따른 채널 상태 보고의 첫번째 특징으로 Analog Beamforming 을 위 한 채널 상태 정보는 Long— term I Wideband 로 보고한다. 반면, Digi tal Beamforming 을 위한 채널 상태 정보는, Analog beamforming상태 정보와 동일한 주기를 갖거나 이 보다 빠른 주기로 보고한다. 또한 Digi tal beamforming 을 위한 채널 상태 정보는 Wideband 혹은 Subband로 보고 될 수 있다.
[276] analogue beamforming을 위한 Precoding weight을 단말이 선택하여 보고하는 경우, analogue beamforming의 Weight에 대한 정보는 간헐적으로 적은 양의 bi t를 사 용하여 보고되지만 보고된 Weight을 바탕으로 향후 전송에 사용될 Precoding을 결정 하기 때문에 Report ing 에 대한 강건성이 중요하다, analogue beamforming 의 정보를 강건하게 보고할 수 있는 방법으로 아주 낮은 MCS 를 사용하는 방법, CRC 를 붙여 Error 여부를 확인하는 방법 등을 이용할 수 있다. 전송 자원으로는 상향링크 제어채 널을 통해 보고될 수도 있고, 상향링크 데이터 채널의 일부를 활용할 수도 있다. 상 향링크 제어 채널을 이용하는 경우 QPSK modul at ion에 낮은 coding rate으로 전송될 수 있다. 이 때, analogue beamforming의 Precoding weight은 다른 채널 상태 정보나 Hybr id ARQ A/N 등의 Feedbcak 정보, SRS request 등의 정보와 분리되어 coding되고, 전송된다.
[277] analogue beamforming ¾· 위한 Precodng weight 정보로는 특정 Indi cator가 정 의될 수 있는데, 이는 Hor i zontal 이나 Vert i cal domain 의 공간 정보를 반영하는 값 을 indicat ion 하는 것일 수 있다.
[278] 본 발명에 따른 채널 상태 보고의 두번째 특징으로 analogue beamforming 을 위한 Precoding weight 정보는 단말에 의해 측정되고 보고된다. 이 정보는 상향링크 제어 채널이나 상향링크 데이터 공유 채널의 일부를 통해 보고될 수 있다.
[279] analogue beamforming을 위한 채널 상태 정보와 digi tal beamforming를 위한 채널 상태 정보는 보고하는 정보의 종류와 정보를 보고하는 시점을 구분하여 보고한 다. 예를 들면, analogue beamforming을 위한 채널 상태 정보는 Long-term으로 보고 한다. 반면, digi tal beamforming 을 위한 채널 상태 정보는 Short-term 으로 보고한 다.
[280] analogue beamforming을 위한 채널 상태 정보는 단말의 보고에 의해서 획득되 거나, 상향으로 전송되는 신호 (ex . SRS)를 사용하여 획득될 수 있다. 중요한 것은 analogue beamforming에 사용되는 Precoding은 digi tal beamforming을 적용하는 주 기 보다 긴 주기 동안 적용된다는 점이다. 이 때, digi tal beamforming 을 위한 채널 상태 정보는 analogue beamforming 에 의해 형성된 채널을 Antenna port 로 정의하여 획득할 수 있다. 또한 이렇게 획득한 채널 상태 정보는 상향링크 제어 채널이나 상향 링크 데이터 공유 채널을 통해 보고된다.
[281] 본 발명에 따른 채널 상태 보고의 세번째 특징으로 analogue beamforming 에 의해 형성된 합성된 채널을 Antenna port 로 정의하고, 해당 Antenna port를 위한 참 조신호를 사용하여 채널을 측정하여 digi tal beamforming을 수행하기 위한 CSI를 산 출한다. Digi tal beamforming 을 위한 채널 상태 정보는 상향링크 제어채널이나 상향 링크 데이터 공유 채널을 통해 보고된다. [282] Digi tal beamforming을 수행하기 위한 채널 상태 정보의 측정 및 보고 정보는 analogue beamforming 에 의해 선택된 beam pat tern 에 따.라 결정된다. analogue beamforming에 의해 발생하는 Beam의 개수는 가변적일 수 있으며, 또한 N개의 Beam 을 생성한다고 하더라도 Beamforming weight이 변경되면 합성 채널이 변경된다.
[283] 예를 들면, analogue beamforming에 의해 N개의 Beam이 전송된다면ᅳ digi tal beamforming을 위해서 N개의 Antenna port 의 채널이 측정되고 N개의 Antenna port 를 위한 Precoding Matr ix에서 element를 선택하여 보고한다.
[284] 또한, analogue beamforming에서 생성하는 Precoding Weight이 가변적일 때, digi tal beamforming 을 위해 다수의 채널을 측정해야 한다. 이와 같은 경우, 다수의 참조신호 전송 지시 (Antenna port 수, 주파수 /시간 /코드 자원 할당 정보 등을 포함) 메시지를 단말에게 지시한다.
[285] 또한, analogue beamforming 에서 생성하는 Beam 의 개수가 가변적일 때, digi tal beamforming을 위해 채널을 측정해야 하는 Antenna port의 수 또한 가변적이 다. 이와 같은 경우, 다수의 참조신호 전송 지시 (Antenna port 수, 주파수 /시간 /코드 자원 할당 정보 등을 포함) 메시지를 단말에게 지시한다.
[286] 본 발명에 따른 채널 상태 보고의 네번째 특징으로 Digi tal beamforming을 위 한 채널 상태 측정 및 보고 정보는 analogue beamforming의 Beamforming 방법에 따라 결정된다.
[287] Analog beamforming 에 의해 선택된 beam pattern 에 맞춰 전송뢰는 Antenna port에 해당하는 Reference signal로 부터 channel을 측정하여 Digi tal beamforming 을 수행하기 위한 CSI 를 산출한다. Digi tal beamforming 을 위한 CSI feedback 는 PUSCH/PUCCH repor t i ng mode로 정의된다.
[288] 또한, Analog beamforming 에 의해 선택된 beam pat tern 에 따라 Digi tal beamforming올 수행하기 위한 codebook이 변경될 수 있다.
[289] Hybr id beamforming은 Analog beamforming과 Digi tal Beamforming을 동入 1에 수행하는 것을 특징으로 한다. Analog beamforming 에 의해 생성된 방사패턴은 신호 전송 Coverage를 결정짓게 된다. MS를 사용하는 다중 안테나 시스템에서는 안테나의 Ti l ing 각도를 Analog beamforming 으로 조절할 수 있는 자유도가 주어진다. Cel l 안 에 있는 사용자들의 분포에 따라 Ti l t ing 각도를 적웅적으로 변화 시켜 주는 경우, 시스템 성능 및 에너지 효율 향상을 기대할 수 있다. Cel l안에 있는 사용자들에게 적 웅적인 Analog beamforming을 수행하기 위한 방법을 설명한다. 단말이 채널을 측정하 여 기지국으로 보고하고 기지국은 보고된 정보를 바탕으로 결정하는 방식과 기지국이 상향 신호를 측정하여 결정하는 방식으로 구분할 수 있다.
[290] 먼저 단말 측정한 채널 정보 기반의 결정 방식에 대해서 설명한다.
[291] 기존의 다중안테나 시스템에서는 기지국이 고정된 형태의 analog beamforming 을 수행하기 때문에, 단말은 RSRP 측정의 값을 한가지만 보고하였다. 다수의 Beamforming pattern 을 갖는 기지국의 경우, 데이터 전송에 적합한 Beamforming pattern을 선택하기 위한 방법을 도입할 필요가 있다.
[292] 첫번째 방법으로, 기지국은 다수의 analog beam 을 생성하며, 단말은 beamforming에 의해 생성된 합성 채널을 측정하여 기지국에 보고한다.
[293] 예를 들면, 단말이 측정해야 하는 채널 정보를 Antenna port 로 지정하고, 다 수의 Antenna port 에 대해서 RSRP measurement 를 수행한다. 단말이 측정한 다수의 RSRP 정보는 관련 보고 채널을 통해 보고 된다. 이 때ᅵ RSRP 정보는 Antenna port 관 련 정보와 함께 보고 될 수 있다. 또한, 정보의 양을 압축하기 위한 방법으로 단말이 측정한 정보 중 일부 RSRP 만을 보고하는 것을 고려할 수 있는데, 이때 RSRP 정보 및 관련지시자를 함께 보고 한다. 예를 들면, Antenna port index를 순서대로 나열하고, bi t 열에서 선택된 해당 antenna port 의 bi t f lag를 on 시키는 방법을 이용할 수 있 다.
[294] 다른 예로서, 단말이 측정해야 하는 채널 정보를 Antenna port 로 지정하고, 하나의 Antenna port에 대해서 RSRP measurement를 수행한다. 이 때 , Measurement를 수행하는 단위를 시간 단위로 정의할 수 있다. 예를 들어, 상위 신호를 통해 측정해 야 하는 시간 단위를 지정해주고, 시간 단위에서 측정된 정보를 보고 한다. 여기서, 시간 단위를 다수로 설정 할 수 있다. 측정된 정보는 시간 단위 별로 결정되는 보고 순서에 맞춰 보고된다. 동시에 보고되는 경우에는 정보의 순서를 지정할 수 있다. 개 별적인 자원에서 보고되는 경우에는 자원 별로 설정할 수 있다.
[295] 두번째 방법으로, 단말은 약속된 Analog beamforming set 을 사용하여 채널을 합성하고, 합성 채널을 측정하여 기지국에 보고한다.
[296] 예를 들면, 기지국에서 Analog beamforming이 수행되지 않은 Antenna element 를 위한 RS 를 전송한다. 단말에게 Analog beamforming을 수행하는 Set을 지시하고, 단말은 지시된 Set을 사용하여 Antenna element 와 Beamforming weight을 combining 한다. 합성된 채널을 기반으로 RSRP measurement를 수행한다. 단말은 측정한 채널 정 보를 모두 기지국에 보고할 수도 있다. 또는, 정보를 압축하기 위하여 단말이 선호하 는 일부 Set 정보만을 보고할 수도 있다.
[297] 또한, 상술한 방법들은 기지국의 지시나 단말의 능력에 따라서 수행될 수 있 다. 상술한 방법을 지원하는 단말과 그렇지 않은 단말이 있을 수 있다. 단말은 자신 의 Capabi l ity 를 기지국에 보고한다. 기지국은 Capabi l i ty 를 갖는 단말에게는 상술 한 보고 방법을 이용 하도톡 지시할 수 있다. 단말은 기지국의 지시자에 따라 새로운 Measurement 방법을 수행할 수 있다.
[298] 세법째 방법은 기지국이 측정하여 결정하는 방식에 대한 것이다. 구체적으로, 기지국은 상향신호를 통해 채널 상태를 측정하고, 하향신호 전송을 위한 Analog beamforming의 weight을 결정한다.
[299] 기지국은 수신단을 통해 Analog beamforming을 수행하는 Weight을 결정할 수 있다. 이는 상향링크 신호 처리를 위한 하드웨어 구조나 신호 처리 방법 등에 의해 다양한 형태로 수행될 수 있다. 다수의 단말들이 동시에 신호를 전송할 때, 수신되는 신호들에는 다양한 용도의 신호 및 채널들이 합성되어 있다. 이 중 채널 측정을 위한 참조 신호를 구분하여 상향 전송을 위한 채널 측정을 수행한다.
[300] 예를 들면 , 상향링크에서 수신한 Analog beamforming이 수행된 신호를 이용하 는 경우, 데이터 전송을 위한 참조 신호를 이용하여 Analog beamforming weight을 결 정한다. 데이터 전송을 위한 참조 신호는 digi tal domain beamforming이 수행된 것이 특징이다. 이에 다양한 Analog beamforming 을 수행하여 최적의 Analog beamforming 값을 찾을 수 있다. 다수의 Analog beamforming 된 신호로부터 해당 사용자의 데이터 전송을 위한 참조신호를 추출한다. 다수의 analog beamforming이 수행된 데이터 전송 참조 신호의 채널 상태를 측정하고, 이를 기반으로 Analog beamforming weight 을 선 택한다.
[301] 다를 예로서, 상향링크에서 각 antenna element 별로 수신 신호를 취합하여, Analog beamforming을 수행하기 위한 Weight을 결정할 수 있다. 이 때 수신 신호 중 에서 단말의 채널 상태 측정을 위한 참조 신호를 추출하여 사용할 수 있다.
[302] 상기 예들를 통해 선택된 Analog beamforming weight 들을 기반으로 하향링크 전송을 위한 Analog beamforming weight 을 결정한다. 하향링크 전송 analog beamforming weight은 시간단위로 변할 수 있다. 시간 단위로 변화하는 weight에 따 라 하향링크 합성 채널 또한 변화하는데, 이에 따른 RSRP measurement 방법이 요구된 다. 기지국은 단말에게 RSRP measurement를 수행하는 시간 단위를 지정할 수 있다.
[303] 제 4실시예
[304] 본 발명에 따른 제 4실시예는 협대역 간 Phase di fference 를 보상하는 방법 에 대한 것이다.
[305] Analog beamforming을 사용할 경우, 광대역 전송에서 높은 주파수와 낮은 주 파수간 발생하는 위상 차이로 인하여 원하지 않은 Beam을 전송하게 된다.
[306] Analog beamforming 의 기본 개념은 다중 안테나 열을 기준으로 신호가 전송 (또는 수신)되는 방향에 따라 신호가 전송 (또는 수신)되는 시간을 다르게 하여 원하 는 방향으로 신호의 위상을 동일하게 맞추는 것이다. sin wave는 시간이 변화함에 따 라 위상이 변화하므로, 전송 (또는 수신) 지연은 결국 신호에 위상을 변화 준다는 것 과 같은 의미로 볼 수 있다. 그런데 전송 (또는 수신) 지연에 따른 위상 변화는 전송 (또는 수신)에 사용되는 주파수에 따라 달라지게 된다. 동일한 지연 상황에서 낮은 주파수는 위상 변화가 적은 반면, 높은 주파수는 위상 변화가 크게 발생한다.
[307] Analog Beamforming은 다중 안테나 전송 또는 수신을 위해 Analog domain 에 서 가중치를 곱하는 특징을 가진다. 즉, Beamforming 가중치가 전송 대역에서 동일하 게 이용된다. 전송 대역이 좁은 경우 대역 내에서 높은 주파수와 낮은 주파수간 위상 변화의 차이는 작지만, 전송 대역이 넓은 경우에는 그 차이가 크게 발생할 수 있다. 또한, 동일한 전송 대역을 사용하는 경우에 전송에 사용되는 중심주파수가 낮은 경우 는 전송 대역 내에서 위상 변화 차이가 작은 반면, 중심 주파수가 높은 경우에는 그 차이가 크게 발생할 수 있다.
[308] 또한, Hybr id beamforming 이 광대역 전송 또는 고주파 대역 전송에서 이용될 가능성이 있다.
[309] 고주파 전송을 예로 들면, 기존의 Cel lular system (ex. LTE)은 주로 2GHz 대 역 근방에서 최대 20MHz 대역폭으로 전송하도록 설계되었지만, 최근 이보다 높은 대 역 (예를 들면, 3.5GHz , 5GHz 등)에서 전송하는 것이 고려되고 있다.
[310] 또한, 전송 용량을 높이는 방안으로 넓은 주파수 대역을 확보가 가능한 고주 파 광대역 전송이 시도되고 있다. 5GHz 이상의 대역 중 10GHz, 28GHz , 60GHz 근방의 대역은 차세대 광대역 이동통신의 주파수로 거론되고 있다. [311] 상술한 광대역, 고주파 대역 전송 상황에서 Massive MIMO가 도입되는 것이 검 토되고 있다. 또한 Massive MIMO 의 구현을 간단히 하기 위한 방안으로 Hybrid beamforming이 도입될 가능성이 있다 · Analog beamforming을 광대역 전송에 적용할때 발생하는 주파수 대역간 위상 차이는 Hybr id beamforming의 성능 향상을 위해 해결해 야 하는 문제이다.
[312] Beamforming의 기본적인 원리는 안테나간 선형적인 위상 회전을 발생시켜 전 송 및 수신 신호들이 동일 위상을 갖도록하여 합성될 때 최대 이득을 얻도톡 하는 것 이다. 안테나 간 적용되어야 하는 선형적인 위상 회전의 값이 대역 별로 차이가 있는 데, 광대역 전송에서 하나의 대표 값을 적용하는 경우 대역 별로 안테나들에 적용해 야 하는 선형적인 위상 값과 차이가 발생하여 신호들이 합성될 대 최대이득을 얻지 못하게 된다. 극단적인 경우, 위상 변화량에 따라 신호 크기를 감쇄 시키는 방향으로 합성될 수 도 있다. Phase di fference 에 의한 Beam di rect ion mi smatch 는 Beam 이 Sharp할 수록 민감하게 나타날 수 있다. 반면, Broad한 Beam은 Phase di fference에 의한 Beam direct ion mi smatch 7} 덜 민감하게 나타날 수 있다. Massive MIMO는 많은 안테나를 사용하여 Energy를 합성함으로써 극단적으로 Sharp한 Beam을 생성할 수 있 다. 따라서 Massive MIMO 에서는 Phase di fference 어 1 의한 Beam direct ion mi smatch 에 민감하게 작용하게 된다.
[313] Phase di fference가 발생하는 원인과 이에 따른 민감도를 설명하면 다음과 같 다. 광대역에 동일한 위상 회전을 적용한 경우 Phase di fference가 발생한다. 여기서, Beam width가 Sharp할 수록 민감도가 증가하게 된다. 반면, 협대역에 동일한 위상을 적용하면 Phase di fference 가 적게 발생하게 되고, Beam 이 Broad 할 수톡 Phase di fference에 대한 민감도는 낮아지게 된다.
[314] 본 발명의 실시예에서는 Analog domain 에서는 Broad 한 Beam 을 생성하고 Digi tal domain에서는 협대역으로 위상 회전을 적용하는 것을 제안한다. 또한, 본 발 명의 실시예는 이를 위한 안테나 구성 방법과 Digi tal beamformer 의 Precoder 구성 및 적용 방법을 제안한다.
[315] 제 4-1 실시예
[316] 본 발명에 따른 제 4-1 실시예는 Analog domain에서는 Broad한 Beam을 생성 하고 Digi tal domain에서는 협대역으로 위상 회전을 적용하는 것이다. [317] 제 4-1 실시예의 방법은 Analog domain에서 Beamforming을 수행하는 Element 의 수를 줄여 Broad한 Beam을 생성함으로써 Phase di f ference에 의한 Beam di rect ion 변화에 대한 민감도를 낮춘다. 또한, 안테나 Element 들에서 발생하는 Phase di fference가 합성 채널에서 Average되는데, Average phase di f ference를 포함하는 합성 채널들을 Digi tal beamforming하여 원하는 방향으로 Sharp한 beam이 형성되도 록 한다.
[318] 제 4-2 실시예
[319] 본 발명의 제 4-2 실시예는 안테나 배열 구조에 대한 것이다. 구체적으로, Antenna subgroup ing은 2개 이상의 Antenna Element 가 있는 행 또는 열에서 수행한 다.
[320] Analog beamforming은 Antenna element의 Phase 및 Ampl i tude를 변화 시킨다. Antenna element를 어 Subgroup을 구성하고, Subgroup 별로 Analog Beamforming을 수행할 수 있다. Broad Beamwidth를 갖는 Analog beam을 생성하기 위해서 적은 수의 Antenna element를 사용하여 Analog beamforming을 수행한다. 이를 위해서 , 2개 이 상의 Antenna subgroup을 구성한다.
[321] 도 26은 본 발명에 따른 안테나 배열 구조의 일례를 도시한다.
[322] 도 26 을 참조하면, 10 개의 Antenna element 가 1 줄로 배열된 경우, 5 개 Antenna element를 묶어 Subgroup을 구성하면 2개의 Subgroup을 얻을 수 있다. 이와 같은 경우, 10 개의 Antenna element 를 사용하여 생성되는 Beamwidth 보다 넓은 Beamwidth 를 갖는 Beam 2 개를 생성한다. Subgroup 에서 생성하는 Beam 은 10 개 Antenna element의 Beam보다 Phase error에 대하여 강건하다.
[323] 도 27은 본 발명에 따른 안테나 배열 구조의 다른 예를 도시한다.
[324] 도 27올 참조하면, 20개의 Antenna element가 1줄에 10개 Antenna element 씩 2줄 (10x2)로 배열된 경우, 5개의 Antenna element를 묶어 subgroup을 구성하면, 한 줄에 2개의 subgroup 씩 총 4개의 subgroup을 구성할 수 있다.
[325] 제 4-3 실시예
[326] 본 발명의 제 4-3 실시예는 광대역에 Analog beamforming을 적용할 때 발생하 는 협대역간 Phase di f ference 를 보상하는 방법에 대한 것이다. 구체적으로, 각 Element에 적용되는 Weight들 간 위상 변화가 동일한 Beamforming weight을 적용하 는 방법을 적용할 수 있다. [327] 예를 들면, 도 26에서 한 열에 있는 5 개의 Antenna Element 를 묶어 하나의 Subgroup 을 구성하였는데 Subgroup 에 있는 5 개 Antenna element 에 적용하는 Precoding Weight올 W= [WO Wl W2 W3 W4]라고 할 때, 각 Subgroup에는 위상 변화가 동 일한 Beamforming weight W를 적용한다. W1 및 W2는 다음과 같다.
[328] Wl=[lexpj ( α )expj (2 a )expj (3 α )expj (4 α)],
[329] W2=[expj ( β )expj ( β )*expj ( α )expj ( β )*expj (2 α )expj ( β )*expj (3 α ) xpj( )*expj(4a )]
[330] Wl 및 W2 는 각 element 에 적용되는 Precoding weight 의 위상 변화량은 expj( a)으로 동일하다.
[331] 또한, 도 27 의 예에서 각 열에 2 개씩 subgroup을 구성하는 경우, Subgroup 1,2,3,4에 적용되는 Weight 에도 element 간 위상 변화량이 동일한 Weight를 적용할 수 있다. W1 내지 W4는 다음과 같다.
[332] Wl = [ lexpj ( a ) expj (2 a ) expj (3 a ) expj (4a)]
[333] W2 = [expj(p) expj ( β + a ) expj ( β +2 a ) expj ( β +3 a ) expj (β +4 a)]
[334] W3 = [expj ( γ ) expj ( γ + α) expj ( γ +2 a ) expj ( γ +3 a ) expj ( γ+4α)]
[335] W4 = [expj( γ+β) ex j ( γ + β + a ) expj( γ+β+2α) expj( γ+β+3α) expj ( Y + β +4 a ) ]
[336] Wn 의 각 element 의 위산 변화량은 expj( a )으로 동일한다. 또한 다른 행에 있는 같은 열의 Element 들간 위상 변화량은 expj(Y)으로 동일하다. (Wl(l)= 1, W3(l)= expj( γ )), (W2(4)= expj(P+4a), 4(4)= expj ( y +β +4 a ))
[337] 제 4-4실시예
[338] 본 발명의 제 4-4 실시예는 digital beamforming 을 협대역 단위로 수행하는 것을 설명한다.
[339] Subgroup에서는 Analog Beam을 통해 새로운 채널을 형성한다. 각 Subgroup에 서 생성된 채널들 간 위상 차이가 발생할 수 있는데, Digital domain 의 Precoder 를 사용하여 위상 차이를 보상한다. 채널의 변화가 심하거나, Subgroup 의 채널 간 상관 관계가 낮거나, 전송 대역이 넓은 경우 협대역 별로 subgroup 의 채널 간 위상 차이 가 달라 질 수 있다. Digital beamformer 는 Subgroup 들 간 위상을 보정하는 역할을 하며, Digital domain의 Precoding은 협대역으로 수행한다. [340] 예를 들면, Subgroup n의 Analog beamforming에 의해서 생성된 Subband k의 채 널을 Ch n(k)라고 하고, Ch n(k) 의 위상을 z— Ch n(k)라고 가정한다.
[341] Subband 1에서 Subgroup 1의 채널 Chl(l)과 Subgroup2의 채널 Ch2(l) 간 위상 차이를 a = zChl(l) - z Ch2(l) , Subband 2 에서 Subgroupl 의 채널 Chl(2)과 Subgroup2의 채널 Ch2(2) 간 위상 차이를 b = zChl(2) - Ch2(2)라고 한다. Subband 간 격차가 큰 경우 Subband 의 채널은 서로 독립적이며, 각 Subband 별 위상 차이 a 와 b 는 서로 다른 값을 갖게 된다. 각 Subband 별로 Precoding 을 수행함으로써 Analog beamforming에 의해 발생하는 Phase di fference를 보정한다.
[342] Antenna 간 correlat ion이 상당히 높다고 가정하면, 각 Antenna element들의 채널은 선형 위상 변화로 근사화 할 수 있다. Subband 1 과 2 채널에서 Antenna element 들의 위상 변화량 차이를 2 δ라고 하면 , Subband 1 과 2 채널은 아래와 같이 표현할 수 있다.
[343] H(1)=[H1(1) H2(l) ]
[344] =H(l)x[l exp j ( α - δ ) expj (2 a -2 6 ) ex j (3 a -3 δ ) expj (4 a -4 δ ) expj (5 a -5 δ ) expj (6 a -6 δ ) expj (7 a -7 δ ) expj (8 a -8 δ ) expj (9 a -9 δ ) ]
[345] H(2)=[H1(2) H2(2) ]
[346] =H(2)x[l expj ( a + δ ) expj (2 a +2 δ ) expj (3 a +3 δ ) expj (4 a +4 δ ) expj (5 a +5 δ ) expj (6 a +6 δ ) expj (7 a +7 δ ) expj (8 a +8 δ ) expj (9 a +9 δ ) ]
[347] 2 개의 Subgroup 에 아래와 같이 expj ( a )씩 위상이 증가하는 Precoding weight을 적용하면 다음과 같다.
[348] Wl=[l ex j ( a ) expj (2 a ) expj (3 a ) expj (4 a ) ]
[349] W2 = [expj ( β ) expj ( β + a ) expj ( β +2 a ) expj ( β +3 a ) expj ( +4 a ) ]
[350] 이를 이용하여 아래와 같은 합성된 채널을 얻을 수 있다.
[351] Heq(l)=[Heql(l)Heq2(.l) ]
[352] =[H1(1) W1H H2(l) W2H]
[353] =5H(l)expj (-25 ) [lexpj (-56 ) ]
[354] Heq(2)=[Heql(2)Heq2(2) ]
[355] =[H1(2) W1H H2(2) W2H]
[356] =5H(2)expj (2 5 ) [lexpj (56 ) ] [357] Digi tal beamformer에서는 Subgroup간 Phase di f ference를 보상한다. Antenna element간 상관도가 낮거나ᅳ Antenna element 간 거리가 먼 경우 Antenna element들 은 서로 독립적인 채널을 갖는다. 이와 같은 경우 Beamforming 에 의해 채널이 합성 될 때, antenna element들의 위상 변화량이 선형적으로 증가하지 않는다.
[358] 제 4-5실시예
[359] 본 발명의 제 4-5 실시예는 digi tal beamforming 을 지원하기 위한 채널 상태 보고에 대한 방법이다.
[360] 하향링크 Digi tal beamforming을 지원하기 위하여는 채널 상태 정보가 보고되 어야 한다. 채널 상태 정보는 약속된 Index 로 환산된 값을 보고하는 Impl i ci t Feedback 방법 (예를 들면, Rank Indicat ion I Precoding Matr ix Indicat ion I Channel Qual i ty Indi cat ion 등)과 채널을 직접 보고하는 Expl i ci t feedback 방법이 있다. 두 경우 모두 협대역으로 측정한 채널 정보를 기지국으로 보고한다. 이 때 subgroup 별 로 Analog beamforming 에 의해 합성된 채널 정보를 기반으로 추정한 채널 상태 정보 를 의미한다.
[361] 단말은 Subgroup 의 Antenna element 들의 채널 상태를 측정하여 Beamforming 에 적당한 Weight 을 찾아 보고할 수 있다. 이와 같은 경우, subgroup 에 적용할 Beamforming weight을 기지국에 보고하는데, Beamforming weight은 전송 대역폭에 공 통으로 적용되는 것을 가정하고 선택하여 보고한다.
[362] 제 5실시예
[363] 본 발명의 제 5 실시예는 Hybr id BF에서 Analog BF을 위한 Training sequence 전송 방법에 대한 것이다.
[364] 하향링크 범형성을 위해 기지국은 하향링크 채널 정보를 획득해야 하는데, 이를 위한 방법으로 ( 1) 하향 채널을 단말이 측정해서 보고하거나 (2) 상향링크 채널 을 기지국이 측정하여 하향 전송에 사용하는 방법을 이용할 수 있다. 본 발명의 실시 예에서는 하향링크 Hybr id beamforming 에서 하향링크 채널을 단말이 측정하기 위한 참조 신호 전송 방법과 물리 신호 구조를 설명한다.
[365] 디지털 범형성 기법의 참조 신호는 Antenna port 간 직교 자원 (주파수, 시간, 코드 등)을 할당하여 각 Antenna port 의 채널 정보를 획득할 수 있도록 설계한다.
[366] 그러나 이와 같이 Antenna port 로 정의된 참조 신호는 Antenna Element 들의 채널을 구분하여 추정하기에 적합하지 않다. 예를 들어 , N개의 Antenna port가 N개 의 TRX에 Mapping되고 각 TRX는 M개의 Antenna Element를 통해 전송된다고 할 때, 하나의 Antenna port를 위해 할당된 직교 자원은 M개의 Antenna Element를 통해 전 송되고 수신단에서는 M개의 Antenna Element의 신호가 합성되어 하나의 Antenna port 의 신호로 수신된다.
[367] 즉, Antenna port 의 채널을 추정하기 위해 할당된 참조신호를 사용하는 경우 다중 Antenna Element 들의 합성된 신호가 만들어내는 채널을 추정하게 되며, M 개의 Antenna Element를 구분할 수 없게 된다. 따라서, Antenna El ement의 채널을 추정하 기 위해서는 새로운 참조 신호 전송 방법이 도입되어야 한다.
[368] 본 발명에 따른 하향 링크 참조 신호의 전송 방법을 설명하면 다음과 같다.
[369] Digi tal Domain 에서 Antenna Element 를 위한 참조 신호 전송의 첫번째 방법 으로 Antenna Element Speci f i c 자원을 할당한다. 이 방법은 동일 시간 전송, 또는 서로 다른 시간 전송을 적용할 수 있다. 이때, Analog Beam forming 을 고려하여 Antenna Element를 위한 참조신호의 위상을 반전 시킬 수 있다.
[370] Digi tal Domain 에서 Antenna Element 를 위한 참조 신호 전송의 두번째 방법 으로, Beam speci f i c 자원을 할당할 수 있다.
[371] Analog Domain에서 Antenna Element를 위한 참조 신호 전송의 세번째 방법으 로, 참조신호 생성기에서 참조신호 시뭔스를 생성하고, TRX 에서 생성된 신호와 합성 할 수 있다. 도 28은 본 발명의 실시예에 따른 참조 신호 생성기 구조의 일례이다.
[372] 도 28을 참조하면, TRX별로 독립적인 Antenna Element에 Mapping되는 경우, Antenna Element별로 구분되는 자원 (n X M)을 사용할 수 있다. 또는, TRX별로 독립적 인 Antenna Element에 Mapping되는 경우, M element를 구분하는 자원 (M)을 사용할 수 있다. Time domain 에서 동시에 신호 전송를 전송하는 경우 Antenna Swi tching 을 이 용하여 Reference Signal을 합성해서 전송할 수 있다.
[373] Single TRX에 Mapping된 Antenna El ement의 Channel을 추정하는 경우, 각각 의 Antenna Element들의 채널을 추정할 수 있다.
[374] 예를 들면, 각 Antenna element 별 Training Sequence 를 전송한다. 물리적인 구조는 TRX에서 전송되는 신호와 구분되는 Reference Signal을 생성하기 위한 Block 을 이용한다. [375] 여기서, Sequence는 Antenna element간 직교되는 Sequence를 나타낸다. 동일 한 시간에 전송되는 경우, 주파수 자원 / 코드 자원으로 구분할 수 있다. 또한, Sequence는 데이터 신호와 동시에 전송할 수도 있다.
[376] Antenna Port는 Analog beamforming에 의해 합성된 신호를 의미하며 , Antenna Element는 Analog beamforming을 수행하기 위한 단위를 말한다. Analog beamformng 을 수행하기 위한 Beamforming Weight을 선택하기 위해서는 Antenna element들의 채 널 측정이 요구된다. Antenna element 들 간의 공간적인 정보들을 획득하기 위하여, 다양한 방법의 참조 신호 전송 방법을 고려할 수 있다. Antenna Element를 위한 참조 신호들은 Digital domain에서 전송되거나 Analog domain에서 전송될 수 있다.
[377] 제 5-1 실시예
[378] 본 발명의 제 5-1 실시예는 Digi tal Domain 에서 참조신호가 전송되는 경우, 참조신호가 전송되는 시간동안에는 Analog beamforming을 수행하지 않는 방법에 대한 것이다. 이를 위하여 각 Antenna element 에 특정 자원을 할당한다. 여기서, 자원이 란 시간, 주파수, 코드 등을 의미한다.
[379] 예를 들면, Antenna element 별로 서로 다른 시간에 참조신호가 전송 되도톡 할 수 있다. Digi tal domain에서 참조 신호가 전송될 때, 시간은 최소한 OFDM symbol durat ion이 된다. 한 OFDM symbol durat ion 동안 하나의 Antenna Element를 위한 참 조 신호가 전송되고, 다음 시간 Durat ion 에서는 다른 Antenna element 를 위한 참조 신호가 전송된다.
[380] 각 Antenna element로 분기되는 신호는 하나의 TRX에서 생성된 신호이다. 각 Element 에서 동일 시점에 동일한 Signal 을 전송한다면, 수신단에서 각 Antenna element에 해당하는 참조 신호를 획득하기 어렵게 된다. 각 Antenna element 별로 참 조 신호를 시간으로 구분하여 전송하는 방법으로, Antenna turn on/of f 방법을 적용할 수 있다. 예를 들어, Antenna element에 있는 Power ampl i f ier의 이득을 낮춤으로써 Antenna element에서 전송되는 신호를 키우거나 낮출 수 있다. 특정 시점에서는 특정 Antenna element의 PA를 키우고 다른 Antenna element들의 PA를 낮춘다. 이와 같은 동작을 Antenna Element 별로 돌아가면서 수행한다. 각 Antenna element 에서 동일한 참조신호가 전송되더라도, Antenna element를 온오프 함으로써 한 개의 안테나에서만 참조 신호가 전송되도록 하는 효과를 얻을 수 있다. [381] 다른 예로서, Antenna element별로 서로 약속된 시간에 참조 신호를 전송함으 로써 참조신호들간 합성이 되지 않도록 할 수 있다. Antenna subgroup 을 고려할 때, Antenna subgroup 에 포함된 antenna element 들 간에는 시간 직교 참조 신호 자원을 할당하고, Antenna subgroup 간 Antenna element들 간에는 주파수 직교 혹은 코드 자 원올 할당할 수 있다.
[382] 하나의 Antenna subgroup에서는 각 Antenna element에 동일한 참조신호가 전 송되기 때문에 시간으로 Antenna element 전송을 구분한다. 반면 , Subgroup 간에는 독 립적인 신호를 생성할 수 있기 때문에, 서로 다른 참조 신호를 전송할 수 있다. 따라 서 Subgroup 간에는 주파수 직교 혹은 코드 자원이 다른 참조 신호를 할당하여 전송 할 수 있다. 뿐만 아니라 시간 자원을 달리하여 참조 신호를 전송할 수 있다.
[383] 제 5-2 실시예
[384] 본 발명의 제 5-2 실시예는 Digi tal Domain 에서 참조신호가 전송되는 경우, Analog beamforming 된 참조신호가 전송되는 방법에 대한 것이다. 이를 위하여 각 analog beam에 특정 자원을 할당한다.
[385] Analog beamforming이 수행된 참조 신호가 전송되었다는 것은, 가능한 analog beamforming weight set 을 두고 Set 을 구분하기 위한 참조 신호를 할당한다는 것올 의미한다. Beamforming 수행 단위 별로 자원 할당을 독립적으로 할 수 있는 구조를 도입하여, Beamforming 을 구분하기 위한 참조 신호를 할당할 수 있다. 각 Antenna element 별로 채널을 측정해 Analog beamforming 을 수행하기 위한 Precoding weight 을 찾는 complexi ty와 비교했을 때, 상당히 낮은 complexi ty를 갖는 장점이 있다.
[386] 제 5-3실시예
[387] 본 발명의 제 5-3 실시예는 Analog Domain에서 Antenna Element를 위한 참조 신호를 전송하는 방법에 대한 것이다.
[388] 도 28의 예와 같은 참조신호 생성기에서 참조신호 시뭔스를 생성하고, TRX에 서 생성된 신호와 합성한다. 이 때, 참조신호는 각 Antenna Element별 특정 자원으로 할당할 수 있다. 예를 들어, 시간으로 직교하는 자원을 할당하는 경우, 각 Antenna element 별로 독립적인 시간 자원을 사용한다. 이때, 시간 자원의 길이는 하나의 OFDM symbol 보다 작은 길이를 갖도록 설계할 수 있다. 또 다른 예로서, 코드 자원을 할당하는 경우를 들 수 있다. 각 Antenna Element 별로 서로 다른 Code 자원을 사용 하여 각 안테나 채널을 구분할 수 있도록 할 수 있다. ZC sequence를 사용하는 경우, 서로 다른 cyc l ic shi ft value를 사용함으로써 신호를 구분할 수 있다.
[389] TRX별로 독립적인 Antenna Element에 Mapping되는 경우, Antenna Element별 로 구분되는 N*M개의 자원 사용을 사용할 수 있다. TRX내에 있는 각 Antenna element 의 신호를 구분하기 위한 목적으로 참조 신호를 사용한다면, TRX 간에는 Antenna element 자원을 공유하고, TRX 내에서 Antenna Element 자원을 독집적으로 할당하는 방법을 이용할 수 있다.
[390] 각 Antenna element 별로 할당되는 Training sequence 를 전송할 수 있다. Analog domain에서 신호가 생성되어 전송되는 경우, 각 Antenna element 별로 시간적 으로 구분된 직교 자원을 할당할 수도 있다. 이와 같은 경우, Analog beamforming 을 수행하는 해당 Antenna element들의 채널 추정을 위하여 상당히 긴 시간이 요구될 수 도 있다. 또한 analog 신호의 속성상, 데이터 전송을 위한 신호들이 전송되는 시간과 구분되는 시간에 Training Sequence를 전송하게 되면, Data 전송을 위한 시간이 짧아 져 시스템 성능 열화를 발생할 수 있다.
[391] 본 발명의 실시예에 따르면, Analog domain에서 Training Sequence를 전송할 때, Data 전송률을 유지하면서 Training Sequence를 전송할 수 있다.
[392] 그 첫번째 방법으로, Analog beamforming 을 위한 Training Sequence 와 기존 의 신호를 Analog domain 에서 합성하여 전송할 수 있다. 두 신호는 중첩되도록 합성 하고, 합성된 신호는 동시에 전송된다. Training Sequence 혹은 기존의 신호는 반복적 으로 전송되며 , 각각은 직교 코드로 cover된다.
[393] 예를 들면, Training Sequence 및 기존 신호는 반복적으로 전송되고ᅳ Orthogonal code cover 로 mapping 된다. 아래는 물리 신호 구조를 나타낸다. h_n(t ) 는 t 시점에서의 채널 impulse response 를 의미한다. s_k(t )는 k 번 째 Antenna Element를 통해 전송되는 Training sequence , r— k(t )는 k번 째 Antenna Element를 통 해 전송되는 기존 신호를 의미한다. N 시간이 흐른 후 채널과 수신 신호는 t+N 으로 표현된다.
[394] y(t )=h_k(t ) ®(s_k (t )+r_k( t ) )+n(t )
[395] y(t+N)=h_k(t+N) ®(s_k (t )-r_k(t ) )+n(t+N)
[396] 한 OFDM symbol 의 신호가 2 OFDM symbol 구간에 걸쳐 반복 될 수 있다. 또는 한 OFDM symbol 주기에서 신호가 반복적으로 전송될 수도 있다. [397] Analog domain에서 신호를 반복 합성하는 것은 Digital domain에서 신호를 생 성하고 반복 시키는 주기와 연계해서 결정될 수 있다.
[398] 상술한 바와 같이 합성되어 전송된 신호는 단순 합 /차를 통해 원하는 신호로 복원할 수 있다.
[399] y(t)+y(t+N)-h_k(t)®(s_k(t)+r_k(t))+n(t)+h_k(t+N)®(s_k(t)-
Figure imgf000054_0001
[400] Channel이 거의 변하지 않았다고 가정하면, h_k (t)=h_k (t+N) 라고 할 수 있 기 때문에 다음과 같이 표현할 수 있다.
[401] y(t)+y(t+N)=h_k(t)®(s_k (t)+r(t)+s_k (t)-r_k(t))+n(t)+n(t+N)
[402] 각 Antenna element 에 전송되는 기존 신호를 모두 r_n(t)와 -r_n(t)로 mapping하고, s_k(t)을 안테나 Element 에 mapping하게 되면 아래와 같은 결과식을 얻는다.
[403] y(t)+y(t+N)=(h_l(t)®2(s_l(t))) + -+(h_k(t) ® 2(s_k (t))+n(t)+n(t+N) [404] 즉, 시간 직교 자원이나, 코드 자원의 직교성을 이용하여 각 Antenna Element 들의 신호를 구분할 수 있다.
[405] 제 6실시예
[406] 본 발명의 제 6실시예는 Hybrid Beamforming을 위한 상향 링크 참조 신호에 대한 것이다.
[407] 본 발명의 제 6 실시예에 따르면, UL 에서 다중 사용자들을 하향링크 beamforming 올 수행하기 위한 weight vector 를 선택할 수 있도록 하는 Training sequence를 전송한다.
[408] 이하에서는, 상향링크 수신 Ananlog beamforming을 가변적으로 수행할 수 있 는 방법을 설명한다.
[409] 상향링크 수신 Analog beamforming의 특징은 기지국이 수신신호로부터 Analog beamforming을 수행하기 위한 적당한 Beamforming wieght 을 선택하는데 있다. 이를 위해서 기지국은 Analog beamforming weight을 선택하는 기능이 필요하다.
[410] Analog beamforming weight 선택부는 각 Antenna Element 로부터 수신한 신호 어 1 Analog beamforming을 수행하기 위한 Beamforming weight vector를 적용하여 적당 한 Beamforming vector를 선택한다. 이를 위해서 기지국은 단말로부터 전송된 신호들 을 사용할 수 있는데, PRACH, SRS, DMRS, PUSCH, PUCCH등이 그 후보가 될 수 있다. [411] 전송 신호의 t iming 및 Frequency synchronizat ion 이 수행된 이후의 신호를 사용하여 Precoding Weight 을 선택하는 것이 바람직하다. 이는 t iming/Frequency synchronizat ion은 Precoding weight 선택에 영향을 주기 때문이다. 따라서 PRACH를 사용하는 것은 바람직하지 않다.
[412] 적용하기 쉬운 첫번째 예로서 , SRS를 이용할 수 있다.
[413] SRS 는 단말의 채널의 상태 정보를 획득하여 상향링크 전송을 위한 MCS 와 전 송 Precoding 결정 및 대역 할당을 위한 정보로 활용된다. 또한, 하향링크 전송 Precoding을 결정하는 정보로도 사용된다. Digi tal beam forming을 수행하기 위하여 SRS 로 부터 채널 정보를 획득하게 되는데, SRS 를 통해 추정되는 채널은 Digi tal domain의 Signal processing으로 획득된다.
[414] 기존의 SRS 는 하나의 OFDM symbol 을 통해 전송되는데, 다중 사용자의 채널 및 단일 사용자의 다중 안테나 채널을 획득하기 위하여 한 OFDM symbol 안에 있는 주 파수 및 코드 자원올 할당한다. 주파수 자원은 Subcarr ier 를 Cluster (연속된 Subcarrier 의 묶음) 형태로 구분한 후, Cluster 형태로 구분된 주파수 자원 내에서 Inter leaved (홀수 또는 짝수 번째 Subcarr ier 들을 사용) 형태로 다시 구분하여 할 당한다. Digital domain signal processing에서는 이와 같은 방식의 주파수 할당으로 다중 사용자를 구분할 수 있다.
[415] 그러나, 주파수로 구분된 자원을 사용하더라도 시간 영역에서 Processing 올 수행하는 경우 합성된 다중 사용자 신호를 구분하기 어려울 수 있다. Analog beamforming을 수행하기 위하여 Antenna element별로 수신된 신호로부터 다중 사용자 들의 신호를 구분하기 위해서 기존의 SRS를 사용하는 경우, (1) Analog domain에서 다 중 사용자 신호를 구분할 수 있는 신호 전송 방법 또는 (2) Digi tal domain에서 다중 사용자 신호를 구분하여 Analog beamforming올 수행하는 처리부가 요구된다.
[416] 이하에서는, Analog domain 에서 다중 사용자 신호를 구분할 수 있는 신호 전 송 방법에 대하여 설명한다.
[417] Analog Beamforming은 Antenna element에 전송 또는 수신 가중치를 사용하여, 특정 방향으로 전송 또는 수신 되는 신호의 에너자를 모아주거나 낮춰주는 역할을 한 다. Analog beamforming을 수행하기 위해서는 Antenna Element에 적절한 가중치를 사 용하는 적용하는 것이 필요한데, 가중치는 채널 상태 정보를 바탕으로 선택될 수 있 다. 채널 상태 정보는 수신단에서 측정이 가능하며, 수신 Beamforming 및 송신 Beamforming에 사용될 수 있다.
[418] 기지국의 경우 단말이 전송하는 상향링크의 신호로부터 채널 상태 정보를 획 득하고, 수신을 위한 가중치를 계산할 수 있다. 이 가중치는 적절한 Cal ibrat ion 을 한 후 전송 Beamforming weight 로 사용될 수 있다. 단말이 전송 하는 상향링크 신호 들을 통해 채널 상태 정보를 획득하는데 있어서 다중 사용자 간섭은 중요한 문제이 다.
[419] Analog beamforming은 Analog 단에서 신호를 Training함으로써 채널 상태 정 보를 획득한다. Analog 신호는 시간 영역에서 처리가 되는 것이 특징이다. 다중 사용 자 신호들이 동일 시간에 전송되는 경우, 다중 사용자 신호는 전송 Sequence 의 직교 성에 의해서 구분된다. 그런데, 0FDMA 또는 SC-FDMA 를 기반으로 하는 시스템에서 Digi tal beamforming을 수행하는 사용자들은 주파수 영역을 구분한 자원을 할당 받기 때문에, 상대적으로 많은 사용자들을 수용할 수 있다. 반면, Analog beamforming 을 수행하기 위해서는 시간 영역에서 Training 을 시도하기 때문에 주파수로 구분된 자 원을 사용하는 사용자들을 시간영역에서 구분하기 어렵게 된다.
[420] 이를 해결하기 위한 방법으로서, 시간 영역의 자원을 분할하여 상향링크 참 조 신호로 전송할 수 있다.
[421] 한 OFDM symbol durat ion에서 신호가 전송될 때 주파수로 구분된 N개의 자원 을 사용할 수 있다면 다중 사용자 구분의 용량을 N 이라고 가정한다. 단순한 방법으 로는 N 개의 주파수 자원이 만들어내는 직교 자원의 수를 시간 영역에서 만들기 위해 서 한 OFDM symbol 주기를 1/N 시간으로 구분하여 각 시간 자원을 단말에게 할당하는 방법이 있다. 그러나 단순히 1/N둥분한 시간 자원을 사용하는 경우에는 공간 채널의 Mul t i-path 에 의해 신호 외곡이 발생하는 문제가 발생한다. 따라서 신호의 주기를 짧게 두더라도 적절할 Guard t ime을 설정해야 한다.
[422] 본 발명의 실시예에 따르면 기존의 OFDM symbol durat ion 안에서 다수의 시간 자원을 분할할 때, 분할된 시간 자원들도 각각 Guard t ime을 갖는 구조를 가질 수 있 다.
[423] 제 6-1 실시예
[424] 본 발명의 제 8—1 실시예는 OFDM symbol durat ion 보다 짧은 Durat ion을 갖도 록 설계하여 다수의 시간 자원으로 분할 하는 방법에 대한 것이다. 예를 들어, 0FDM symbol durat ion 이 (Nf ft + Ncp) sample 로 구성된다면, 짧은 OFDM symbol durat ion 은 (Nfft + Ncp) / M sample로 구성할 수 있다. 또는 (Nfft/M) + (Ncp)' smaple 로 구 성할 수도 있다. 즉 Nf ft/M 정도의 짧은 durat ion 을 갖는 신호를 생성하고 Ncp/M 혹 은 (Ncp)' 정도의 sample을 갖는 짧은 주기의 OFDM symb이을 구성한다.
[425] 이와 같은 짧은 OFDM symbol을 만드는 방법으로 Sampl ing Frequency는 기존 OFDM symbol 과 동일하게 하고 (Sampl ing Time 을 동일하게 하기 위함), Subcarr ier spacing 을 M 배로 증가 시킨다. 15kHz 의 subcarrier spacing 을 갖는 시스템에서는 30kHz (M=2) 혹은 60kHz (M=4) 등과 같이 넓은 간격의 Subcarr ier spacing 을 도입한 다 · Μ은 2의 배수 형태를 갖는다 . 2의 배수 값을 갖는 subcarrier spacing올 적용 할 때, 기존 OFDM symbol과 동일한 Sampl ing t ime을 적용하는 경우 Wave form이 왜곡되 지 않고 유지될 수 있다.
[426] 15kHz 의 Subcarr ier spacing, 9Mhz system bandwidth, 6.36MHz 의 Guard Frequency에 1024 FFT를 수행하면, t ime domain에서 1024 sample을 갖는 OFDM symbol 을 얻을 수 있다. 만약 subcarr ier spacing 을 2 배로 늘리고 (30kHz) , 이 때 System bandwidth (9MHz)와 Guard Frequency (6.36MHz)를 유지한 상태에서 ½ FFT (512)를 수 행하면, t ime domain에서 512 sample올 갖는 OFDM symbol을 얻을 수 있는데 , Sampl ing Time (Ts)가 동일하기 때문에 기존의 (15khz) subcarr ier spacing을 갖는 OFDM symbol 의 절대적인 시간 길이 (1024 X Ts) 대비 정확히 ½ 시간 길이를 갖게 된다.
[427] 단말은 Subcarr ier spacing을 증가 시키고 Samp 1 ing frequency를 동일하게 하 여 상향링크 참조 신호를 생성하고, 이렇게 생성된 참조신호를 DAC convert ing 하여 Analog신호로 변환한 후 RF를 통화 시켜 전송한다.
[428] 제 6-2 실시예
[429] 본 발명의 제 6-2 실시예는 짧은 주기의 OFDM symbol durat ion을 갖는 신호에 짧은 주기의 CP 를 갖도록 설계하는 방법이다. 그러나 다중 사용자들의 위치가 서로 달라, 위치에 따라 생기는 Pathloss 가 서로 다를 수 있고, 다중 사용자들의 서로 다 른 Pathloss를 감안한다면, CP 길이는 기존의 OFDM symbol에 적용한 CP 길이를 따르 는 것이 바람직하다.
[430] 제 6-3 실시예
[431] 상기 제 6-2 실시예의 경우 기존의 0FDM 주기 동안, 짧은 주기를 갖는 (FDM symbol 을 다수 배치하면, 다수의 짧은 OFDM symbol 은 기존의 한 OFDM symbol 주기 보다 길어지는 문제가 발생한다. 도 29 는 다수의 짧은 OFDM symbol 이 기존의 한 OFDM symbol 주기 보다 길어지는 일례를 도시한다.
[432] 이를 해결하기 위해서 제 6-3 실시예는 OFDM symbol 이 겹쳐지도록 전송하는 방법을 제안한다. 짧은 OFDM symbol 주기를 갖는 신호가 M 개 있다고 할 때, 각각은 서로 다른 사용자에게 할당된다. 도 30 은 OFDM symbol 이 겹쳐지도록 전송하는 방법 의 일례를 도시한다.
[433] 예를 들어, 앞에 있는 짧은 주기 OFDM symbol은 사용자 A에게 할당되고 뒤에 있는 짧은 주기 OFDM symb이은 사용자 B에게 할당되었다고 가정하자. A사용자는 기 존 OFDM symbol 전송 시간에 맞춰서 앞에 있는 짧은 of dm symbol을 전송하고, B사용 자는 기존 OFDM symbol 전송 시간보다 조금 빨리 짧은 OFDM symbol을 전송한다. 수신 단에서는 A사용자가 전송한 짧은 OFDM symbol은 기존 OFDM symbol들이 수신되는 시 작 시간에 맞게 수신될 것이고, B 사용자가 전송한 짧은 주기 OFDM symbol 은 기존 OFDM symbol의 수신되는 마지막 시간에 맞게 수신될 것이다.
[434] Analog beamforming을 수행하기 위한 참조신호는 대략적인 공간 정보를 획득 하기 위한 신호로 활용되기 때문에, 신호 간 간섭이 약간 발생하더라도 공간 정보 획 득의 성능의 민감도에는 영향이 덜하다. 또한 앞선 OFDM symbol의 끝 부분과 뒤 이은 신호의 CP가 중첩되는 경우 기지국에서 t ime window를 적절하게 설정하여 심볼간 간 섭을 최소화 할 수 있다.
[435] 제 6-4실시예
[436] Analog BF을 수행하기 위한 Training sequence는 짧은 주기의 OFDM symbol로 구성된다. 이 때, 각 Subcarrier 에 mapping 되는 Sequence 는 주파수와 시간에서 correlat ion 특성이 유사한 sequence (예를 들어, ZC sequence)가사용될 수 있다. 이 와 같은 Sequence 가 mapping 되어 만들어진 신호는 주파수와 시간 영역 특성이 유사 하기 때문에 시간 영역에서 De-spreading을 수행하기에 유리하다.
[437] 제 6-5실시예
[438] 제 6-5 실시예는 analog beamforming을 위한 참조신호 혹은 Training Sequence 는 기존 신호가 전송되는 시간 구간과 구분되는 시간에 전송하는 방법에 대한 것이 다.
[439] Training Sequence를 전송하는 시간은 기지국이 단말에 내려주는 지시자에 따 라 수행될 수 있다. 기지국은 단말들이 전송해야 하는 Training Sequence 의 전송 주 기를 다른 신호의 전송 신호와 구분하여 지시를 할 수 있다. 예를 들어, 기존의 SRS 전송 주기와 구분하여 Training Sequence를 전송하도록 설정한다.
[440] 단말은 Training Sequence를 전송하는 시점에는 다른 신호를 동시에 전송하지 않는다. 예를 들어, 데이터 신호나 RACH흑은 제어채널 등이 Training Sequence가 전 송되는 시간에 전송되어야 할 때, 우선 순위를 Training Sequence 전송에 둔다.
[441] 제 6-6실시예
[442] 본 발명의 제 6-6 실시예는 Digi tal domain에서 다중 사용자 신호를 구분하여 Analog beamforming을 수행하는 방법에 대한 것이다.
[443] 첫번째 방법으로, Digi tal domain 에서 다중 사용자 신호를 구분하여 Analog beamforming 을 수행하는 경우, Antenna element 로부터 신호를 Pure 하게 추출하여 Digi tal processing 할 수 있는 block 을 설계하고, 각 Antenna Element 별로 추정된 채널을 기반으로 Analog beamforming을 수행하기 위한 Weight올 결정한다.
[444] 단말은 기지국의 지시에 따라 참조 신호를 전송한다. 기지국은 각 Antenna element 에서 수신된 신호들을 Digi tal 신호로 만들고, 만들어진 digital 신호에서 참조신호를 추출한다. 참조 신호로부터 획득한 각 Antenna element 들의 채널 상태를 기반으로 Analog beamforming을 수행한다.
[445] 이와 같은 block 은 Data demodulat ion 을 위한 Block 과 구분된다. Data Demodulat ion 은 수신 Analog beamforming 을 수행한 후 얻어지는 신호를 기반으로 Demodulat ion 을 수행하는 반면, 채널 상태 정보를 획득하기 위한 Block 은 Antenna Element로 부터 직접 추출한 신호들을 기반으로 신호 처리를 한다.
[446] 두번째 방법으로 다수의 Analog beamforming을 수행한 참조 신호들을 취합하 여 Analog beamforming을 수행하기 위한 Weight을 결정한다.
[447] 다수의 Beamforming weight로 Analog beamforming이 수행된 신호들이 다수 있 을 때, 다수의 Analog beamforming 수행된 신호들로부터 참조 신호를 추출한다. 단일 사용자들로부터 전송된 신호가 다수의 Analog beamforming 되고, 다수의 analog beamfomr ing된 신호로부터 해당 사용자의 참조 신호를 추출한다.
[448] 추출된 참조신호들의 신호 세기를 측정하여 Analog beamforming 값에 따른 신 호 세기를 비교한다. 신호 세기 비교를 통해 적절한 Analog beamforming weight을 관 단한다. 동일한 방법으로 많은 사용자들에게 Analog beamforming weight 선택을 시도 하고, 선택된 beamforming weight 값을 저장한다. 동일한 Weight 을 선택한 사용자들 을 묶고, 데이터 수신 및 데이터 전송 시 활용한다.
[449] 도 31은 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
[450] 무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국 과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
[451] 도 31 을 참조하면, 무선 통신 시스템은 기지국 (3110) 및 단말 (3120)을 포함 한다. 기지국 (3110)은 프로세서 (3113), 메모리 (3114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (3111, 3112)을 포함한다. 프로세서 (3113)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (3114)는 프로세서 (3113) 와 연결되고 프로세서 (3113)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (3116)은 프로세서 (3113)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (3120)은 프로세서 (3123), 메모리 (3124) 및 RF 유닛 (3121, 1422)을 포함한다. 프로세 서 (3123)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (3124)는 프로세서 (3123)와 연결되고 프로세서 (3123)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (3121 , 3122)은 프로세서 (3123)와 연결되고 무선 신호를 송 신 및 /또는 수신한다. 기지국 (3110) 및 /또는 단말 (3120)은 단일 안테나 또는 다중 안 테나를 가질 수 있다.
[452] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들 의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함 될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청 구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거 나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
[453] 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네 트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수 행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수 행될 수 있음은 자명하다. 기지국은 고정국 (f ixed stat ion) , Node B, eNodeB(eNB) , 억 세스 포인트 (access point) 등의 용어에 의해 대체될 수 있다.
[454] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (f ir隱 are) , 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs ppl icat ion speci f ic integrated circui ts) , DSPs(digi tal 신호 processors) , DSPDs(digi tal 신호 processing devices) , PLDs (programmable logic devices) , FPGAsCf ield programmable gate arrays) , 프로세서, 콘트를러 , 마이크로 콘트를러 , 마이크로 프로세서 등에 의 해 구현될 수 있다.
[455] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다.
[456] 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[457] 상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명 은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명 의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본'발명을 다양하게 수정 및 변 경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기 에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[458] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적 으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에 서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들 에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최 광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구 항으로 포함할 수 있다.
【산업상 이용가능성】
[459] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1】
MU-MIMO (mult i user-mult iple input and mul t iple output )¾· 지원하는 무선 접 속 시스템에서 기지국이 신호를 전송하는 방법에 있어서,
아날로그 범포밍을 이용하여 복수의 단말을 포함하는 서브 그룹에 대한 빔을 생성하는 단계 ;
디지털 빔포밍을 이용하여 상기 서브 그룹에 속하는 각각의 단말로 전송되는 신호를 구별하는 단계 ; 및
상기 아날로그 범포밍 및 상기 디지털 범포밍을 기초로 생성된 신호를 상기 단말로 전송하는 단계
를 포함하고,
상기 아날로그 빔포밍의 가중치는 상향링크 참조 신호를 이용하여 획득한 채 널 상태 정보를 기초로 결정되는, 신호 전송 방법.
【청구항 2】
제 1항에 있어서,
상기 상향링크 참조 신호의 전송 주기는 데이터 심볼 주기를 분할한 시간에 보호 시간을 더하여 결정되는, 신호 전송 방법.
【청구항 3]
제 1항에 있어서,
상기 상향링크 참조 신호는 데이터 심볼의 샘플링 주파수를 유지하고 서브캐 리어 공간을 증가시켜 생성되는, 신호 전송 방법.
【청구항 4】
제 1항에 있어서,
연속되어 전송되는 상기 상향링크 참조 신호는 시간축으로 일부 겹쳐져서 전 송되는, 신호 전송 방법.
【청구항 5】
제 1항에 있어서,
상기 상향링크 참조 신호는 다른 제어 신호 또는 데이터 신호와 이시에 전송 되는, 신호 전송 방법.
【청구항 6]
제 1항에 있어서,
상기 상향링크 참조 신호의 전송 주기 정보를 단말로 전송하는 단계를 더 포 함하는, 신호 전송 방법 .
【청구항 7】
제 1항에 있어서,
상기 상향링크 참조 신호는 주파수와 시간에서 상관 특성이 유사한 시뭔스를 기초로 하는, 신호 전송 방법 .
【청구항 8】
MU-MIMO (mul t i user-mul t iple input and mul t iple output )를 지원하는 무선 접 속 시스템에서 신호를 전송하는 기지국에 있어서,
RF(Radio Frequency) 유닛 ; 및
프로세서를 포함하고,
상기 프로세서는,
아날로그 빔포밍을 이용하여 복수의 단말을 포함하는 서브 그룹에 대한 빔을 생성하고,
디지털 범포밍을 이용하여 상기 서브 그룹에 속하는 각각의 단말로 전송되는 신호를 구별하고,
상기 아날로그 빔포밍 및 상기 디지털 범포밍을 기초로 생성된 신호를 상기 단말로 전송하도톡 구성되고,
상기 아날로그 빔포밍의 가중치는 상향링크 참조 신호를 이용하여 획득한 채 널 상태 정보를 기초로 결정되는, 기지국.
【청구항 9]
제 8항에 있어서,
상기 상향링크 참조 신호의 전송 주기는 데이터 심볼 주기를 분할한 시간에 보호 시간을 더하여 결정되는, 기지국.
【청구항 10]
제 8항에 있어서,
상기 상향링크 참조 신호는 데이터 심볼의 샘플링 주파수를 유지하고 서브캐 리어 공간을 증가시켜 생성되는, 기지국.
【청구항 11】
제 8항에 있어서,
연속되어 전송되는 상기 상향링크 참조 신호는 시간축으로 일부 겹쳐져서 전 송되는, 기지국.
【청구항 12】
제 8항에 있어서,
상기 상향링크 참조 신호는 다른 제어 신호 또는 데이터 신호와 이시에 전송 되는, 기지국.
PCT/KR2014/010514 2013-11-04 2014-11-04 무선통신 시스템에서 신호를 전송하는 방법 및 장치 WO2015065154A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480060402.9A CN105684323B (zh) 2013-11-04 2014-11-04 用于在无线通信***中发送信号的方法和设备
KR1020167006604A KR102290759B1 (ko) 2013-11-04 2014-11-04 무선통신 시스템에서 신호를 전송하는 방법 및 장치
US15/029,194 US10084521B2 (en) 2013-11-04 2014-11-04 Method and apparatus for transmitting signal in wireless communication system
JP2016522771A JP6673824B2 (ja) 2013-11-04 2014-11-04 無線通信システムにおいて信号を送信する方法及び装置
EP14858304.0A EP3068060A4 (en) 2013-11-04 2014-11-04 Method and apparatus for transmitting signal in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361899815P 2013-11-04 2013-11-04
US61/899,815 2013-11-04
US201361909370P 2013-11-26 2013-11-26
US61/909,370 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015065154A1 true WO2015065154A1 (ko) 2015-05-07

Family

ID=53004651

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/KR2014/010514 WO2015065154A1 (ko) 2013-11-04 2014-11-04 무선통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010516 WO2015065156A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010515 WO2015065155A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010519 WO2015065158A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010517 WO2015065157A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 채널상태정보를 전송하는 방법 및 장치
PCT/KR2014/010503 WO2015065152A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/KR2014/010516 WO2015065156A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010515 WO2015065155A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010519 WO2015065158A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치
PCT/KR2014/010517 WO2015065157A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 채널상태정보를 전송하는 방법 및 장치
PCT/KR2014/010503 WO2015065152A1 (ko) 2013-11-04 2014-11-04 무선 통신 시스템에서 신호를 전송하는 방법 및 장치

Country Status (6)

Country Link
US (2) US20160261325A1 (ko)
EP (1) EP3068060A4 (ko)
JP (1) JP6673824B2 (ko)
KR (1) KR102290759B1 (ko)
CN (1) CN105684323B (ko)
WO (6) WO2015065154A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323021A (zh) * 2015-11-02 2016-02-10 北京理工大学 基于循环移位序列的星载相控阵发射天线的校准方法
CN106921990A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种模拟通道测量方法及基站
JP2017163499A (ja) * 2016-03-11 2017-09-14 株式会社Nttドコモ 無線通信システム及び管理装置
WO2017194028A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 信道状态信息的测量方法及装置

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126842A1 (en) 2009-04-27 2010-11-04 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
WO2015065154A1 (ko) 2013-11-04 2015-05-07 (주)엘지전자 무선통신 시스템에서 신호를 전송하는 방법 및 장치
US10028277B2 (en) 2013-11-20 2018-07-17 Cyborg Inc. Variable frequency data transmission
KR102323130B1 (ko) * 2013-11-27 2021-11-10 삼성전자 주식회사 하이브리드 빔포밍 기반 오픈-루프 mimo 전송 방법 및 장치
CN108494541B (zh) 2013-11-27 2021-06-15 瑞典爱立信有限公司 网络节点、无线设备及其中的方法
EP2887561B1 (en) * 2013-12-18 2019-07-03 Alcatel Lucent Beamforming apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver
ES2834607T3 (es) * 2014-01-30 2021-06-18 Ericsson Telefon Ab L M Señales y métodos de descubrimiento
CN104917554B (zh) * 2014-03-10 2019-05-10 华为技术有限公司 基站及形成波束的方法
EP3164949B1 (en) * 2014-06-11 2020-07-15 Telefonaktiebolaget LM Ericsson (publ) Apparatus and method for digital beam-forming with low-resolution quantization
US10135508B2 (en) * 2014-10-13 2018-11-20 Electronics And Telecommunications Research Institute Method and apparatus for generating common signal in multiple input multiple output system
MX2017005947A (es) * 2014-11-25 2017-06-29 ERICSSON TELEFON AB L M (publ) Un transmisor de radio para mitigacion de distorsion.
CN105790806B (zh) * 2014-12-19 2020-08-07 株式会社Ntt都科摩 混合波束赋形技术中的公共信号传输方法及装置
US10616822B2 (en) 2015-02-10 2020-04-07 Qualcomm Incorporated System information updating
US10200920B2 (en) 2015-02-10 2019-02-05 Qualcomm Incorporated On-demand system information
US9769733B2 (en) 2015-02-10 2017-09-19 Qualcomm Incorporated Incremental transmission of system information
US9985760B2 (en) 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
US11050503B2 (en) * 2015-03-31 2021-06-29 Huawei Technologies Co., Ltd. System and method of waveform design for operation bandwidth extension
US10341014B2 (en) * 2015-04-15 2019-07-02 RF DSP Inc. Hybrid beamforming multi-antenna wireless systems
EP3340522B1 (en) * 2015-05-22 2020-06-03 ASUSTek Computer Inc. Reference signal transmissions in a wireless communication system
US10148332B2 (en) * 2015-05-28 2018-12-04 Futurewei Technologies, Inc. System and method for multi-level beamformed non-orthogonal multiple access communications
US10333678B2 (en) * 2015-05-29 2019-06-25 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
WO2016195393A1 (ko) * 2015-06-05 2016-12-08 엘지전자 주식회사 무선 통신 시스템에서 빔포밍 효과를 고려한 상향링크 동기 획득의 복잡도를 감소시키는 방법 및 장치
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9991605B2 (en) 2015-06-16 2018-06-05 The Mitre Corporation Frequency-scaled ultra-wide spectrum element
US10056699B2 (en) 2015-06-16 2018-08-21 The Mitre Cooperation Substrate-loaded frequency-scaled ultra-wide spectrum element
WO2016204365A1 (ko) * 2015-06-19 2016-12-22 엘지전자 주식회사 차량 간 통신 시스템에서 계층 구조 프리코더 설계 방법 및 그 장치
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10090899B2 (en) 2015-07-29 2018-10-02 Lg Electronics Inc. Method for determining precoder for hybrid beamforming in wireless communication system, and apparatus therefor
US10523297B2 (en) 2015-07-31 2019-12-31 Lg Electronics Inc. Method for determining precoder for hybrid beamforming in wireless communication system, and apparatus therefor
CN106452539B (zh) * 2015-08-05 2020-02-04 上海诺基亚贝尔股份有限公司 混合波束赋形方法和装置
US10447443B2 (en) 2015-08-28 2019-10-15 Lg Electronics Inc. Method for user cooperation-based beam scanning for hybrid beamforming in wireless communication system, and apparatus therefor
US10575303B2 (en) 2015-09-03 2020-02-25 Qualcomm Incorporated Uplink design for narrowband LTE (NB-LTE)
KR102188747B1 (ko) * 2015-10-12 2020-12-08 에스케이텔레콤 주식회사 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치
CN106850010B (zh) * 2015-11-30 2021-02-09 上海诺基亚贝尔股份有限公司 基于混合波束赋形的信道反馈方法及装置
US9680553B1 (en) * 2015-12-04 2017-06-13 Infineon Technologies Ag System and method for a beamformer
CN106921423B (zh) * 2015-12-28 2020-02-07 电信科学技术研究院 一种确定模拟波束的方法和设备
CN106953676A (zh) * 2016-01-07 2017-07-14 索尼公司 无线通信方法和无线通信设备
WO2017146773A1 (en) * 2016-02-26 2017-08-31 Intel IP Corporation Power control for links in beamforming systems
JP6821930B2 (ja) * 2016-03-18 2021-01-27 富士通株式会社 基地局、無線通信システムおよび無線通信システムのキャリブレーション方法
EP3435566B1 (en) * 2016-03-23 2020-12-02 LG Electronics Inc. Method and device for transmitting discovery signal
CN115567088A (zh) * 2016-05-12 2023-01-03 交互数字专利控股公司 用于在毫米波无线局域网络中波束成形反馈的***和方法
CN114466454A (zh) * 2016-06-21 2022-05-10 三星电子株式会社 在下一代无线通信***中进行寻呼的***和方法
US10680699B2 (en) * 2016-07-20 2020-06-09 Lg Electronics Inc. Method and apparatus for calculating beamforming based paging occasion in wireless communication system
US10219231B2 (en) * 2016-07-27 2019-02-26 Futurewei Technologies, Inc. System and method for beamformed broadcast and synchronization signals in massive multiple input multiple output communications systems
US10554284B2 (en) * 2016-08-01 2020-02-04 Qualcomm Incorporated Beam refinement for active and candidate beams
EP3490185B1 (en) 2016-08-05 2021-07-14 LG Electronics Inc. Techniques of efficient dmrs and data transmission and reception in wireless communication systems
CN109644504B (zh) * 2016-08-05 2022-11-25 Lg 电子株式会社 在支持非授权频带的无线通信***中发送和接收信号的方法和支持该方法的设备
US10505618B2 (en) * 2016-08-10 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
CN107733486B (zh) * 2016-08-12 2021-07-30 中兴通讯股份有限公司 混合波束赋形***中的信息传输方法及装置
EP3285334A1 (en) * 2016-08-15 2018-02-21 Nokia Solutions and Networks Oy Beamforming antenna array
WO2018056158A1 (ja) * 2016-09-21 2018-03-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法及び受信装置
US10944452B2 (en) * 2016-09-29 2021-03-09 Qualcomm Incorporated Use of uplink beam tracking results in reference symbol sessions
CN107888249A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种波束域参考信号发送的方法及装置
US10536202B2 (en) 2016-09-30 2020-01-14 Rkf Engineering Solutions Llc Hybrid analog/digital beamforming
KR102192238B1 (ko) * 2016-10-03 2020-12-18 노키아 테크놀로지스 오와이 빔포밍 트레이닝 및 채널 추정을 이용하는 참조 신호
US10425945B2 (en) * 2016-10-11 2019-09-24 Qualcomm Incorporated Multi-stage channel reservation signal for directional transmission and reception
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10305567B2 (en) * 2016-11-03 2019-05-28 Futurewei Technologies, Inc. System and method for hierarchal beamforming and rank adaptation for hybrid antenna architecture
US10582397B2 (en) * 2016-11-09 2020-03-03 Qualcomm Incorporated Beam refinement reference signal transmissions during control symbol
WO2018098634A1 (zh) * 2016-11-29 2018-06-07 华为技术有限公司 一种收发信机、基站及信号处理方法
CN108123745B (zh) * 2016-11-29 2021-08-20 华为技术有限公司 一种数据传输方法、接收机及发射机
CN110024303B (zh) * 2016-11-30 2022-05-13 瑞典爱立信有限公司 用于发送信息的方法和设备
CN106788806B (zh) * 2016-12-02 2021-01-29 上海华为技术有限公司 一种信道回放方法、基站及终端设备
JP6920058B2 (ja) * 2016-12-26 2021-08-18 株式会社日立国際電気 無線通信システム及びビーム制御方法
WO2018128376A1 (ko) 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018128442A1 (en) * 2017-01-05 2018-07-12 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal identification and paging signal transmission for terminal in power saving state
JP6921721B2 (ja) * 2017-01-13 2021-08-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信装置及び無線通信方法
US10362589B2 (en) * 2017-01-23 2019-07-23 Electronics And Telecommunications Research Institute Communication method and apparatus using multiple antennas in wireless communication system
CN108365876A (zh) * 2017-01-26 2018-08-03 ***通信有限公司研究院 一种数字波束成形码本生成方法及设备
KR102446263B1 (ko) * 2017-02-11 2022-09-22 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치
WO2018174596A1 (ko) * 2017-03-22 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 거리 측정을 측정하는 방법 및 장치
CN107017925B (zh) * 2017-04-13 2020-06-23 京信通信***(中国)有限公司 一种有源阵列天线的信号处理方法和装置
EP3619817B1 (en) * 2017-05-04 2021-09-29 Telefonaktiebolaget LM Ericsson (PUBL) Beamforming based on combined beams
CN108476479B (zh) * 2017-05-05 2021-06-01 北京小米移动软件有限公司 随机接入方法及装置、用户设备和计算机可读存储介质
EP3605918B1 (en) * 2017-05-27 2022-10-12 Beijing Xiaomi Mobile Software Co., Ltd. Measurement signal receiving and reporting methods and apparatuses, base station and user equipment
CN109495152A (zh) 2017-09-13 2019-03-19 索尼公司 电子设备和通信方法
US10854993B2 (en) 2017-09-18 2020-12-01 The Mitre Corporation Low-profile, wideband electronically scanned array for geo-location, communications, and radar
CN107645346B (zh) * 2017-09-19 2021-06-04 北京小米移动软件有限公司 天线及天线调试方法
CN109547105B (zh) * 2017-09-22 2021-11-02 罗森伯格(上海)通信技术有限公司 一种实现mimo传输的通信设备
US10440584B1 (en) * 2017-09-25 2019-10-08 Amazon Technologies, Inc. Millimeter-wave radio architecture for multi-channel concurrent operation
CN109660284A (zh) * 2017-10-11 2019-04-19 索尼公司 无线通信***中的电子设备、通信方法和存储介质
WO2019075310A1 (en) 2017-10-12 2019-04-18 Jeffrey Freedman MITIGATION OF RAINFALL IMPAIRMENT BY HYBRID BEAM FORMATION
WO2019080054A1 (en) * 2017-10-26 2019-05-02 Lenovo (Beijing) Limited DETERMINATION OF INFORMATION CORRESPONDING TO BEAM TRAINING
US10897299B2 (en) 2017-11-09 2021-01-19 Nec Corporation Wireless apparatus, wireless communication method, and program
CN110710273B (zh) * 2017-11-10 2021-02-26 Oppo广东移动通信有限公司 一种信息上报方法、获取方法、用户设备及网络设备
CN109787664A (zh) 2017-11-15 2019-05-21 索尼公司 用于无线通信***的电子设备、方法、装置和存储介质
KR102040209B1 (ko) * 2017-11-27 2019-11-27 엘지전자 주식회사 무선 통신 시스템에서 csi 보고를 수행하기 위한 방법 및 이를 위한 장치
CN108347265B (zh) * 2018-01-17 2020-06-30 东南大学 一种利用空间稀疏特性的波束接收分集方法及装置
WO2019170223A1 (en) * 2018-03-06 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) An un-manned aerial vehicle comprising an antenna element panel
CN114844533A (zh) * 2018-04-12 2022-08-02 中兴通讯股份有限公司 一种信道状态信息报告方法、接收方法和通信节点
EP3783806A4 (en) * 2018-04-18 2022-03-23 Nokia Shanghai Bell Co., Ltd. MASSIVE MIMO VIRTUAL PORT MASSING METHOD AND APPARATUS
CN108809396B (zh) * 2018-04-27 2021-06-08 大连理工大学 低分辨率移相器的天线选择与模拟波束成形联合设计方法
US11394440B2 (en) * 2018-05-16 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Configuring a beam direction of a set of antennas
WO2019220594A1 (ja) * 2018-05-17 2019-11-21 三菱電機株式会社 無線通信装置および無線通信方法
US11424799B2 (en) 2018-06-12 2022-08-23 Google Llc Beamforming-based grant-free non-orthogonal multiple access transmission
US11425699B2 (en) 2018-06-15 2022-08-23 Google Llc CBG-based NOMA transmission for a wireless network
US11063705B2 (en) 2018-06-18 2021-07-13 Google Llc Methods and apparatus for HARQ in NOMA transmission for 5G NR
JP2019220816A (ja) * 2018-06-19 2019-12-26 株式会社東芝 無線通信装置及び無線通信方法
KR20210021066A (ko) 2018-06-22 2021-02-24 구글 엘엘씨 멀티-브랜치 noma 무선 통신
US11159290B2 (en) * 2018-06-28 2021-10-26 Acer Incorporated Device and method for handling a sounding reference signal transmission
KR102441982B1 (ko) * 2018-07-05 2022-09-13 삼성전자주식회사 무선 통신 시스템에서 빔 포밍을 수행하는 방법 및 장치
US11910391B2 (en) 2018-08-10 2024-02-20 Google Llc Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions
US10886625B2 (en) 2018-08-28 2021-01-05 The Mitre Corporation Low-profile wideband antenna array configured to utilize efficient manufacturing processes
CN110875767B (zh) * 2018-08-30 2021-10-26 华为技术有限公司 指示和确定预编码向量的方法和通信装置
US10834632B2 (en) 2018-09-21 2020-11-10 At&T Intellectual Property I, L.P. Energy-efficient wireless communications for advanced networks with low-resolution digital-to-analog converters
US11469866B2 (en) 2018-09-26 2022-10-11 Google Llc Non-orthogonal multiple access configuration in split base station architectures
WO2020093198A1 (en) 2018-11-05 2020-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and network element of scheduling uplink reference signal resource
WO2020141647A1 (ko) * 2019-01-04 2020-07-09 엘지전자 주식회사 Srs를 지원하는 이동 단말기 및 그 이동 단말기의 제어 방법
US11296764B2 (en) * 2019-05-08 2022-04-05 Qualcomm Incorporated Beamforming repeaters with digitally assisted interference mitigation
WO2020247768A1 (en) 2019-06-05 2020-12-10 Cohere Technologies, Inc. Reciprocal geometric precoding
JP7404680B2 (ja) * 2019-07-11 2023-12-26 富士通株式会社 ビームフォーミング装置およびビームフォーミング方法
US11456790B2 (en) * 2019-08-16 2022-09-27 Qualcomm Incorporated Multi-beam selection for beamformed multiple input multiple output wireless communications
CN113475151A (zh) * 2019-08-16 2021-10-01 联发科技股份有限公司 基于两种不同参考信号的服务小区激活的自动增益控制
US11234245B1 (en) * 2019-08-21 2022-01-25 T-Mobile Innovations Llc Beamforming in massive MIMO networks
KR102649518B1 (ko) * 2019-08-31 2024-03-21 엘지전자 주식회사 지능적 빔포밍 방법, 빔포밍 장치 및 지능형 컴퓨팅 디바이스
EP4029152A4 (en) * 2019-09-12 2022-09-14 Telefonaktiebolaget Lm Ericsson (Publ) PROVIDING A PRE-CODER SELECTION POLICY FOR A MULTI-ANTENNA TRANSMITTER
US10707974B1 (en) 2019-10-14 2020-07-07 Industrial Technology Research Institute Transceiver using hybrid beamforming and performing an antenna calibration method
US11309952B2 (en) * 2019-12-11 2022-04-19 Industrial Technology Research Institute Beamforming transmission device and method
WO2021134366A1 (zh) * 2019-12-30 2021-07-08 华为技术有限公司 一种天线收发模块、多输入多输出天线收发***和基站
CN113872647B (zh) * 2020-06-30 2022-07-19 华为技术有限公司 探测参考信号srs传输方法及通信装置
CN112505707B (zh) * 2021-01-29 2021-06-01 成都远望探测技术有限公司 一种x波段双极化快速扫描相控阵天气雷达
US11582070B2 (en) * 2021-03-01 2023-02-14 At&T Intellectual Property I, L.P. Method and system for controlling downlink transmit power
CN115549729A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 通信处理方法和通信处理装置
TW202316824A (zh) 2021-10-14 2023-04-16 財團法人工業技術研究院 類比式陣列天線波束成型器及其運作方法
CN114007273B (zh) * 2021-12-24 2022-04-08 天津七一二通信广播股份有限公司 分布式跳频网络中有限竞争多址接入方法及***
WO2024020951A1 (en) * 2022-07-28 2024-02-01 Nokia Shanghai Bell Co., Ltd. Beamforming scheme
WO2024034562A1 (ja) * 2022-08-08 2024-02-15 京セラ株式会社 通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090225728A1 (en) * 2008-03-10 2009-09-10 Zhifeng Tao Analogue Beamforming
EP2432149A2 (en) * 2010-09-17 2012-03-21 Samsung Electronics Co., Ltd. System and method for pucch subband feedback
EP2536048A2 (en) * 2010-02-12 2012-12-19 LG Electronics Inc. Data transmission method and device in wireless communication system
US20130202054A1 (en) * 2012-02-06 2013-08-08 Samsung Electronics Co., Ltd. Apparatus and method for low complexity spatial division multiple access in a millimeter wave mobile communication system
US20130258972A1 (en) * 2012-03-29 2013-10-03 Samsung Electronics Co., Ltd. Method and apparatus for generating reference signal in analog/digital mixed bf system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516894B1 (ko) 2002-11-20 2005-09-23 한국전자통신연구원 배열 안테나 기지국 수신 시스템 및 그 방법
US7710925B2 (en) 2004-06-23 2010-05-04 Intel Corporation Spatial puncturing apparatus, method, and system
KR101055060B1 (ko) 2006-12-22 2011-08-05 후지쯔 가부시끼가이샤 무선 통신 방법, 기지국 및 유저 단말기
KR20080089728A (ko) * 2007-04-02 2008-10-08 엘지전자 주식회사 다중 부 반송파 시스템에서의 부 반송파 간격 적용 방법 및이를 지원하는 이동 단말
WO2009109913A2 (en) * 2008-03-03 2009-09-11 Runcom Technologies Ltd. Low complexity user selection for sdma
CN101541011B (zh) * 2008-03-20 2011-09-14 华为技术有限公司 一种协调方法、装置及用户设备
JP2010028737A (ja) 2008-07-24 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法及び無線通信システム
US8184052B1 (en) * 2008-09-24 2012-05-22 Marvell International Ltd. Digital beamforming scheme for phased-array antennas
US8754810B2 (en) * 2009-02-02 2014-06-17 Commonwealth Scientific And Industrial Research Organisation Hybrid adaptive antenna array
EP2264913B1 (en) 2009-06-15 2016-01-06 Alcatel Lucent Base transceiver station and associated method for communication between base transceiver station and user equipments
US8179861B2 (en) * 2009-08-31 2012-05-15 At&T Intellectual Property I, L.P. Femtocell originating domain selection
US8412275B2 (en) 2009-12-30 2013-04-02 Broadcom Corporation Method and system for communicating feedback information in a multiple user multiple input multiple output (MU-MIMO) communication system
US8780843B2 (en) * 2010-02-05 2014-07-15 Lg Electronics Inc. Method and apparatus for transmitting a sounding reference signal
EP2388931B1 (en) * 2010-05-21 2017-09-13 Imec Method and system for mixed analog/digital beamforming in wireless communication systems
US9826425B2 (en) * 2010-06-21 2017-11-21 Lg Electronics Inc. Method and apparatus for transmitting channel state information
EP2403067A1 (en) * 2010-06-23 2012-01-04 Astrium Limited An antenna
WO2012037236A2 (en) * 2010-09-15 2012-03-22 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
KR101923452B1 (ko) * 2011-04-18 2019-02-27 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
GB2491866B (en) * 2011-06-15 2015-10-14 Sca Ipla Holdings Inc Apparatus and methods for selecting carriers to camp on to in a wireless telecommunications system supporting a plurality of carriers
WO2012177203A1 (en) * 2011-06-21 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for performing measurements in a wireless network
KR101839812B1 (ko) 2011-08-11 2018-03-19 삼성전자주식회사 혼합 아날로그/디지털 빔포밍을 위한 방법 및 장치
KR20130017572A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 하이브리드 빔포밍 시스템에서 아날로그 빔 결정 방법 및 장치
KR101828836B1 (ko) * 2011-08-23 2018-02-13 삼성전자주식회사 빔 포밍 기반의 무선통신시스템에서 빔 스캐닝을 통한 스케줄링 장치 및 방법
US20130057432A1 (en) * 2011-09-02 2013-03-07 Samsung Electronics Co., Ltd. Method and apparatus for beam broadening for phased antenna arrays using multi-beam sub-arrays
US8892109B2 (en) * 2012-05-02 2014-11-18 Alcatel Lucent Method and apparatus of dynamic spectrum sharing in cellular networks
KR101880990B1 (ko) 2011-11-16 2018-08-24 삼성전자주식회사 다중 안테나 통신 시스템에서 신호 송수신 방법 및 장치
KR101957698B1 (ko) 2012-02-06 2019-03-14 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 상향링크 자원 할당 방법 및 장치
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
EP2645769B1 (en) * 2012-03-29 2016-01-06 Alcatel Lucent Load balancing
JP6053305B2 (ja) 2012-03-30 2016-12-27 株式会社Nttドコモ 無線基地局、無線通信システム及び無線通信方法
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
CN105144600B (zh) * 2013-05-31 2018-11-02 英特尔Ip公司 用于大型天线阵列的混合数字和模拟波束成形
WO2015065154A1 (ko) 2013-11-04 2015-05-07 (주)엘지전자 무선통신 시스템에서 신호를 전송하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090225728A1 (en) * 2008-03-10 2009-09-10 Zhifeng Tao Analogue Beamforming
EP2536048A2 (en) * 2010-02-12 2012-12-19 LG Electronics Inc. Data transmission method and device in wireless communication system
EP2432149A2 (en) * 2010-09-17 2012-03-21 Samsung Electronics Co., Ltd. System and method for pucch subband feedback
US20130202054A1 (en) * 2012-02-06 2013-08-08 Samsung Electronics Co., Ltd. Apparatus and method for low complexity spatial division multiple access in a millimeter wave mobile communication system
US20130258972A1 (en) * 2012-03-29 2013-10-03 Samsung Electronics Co., Ltd. Method and apparatus for generating reference signal in analog/digital mixed bf system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3068060A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323021A (zh) * 2015-11-02 2016-02-10 北京理工大学 基于循环移位序列的星载相控阵发射天线的校准方法
CN105323021B (zh) * 2015-11-02 2018-03-27 北京理工大学 基于循环移位序列的星载相控阵发射天线的校准方法
CN106921990A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种模拟通道测量方法及基站
EP3399657A4 (en) * 2015-12-28 2018-12-05 China Academy of Telecommunications Technology Analog channel measurement method and base station
US10644781B2 (en) 2015-12-28 2020-05-05 China Academy Of Telecommunications Technology Analog channel measurement method and base station
JP2017163499A (ja) * 2016-03-11 2017-09-14 株式会社Nttドコモ 無線通信システム及び管理装置
WO2017194028A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 信道状态信息的测量方法及装置

Also Published As

Publication number Publication date
JP6673824B2 (ja) 2020-04-01
EP3068060A1 (en) 2016-09-14
CN105684323B (zh) 2020-02-07
WO2015065155A1 (ko) 2015-05-07
WO2015065156A1 (ko) 2015-05-07
JP2016539541A (ja) 2016-12-15
WO2015065152A1 (ko) 2015-05-07
US20160261325A1 (en) 2016-09-08
US20160241323A1 (en) 2016-08-18
KR102290759B1 (ko) 2021-08-18
US10084521B2 (en) 2018-09-25
CN105684323A (zh) 2016-06-15
WO2015065158A1 (ko) 2015-05-07
WO2015065157A1 (ko) 2015-05-07
KR20160082235A (ko) 2016-07-08
EP3068060A4 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
KR102290759B1 (ko) 무선통신 시스템에서 신호를 전송하는 방법 및 장치
CN110945822B (zh) 在无线通信***中的上行链路发送和接收方法及其装置
KR102174831B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
CN110463066B (zh) 用于在无线通信***中发送上行链路数据的方法及其装置
KR102219351B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
CN108141267B (zh) 无线通信***中发送和接收信道状态信息的方法及其设备
CN110463072B (zh) 在无线通信***中报告信道状态信息的方法和设备
WO2017061744A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2014142514A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
WO2014171658A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
WO2017061822A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
KR20160114614A (ko) 무선 통신 시스템에서 대규모 안테나 어레이 기반 빔포밍를 위한 피드백 보고 방법 및 이를 위한 장치
US20130242896A1 (en) Method and apparatus for receiving a signal in a wireless communication system that supports mu-mimo scheme
WO2017003252A1 (ko) 다중 안테나 무선 통신 시스템에서 코드북 구성 방법 및 이를 위한 장치
WO2014189206A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
Jeong et al. Transparent operation of Kronecker product based full dimension MIMO to exploit 2D antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006604

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016522771

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15029194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014858304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858304

Country of ref document: EP