WO2018056158A1 - 送信方法、送信装置、受信方法及び受信装置 - Google Patents

送信方法、送信装置、受信方法及び受信装置 Download PDF

Info

Publication number
WO2018056158A1
WO2018056158A1 PCT/JP2017/033195 JP2017033195W WO2018056158A1 WO 2018056158 A1 WO2018056158 A1 WO 2018056158A1 JP 2017033195 W JP2017033195 W JP 2017033195W WO 2018056158 A1 WO2018056158 A1 WO 2018056158A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
transmission
signal
data
symbol
Prior art date
Application number
PCT/JP2017/033195
Other languages
English (en)
French (fr)
Inventor
村上 豊
知弘 木村
幹博 大内
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to EP22184287.5A priority Critical patent/EP4092924A1/en
Priority to CN201780057492.XA priority patent/CN109716668B/zh
Priority to CN202210997662.5A priority patent/CN115361046A/zh
Priority to JP2018541007A priority patent/JP7148404B2/ja
Priority to EP17852935.0A priority patent/EP3518432A4/en
Publication of WO2018056158A1 publication Critical patent/WO2018056158A1/ja
Priority to US16/359,330 priority patent/US20190222294A1/en
Priority to US16/932,015 priority patent/US11671166B2/en
Priority to US18/140,980 priority patent/US20230261730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity

Definitions

  • the present invention relates to a transmission method, a transmission device, a reception method, and a reception device.
  • MIMO Multiple-Input Multiple-Out
  • the transmission data of a plurality of streams is modulated, and each modulation signal is transmitted from different antennas using the same frequency (common frequency) and transmitted at the same time, thereby improving data reception quality, and
  • the communication speed of data can be increased.
  • a pseudo omni-pattern antenna having a substantially constant antenna gain in a wide space direction may be used.
  • Patent Document 1 describes that a transmission device transmits a modulated signal using a pseudo omni-pattern antenna.
  • a transmission apparatus is a transmission apparatus including a plurality of transmission antennas, generates a first baseband signal by modulating data of a first stream, and modulates data of a second stream.
  • a signal processing unit for generating two baseband signals, a plurality of first transmission signals having different directivities from the first baseband signals, and a plurality of second transmission signals having different directivities from the second baseband signals And transmitting a plurality of first transmission signals and a plurality of the second transmission signals at the same time, and the transmission unit further receives a request for transmission of the first stream from the terminal.
  • FIG. 1 is a diagram illustrating an example of a configuration of a base station.
  • FIG. 2 is a diagram illustrating an example of the configuration of the antenna unit of the base station.
  • FIG. 3 is a diagram illustrating an example of a configuration of the base station.
  • FIG. 4 is a diagram illustrating an example of the configuration of the terminal.
  • FIG. 5 is a diagram illustrating an example of the configuration of the antenna unit of the terminal.
  • FIG. 6 is a diagram illustrating an example of the configuration of the terminal.
  • FIG. 7 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 8 is a diagram for explaining the relationship between a plurality of streams.
  • FIG. 9 is a diagram illustrating an example of a frame configuration.
  • FIG. 1 is a diagram illustrating an example of a configuration of a base station.
  • FIG. 2 is a diagram illustrating an example of the configuration of the antenna unit of the base station.
  • FIG. 3 is
  • FIG. 10 is a diagram illustrating an example of a frame configuration.
  • FIG. 11 is a diagram illustrating an example of a symbol configuration.
  • FIG. 12 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 13 is a diagram illustrating a relationship between a plurality of modulation signals.
  • FIG. 14 is a diagram illustrating an example of a frame configuration.
  • FIG. 15 is a diagram illustrating an example of a frame configuration.
  • FIG. 16 is a diagram illustrating an example of a symbol configuration.
  • FIG. 17 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 18 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 18 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 19 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 20 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 21 is a diagram illustrating the relationship between a plurality of modulation signals.
  • FIG. 22 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 23 is a diagram illustrating a procedure for performing communication between a base station and a terminal.
  • FIG. 24 is a diagram illustrating an example of symbols transmitted by the base station and the terminal.
  • FIG. 25 is a diagram illustrating an example of symbols transmitted by the base station.
  • FIG. 26 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 27 is a diagram illustrating an example of symbols transmitted by the base station.
  • FIG. 28 is a diagram illustrating a procedure for performing communication between a base station and a terminal.
  • FIG. 29 is a diagram illustrating an example of a communication state between a base station and a terminal.
  • FIG. 30 is a diagram illustrating a procedure for performing communication between a base station and a terminal.
  • FIG. 31 is a diagram illustrating an example of symbols transmitted by the base station.
  • FIG. 32 is a diagram illustrating an example of symbols transmitted by the base station.
  • FIG. 33 is a diagram illustrating a procedure of performing communication between a base station and a terminal.
  • FIG. 34 is a diagram illustrating a procedure for performing communication between a base station and a terminal.
  • FIG. 35 is a diagram illustrating an example of symbols transmitted by the base station.
  • FIG. 36 is a diagram illustrating a procedure of performing communication between a base station and a terminal.
  • FIG. 37 is a diagram illustrating an example of the configuration of the base station.
  • FIG. 38 is a diagram illustrating an example of a frame configuration.
  • FIG. 39 is a diagram illustrating an example of a frame configuration.
  • FIG. 40 is a diagram illustrating an example of a frame configuration.
  • FIG. 41 is a diagram illustrating an example of a frame configuration.
  • FIG. 42 is a diagram illustrating an example of assignment of symbol areas to terminals.
  • FIG. 43 is a diagram illustrating an example of assignment of symbol areas to terminals.
  • FIG. 44 is a diagram illustrating an example of a configuration of a base station.
  • FIG. 1 shows an example of the configuration of a base station (or an access point or the like) in this embodiment.
  • 101-1 indicates # 1 information
  • 101-2 indicates # 2 information
  • 101-M indicates #M information
  • 101-i indicates #i information.
  • i is an integer of 1 to M.
  • M is an integer of 2 or more. Note that it is not necessary that everything from # 1 information to #M information exists.
  • the signal processor 102 receives # 1 information 101-1, # 2 information 101-2,..., #M information 101-M, and a control signal 159.
  • the signal processing unit 102 includes, in the control signal 159, “information on error correction coding method (coding rate, code length (block length))”, “information on modulation scheme”, “information on precoding”, “ “Transmission method (multiplexing method)”, “Multicast transmission / unicast transmission (multicast transmission and unicast transmission may be realized simultaneously)”, “multicast transmission Signal processing after signal processing based on information such as “the number of transmission streams when performing”, “transmission method when transmitting a modulated signal for multicasting (this will be described in detail later)” 103-1, a signal 103-2 after signal processing,..., A signal 103-M after signal processing, that is, a signal 103-i after signal processing is output.
  • baseband signals corresponding to each information are collected and precoding is performed. Further, for example, OFDM (Orthogonal Frequency Division Multiplexing) may be applied.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Radio section 104-1 receives signal 103-1 after processing and control signal 159 as inputs, performs band limiting, frequency conversion, amplification, etc. based on control signal 159, and outputs transmission signal 105-1 To do.
  • the transmission signal 105-1 is output as a radio wave from the antenna unit 106-1.
  • radio section 104-2 receives signal 103-2 after signal processing and control signal 159 as inputs, performs processing such as band limitation, frequency conversion and amplification based on control signal 159, and transmits signal 105- 2 is output.
  • the transmission signal 105-2 is output as a radio wave from the antenna unit 106-2.
  • the description from the wireless unit 104-3 to the wireless unit 104- (M-1) is omitted.
  • Radio section 104-M receives signal 103-M after signal processing and control signal 159 as inputs, performs band limiting, frequency conversion, amplification, and other processing based on control signal 159, and outputs transmission signal 105-M To do.
  • the transmission signal 105-M is output as a radio wave from the antenna unit 106-M.
  • wireless part does not need to perform the said process, when the signal after a signal processing does not exist.
  • the radio unit group 153 receives the received signal group 152 received by the receiving antenna group 151, performs processing such as frequency conversion, and outputs a baseband signal group 154.
  • the signal processing unit 155 receives the baseband signal group 154, performs demodulation and error correction decoding, that is, performs processing such as time synchronization, frequency synchronization, and channel estimation. At this time, since the signal processing unit 155 receives and processes the modulation signal transmitted by one or more terminals, the signal processing unit 155 obtains data transmitted by each terminal and control information transmitted by each terminal. Therefore, the signal processing unit 155 outputs a data group 156 corresponding to one or more terminals and a control information group 157 corresponding to one or more terminals.
  • the setting unit 158 receives the control information group 157 and the setting signal 160, and based on the control information group 157, “error correction coding method (coding rate, code length (block length))”, “modulation scheme”, “Precoding method”, “Transmission method”, “Antenna setting”, “Multicast transmission / unicast transmission (multicast and unicast transmission may be realized simultaneously)” , “Number of transmission streams when performing multicast”, “transmission method when transmitting a modulation signal for multicast”, and the like, and output a control signal 159 including the determined information.
  • the antenna units 106-1, 106-2,..., 106-M have the control signal 159 as an input. The operation at this time will be described with reference to FIG.
  • FIG. 2 shows an example of the configuration of the antenna units 106-1, 106-2,..., 106-M.
  • Each antenna unit includes a plurality of antennas as shown in FIG. In FIG. 2, four antennas are drawn, but each antenna unit only needs to have a plurality of antennas. The number of antennas is not limited to four.
  • FIG. 2 shows the configuration of the antenna unit 106-i. i is an integer of 1 or more and M or less.
  • Distribution section 202 receives transmission signal 201 (corresponding to transmission signal 105-i in FIG. 1), distributes transmission signal 201, and outputs signals 203-1, 203-2, 203-3, and 203-4. .
  • Multiplier 204-1 has signal 203-1 and control signal 200 (corresponding to control signal 159 in FIG. 1) as inputs, and based on the information on the multiplication coefficient included in control signal 200, , The coefficient W1 is multiplied, and the multiplied signal 205-1 is output.
  • the coefficient W1 is defined as a complex number. Therefore, W1 can take a real number. Therefore, when the signal 203-1 is v1 (t), the multiplied signal 205-1 can be expressed as W1 ⁇ v1 (t) (t is time). Then, the multiplied signal 205-1 is output as a radio wave from the antenna 206-1.
  • multiplication section 204-2 receives signal 203-2 and control signal 200 as input, and multiplies signal 203-2 by coefficient W2 based on information on the multiplication coefficient included in control signal 200.
  • the multiplied signal 205-2 is output.
  • the coefficient W2 is defined as a complex number. Therefore, W2 can also take a real number. Therefore, if the signal 203-2 is v2 (t), the multiplied signal 205-2 can be expressed as W2 ⁇ v2 (t) (t is time). Then, the multiplied signal 205-2 is output as a radio wave from the antenna 206-2.
  • Multiplier 204-3 receives signal 203-3 and control signal 200 as input, and multiplies signal 203-3 by coefficient W3 based on the information on the multiplication coefficient included in control signal 200, and after multiplication.
  • the signal 205-3 is output.
  • the coefficient W3 is defined as a complex number. Therefore, W3 can take a real number. Therefore, when the signal 203-3 is v3 (t), the signal 205-3 after multiplication can be expressed as W3 ⁇ v3 (t) (t is time).
  • the multiplied signal 205-3 is output as a radio wave from the antenna 206-3.
  • Multiplier 204-4 receives signal 203-4 and control signal 200 as input, and multiplies signal 203-4 by coefficient W4 based on information on the multiplication coefficient included in control signal 200, and after multiplication.
  • the signal 205-4 is output.
  • the coefficient W4 is defined as a complex number. Therefore, W4 can also take a real number. Accordingly, if the signal 203-4 is v4 (t), the multiplied signal 205-4 can be expressed as W4 ⁇ v4 (t) (t is time).
  • the multiplied signal 205-4 is output as a radio wave from the antenna 206-4.
  • the absolute value of W1, the absolute value of W2, the absolute value of W3, and the absolute value of W4 may be equal.
  • FIG. 3 shows a configuration of a base station different from the configuration of the base station of FIG. 1 in the present embodiment.
  • components that operate in the same way as in FIG. The description is omitted below.
  • the weighting synthesizer 301 receives the modulation signal 105-1, the modulation signal 105-2,..., The modulation signal 105-M, and the control signal 159 as inputs. Then, the weighting / combining unit 301 weights / combines the modulated signal 105-1, the modulated signal 105-2,..., And the modulated signal 105-M based on the information related to the weighted combination included in the control signal 159. , 302-K are output after weighted synthesis. K is an integer of 1 or more. Then, the weighted combined signal 302-1 is output as a radio wave from the antenna 303-1, the weighted combined signal 302-2 is output as a radio wave from the antenna 303-2, and so on. The signal 302-K is output as a radio wave from the antenna 303-K.
  • the signal y i (t) 302-i (i is an integer greater than or equal to 1 and less than or equal to K) after weighted synthesis is expressed as follows (t is time).
  • a ij is a value that can be defined as a complex number. Therefore, A ij can also be a real number, and x j (t) is a modulated signal 105-j. j is an integer of 1 or more and M or less.
  • FIG. 4 shows an example of the configuration of the terminal.
  • the antenna units 401-1, 401-2,..., 401 -N receive the control signal 410.
  • N is an integer of 1 or more.
  • Radio section 403-1 receives reception signal 402-1 and control signal 410 received by antenna section 401-1, and performs processing such as frequency conversion on reception signal 402-1 based on control signal 410.
  • the baseband signal 404-1 is output.
  • radio section 403-2 receives reception signal 402-2 received by antenna section 401-2 and control signal 410, and performs frequency conversion or the like on reception signal 402-2 based on control signal 410.
  • the baseband signal 404-2 is output. Note that the description from the wireless unit 403-3 to the wireless unit 403- (N-1) is omitted.
  • Radio section 403-N receives reception signal 402-N received by antenna section 401-N and control signal 410, and performs processing such as frequency conversion on reception signal 402-N based on the control signal.
  • the baseband signal 404-N is output.
  • the radio units 403-1, 403-2,..., 403-N do not all have to operate. Therefore, the baseband signals 404-1, 404-2,..., 404-N are not all present.
  • the signal processing unit 405 receives the baseband signals 404-1, 404-2,..., 404-N, and the control signal 410, and performs demodulation and error correction decoding processing based on the control signal 410. , Data 406, transmission control information 407, and control information 408 are output. That is, the signal processing unit 405 also performs processing such as time synchronization, frequency synchronization, and channel estimation.
  • the setting unit 409 receives the control information 408, makes settings related to the reception method, and outputs a control signal 410.
  • the signal processing unit 452 receives the information 451 and the transmission control information 407, performs processing such as error correction coding and mapping by the set modulation method, and outputs a baseband signal group 453.
  • the wireless unit group 454 receives the baseband signal group 453, performs band limiting, frequency conversion, amplification, and the like, and outputs a transmission signal group 455.
  • the transmission signal group 455 is transmitted from the transmission antenna group 456 as radio waves. Is output.
  • FIG. 5 shows an example of the configuration of the antenna units 401-1, 401-2,..., 401-N.
  • Each antenna unit includes a plurality of antennas as shown in FIG. In FIG. 5, four antennas are drawn, but each antenna unit may have a plurality of antennas. Note that the number of antennas in the antenna unit is not limited to four.
  • FIG. 5 shows the configuration of the antenna unit 401-i. i is an integer of 1 or more and N or less.
  • Multiplier 503-1 receives reception signal 502-1 received by antenna 501-1 and control signal 500 (corresponding to control signal 410 in FIG. 4), and uses the multiplication coefficient information included in control signal 500 as input. Based on this, the received signal 502-1 is multiplied by the coefficient D1, and the multiplied signal 504-1 is output.
  • the coefficient D1 can be defined as a complex number. Therefore, D1 can take a real number. Therefore, if the received signal 502-1 is e1 (t), the multiplied signal 504-1 can be expressed as D1 ⁇ e1 (t) (t is time).
  • multiplier 503-2 receives reception signal 502-2 received by antenna 501-2 and control signal 500, and receives reception signal 502-2 based on information on a multiplication coefficient included in control signal 500. Is multiplied by the coefficient D2, and the multiplied signal 504-2 is output.
  • the coefficient D2 can be defined as a complex number. Therefore, D2 can also take a real number. Therefore, if the received signal 502-2 is e2 (t), the multiplied signal 504-2 can be expressed as D2 ⁇ e2 (t) (t is time).
  • Multiplier 503-3 receives reception signal 502-3 received by antenna 501-3 and control signal 500 as input, and receives signal 502-3 based on the information of the multiplication coefficient included in control signal 500. Multiply by the coefficient D3 and output the multiplied signal 504-3.
  • the coefficient D3 can be defined as a complex number. Therefore, D3 can also take a real number. Therefore, if the received signal 502-3 is e3 (t), the multiplied signal 504-3 can be expressed as D3 ⁇ e3 (t) (t is time).
  • Multiplier 503-4 receives reception signal 502-4 received by antenna 501-4 and control signal 500, and receives received signal 502-4 based on information on the multiplication coefficient included in control signal 500. Multiply by the coefficient D4 and output the multiplied signal 504-4.
  • the coefficient D4 can be defined as a complex number. Therefore, D4 can be a real number. Therefore, if the received signal 502-4 is e4 (t), the multiplied signal 504-4 can be expressed as D4 ⁇ e4 (t) (t is time).
  • the synthesizing unit 505 receives the multiplied signals 504-1, 504-2, 504-3, and 504-4, and adds the multiplied signals 504-1, 504-2, 504-3, and 504-4.
  • the synthesized signal 506 (corresponding to the received signal 402-i in FIG. 4) is output. Therefore, the combined signal 506 is expressed as D1 ⁇ e1 (t) + D2 ⁇ e2 (t) + D3 ⁇ e3 (t) + D4 ⁇ e4 (t).
  • FIG. 6 shows a terminal configuration different from the terminal configuration of FIG. 4 in the present embodiment.
  • components operating in the same manner as in FIG. Then, explanation is omitted.
  • Multiplier 603-1 receives reception signal 602-1 received by antenna 601-1 and control signal 410, and receives signal 602-1 based on the information on the multiplication coefficient included in control signal 410. Multiply by the coefficient G1 and output the signal 604-1 after the multiplication.
  • the coefficient G1 can be defined as a complex number. Therefore, G1 can take a real number. Therefore, when the received signal 602-1 is c1 (t), the multiplied signal 604-1 can be expressed as G1 ⁇ c1 (t) (t is time).
  • multiplication section 603-2 receives reception signal 602-2 received by antenna 601-2 and control signal 410, and receives signal 602-2 based on information on a multiplication coefficient included in control signal 410. Is multiplied by a coefficient G2, and a signal 604-2 after multiplication is output.
  • the coefficient G2 can be defined as a complex number. Therefore, G2 can also take a real number. Therefore, if the received signal 602-2 is c2 (t), the multiplied signal 604-2 can be expressed as G2 ⁇ c2 (t) (t is time).
  • the description from the multiplication unit 603-3 to the multiplication unit 603- (L-1) is omitted.
  • Multiplier 603 -L receives reception signal 602 -L received by antenna 601 -L and control signal 410 as input, and receives signal 602 -L based on information on the multiplication coefficient included in control signal 410. Multiply by the coefficient GL and output the signal 604 -L after multiplication.
  • the coefficient GL can be defined as a complex number. Therefore, GL can take a real number. Therefore, when the received signal 602 -L is cL (t), the signal 604 -L after multiplication can be expressed as GL ⁇ cL (t) (t is time).
  • multiplication section 603-i receives reception signal 602-i received by antenna 601-i and control signal 410 as input, and based on the information on the multiplication coefficient included in control signal 410, receives signal 602-i.
  • the coefficient Gi is multiplied, and the multiplied signal 604-i is output.
  • the coefficient Gi can be defined as a complex number. Therefore, Gi can also take a real number. Therefore, if the received signal 602-i is ci (t), the multiplied signal 604-i can be expressed as Gi ⁇ ci (t) (t is time). Note that i is an integer of 1 or more and L or less, and L is an integer of 2 or more.
  • the processing unit 605 receives the signal 604-1 after multiplication, the signal 604-2 after multiplication,..., The signal 604-L after multiplication, and the control signal 410 as input, and performs signal processing based on the control signal 410. , And outputs processed signals 606-1, 606-2, ..., 606-N.
  • N is an integer of 2 or more.
  • the signal 604-i after multiplication is expressed as p i (t).
  • i is an integer of 1 to L.
  • the processed signal 606-j (r j (t)) is expressed as follows. (J is an integer from 1 to N)
  • Equation (2) B ji is a value that can be defined as a complex number. Therefore, B ji can take a real number.
  • FIG. 7 shows an example of the communication state between the base station and the terminal.
  • a base station may be called an access point, a broadcast station, or the like.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIGS. 1 and 3, and the signal processing unit 102 (and / or the weighting synthesis unit 301) performs precoding (weighting synthesis). Then, transmission beam forming (directivity control) is performed.
  • FIG. 7 shows a transmission beam 702-1 for transmitting stream 1 data, a transmission beam 702-2 for transmitting stream 1 data, and a transmission beam 702-3 for transmitting stream 1 data. Indicates.
  • FIG. 7 shows a transmission beam 703-1 for transmitting stream 2 data, a transmission beam 703-3 for transmitting stream 2 data, and a transmission beam 703-3 for transmitting stream 2 data. .
  • the number of transmission beams for transmitting stream 1 data is 3 and the number of transmission beams for transmitting stream 2 data is 3.
  • the present invention is not limited to this. It suffices if there are a plurality of transmission beams for transmitting one data and a plurality of transmission beams for transmitting stream 2 data.
  • FIG. 7 includes terminals 704-1, 704-2, 704-3, 704-4, and 704-5, and has the same configuration as the terminals shown in FIGS. 4 and 5, for example.
  • the terminal 704-1 includes the “signal processing unit 405” and / or the “antennas 401-1 to 401-N” and / or the “multiplication units 603-1 to 603-L” and the processing unit 605. ”Performs directivity control at the time of reception to form reception directivity 705-1 and reception directivity 706-1.
  • the reception directivity 705-1 allows the terminal 704-1 to receive and demodulate the transmission beam 702-1 for transmitting the data of the stream 1.
  • the reception directivity 706-1 allows the terminal 704-1 to receive and demodulate the transmission beam 702-1. Can receive and demodulate the transmission beam 703-1 for transmitting the stream 2 data.
  • terminal 704-2 includes “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing units”.
  • 605 "performs directivity control at the time of reception to form reception directivity 705-2 and reception directivity 706-2.
  • the reception directivity 705-2 enables the terminal 704-2 to receive and demodulate the transmission beam 702-1 for transmitting the data of the stream 1.
  • the reception directivity 706-2 allows the terminal 704-2 to receive and demodulate the transmission beam 702-1. Can receive and demodulate the transmission beam 703-1 for transmitting the stream 2 data.
  • the terminal 704-3 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-3 and reception directivity 706-3.
  • the reception directivity 705-3 allows the terminal 704-3 to receive and demodulate the transmission beam 702-2 for transmitting the data of the stream 1.
  • the reception directivity 706-3 allows the terminal 704-3 to receive and demodulate the transmission beam 702-2. Can receive and demodulate the transmission beam 703-2 for transmitting the stream 2 data.
  • Terminal 704-4 is operated by “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplying units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-4 and reception directivity 706-4.
  • the reception directivity 705-4 allows the terminal 704-4 to receive and demodulate the transmission beam 702-3 for transmitting the data of the stream 1.
  • the reception directivity 706-4 allows the terminal 704-4 to receive and demodulate the transmission beam 702-3. Can receive and demodulate the transmission beam 703-2 for transmitting the stream 2 data.
  • the terminal 704-5 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-5 and reception directivity 706-5.
  • the reception directivity 705-5 allows the terminal 704-5 to receive and demodulate the transmission beam 702-3 for transmitting the data of the stream 1.
  • the reception directivity 706-5 allows the terminal 704-5 to receive and demodulate. Can receive and demodulate the transmission beam 703-3 for transmitting the stream 2 data.
  • the terminal selects at least one transmission beam among the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of stream 1 according to the spatial position, and directs reception. Therefore, the terminal can obtain the data of the stream 1 with high quality, and the terminal can use the space among the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2.
  • the data of the stream 2 can be obtained with high quality by selecting at least one transmission beam according to the specific position and directing the directivity of reception.
  • the base station 700 uses the same frequency (same frequency band) and the same time for the transmission beam 702-1 for transmitting the data of stream 1 and the transmission beam 703-1 for transmitting the data of stream 2. Use to send. Then, the base station 700 sets the transmission beam 702-2 for transmitting stream 1 data and the transmission beam 703-2 for transmitting stream 2 data to the same frequency (same frequency band) and the same time. Use to send. In addition, the base station 700 sets the transmission beam 702-3 for transmitting stream 1 data and the transmission beam 703-3 for transmitting stream 2 data to the same frequency (same frequency band) and the same time. Use to send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band), or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform multicast transmission / unicast transmission”. When the base station performs transmission as illustrated in FIG. Is sent to the setting unit 158.
  • the setting signal 160 includes information of “the number of transmission streams when performing multicast”. When the base station performs transmission as illustrated in FIG. 7, the setting signal 160 indicates that the information “the number of transmission streams is 2”. Are input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each stream”.
  • information that “the number of transmission beams for transmitting stream 1 is 3 and the number of transmission beams for transmitting stream 2 is 3” is input to the setting unit 158 by the setting signal 160. Is done.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, “ A control information symbol including information such as “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately. Details of the configuration of the control information symbol will be described later.
  • FIG. 8 is a diagram for explaining the relationship between #i information 101-i in FIGS. 1 and 3 and “stream 1” and “stream 2” described with reference to FIG.
  • the # 1 information 101-1 is subjected to processing such as error correction encoding to obtain data after error correction encoding.
  • the data after error correction coding is named # 1 transmission data.
  • mapping is performed on the # 1 transmission data to obtain a data symbol.
  • This data symbol is allocated to stream 1 and stream 2, and the data symbol (data symbol group) of stream 1 and the data of stream 2 are allocated.
  • a symbol (data symbol group) is obtained.
  • the symbol group of stream 1 includes the data symbol (data symbol group) of stream 1, and the symbol group of stream 1 is transmitted from the base station of FIGS.
  • the symbol group of stream 2 includes data symbols (data symbol group) of stream 2, and the symbol group of stream 2 is transmitted from the base station of FIGS.
  • FIG. 9 shows an example of the frame configuration when the horizontal axis time is used.
  • # 1 symbol group 901-1 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-1 for transmitting data of stream 1 in FIG.
  • # 2 symbol group 901-2 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-2 for transmitting data of stream 1 in FIG.
  • # 3 symbol group 901-3 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-3 for transmitting data of stream 1 in FIG.
  • # 1 symbol group 902-1 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-1 for transmitting data of stream 2 in FIG.
  • # 2 symbol group 902-2 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-2 for transmitting data of stream 2 in FIG.
  • # 3 symbol group 902-3 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-3 for transmitting data of stream 2 in FIG.
  • the 2 symbol group 902-2 and the # 3 symbol group 902-3 of the stream 2 exist in the time section 1, for example.
  • the # 1 symbol group 901-1 of stream 1 and the # 2 symbol group 902-1 of stream 2 are transmitted using the same frequency (same frequency band), and stream 1
  • the # 2 symbol group 901-2 and the # 2 symbol group 902-2 of the stream 2 are transmitted using the same frequency (same frequency band), and the # 3 symbol group 901-3 of the stream 1 and the stream 2
  • the # 3 symbol group 902-3 is transmitted using the same frequency (same frequency band).
  • “stream 1 data symbol group A” and “stream 2 data symbol group A” are generated from the information in the procedure of FIG. Then, a symbol group “stream 1 data symbol group A-1” composed of the same symbols as those constituting “stream 1 data symbol group A”, a symbol constituting “stream 1 data symbol group A”, and Symbol group “stream 1 data symbol group A-2”, symbol group “stream 1 data symbol group A-2”, symbol group “stream 1 data symbol group A” composed of the same symbols -3 ”is prepared.
  • the symbols constituting the “stream 1 data symbol group A-1”, the “stream 1 data symbol group A-2”, and the “stream 1 data symbol group A-3” are: The same.
  • # 1 symbol group 901-1 of stream 1 in FIG. 9 includes “data symbol group A-1 of stream 1”, and # 2 symbol group 901-2 of stream 1 in FIG.
  • the stream 1 data symbol group A-2 is included, and the # 1 symbol group 901-3 of stream 1 in FIG. 9 includes the“ stream 1 data symbol group A-3 ”. That is, the # 1 symbol group 901-1 of stream 1, the # 2 symbol group 901-2 of stream 1, and the # 3 symbol group 901-3 of stream 1 include the same data symbol group.
  • # 1 symbol group 902-1 of stream 2 in FIG. 9 includes “data symbol group A-1 of stream 2”, and # 2 symbol group 902-2 of stream 2 in FIG.
  • the stream 2 data symbol group A-2 is included
  • the # 2 symbol group 902-3 of stream 2 in FIG. 9 includes the“ stream 2 data symbol group A-3 ”. That is, the # 1 symbol group 902-1 of stream 2, the # 2 symbol group 902-2 of stream 2, and the # 3 symbol group 902-3 of stream 2 include the same data symbol group.
  • the horizontal axis represents time
  • 1001 is a control information symbol
  • 1002 is a stream data symbol group.
  • stream data symbol group 1002 is a symbol for transmitting “stream 1 data symbol group A” or “stream 2 data symbol group A” described with reference to FIG.
  • a multicarrier scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) scheme may be used, and in this case, a symbol may exist in the frequency axis direction.
  • Each symbol includes a reference symbol for the receiver to perform time and frequency synchronization, a reference symbol for the receiver to detect a signal, a reference symbol for the receiver to perform channel estimation, and the like. Also good.
  • the frame configuration is not limited to that shown in FIG. 10, and the control information symbols 1001 and the stream data symbol group 1002 may be arranged in any manner.
  • the reference symbol may be referred to as a preamble or a pilot symbol.
  • FIG. 11 shows an example of a symbol configuration to be transmitted as the control information symbol of FIG. 10, and the horizontal axis is time.
  • the terminal receives “a training symbol for the terminal to perform reception directivity control” 1101, so that the “signal processing unit 405” and / or “antennas 401-1 to 401 -N”, And / or a signal processing method for directivity control at the time of reception, which is performed by the “multipliers 603-1 to 603-L and the processing unit 605”.
  • the terminal knows the number of streams that need to be obtained by receiving “symbol for notifying the number of transmission streams when performing multicast” 1102.
  • the terminal receives “symbol for notifying which stream data symbol is the data symbol of the stream” 1103 so that the terminal can receive which of the streams transmitted by the base station. You can know.
  • the # 1 symbol group 901-1 of stream 1 in FIG. 9 transmits the data symbol of stream 1, “symbol for notifying which stream data symbol the stream data symbol is”
  • the information 1103 is “stream 1”.
  • the terminal receives the # 1 symbol group 901-1 of the stream 1 in FIG. 9 .
  • the terminal determines from which “symbol for notifying the number of transmission streams when performing multicast” 1102 to “the number of transmission streams is 2,” and “which stream data symbol group is the data symbol of the stream. It is recognized that “data symbol of stream 1” is obtained from “symbol for notification” 1103.
  • the terminal can start the operation of searching for the symbol group of stream 2. For example, the terminal searches for one of the transmission beams of the # 1 symbol group 902-1 of the stream 2, the # 2 symbol group 902-2 of the stream 2, and the # 3 symbol group 902-3 of the stream 2 in FIG.
  • the terminal obtains one of the transmission beams of the # 1 symbol group 902-1 of the stream 2, the # 2 symbol group 902-2 of the stream 2, and the # 3 symbol group 902-3 of the stream 2 to obtain the stream 1 And the data symbols of stream 2 are obtained.
  • the terminal can obtain the effect that it can accurately obtain the data symbol.
  • the base station transmits a data symbol using a plurality of transmission beams, and the terminal selectively receives a high-quality beam from the plurality of transmission beams.
  • the modulation signal transmitted by the base station is subjected to transmission directivity control and reception directivity control, and thus an effect of widening an area where high data reception quality can be obtained is obtained.
  • the terminal performs reception directivity control.
  • the terminal can obtain the above-described effect without performing reception directivity control.
  • the modulation method of “stream data symbol group” 1002 in FIG. 10 may be any modulation method, and the mapping method of the modulation method of “stream data symbol group” 1002 is switched for each symbol. Also good. That is, the phase of the constellation may be switched for each symbol on the in-phase I-quadrature Q plane after mapping.
  • FIG. 12 is an example different from FIG. 7 showing the communication state between the base station and the terminal.
  • the same numbers are assigned to components that operate in the same manner as in FIG.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIG. 1 and FIG. 3, and performs precoding (weighting synthesis) in the signal processing unit 102 (and / or weighting synthesis unit 301). Thus, transmission beam forming (directivity control) is performed.
  • FIG. 12 shows a transmission beam 1202-1 for transmitting “modulated signal 1”, a transmission beam 1202-2 for transmitting “modulated signal 1”, and a transmission beam for transmitting “modulated signal 1”. 1202-3 is shown.
  • FIG. 12 shows a transmission beam 1203-1 for transmitting “modulated signal 2”, a transmission beam 1203-2 for transmitting “modulated signal 2”, and a transmission beam 1203- for transmitting “modulated signal 2”. 3 is shown.
  • the number of transmission beams for transmitting “modulated signal 1” is three and the number of transmission beams for transmitting “modulated signal 2” is three.
  • the present invention is not limited to this. As long as there are a plurality of transmission beams for transmitting “modulated signal 1” and a plurality of transmission beams for transmitting “modulated signal 2”. “Modulation signal 1” and “modulation signal 2” will be described later in detail.
  • FIG. 12 includes terminals 704-1, 704-2, 704-3, 704-4, and 704-5, and has the same configuration as the terminals in FIGS. 4 and 5, for example.
  • the terminal 704-1 includes the “signal processing unit 405” and / or the “antennas 401-1 to 401-N” and / or the “multiplication units 603-1 to 603-L” and the processing unit 605. ”Performs directivity control at the time of reception to form reception directivity 705-1 and reception directivity 706-1.
  • the reception directivity 705-1 allows the terminal 704-1 to receive and demodulate the transmission beam 1202-1 for transmitting the “modulated signal 1”.
  • the reception directivity 706-1 allows the terminal 704- 1 enables reception and demodulation of the transmission bee 1203-1 for transmitting the “modulated signal 2”.
  • terminal 704-2 includes “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing units”.
  • 605 "performs directivity control at the time of reception to form reception directivity 705-2 and reception directivity 706-2.
  • the reception directivity 705-2 allows the terminal 704-2 to receive and demodulate the transmission beam 1202-1 for transmitting the “modulated signal 1”
  • the reception directivity 706-2 allows the terminal 704- 2 enables reception and demodulation of the transmission beam 1203-1 for transmitting the “modulated signal 2”.
  • the terminal 704-3 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-3 and reception directivity 706-3.
  • the reception directivity 705-3 allows the terminal 704-3 to receive and demodulate the transmission beam 1202-2 for transmitting the “modulated signal 1”.
  • the reception directivity 706-3 allows the terminal 704-3 to receive and demodulate the transmission beam 1202-2. 3 can receive and demodulate the transmission beam 1203-2 for transmitting the "modulated signal 2".
  • Terminal 704-4 is operated by “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplying units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-4 and reception directivity 706-4.
  • the reception directivity 705-4 allows the terminal 704-4 to receive and demodulate the transmission beam 1202-3 for transmitting the “modulated signal 1”.
  • the reception directivity 706-4 allows the terminal 704-4 to receive and demodulate the transmission beam 1202-3. 4 enables reception and demodulation of the transmission beam 1203-2 for transmitting the "modulated signal 2".
  • the terminal 704-5 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-5 and reception directivity 706-5.
  • the reception directivity 705-5 allows the terminal 704-5 to receive and demodulate the transmission beam 1202-3 for transmitting “modulated signal 1”.
  • the reception directivity 706-5 allows the terminal 704-5 to receive and demodulate. 5 enables reception and demodulation of the transmission beam 1203-3 for transmitting the "modulated signal 2".
  • a characteristic point in FIG. 12 is that the terminal transmits at least one transmission beam among transmission beams 1202-1, 1202-2, and 1202-3 for transmitting “modulated signal 1” depending on a spatial position.
  • “modulated signal 1” can be obtained with high quality
  • the terminal can transmit beams 1203-1 and 1203-2 for transmitting “modulated signal 2”.
  • the “modulated signal 2” can be obtained with high quality.
  • the base station 700 uses the same frequency (same frequency band) and the same transmission beam 1202-1 for transmitting the “modulation signal 1” and the transmission beam 1203-1 for transmitting the “modulation signal 2”. Send using time. Then, the base station 700 uses the same frequency (same frequency band) for the transmission beam 1202-2 for transmitting the “modulated signal 1” and the transmission beam 1203-2 for transmitting the “modulated signal 2”. Send using time. Also, the base station 700 uses the same frequency (same frequency band) for the transmission beam 1202-3 for transmitting the “modulated signal 1” and the transmission beam 1203-3 for transmitting the “modulated signal 2”. Send using time.
  • the transmission beams 1202-1, 1202-2, and 1202-3 for transmitting the “modulated signal 1” may be beams having the same frequency (same frequency band), or different frequencies (different frequencies). It may be a band beam.
  • the transmission beams 1203-1, 1203-2, and 1203-3 for transmitting the “modulated signal 2” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform transmission for multicast / unicast transmission”. When the base station performs transmission as illustrated in FIG. Is sent to the setting unit 158.
  • the setting signal 160 includes information on “the number of transmission modulation signals when performing multicast”. When the base station performs transmission as shown in FIG. 12, the setting signal 160 indicates that the number of transmission modulation signals is two. Information is input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each modulation signal”.
  • information indicating that “the number of transmission beams transmitting modulated signal 1 is 3 and the number of transmission beams transmitting modulated signal 2 is 3” is set by setting signal 160. Is input.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission modulation signals when performing multicast”,
  • a control information symbol including information such as “how many transmission beams to transmit each modulated signal” may be transmitted. Thereby, the terminal can receive appropriately. Details of the configuration of the control information symbol will be described later.
  • FIG. 13 is a drawing for explaining the relationship between #i information 101-i in FIGS. 1 and 3 and “modulation signal 1” and “modulation signal 2” described with reference to FIG.
  • the # 1 information 101-1 is subjected to processing such as error correction encoding, and data after error correction encoding is obtained.
  • the data after error correction coding is named # 1 transmission data.
  • mapping is performed on the # 1 transmission data to obtain data symbols. These data symbols are allocated to stream 1 and stream 2, and data symbols (data symbol group) of stream 1 and data symbols of stream 2 are allocated. (Data symbol group) is obtained.
  • the data symbol of stream 1 in symbol number i is s1 (i)
  • the data symbol of stream 2 is s2 (i).
  • “modulation signal 1” tx1 (i) in symbol number i is expressed as follows, for example.
  • modulation signal 2 tx2 (i) in symbol number i is expressed as follows, for example.
  • ⁇ (i) can be defined as a complex number (and therefore may be a real number), and ⁇ (i) can be defined as a complex number (and therefore ⁇ (i) can be defined as a complex number (hence it can be a real number), and ⁇ (i) can be defined as a complex number (hence a real number). May be) Although described as ⁇ (i), it may not be a function of symbol number i (it may be a fixed value), but is described as ⁇ (i), but a function of symbol number i.
  • the “symbol group of modulation signal 1” including the “signal of the data transmission area of modulation signal 1” composed of data symbols is transmitted from the base station of FIGS.
  • the “symbol group of the modulation signal 2” including the “signal of the data transmission area of the modulation signal 2” composed of the data symbols is transmitted from the base station of FIGS.
  • signal processing such as phase change and CDD (Cyclic Delay Delay) may be performed on “modulated signal 1” and “modulated signal 2”.
  • CDD Cyclic Delay Delay
  • the signal processing method is not limited to this.
  • FIG. 14 shows an example of the frame configuration when the horizontal axis time is used.
  • the # 1 symbol group (1401-1) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-1 for transmitting data of modulated signal 1 in FIG.
  • the # 2 symbol group (1401-2) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-2 for transmitting data of modulated signal 1 in FIG.
  • the # 3 symbol group (1401-3) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-3 for transmitting data of modulated signal 1 in FIG.
  • the # 1 symbol group (1402-1) of modulated signal 2 in FIG. 14 is a symbol group of transmission beam 1203-1 for transmitting data of modulated signal 2 in FIG.
  • the # 2 symbol group (1402-2) of modulated signal 2 in FIG. 14 is a symbol group of transmission beam 1203-2 for transmitting data of modulated signal 2 in FIG.
  • the # 3 symbol group (1402-3) of the modulation signal 2 in FIG. 14 is a symbol group of the transmission beam 1203-3 for transmitting the data of the modulation signal 2 in FIG.
  • the symbol group (1402-1), the # 2 symbol group (1402-2) of the modulated signal 2, and the # 3 symbol group (1402-3) of the modulated signal 2 exist in the time interval 1, for example.
  • the # 1 symbol group (1401-1) of the modulated signal 1 and the # 1 symbol group (1402-1) of the modulated signal 2 are transmitted using the same frequency (same frequency band).
  • the # 2 symbol group (1401-2) of the modulation signal 1 and the # 2 symbol group (1402-2) of the modulation signal 2 are transmitted using the same frequency (same frequency band).
  • the # 3 symbol group (1401-3) of 1 and the # 3 symbol group (1402-3) of the modulated signal 2 are transmitted using the same frequency (same frequency band).
  • the signal “signal A-1 in the data transmission area of the modulation signal 1”, “the data transmission area of the modulation signal 1” composed of signals equivalent to the signals constituting the “signal A of the data transmission area of the modulation signal 1” The same signal as the signal constituting the signal “signal A-2 in the data transmission region of the modulation signal 1” and the signal “signal A in the data transmission region of the modulation signal 1” composed of signals equivalent to the signal constituting the signal A A signal “signal A-3 in the data transmission area of modulated signal 1” is prepared.
  • the signal constituting the signal A-3 (That is, the signal constituting the “signal group A-1 of the data transmission area of the modulation signal 1”, the signal constituting the “signal A-2 of the data transmission area of the modulation signal 1”, and the “data transmission area of the modulation signal 1)
  • the signal constituting the signal A-3 is the same.
  • the # 1 symbol group (1401-1) of modulated signal 1 in FIG. 14 includes “signal A-1 in the data transmission area of modulated signal 1”, and # 2 symbol of modulated signal 1 in FIG.
  • the group (1401-2) includes the “signal A-2 in the data transmission area of the modulation signal 1”, and the # 3 symbol group (1401-3) of the modulation signal 1 in FIG.
  • the data transmission area signal A-3 is included. That is, the # 1 symbol group (1401-1) of the modulation signal 1, the # 2 symbol group (1401-2) of the modulation signal 1, and the # 3 symbol group (1401-3) of the modulation signal 1 include equivalent signals. It is out.
  • a signal “signal A-3 in the data transmission area of the modulation signal 2” is prepared. (That is, the signal constituting the signal A-1 of the data transmission area of the modulation signal 2 and the signal constituting the signal A-2 of the data transmission area of the modulation signal 2 and the The signals constituting the signal A-3 "are the same.)
  • # 1 symbol group (1402-1) of modulated signal 2 in FIG. 14 includes “signal A-1 in the data transmission area of modulated signal 2”, and # 2 symbol group of stream 2 in FIG. (1402-2) includes “signal A-2 in the data transmission area of modulated signal 2”, and # 3 symbol group (1402-3) of modulated signal 2 in FIG. Transmission area signal A-3 ". That is, the # 1 symbol group (1402-1) of the modulation signal 2, the # 2 symbol group (1402-2) of the modulation signal 2, and the # 3 symbol group (1402-3) of the modulation signal 2 include equivalent signals. It is out.
  • the horizontal axis represents time
  • 1501 is a control information symbol
  • 1502 is a modulation signal transmission area for data transmission.
  • the modulation signal transmission region 1502 for data transmission transmits “the signal A of the data transmission region of the modulation signal 1” or “the signal A of the data transmission region of the modulation signal 2” described with reference to FIG. Symbol.
  • a multicarrier scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) scheme may be used, and in this case, a symbol may exist in the frequency axis direction.
  • Each symbol includes a reference symbol for the receiver to perform time and frequency synchronization, a reference symbol for the receiver to detect a signal, a reference symbol for the receiver to perform channel estimation, and the like. Also good.
  • the frame configuration is not limited to that shown in FIG. 15, and the control information symbol 1501 and the modulation signal transmission area 1502 for data transmission may be arranged in any manner.
  • the reference symbol may be called, for example, a preamble or a pilot symbol.
  • FIG. 16 shows an example of the configuration of symbols to be transmitted as the control information symbols in FIG. 15, and the horizontal axis is time.
  • reference numeral 1601 denotes a “training symbol for the terminal to perform reception directivity control”, and the terminal receives “a training symbol for the terminal to perform reception directivity control” 1601.
  • Directionality at the time of reception performed by “processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplying units 603-1 to 603-L and processing unit 605” Determine the signal processing method for control.
  • Reference numeral 1602 denotes a “symbol for notifying the number of transmission modulation signals when performing multicast”, and the terminal receives “symbol for notifying the number of transmission modulation signals when performing multicast” 1602. Thus, the terminal knows the number of modulation signals that need to be obtained.
  • the 1603 is a “symbol for notifying which modulation signal transmission region for modulation signal data transmission is the modulation signal transmission region for data transmission of the modulation signal”.
  • the terminal transmits the modulation signal transmitted from the base station. Which modulation signal is received can be known.
  • the base station since the base station transmits “modulated signal 1” and “modulated signal 2”, the information of “symbol for notifying the number of modulated transmission signals when performing multicast” 1602 is “ 2 ".
  • the “modulation signal transmission area for data transmission of the modulation signal is which modulation signal.
  • the information of “symbol“ 1603 for notifying whether it is a modulation signal transmission region for data transmission ” becomes information“ modulation signal 1 ”.
  • the terminal receives # 1 symbol group 1401-1 of modulated signal 1 in FIG.
  • the terminal changes from “symbol for notifying the number of transmission modulation signals when performing multicast” 1602 to “number of modulation signals 2”, “modulation signal transmission area for data transmission of modulation signals”
  • modulated signal 1 is obtained from “symbol 1603 for notifying whether it is a modulated signal transmission region for data transmission”.
  • the terminal recognizes that “the number of modulated signals is 2” and the obtained modulated signal is “modulated signal 1”, and therefore recognizes that it is necessary to obtain “modulated signal 2”. Therefore, the terminal can start the operation of searching for “modulated signal 2”. For example, any one of “# 1 symbol group of modulated signal 2” 1402-1, “# 2 symbol group of modulated signal 2” 1402-2, and “# 3 symbol group of modulated signal 2” 1402-3 in FIG.
  • the terminal looks for a transmit beam.
  • the terminal selects one of “# 1 symbol group of modulated signal 2” 1402-1, “# 2 symbol group of modulated signal 2” 1402-2, and “# 3 symbol group of modulated signal 2” 1402-3.
  • the terminal selects one of “# 1 symbol group of modulated signal 2” 1402-1, “# 2 symbol group of modulated signal 2” 1402-2, and “# 3 symbol group of modulated signal 2” 1402-3.
  • the terminal can obtain an effect that the data symbol can be accurately obtained.
  • a base station transmits data symbols using a plurality of transmission beams, and a terminal selectively receives a beam having a high quality from the plurality of transmission beams.
  • the modulation signal transmitted by the base station can obtain an effect that the area where high data reception quality can be obtained can be widened. This is because the base station performs transmission directivity control and reception directivity control.
  • the terminal performs reception directivity control.
  • the terminal can obtain the above-described effect without performing reception directivity control.
  • each terminal has demonstrated the case where both the modulated signal of the stream 1 and the modulated signal of the stream 2 are obtained, it is not necessarily restricted to such embodiment.
  • a terminal that wants to obtain a modulated signal of stream 1 a terminal that wants to obtain a modulated signal of stream 2
  • FIG. 17 shows an example of the communication state between the base station (or access point, etc.) and the terminal. Elements that operate in the same way as in FIG. 7 are given the same numbers, and detailed descriptions thereof are omitted. .
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIGS. 1 and 3, and the signal processing unit 102 (and / or the weighting synthesis unit 301) performs precoding (weighting synthesis). Then, transmission beam forming (directivity control) is performed.
  • transmission beams 702-1, 702-2, 702-3, 703-1, 703-2, and 703-3 is the same as that described with reference to FIG.
  • terminals 704-1, 704-2, 704-3, 704-4, 704-5, and reception directivities 705-1, 705-2, 705-3, 705-4, 705-5, 706- Descriptions of 1, 706-2, 706-3, 706-4, and 706-5 are the same as those described with reference to FIG.
  • a characteristic point is that the base station performs multicast as described in FIG. 7, and the base station 700 and a terminal (for example, 1702) perform unicast communication.
  • the base station 700 In addition to the transmission beams 702-1, 702-2, 702-3, 703-1, 703-2, and 703-3 for multicast, the base station 700 generates a transmission beam 1701 for unicast in FIG.
  • the individual data is transmitted to the terminal 1702.
  • FIG. 17 shows an example in which the base station 700 transmits one of the transmission beams 1701 to the terminal 1702, but the number of transmission beams is not limited to one.
  • Station 700 may transmit a plurality of transmission beams to terminal 1702 (may transmit a plurality of modulated signals).
  • the terminal 1702 includes “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and signal processing unit 605”.
  • a reception directivity 1703 for performing directivity control during reception is formed.
  • the terminal 1702 can receive and demodulate the transmission beam 1701.
  • the base station In order to generate a transmission beam including the transmission beam 1701, the base station performs precoding (for example, in the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. Weighting synthesis).
  • precoding for example, in the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. Weighting synthesis).
  • terminal 1702 transmits a modulated signal to base station 700
  • terminal 1702 performs precoding (or weighted combining), transmits transmission beam 1703
  • base station 700 A reception directivity 1701 for performing directivity control is formed.
  • the base station 700 can receive and demodulate the transmission beam 1703.
  • the transmission beam 702-1 for transmitting the data of stream 1 and the transmission beam 703-1 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time as the base station 700. Will send.
  • the transmission beam 702-2 for transmitting the data of stream 1 and the transmission beam 703-2 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time as the base station 700. Will send.
  • the transmission beam 702-3 for transmitting the data of stream 1 and the transmission beam 703-3 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time, and the base station 700 Will send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band), or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the unicast transmission beam 1701 may be a beam having the same frequency (same frequency band) as the transmission beams 702-1, 702-2, 702-3, 703-1, 703-2, and 703-3. It may be a beam having a different frequency (different frequency band).
  • the description is made assuming that one terminal performs unicast communication, but the number of terminals performing unicast communication with the base station may be plural.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform multicast transmission / unicast transmission”. When the base station performs transmission as illustrated in FIG. Information is transmitted to the setting unit 158.
  • the setting signal 160 includes information of “the number of transmission streams when performing multicast”.
  • the base station performs transmission as illustrated in FIG. 17, “the number of transmission streams is 2” according to the setting signal 160. Is input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each stream”.
  • the base station performs transmission as shown in FIG. 17, information that “the number of transmission beams transmitting stream 1 is 3 and the number of transmission beams transmitting stream 2 is 3” is input to the setting unit 158 by the setting signal 160. Is done.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, “ A control information symbol including information such as “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • the base station transmits, to a terminal performing unicast communication, a training control information symbol for the base station to perform directivity control and a training control information symbol for the terminal to perform directivity control. May be.
  • FIG. 18 shows an example of a communication state between a base station (or an access point, etc.) and a terminal, and the same reference numerals are given to those that operate in the same way as in FIGS. Is omitted.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIGS. 1 and 3, and the signal processing unit 102 (and / or the weighting synthesis unit 301) performs precoding (weighting synthesis). Then, transmission beam forming (directivity control) is performed.
  • the description of the transmission beams 1202-1, 1202-2, 1202-3, 1203-1, 1203-2, and 1203-3 is the same as described with reference to FIG.
  • terminals 704-1, 704-2, 704-3, 704-4, 704-5, and reception directivities 705-1, 705-2, 705-3, 705-4, 705-5, 706- Description of 1, 706-2, 706-3, 706-4, and 706-5 is the same as described with reference to FIG.
  • a characteristic point is that the base station performs multicast as described in FIG. 12, and the base station 700 and a terminal (for example, 1702) perform unicast communication.
  • the base station 700 In addition to the multicast transmission beams 1202-1, 1202-2, 1203-3, 1203-1, 1203-1, and 1203-3, the base station 700 generates a unicast transmission beam 1701 in FIG.
  • the individual data is transmitted to the terminal 1702.
  • FIG. 18 shows an example in which the base station 700 transmits one of the transmission beams 1701 to the terminal 1702, but the number of transmission beams is not limited to one.
  • Station 700 may transmit a plurality of transmission beams to terminal 1702 (may transmit a plurality of modulated signals).
  • the terminal 1702 includes “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and signal processing unit 605”.
  • a reception directivity 1703 for performing directivity control during reception is formed.
  • the terminal 1702 can receive and demodulate the transmission beam 1701.
  • the base station In order to generate a transmission beam including the transmission beam 1701, the base station performs precoding (for example, in the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. Weighting synthesis).
  • precoding for example, in the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. Weighting synthesis).
  • terminal 1702 transmits a modulated signal to base station 700
  • terminal 1702 performs precoding (or weighted combining), transmits transmission beam 1703
  • base station 700 A reception directivity 1701 for performing directivity control is formed.
  • the base station 700 can receive and demodulate the transmission beam 1703.
  • the transmission beam 1202-1 for transmitting the “modulated signal 1” and the transmission beam 1203-1 for transmitting the “modulated signal 2” use the same frequency (same frequency band) and the same time.
  • Station 700 transmits.
  • the transmission beam 1202-2 for transmitting the “modulated signal 1” and the transmission beam 1203-2 for transmitting the “modulated signal 2” use the same frequency (same frequency band) and the same time.
  • Station 700 transmits.
  • the transmission beam 1202-3 for transmitting the “modulated signal 1” and the transmission beam 1203-3 for transmitting the “modulated signal 2” use the same frequency (same frequency band) and the same time. Station 700 transmits.
  • the transmission beams 1202-1, 1202-2, and 1202-3 for transmitting the “modulated signal 1” may be beams having the same frequency (same frequency band), or different frequencies (different frequencies). It may be a band beam.
  • the transmission beams 1203-1, 1203-2, and 1203-3 for transmitting the “modulated signal 2” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the unicast transmission beam 1701 may be a beam having the same frequency (same frequency band) as the transmission beams 1202-1, 1202-2, 1202-3, 1203-1, 1202, and 1203-3. It may be a beam having a different frequency (different frequency band).
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform transmission for multicast / unicast transmission”. When the base station performs transmission as illustrated in FIG. Information is transmitted to the setting unit 158.
  • the setting signal 160 includes information on “the number of transmission streams when performing multicast”.
  • “the number of transmission streams is 2” is input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each stream”.
  • information indicating that “the number of transmission beams for transmitting stream 1 is 3 and the number of transmission beams for transmitting stream 2 is 3” is input to setting unit 158 by setting signal 160. Is done.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, “ A control information symbol including information such as “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • the base station transmits, to a terminal performing unicast communication, a training control information symbol for the base station to perform directivity control and a training control information symbol for the terminal to perform directivity control. May be.
  • FIG. 19 shows an example of the communication state between the base station (or access point, etc.) and the terminal. Elements that operate in the same way as in FIG. .
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIGS. 1 and 3, and the signal processing unit 102 (and / or the weighting synthesis unit 301) performs precoding (weighting synthesis). Then, transmission beam forming (directivity control) is performed.
  • transmission beams 702-1, 702-2, 702-3, 703-1, 703-2, and 703-3 is the same as that described with reference to FIG.
  • terminals 704-1, 704-2, 704-3, 704-4, 704-5, and reception directivities 705-1, 705-2, 705-3, 705-4, 705-5, 706- Descriptions of 1, 706-2, 706-3, 706-4, and 706-5 are the same as those described with reference to FIG.
  • the base station 700 transmits the transmission beams 1901-1, 1901-2, 1902-1, and 1902-2. Send.
  • the transmission beam 1901-1 is a transmission beam for transmitting the stream 3 data.
  • the transmission beam 1901-2 is also a transmission beam for transmitting the data of the stream 3.
  • the transmission beam 1902-1 is a transmission beam for transmitting stream 4 data.
  • a transmission beam 1902-2 is also a transmission beam for transmitting the data of the stream 4.
  • Reference numerals 704-1, 704-2, 704-3, 704-4, 704-5, 1903-1, 1903-2, and 193-3 are terminals, for example, configured as shown in FIGS. ing. Note that the operations of the terminals 704-1, 704-2, 704-3, 704-4, and 704-5 are as described with reference to FIG.
  • the terminal 1903-1 is operated by “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 1904-1 and reception directivity 1905-1.
  • the reception directivity 1904-1 allows the terminal 1903-1 to receive and demodulate the transmission beam 1901-2 for transmitting the data of the stream 3.
  • the reception directivity 1905-1 allows the terminal 1903-1 to receive and demodulate the transmission beam 1901-2. Can receive and demodulate the transmission beam 1902-2 for transmitting the stream 4 data.
  • the terminal 1903-2 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401 -N” and / or “multiplication units 603-1 to 603 -L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 1904-2 and reception directivity 1905-2.
  • the reception directivity 1904-2 enables the terminal 1903-2 to receive and demodulate the transmission beam 1902-1 for transmitting the data of the stream 4.
  • the reception directivity 1905-2 allows the terminal 1903-2 to receive and demodulate the transmission beam 1902-1. Can receive and demodulate the transmission beam 1901-2 for transmitting the data of the stream 3.
  • Terminal 1903-3 is operated by “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplying units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 1904-3 and reception directivity 1905-3.
  • the reception directivity 1904-3 enables the terminal 1903-3 to receive and demodulate the transmission beam 1901-1 for transmitting the data of the stream 3.
  • the reception directivity 1905-3 allows the terminal 1903-3 to Can receive and demodulate the transmission beam 1902-1 for transmitting the stream 4 data.
  • Terminal 1903-4 is operated by “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplying units 603-1 to 603-L and processing unit 605”. Then, directivity control during reception is performed to form reception directivity 1904-4 and reception directivity 1905-4.
  • the reception directivity 1904-4 enables the terminal 1903-4 to receive and demodulate the transmission beam 703-1 for transmitting the data of the stream 2.
  • the reception directivity 1905-4 allows the terminal 1903-4 to receive and demodulate the transmission beam 703-1. Can receive and demodulate the transmission beam 1901-1 for transmitting the data of the stream 3.
  • the characteristic point is that the base station transmits a plurality of streams including data for multicast, and each stream is transmitted by a plurality of transmission beams.
  • the point is to selectively receive the transmission beams of one or more streams.
  • the transmission beam 702-1 for transmitting the data of stream 1 and the transmission beam 703-1 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time as the base station 700. Will send.
  • the transmission beam 702-2 for transmitting the data of stream 1 and the transmission beam 703-2 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time as the base station 700. Will send.
  • the transmission beam 702-3 for transmitting the data of stream 1 and the transmission beam 703-3 for transmitting the data of stream 2 use the same frequency (same frequency band) and the same time, and the base station 700 Will send.
  • the transmission beam 1901-1 for transmitting the data of stream 3 and the transmission beam 1902-1 for transmitting the data of stream 4 use the same frequency (same frequency band) and the same time, and the base station 700 transmits the same. To do.
  • the transmission beam 1901-2 for transmitting the stream 3 data and the transmission beam 1902-2 for transmitting the stream 4 data use the same frequency (same frequency band) and the same time as the base station 700. Will send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band), or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the transmission beams 1901-1 and 1901-2 for transmitting the data of the stream 3 may be beams having the same frequency (same frequency band), or beams having different frequencies (different frequency bands). Also good. Further, the transmission beams 1902-1 and 1902-2 for transmitting the data of the stream 4 may be beams having the same frequency (same frequency band), or beams having different frequencies (different frequency bands). There may be.
  • the data symbol of stream 1 may be generated from the # 1 information 101-1 in FIG. 1, the data symbol of stream 2 may be generated, the data symbol of stream 3 from the # 2 information 101-2, and the stream 4 data symbol Data symbols may be generated.
  • the # 1 information 101-1 and the # 2 information 101-2 may be subjected to error correction coding, and then a data symbol may be generated.
  • the stream 1 data symbol is generated from the # 1 information 101-1 in FIG. 1
  • the stream 2 data symbol is generated from the # 2 information 101-2 in FIG. 1
  • a data symbol of stream 3 may be generated
  • a data symbol of stream 4 may be generated from # 4 information 101-4 in FIG.
  • # 1 information 101-1, # 2 information 101-2, # 3 information 101-3, and # 4 information 101-4 may each be subjected to error correction coding, and then generate data symbols.
  • the data symbol of each stream may be generated from any of the information in FIG. For this reason, the terminal can obtain an effect that a multicast stream can be selectively obtained.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform multicast transmission / unicast transmission”. When the base station performs transmission as illustrated in FIG. Is sent to the setting unit 158.
  • the setting signal 160 includes information on “the number of transmission streams when performing multicasting”. When the base station performs transmission as illustrated in FIG. 19, the setting signal 160 indicates that the information “the number of transmission streams is four”. Are input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each stream”.
  • the setting signal 160 indicates that “the number of transmission beams for transmitting stream 1 is 3, the number of transmission beams for transmitting stream 2 is 3, and the number of transmission beams for transmitting stream 3 is 2, information indicating that the number of transmission beams for transmitting the stream 4 is 2 is input to the setting unit 158.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, “ A control information symbol including information such as “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • FIG. 20 shows an example of the communication state between the base station (or access point, etc.) and the terminal, and the same numbers are given to those that operate in the same way as in FIG. 7, FIG. 12, and FIG. Detailed description is omitted.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured, for example, as shown in FIGS. 1 and 3, and the signal processing unit 102 (and / or the weighting synthesis unit 301) performs precoding (weighting synthesis). Then, transmission beam forming (directivity control) is performed.
  • the base station 700 transmits the transmission beams 2001-1, 2001-2, 2002-1, and 2002-2. Send.
  • the transmission beam 2001-1 is a transmission beam for transmitting the “modulation signal 3”.
  • the transmission beam 2001-2 is also a transmission beam for transmitting “modulated signal 3”.
  • the transmission beam 2002-1 is a transmission beam for transmitting the “modulation signal 4”.
  • the transmission beam 2002-2 is also a transmission beam for transmitting “modulated signal 4”.
  • the terminals 704-1, 704-2, 704-3, 704-4, 704-5, 1903-1, 1903-2, and 193-3 have the same configuration as that shown in FIGS. 4 and 5, for example. Note that the operations of the terminals 704-1, 704-2, 704-3, 704-4, and 704-5 are the same as those described in FIG.
  • the terminal 1903-1 may include “signal processing unit 405” and / or “from antenna 401-1 to antenna 401-N” and / or “multiplication unit 603-1 to multiplication unit 603-L” and / or
  • the processing unit 605 performs directivity control at the time of reception to form the reception directivity 1904-1 and the reception directivity 1905-1.
  • the reception directivity 1904-1 allows the terminal 1903-1 to receive and demodulate the transmission beam 2001-2 for transmitting the “modulated signal 3”.
  • the reception directivity 1905-1 allows the terminal 1903- 1 enables reception and demodulation of the transmission beam 2002-2 for transmitting the “modulated signal 4”.
  • the terminal 1903-2 may include “signal processing unit 405” and / or “from antenna 401-1 to antenna 401-N” and / or “multiplication unit 603-1 to multiplication unit 603-L” and / or
  • the processing unit 605 performs directivity control at the time of reception, and forms reception directivity 1904-2 and reception directivity 1905-2.
  • the reception directivity 1904-2 allows the terminal 1903-2 to receive and demodulate the transmission beam 2002-1 for transmitting the “modulated signal 4”.
  • the reception directivity 1905-2 allows the terminal 1903-2 to receive and demodulate the transmission beam. 2 enables reception and demodulation of the transmission beam 2001-2 for transmitting the “modulated signal 3”.
  • the terminal 1903-3 may be configured as “signal processing unit 405” and / or “from antenna 401-1 to antenna 401-N” and / or “from multiplication unit 603-1 to multiplication unit 603-L;
  • the processing unit 605 performs directivity control at the time of reception to form a reception directivity 1904-3 and a reception directivity 1905-3.
  • the reception directivity 1904-3 enables the terminal 1903-3 to receive and demodulate the transmission beam 2001-1 for transmitting the “modulated signal 3”.
  • the reception directivity 1905-3 allows the terminal 1903-3 to receive and demodulate. 3 can receive and demodulate the transmission beam 2002-1 for transmitting the "modulated signal 4".
  • the terminal 1903-4 may include “signal processor 405” and / or “from antenna 401-1 to antenna 401-N” and / or “multiplier 603-1 to multiplier 603-L” and / or
  • the processing unit 605 performs directivity control at the time of reception, and forms reception directivity 1904-4 and reception directivity 1905-4.
  • the reception directivity 1904-4 allows the terminal 1903-4 to receive and demodulate the transmission beam 2001-1 for transmitting the “modulated signal 3”.
  • the reception directivity 1905-4 allows the terminal 1903 to 4 can receive and demodulate the transmission beam 2002-1 for transmitting the "modulated signal 4".
  • the base station transmits a plurality of modulation signals including data for multicast, each modulation signal is transmitted by a plurality of transmission beams, and each terminal transmits one or more of the plurality of modulation signals. Selectively receiving a transmit beam of streams;
  • Base station 700 transmits transmission beam 1202-1 for transmitting “modulated signal 1” and transmission beam 1203-1 for transmitting “modulated signal 2” at the same frequency (same frequency band) and at the same time. Use to send. The base station 700 then transmits the transmission beam 1202-2 for transmitting the “modulated signal 1” and the transmission beam 1203-2 for transmitting the “modulated signal 2” at the same frequency (same frequency band) for the same time. Use to send. Also, the base station 700 transmits the transmission beam 1202-3 for transmitting “modulated signal 1” and the transmission beam 1203-3 for transmitting “modulated signal 2” to the same frequency (same frequency band) and at the same time. Use to send.
  • Base station 700 uses transmission beam 2001-1 for transmitting “modulated signal 3” and transmission beam 2002-1 for transmitting “modulated signal 4” using the same frequency (same frequency band) and the same time. And send. Then, the base station 700 transmits the transmission beam 2001-2 for transmitting the “modulated signal 3” and the transmission beam 2002-2 for transmitting the “modulated signal 4” at the same frequency (same frequency band) and at the same time. Use to send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band), or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • Transmission beams 2001-1 and 2001-2 for transmitting “modulated signal 3” may be beams of the same frequency (same frequency band), or beams of different frequencies (different frequency bands). May be. Further, transmission beams 2002-1 and 2002-2 for transmitting “modulated signal 4” may be beams having the same frequency (same frequency band), or beams having different frequencies (different frequency bands). It may be.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information on “whether to perform multicast transmission / unicast transmission”.
  • the information “perform transmission” is input to the setting unit 158.
  • the setting signal 160 includes information on “the number of transmission modulation signals when performing multicast”. When the base station performs the transmission shown in FIG. 20, the setting signal 160 indicates that the number of transmission modulation signals is four. Is input to the setting unit 158.
  • the setting signal 160 may include information on “how many transmission beams are used to transmit each modulation signal”.
  • the setting signal 160 indicates that “the number of transmission beams for transmitting the modulation signal 1 is 3, the number of transmission beams for transmitting the modulation signal 2 is 3, and the transmission beam for transmitting the modulation signal 3”.
  • Information indicating that the number is 2 and the number of transmission beams that transmit the modulated signal 4 is 2 is input to the setting unit 158.
  • the data symbol is information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, “ A control information symbol including information such as “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • the terminal when the terminal receives both the “modulated signal 1” transmission beam and the “modulated signal 2” transmission beam, the terminal can obtain stream 1 data and stream 2 data with high reception quality. .
  • the terminal when the terminal receives both the transmission beam of “modulated signal 3” and the transmission beam of “modulated signal 4”, the terminal can obtain the data of stream 3 and the data of stream 4 with high reception quality.
  • FIG. 20 illustrates an example in which the base station transmits “modulated signal 1”, “modulated signal 2”, “modulated signal 3”, and “modulated signal 4”. “Modulation signal 5” and “modulation signal 6” that transmit data and data of stream 6 may be transmitted, or more modulation signals may be transmitted to transmit more streams. Each modulated signal is transmitted using one or more transmission beams.
  • one or more unicast transmission beams may exist.
  • the # 2 information 101-2 is subjected to processing such as error correction encoding to obtain data after error correction encoding.
  • the data after this error correction coding is named # 2 transmission data.
  • mapping is performed on the # 2 transmission data to obtain data symbols. These data symbols are allocated to stream 3 and stream 4, and data symbols (data symbol group) of stream 3 and stream 4 data are allocated. A symbol (data symbol group) is obtained.
  • the data symbol of stream 3 in symbol number i is s3 (i)
  • the data symbol of stream 4 is s4 (i).
  • “modulation signal 3” tx3 (i) in symbol number i is expressed as follows, for example.
  • the “modulation signal 4” tx4 (i) in the symbol number i is expressed as follows, for example.
  • Equation (5) and (6) e (i), f (i), g (i), and h (i) can be defined by complex numbers, respectively, and thus are real numbers. Also good.
  • e (i), f (i), g (i), and h (i) are described, they may not be a function of the symbol number i but may be a fixed value.
  • a “symbol group of modulation signal 3” including “a signal in the data transmission area of modulation signal 3” composed of data symbols is transmitted from the base station of FIGS.
  • the “symbol group of the modulation signal 4” including the “signal of the data transmission area of the modulation signal 4” composed of the data symbols is transmitted from the base station of FIGS.
  • each embodiment and other contents are merely examples.
  • the same configuration can be used. Is possible.
  • the embodiment described in this specification and other contents can be implemented even if a modulation method other than the modulation method described in this specification is used.
  • APSK Amplitude / Phase / Shift / Keying
  • PAM Pulse / Amplitude / Modulation
  • PSK Phase / Shift / Keying
  • QAM Quadrature / Amplitude / Modulation
  • APSK includes, for example, 16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSK
  • PAM includes, for example, 4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAM
  • PSK includes, for example, BPSK, QP , 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSK
  • QAM include, for example, 4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, and 4096QAM.
  • 2, 4, 8, 16, 64, 128, 256, 1024, etc. signal point arrangement methods in the IQ plane (2, 4, 8, 16,
  • the modulation scheme having signal points of 64, 128, 256, 1024, etc.) is not limited to the signal point arrangement method of the modulation scheme shown in this specification.
  • the “base station” described in the present specification may be, for example, a broadcasting station, a base station, an access point, a terminal, a mobile phone, or the like.
  • the “terminal” described in this specification may be a television, a radio, a terminal, a personal computer, a mobile phone, an access point, a base station, or the like.
  • the “base station” and “terminal” in the present disclosure are devices having a communication function, and the devices are devices for executing applications such as a television, a radio, a personal computer, and a mobile phone. You may be comprised so that it can connect through some interface.
  • symbols other than data symbols such as pilot symbols and control information symbols, may be arranged in any manner.
  • the pilot symbols and control information symbols may be named in any manner, for example, any known symbols modulated using PSK modulation in the transceiver or the receiver is synchronized. By doing so, the receiver may be able to know the symbols transmitted by the transmitter. Using this symbol, the receiver performs frequency synchronization, time synchronization, channel estimation of each modulated signal (CSI (Channel State Information) estimation), signal detection, and the like.
  • CSI Channel State Information
  • a pilot symbol may be called a preamble, a unique word, a postamble, a reference symbol, or the like.
  • the control information symbol is information that needs to be transmitted to a communication partner for realizing communication other than data (data such as an application) (for example, a modulation method and an error correction coding method used for communication). , A coding rate of an error correction coding system, setting information in an upper layer, and the like).
  • a program for executing the above communication method may be stored in a ROM (Read Only Memory) in advance, and the program may be operated by a CPU (Central Processor Unit).
  • ROM Read Only Memory
  • CPU Central Processor Unit
  • a program for executing the communication method is stored in a computer-readable storage medium, the program stored in the storage medium is recorded in a RAM (Random Access Memory) of the computer, and the computer is operated according to the program. You may do it.
  • Each configuration such as the above-described embodiments may be typically realized as an LSI (Large Scale Integration) that is an integrated circuit having an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include all or part of the configurations of the respective embodiments.
  • the name used here is LSI, but it may also be called IC (Integrated Circuit), system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • Embodiment 3 In this embodiment, a multicast communication method when beamforming different from that in Embodiments 1 and 2 is applied will be described.
  • the configuration of the base station is as described with reference to FIG. 1 to FIG. 3 of the first embodiment, and thus the description of the part that operates in the same manner as in the first embodiment is omitted. Further, the configuration of the terminal that communicates with the base station is also as described with reference to FIGS. 4 to 6 of the first embodiment, and therefore description of the portion that operates in the same manner as in the first embodiment is omitted. .
  • FIG. 22 shows a case where the base station transmits a multicast transmission stream to one terminal.
  • a base station 700 transmits a transmission beam 2201-1 of “(multicast) stream 1-1 (first beam of stream 1)” from a transmission antenna to a terminal 2202-1.
  • Terminal 2202-1 performs directivity control to generate reception directivity 2203-1, and receives transmission beam 2201-1 of “stream 1-1”.
  • FIG. 23 explains the “procedure for performing communication between the base station and the terminal” performed for the communication state between the base station and the terminal as shown in FIG.
  • the terminal first makes a “request for multicast transmission of stream 1” to the base station.
  • the base station receives [23-1] and recognizes that “multicast transmission of stream 1 is not performed”. Therefore, the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control to perform multicast transmission of stream 1 to the terminal.
  • the terminal receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted from the base station, the base station performs transmission directivity control, and the terminal performs reception directivity control. In order to perform this, feedback information is transmitted to the base station.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on feedback information transmitted by the terminal, and performs transmission directivity control. To transmit the data symbol of stream 1.
  • the terminal determines a reception directivity control method (such as determination of a weighting coefficient used when performing directivity control), and starts receiving the data symbol of stream 1 transmitted by the base station.
  • a reception directivity control method such as determination of a weighting coefficient used when performing directivity control
  • FIG. 23 illustrates an example in which the terminal performs reception directivity control, but the terminal may not perform reception directivity control.
  • the base station does not need to transmit the reception directivity control training symbol, and the terminal does not determine the reception directivity control method.
  • the base station performs transmission directivity control
  • the base station has the configuration of FIG. 1, for example, the multiplication coefficients in the multipliers 204-1, 204-2, 204-3, and 204-4 in FIG. 2 are set.
  • a weighting coefficient is set in the weighting synthesis unit 301.
  • the number of streams to be transmitted is “1” in the case of FIG. 22, but is not limited to this.
  • the terminal performs reception directivity control
  • the terminal has the configuration of FIG. 4, for example, the multiplication coefficients in the multipliers 503-1, 503-2, 503-3, and 503-4 of FIG.
  • the terminal has the configuration of FIG. 6, for example, the multiplication coefficients in the multiplication units 603-1, 603-2,... 603-L are set.
  • FIG. 24 shows an example of symbols transmitted by the base station and symbols transmitted by the terminal when the base station in FIG. 23 transmits a transmission directivity control symbol, a reception directivity control symbol, and a data symbol. It is a figure shown in an axis
  • FIG. 24A is a diagram showing an example of symbols transmitted by the base station on the time axis
  • FIG. 24B is a diagram showing an example of symbols transmitted by the terminal on the time axis. The axis is time.
  • the base station transmits a “base station transmission directivity control training symbol” 2401.
  • the “base station transmission directivity control training symbol” 2401 includes a control information symbol and a known PSK symbol.
  • the terminal receives the “base station transmission directivity control training symbol” 2401 transmitted by the base station, and for example, information on the antenna used for transmission by the base station, multiplication coefficient used for directivity control (or weighting). Information regarding the coefficient is transmitted as a feedback information symbol 2402.
  • the base station receives the “feedback information symbol” 2402 transmitted by the terminal, determines an antenna to be used for transmission from the feedback information symbol 2402, and determines a coefficient used for transmission directivity control from the feedback information symbol 2402. Thereafter, the base station transmits “terminal reception directivity control training symbol” 2403.
  • the “terminal reception directivity control training symbol” 2403 includes a control information symbol and a known PSK symbol.
  • the terminal receives “terminal reception directivity control training symbol” 2403 transmitted from the base station, and determines, for example, an antenna used for reception by the terminal and a multiplication coefficient used by the terminal for reception directivity control. Then, the terminal transmits as feedback information symbol 2404 that the preparation for receiving the data symbol is completed.
  • the base station receives “feedback information symbol” 2404 transmitted by the terminal, and outputs a data symbol 2405 based on the feedback information symbol 2404.
  • the communication between the base station and the terminal in FIG. 24 is an example, and the order of symbol transmission and the order of transmission of the base station and terminal are not limited to this.
  • signal detection is performed for each of “base station transmission directivity control training symbol” 2401, “feedback information symbol” 2402, “terminal reception directivity control training symbol” 2403, “feedback information symbol” 2404, and “data symbol” 2405.
  • preambles for time synchronization, frequency synchronization, frequency offset estimation and channel estimation, reference symbols, pilot symbols, symbols for transmitting control information, and the like may be included.
  • FIG. 25 is an example of symbols transmitted by the base station when the base station transmits the data symbol of stream 1 after the communication between the base station and the terminal in FIG. 23 is completed, and the horizontal axis represents time.
  • the base station transmits the first data symbol of transmission beam 1 of stream 1 as “(multicast) stream 1-1 data symbol (1)” 2501-1-1. Thereafter, a section 2502-1 capable of transmitting data symbols is arranged.
  • the base station transmits the second data symbol of the transmission beam 1 of the stream 1 (for multicast) as “(multicast) stream 1-1 data symbol (2)” 2501-1-2. Thereafter, a section 2502-2 in which data symbol transmission is possible is arranged.
  • the base station transmits the third data symbol of the transmission beam 1 of the stream 1 (for multicast) as “(multicast) stream 1-1 data symbol (3)” 2501-1-3.
  • the base station transmits the data symbol of “(multicast) stream 1-1” 2201-1 shown in FIG.
  • a section 2502-1 capable of transmitting data symbols includes a unicast transmission section 2503-1, and a section 2502-2 capable of transmitting data symbols includes a unicast transmission section 2503-2.
  • the frame includes unicast transmission sections 2503-1 and 2503-2.
  • the base station performs a period excluding the unicast transmission period 2503-1 of the data symbol transmittable period 2502-1 and a unicast transmission period 2503-2 of the data symbol transmittable period 2502-2.
  • multicast symbols may be transmitted. This point will be described later using an example.
  • the unicast transmission section may not be a temporal position as shown in FIG. 25, and may be arranged in any manner.
  • the base station may transmit symbols or the terminal may transmit symbols.
  • the base station may be configured so that the unicast transmission interval can be set directly, but as another method, the maximum transmission data transmission rate at which the base station transmits a multicast symbol. May be set.
  • the transmission rate of data that can be transmitted by the base station is 2 Gbps (bps: bits per second), and the maximum transmission rate of data that can be allocated to transmit multicast symbols in the base station is 1.5 Gbps.
  • a unicast transmission section corresponding to 500 Mbps can be set.
  • the unicast transmission section may be configured to be indirectly set at the base station. Another specific example will be described later.
  • (multicast) stream 1-1 data symbol (1)” 2501-1-1 and “(multicast) stream 1-1 data symbol (2)” 2501 are shown.
  • -1-2, “(multicast) stream 1-1 data symbol (3)” 2501-1-3 is described as a frame configuration, but is not limited thereto.
  • a data symbol of a stream for multicast other than stream 1 may exist, a data symbol of stream 1-2 that is a second transmission beam of stream 1, and a third of stream 1
  • FIG. 26 shows a state in which one new terminal is added to the state in which the base station in FIG. 22 is transmitting a multicast transmission stream to one terminal, and FIG. The same number is attached
  • Terminal 2202-2 performs directivity control to generate reception directivity 2203-2 and receives transmission beam 2201-1 of “(multicast) stream 1-1”.
  • FIG. 26 will be described.
  • the base station 700 and the terminal 2202-1 are performing multicast communication, whereas the terminal 2202-2 is newly participating in multicast communication. Therefore, as shown in FIG. 27, the base station transmits “terminal reception directivity control training symbol” 2701 and “data symbol” 2702, and does not transmit the “base station transmission training symbol” shown in FIG. In FIG. 27, the horizontal axis represents time.
  • FIG. 28 shows an example of an operation performed for the base station to be in a state of transmitting a multicast transmission beam to two terminals as shown in FIG.
  • the terminal 2202-2 makes a “request for stream 1 multicast transmission” to the base station.
  • the “request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station receives [28-1] and notifies the terminal 2202-2 of "transmitting the multicast stream 1". Note that the notification that “the multicast stream 1 is being transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-2 receives [28-2] and performs reception directivity control in order to start reception of the stream 1 for multicast. Terminal 2202-2 then performs reception directivity control, and notifies the base station that “multicast stream 1” has been received.
  • the base station receives [28-3] and confirms that the terminal has received “Stream 1 for multicast”.
  • the terminal 2202-2 performs reception directivity control and starts receiving “multicast stream 1”.
  • FIG. 29 shows a state in which one new terminal is added to the state in which the base station in FIG. 22 transmits a multicast transmission stream to one terminal, and is similar to FIG. The same numbers are given to those that operate in the above.
  • the newly added terminal is 2202-2.
  • the point different from FIG. 26 is that the base station 700 newly transmits a transmission beam 2201-2 of “(multicast) stream 1-2 (second of stream 1)”.
  • the reception directivity 2203-2 is generated, and the transmission beam 2201-2 of the “(multicast) stream 1-2” is received.
  • the base station 700 and the terminal 2202-1 are performing multicast communication, whereas the terminal 2202-2 is newly participating in multicast communication.
  • FIG. 30 shows an example of operations performed for the base station to be in a state of transmitting a multicast transmission beam to two terminals as shown in FIG.
  • the terminal 2202-2 makes a “request for multicast transmission of stream 1” to the base station.
  • the “request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station receives [30-1] and notifies the terminal 2202-2 of “transmitting the multicast stream 1”. Note that the notification that “the multicast stream 1 is being transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-2 receives [30-2] and notifies the base station that “the multicast stream 1 has not been received”. Note that the notification that “multicast stream 1 is not received” is transmitted in the unicast transmission section in FIG.
  • the base station receives [30-3] and decides to transmit another transmission beam of the multicast stream 1 (that is, the transmission beam 2201-2 in FIG. 29). Here, it is determined that another transmission beam of the multicast stream 1 is transmitted, but it may be determined that another transmission beam of the multicast stream 1 is not transmitted. This point will be described later.
  • the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control to perform multicast transmission of stream 1 to the terminal 2202-2.
  • the base station transmits the transmission beam of stream 1-1 in FIG. This point will be described later.
  • the terminal 2202-2 receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted by the base station, and the base station performs transmission directivity control, and the terminal 2202- In order for 2 to perform reception directivity control, feedback information is transmitted to the base station.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on the feedback information transmitted by the terminal 2202-2, and One data symbol (transmission beam 2201-2 of stream 1-2 in FIG. 29) is transmitted.
  • a transmission directivity control method such as determination of a weighting coefficient used when performing directivity control
  • the terminal 2202-2 determines a reception directivity control method (such as determination of a weighting coefficient used when directivity control is performed), and data symbols of the stream 1 transmitted by the base station (FIG. 29). Reception of the transmission beam 2201-2) of the stream 1-2.
  • a reception directivity control method such as determination of a weighting coefficient used when directivity control is performed
  • the “procedure for performing communication between the base station and the terminal” in FIG. 30 is an example, and the order of transmission of each information is not limited to that in FIG. 30, and the order of transmission of each information may be changed. It can be implemented similarly.
  • FIG. 30 illustrates an example in which reception directivity control of the terminal is performed
  • a case where the terminal does not perform reception directivity control may be used.
  • the base station does not have to transmit a training symbol for reception directivity control, and the terminal does not have to determine a reception directivity control method.
  • the base station performs transmission directivity control
  • the base station has the configuration of FIG. 1, for example, the multiplication coefficients in the multipliers 204-1 204-2, 204-3, and 204-4 in FIG. Is set, and the weighting coefficient is set, for example, in the weighting combining section 301 when the base station has the structure shown in FIG.
  • the number of streams to be transmitted is “2” in the case of FIG. 29, but is not limited to this.
  • the terminals 2202-1 and 202-2 perform reception directivity control
  • the terminal configuration is the configuration of FIG. 4, for example, the multipliers 503-1, 503-2, 503-3, and 503 of FIG. -4 is set
  • the terminal configuration is the configuration of FIG. 6, for example, the multiplication coefficients in the multipliers 603-1, 603-2,... 603-L are set.
  • FIG. 31 is an example of symbols transmitted by the base station when the base station transmits the data symbol of stream 1 after the communication between the base station and the terminal in FIG. 30 is completed, and the horizontal axis represents time.
  • the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-1”. Also, the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-2”.
  • two terminals can receive the multicast stream transmitted by the base station.
  • directivity control is performed by transmission and reception, there is an effect that an area where a multicast stream can be received can be widened.
  • the addition of the stream and the addition of the transmission beam are performed only when necessary, the effect that the frequency, time, and space resources for transmitting the data can be effectively utilized is obtained.
  • control described below may be performed. Details of the control are as follows.
  • FIG. 32 is an example of “symbols transmitted by the base station when the base station transmits data symbols (for stream 1) after communication between the base station and the terminal in FIG. 30 is completed”, which is different from FIG.
  • the horizontal axis is time.
  • the same numbers are assigned to components that operate in the same manner as in FIGS.
  • the unicast transmission sections 2503-1 and 2503-2 are set to be longer in time, so that the base station adds more multicast symbols and transmits It is a point not to do.
  • the base station transmits a multicast transmission beam to two terminals (terminals 2202-1 and 2202-2) as shown in FIG. 29, and a new terminal 2202-3 is added to the base station.
  • a transmission beam addition request is made is shown. Note that the frame of the modulated signal transmitted by the base station is shown in FIG.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 1” to the base station.
  • the “request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station receives [33-1] and notifies the terminal 2202-3 that “multicast stream 1 is being transmitted”.
  • the “notification that transmission of multicast stream 1 is being performed” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives [33-2] and notifies the base station that “multicast stream 1 has not been received”.
  • the “notification that the multicast stream 1 has not been received” is transmitted in the unicast transmission section in FIG.
  • the base station Upon receiving [33-3], the base station transmits a transmission beam of the stream 1-1 and a transmission beam different from the transmission beam of the stream 1-2 as the transmission beam of the multicast stream 1 Determine if you can. At this time, considering the frame shown in FIG. 32, the base station determines not to transmit another transmission beam of the multicast stream 1. Therefore, the base station notifies the terminal 2202-3 that “not to transmit another transmission beam of the multicast stream 1”. The “notification that another transmission beam of the multicast stream 1 is not transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives the “notification that another transmission beam of the multicast stream 1 is not transmitted”.
  • the “procedure for communication between the base station and the terminal” in FIG. 33 is an example, and the order of transmission of each information is not limited to that in FIG. 33, and the same procedure should be performed even if the order of transmission is changed. Can do. As described above, when communication resources for multicast transmission are insufficient, it is not necessary to add a multicast transmission beam.
  • FIG. 34 shows that the base station shown in FIG. 29 transmits a transmission beam for multicast to two terminals (terminals 2202-1 and 2202-2), and that a new terminal 2202-3 An example of an operation for requesting addition of a transmission beam of another multicast stream (stream 2) is shown. Note that the frame of the modulated signal transmitted by the base station is in a state as shown in FIG.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 2” to the base station.
  • the “request for multicast transmission of stream 2” is transmitted to the unicast transmission section 2503 in FIG.
  • the base station receives [34-1] and notifies the terminal 2202-3 that “multicast stream 2 is not transmitted”. Further, “determine whether the base station can additionally transmit the transmission beam of the stream 2 for multicast. In this case, considering the frame state as shown in FIG. 31,“ transmission of the stream 2 for multicast ”. The terminal 2202-3 is notified that “the beam transmission is supported”. Note that “notification that transmission of multicast stream 2 is not performed” and “notification that the transmission beam of multicast stream 2 can be transmitted” are displayed in unicast transmission section 2503 in FIG. Sent.
  • the terminal 2203-3 receives [34-2] and notifies the base station that “preparation for receiving the stream 2 for multicasting has been completed”.
  • the notification that “the preparation for receiving the multicast stream 2 has been completed” is transmitted to the unicast transmission section 2503 in FIG.
  • the base station receives [34-3] and decides to transmit the transmission beam of the stream 2 for multicast. Therefore, the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control in order to perform multicast transmission of stream 2 to terminal 2202-3. In addition to the transmission of these symbols, the base station transmits the transmission beam of stream 1-1 and the transmission beam of stream 1-2 as shown in FIG. This point will be described later.
  • the terminal 2202-3 receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted by the base station. In order for 3 to perform reception directivity control, feedback information is transmitted to the base station.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on the feedback information transmitted by the terminal 2202-3, and the stream 2 data symbols are transmitted.
  • a transmission directivity control method such as determination of a weighting coefficient used when performing directivity control
  • the terminal 2202-3 determines a reception directivity control method (such as determination of a weighting coefficient used when performing directivity control), and receives a data symbol of stream 2 transmitted by the base station. Start.
  • the “procedure for performing communication between the base station and the terminal” in FIG. 34 is an example, and the order of transmission of each information is not limited to that in FIG. 34, and the order of transmission of each information is changed.
  • the case of performing the reception directivity control of the terminal is described as an example, but the case where the terminal does not perform the reception directivity control may be used.
  • the base station does not have to transmit a training symbol for reception directivity control, and the terminal does not determine a reception directivity control method.
  • the base station performs transmission directivity control
  • the base station has the configuration of FIG. 1, for example, the multiplication coefficients in the multipliers 204-1, 204-2, 204-3, and 204-4 in FIG. 2 are set. Is done.
  • the terminals 2202-1, 2202-2, and 2202-3 perform reception directivity control
  • the terminals have the configuration shown in FIG. 4, for example, the multiplication units 503-1, 503-2, and 503-3 shown in FIG. , 503-4 are set
  • the configuration of the terminal is the configuration of FIG. 6, for example, the multiplication coefficients in the multipliers 603-1, 603-2,. Is set.
  • FIG. 35 is an example of symbols transmitted by the base station when the base station transmits data symbols of stream 1 and stream 2 after the communication between the base station and the terminal in FIG. 34 is completed.
  • (multicast) stream 2-1 data symbol (1)” 3501-1 and “(multicast) stream are used in sections other than unicast transmission sections 2503-1 and 2503-3-2.
  • 2-1 data symbol (2) ”3501-2 and“ (multicast) stream 2-1 data symbol (3) ”3501-3 exist.
  • the terminal obtains “stream 1 data” by obtaining “data symbol of stream 1-1”. Further, the terminal obtains “data of stream 1” by obtaining “data symbol of stream 1-2”.
  • the terminal obtains the data of “stream 2” by obtaining “data symbol of stream 2-1.”
  • the terminal can receive a plurality of multicast streams (stream 1 and stream 2) transmitted by the base station.
  • stream 1 and stream 2 transmitted by the base station.
  • directivity control is performed by transmission and reception, an effect that the area where the multicast stream can be received can be widened is obtained.
  • the addition of the stream and the addition of the transmission beam are performed only when necessary, the effect that the frequency, time, and space resources for transmitting the data can be effectively utilized is obtained.
  • control described below may be performed. Details of the control are as follows.
  • FIG. 32 is an example of “symbol transmitted by the base station when the base station transmits a data symbol (for stream 1)” different from FIG. 35, and the horizontal axis represents time.
  • the same numbers are assigned to components that operate in the same manner as in FIGS.
  • the difference from FIG. 35 is that the unicast transmission sections 2503-1 and 2503-2 are set to be longer in time, so that the base station can determine more symbols for multicast, for example, new streams. The symbol is added and it is not transmitted.
  • FIG. 36 shows that, as shown in FIG. 29, the base station transmits a multicast transmission beam to two terminals (terminals 2202-1 and 2202-2), and a new terminal 2202-3 serves as a base station.
  • a new terminal 2202-3 serves as a base station.
  • FIG. 32 shows a frame of the modulated signal transmitted by the base station.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 2” to the base station.
  • the “request for multicast transmission of stream 2” is transmitted in the unicast transmission section in FIG.
  • the base station receives [36-1] and notifies the terminal 2202-3 that “multicast stream 2 is not transmitted”. Note that “not transmitting multicast stream 2” is transmitted in the unicast transmission section in FIG. Further, the base station determines whether or not the transmission beam of the multicast stream 2 can be transmitted. The base station considers the frame shown in FIG. 32 and determines not to transmit the transmission beam of the multicast stream 2. Therefore, the base station notifies the terminal 2202-3 that “the transmission beam of the multicast stream 2 is not transmitted”. The “notification of not transmitting the transmission beam of multicast stream 2” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives the “notification of not transmitting the transmission beam of the multicast stream 2”.
  • the “procedure for communication between the base station and the terminal” in FIG. 36 is an example, and the transmission order of each information is not limited to that in FIG. Can do. As described above, when communication resources for multicast transmission are insufficient, it is not necessary to add a stream and a multicast transmission beam.
  • the maximum value of the number of multicast transmission beams is determined or set in advance.
  • the base station upon receiving a request from each terminal, transmits a multicast transmission beam that is equal to or less than the maximum number of multicast transmission beams. For example, in the case of FIG. 35, the number of multicast transmission beams is three. Then, the base station transmits a plurality of multicast transmission beams, and determines a vacant time after transmitting these as a unicast transmission section.
  • the unicast transmission section may be determined.
  • Supplement 1 describes a case where the base station is performing unicast communication, that is, individual communication, with a plurality of terminals.
  • the # 1 symbol group 901-1 of the stream 1 in FIG. 9, the # 2 symbol group 901-2 of the stream 1, and the # 3 symbol group 901-3 of the stream 1 are broadcast channels, that is, base stations
  • the base station may be control information for performing broadcast transmission to the plurality of terminals.
  • the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the common search space is control information for performing cell control.
  • the common search space is control information that is broadcast to a plurality of terminals.
  • the base station may be control information for performing broadcast transmission to the plurality of terminals.
  • # 1 symbol group 901-1 of stream 1 the # 2 symbol group 901-2 of stream 1, the # 3 symbol group 901-3 of stream 1, and the # 1 symbol group 902-1 of stream 2 in FIG.
  • the characteristics of the # 2 symbol group 902-2 of stream 2 and the # 3 symbol group 902-3 of stream 2 are as described in the embodiments described above.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, and the # 3 symbol group 1401-3 of the modulation signal 1 are broadcast channels, that is, base stations In order for a station to perform data communication with a plurality of terminals, the base station may be control information for performing broadcast transmission to the plurality of terminals.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, and the # 3 symbol group 1401-3 of the modulation signal 1 are in the common search space. There may be.
  • the # 1 symbol group 1402-1 of the modulation signal 2 in FIG. 14, the # 2 symbol group 1402-2 of the modulation signal 2, and the # 3 symbol group 1402-3 of the modulation signal 2 are broadcast channels, that is, base stations In order for a station to perform data communication with a plurality of terminals, the base station may be control information for performing broadcast transmission to the plurality of terminals.
  • the # 1 symbol group 1402-1 of the modulation signal 2 in FIG. 14, the # 2 symbol group 1402-2 of the modulation signal 2, and the # 3 symbol group 1402-3 of the modulation signal 2 are in the common search space. There may be.
  • # 1 symbol group 1401-1 of the modulated signal 1 in FIG. 14 the # 2 symbol group 1401-2 of the modulated signal 1, and the # 3 symbol group 1401-3 of the modulated signal 1 are the implementations described so far.
  • the # 1 symbol group 1402-1 of the modulated signal 2 the # 2 symbol group 1402-2 of the modulated signal 2
  • the # 3 symbol group 1402-3 of the modulated signal 2 in FIG. This is as described in the embodiment described so far.
  • the stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be a broadcast channel, that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be a common search space.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 is as described in the embodiment described so far.
  • the stream 1-1 data symbol (M) 2501-1-M, the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501 in FIGS. -1-(M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, and stream 1-2 data symbol (3) 3101-3 are broadcast It may be control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals.
  • stream 1-1 data symbol (M) 2501-1-M the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501 in FIGS. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, and stream 1-2 data symbol (3) 3101-3 are common It may be a search space.
  • stream 1-1 data symbol (M) 2501-1-M the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, and stream 1-2 data symbol (3) 3101-3 This is as described in the embodiment described above.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), and stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • the control information may be broadcast channel, that is, the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), and stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • a common search space may be used.
  • the base station may be control information for performing broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), and stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • the stream 2-1 data symbol (1) 3501-1, the stream 2-1 data symbol (2) 3501-2, and the stream 2- One data symbol (3) 3501-3 is as described in the above-described embodiments.
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as time, but the present invention can be similarly implemented even when the horizontal axis is frequency (carrier).
  • the horizontal axis is a frequency (carrier)
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • Supplement 2 describes a case where the base station performs unicast communication with a plurality of terminals, that is, individual communication.
  • the stream 2 # 2 symbol group 902-2 and the stream 2 # 3 symbol group 902-3 are data addressed to a base station or data addressed to any one of a plurality of terminals performing communication. May be.
  • the control information may be included in the data.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, the # 3 symbol group 1401-3 of the modulation signal 1, and the # 1 symbol group 1401 of the modulation signal 2 in FIG. -3, the # 2 symbol group 1402-2 of the modulated signal 2 and the # 3 symbol group 1402-3 of the modulated signal 2 are addressed to any one of a plurality of terminals performing data or communication with the base station It may be data.
  • the control information may be included in the data.
  • # 1 symbol group 1401-1 of modulated signal 1, # 2 symbol group 1401-2 of modulated signal 1, # 3 symbol group 1401-3 of modulated signal 1, and # 1 symbol group 1401 of modulated signal 2 ⁇ 3, # 2 symbol group 1402-2 of modulated signal 2 and # 3 symbol group 1402-3 of modulated signal 2 are as described in the embodiments described above.
  • the stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be data addressed to a base station or data addressed to any one of a plurality of terminals performing communication.
  • the control information may be included in the data.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 is as described in the embodiment described so far.
  • the stream 1-1 data symbol (M) 2501-1-M, the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501 in FIGS. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 are addressed to the base station Or data addressed to any one of a plurality of terminals performing communication.
  • the control information may be included in the data.
  • stream 1-1 data symbol (M) 2501-1-M the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 This is as described in the described embodiment.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • Data addressed to a station or data addressed to any one of a plurality of terminals performing communication may be used.
  • the control information may be included in the data.
  • stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, and stream 2-1 data symbol (3) 3501-3 in FIG. 35 are addressed to the base station.
  • the control information may be included in the data.
  • stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data symbol (N + 2) 3101- (N + 2), stream 2 -1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, and stream 2-1 data symbol (3) 3501-3 are described in the embodiments described above. Just as you did.
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as time, but the present invention can be similarly implemented even when the horizontal axis is frequency (carrier).
  • the horizontal axis is a frequency (carrier)
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • the base station performs # 1 symbol group 901-1 of stream 1, # 2 symbol group 901-2 of stream 1, # 3 symbol group 901-3 of stream 1, and # 2 of stream 2
  • the “# 1 symbol group 901-1 of the stream 1” Transmission beam of # 2 symbol group 901-2 of stream 1, transmission beam of # 3 symbol group 901-3 of stream 1, transmission beam of # 1 symbol group 902-1 of stream 2, and # of stream 2
  • Chikyoku may be transmitted.
  • the base station performs # 1 symbol group 1401-1 of modulated signal 1, # 2 symbol group 1401-2 of modulated signal 1, and # 3 symbol group 1401-3 of modulated signal 1
  • the # 1 symbol group 1402-1 of the modulation signal 2 the # 2 symbol group 1402-2 of the modulation signal 2 and the # 3 symbol group 1402-3 of the modulation signal 2 are transmitted, “# of the modulation signal 1 Transmission beam of 1 symbol group 1401-1, transmission beam of # 2 symbol group 1401-2 of modulated signal 1, transmission beam of # 3 symbol group 1401-3 of modulated signal 1, and # 1 symbol group 1402 of modulated signal 2 1 transmission beam, # 2 symbol group 1402-2 transmission beam of modulation signal 2, and transmission beam # 3 symbol group 1402-3 of modulation signal 2 ".
  • the base station may transmit.
  • the “different symbol group” may be a symbol group including a data symbol addressed to a certain terminal, or a symbol group including a control information symbol group as described in other parts of the present disclosure. Alternatively, it may be a symbol group including other multicast data symbols.
  • the base station performs the stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, stream 1-1 data symbol ( 3) “Stream 1-1 data symbol (1) 2501-1-1; stream 1-1 data symbol (2) 2501-1-2, stream 1—
  • the base station may transmit another symbol group using a transmission beam different from “a transmission beam transmitting one data symbol (3) 2501-1-3”.
  • stream 1-1 data symbol (3) 2501-1-1 is transmitted in the time zone "stream 1-1 data symbol (1) 2501-1-1 and stream 1-1 data symbol (2 ) 2501-1-2, stream 1-1 data symbol (3) a transmission beam different from “2501-1-3” may be used by the base station to transmit another symbol group. Good.
  • the base station performs a stream 1-1 data symbol (M) 2501-1-M, a stream 1-1 data symbol (M + 1) 2501-1- (M + 1), In the time zone in which the stream 1-1 data symbol (M + 2) 2501-1- (M + 2) is transmitted, “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2) is used to transmit a different symbol group, and the base station transmits another symbol group. May be.
  • the base station performs the stream 1-1 data symbol (M) 2501-1-M and stream 1-1 data symbol (M + 1).
  • 2501-1-(M + 1), stream 1-1 data symbol (M + 2) 2501-1-(M + 2) is transmitted in the time zone "stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2) is transmitted using a different transmission beam,
  • the base station may transmit the symbol group.
  • the base station performs the stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol as shown in the frame configurations of FIGS. (3) “Stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3
  • the base station may transmit another symbol group by using a transmission beam different from “a transmission beam transmitting 3101-3”.
  • the base station determines that the stream 1-2 data symbol (1) 3101-1 and stream 1-2 data symbol (2) 3101- 2.
  • Stream 1-2 data symbol (3) 3101-3 is transmitted in the time zone “stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2,
  • the base station may transmit another symbol group using a transmission beam different from the “transmission beam transmitting stream 1-2 data symbol (3) 3101-3”.
  • the base station performs a stream 1-1 data symbol (M) 2501-1-M, a stream 1-1 data symbol (M + 1) 2501- (M + 1), a stream 1-1 data symbol ( M + 2) 2501- (M + 2) are transmitted in the “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501- (M + 1), stream 1-
  • the base station may transmit another symbol group using a transmission beam different from “a transmission beam transmitting one data symbol (M + 2) 2501 ⁇ (M + 2)”.
  • the base station performs the stream 1-1 data symbol (M) 2501-1-M and stream 1-1 data symbol (M + 1) 2501- ( M + 1) and stream 1-1 data symbol (M + 2) 2501- (M + 2) are transmitted in a time zone “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1)”.
  • the base station may transmit another symbol group using a different transmission beam. .
  • the base station performs a stream 1-2 data symbol (N) 3101-N, a stream 1-2 data symbol (N + 1) 3101- (N + 1), a stream 1-2 data symbol ( (N + 2) 3101- (N + 2), “stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data
  • the base station may transmit another symbol group using a transmission beam different from “a transmission beam transmitting symbol (N + 2) 3101-(N + 2)”.
  • the base station performs the stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1).
  • “Stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- ( N + 1), a transmission beam different from “a transmission beam transmitting stream 1-2 data symbols (N + 2) 3101- (N + 2)” may be used to transmit another symbol group by the base station.
  • the base station performs the stream 2-1 data symbol (1) 3501-1, the stream 2-1 data symbol (2) 3501-2, and the stream 2-1 data symbol (3) as shown in the frame configuration of FIG.
  • the base station may transmit another symbol group using a transmission beam different from “a transmission beam transmitting 3”.
  • the base station determines that stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, stream 2-1 Data symbol (3) 3501-3 is transmitted in the time zone “stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, stream 2-
  • the base station may transmit another symbol group by using a transmission beam different from “a transmission beam transmitting one data symbol (3) 3501-3”.
  • another symbol group may be a symbol group including a data symbol addressed to a certain terminal, or a symbol group including a control information symbol as described in other parts of the present specification. It may be a symbol group including other multicast data symbols.
  • the base station of FIG. 1 may generate a transmission beam for the above “different symbol group” by the signal processing of the signal processing unit 102, or the base station of FIG. By selecting the antennas from ⁇ 1 to the antenna unit 106-M, a transmission beam for the above “different symbol group” may be generated.
  • the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-1”. Also, the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-2”.
  • the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-1”. Also, the terminal can obtain “stream 1 data” by obtaining “data symbol of stream 1-2”.
  • Stream 1-1 data symbol (M) 2501-1-M and stream 1-2 data symbol (N) 3101-N contain the same data.
  • the stream 1-1 data symbol (M + 1) 2501-1- (M + 1) and the stream 1-2 data symbol (N + 1) 3101- (N + 1) contain the same data.
  • Stream 1-1 data symbol (M + 2) 2501-1- (M + 2) and stream 1-2 data symbol (N + 2) 3101- (N + 2) contain the same data.
  • the stream 1-1 data symbol (M + 1) 2501-1- (M + 1) and the stream 1-2 data symbol (N + 1) 3101- (N + 1) partially include the same data.
  • ⁇ Method 2-2> There is a stream 1-2 data symbol (L) 3101-L including a part of data included in the stream 1-1 data symbol (K) 2501-1-K. K and L are integers.
  • the first base station or the first transmission system generates a first packet group including data of the first stream and a second packet group including data of the first stream, and Packets included in the second packet group are transmitted in the first period using the first transmission beam, and packets included in the second packet group are transmitted using the second transmission beam different from the first transmission beam. Transmission is performed in the second period, and the first period and the second period do not overlap each other.
  • the second packet group may include a second packet including the same data as the data included in the first packet included in the first packet group.
  • the second packet group may include a third packet including the same data as part of the data included in the first packet included in the first packet group. Good.
  • the first transmission beam and the second transmission beam may be transmission beams having different directivities transmitted using the same antenna unit, or transmitted using different antenna units. It may be a transmission beam.
  • the second base station or the second transmission system further generates a third packet group including the data of the first stream, A packet included in the third packet group is transmitted in a third period using a third transmission beam different from the first transmission beam and the second transmission beam, the third period being the first period and There is no overlap with the second period.
  • the second base station or the second transmission system may repeatedly set the first period, the second period, and the third period in a predetermined order.
  • the third base station or the third transmission system further generates a third packet group including the data of the first stream, A packet included in the third packet group is transmitted in a third period using a third transmission beam different from the first transmission beam and the second transmission beam, and at least part of the third period is It overlaps with 1 period.
  • the third base station or the third transmission system may repeatedly set the first period, the second period, and the third period, and any of the third periods that are repeatedly set. At least a part of the period 3 may overlap with the first period, and at least one third period among the third period repeatedly set also overlaps with the first period. It does not have to be.
  • the fourth base station or the fourth transmission system further generates a fourth packet including the data of the second stream, 4 packets are transmitted in a fourth period using a fourth transmission beam different from the first transmission beam, and at least a part of the fourth period overlaps with the first period.
  • first period and the second period do not overlap each other, but the first period and the second period may partially overlap each other, All of one period may overlap with the second period, or all of the first period may overlap with all of the second period.
  • the fifth base station or the fifth transmission system generates one or a plurality of packet groups including the data of the first stream, transmits each packet group using a different transmission beam, and transmits from the terminal.
  • the number of packet groups generated based on the signal to be generated may be increased or decreased.
  • stream is described. However, as described elsewhere in this specification, “stream 1-1 data symbol (M) 2501-1” in FIGS. M, and stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2), and stream 1-2 data symbol (1 ) 3101-1 and stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 ”and“ stream 1-1 data symbol (M) 2501 in FIG.
  • stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2) and stream 1-2 data symbol (N) 3101-N and stream 1-2 data symbol (N + 1) 3101- (N + 1) and stream 1-2 data symbol (N + 2) ) 3101- (N + 2) ” may be a symbol including a data symbol addressed to a certain terminal, a symbol including a control information symbol, or a symbol including a data symbol for multicast. Good.
  • Embodiment 4 In this embodiment, a specific example of the communication system described in Embodiments 1 to 3 will be described.
  • the communication system in this embodiment is composed of (a plurality of) base stations and a plurality of terminals.
  • a communication system including the base station 700 and the terminals 704-1 and 704-2 in FIGS. 7, 12, 17, 19, 20, 26, and 29.
  • FIG. 37 shows an example of the configuration of the base station (700).
  • the logical channel generation unit 3703 receives the data 3701 and the control data 3702 and outputs a logical channel signal 3704.
  • the logical channel signal 3704 includes, for example, “BCCH (Broadcast Control Channel)”, PCCH (Paging Control Channel), CCCH (Common Control Control Channel), MCCH (Multicast Control Channel), and DCCH (Dedicated Control Channel), which are control logical channels. ”And“ DTCH (Dedicated Traffic Channel), MTCH (Multicast Traffic Channel) ”which are logical channels for data.
  • BCCH is a downlink and broadcast channel for system control information
  • PCCH is a downlink and channel for paging information
  • CCCH is downlink and RRC (Radio Resource Control) connection
  • Communication control channel used when not present “MCCH is a multicast channel scheduling and control channel for downlink one-to-many MBMS (Multimedia Broadcast Multicast Service)”
  • DCCH is "Dedicated control channel used for terminals with downlink and RRC connection”
  • DTCH is downlink, dedicated traffic channel for one terminal UE (User Equipment), dedicated channel for user data”
  • MTCH is downlink, one-to-many channel for MBMS user data” A.
  • the transport channel generation unit 3705 receives the logical channel signal 3704, generates a transport channel signal 3706, and outputs it.
  • the transport channel signal 3706 is composed of, for example, BCH (Broadcast Channel), DL-SCH (Downlink Shared Channel), PCH (Paging Channel), MCH (Multicast Channel), and the like.
  • BCH is a channel for system information broadcast over the entire cell
  • DL-SCH is a channel using user data, control information and system information
  • PCH is left unattended over the entire cell.
  • Paging information channel “and” MCH is an MBMS traffic and control channel broadcasted over the entire cell ".
  • the physical channel generation unit 3707 receives the transport channel signal 3706 as an input, generates a physical channel signal 3708, and outputs it.
  • the physical channel signal 3708 is composed of, for example, PBCH (Physical; Broadband Channel), PMCH (Physical Multicast Channel), PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), and the like.
  • PBCH is for BCH transport channel transmission
  • PMCH is for MCH transport channel transmission
  • PDSCH is for DL-SCH and transport channel transmission”.
  • PDCCH is for transmission of downlink L1 (Layer 1) / L2 (Layer 2) control signal”.
  • the modulation signal generation unit 3709 receives the physical channel signal 3708, generates a modulation signal 3710 based on the physical channel signal 3708, and outputs it. Base station 700 then transmits modulated signal 3710 as a radio wave.
  • the symbol group # 1 of stream 1 of 901-1 in FIG. 9, the symbol group # 2 of stream 1 of 901-2, and the symbol group # 3 of stream 1 of 901-3 are broadcast. It may be a channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals). Note that the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • symbol group # 1 of stream 2 of 902-1 in FIG. 9, symbol group # 2 of stream 2 of 902-2, and symbol group # 3 of stream 2 of 902-3 are broadcast. It may be a channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals). Note that the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the characteristics of the symbol group # 1 of the stream 1 of 901-1 in FIG. 9, the symbol group # 2 of the stream 1 of 901-2, and the symbol group # 3 of the stream 1 of 901-3 are as follows. As described in the embodiment described so far, the symbol group # 1 of the stream 2 of 902-1 and the symbol group # 2 of the stream 2 of 902-2 in FIG. The characteristics of the symbol group # 3 of the third stream 2 are as described in the embodiments described above.
  • stream 2 is not transmitted, such as symbol group # 1 (902-1) of stream 2, symbol group # 2 (902-2) of stream 2, symbol group # 3 (902-3) of stream 2 in FIG.
  • the base station may not transmit the symbol group of the stream 2. (At this time, for example, in FIG. 7, the base station 701 does not transmit 703-1, 703-2, and 703-3.)
  • symbol group # 1 of modulation signal 1 of 1401-1 in FIG. 14, symbol group # 2 of modulation signal 1 of 1401-2, and symbol group # 3 of modulation signal 1 of 1401-3 are broadcast. It may be a channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals). Note that the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • symbol group # 1 of modulation signal 2 of 1402-1, symbol group # 2 of modulation signal 2 of 1402-2, and symbol group # 3 of modulation signal 2 of 1402-3 in FIG. It may be a channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals).
  • control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the characteristics of the symbol group # 3 of the modulation signal 2 of 1402-3 are as described in the embodiments described so far.
  • One data symbol (3) may be a broadcast channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals).
  • the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • stream 1-1 data symbol (1) of 2501-1-1 in FIG. 25 the stream 1-1 data symbol (2) of 2501-1-2, and the stream 1 of 2501-1-3 are shown.
  • the characteristics of one data symbol (3) are as described in the embodiments described so far.
  • the stream 1-1 data symbol (M) of 2501-1-M in FIG. 31 and FIG. 32 the stream 1-1 data symbol (M + 1) of 2501-1- (M + 1), and 2501-1- (M + 2) stream 1-1 data symbol (M + 2), 3101-1 stream 1-2 data symbol (1), 3101-2 stream 1-2 data symbol (2), 3101-3
  • the stream 1-2 data symbol (3) is a broadcast channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals).
  • the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • stream 1-1 data symbol (M) of 2501-1-M in FIG. 31 and FIG. 32 the stream 1-1 data symbol (M + 1) of 2501-1- (M + 1), and 2501-1.
  • the characteristics of the stream 1-2 data symbol (3) are as described in the embodiments described so far.
  • Stream 1-2 data symbol (N + 2) is a broadcast channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals). May be.
  • the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the stream 2-1 data symbol (1) of 3501-1 in FIG. 35, the stream 2-1 data symbol (2) of 3501-2, and the stream 2-1 data symbol (3) of 3501-3 may be a broadcast channel (that is, control information in which the base station performs broadcast transmission to a plurality of terminals so that the base station performs data communication with the plurality of terminals).
  • the control information is, for example, control information necessary for the base station and the terminal to realize data communication.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the stream 1-2 data symbol (N + 2) is as described in the embodiment described so far
  • the features of the are as described in the embodiments described so far.
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as time, but the present invention can be similarly implemented even when the horizontal axis is frequency (carrier).
  • the horizontal axis is a frequency (carrier)
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • symbol group of stream 1 in FIG. 9 may include data (unicast data) (or symbols) transmitted individually for each terminal.
  • symbol group of stream 2 in FIG. 9 may include data (unicast data) (or symbols) transmitted individually for each terminal.
  • data (unicast data) (or symbols) transmitted individually for each terminal may be included in the symbol group of stream 2 in FIG.
  • data (unicast data) (or symbols) transmitted individually for each terminal may be included in the symbols of the stream 1-1 in FIG. 31 and 32 may include data (unicast data) (or symbols) transmitted individually for each terminal in the symbols of stream 1-1 and stream 1-2.
  • the PBCH may be configured to be “used to transmit minimum information (system bandwidth, system frame number, number of transmission antennas, etc.) to be read first by the UE after cell search”, for example. .
  • the PMCH may be configured to be “used for MBSFN (Multicast-broadcast single-frequency network) operation”, for example.
  • MBSFN Multicast-broadcast single-frequency network
  • the PDSCH is, for example, “a shared data channel for transmitting downlink user data, and all data is aggregated and transmitted regardless of C (control) -plane / U (User) -plane”. It is good also as a structure.
  • the PDCCH may be configured, for example, to be “used to notify radio resource allocation information to a user selected by eNodeB (gNodeB) (base station) through scheduling”.
  • the base station transmits data symbols and control information symbols using a plurality of transmission beams, and the terminal transmits a beam of good quality from the plurality of transmission beams. Can be selectively received, and based on this, the terminal can receive data symbols, thereby obtaining an effect that the terminal can obtain high data reception quality.
  • FIG. 38 shows an example of the frame configuration of stream 1 transmitted by the base station (700).
  • the horizontal axis is time
  • the vertical axis is frequency
  • time 1 to time 10 The frame configuration from carrier 1 to carrier 40 is shown. Therefore, FIG. 38 shows a frame configuration of a multicarrier transmission scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • symbol group #i (3800_i) of stream 1 exists from time 1 to time 10 and from carrier 10 to carrier 20. Note that symbol group #i (3800_i) of stream 1 corresponds to symbol group #i (901-i) of stream 1 in FIG.
  • the symbol area of stream 1 in FIG. 3801_1 and 3801_2 can be used.
  • the symbol group #i (3800_i) of stream 1 is used by the base station to transmit multicast data, as described in the first embodiment, the fourth embodiment, and the like. Become.
  • FIG. 39 shows an example of the frame configuration of stream 2 transmitted by the base station (700).
  • the horizontal axis is time
  • the vertical axis is frequency
  • time 1 to time 10 The frame configuration from carrier 1 to carrier 40 is shown. Therefore, FIG. 39 shows a frame of a multicarrier transmission system such as the OFDM system.
  • symbol group #i (3900_i) of stream 2 exists from time 1 to time 10 and from carrier 10 to carrier 20. Note that symbol group #i (3900_i) of stream 2 corresponds to symbol group #i (902-i) of stream 2 in FIG.
  • the symbol area 3901_1 of stream 2 in FIG. , 3901_2 can be used.
  • the symbol group #i (3900_i) of stream 2 is used by the base station to transmit multicast data, as described in the first embodiment, the fourth embodiment, and the like. Become.
  • the base station determines the time X in FIG. 38 (in the case of FIG. 38, X is an integer from 1 to 10), the symbol of carrier Y (in the case of FIG. 38, Y is an integer from 1 to 40) and the time in FIG.
  • the symbols of X and carrier Y are transmitted using the same frequency and the same time.
  • the characteristics of the symbol group # 1 of the stream 1 of 901-1 in FIG. 9, the symbol group # 2 of the stream 1 of 901-2, and the symbol group # 3 of the stream 1 of 901-3 are as follows. This is as described in the embodiment described above. That is, the characteristics of the symbol group #i of the stream 1 in FIG. 38 are the same as those of the symbol group of the stream 1 in FIG. 9, and are as described in the embodiments described so far.
  • the characteristics of the symbol group # 1 of the stream 2 of 902-1 and the symbol group # 2 of the stream 2 of 902-2 and the symbol group # 3 of the stream 2 of 902-3 in FIG. This is as described in the embodiment described above. That is, the characteristics of the symbol group #i of the stream 2 in FIG. 39 are the same as those of the symbol group of the stream 2 in FIG. 9 and are as described in the embodiments described so far.
  • the base station transmits a frame as shown in FIG. 9 with the frame configuration shown in FIGS. 38 and 39
  • the implementation described in the first and fourth embodiments may be similarly performed.
  • the base station transmits data symbols and control information symbols using a plurality of transmission beams, and the terminal transmits a beam of good quality from the plurality of transmission beams. Can be selectively received, and based on this, the terminal can receive data symbols, thereby obtaining an effect that the terminal can obtain high data reception quality.
  • FIG. 40 shows an example of the frame configuration of modulated signal 1 transmitted by the base station (700).
  • the horizontal axis is time
  • the vertical axis is frequency
  • time 1 to time 10 shows a frame configuration from carrier 1 to carrier 40. Therefore, FIG. 40 shows a frame configuration of a multicarrier transmission scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Symbol field 4001_1 of modulated signal 1 in FIG. 40 is assumed to exist from time 1 to time 10 and from carrier 1 to carrier 9.
  • symbol group #i (4000_i) of modulated signal 1 exists from time 1 to time 10 and from carrier 10 to carrier 20. It is assumed that symbol group #i (4000_i) of modulated signal 1 corresponds to symbol group #i (1401-i) of modulated signal 1 in FIG.
  • the symbol area 4001_2 of the modulation signal 1 exists from time 1 to time 10 and from the carrier 21 to the carrier 40.
  • the symbol area of stream 1 in FIG. 4001_1 and 4001_2 can be used.
  • symbol group #i (4000_i) of modulated signal 1 in FIG. 40 is used by the base station to transmit multicast data as described in the first embodiment, the fourth embodiment, and the like. become.
  • FIG. 41 shows an example of the frame configuration of modulated signal 2 transmitted by the base station (700).
  • the horizontal axis is time
  • the vertical axis is frequency
  • time 1 to time 10 shows a frame configuration from carrier 1 to carrier 40. Therefore, FIG. 41 shows a frame of a multicarrier transmission system such as the OFDM system.
  • symbol group #i (4100_i) of modulated signal 2 exists from time 1 to time 10 and from carrier 10 to carrier 20. It is assumed that symbol group #i (4100_i) of modulated signal 2 corresponds to symbol group #i (1402-i) of modulated signal 2 in FIG.
  • the symbol region 4101_2 of the modulation signal 2 exists from time 1 to time 10 and from the carrier 21 to the carrier 40.
  • the symbol area of the modulation signal 2 in FIG. 4101_1 and 4101_2 can be used.
  • symbol group #i (4100_i) of modulated signal 2 is used by the base station to transmit multicast data as described in the first embodiment, the fourth embodiment, and the like. become.
  • the base station uses the symbol of time X in FIG. 40 (in the case of FIG. 40, X is an integer of 1 to 10), carrier Y (Y in FIG. 40 is an integer of 1 to 40), and FIG.
  • the symbols of time X and carrier Y are transmitted using the same frequency and the same time.
  • the characteristics of the symbol group # 1 of the stream 1 of 1401_1 in FIG. 14 and the symbol group # 2 of the modulation signal 1 of 1401_2 and the symbol group # 3 of the modulation signal 1 of 1401_3 have been described so far. This is as described in the embodiment. That is, the characteristics of symbol group #i of modulated signal 1 in FIG. 40 are the same as those of symbol group # 1 of modulated signal 1 in FIG. 14, and are as described in the embodiments described above.
  • the characteristics of the symbol group # 1 of the modulation signal 2 of 1402_1 in FIG. 14, the symbol group # 2 of the modulation signal 2 of 1402_2, and the symbol group # 3 of the modulation signal 2 of 1402_3 have been described so far.
  • the feature of symbol group #i of modulated signal 2 in FIG. 41 is the same as that of symbol group #i of modulated signal 2 in FIG. 14, and is as described in the embodiments described above.
  • the base station transmits a frame as shown in FIG. 14 with the frame configuration shown in FIGS. 40 and 41
  • the implementation described in the first and fourth embodiments may be performed in the same manner.
  • symbol areas 3801_1 and 3801_2 of stream 1 in FIG. 38 symbol areas 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol areas 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and symbol areas of modulated signal 2 in FIG.
  • symbol areas 4001_1 and 4001_2 of modulated signal 1 in FIG. 40 symbol areas of modulated signal 2 in FIG.
  • symbol areas of modulated signal 2 in FIG. An example of how to use 4101_1 and 4102_2 will be described.
  • FIG. 42 shows “symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38, symbol regions 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol regions 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and symbols of modulated signal 2 in FIG.
  • An example of assignment of the areas 4101_1 and 4102_2 to the terminals is illustrated.
  • the horizontal axis represents time
  • the vertical axis represents frequency (carrier).
  • the symbol regions 4101_1 and 4102_2 "of the modulated signal 2 are frequency-divided and assigned to terminals.
  • 4201_1 is a symbol group allocated for the terminal # 1
  • 4201_2 is a symbol group allocated for the terminal # 2
  • 4201_3 is a symbol group allocated for the terminal # 3.
  • the base station (700) when the base station (700) is communicating with the terminal # 1, the terminal # 2, and the terminal # 3, and the base station transmits data to the terminal # 1, the “for terminal # 1” in FIG.
  • the base station transmits data to the terminal # 1 using the symbol group 4201_1 "assigned to.
  • the base station transmits data to terminal # 2 using “symbol group 4201_2 allocated for terminal # 2” in FIG. Become.
  • the base station transmits data to terminal # 3 the base station transmits data to terminal # 3 using “symbol group 4201_3 allocated for terminal # 3” in FIG.
  • the allocation method to the terminal is not limited to that shown in FIG. 42, and the frequency band (number of carriers) may change with time or may be set in any way. And you may change the allocation method to a terminal with time.
  • FIG. 43 shows “symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38, symbol regions 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol regions 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and symbols of modulated signal 2 in FIG. This is an example different from that in FIG. 42 in which the areas 4101_1 and 4102_2 are assigned to the terminals.
  • the horizontal axis represents time and the vertical axis represents frequency (carrier).
  • the symbol regions 4101_1 and 4102_2 "of the modulated signal 2 are time-frequency divided and assigned to terminals.
  • 4301_1 is a symbol group assigned for the terminal # 1
  • 4301_2 is a symbol group assigned for the terminal # 2
  • 4301_3 is a symbol group assigned for the terminal # 3
  • 4301_4 is a terminal.
  • Symbol group allocated for # 4301_5 is a symbol group allocated for terminal # 5
  • 4301_6 is a symbol group allocated for terminal # 6.
  • the base station (700) communicates with terminal # 1, terminal # 2, terminal # 3, terminal # 4, terminal # 5, and terminal # 6, and the base station transmits data to terminal # 1.
  • the base station transmits data to terminal # 1 using “symbol group 4301_1 allocated for terminal # 1” in FIG.
  • the base station transmits data to the terminal # 2 using the “symbol group 4301_2 allocated for the terminal # 2” in FIG.
  • the base station transmits data to terminal # 3 using “symbol group 4301_3 allocated for terminal # 3” in FIG.
  • the base station transmits data to terminal # 4 using “symbol group 4301_4 allocated for terminal # 4” in FIG.
  • the base station transmits data to terminal # 5 using “symbol group 4301_5 allocated for terminal # 5” in FIG.
  • the base station transmits data to terminal # 6 using “symbol group 4301_6 allocated for terminal # 6” in FIG.
  • the allocation method to the terminal is not limited to that shown in FIG. 43, and the frequency band (number of carriers) and the time width may be changed or may be set in any way. And you may change the allocation method to a terminal with time.
  • the weighting synthesis method may be determined in units of a plurality of carriers. Also, as shown in FIG. 43 and FIG. 44, a weighting synthesis parameter may be set for each assigned terminal. The setting of the weighting synthesis method in the carrier is not limited to these examples.
  • the base station transmits data symbols and control information symbols using a plurality of transmission beams, and the terminal transmits a beam of good quality from the plurality of transmission beams. Can be selectively received, and based on this, the terminal can receive data symbols, thereby obtaining an effect that the terminal can obtain high data reception quality.
  • the weighting / synthesizing unit 301 performs weighting / synthesizing based on the control signal 159 and performs weighting / synthesizing signals 4401_1, 4401_2,. -Outputs 4401_K.
  • M is an integer of 2 or more
  • K is an integer of 2 or more.
  • vg (t) can be expressed by the following equation.
  • the radio unit 104_g receives the weighted and synthesized signal 4401_g and the control signal 159, performs predetermined processing based on the control signal 159, and generates and outputs a transmission signal 105_g. Then, the transmission signal 105_g is transmitted from the antenna 303_1.
  • the transmission method supported by the base station may be a multicarrier scheme such as OFDM, or a single carrier scheme.
  • the base station may support both the multi-carrier scheme and the single carrier scheme.
  • DFT Discrete-Fourier Transform
  • Spread-OFDM Orthogonal-Frequency-Division-Multiplexing
  • Trafficory-Constrained-DFT-Spread-OFDM "OFDM-based-SC (Single-Carrier)”
  • SC Single-Carrier
  • Carrier -FDMA (Frequency Division Multiple Access), Guard interval DFT-Spread OFDM, etc.
  • the function is described as a function of time. However, in the case of a multicarrier system such as the OFDM system, it may be a function of frequency in addition to time.
  • weighting combining may be performed for each carrier, or a weighting combining method may be determined in units of a plurality of carriers.
  • the setting of the weighting synthesis method in the carrier is not limited to these examples.
  • the configuration of the base station is not limited to the examples shown in FIGS. 1 and 3, but may be a base station that has a plurality of transmission antennas, generates a plurality of transmission beams (transmission directional beams), and transmits them. Thus, it is possible to implement the present disclosure.
  • each embodiment is merely an example, for example, “modulation method, error correction coding method (error correction code to be used, code length, coding rate, etc.), control information, etc.”
  • modulation method, error correction coding method error correction code to be used, code length, coding rate, etc.
  • control information etc.
  • the same configuration can be used.
  • APSK eg, 16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSK, etc.
  • PAM eg, 4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAM, etc.
  • PSK eg, BPSK, QPSK, etc.
  • the transmission device is equipped with a communication / broadcasting device such as a broadcasting station, a base station, an access point, a terminal, a mobile phone, and the like.
  • the receiving device is equipped with a communication device such as a television, a radio, a terminal, a personal computer, a mobile phone, an access point, and a base station.
  • the transmission device and the reception device in the present disclosure are devices having a communication function, and the devices provide some interface to a device for executing an application such as a television, a radio, a personal computer, or a mobile phone. It is also conceivable that the connection is possible.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, postamble, reference symbol, etc.), control information symbols, etc.
  • pilot symbols preamble, unique word, postamble, reference symbol, etc.
  • control information symbols etc.
  • the pilot symbol and the control information symbol are named, but any naming method may be used, and the function itself is important.
  • the pilot symbol may be, for example, a known symbol that is modulated using PSK modulation in a transceiver, and the receiver uses this symbol to perform frequency synchronization, time synchronization, channel estimation (CSI ( Channel (State Information) estimation), signal detection, etc.
  • CSI Channel (State Information) estimation
  • the pilot symbol may be synchronized with the receiver so that the receiver can know the symbol transmitted by the transmitter.
  • the control information symbol is information that needs to be transmitted to a communication partner for realizing communication other than data (data such as an application) (for example, a modulation method and an error correction coding method used for communication). , A coding rate of an error correction coding system, setting information in an upper layer, and the like).
  • a program for executing the communication method may be stored in the ROM in advance, and the program may be operated by the CPU.
  • a program for executing the communication method may be stored in a computer-readable storage medium, the program stored in the storage medium may be recorded in a RAM of the computer, and the computer may be operated according to the program. .
  • Each configuration such as each of the above embodiments may be typically realized as an LSI that is an integrated circuit having an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include all or part of the configurations of the respective embodiments.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.
  • a base station (AP) provided with the transmission apparatus of FIG. 1 transmits the modulation signal having the frame configuration described in this specification using a multicarrier scheme such as an OFDM scheme.
  • a terminal (user) communicating with the base station (AP) transmits a modulated signal
  • an application method in which the modulated signal transmitted by the terminal is a single carrier scheme can be considered.
  • a base station (AP) can transmit a data symbol group simultaneously to a plurality of terminals by using the OFDM scheme, and the terminal can reduce power consumption by using a single carrier scheme. It becomes possible.
  • the terminal may apply a TDD (Time Division Duplex) scheme that transmits a modulation scheme using a part of a frequency band used by a modulation signal transmitted by a base station (AP).
  • TDD Time Division Duplex
  • the configuration of the antenna units 106-1, 106-2, ..., 106-M in Fig. 1 is not limited to the configuration described in the embodiment.
  • the antenna units 106-1, 106-2,..., 106-M may not be composed of a plurality of antennas, and the antenna units 106-1, 106-2,. -M may not have signal 159 as an input.
  • the configuration of the antenna units 401-1, 401-2, ..., 401-N in Fig. 4 is not limited to the configuration described in the embodiment.
  • the antenna units 401-1, 401-2,..., 401-N may not be configured by a plurality of antennas, and the antenna units 401-1, 401-2,. -N may not have signal 410 as an input.
  • the transmission method supported by the base station and the terminal may be a multicarrier scheme such as OFDM or a single carrier scheme.
  • the base station may support both the multi-carrier scheme and the single carrier scheme.
  • DFT Discrete Fourier-Transform
  • Spread OFDM Orthogonal Frequency Division Multiplexing
  • Trafficory Constrained DFT-Spread OFDM OFDM based SC (Single Carrier)
  • SC Single Carrier
  • FDMA Frequency Division Multiple Access
  • Guard interval DFT-Spread OFDM etc.
  • At least multicast (broadcast) data exists in information # 1 (101_1), information # 2 (101_2),..., Information #M (101_M) in FIGS. become.
  • the information # 1 (101_1) is multicast data
  • a plurality of streams or modulated signals including this data are generated by the signal processing unit 102 and output from the antenna. .
  • information # 1 (101_1), information # 2 (101_2),..., Information #M (101_M) in FIGS. 1, 3, and 44 may include data addressed to individual terminals. . This point is as described in the embodiment of the present specification.
  • At least one of FPGA (Field Programmable Gate Array) and CPU (Central Processing Unit) can download all or part of software necessary for realizing the communication method described in the present disclosure by wireless communication or wired communication.
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • the configuration may be adopted.
  • the configuration may be such that all or part of the software for updating can be downloaded by wireless communication or wired communication.
  • the downloaded software may be stored in the storage unit, and at least one of the FPGA and the CPU may be operated based on the stored software to execute the digital signal processing described in the present disclosure.
  • a device including at least one of the FPGA and the CPU may be connected to the communication modem wirelessly or by wire, and the communication method described in the present disclosure may be realized by the device and the communication modem.
  • a communication device such as a base station, an AP, or a terminal described in this specification includes at least one of an FPGA and a CPU, and software for operating at least one of the FPGA and the CPU is externally provided.
  • the communication device may include an interface for obtaining the information.
  • the communication device includes a storage unit for storing software obtained from the outside, and the FPGA and CPU are operated based on the stored software, thereby realizing the signal processing described in the present disclosure. May be.
  • a transmission apparatus is a transmission apparatus including a plurality of transmission antennas, generates a first baseband signal by modulating data of a first stream, and modulates data of a second stream.
  • a signal processing unit for generating two baseband signals, a plurality of first transmission signals having different directivities from the first baseband signals, and a plurality of second transmission signals having different directivities from the second baseband signals And transmitting a plurality of first transmission signals and a plurality of the second transmission signals at the same time, and the transmission unit further receives a request for transmission of the first stream from the terminal
  • a plurality of third transmission signals different from the plurality of first transmission signals and having different directivities are generated from the first baseband signal and transmitted.
  • Each of the plurality of first transmission signals and the plurality of second transmission signals is a control signal for notifying which transmission data of the first stream and the second stream is transmitted. May be included.
  • Each of the plurality of first transmission signals and the plurality of second transmission signals may include a training signal for the receiving device to perform directivity control.
  • a reception device is a reception device including a plurality of reception antennas, and each of a plurality of first signals having different directivities and a plurality of first signals that transmit data of a first stream that the transmission device transmits at the same time.
  • Directivity control for selecting at least one first signal and at least one second signal from among a plurality of second signals having different directivities for transmitting two streams of data and receiving the selected signals. And receiving the signal, demodulating the received signal to output the first stream data and the second stream data, and receiving the at least one first signal.
  • a transmission unit configured to request the transmission apparatus to transmit the first stream when it is not received.
  • the reception unit based on a control signal for notifying which of the first stream and the second stream included in each of the plurality of reception signals is a signal for transmitting data, One first signal and the at least one second signal may be selected.
  • the receiving unit may perform directivity control using a training signal included in each of a plurality of received signals.
  • a transmission method is a transmission method executed by a transmission apparatus including a plurality of transmission antennas, and generates a first baseband signal by modulating data of a first stream, A process of modulating the data to generate the second baseband signal, a plurality of first transmission signals having different directivities from the first baseband signal, and a plurality of different directivities from the second baseband signal Generating a second transmission signal, and transmitting a plurality of first transmission signals and a plurality of the second transmission signals at the same time.
  • a request for transmission of the first stream is further received from the terminal.
  • a plurality of third transmission signals different from the plurality of first transmission signals and having different directivities are generated from the first baseband signal and transmitted.
  • a reception method is a reception method executed by a reception device including a plurality of reception antennas, and each of the transmission devices transmits a plurality of first stream data to be transmitted at the same time.
  • Processing for performing directivity control for receiving signals, processing for demodulating the received signals and outputting the data of the first stream and the data of the second stream, and at least one first signal in the reception processing Includes a transmission process for requesting the transmission apparatus to transmit the first stream in a case where the first stream is not received.
  • the communication distance in the multi-stream multicast / broadcast communication can be increased as compared with the case where the antenna of the pseudo omni pattern is used.
  • This disclosure is useful in communication using a plurality of antennas.
  • Base station 701 Antenna 702, 703 Transmit beam 704 Terminal 705, 706 Reception directivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

マルチキャスト/ブロードキャスト通信を行う場合における通信距離を拡大可能な送信装置を提供する。この送信装置は、複数の送信アンテナを備える送信装置であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号処理部と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する送信部とを備え、送信部は、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。

Description

送信方法、送信装置、受信方法及び受信装置
 本発明は、送信方法、送信装置、受信方法及び受信装置に関する。
 従来、複数アンテナを用いた通信方法として、例えば、MIMO(Multiple-Input Multiple-Out)と呼ばれる通信方法がある。MIMOに代表されるマルチアンテナ通信では、複数ストリームの送信データを変調し、各変調信号を異なるアンテナから同一周波数(共通の周波数)を用い、同時に送信することで、データの受信品質を高め、および/または、(単位時間当たりの)データの通信速度を高めることができる。
 また、複数アンテナ通信において、マルチキャスト/ブロードキャスト通信を行う場合、送信装置が、空間の広い方向にわたりほぼ一定のアンテナ利得を有する疑似オムニパターンのアンテナが用いられることがある。例えば、特許文献1では、疑似オムニパターンのアンテナを用いて送信装置が変調信号を送信することが述べられている。
国際公開第2011/055536号
 複数のアンテナを用いる通信方法に関して、さらなる性能改善が要望されている。
 本開示の一態様の送信装置は、複数の送信アンテナを備える送信装置であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号処理部と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する送信部とを備え、送信部は、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。
 本開示によれば、複数のアンテナを用いる通信方法における性能を改善できる可能性がある。
図1は、基地局の構成の一例を示す図である。 図2は、基地局のアンテナ部の構成の一例を示す図である。 図3は、基地局の構成の一例を示す図である。 図4は、端末の構成の一例を示す図である。 図5は、端末のアンテナ部の構成の一例を示す図である。 図6は、端末の構成の一例を示す図である。 図7は、基地局と端末の間の通信状態の一例を示す図である。 図8は、複数ストリームの関係を説明するための図である。 図9は、フレーム構成の一例を示す図である。 図10は、フレーム構成の一例を示す図である。 図11は、シンボル構成の一例を示す図である。 図12は、基地局と端末の間の通信状態の一例を示す図である。 図13は、複数の変調信号の関係を示す図である。 図14は、フレーム構成の一例を示す図である。 図15は、フレーム構成の一例を示す図である。 図16は、シンボル構成の一例を示す図である。 図17は、基地局と端末の間の通信状態の一例を示す図である。 図18は、基地局と端末の間の通信状態の一例を示す図である。 図19は、基地局と端末の間の通信状態の一例を示す図である。 図20は、基地局と端末の間の通信状態の一例を示す図である。 図21は、複数の変調信号の関係を示す図である。 図22は、基地局と端末の間の通信状態の一例を示す図である。 図23は、基地局と端末の通信を行う手順を示す図である。 図24は、基地局及び端末が送信するシンボルの一例を示す図である。 図25は、基地局が送信するシンボルの一例を示す図である。 図26は、基地局と端末の間の通信状態の一例を示す図である。 図27は、基地局が送信するシンボルの一例を示す図である。 図28は、基地局と端末の通信を行う手順を示す図である。 図29は、基地局と端末の間の通信状態の一例を示す図である。 図30は、基地局と端末の通信を行う手順を示す図である。 図31は、基地局が送信するシンボルの一例を示す図である。 図32は、基地局が送信するシンボルの一例を示す図である。 図33は、基地局と端末の通信を行う手順を示す図である。 図34は、基地局と端末の通信を行う手順を示す図である。 図35は、基地局が送信するシンボルの一例を示す図である。 図36は、基地局と端末の通信を行う手順を示す図である。 図37は、基地局の構成の一例を示す図である。 図38は、フレーム構成の一例を示す図である。 図39は、フレーム構成の一例を示す図である。 図40は、フレーム構成の一例を示す図である。 図41は、フレーム構成の一例を示す図である。 図42は、シンボル領域の端末への割り当ての一例を示す図である。 図43は、シンボル領域の端末への割り当ての一例を示す図である。 図44は、基地局の構成の一例を示す図である。
 (実施の形態1)
 図1は、本実施の形態における基地局(または、アクセスポイントなど)の構成の一例を示している。
 101-1は#1情報、101-2は#2情報、・・・、101-Mは#M情報を示している。101-iは、#i情報を示している。iは1以上M以下の整数とする。なお、Mは2以上の整数とする。なお、#1情報から#M情報までのすべてが存在する必要はない。
 信号処理部102は、#1情報101-1、#2情報101-2、・・・、#M情報101-M、および、制御信号159を入力とする。信号処理部102は、制御信号159に含まれる、「誤り訂正符号化の方法(符号化率、符号長(ブロック長))に関する情報」「変調方式に関する情報」、「プリコーディングに関する情報」、「送信方法(多重化方法)」、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか(マルチキャスト用の送信、ユニキャスト用の送信を同時に実現してもよい)」、「マルチキャストを行うときの送信ストリーム数」、「マルチキャスト用の変調信号を送信する場合の送信方法(この点については、後で詳しく説明する)」などの情報に基づき、信号処理を行い、信号処理後の信号103-1、信号処理後の信号103-2、・・・、信号処理後の信号103-M、つまり、信号処理後の信号103-iを出力する。なお、信号処理後の信号#1から信号処理後の信号#Mまでのすべてが存在する必要はない。このとき、#i情報101-iに対し、誤り訂正符号化を行い、その後、設定した変調方式によるマッピングを行う。これにより、ベースバンド信号を得る。
 そして、各情報に対応するベースバンド信号を集め、プリコーディングを行う。また、例えば、OFDM(Orthogonal Frequency Division Multiplexing)を適用してもよい。
 無線部104-1は、信号処理後の信号103-1、制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、増幅などの処理を行い、送信信号105-1を出力する。そして、送信信号105-1は、アンテナ部106-1から電波として出力される。
 同様に、無線部104-2は、信号処理後の信号103-2、制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、増幅などの処理を行い、送信信号105-2を出力する。そして、送信信号105-2は、アンテナ部106-2から電波として出力される。無線部104-3から無線部104-(M-1)までの説明は省略する。
 無線部104-Mは、信号処理後の信号103-M、制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、増幅などの処理を行い、送信信号105-Mを出力する。そして、送信信号105-Mは、アンテナ部106-Mから電波として出力される。
 なお、各無線部は、信号処理後の信号が存在していない場合は、上記処理を行わなくてもよい。
 無線部群153は、受信アンテナ群151で受信した受信信号群152を入力とし、周波数変換等の処理を行い、ベースバンド信号群154を出力する。
 信号処理部155は、ベースバンド信号群154を入力し、復調、誤り訂正復号を行う、つまり、時間同期、周波数同期、チャネル推定などの処理も行う。このとき、信号処理部155は、一つ以上の端末が送信した変調信号を受信し、処理を行っているため、各端末が送信したデータと、各端末が送信した制御情報を得る。したがって、信号処理部155は、一つ以上の端末に対応するデータ群156、および、一つ以上の端末に対応する制御情報群157を出力する。
 設定部158は、制御情報群157、設定信号160を入力とし、制御情報群157に基づき、「誤り訂正符号化の方法(符号化率、符号長(ブロック長))」、「変調方式」、「プリコーディング方法」、「送信方法」、「アンテナの設定」、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか(マルチキャスト及びユニキャストの送信を同時に実現してもよい)」、「マルチキャストを行うときの送信ストリーム数」、「マルチキャスト用の変調信号を送信する場合の送信方法」などを決定し、これらの決定した情報を含んだ制御信号159を出力する。
 アンテナ部106-1、106-2、・・・、106-Mは、制御信号159を入力としている。このときの動作について、図2を用いて説明する。
 図2は、アンテナ部106-1、106-2、・・・、106-Mの構成の一例を示している。各アンテナ部は、図2のように複数のアンテナを具備している。なお、図2では、アンテナを4つ描いているが、各アンテナ部は、複数のアンテナを具備していればよい。なお、アンテナの本数は4に限ったものではない。
 図2は、アンテナ部106-iの構成となる。iは1以上M以下の整数である。
 分配部202は、送信信号201(図1の送信信号105-iに相当)を入力とし、送信信号201を分配し、信号203-1、203-2、203-3、203-4を出力する。
 乗算部204-1は、信号203-1、および、制御信号200(図1の制御信号159に相当)を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-1に対し、係数W1を乗算し、乗算後の信号205-1を出力する。なお、係数W1は複素数で定義する。したがって、W1は実数をとることもできる。したがって、信号203-1をv1(t)とすると、乗算後の信号205-1はW1×v1(t)とあらわすことができる(tは時間)。そして、乗算後の信号205-1は、アンテナ206-1から電波として出力される。
 同様に、乗算部204-2は、信号203-2、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-2に対し、係数W2を乗算し、乗算後の信号205-2を出力する。なお、係数W2は複素数で定義する。したがって、W2は実数をとることもできる。したがって、信号203-2をv2(t)とすると、乗算後の信号205-2はW2×v2(t)とあらわすことができる(tは時間)。そして、乗算後の信号205-2は、アンテナ206-2から電波として出力される。
 乗算部204-3は、信号203-3、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-3に対し、係数W3を乗算し、乗算後の信号205-3を出力する。なお、係数W3は複素数で定義する。したがって、W3は実数をとることもできる。したがって、信号203-3をv3(t)とすると、乗算後の信号205-3はW3×v3(t)とあらわすことができる(tは時間)。そして、乗算後の信号205-3は、アンテナ206-3から電波として出力される。
 乗算部204-4は、信号203-4、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-4に対し、係数W4を乗算し、乗算後の信号205-4を出力する。なお、係数W4は複素数で定義する。したがって、W4は実数をとることもできる。したがって、信号203-4をv4(t)とすると、乗算後の信号205-4はW4×v4(t)とあらわすことができる(tは時間)。そして、乗算後の信号205-4は、アンテナ206-4から電波として出力される。
 なお、W1の絶対値、W2の絶対値、W3の絶対値、W4の絶対値が等しくてもよい。
 図3は、本実施の形態における図1の基地局の構成とは異なる基地局の構成を示しており、図3において、図1と同様に動作するものについては、同一番号を付しており、以下では説明を省略する。
 重みづけ合成部301は、変調信号105-1、変調信号105-2、・・・、変調信号105-M、および、制御信号159を入力とする。そして、重みづけ合成部301は、制御信号159に含まれる重みづけ合成に関する情報にもとづき、変調信号105-1、変調信号105-2、・・・、変調信号105-Mに対し、重みづけ合成を行い、重みづけ合成後の信号302-1、302-2、・・・、302-Kを出力する。Kは1以上の整数とする。そして、重みづけ合成後の信号302-1はアンテナ303-1から電波として出力され、重みづけ合成後の信号302-2はアンテナ303-2から電波として出力され、・・・、重みづけ合成後の信号302-Kはアンテナ303-Kから電波として出力される。
 重みづけ合成後の信号y(t)302-i(iは、1以上K以下の整数)は、以下のようにあらわされる(tは時間)。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、Aijは複素数で定義できる値であり、したがって、Aijは実数をとることもでき、x(t)は変調信号105-jとなる。jは1以上M以下の整数である。
 図4は、端末の構成の一例を示している。アンテナ部401-1、401-2、・・・、401-Nは、制御信号410を入力としている。Nは1以上の整数である。
 無線部403-1は、アンテナ部401-1で受信した受信信号402-1、および、制御信号410を入力とし、制御信号410に基づき、受信信号402-1に対し、周波数変換等の処理を施し、ベースバンド信号404-1を出力する。
 同様に、無線部403-2は、アンテナ部401-2で受信した受信信号402-2、および、制御信号410を入力とし、制御信号410に基づき、受信信号402-2に対し、周波数変換等の処理を施し、ベースバンド信号404-2を出力する。なお、無線部403-3から無線部403-(N-1)までの説明は省略する。
 無線部403-Nは、アンテナ部401-Nで受信した受信信号402-N、および、制御信号410を入力とし、制御信号に基づき、受信信号402-Nに対し、周波数変換等の処理を施し、ベースバンド信号404-Nを出力する。
 ただし、無線部403-1、403-2、・・・、403-Nはすべてが動作しなくてもよい。したがって、ベースバンド信号404-1、404-2、・・・、404-Nがすべて存在しているとは限らない。
 信号処理部405は、ベースバンド信号404-1、404-2、・・・、404-N、および、制御信号410を入力とし、制御信号410に基づいて、復調、誤り訂正復号の処理を行い、データ406、送信用制御情報407、制御情報408を出力する。つまり、信号処理部405は、時間同期、周波数同期、チャネル推定などの処理も行う。
 設定部409は、制御情報408を入力とし、受信方法に関する設定を行い、制御信号410を出力する。
 信号処理部452は、情報451、送信用制御情報407を入力とし、誤り訂正符号化、設定した変調方式によるマッピングなどの処理を行い、ベースバンド信号群453を出力する。
 無線部群454は、ベースバンド信号群453を入力とし、帯域制限、周波数変換、増幅等の処理を行い、送信信号群455を出力し、送信信号群455は、送信アンテナ群456から、電波として出力される。
 図5は、アンテナ部401-1、401-2、・・・、401-Nの構成の一例を示している。各アンテナ部は、図5のように複数のアンテナを具備している。なお、図5では、アンテナを4つ描いているが、各アンテナ部は、複数のアンテナを具備していればよい。なお、アンテナ部は、アンテナの本数は4に限ったものではない。
 図5は、アンテナ部401-iの構成となる。iは1以上N以下の整数である。
 乗算部503-1は、アンテナ501-1で受信した受信信号502-1、および、制御信号500(図4の制御信号410に相当)を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-1に対し、係数D1を乗算し、乗算後の信号504-1を出力する。なお、係数D1は複素数で定義できる。したがって、D1は実数をとることもできる。したがって、受信信号502-1をe1(t)とすると、乗算後の信号504-1はD1×e1(t)とあらわすことができる(tは時間)。
 同様に、乗算部503-2は、アンテナ501-2で受信した受信信号502-2、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-2に対し、係数D2を乗算し、乗算後の信号504-2を出力する。なお、係数D2は複素数で定義できる。したがって、D2は実数をとることもできる。したがって、受信信号502-2をe2(t)とすると、乗算後の信号504-2はD2×e2(t)とあらわすことができる(tは時間)。
 乗算部503-3は、アンテナ501-3で受信した受信信号502-3、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-3に対し、係数D3を乗算し、乗算後の信号504-3を出力する。なお、係数D3は複素数で定義できる。したがって、D3は実数をとることもできる。したがって、受信信号502-3をe3(t)とすると、乗算後の信号504-3はD3×e3(t)とあらわすことができる(tは時間)。
 乗算部503-4は、アンテナ501-4で受信した受信信号502-4、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-4に対し、係数D4を乗算し、乗算後の信号504-4を出力する。なお、係数D4は複素数で定義できる。したがって、D4は実数をとろこともできる。したがって、受信信号502-4をe4(t)とすると、乗算後の信号504-4はD4×e4(t)とあらわすことができる(tは時間)。
 合成部505は、乗算後の信号504-1、504-2、504-3、504-4を入力とし、乗算後の信号504-1、504-2、504-3、504-4を加算し、合成後の信号506(図4の受信信号402-iに相当する)を出力とする。したがって、合成後の信号506は、D1×e1(t)+D2×e2(t)+D3×e3(t)+D4×e4(t)とあらわされる。
 図6は、本実施の形態における図4の端末の構成とは異なる端末の構成を示しており、図6において、図4と同様に動作するものについては、同一番号を付しており、以下では説明を省略する。
 乗算部603-1は、アンテナ601-1で受信した受信信号602-1、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-1に対し、係数G1を乗算し、乗算後の信号604-1を出力する。なお、係数G1は複素数で定義できる。したがって、G1は実数をとることもできる。したがって、受信信号602-1をc1(t)とすると、乗算後の信号604-1はG1×c1(t)とあらわすことができる(tは時間)。
 同様に、乗算部603-2は、アンテナ601-2で受信した受信信号602-2、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-2に対し、係数G2を乗算し、乗算後の信号604-2を出力する。なお、係数G2は複素数で定義できる。したがって、G2は実数をとることもできる。したがって、受信信号602-2をc2(t)とすると、乗算後の信号604-2はG2×c2(t)とあらわすことができる(tは時間)。乗算部603-3から乗算部603-(L-1)までの説明は省略する。
 乗算部603-Lは、アンテナ601-Lで受信した受信信号602-L、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-Lに対し、係数GLを乗算し、乗算後の信号604-Lを出力する。なお、係数GLは複素数で定義できる。したがって、GLは実数をとることもできる。したがって、受信信号602-LをcL(t)とすると、乗算後の信号604-LはGL×cL(t)とあらわすことができる(tは時間)。
 したがって、乗算部603-iは、アンテナ601-iで受信した受信信号602-i、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-iに対し、係数Giを乗算し、乗算後の信号604-iを出力する。なお、係数Giは複素数で定義できる。したがって、Giは実数をとることもできる。したがって、受信信号602-iをci(t)とすると、乗算後の信号604-iはGi×ci(t)とあらわすことができる(tは時間)。なお、iは1以上L以下の整数とし、Lは2以上の整数である。
 処理部605は、乗算後の信号604-1、乗算後の信号604-2、・・・、乗算後の信号604-L、および、制御信号410を入力とし、制御信号410に基づき、信号処理を行い、処理後の信号606-1、606-2、・・・、606-Nを出力する。Nは2以上の整数とする。このとき、乗算後の信号604-iをp(t)とあらわす。iは1以上L以下の整数とする。すると、処理後の信号606-j(r(t))は、以下のようにあらわされる。(jは1以上N以下の整数)
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)において、Bjiは複素数で定義できる値である。したがって、Bjiは実数をとることもできる。
 図7は、基地局と端末の通信状態の一例を示している。なお、基地局は、アクセスポイント、放送局などと呼ぶことがある。
 基地局700は、複数のアンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、図7は、ストリーム1のデータを伝送するための送信ビーム702-1、ストリーム1のデータを伝送するための送信ビーム702-2、ストリーム1のデータを伝送するための送信ビーム702-3を示す。
 図7は、ストリーム2のデータを伝送するための送信ビーム703-1、ストリーム2のデータを伝送するための送信ビーム703-2、ストリーム2のデータを伝送するための送信ビーム703-3を示す。
 なお、図7では、ストリーム1のデータを伝送するための送信ビームの数を3、ストリーム2のデータを伝送するための送信ビームの数を3としているが、これに限ったものではなく、ストリーム1のデータを伝送するための送信ビームが複数、ストリーム2のデータを伝送するための送信ビームが複数であればよい。
 図7は、端末704-1、704-2、704-3、704-4、704-5を含み、例えば、図4、図5に示す端末と同じ構成である。
 例えば、端末704-1は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-1、および、受信指向性706-1を形成する。そして、受信指向性705-1により、端末704-1は、ストリーム1のデータを伝送するための送信ビーム702-1の受信及び復調が可能となり、受信指向性706-1により、端末704-1は、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となる。
 同様に、端末704-2は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-2、および、受信指向性706-2を形成する。そして、受信指向性705-2により、端末704-2は、ストリーム1のデータを伝送するための送信ビーム702-1の受信及び復調が可能となり、受信指向性706-2により、端末704-2は、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となる。
 端末704-3は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-3、および、受信指向性706-3を形成する。
 そして、受信指向性705-3により、端末704-3は、ストリーム1のデータを伝送するための送信ビーム702-2の受信及び復調が可能となり、受信指向性706-3により、端末704-3は、ストリーム2のデータを伝送するための送信ビーム703-2の受信及び復調が可能となる。
 端末704-4は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-4、および、受信指向性706-4を形成する。そして、受信指向性705-4により、端末704-4は、ストリーム1のデータを伝送するための送信ビーム702-3の受信及び復調が可能となり、受信指向性706-4により、端末704-4は、ストリーム2のデータを伝送するための送信ビーム703-2の受信及び復調が可能となる。
 端末704-5は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-5、および、受信指向性706-5を形成する。そして、受信指向性705-5により、端末704-5は、ストリーム1のデータを伝送するための送信ビーム702-3の受信及び復調が可能となり、受信指向性706-5により、端末704-5は、ストリーム2のデータを伝送するための送信ビーム703-3の受信及び復調が可能となる。
 図7では、端末は、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、ストリーム1のデータを高い品質で得ることができ、また、端末は、ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、ストリーム2のデータを高い品質で得ることができる。
 なお、基地局700は、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1とを、同一周波数(同一周波数帯)、同一時間を用いて、送信する。そして、基地局700は、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2とを、同一周波数(同一周波数帯)、同一時間を用いて、送信する。また、基地局700は、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3とを、同一周波数(同一周波数帯)、同一時刻を用いて、送信する。
 また、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 図1、図3における基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図7のような送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」の情報を含んでおり、図7のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 また、設定信号160は、「各ストリームをいくつの送信ビームで送信するか」の情報を含んでいてもよい。図7のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信ストリーム数」の情報、「各ストリームをいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。制御情報シンボルの構成の詳細については、後で行う。
 図8は、図1、図3の#i情報101-iと図7を用いて説明した「ストリーム1」「ストリーム2」の関係を説明するための図面である。例えば、#1情報101-1に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを#1送信データと名付ける。そして、#1送信データに対してマッピングを行い、データシンボルを得るが、このデータシンボルをストリーム1用、ストリーム2用に振り分け、ストリーム1のデータシンボル(データシンボル群)、および、ストリーム2のデータシンボル(データシンボル群)を得る。そして、ストリーム1のシンボル群は、ストリーム1のデータシンボル(データシンボル群)を含み、ストリーム1のシンボル群は、図1、図3の基地局から送信される。また、ストリーム2のシンボル群は、ストリーム2のデータシンボル(データシンボル群)を含み、ストリーム2のシンボル群は、図1、図3の基地局から送信される。
 図9は、横軸時間としたときのフレーム構成の一例を示している。
 図9のストリーム1の#1シンボル群901-1は、図7におけるストリーム1のデータを伝送するための送信ビーム702-1のシンボル群である。
 図9のストリーム1の#2シンボル群901-2は、図7におけるストリーム1のデータを伝送するための送信ビーム702-2のシンボル群である。
 図9のストリーム1の#3シンボル群901-3は、図7におけるストリーム1のデータを伝送するための送信ビーム702-3のシンボル群である。
 図9のストリーム2の#1シンボル群902-1は、図7におけるストリーム2のデータを伝送するための送信ビーム703-1のシンボル群である。
 図9のストリーム2の#2シンボル群902-2は、図7におけるストリーム2のデータを伝送するための送信ビーム703-2のシンボル群である。
 図9のストリーム2の#3シンボル群902-3は、図7におけるストリーム2のデータを伝送するための送信ビーム703-3のシンボル群である。
 そして、ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、ストリーム2の#3シンボル群902-3は、例えば、時間区間1に存在している。
 また、前にも記載したように、ストリーム1の#1シンボル群901-1とストリーム2の#2シンボル群902-1は、同一周波数(同一周波数帯)を用いて送信されており、ストリーム1の#2シンボル群901-2とストリーム2の#2シンボル群902-2は、同一周波数(同一周波数帯)を用いて送信されており、ストリーム1の#3シンボル群901-3とストリーム2の#3シンボル群902-3は、同一周波数(同一周波数帯)を用いて送信されている。
 例えば、図8の手順で、情報から「ストリーム1のデータシンボル群A」および「ストリーム2のデータシンボル群A」を生成した。そして、「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-1」、「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-2」、「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-3」を用意する。
 つまり、「ストリーム1のデータシンボル群A-1」を構成するシンボルと「ストリーム1のデータシンボル群A-2」を構成するシンボルと「ストリーム1のデータシンボル群A-3」を構成するシンボルは同じである。
 このとき、図9のストリーム1の#1シンボル群901-1は、「ストリーム1のデータシンボル群A-1」を含んでおり、図9のストリーム1の#2シンボル群901-2は、「ストリーム1のデータシンボル群A-2」を含んでおり、図9のストリーム1の#3シンボル群901-3は、「ストリーム1のデータシンボル群A-3」を含んでいる。つまり、ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3は、同一のデータシンボル群を含んでいる。
 また、「ストリーム2のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-1」、「ストリーム2のデータシンボル群A」を構成するシンボル群と同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-2」、「ストリーム2のデータシンボル群A」を構成するシンボル群と同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-3」を用意する。
 つまり、「ストリーム2のデータシンボル群A-1」を構成するシンボルと「ストリーム2のデータシンボル群A-2」を構成するシンボルと「ストリーム2のデータシンボル群A-3」を構成するシンボルは同じである。
 このとき、図9のストリーム2の#1シンボル群902-1は、「ストリーム2のデータシンボル群A-1」を含んでおり、図9のストリーム2の#2シンボル群902-2は、「ストリーム2のデータシンボル群A-2」を含んでおり、図9のストリーム2の#3シンボル群902-3は、「ストリーム2のデータシンボル群A-3」を含んでいる。つまり、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、ストリーム2の#3シンボル群902-3は、同一のデータシンボル群を含んでいる。
 図10は、図9で説明した「ストリームXのシンボル群#Y」(X=1,2;Y=1,2,3)のフレーム構成の一例を示している。図10において、横軸時間であり、1001は制御情報シンボル、1002はストリームのデータシンボル群である。このとき、ストリームのデータシンボル群1002は、図9を用いて説明した「ストリーム1のデータシンボル群A」または「ストリーム2のデータシンボル群A」を伝送するためのシンボルである。
 なお、図10のフレーム構成において、OFDM(Orthogonal Frequency Division Multiplexing)方式などのマルチキャリア方式を用いてもよく、この場合、周波数軸方向にシンボルが存在していてもよい。また、各シンボルには、受信装置が時間及び周波数同期を行うためのリファレンスシンボル、受信装置が信号を検出するためのリファレンスシンボル、受信装置がチャネル推定を行うためのリファレンスシンボルなどが含まれていてもよい。そして、フレーム構成は図10に限ったものではなく、制御情報シンボル1001、ストリームのデータシンボル群1002をどのように配置してもよい。なお、リファレンスシンボルは、プリアンブル、パイロットシンボルと呼ぶこともある。
 次に、制御情報シンボル1001の構成について説明する。
 図11は、図10の制御情報シンボルとして送信するシンボルの構成の一例を示しており、横軸は時間である。図11において、端末は、「端末が受信指向性制御を行うためのトレーニングシンボル」1101を受信することで、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」で実施する、受信時の指向性制御のための信号処理方法を決定する。
 端末は、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102を受信することで、端末は、得る必要があるストリーム数を知る。
 端末は、「ストリームのデータシンボルがどのストリームのデータシンボルであるかを通知するためのシンボル」1103を受信することで、端末は、基地局が送信しているストリームのうち、どのストリームを受信できているか、を知ることができる。
 上記についての例を説明する。
 図7のように、基地局がストリーム、送信ビームを送信している場合について説明する。そして、図9のストリーム1の#1シンボル群901-1における制御情報シンボルの具体的な情報について説明する。
 図7の場合、基地局は「ストリーム1」および「ストリーム2」を送信しているため、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102の情報は「2」という情報となる。
 また、図9のストリーム1の#1シンボル群901-1は、ストリーム1のデータシンボルを送信しているため、「ストリームのデータシンボルがどのストリームのデータシンボルであるかを通知するためのシンボル」1103の情報は「ストリーム1」という情報になる。
 例えば、端末が、図9のストリーム1の#1シンボル群901-1を受信した場合について説明する。このとき、端末は、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102から「送信ストリーム数が2」、「ストリームのデータシンボル群がどのストリームのデータシンボルであるかを通知するためのシンボル」1103から「ストリーム1のデータシンボル」を得たことを認識する。
 その後、端末は、「送信ストリーム数が2」、得ているデータシンボルが「ストリーム1のデータシンボル」であると認識するため、「ストリーム2のデータシンボル」を得る必要があると認識する。よって、端末は、ストリーム2のシンボル群を探す作業を開始することができる。例えば、端末は、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、ストリーム2の#3シンボル群902-3のいずれかの送信ビームを、探す。
 そして、端末は、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、ストリーム2の#3シンボル群902-3のいずれかの送信ビームを得ることで、ストリーム1のデータシンボルとストリーム2のデータシンボルの両者のデータシンボルを得る。
 このように、制御情報シンボルを構成することで、端末は、的確にデータシンボルを得ることができるという効果を得る。
 以上のように、マルチキャスト伝送及びブロードキャストデータ伝送において、基地局が、データシンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよい、ビームを選択的に受信することにより、基地局が送信した変調信号は、送信指向性制御、受信指向性制御を行っているため、高いデータの受信品質が得られるエリアを広くすることができるという効果を得る。
 また、上述の説明では、端末が、受信指向性制御を行っていることを説明したが、端末は、受信指向性制御を行わなくても、上述の効果を得ることは可能である。
 なお、図10の「ストリームのデータシンボル群」1002の変調方式は、どのような変調方式であってもよく、「ストリームのデータシンボル群」1002の変調方式のマッピング方法は、シンボルごとに切り替わってもよい。つまり、マッピング後に同相I-直交Q平面上において、コンスタレーションの位相が、シンボルごとに切り替わってもよい。
 図12は、基地局と端末の通信状態の図7とは異なる例である。なお、図12において、図7と同様に動作するものについては同一番号を付している。
 基地局700は、複数のアンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102、(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、図12は、「変調信号1」を伝送するための送信ビーム1202-1、「変調信号1」を伝送するための送信ビーム1202-2、「変調信号1」を伝送するための送信ビーム1202-3を示す。
 図12は、「変調信号2」を伝送するための送信ビーム1203-1、「変調信号2」を伝送するための送信ビーム1203-2、「変調信号2」を伝送するための送信ビーム1203-3を示す。
 なお、図12では、「変調信号1」を伝送するための送信ビームの数を3、「変調信号2」を伝送するための送信ビームの数を3としているが、これに限ったものではなく、「変調信号1」を伝送するための送信ビームが複数、「変調信号2」を伝送するための送信ビームが複数であればよい。そして、「変調信号1」、「変調信号2」については、後で、詳しく説明する。
 図12は、端末704-1、704-2、704-3、704-4、704-5を含み、例えば、図4、図5における端末と同じ構成である。
 例えば、端末704-1は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-1、および、受信指向性706-1を形成する。そして、受信指向性705-1により、端末704-1は、「変調信号1」を伝送するための送信ビーム1202-1の受信及び復調が可能となり、受信指向性706-1により、端末704-1は、「変調信号2」を伝送するための送信ビー1203-1の受信及び復調が可能となる。
 同様に、端末704-2は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-2、および、受信指向性706-2を形成する。そして、受信指向性705-2により、端末704-2は、「変調信号1」を伝送するための送信ビーム1202-1の受信及び復調が可能となり、受信指向性706-2により、端末704-2は、「変調信号2」を伝送するための送信ビーム1203-1の受信及び復調が可能となる。
 端末704-3は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-3、および、受信指向性706-3を形成する。
 そして、受信指向性705-3により、端末704-3は、「変調信号1」を伝送するための送信ビーム1202-2の受信及び復調が可能となり、受信指向性706-3により、端末704-3は、「変調信号2」を伝送するための送信ビーム1203-2の受信及び復調が可能となる。
 端末704-4は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-4、および、受信指向性706-4を形成する。そして、受信指向性705-4により、端末704-4は、「変調信号1」を伝送するための送信ビーム1202-3の受信及び復調が可能となり、受信指向性706-4により、端末704-4は、「変調信号2」を伝送するための送信ビーム1203-2の受信及び復調が可能となる。
 端末704-5は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-5、および、受信指向性706-5を形成する。そして、受信指向性705-5により、端末704-5は、「変調信号1」を伝送するための送信ビーム1202-3の受信及び復調が可能となり、受信指向性706-5により、端末704-5は、「変調信号2」を伝送するための送信ビーム1203-3の受信及び復調が可能となる。
 図12における特長的な点は、端末は、「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、「変調信号1」を高い品質で得ることができ、また、端末は、「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、「変調信号2」を高い品質でえることができる。
 なお、基地局700は、「変調信号1」を伝送するための送信ビーム1202-1と「変調信号2」を伝送するための送信ビーム1203-1とを、同一周波数(同一周波数帯)、同一時間を用いて、送信する。そして、基地局700は、「変調信号1」を伝送するための送信ビーム1202-2と「変調信号2」を伝送するための送信ビーム1203-2とを、同一周波数(同一周波数帯)、同一時間を用いて、送信する。また、基地局700は、「変調信号1」を伝送するための送信ビーム1202-3と「変調信号2」を伝送するための送信ビーム1203-3とを、同一周波数(同一周波数帯)、同一時刻を用いて、送信する。
 また、「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 図1、図3における基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図12のような送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信変調信号数」の情報を含んでおり、図12のような送信を基地局が行う場合、設定信号160により、「送信変調信号数は2」という情報が、設定部158に入力される。
 また、設定信号160は、「各変調信号をいくつの送信ビームで送信するか」の情報を含んでいてもよい。図12のような送信を基地局が行う場合、設定信号160により、「変調信号1を送信する送信ビーム数は3、変調信号2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信変調信号数」の情報、「各変調信号をいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。制御情報シンボルの構成の詳細については、後で行う。
 図13は、図1、図3の#i情報101-iと図12を用いて説明した「変調信号1」「変調信号2」の関係を説明するための図面である。
 例えば、#1情報101-1に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを#1送信データと名付ける。そして、#1送信データに対してマッピングを行いデータシンボルを得るが、このデータシンボルをストリーム1用、ストリーム2用に振り分け、ストリーム1のデータシンボル(データシンボル群)、および、ストリーム2のデータシンボル(データシンボル群)を得る。このとき、シンボル番号iにおけるストリーム1のデータシンボルをs1(i)、ストリーム2のデータシンボルをs2(i)とする。すると、シンボル番号iにおける「変調信号1」tx1(i)は、例えば、以下のようにあらわす。
Figure JPOXMLDOC01-appb-M000003
 そして、シンボル番号iにおける「変調信号2」tx2(i)は、例えば、以下のようにあらわす。
Figure JPOXMLDOC01-appb-M000004
 なお、式(3)、式(4)において、α(i)は複素数で定義することができ(したがって、実数であってもよい)、β(i)は複素数で定義することができ(したがって、実数であってもよい)、γ(i)は複素数で定義することができ(したがって、実数であってもよい)、δ(i)は複素数で定義することができる(したがって、実数であってもよい)。また、α(i)と記載しているが、シンボル番号iの関数でなくてもよく(固定の値であってもよい)、β(i)と記載しているが、シンボル番号iの関数でなくてもよく(固定の値であってもよい)、γ(i)と記載しているが、シンボル番号iの関数でなくてもよく(固定の値であってもよい)、δ(i)と記載しているが、シンボル番号iの関数でなくてもよい(固定の値であってもよい)。
 そして、データシンボルから構成された「変調信号1のデータ伝送領域の信号」を含んだ「変調信号1のシンボル群」は、図1、図3の基地局から送信される。また、データシンボルから構成された「変調信号2のデータ伝送領域の信号」を含んだ「変調信号2のシンボル群」は、図1、図3の基地局から送信される。
 なお、「変調信号1」「変調信号2」に対して、位相変更やCDD(Cyclic Delay Diversity)等の信号処理を行ってもよい。ただし、信号処理の方法はこれに限ったものではない。
 図14は、横軸時間としたときのフレーム構成の一例を示している。
 図14の変調信号1の#1シンボル群(1401-1)は、図12における変調信号1のデータを伝送するための送信ビーム1202-1のシンボル群である。
 図14の変調信号1の#2シンボル群(1401-2)は、図12における変調信号1のデータを伝送するための送信ビーム1202-2のシンボル群である。
 図14の変調信号1の#3シンボル群(1401-3)は、図12における変調信号1のデータを伝送するための送信ビーム1202-3のシンボル群である。
 図14の変調信号2の#1シンボル群(1402-1)は、図12における変調信号2のデータを伝送するための送信ビーム1203-1のシンボル群である。
 図14の変調信号2の#2シンボル群(1402-2)は、図12における変調信号2のデータを伝送するための送信ビーム1203-2のシンボル群である。
 図14の変調信号2の#3シンボル群(1402-3)は、図12における変調信号2のデータを伝送するための送信ビーム1203-3のシンボル群である。
 そして、変調信号1の#1シンボル群(1401-1)、変調信号1の#2シンボル群(1401-2)、変調信号1の#3シンボル群(1401-3)、変調信号2の#1シンボル群(1402-1)、変調信号2の#2シンボル群(1402-2)、変調信号2の#3シンボル群(1402-3)は、例えば、時間区間1に存在している。
 また、前にも記載したように、変調信号1の#1シンボル群(1401-1)と変調信号2の#1シンボル群(1402-1)は、同一周波数(同一周波数帯)を用いて送信されており、変調信号1の#2シンボル群(1401-2)と変調信号2の#2シンボル群(1402-2)は、同一周波数(同一周波数帯)を用いて送信されており、変調信号1の#3シンボル群(1401-3)と変調信号2の#3シンボル群(1402-3)は、同一周波数(同一周波数帯)を用いて送信されている。
 例えば、図13の手順で、情報から「変調信号1のデータ伝送領域の信号A」および「変調信号2のデータ伝送領域の信号A」を生成した。
 そして、「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-1」、「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-2」、「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-3」を用意する。(つまり、「変調信号1のデータ伝送領域の信号群A-1」を構成する信号と「変調信号1のデータ伝送領域の信号A-2」を構成する信号と「変調信号1のデータ伝送領域の信号A-3」を構成する信号は同じである。)
 このとき、図14の変調信号1の#1シンボル群(1401-1)は、「変調信号1のデータ伝送領域の信号A-1」を含んでおり、図14の変調信号1の#2シンボル群(1401-2)は、「変調信号1のデータ伝送領域の信号A-2」を含んでおり、図14の変調信号1の#3シンボル群(1401-3)は、「変調信号1のデータ伝送領域の信号A-3」を含んでいる。つまり、変調信号1の#1シンボル群(1401-1)、変調信号1の#2シンボル群(1401-2)、変調信号1の#3シンボル群(1401-3)は、同等の信号を含んでいる。
 また、「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-1」、「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-2」、「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-3」を用意する。(つまり、「変調信号2のデータ伝送領域の信号A-1」を構成する信号と「変調信号2のデータ伝送領域の信号A-2」を構成する信号と「変調信号2のデータ伝送領域の信号A-3」を構成する信号は同じである。)
 このとき、図14の変調信号2の#1シンボル群(1402-1)は、「変調信号2のデータ伝送領域の信号A-1」を含んでおり、図14のストリーム2の#2シンボル群(1402-2)は、「変調信号2のデータ伝送領域の信号A-2」を含んでおり、図14の変調信号2の#3シンボル群(1402-3)は、「変調信号2のデータ伝送領域の信号A-3」を含んでいる。つまり、変調信号2の#1シンボル群(1402-1)、変調信号2の#2シンボル群(1402-2)、変調信号2の#3シンボル群(1402-3)は、同等の信号を含んでいる。
 図15は、図14で説明した「変調信号Xのシンボル群#Y」(X=1,2;Y=1,2,3)のフレーム構成の一例を示している。図15において、横軸時間であり、1501は制御情報シンボル、1502はデータ伝送用の変調信号送信領域である。このとき、データ伝送用の変調信号送信領域1502は、図14を用いて説明した「変調信号1のデータ伝送領域の信号A」または「変調信号2のデータ伝送領域の信号A」を伝送するためのシンボルである。
 なお、図15のフレーム構成において、OFDM(Orthogonal Frequency Division Multiplexing)方式などのマルチキャリア方式を用いてもよく、この場合、周波数軸方向にシンボルが存在していてもよい。また、各シンボルには、受信装置が時間及び周波数同期を行うためのリファレンスシンボル、受信装置が信号を検出するためのリファレンスシンボル、受信装置がチャネル推定を行うためのリファレンスシンボルなどが含まれていてもよい。そして、フレーム構成は図15に限ったものではなく、制御情報シンボル1501、データ伝送用の変調信号送信領域1502をどのように配置してもよい。リファレンスシンボルは、例えば、プリアンブル、パイロットシンボルと呼んでも良い。
 次に、制御情報シンボル1501の構成について説明する。
 図16は、図15の制御情報シンボルとして送信するシンボルの構成の一例を示しており、横軸は時間である。図16において、1601は、「端末が受信指向性制御を行うためのトレーニングシンボル」であり、端末は、「端末が受信指向性制御を行うためのトレーニングシンボル」1601を受信することで、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」で実施する、受信時の指向性制御のための信号処理方法を決定する。
 1602は、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」であり、端末は、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602を受信することで、端末は、得る必要がある変調信号数を知る。
 1603は、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」であり、端末は、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603を受信することで、端末は、基地局が送信している変調信号のうち、どの変調信号を受信できているか、を知ることができる。
 上記についての例を説明する。
 図12のように、基地局が「変調信号」、送信ビームを送信している場合を考える。そして、図14の変調信号1の#1シンボル群1401-1における制御情報シンボルの具体的な情報について説明する。
 図12の場合、基地局は「変調信号1」および「変調信号2」を送信しているため、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602の情報は「2」という情報となる。
 また、図14の変調信号1の#1シンボル群1401-1は、変調信号1のデータ伝送領域の信号を送信しているため、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603の情報は「変調信号1」という情報になる。
 例えば、端末が、図14の変調信号1の#1シンボル群1401-1を受信したとする。このとき、端末は、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602から「変調信号数2」、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603から「変調信号1」を得ているということを認識する。
 すると、端末は、存在する「変調信号数2」、得ている変調信号が「変調信号1」であると認識するので、「変調信号2」を得る必要があると認識する。よって、端末は、「変調信号2」を探す作業を開始することができる。例えば、図14の「変調信号2の#1シンボル群」1402-1、「変調信号2の#2シンボル群」1402-2、「変調信号2の#3シンボル群」1402-3のいずれかの送信ビームを、端末は探す。
 そして、端末は、「変調信号2の#1シンボル群」1402-1、「変調信号2の#2シンボル群」1402-2、「変調信号2の#3シンボル群」1402-3のいずれかの送信ビームを得ることで、「変調信号1」と「変調信号2」の両者を得、ストリーム1のデータシンボル、ストリーム2のデータシンボルを高品質に得ることが可能となる。
 このように、制御情報シンボルを構成することで、端末は、的確にデータシンボルを得ることができるという効果を得ることができる。
 以上のように、マルチキャストデータ伝送及びブロードキャストデータ伝送において、基地局が、データシンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよい、ビームを選択的に受信することにより、基地局が送信した変調信号は、高いデータの受信品質が得られるエリアを広くすることができるという効果を得ることができる。これは、基地局が、送信指向性制御、受信指向性制御を行っているためである。
 また、上述の説明では、端末が、受信指向性制御を行っていることを説明したが、端末は、受信指向性制御を行わなくても、上述の効果を得ることは可能である。
 なお、図7において、各端末は、ストリーム1の変調信号と、ストリーム2の変調信号の両者を得ている場合について説明しているが、必ずしもこのような実施の形態に限ったものではない。例えば、ストリーム1の変調信号を得たい端末、ストリーム2の変調信号を得たい端末、ストリーム1の変調信号およびストリーム2の変調信号の両者を得たい端末が存在するというように、端末によって、得たい変調信号が異なるというような実施をしてもよい。
 (実施の形態2)
 実施の形態1では、マルチキャストデータ伝送及びブロードキャストデータ伝送において、基地局が、データシンボルを複数の送信ビームを用いて送信する方法について説明した。本実施の形態では、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送及びブロードキャストデータ伝送を行うとともに、ユニキャストのデータ伝送を行う場合について説明する。
 図17は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示しており、図7と同様に動作するものについては、同一番号を付しており、詳細の説明は省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 また、端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 図17において、特徴的な点は、基地局が、図7で説明したように、マルチキャストを行うとともに、基地局700と端末(例えば1702)がユニキャストの通信を行う点である。
 基地局700は、マルチキャスト用の送信ビーム702-1、702-2、702-3、703-1、703-2、703-3に加え、図17では、ユニキャスト用の送信ビーム1701を生成し、端末1702に対し、個別データを伝送する。なお、図17では、端末1702に対し、基地局700は、送信ビーム1701の一つを送信している例を示しているが、送信ビームの数は、一つに限ったものではなく、基地局700は、端末1702に対し、複数の送信ビームを送信してもよい(複数の変調信号を送信してもよい)。
 そして、端末1702は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、信号処理部605」により、受信時の指向性制御を行う、受信指向性1703を形成する。これにより、端末1702は、送信ビーム1701の受信及び復調が可能となる。
 なお、送信ビーム1701を含む送信ビームを生成するために、基地局は、例えば、図1、図3のような構成における信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行う。
 逆に、端末1702が、基地局700に対し、変調信号を送信する場合、端末1702は、プリコーディング(または、重み付け合成)を行い、送信ビーム1703を送信し、基地局700は、受信時の指向性制御を行う、受信指向性1701を形成する。これにより、基地局700は、送信ビーム1703の受信及び復調が可能となる。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。そして、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。また、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3は、同一周波数(同一周波数帯)、同一時刻を用いて、基地局700は送信する。
 また、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 そして、ユニキャスト用の送信ビーム1701は、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3と同一周波数(同一周波数帯)のビームであってもよいし、異なる周波数(異なる周波数帯)のビームであってもよい。
 また、図17では、ユニキャスト通信を行う端末を1台として記載を進めたが、基地局とユニキャスト通信を行う端末の数は、複数台であってもよい。
 このとき、基地局の構成図1、図3における設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図17のような送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信、ユニキャスト用の送信両者を行う」という情報が、設定部158に入力される。
 あわせて、設定信号160は、「マルチキャストを行うときの送信ストリーム数」の情報を含んでおり、図17のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 また、設定信号160は、「各ストリームをいくつの送信ビームで送信するか」の情報を含んでいてもよい。図17のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信ストリーム数」の情報、「各ストリームをいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 さらに、基地局は、ユニキャスト通信を行う端末に対して、基地局が指向性制御を行うためのトレーニング用の制御情報シンボル、端末が指向性制御を行うためのトレーニング用の制御情報シンボルを送信してもよい。
 図18は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示しており、図7、図12と同様に動作するものについては、同一番号を付しており、詳細の説明は省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3の説明については、図12を用いて説明したとおりであるので、説明を省略する。
 また、端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図12を用いて説明したとおりであるので、説明を省略する。
 図18において、特徴的な点は、基地局が、図12で説明したように、マルチキャストを行うとともに、基地局700と端末(例えば1702)がユニキャストの通信を行う点である。
 基地局700は、マルチキャスト用の送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3に加え、図18では、ユニキャスト用の送信ビーム1701を生成し、端末1702に対し、個別データを伝送する。なお、図18では、端末1702に対し、基地局700は、送信ビーム1701の一つを送信している例を示しているが、送信ビームの数は、一つに限ったものではなく、基地局700は、端末1702に対し、複数の送信ビームを送信してもよい(複数の変調信号を送信してもよい)。
 そして、端末1702は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、信号処理部605」により、受信時の指向性制御を行う、受信指向性1703を形成する。これにより、端末1702は、送信ビーム1701の受信及び復調が可能となる。
 なお、送信ビーム1701を含む送信ビームを生成するために、基地局は、例えば、図1、図3のような構成における信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行う。
 逆に、端末1702が、基地局700に対し、変調信号を送信する場合、端末1702は、プリコーディング(または、重み付け合成)を行い、送信ビーム1703を送信し、基地局700は、受信時の指向性制御を行う、受信指向性1701を形成する。これにより、基地局700は、送信ビーム1703の受信及び復調が可能となる。
 なお、「変調信号1」を伝送するための送信ビーム1202-1と「変調信号2」を伝送するための送信ビーム1203-1は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。そして、「変調信号1」を伝送するための送信ビーム1202-2と「変調信号2」を伝送するための送信ビーム1203-2は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。また、「変調信号1」を伝送するための送信ビーム1202-3と「変調信号2」を伝送するための送信ビーム1203-3は、同一周波数(同一周波数帯)、同一時刻を用いて、基地局700は送信する。
 また、「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 そして、ユニキャスト用の送信ビーム1701は、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3と同一周波数(同一周波数帯)のビームであってもよいし、異なる周波数(異なる周波数帯)のビームであってもよい。
 また、図18では、ユニキャスト通信を行う端末を1台として記載を進めたが、基地局とユニキャスト通信を行う端末の数は、複数台であってもよい。
 このとき、基地局の構成図1、図3における設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図18のような送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信、ユニキャスト用の送信両者を行う」という情報が、設定部158に入力される。
 あわせて、設定信号160は、「マルチキャストを行うときの送信ストリーム数」の情報を含んでおり、図18のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 また、設定信号160は、「各ストリームをいくつの送信ビームで送信するか」の情報を含んでいてもよい。図18のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信ストリーム数」の情報、「各ストリームをいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 さらに、基地局は、ユニキャスト通信を行う端末に対して、基地局が指向性制御を行うためのトレーニング用の制御情報シンボル、端末が指向性制御を行うためのトレーニング用の制御情報シンボルを送信してもよい。
 次に、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送を複数送信する場合について説明する。
 図19は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示しており、図7と同様に動作するものについては、同一番号を付しており、詳細の説明は省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 また、端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 基地局700は、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3に加えて送信ビーム1901-1、1901-2、1902-1、1902-2を送信する。
 送信ビーム1901-1は、ストリーム3のデータを伝送するための送信ビームである。また、送信ビーム1901-2も、ストリーム3のデータを伝送するための送信ビームである。
 送信ビーム1902-1は、ストリーム4のデータを伝送するための送信ビームである。また、送信ビーム1902-2も、ストリーム4のデータを伝送するための送信ビームである。
 704-1、704-2、704-3、704-4、704-5、1903-1、1903-2、1903-3は端末であり、例えば、図4、図5のような構成で構成されている。なお、端末704-1、704-2、704-3、704-4、704-5の動作については、図7を用いて説明したとおりである。
 端末1903-1は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-1、および、受信指向性1905-1を形成する。そして、受信指向性1904-1により、端末1903-1は、ストリーム3のデータを伝送するための送信ビーム1901-2の受信及び復調が可能となり、受信指向性1905-1により、端末1903-1は、ストリーム4のデータを伝送するための送信ビーム1902-2の受信及び復調が可能となる。
 端末1903-2は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-2、および、受信指向性1905-2を形成する。そして、受信指向性1904-2により、端末1903-2は、ストリーム4のデータを伝送するための送信ビーム1902-1の受信及び復調が可能となり、受信指向性1905-2により、端末1903-2は、ストリーム3のデータを伝送するための送信ビーム1901-2の受信及び復調が可能となる。
 端末1903-3は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-3、および、受信指向性1905-3を形成する。そして、受信指向性1904-3により、端末1903-3は、ストリーム3のデータを伝送するための送信ビーム1901-1の受信及び復調が可能となり、受信指向性1905-3により、端末1903-3は、ストリーム4のデータを伝送するための送信ビーム1902-1の受信及び復調が可能となる。
 端末1903-4は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-4、および、受信指向性1905-4を形成する。そして、受信指向性1904-4により、端末1903-4は、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となり、受信指向性1905-4により、端末1903-4は、ストリーム3のデータを伝送するための送信ビーム1901-1の受信及び復調が可能となる。
 図19において、特徴的な点は、基地局が、マルチキャスト用のデータを含むストリームを複数送信するとともに、各ストリームは、複数の送信ビームで送信されており、各端末は、複数のストリームのうち一つ以上のストリームの送信ビームを選択的に受信する点である。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。そして、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。また、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3は、同一周波数(同一周波数帯)、同一時刻を用いて、基地局700は送信する。
 ストリーム3のデータを伝送するための送信ビーム1901-1とストリーム4のデータを伝送するための送信ビーム1902-1は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。そして、ストリーム3のデータを伝送するための送信ビーム1901-2とストリーム4のデータを伝送するための送信ビーム1902-2は、同一周波数(同一周波数帯)、同一時間を用いて、基地局700は送信する。
 また、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 ストリーム3のデータを伝送するための送信ビーム1901-1、1901-2は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。また、ストリーム4のデータを伝送するための送信ビーム1902-1、1902-2は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 そして、図1の#1情報101-1からストリーム1のデータシンボルを生成してもよいし、ストリーム2のデータシンボルを生成し、#2情報101-2からストリーム3のデータシンボル、ストリーム4のデータシンボルを生成してもよい。なお、#1情報101-1、#2情報101-2はそれぞれ誤り訂正符号化を行い、その後、データシンボルを生成してもよい。
 また、図1の#1情報101-1からストリーム1のデータシンボルを生成し、図1の#2情報101-2からストリーム2のデータシンボルを生成し、図1の#3情報101-3からストリーム3のデータシンボルを生成し、図1の#4情報101-4からストリーム4のデータシンボルを生成するとしてもよい。なお、#1情報101-1、#2情報101-2、#3情報101-3、#4情報101-4は、それぞれ、誤り訂正符号化を行い、その後データシンボルを生成してもよい。
 つまり、各ストリームのデータシンボルは、図1の情報のいずれから生成してもよい。このため、端末は、マルチキャスト用のストリームを選択的に得ることができるという効果を得る。
 このとき、基地局の構成図1、図3における設定部158の動作について、説明する。設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図19のような送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」の情報を含んでおり、図19のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は4」という情報が、設定部158に入力される。
 また、設定信号160は、「各ストリームをいくつの送信ビームで送信するか」の情報を含んでいてもよい。図19のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3、ストリーム3を送信する送信ビーム数は2、ストリーム4を送信する送信ビーム数は2」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信ストリーム数」の情報、「各ストリームをいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 次に、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送を複数送信する場合について説明する。
 図20は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示しており、図7、図12、図19と同様に動作するものについては、同一番号を付しており、詳細の説明は省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のような構成で構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 そして、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3の説明については、図12の説明と重複するので、説明を省略する。
 また、端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図12の説明と重複するので、説明を省略する。
 基地局700は、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3に加えて送信ビーム2001-1、2001-2、2002-1、2002-2を送信する。
 送信ビーム2001-1は、「変調信号3」を伝送するための送信ビームである。また、送信ビーム2001-2も、「変調信号3」を伝送するための送信ビームである。
 送信ビーム2002-1は、「変調信号4」を伝送するための送信ビームである。また、送信ビーム2002-2も、「変調信号4」を伝送するための送信ビームである。
 端末704-1、704-2、704-3、704-4、704-5、1903-1、1903-2、1903-3は、例えば、図4、図5と同じ構成である。なお、端末704-1、704-2、704-3、704-4、704-5の動作については、図7の説明と同じである。
 端末1903-1は、「信号処理部405」、および/または、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-1、および、受信指向性1905-1を形成する。そして、受信指向性1904-1により、端末1903-1は、「変調信号3」を伝送するための送信ビーム2001-2の受信及び復調が可能となり、受信指向性1905-1により、端末1903-1は、「変調信号4」を伝送するための送信ビーム2002-2の受信及び復調が可能となる。
 端末1903-2は、「信号処理部405」、および/または、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-2、および、受信指向性1905-2を形成する。そして、受信指向性1904-2により、端末1903-2は、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となり、受信指向性1905-2により、端末1903-2は、「変調信号3」を伝送するための送信ビーム2001-2の受信及び復調が可能となる。
 端末1903-3は、「信号処理部405」、および/または、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-3、および、受信指向性1905-3を形成する。そして、受信指向性1904-3により、端末1903-3は、「変調信号3」を伝送するための送信ビーム2001-1の受信及び復調が可能となり、受信指向性1905-3により、端末1903-3は、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となる。
 端末1903-4は、「信号処理部405」、および/または、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-4、および、受信指向性1905-4を形成する。そして、受信指向性1904-4により、端末1903-4は、「変調信号3」を伝送するための送信ビーム2001-1の受信及び復調が可能となり、受信指向性1905-4により、端末1903-4は、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となる。
 図20において、基地局が、マルチキャスト用のデータを含む変調信号を複数送信し、各変調信号は、複数の送信ビームで送信されており、各端末は、複数の変調信号のうち一つ以上のストリームの送信ビームを選択的に受信する。
 なお、基地局700は、「変調信号1」を伝送するための送信ビーム1202-1と「変調信号2」を伝送するための送信ビーム1203-1を、同一周波数(同一周波数帯)、同一時間を用いて、送信する。そして、基地局700は、「変調信号1」を伝送するための送信ビーム1202-2と「変調信号2」を伝送するための送信ビーム1203-2を、同一周波数(同一周波数帯)、同一時間を用いて、送信する。また、基地局700は、「変調信号1」を伝送するための送信ビーム1202-3と「変調信号2」を伝送するための送信ビーム1203-3を、同一周波数(同一周波数帯)、同一時刻を用いて、送信する。
 基地局700は、「変調信号3」を伝送するための送信ビーム2001-1と「変調信号4」を伝送するための送信ビーム2002-1を、同一周波数(同一周波数帯)、同一時間を用いて、送信する。そして、基地局700は、「変調信号3」を伝送するための送信ビーム2001-2と「変調信号4」を伝送するための送信ビーム2002-2を、同一周波数(同一周波数帯)、同一時間を用いて、送信する。
 また、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 「変調信号3」を伝送するための送信ビーム2001-1、2001-2は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。また、「変調信号4」を伝送するための送信ビーム2002-1、2002-2は、同一周波数(同一周波数帯)のビームであってもよいし、それぞれ、異なる周波数(異なる周波数帯)のビームであってもよい。
 このとき、基地局の構成図1、図3における設定部158の動作について、説明する。設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか/ユニキャスト用の送信を行うか」の情報を含んでおり、図19に示す送信を基地局が行う場合、設定信号160により「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信変調信号数」の情報を含んでおり、図20に示す送信を基地局が行う場合、設定信号160により、「送信変調信号数は4」という情報が、設定部158に入力される。
 また、設定信号160は、「各変調信号をいくつの送信ビームで送信するか」の情報を含んでいてもよい。図20に示す送信を基地局が行う場合、設定信号160により、「変調信号1を送信する送信ビーム数は3、変調信号2を送信する送信ビーム数は3、変調信号3を送信する送信ビーム数は2、変調信号4を送信する送信ビーム数は2」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」の情報、「マルチキャストを行うときの送信ストリーム数」の情報、「各ストリームをいくつの送信ビームで送信するか」の情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 なお、図20では、端末は、「変調信号1」の送信ビームと「変調信号2」の送信ビームの両者を受信すると、高い受信品質でストリーム1のデータとストリーム2のデータを得ることができる。
 同様に、端末は、「変調信号3」の送信ビームと「変調信号4」の送信ビームの両者を受信すると、高い受信品質でストリーム3のデータとストリーム4のデータを得ることができる。
 そして、図20では、基地局が「変調信号1」、「変調信号2」、「変調信号3」、「変調信号4」を送信する例を説明しているが、基地局は、ストリーム5のデータ及びストリーム6のデータを伝送する「変調信号5」及び「変調信号6」を送信してもよいし、それよりも多くのストリームを伝送するためにより多くの変調信号を送信してもよい。なお、変調信号のそれぞれは1以上の送信ビームを用いて送信される。
 さらに、図17、図18で説明したように、ユニキャスト用の送信ビーム(または受信指向性制御)が一つ以上存在していてもよい。
 「変調信号1」、「変調信号2」の関係については、図13の説明と重複するので省略する。ここでは、「変調信号3」、「変調信号4」の関係について、図21を用いて説明する。
 例えば、#2情報101-2に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを#2送信データと名付ける。そして、#2送信データに対してマッピングを行い、データシンボルを得るが、このデータシンボルをストリーム3用、ストリーム4用に振り分け、ストリーム3のデータシンボル(データシンボル群)、および、ストリーム4のデータシンボル(データシンボル群)を得る。このとき、シンボル番号iにおけるストリーム3のデータシンボルをs3(i)、ストリーム4のデータシンボルをs4(i)とする。すると、シンボル番号iにおける「変調信号3」tx3(i)は、例えば、以下のようにあらわす。
Figure JPOXMLDOC01-appb-M000005
 そして、シンボル番号iにおける「変調信号4」tx4(i)は、例えば、以下のようにあらわす。
Figure JPOXMLDOC01-appb-M000006
 なお、式(5)、式(6)において、e(i)、f(i)、g(i)、h(i)は、それぞれ、複素数で定義することができ、したがって、実数であってもよい。
 また、e(i)、f(i)、g(i)、h(i)と記載しているが、それらはシンボル番号iの関数でなくてもよく、固定の値であってもよい。
 そして、データシンボルから構成された「変調信号3のデータ伝送領域の信号」を含んだ「変調信号3のシンボル群」は、図1、図3の基地局から送信される。また、データシンボルから構成された「変調信号4のデータ伝送領域の信号」を含んだ「変調信号4のシンボル群」は、図1、図3の基地局から送信される。
 (補足)
 当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
 また、各実施の形態、その他の内容については、あくまでも例であり、例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を例示していても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも同様の構成で実施することが可能である。
 変調方式については、本明細書で記載している変調方式以外の変調方式を使用しても、本明細書において説明した実施の形態、その他の内容を実施することが可能である。例えば、APSK(Amplitude Phase Shift Keying)、PAM(Pulse Amplitude Modulation)、PSK(Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)を適用してもよいし、各変調方式において、均一マッピング、非均一マッピングとしてもよい。APSKは、例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKを含み、PAMは、例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMを含み、PSKは、例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKを含み、QAMは、例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMを含む。
 また、I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限ったものではない。
 本明細書で記載した「基地局」は、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)などであってもよい。そして、本明細書で記載している「端末」は、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局などであってもよい。また、本開示における「基地局」、「端末」は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるようなに構成されてもよい。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル、制御情報用のシンボルなどが、フレームにおいて、どのように配置されていてもよい。
 そして、パイロットシンボル、制御情報用のシンボルは、どのような名付け方を行ってもよく、例えば、送受信機において、PSK変調を用いて変調した既知のシンボルであればよく、または、受信機が同期することによって、受信機は、送信機が送信したシンボルを知ることができてもよい。受信機は、このシンボルを用いて、周波数同期、時間同期、各変調信号のチャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行う。なお、パイロットシンボルは、プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等と呼ぶことがある。
 また、制御情報用のシンボルは、データ(アプリケーション等のデータ)以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式、誤り訂正符号化方式、誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
 なお、本開示は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
 なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
 また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 そして、上記の各実施の形態などの各構成は、典型的には、入力端子及び出力端子を有する集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
 (実施の形態3)
 本実施の形態では、実施の形態1、実施の形態2と異なるビームフォーミングを適用したときのマルチキャスト通信方法について説明する。
 基地局の構成については、実施の形態1の図1から図3を用いて説明したとおりであるため、実施の形態1と同様に動作する部分についての説明は省略する。また、基地局と通信を行う端末の構成についても、実施の形態1の図4から図6を用いて説明したとおりであるため、実施の形態1と同様に動作する部分についての説明は省略する。
 以下では、本実施の形態における基地局と端末の動作の例を説明する。
 図22は、基地局が1つの端末に対して、マルチキャスト用送信ストリームを送信している場合を示している。
 図22において、基地局700は、送信用アンテナから「(マルチキャスト用)ストリーム1-1(ストリーム1の第1ビーム)」の送信ビーム2201-1を端末2202-1に対して送信しており、端末2202-1は、指向性制御を行うことで、受信指向性2203-1を生成し、「ストリーム1-1」の送信ビーム2201-1を受信している。
 図23は、図22のような基地局と端末の通信状態のために行う「基地局と端末の通信を行うための手順」の説明を行う。
 [23-1]端末は、まず、基地局に対し、「ストリーム1のマルチキャスト送信の要求」を行う。
 [23-2]基地局は、[23-1]を受け、「ストリーム1のマルチキャスト送信を行っていない」ことを認識する。そこで、基地局は、端末に対し、ストリーム1のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、受信指向性制御用のトレーニングシンボルを送信する。
 [23-3]端末は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニングシンボルを受信し、基地局が送信指向性制御、端末が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。[23-4]基地局は、端末が送信したフィードバック情報に基づいて、送信指向性制御の方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、送信指向性制御を行い、ストリーム1のデータシンボルを送信する。
 [23-5]端末は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、基地局が送信したストリーム1のデータシンボルの受信を開始する。
 なお、図23の「基地局と端末の通信を行うための手順」は一例であり、各情報の送信の順番は、図23に限ったものではなく、各情報の送信の順番が入れ替わっても同様に実施することができる。また、図23では、端末が受信指向性制御を行う場合を例に説明しているが、端末が受信指向性制御を行わない場合であってもよい。このとき、図23において、基地局は、受信指向性制御用トレーニングシンボルを送信しなくてもよく、また、端末は受信指向性制御方法の決定を行わない。
 また、基地局が送信指向性制御を行う際、基地局が図1の構成の場合、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定され、また、基地局が図3の構成の場合、例えば、重み付け合成部301において、重み付け係数が設定される。なお、送信するストリーム数は、図22の場合「1」としているが、これに限ったものではない。
 そして、端末が受信指向性制御を行う際、端末が図4の構成の場合、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定され、また、端末が図6の構成の場合、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定される。
 図24は、図23における基地局が、送信指向性制御用シンボル、および、受信指向性制御用シンボル、データシンボルを送信する際、基地局が送信するシンボルと端末が送信するシンボルの一例を時間軸において示す図である。図24における(a)は基地局が送信するシンボルの一例を時間軸において示す図であり、図24における(b)は端末が送信するシンボルの一例を時間軸において示す図であり、いずれも横軸は時間である。
 図23のように基地局と端末の通信が行われた場合、図24に示すように、まず、「基地局送信指向性制御トレーニングシンボル」2401を、基地局は送信する。例えば、「基地局送信指向性制御トレーニングシンボル」2401は、制御情報シンボルと既知のPSKシンボルで構成されている。
 そして、端末は、基地局が送信した「基地局送信指向性制御トレーニングシンボル」2401を受信し、例えば、基地局が送信に使用するアンテナの情報、指向性制御で使用する乗算係数(または、重み付け係数)に関する情報をフィードバック情報シンボル2402として送信する。
 基地局は、端末が送信した「フィードバック情報シンボル」2402を受信し、フィードバック情報シンボル2402から送信に使用するアンテナを決定し、また、フィードバック情報シンボル2402から送信指向性制御に用いる係数を決定する。その後、基地局は、「端末受信指向性制御トレーニングシンボル」2403を送信する。例えば、「端末受信指向性制御トレーニングシンボル」2403は、制御情報シンボルと既知PSKシンボルで構成されている。
 そして、端末は、基地局が送信した「端末受信指向性制御トレーニングシンボル」2403を受信し、例えば、端末が受信に使用するアンテナ、端末が受信指向性制御に使用する乗算係数を決定する。そして、端末は、データシンボルを受信する準備が完了したことをフィードバック情報シンボル2404として送信する。
 そして、基地局は、端末が送信した「フィードバック情報シンボル」2404を受信し、フィードバック情報シンボル2404に基づき、データシンボル2405を出力する。
 なお、図24の基地局と端末の通信は、一例であり、シンボルの送信の順番や基地局の送信と端末の送信の順番については、これに限ったものではない。また、「基地局送信指向性制御トレーニングシンボル」2401、「フィードバック情報シンボル」2402、「端末受信指向性制御トレーニングシンボル」2403、「フィードバック情報シンボル」2404、「データシンボル」2405のそれぞれに、信号検出、時間同期、周波数同期、周波数オフセット推定及びチャネル推定のためのプリアンブル、リファレンスシンボル、パイロットシンボル、また、制御情報を伝送するためのシンボルなどが含まれていてもよい。
 図25は、図23における基地局と端末の通信が完了した後、基地局がストリーム1のデータシンボルを送信する際の、基地局が送信するシンボルの例であり、横軸を時間とする。
 図25では、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1として、ストリーム1の送信ビーム1の第1番目のデータシンボルを送信する。その後、データシンボル送信可能な区間2502-1が配置される。
 その後、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2として、(マルチキャスト用)ストリーム1の送信ビーム1の第2番目のデータシンボルを送信する。その後、データシンボル送信可能な区間2502-2が配置される。
 その後、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(3)」2501-1-3として、(マルチキャスト用)ストリーム1の送信ビーム1の第3番目のデータシンボルを送信する。
 このようにして、基地局は、図22に示した「(マルチキャスト用)ストリーム1-1」2201-1のデータシンボルを、基地局は送信する。なお、図25において、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2、「(マルチキャスト用)データシンボル1-1データシンボル(3)」2501-1-3、・・・には、データシンボル以外に、信号検出、時間同期、周波数同期、周波数オフセット推定、チャネル推定のためのプリアンブル、リファレンスシンボル、パイロットシンボル、また、制御情報を伝送するためのシンボルなどが含まれていてもよい。
 なお、図25では、データシンボル送信可能な区間2502-1は、ユニキャスト送信区間2503-1を含み、また、データシンボル送信可能な区間2502-2は、ユニキャスト送信区間2503-2を含む。
 図25では、フレームは、ユニキャスト送信区間2503-1、2503-2を含む。例えば、図25では、基地局は、データシンボル送信可能な区間2502-1のユニキャスト送信区間2503-1を除く区間、および、データシンボル送信可能区間2502-2のユニキャスト送信区間2503-2を除く区間では、マルチキャスト用のシンボルを送信してもよい。この点については、後で、例を用いて説明する。
 このように、ユニキャスト送信区間をフレームに設けることは、無線通信システムを安定的に動作させるために有用な構成要件となる。この点については、後で例を説明する。なお、ユニキャスト送信区間は、図25のような時間的位置でなくてもよく、どのように時間的に配置してもよい。なお、ユニキャスト送信区間は、基地局がシンボルを送信してもよいし、端末がシンボルを送信してもよい。
 また、基地局によって、直接的に、ユニキャスト送信区間を設定できるような構成であってもよいが、別の方法として、基地局が、マルチキャスト用のシンボルを送信するための最大送信データ伝送速度を設定するようにしてもよい。
 例えば、基地局が送信可能なデータの伝送速度が2Gbps(bps: bits per second)であり、基地局において、マルチキャスト用のシンボルを送信するのに割り当てることができるデータの最大伝送速度を1.5Gbpsとする場合、500Mbpsに相当するユニキャスト送信区間を設定することができる。
 このように、ユニキャスト送信区間を基地局において間接的に設定できるような構成であってもよい。なお、別の具体的な例については後で説明を行う。
 なお、図22の状態に伴い、図25では、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2、「(マルチキャスト用)ストリーム1-1データシンボル(3)」2501-1-3が存在するフレーム構成を記載しているが、これに限ったものではない。例えば、ストリーム1(ストリーム1-1)以外のマルチキャスト用のストリームのデータシンボルが存在してもよいし、ストリーム1の第2の送信ビームであるストリーム1-2のデータシンボル、ストリーム1の第3の送信ビームであるストリーム1-3データストリームが存在していてもよい。この点については、後で説明を行う。
 図26は、図22の基地局が1つの端末に対して、マルチキャスト用送信ストリームを送信している状態に対し、新たに端末が1つ追加されたときの状態を示しており、図22と同様に動作するものについては同一番号を付している。
 図26において、新たに追加された端末は2202-2である。端末2202-2は、指向性制御を行うことで、受信指向性2203-2を生成し、「(マルチキャスト用)ストリーム1-1」の送信ビーム2201-1を受信する。
 次に、図26について説明する。
 以下の説明では、図26において、基地局700と端末2202-1がマルチキャスト通信を行っている状態に対し、新たに端末2202-2がマルチキャスト通信に参加するという状態である。したがって、図27に示すように基地局は、「端末受信指向性制御トレーニングシンボル」2701と「データシンボル」2702を送信しており、図24に示した「基地局送信トレーニングシンボル」は送信しない。なお、図27において、横軸は時間である。
 図28は、図26のように基地局が2つの端末にマルチキャスト用の送信ビームを送信している状態になるために行われる動作の例を示している。
 [28-1]端末2202-2は、基地局に対して「ストリーム1のマルチキャスト送信の要求」を行う。なお、「ストリーム1のマルチキャスト送信の要求」は、図25におけるユニキャスト送信区間に送信される。
 [28-2]基地局は、[28-1]を受け、「マルチキャスト用のストリーム1の送信を行っていること」を端末2202-2に通知する。なお、「マルチキャスト用のストリーム1の送信を行っていること」の通知は、図25におけるユニキャスト送信区間に送信される。
 [28-3]端末2202-2は、[28-2]を受け、マルチキャスト用のストリーム1の受信を開始するために、受信指向性制御を実施する。そして、端末2202-2は、受信指向性制御を行い、「マルチキャスト用のストリーム1」の受信ができたことを、基地局に通知する。
 [28-4]基地局は、[28-3]を受け、端末が「マルチキャスト用のストリーム1」を受信できたことを確認する。
 [28-5]端末2202-2は、受信指向性制御を行い、「マルチキャスト用のストリーム1」の受信を開始する。
 図29は、図22の基地局が一つの端末に対して、マルチキャスト用送信ストリームを送信している状態に対し、新たに端末一つが追加されたときの状態を示しており、図22と同様に動作するものについては同一番号を付している。
 図29において、新たに追加された端末は2202-2である。このとき、図26と異なる点は、基地局700は、「(マルチキャスト用)ストリーム1-2(ストリーム1の第2)」の送信ビーム2201-2を新たに送信し、端末2202-2は、指向性制御を行うことで、受信指向性2203-2を生成し、「(マルチキャスト用)ストリーム1-2」の送信ビーム2201-2を受信する。
 次に、図29のような状態のために行われる制御について説明する。
 以下の説明では、図29において、基地局700と端末2202-1がマルチキャスト通信を行っている状態に対し、新たに端末2202-2がマルチキャスト通信に参加するという状態である。
 図30は、図29のように基地局が2つの端末にマルチキャスト用の送信ビームを送信している状態になるために行われる動作の例を示している。
 [30-1]端末2202-2は、基地局に対して「ストリーム1のマルチキャスト送信の要求」を行う。なお、「ストリーム1のマルチキャスト送信の要求」は、図25におけるユニキャスト送信区間に送信される。
 [30-2]基地局は、[30-1]を受け、「マルチキャスト用のストリーム1の送信を行っていること」を端末2202-2に通知する。なお、「マルチキャスト用のストリーム1の送信を行っていること」の通知は、図25におけるユニキャスト送信区間に送信されている。
 [30-3]端末2202-2は、[30-2]を受け、「マルチキャスト用のストリーム1を受信していないこと」を基地局に通知する。なお、「マルチキャスト用のストリーム1を受信していないこと」の通知は、図25におけるユニキャスト送信区間に送信されている。
 [30-4]基地局は、[30-3]を受け、マルチキャスト用のストリーム1の別の送信ビーム(つまり、図29の送信ビーム2201-2)を送信すると決定する。なお、ここでは、マルチキャスト用のストリーム1の別の送信ビームを送信すると判断しているが、マルチキャスト用のストリーム1の別の送信ビームを送信しないと判断してもよい。この点については、後で説明する。
 そこで、基地局は、端末2202-2に対し、ストリーム1のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、受信指向性制御用のトレーニングシンボルを送信する。なお、これらのシンボルの送信とは別に、図29におけるストリーム1-1の送信ビームを、基地局は送信している。この点については、後で説明する。
 [30-5]端末2202-2は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニンシンボルを受信し、基地局が送信指向性制御、端末2202-2が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。
 [30-6]基地局は、端末2202-2が送信したフィードバック情報に基づいて、送信指向性制御の方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、ストリーム1のデータシンボル(図29のストリーム1-2の送信ビーム2201-2)を送信する。
 [30-7]端末2202-2は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、基地局が送信したストリーム1のデータシンボル(図29のストリーム1-2の送信ビーム2201-2)の受信を開始する。
 なお、図30の「基地局と端末の通信を行うための手順」は一例であり、各情報の送信の順番は、図30に限ったものではなく、各情報の送信の順番が入れ替わっても同様に実施することができる。
 また、図30では、端末の受信指向性制御を行う場合を例に説明しているが、端末が受信指向性制御を行わないような場合であってもよい。このとき、図30において、基地局は、受信指向性制御用のトレーニングシンボルを送信しなくてもよく、また、端末は受信指向性制御方法の決定を行わなくてもよい。
 また、基地局が送信指向性制御を行う際、基地局の構成が図1の構成の場合、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定され、また、基地局の構成が図3の構成の場合、例えば、重み付け合成部301において、重み付け係数が設定される。なお、送信するストリーム数は、図29の場合、「2」としているが、これに限ったものではない。
 そして、端末2202-1、2202-2が受信指向性制御を行う際、端末の構成が図4の構成の場合、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定され、また、端末の構成が図6の構成の場合、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定される。
 図31は、図30における基地局と端末の通信が完了した後、基地局がストリーム1のデータシンボルを送信する際の、基地局が送信するシンボルの例であり、横軸を時間とする。
 図31では、図29の「ストリーム1-1」が存在しているので、図25と同様に、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)が存在する。なお、「(M)、(M+1)、(M+2)」と記載しているが、(マルチキャスト用)ストリーム1-1は、(マルチキャスト用)ストリーム1-2が存在する前から存在しているからである。したがって、図31では、Mは2以上の整数とする。
 そして、図31に示すように、ユニキャスト送信区間2503-1、2503-2以外の区間において、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3が存在している。
 これまでの説明のように、以下のような特長をもつ。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームの指向性と、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームの指向性は異なる。したがって、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットと、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットは異なる。
 以上より、基地局が送信したマルチキャストストリームを2つの端末が受信できるようになる。このとき、送受信で指向性制御を行っているため、マルチキャスト用のストリームを受信することができるエリアを広範にすることができるという効果を得る。また、ストリームの追加、送信ビームの追加は必要なときに限って行うため、データを伝送するための周波数、時間、空間の資源を有効に活用することができるという効果を得る。
 なお、以降で説明するような制御を行うことがある。制御の詳細は以下のとおりである。
 図32は、図31と異なる「図30における基地局と端末の通信が完了した後、基地局が(ストリーム1の)データシンボルを送信する際の、基地局が送信するシンボルの例」であり、横軸を時間とする。なお、図32において、図25、図31と同様に動作するものについては、同一番号を付している。
 図32において、図31と異なる点は、ユニキャスト送信区間2503-1、2503-2を時間的に長く設定しているため、基地局は、これ以上のマルチキャスト用のシンボルを追加して、送信しない点である。
 図33は、図29のように基地局が2つの端末(端末2202-1、2202-2)にマルチキャスト用の送信ビームを送信しているのに加え、新たな端末2202-3が基地局に対し、送信ビームの追加の要求を行ったときの動作の例を示している。なお、基地局が送信している変調信号のフレームは、図32に示す。
 [33-1]端末2202-3は、基地局に対して、「ストリーム1のマルチキャスト送信の要求」を行う。なお、「ストリーム1のマルチキャスト送信の要求」は、図32におけるユニキャスト送信区間に送信される。
 [33-2]基地局は、[33-1]を受け、「マルチキャスト用のストリーム1の送信を行っていること」を端末2202-3に通知する。なお、「マルチキャスト用のストリーム1の送信を行っていることの通知」は、図32におけるユニキャスト送信区間に送信される。
 [33-3]端末2202-3は、[33-2]を受け、「マルチキャスト用のストリーム1を受信していないこと」を基地局に通知する。なお、「マルチキャスト用のストリーム1を受信していないことの通知」は、図32におけるユニキャスト送信区間に送信されている。
 [33-4]基地局は、[33-3]を受け、マルチキャスト用ストリーム1の送信ビームとして、ストリーム1-1の送信ビーム、ストリーム1-2の送信ビームとは別の送信ビームを送信することができるかの判定を行う。このとき、図32に示すフレームであることを考慮し、基地局は、マルチキャスト用ストリーム1の別の送信ビームを送信しないと判定する。よって、基地局は、「マルチキャスト用ストリーム1の別の送信ビームを送信しないこと」を端末2202-3に通知する。なお、「マルチキャスト用ストリーム1の別の送信ビームを送信しないことの通知」は、図32におけるユニキャスト送信区間に送信される。
 [33-5]端末2202-3は、「マルチキャスト用ストリーム1の別の送信ビームを送信しないことの通知」を受信する。
 なお、図33の「基地局と端末の通信の手順」は一例であり、各情報の送信の順番は、図33に限ったものではなく、各送信の順番が入れ替わっても同様に実施することができる。このように、マルチキャスト送信のための通信資源が不足している場合、マルチキャスト送信ビームの追加を行わなくてもよい。
 図34は、図29に示す基地局が2つの端末(端末2202-1、2202-2)にマルチキャスト用の送信ビームを送信しているのに加え、新たな端末2202-3が基地局に対し、別のマルチキャスト用のストリーム(ストリーム2)の送信ビームの追加の要求を行う動作の例を示している。なお、基地局が送信している変調信号のフレームは、図31のような状態である。
 [34-1]端末2202-3は、基地局に対して、「ストリーム2のマルチキャスト送信の要求」を行う。なお、「ストリーム2のマルチキャスト送信の要求」は、図31におけるユニキャスト送信区間2503に送信される。
 [34-2]基地局は、[34-1]を受け、「マルチキャスト用のストリーム2の送信を行っていないこと」を端末2202-3に通知する。また、「マルチキャスト用のストリーム2の送信ビームを基地局が追加して送信できるかの判定を行う。このとき図31のようなフレーム状態であることを考慮し、「マルチキャスト用のストリーム2の送信ビームの送信に対応していること」を端末2202-3に通知する。なお、「マルチキャスト用のストリーム2の送信を行っていないことの通知」、および、「マルチキャスト用のストリーム2の送信ビームが送信可能であることの通知」は、図31におけるユニキャスト送信区間2503に送信される。
 [34-3]端末2203-3は、[34-2]を受け、「マルチキャスト用のストリーム2の受信準備が完了したこと」を基地局に通知する。なお、「マルチキャスト用のストリーム2の受信準備が完了したこと」の通知は、図31におけるユニキャスト送信区間2503に送信される。
 [34-4]基地局は、[34-3]を受け、マルチキャスト用のストリーム2の送信ビームを送信することを決定する。そこで、基地局は、端末2202-3に対し、ストリーム2のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、受信指向性制御用のトレーニングシンボルを送信する。なお、これらのシンボルの送信とは別に、図31のようにストリーム1-1の送信ビーム、ストリーム1-2の送信ビームを基地局は送信している。この点については、後で説明する。
 [34-5]端末2202-3は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニングシンボルを受信し、基地局は送信指向性制御、端末2202-3が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。
 [34-6]基地局は、端末2202-3が送信したフィードバック情報に基づいて、送信指向性制御の方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、ストリーム2のデータシンボルを送信する。
 [34-7]端末2202-3は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、基地局が送信したストリーム2のデータシンボルの受信を開始する。
 なお、図34の「基地局と端末の通信を行うための手順」は、一例であり、各情報の送信の順番は、図34に限ったものではなく、各情報の送信の順番が入れ替わっても同様に実施することができる、また、図34では、端末の受信指向性制御を行う場合を例に説明しているが、端末が受信指向性制御を行わないような場合であってもよい。このとき、図34において、基地局は受信指向性制御用のトレーニングシンボルを送信しなくてもよく、また、端末は受信指向性制御方法の決定を行わない。
 また、基地局が送信指向性制御を行う際、基地局が図1の構成の場合、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定される。
 そして、端末2202-1、2202-2、2202-3が受信指向性制御を行う際、端末が図4の構成の場合、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定されることになり、また、端末の構成が図6の構成の場合、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定される。
 図35は、図34における基地局と端末の通信が完了した後、基地局がストリーム1、ストリーム2のデータシンボルを送信する際の、基地局が送信するシンボルの例であり、横軸を時間とする。
 図35において、図31に示す「ストリーム1-1」、「ストリーム1-2」が存在しているので、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)が存在し、また、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)が存在する。なお、N、Mは2以上の整数とする。
 そして、図35に示すように、ユニキャスト送信区間2503-1、2503-2以外の区間において、「(マルチキャスト用)ストリーム2-1データシンボル(1)」3501-1、「(マルチキャスト用)ストリーム2-1データシンボル(2)」3501-2、「(マルチキャスト用)ストリーム2-1データシンボル(3)」3501-3が存在している。
 これまでの説明のように、このとき、以下のような特長をもつ。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームの指向性と、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームの指向性は異なる。
 したがって、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットと、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットは異なる。
 ・「(マルチキャスト用)ストリーム2-1データシンボル(1)」3501-1、「(マルチキャスト用)ストリーム2-1データシンボル(2)」3501-2、「(マルチキャスト用)ストリーム2-1データシンボル(3)」3501-3は「ストリーム2」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム2-1のデータシンボル」を得ることで、「ストリーム2」のデータを得る。以上より、端末は、基地局が送信した複数のマルチキャストストリーム(ストリーム1とストリーム2)を受信できる。このとき、送受信で指向性制御を行っているため、マルチキャスト用のストリームが受信可能なエリアを広範にすることができるという効果を得る。また、ストリームの追加、送信ビームの追加は必要なときに限って行うため、データを伝送するための周波数、時間、空間の資源を有効に活用することができるという効果を得る。
 なお、以降で説明するような制御を行なってもよい。制御の詳細は以下のとおりである。
 図32は、図35と異なる「基地局が(ストリーム1の)データシンボルを送信する際の、基地局が送信するシンボルの例」であり、横軸を時間とする。なお、図32において、図25と図31と同様に動作するものについては、同一番号を付している。
 図32において、図35と異なる点は、ユニキャスト送信区間2503-1、2503-2を時間的に長く設定しているため、基地局は、これ以上のマルチキャスト用のシンボル、例えば、新しいストリームのシンボルを追加して、送信しない点である。
 図36は、図29のように基地局が2つの端末(端末2202-1、2202-2)にマルチキャスト用の送信ビームを送信しているのに加え、新たな端末2202-3が基地局に対し、別のマルチキャスト用のストリーム(ストリーム2)の送信ビームの追加の要求を行う動作の例を示す。なお、基地局が送信する変調信号のフレームを、図32に示す。
 [36-1]端末2202-3は、基地局に対して、「ストリーム2のマルチキャスト送信の要求」を行う。なお、「ストリーム2のマルチキャスト送信の要求」は、図32におけるユニキャスト送信区間に送信される。
 [36-2]基地局は、[36-1]を受け、「マルチキャスト用のストリーム2の送信を行っていないこと」を端末2202-3に通知する。なお、「マルチキャスト用のストリーム2の送信を行っていないこと」は、図32におけるユニキャスト送信区間に送信される。また、基地局は、マルチキャスト用ストリーム2の送信ビームを送信することができるかの判定を行う。基地局は、図32に示すフレームを考慮し、マルチキャスト用ストリーム2の送信ビームを送信しないと判定する。よって、基地局は、「マルチキャスト用ストリーム2の送信ビームを送信しないこと」を端末2202-3に通知する。なお、「マルチキャスト用ストリーム2の送信ビームを送信しないことの通知」は、図32におけるユニキャスト送信区間に送信される。
 [36-3]端末2202-3は、「マルチキャスト用ストリーム2の送信ビームを送信しないことの通知」を受信する。
 なお、図36の「基地局と端末の通信の手順」は一例であり、各情報の送信の順番は、図36に限ったものではなく、各送信の手順が入れ替わっても同様に実施することができる。このように、マルチキャスト送信のための通信資源が不足している場合、ストリームの追加、マルチキャスト送信ビームの追加を行わなくてもよい。
 なお、図35などで示したユニキャスト送信区間2503-1、2503-2の設定方法について補足説明をする。
 例えば、図35において、マルチキャスト用の送信ビームの数の最大値をあらかじめ決めておく、または、設定する。
 そして、各端末の要求を受け、基地局は、マルチキャスト用の送信ビームの数の最大値以下となる、マルチキャスト用の送信ビームを送信する。例えば、図35の場合、マルチキャスト用の送信ビーム数は3である。そして、基地局は、マルチキャスト用の複数の送信ビームを送信するが、これらを送信した後の時間的な空き時間をユニキャスト送信区間と定める。
 以上のように、ユニキャスト送信区間を定めてもよい。
 (補足1)
 補足1では、基地局が、複数の端末とユニキャスト通信、つまり、個別通信を行っている場合について説明する。
 このとき、例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3が、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報である。
 また、例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3が、コモンサーチスペース(common search space)であってもよい。なお、コモンサーチスペースとは、セル制御を行うための制御情報である。そして、コモンサーチスペースは、複数の端末に対し、ブロードキャストされる制御情報である。
 同様に、例えば、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3が、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、例えば、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3が、コモンサーチスペースであってもよい。
 なお、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3の特徴については、これまでに説明した実施の形態に記載したとおりである。
 例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3が、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3が、コモンサーチスペースであってもよい。
 例えば、図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3が、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、例えば、図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3が、コモンサーチスペースであってもよい。
 なお、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3は、これまでに説明した実施の形態に記載したとおりであり、図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、コモンサーチスペースであってもよい。
 なお、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、コモンサーチスペースであってもよい。
 なお、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、コモンサーチスペースであってもよい。
 例えば、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、ブロードキャストチャネル、つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報であってもよい。
 また、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、コモンサーチスペースであってもよい。
 なお、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、これまでに説明した実施の形態に記載したとおりであり、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、これまでに説明した実施の形態に記載したとおりである。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限ったものではない。
 また、図25、図31、図32、図35において、横軸を時間として説明しているが、横軸を周波数(キャリア)としても、同様に実施することが可能である。なお、横軸を周波数(キャリア)としたとき、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信する。
 (補足2)
 補足2では、基地局が複数の端末とユニキャスト通信、つまり、個別通信を行っている場合について説明する。
 このとき、例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 なお、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1401-3、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 なお、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1401-3、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 なお、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 なお、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3は、これまでに説明した実施の形態に記載したとおりである。
 例えば、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 例えば、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、基地局宛てのデータ又は通信を行っている複数端末のいずれかの端末宛のデータであってもよい。このとき、データの中には、制御情報が含まれていてもよい。
 なお、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、これまでに説明した実施の形態に記載したとおりである。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限ったものではない。
 また、図25、図31、図32、図35において、横軸を時間として説明しているが、横軸を周波数(キャリア)としても、同様に実施することが可能である。なお、横軸を周波数(キャリア)としたとき、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信する。
 (補足3)
 基地局が、図9のフレーム構成のように、ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、及び、ストリーム2の#3シンボル群902-3を送信している時間帯に、「ストリーム1の#1シンボル群901-1の送信ビーム、ストリーム1の#2シンボル群901-2の送信ビーム、ストリーム1の#3シンボル群901-3の送信ビーム、ストリーム2の#1シンボル群902-1の送信ビーム、ストリーム2の#2シンボル群902-2の送信ビーム、ストリーム2の#3シンボル群902-3の送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、基地局は送信してもよい。
 また、図3の基地局が、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 また、基地局が、図14のフレーム構成のように、変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、変調信号2の#3シンボル群1402-3を送信している時間帯に「変調信号1の#1シンボル群1401-1の送信ビーム、変調信号1の#2シンボル群1401-2の送信ビーム、変調信号1の#3シンボル群1401-3の送信ビーム、変調信号2の#1シンボル群1402-1の送信ビーム、変調信号2の#2シンボル群1402-2の送信ビーム、変調信号2の#3シンボル群1402-3の送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、基地局は送信してもよい。
 このとき、「別のシンボル群」は、ある端末宛のデータシンボルを含むシンボル群であってもよいし、本開示の他の部分で説明したような、制御情報シンボル群を含むシンボル群であってもよいし、他のマルチキャスト用のデータシンボルを含むシンボル群であってもよい。
 また、図3の基地局が、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 (補足4)
 基地局が、図25のフレーム構成のように、ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信している時間帯に、「ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、基地局は送信してもよい。
 なお、図25において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信している時間帯に、「ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、基地局は送信してもよい。
 また、基地局が、図31、図32のフレーム構成のように、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 なお、図31、図32において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 そして、基地局が、図31、図32のフレーム構成のように、ストリーム1―2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信している時間帯に、「ストリーム1―2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 なお、図31、図32において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム1―2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信している時間帯に、「ストリーム1―2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 基地局が、図35のフレーム構成のように、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 なお、図35において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 また、基地局が、図35のフレーム構成のように、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信している時間帯に、「ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 なお、図35において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信している時間帯に、「ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 そして、基地局が、図35のフレーム構成のように、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信している時間帯に、「ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 なお、図35において、横軸が周波数であった場合でも同様であり、基地局が、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信している時間帯に、「ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を基地局は送信してもよい。
 上記において、「別のシンボル群」とは、ある端末宛のデータシンボルを含むシンボル群であってもよいし、本明細書の他の部分で説明したような、制御情報シンボルを含むシンボル群であってもよいし、他のマルチキャスト用のデータシンボルを含むシンボル群であってもよい。
 このとき、図1の基地局が、信号処理部102の信号処理によって、上記の「別のシンボル群」のための送信ビームを生成してもよいし、図1の基地局が、アンテナ部106-1からアンテナ部106-Mまでのアンテナを選択することで、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 また、図3の基地局が、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 そして、図25、図31、図32、図に記載されているようなユニキャスト送信区間2503-1、2503-2を設定しなくてもよい。
 (補足5)
 図31、図32に関する説明で以下のような記載を行っている。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。
 また、図35に関する説明で以下のような記載を行っている。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得ることができる。
 以下では、上述について補足説明を行う。例えば、図35において、以下の、<方法1-1>、または、<方法1-2>、または、<方法2-1>、または、<方法2-2>により、上述を実現するにことができる。
 <方法1-1>
 ・ストリーム1-1データシンボル(M)2501-1-Mとストリーム1-2データシンボル(N)3101-Nが同じデータを含んでいる。
 そして、ストリーム1-1データシンボル(M+1)2501-1-(M+1)とストリーム1-2データシンボル(N+1)3101-(N+1)が同じデータを含んでいる。
 ストリーム1-1データシンボル(M+2)2501-1-(M+2)とストリーム1-2データシンボル(N+2)3101-(N+2)が同じデータを含んでいる。
 <方法1-2>
 ・ストリーム1-1データシンボル(K)2501-1-Kが含むデータと同じデータが含まれているストリーム1-2データシンボル(L)3101-Lが存在する。なお、K、Lは整数である。
 <方法2-1>
 ・ストリーム1-1データシンボル(M)2501-1-Mとストリーム1-2データシンボル(N)3101-Nが一部同じデータを含んでいる。
 そして、ストリーム1-1データシンボル(M+1)2501-1-(M+1)とストリーム1-2データシンボル(N+1)3101-(N+1)が一部同じデータを含んでいる。
 ストリーム1-1データシンボル(M+2)2501-1-(M+2)とストリーム1-2データシンボル(N+2)3101-(N+2)が一部同じデータを含んでいる。
 <方法2-2>
 ・ストリーム1-1データシンボル(K)2501-1-Kが含むデータの一部を含んでいるストリーム1-2データシンボル(L)3101-Lが存在する。なお、K、Lは整数である。
 すなわち、第1の基地局または第1の送信システムは、第1のストリームのデータを含む第1のパケット群と、第1のストリームのデータを含む第2のパケット群とを生成し、第1のパケット群に含まれるパケットを第1の送信ビームを用いて第1の期間に送信し、第2のパケット群に含まれるパケットを第1の送信ビームとは異なる第2の送信ビームを用いて第2の期間に送信し、第1の期間と第2の期間は互いに重複していない。
 ここで、第2のパケット群は、第1のパケット群に含まれる第1のパケットが含むデータと同一のデータを含む第2のパケットを含んでいてもよい。また、上記とは別の構成として、第2のパケット群は、第1のパケット群に含まれる第1のパケットが含むデータの一部と同一のデータを含む第3のパケットを含んでいてもよい。
 また、第1の送信ビームと第2の送信ビームは、同一のアンテナ部を用いて送信される互いに異なる指向性を有する送信ビームであってもよいし、互いに異なるアンテナ部を用いて送信される送信ビームであってもよい。
 また、第2の基地局または第2の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第1のストリームのデータを含む第3のパケット群をさらに生成し、第3のパケット群に含まれるパケットを第1の送信ビーム及び第2の送信ビームとは異なる第3の送信ビームを用いて第3の期間に送信し、第3の期間は第1の期間および第2の期間と重複していない。
 ここで、第2の基地局または第2の送信システムは、第1の期間、第2の期間及び第3の期間を所定の順序で繰り返し設定してもよい。
 また、第3の基地局または第3の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第1のストリームのデータを含む第3のパケット群をさらに生成し、第3のパケット群に含まれるパケットを第1の送信ビーム及び第2の送信ビームとは異なる第3の送信ビームを用いて第3の期間に送信し、第3の期間の少なくとも一部は第1の期間と重複している。
 ここで、第3の基地局または第3の送信システムは、第1の期間、第2の期間及び第3の期間を繰り返し設定してもよく、繰り返し設定される第3の期間のいずれの第3の期間もその少なくとも一部が第1の期間と重複していてもよいし、繰り返し設定される第3の期間のうち少なくともいずれか一つの第3の期間も第1の期間と重複していなくてもよい。
 また、第4の基地局または第4の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第2のストリームのデータを含む第4のパケットをさらに生成し、第4のパケットを第1の送信ビームとは異なる第4の送信ビームを用いて第4の期間に送信し、第4の期間の少なくとも一部は第1の期間と重複している。
 なお、上記の説明では、第1の期間と第2の期間は互いに重複していないと説明したが、第1の期間と第2の期間は一部が互いに重複していてもよいし、第1の期間の全部が第2の期間と重複していてもよいし、第1の期間の全部が第2の期間の全部と互いに重複していてもよい。
 また、第5の基地局または第5の送信システムは、第1のストリームのデータを含むパケット群を一つまたは複数生成し、パケット群毎に互いに異なる送信ビームを用いて送信し、端末から送信される信号に基づいて生成するパケット群の数を増加、または減少させるとしてもよい。
 なお、上述において、「ストリーム」と記載しているが、本明細書の他の箇所で記載しているように、図31、図32の「ストリーム1-1データシンボル(M)2501-1-M、および、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、および、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、および、ストリーム1-2データシンボル(1)3101-1、および、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3」、および、図35の「ストリーム1-1データシンボル(M)2501-1-M、および、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、および、ストリーム1-2データシンボル(N)3101-N、および、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)」は、ある端末宛のデータシンボルを含むシンボルであってもよいし、制御情報シンボルを含むシンボルであってもよいし、マルチキャスト用のデータシンボルを含むシンボルであってもよい。
 (実施の形態4)
 本実施の形態では、実施の形態1から実施の形態3で説明した通信システムの具体的な例について説明する。
 本実施の形態における通信システムは、(複数の)基地局と複数の端末で構成されているものとする。例えば、図7、図12、図17、図19、図20、図26、図29などにおける基地局700と端末704-1、704-2などにより構成された通信システムを考える。
 図37は、基地局(700)の構成の一例を示している。
 論理チャネル生成部3703は、データ3701および制御データ3702を入力とし、論理チャネル信号3704を出力する。論理チャネル信号3704は、例えば、制御用の論理チャネルである「BCCH(Broadcast Control Channel)、PCCH(Paging Control Channel)、CCCH(Common Control Channel)、MCCH(Multicast Control Channel)、DCCH(Dedicated Control Channel)」、データ用の論理チャネルである「DTCH(Dedicated Traffic Channel)、MTCH(Multicast Traffic Channel)」などで構成されているものとする。
 なお、「BCCHは、下りリンク、システム制御情報の報知用チャネル」であり、「PCCHは、下りリンク、ページング情報用チャネル」であり、「CCCHは、下りリンク、RRC(Radio Resource Control)接続が存在しないときに使用する共通制御チャネル」であり、「MCCHは、下りリンク、1対多のMBMS(Multimedia Broadcast Multicast Service)のためのマルチキャスト・チャネルスケジューリング、制御用チャネル」であり、「DCCHは、下りリンク、RRC接続をもつ端末に使用される専用制御チャネル」であり、「DTCHは、下りリンク、1台の端末UE(User Equipment)への専用トラフィック・チャネル、ユーザ・データ専用チャネル」であり、「MTCHは、下りリンク、1対多のMBMSユーザ・データ用チャネル」である。
 トランスポートチャネル生成部3705は、論理チャネル信号3704を入力とし、トランスポートチャネル信号3706を生成し、出力する。トランスポートチャネル信号3706は、例えば、BCH(Broadcast Channel)、DL-SCH(Downlink Shared Channel)、PCH(Paging Channel)、MCH(Multicast Channel)などで構成されているものとする。
 なお、「BCHは、セル全域にわたって報知されるシステム情報用チャネル」であり、「DL-SCHは、ユーザ・データ、制御情報とシステム情報を用いるチャネル」であり、「PCHは、セル全域にわたって放置されるページング情報用チャネル」であり、「MCHは、セル全域にわたって報知されるMBMSトラフィックならびに制御用チャネル」である。
 物理チャネル生成部3707は、トランスポートチャネル信号3706を入力とし、物理チャネル信号3708を生成し、出力する。物理チャネル信号3708は、例えば、PBCH(Physical; Broadcast Channel)、PMCH(Physical Multicast Channel)、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)などで構成されているものとする。
 なお、「PBCHは、BCHトランスポート・チャネルの伝送用」であり、「PMCHは、MCHトランスポート・チャネル伝送用」であり、「PDSCHは、DL-SCHならびにトランスポート・チャネルの伝送用」であり、「PDCCHは下りリンクL1(Layer 1)/L2(Layer 2)制御信号の伝送用」である。
 変調信号生成部3709は、物理チャネル信号3708を入力とし、物理チャネル信号3708に基づいた変調信号3710を生成し、出力する。そして、基地局700は、変調信号3710を、電波として送信することになる。
 まず、基地局が、複数の端末とユニキャスト通信、つまり、個別通信を行っている場合を考える。
 このとき、例えば、図9の901-1のストリーム1のシンボル群#1、および、901-2のストリーム1のシンボル群#2、および、901-3のストリーム1のシンボル群#3が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 ここで、ブロードキャストチャネルについて説明する。ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 同様に、例えば、図9の902-1のストリーム2のシンボル群#1、および、902-2のストリーム2のシンボル群#2、および、902-3のストリーム2のシンボル群#3が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 このとき、図9の901-1のストリーム1のシンボル群#1、および、901-2のストリーム1のシンボル群#2、および、901-3のストリーム1のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりであり、また、図9の902-1のストリーム2のシンボル群#1、および、902-2のストリーム2のシンボル群#2、および、902-3のストリーム2のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。
 なお、図9のストリーム2のシンボル群#1(902-1)、ストリーム2のシンボル群#2(902-2)、ストリーム2のシンボル群#3(902-3)など、ストリーム2を送信しない場合があってもよい。特に、ブロードキャストチャネルの信号を送信する場合、ストリーム2のシンボル群を、基地局が送信しないとしてもよい。(このとき、例えば、図7では、703-1、703-2、703-3を基地局701が送信していないことになる。)
 例えば、図14の1401-1の変調信号1のシンボル群#1、および、1401-2の変調信号1のシンボル群#2、および、1401-3の変調信号1のシンボル群#3が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 例えば、図14の1402-1の変調信号2のシンボル群#1、および、1402-2の変調信号2のシンボル群#2、および、1402-3の変調信号2のシンボル群#3が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 なお、図14の1401-1の変調信号1のシンボル群#1、および、1401-2の変調信号1のシンボル群#2、および、1401-3の変調信号1のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりであり、図14の1402-1の変調信号2のシンボル群#1、および、1402-2の変調信号2のシンボル群#2、および、1402-3の変調信号2のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。
 例えば、図25の2501-1-1のストリーム1-1データシンボル(1)、および、2501-1-2のストリーム1-1データシンボル(2)、および、2501-1-3のストリーム1-1データシンボル(3)が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 なお、図25の2501-1-1のストリーム1-1データシンボル(1)、および、2501-1-2のストリーム1-1データシンボル(2)、および、2501-1-3のストリーム1-1データシンボル(3)の特徴については、これまでに説明した実施の形態に記載したとおりである。
 例えば、図31、図32の2501-1-Mのストリーム1-1データシンボル(M)、および、2501-1-(M+1)のストリーム1-1データシンボル(M+1)、および、2501-1-(M+2)のストリーム1-1データシンボル(M+2)、および、3101-1のストリーム1-2データシンボル(1)、および、3101-2のストリーム1-2データシンボル(2)、3101-3のストリーム1-2データシンボル(3)が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 なお、図31、図32の2501-1-Mのストリーム1-1データシンボル(M)、および、2501-1-(M+1)のストリーム1-1データシンボル(M+1)、および、2501-1-(M+2)のストリーム1-1データシンボル(M+2)、および、3101-1のストリーム1-2データシンボル(1)、および、3101-2のストリーム1-2データシンボル(2)、3101-3のストリーム1-2データシンボル(3)の特徴については、これまでに説明した実施の形態に記載したとおりである。
 例えば、図35において、2501-1-Mのストリーム1-1データシンボル(M)、および、2501-1-(M+1)のストリーム1-1データシンボル(M+1)、2501-1-(M+2)のストリーム1-1データシンボル(M+2)、および、3101-Nのストリーム1-2データシンボル(N)、および、3101-(N+1)のストリーム1-2データシンボル(N+1)、および、3101-(N+2)のストリーム1-2データシンボル(N+2)が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 例えば、図35の3501-1のストリーム2-1データシンボル(1)、および、3501-2のストリーム2-1データシンボル(2)、および、3501-3のストリーム2-1データシンボル(3)が、ブロードキャストチャネル(つまり、基地局が複数の端末とデータ通信を行うために、基地局が複数の端末に対してブロードキャスト送信を行う制御情報)であってもよい。なお、制御情報とは、例えば、基地局と端末がデータ通信を実現するために必要となる制御情報であるものとする。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当することになる。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、「MCH」が該当することになる。
 そして、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、「MTCH」が該当することになる。
 なお、図35において、2501-1-Mのストリーム1-1データシンボル(M)、および、2501-1-(M+1)のストリーム1-1データシンボル(M+1)、2501-1-(M+2)のストリーム1-1データシンボル(M+2)、および、3101-Nのストリーム1-2データシンボル(N)、および、3101-(N+1)のストリーム1-2データシンボル(N+1)、および、3101-(N+2)のストリーム1-2データシンボル(N+2)の特徴については、これまでに説明した実施の形態に記載したとおりであり、図35の3501-1のストリーム2-1データシンボル(1)、および、3501-2のストリーム2-1データシンボル(2)、および、3501-3のストリーム2-1データシンボル(3)の特徴については、これまでに説明した実施の形態に記載したとおりである。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限ったものではない。
 また、図25、図31、図32、図35において、横軸を時間として説明しているが、横軸を周波数(キャリア)としても、同様に実施することが可能である。なお、横軸を周波数(キャリア)としたとき、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信することになる。
 なお、図9のストリーム1のシンボル群において、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。同様に、図9のストリーム2のシンボル群において、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。
 図14のストリーム1のシンボル群において、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。同様に、図14のストリーム2のシンボル群において、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。
 また、図25のストリーム1-1のシンボルに、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。図31、図32のストリーム1-1のシンボル、ストリーム1-2のシンボルに、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれることがあってもよい。
 そして、PBCHは、例えば、「UEがセルサーチ後の最初に読むべき最低限の情報(システム帯域幅、システムフレーム番号、送信アンテナ数など)を送信するために使用される」という構成としてもよい。
 PMCHは、例えば、「MBSFN(Multicast-broadcast single-frequency network)の運用に使用される」という構成としてもよい。
 PDSCHは、例えば、「下りリンクのユーザデータを送信するための共有データチャネルであり、C(control)-plane/U(User)-planeに関係なくすべてのデータを集約して送信される」という構成としてもよい。
 PDCCHは、例えば、「eNodeB(gNodeB)(基地局)がスケジューリングにより選択したユーザに対して、無線リソースの割り当て情報を通知するために使用される」という構成としてもよい。
 以上のように実施することで、マルチキャスト・ブロードキャストデータ伝送において、基地局が、データシンボル、制御情報シンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、端末は、データシンボルの受信を行うことで、端末は高いデータの受信品質を得ることができるという効果を得ることができる。
 (実施の形態5)
 本実施の形態では、基地局(700)が送信する図9のストリーム1のシンボル群とストリーム2のシンボル群の構成について補足説明を行う。
 図38は、基地局(700)が送信するストリーム1のフレーム構成の一例を示しており、図38におけるフレーム構成において、横軸は時間であり、縦軸は周波数であり、時刻1から時刻10、キャリア1からキャリア40までのフレーム構成を示している。したがって、図38は、OFDM(Orthogonal Frequency Division Multiplexing)方法のようなマルチキャリア伝送方式のフレーム構成となる。
 図38におけるストリーム1のシンボル領域3801_1は、時刻1から時刻10、キャリア1からキャリア9に存在しているものとする。
 ストリーム1のシンボル群#i(3800_i)は、時刻1から時刻10、キャリア10からキャリア20に存在しているものとする。なお、ストリーム1のシンボル群#i(3800_i)は図9のストリーム1のシンボル群#i(901-i)に相当するものとする。
 ストリーム1のシンボル領域3801_2は、時刻1から時刻10、キャリア21からキャリア40に存在しているものとする。
 このとき、例えば、実施の形態4などで説明したように、基地局が、1つ以上の端末に対し、個別のデータを伝送する(ユニキャストする)場合に、図38のストリーム1のシンボル領域3801_1、3801_2を使用することができる。
 そして、図38のストリーム1のシンボル群#i(3800_i)は、実施の形態1、実施の形態4などで説明したように、基地局が、マルチキャスト用のデータを伝送するために使用することになる。
 図39は、基地局(700)が送信するストリーム2のフレーム構成の一例を示しており、図39におけるフレーム構成において、横軸は時間であり、縦軸は周波数であり、時刻1から時刻10、キャリア1からキャリア40までのフレーム構成を示している。したがって、図39はOFDM方式のようなマルチキャリア伝送方式のフレームとなる。
 図39におけるストリーム2のシンボル領域3901_1は、時刻1から時刻10、キャリア1からキャリア9に存在しているものとする。
 ストリーム2のシンボル群#i(3900_i)は、時刻1から時刻10、キャリア10からキャリア20に存在しているものとする。なお、ストリーム2のシンボル群#i(3900_i)は図9のストリーム2のシンボル群#i(902-i)に相当するものとする。
 ストリーム2のシンボル領域3901_2は、時刻1から時刻10、キャリア21からキャリア40に存在しているものとする。
 このとき、例えば、実施の形態4などで説明したように、基地局が、1つ以上の端末に対し、個別のデータ伝送する(ユニキャストする)場合に、図39のストリーム2のシンボル領域3901_1、3901_2を使用することができる。
 そして、図39のストリーム2のシンボル群#i(3900_i)は、実施の形態1、実施の形態4などで説明したように、基地局が、マルチキャスト用のデータを伝送するために使用することになる。
 なお、基地局は、図38における時刻X(図38の場合、Xは1以上10以下の整数)、キャリアY(図38の場合Yは1以上40以下の整数)のシンボルと図39の時刻X、キャリアYのシンボルを同一周波数、同一時刻を用いて送信することになる。
 そして、図9の901-1のストリーム1のシンボル群#1、および、901-2のストリーム1のシンボル群#2、および、901-3のストリーム1のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。つまり、図38のストリーム1のシンボル群#iの特徴については、図9のストリーム1のシンボル群と同様であり、これまでに説明した実施の形態に記載したとおりである。
 また、図9の902-1のストリーム2のシンボル群#1、および、902-2のストリーム2のシンボル群#2、および、902-3のストリーム2のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。つまり、図39のストリーム2のシンボル群#iの特徴については、図9のストリーム2のシンボル群と同様であり、これまでに説明した実施の形態に記載したとおりである。
 なお、図38、図39のフレーム構成のキャリア10からキャリア20における時刻11以降にシンボルが存在した場合、マルチキャスト伝送用に使用してもよいし、個別データ伝送(ユニキャスト伝送)に使用してもよい。
 また、基地局が、図38、図39のフレーム構成で、図9のようなフレームを送信した場合、実施の形態1、実施の形態4で説明した実施を同様に行ってもよい。
 以上のように実施することで、マルチキャスト・ブロードキャストデータ伝送において、基地局が、データシンボル、制御情報シンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、端末は、データシンボルの受信を行うことで、端末は高いデータの受信品質を得ることができるという効果を得ることができる。
 (実施の形態6)
 本実施の形態では、基地局(700)が送信する図14の変調信号1のシンボル群と変調信号2のシンボル群の構成について補足説明を行う。
 図40は、基地局(700)が送信する変調信号1のフレーム構成の一例を示しており、図40におけるフレーム構成において、横軸は時間であり、縦軸は周波数であり、時刻1から時刻10、キャリア1からキャリア40までのフレーム構成を示している。したがって、図40は、OFDM(Orthogonal Frequency Division Multiplexing)方法のようなマルチキャリア伝送方式のフレーム構成となる。
 図40における変調信号1のシンボル領域4001_1は、時刻1から時刻10、キャリア1からキャリア9に存在しているものとする。
 変調信号1のシンボル群#i(4000_i)は、時刻1から時刻10、キャリア10からキャリア20に存在しているものとする。なお、変調信号1のシンボル群#i(4000_i)は図14の変調信号1のシンボル群#i(1401-i)に相当するものとする。
 変調信号1のシンボル領域4001_2は、時刻1から時刻10、キャリア21からキャリア40に存在しているものとする。
 このとき、例えば、実施の形態4などで説明したように、基地局が、1つ以上の端末に対し、個別のデータを伝送する(ユニキャストする)場合に、図40のストリーム1のシンボル領域4001_1、4001_2を使用することができる。
 そして、図40の変調信号1のシンボル群#i(4000_i)は、実施の形態1、実施の形態4などで説明したように、基地局が、マルチキャスト用のデータを伝送するために使用することになる。
 図41は、基地局(700)が送信する変調信号2のフレーム構成の一例を示しており、図41におけるフレーム構成において、横軸は時間であり、縦軸は周波数であり、時刻1から時刻10、キャリア1からキャリア40までのフレーム構成を示している。したがって、図41はOFDM方式のようなマルチキャリア伝送方式のフレームとなる。
 図41における変調信号2のシンボル領域4101_1は、時刻1から時刻10、キャリア1からキャリア9に存在しているものとする。
 変調信号2のシンボル群#i(4100_i)は、時刻1から時刻10、キャリア10からキャリア20に存在しているものとする。なお、変調信号2のシンボル群#i(4100_i)は図14の変調信号2のシンボル群#i(1402-i)に相当するものとする。
 変調信号2のシンボル領域4101_2は、時刻1から時刻10、キャリア21からキャリア40に存在しているものとする。
 このとき、例えば、実施の形態4などで説明したように、基地局が、1つ以上の端末に対し、個別のデータ伝送する(ユニキャストする)場合に、図41の変調信号2のシンボル領域4101_1、4101_2を使用することができる。
 そして、図41の変調信号2のシンボル群#i(4100_i)は、実施の形態1、実施の形態4などで説明したように、基地局が、マルチキャスト用のデータを伝送するために使用することになる。
 なお、基地局は、図40における時刻X(図40の場合、Xは1以上10以下の整数)、キャリアY(図40の場合Yは1以上40以下の整数)のシンボルと、図41の時刻X、キャリアYのシンボルを同一周波数、同一時刻を用いて送信することになる。
 そして、図14の1401_1のストリーム1のシンボル群#1、および、1401_2の変調信号1のシンボル群#2、および、1401_3の変調信号1のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。つまり、図40の変調信号1のシンボル群#iの特徴については、図14の変調信号1のシンボル群と同様であり、これまでに説明した実施の形態に記載したとおりである。
 また、図14の1402_1の変調信号2のシンボル群#1、および、1402_2の変調信号2のシンボル群#2、および、1402_3の変調信号2のシンボル群#3の特徴については、これまでに説明した実施の形態に記載したとおりである。つまり、図41の変調信号2のシンボル群#iの特徴については、図14の変調信号2のシンボル群と同様であり、これまでに説明した実施の形態に記載したとおりである。
 なお、図40、図41のフレーム構成のキャリア10からキャリア20における時刻11以降にシンボルが存在した場合、マルチキャスト伝送用に使用してもよいし、個別データ伝送(ユニキャスト伝送)に使用してもよい。
 また、基地局が、図40、図41のフレーム構成で、図14のようなフレームを送信した場合、実施の形態1、実施の形態4で説明した実施を同様に行ってもよい。
 上述の説明における図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、図41の変調信号2のシンボル領域4101_1、4102_2の使用方法の例について説明する。
 図42は、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、図41の変調信号2のシンボル領域4101_1、4102_2」の端末への割り当ての一例を示している。なお、図42において、横軸は時間であり、縦軸は周波数(キャリア)である。
 図42に示すように、例えば、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、図41の変調信号2のシンボル領域4101_1、4102_2」を周波数分割し、端末に対し割り当てを行う。そして、4201_1は端末#1用に割り当てられたシンボル群であり、4201_2は端末#2用に割り当てられたシンボル群であり、4201_3は端末#3用に割り当てられたシンボル群である。
 例えば、基地局(700)は、端末#1、端末#2、端末#3と通信を行っており、基地局が端末#1に対してデータを伝送する場合、図42の「端末#1用に割り当てられたシンボル群4201_1」を用いて、基地局は端末#1にデータを伝送することになる。そして、基地局が端末#2に対してデータを伝送する場合、図42の「端末#2用に割り当てられたシンボル群4201_2」を用いて、基地局は端末#2にデータを伝送することになる。基地局が端末#3に対してデータを伝送する場合、図42の「端末#3用に割り当てられたシンボル群4201_3」を用いて、基地局は端末#3にデータを伝送することになる。
 なお、端末への割り当て方法は、図42に限ったものではなく、周波数帯域(キャリア数)は時間により変化してもよいし、また、どのように設定してもよい。そして、時間とともに端末への割り当て方法を変更してもよい。
 図43は、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、図41の変調信号2のシンボル領域4101_1、4102_2」の端末への割り当ての図42とは異なる例である。なお、図43において、横軸は時間であり縦軸は周波数(キャリア)である。
 図43に示すように、例えば、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、図41の変調信号2のシンボル領域4101_1、4102_2」を時間、周波数分割を行い、端末に対し割り当てを行う。そして、4301_1は端末#1用に割り当てられたシンボル群であり、4301_2は端末#2用に割り当てられたシンボル群であり、4301_3は端末#3用に割り当てられたシンボル群であり、4301_4は端末#4用に割り当てられたシンボル群であり、4301_5は端末#5用に割り当てられたシンボル群であり、4301_6は端末#6用に割り当てられたシンボル群である。
 例えば、基地局(700)は、端末#1、端末#2、端末#3、端末#4、端末#5、端末#6と通信を行っており、基地局が端末#1に対してデータを伝送する場合、図43の「端末#1用に割り当てられたシンボル群4301_1」を用いて、基地局は端末#1にデータを伝送することになる。そして、基地局が端末#2に対してデータを伝送する場合、図43の「端末#2用に割り当てられたシンボル群4301_2」を用いて、基地局は端末#2にデータを伝送することになる。基地局が端末#3に対してデータを伝送する場合、図43の「端末#3用に割り当てられたシンボル群4301_3」を用いて、基地局は端末#3にデータを伝送することになる。基地局が端末#4に対してデータを伝送する場合、図43の「端末#4用に割り当てられたシンボル群4301_4」を用いて、基地局は端末#4にデータを伝送することになる。基地局が端末#5に対してデータを伝送する場合、図43の「端末#5用に割り当てられたシンボル群4301_5」を用いて、基地局は端末#5にデータを伝送することになる。基地局が端末#6に対してデータを伝送する場合、図43の「端末#6用に割り当てられたシンボル群4301_6」を用いて、基地局は端末#6にデータを伝送することになる。
 なお、端末への割り当て方法は、図43に限ったものではなく、周波数帯域(キャリア数)、時間幅は変化してもよいし、また、どのように設定してもよい。そして、時間とともに端末への割り当て方法を変更してもよい。
 また、図38、図39、図40、図41におけるストリーム1のシンボル領域、ストリーム2のシンボル領域、変調信号1のシンボル領域、変調信号2のシンボル領域では、キャリアごとに異なる重み付け合成を行ってもよいし、複数のキャリアを単位として、重み付け合成方法を決定してもよい。また、図43、図44のように割り当てた端末ごとに重み付け合成のパラメータを設定してもよい。キャリアにおける重み付け合成の方法の設定は、これらの例に限ったものではない。
 以上のように実施することで、マルチキャスト・ブロードキャストデータ伝送において、基地局が、データシンボル、制御情報シンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、端末は、データシンボルの受信を行うことで、端末は高いデータの受信品質を得ることができるという効果を得ることができる。
 (実施の形態7)
 本明細書において、図7、図12、図17、図18、図19、図20、図22における基地局700、他の実施の形態で説明した基地局の構成として、図44のような構成であってもよい。
 以下では、図44の基地局の動作について説明を行う。図44において、図1、図3と同様に動作するものについては、同一番号を付しており、説明を省略する。
 重み付け合成部301は、信号処理後の信号103_1、103_2、・・・、103_M、および、制御信号159を入力とし、制御信号159に基づき、重み付け合成を行い、重み付け合成信号4401_1、4401_2、・・・、4401_Kを出力する。なお、Mは2以上の整数とし、Kは2以上の整数とする。
 例えば、信号処理後の信号103_i(iは1以上M以下の整数)をui(t)(tは時間)、重み付け合成後の信号4401_g(gは1以上K以下の整数)をvg(t)とあらわすと、vg(t)は次式であらわすことができる。
Figure JPOXMLDOC01-appb-M000007
 無線部104_gは、重み付け合成後の信号4401_g、制御信号159を入力とし、制御信号159に基づいて、所定の処理を行い、送信信号105_gを生成し、出力する。そして、送信信号105_gはアンテナ303_1から送信される。
 なお、基地局が対応している送信方法は、OFDMなどのマルチキャリア方式であってもよいし、シングルキャリア方式であってもよい。また、基地局は、マルチキャリア方式、シングルキャリア方式の両者に対応していてもよい。このときシングルキャリア方式の変調信号を生成する方法は、複数あり、いずれの方式の場合についても実施が可能である。例えば、シングルキャリア方式の例として、「DFT(Discrete Fourier Transform)-Spread OFDM(Orthogonal Frequency Division Multiplexing)」、「Trajectory Constrained DFT-Spread OFDM」、「OFDM based SC(Single Carrier)」、「SC(Single Carrier)-FDMA(Frequency Division Multiple Access)」、「Guard interval DFT-Spread OFDM」などがある。
 式(7)では、時間の関数で記載しているが、OFDM方式などのマルチキャリア方式の場合、時間に加え周波数の関数であってもよい。
 例えば、OFDM方式において、キャリアごとに異なる重み付け合成を行ってもよいし、複数のキャリアを単位として、重み付け合成方法を決定してもよい。キャリアにおける重み付け合成の方法の設定は、これらの例に限ったものではない。
 (補足6)
 当然であるが、本明細書において説明した実施の形態、補足などのその他の内容を複数組み合わせて、実施してもよい。
 そして、基地局の構成として、例として、図1、図3に限ったものではなく、複数の送信アンテナを持ち、複数の送信ビーム(送信指向性ビーム)を生成し、送信する基地局であれば、本開示を実施することが可能である。
 また、各実施の形態については、あくまでも例であり、例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を例示していても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも同様の構成で実施することが可能である。
 変調方式については、本明細書で記載している変調方式以外の変調方式を使用しても、本明細書において説明した実施の形態、その他の内容を実施することが可能である。例えば、APSK(例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKなど)、PAM(例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMなど)、PSK(例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKなど)、QAM(例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMなど)などを適用してもよいし、各変調方式において、均一マッピング、非均一マッピングとしてもよい。また、I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限ったものではない。
 本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本開示における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
 パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボルであればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、各変調信号のチャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行う。または、パイロットシンボルは、受信機が同期することによって、受信機は、送信機が送信したシンボルを知ることができてもよい。
 また、制御情報用のシンボルは、データ(アプリケーション等のデータ)以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式、誤り訂正符号化方式、誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
 なお、本開示は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
 なお、例えば、上記通信方法を実行するプログラムを予めROMに格納しておき、そのプログラムをCPUによって動作させるようにしても良い。
 また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAMに記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 そして、上記の各実施の形態などの各構成は、典型的には、入力端子及び出力端子を有する集積回路であるLSIとして実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGAや、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
 本明細書において、種々のフレーム構成について説明した。本明細書で説明したフレーム構成の変調信号を、図1の送信装置を具備する例えば基地局(AP)が、OFDM方式などのマルチキャリア方式を用いて送信する。このとき、基地局(AP)と通信を行っている端末(ユーザー)が変調信号を送信する際、端末が送信する変調信号はシングルキャリアの方式であるという適用方法を考えることができる。(基地局(AP)はOFDM方式を用いることで、複数の端末に対し、同時にデータシンボル群を送信することができ、また、端末はシングルキャリア方式を用いることにより、消費電力を低減することが可能となる。)
 また、基地局(AP)が送信する変調信号が使用する周波数帯域の一部を用いて、端末は変調方式を送信するTDD(Time Division Duplex)方式を適用してもよい。
 図1のアンテナ部106-1、106-2、・・・、106-Mの構成は、実施の形態において説明した構成に限ったものではない。例えば、アンテナ部106-1、106-2、・・・、106-Mが、複数のアンテナで構成されていなくてもよく、また、アンテナ部106-1、106-2、・・・、106-Mは、信号159を入力としなくてもよい。
 図4のアンテナ部401-1、401-2、・・・、401-Nの構成は、実施の形態において説明した構成に限ったものではない。例えば、アンテナ部401-1、401-2、・・・、401-Nが、複数のアンテナで構成されていなくてもよく、また、アンテナ部401-1、401-2、・・・、401-Nは、信号410を入力としなくてもよい。
 なお、基地局、端末が対応している送信方法は、OFDMなどのマルチキャリア方式であってもよいし、シングルキャリア方式であってもよい。また、基地局は、マルチキャリア方式、シングルキャリア方式の両者に対応していてもよい。このときシングルキャリア方式の変調信号を生成する方法は、複数あり、いずれの方式の場合についても実施が可能である。例えば、シングルキャリア方式の例として、「DFT(Discrete Fourier Transform)-Spread OFDM(Orthogonal Frequency Division Multiplexing)」、「Trajectory Constrained DFT-Spread OFDM」、「OFDM based SC(Single Carrier)」、「SC(Single Carrier)-FDMA(Frequency Division Multiple Access)」、「Guard interval DFT-Spread OFDM」などがある。
 また、図1、図3、図44における情報#1(101_1)、情報#2(101_2)、・・・、情報#M(101_M)の中に、少なくともマルチキャスト(ブロードキャスト)のデータが存在することになる。例えば、図1において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ、複数のストリーム、または、変調信号を信号処理部102により生成し、アンテナから出力することになる。
 図3において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ、複数のストリーム、または、変調信号を信号処理部102、および/または、重み付け合成部301で生成し、アンテナから出力することになる。
 図44において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ、複数のストリーム、または、変調信号を信号処理部102、および/または、重み付け合成部301で生成し、アンテナから出力することになる。
 なお、複数ストリームまたは変調信号の様子については、図7、図9、図12、図14、図17、図18、図19を用いて説明したとおりである。
 さらに、図1、図3、図44における情報#1(101_1)、情報#2(101_2)、・・・、情報#M(101_M)の中に、個別端末宛のデータを含んでいてもよい。この点については、本明細書の実施の形態で説明したとおりである。
 なお、FPGA(Field Programmable Gate Array)およびCPU(Central Processing Unit)の少なくとも一方が、本開示において説明した通信方法を実現するために必要なソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。さらに、更新のためのソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。そして、ダウンロードしたソフトウェアを記憶部に格納し、格納されたソフトウェアに基づいてFPGAおよびCPUの少なくとも一方を動作させることにより、本開示において説明したデジタル信号処理を実行するようにしてもよい。
 このとき、FPGAおよびCPUの少なくとも一方を具備する機器は、通信モデムと無線または有線で接続し、この機器と通信モデムにより、本開示において説明した通信方法を実現してもよい。
 例えば、本明細書で記載した基地局、AP、端末などの通信装置が、FPGAおよび、CPUのうち、少なくとも一方を具備しており、FPGA及びCPUの少なくとも一方を動作させるためのソフトウェアを外部から入手するためのインターフェースを通信装置が具備していてもよい。さらに、通信装置が外部から入手したソフトウェアを格納するための記憶部を具備し、格納されたソフトウェアに基づいて、FPGA、CPUを動作させることで、本開示において説明した信号処理を実現するようにしてもよい。
 (補足説明)
 以下、本開示の送信装置、受信装置、送信方法、及び、受信方法について補足説明をする。
 本開示の一態様の送信装置は、複数の送信アンテナを備える送信装置であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号処理部と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する送信部と、を備え、送信部は、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。
 複数の第1送信信号及び複数の第2送信信号のそれぞれは、当該送信信号が第1ストリームおよび第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号を含んでいてもよい。
 複数の第1送信信号及び複数の第2送信信号のそれぞれは、受信装置が指向性制御を行うためのトレーニング信号を含んでいてもよい。
 本開示の一態様の受信装置は、複数の受信アンテナを備える受信装置であって、送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する受信部と、受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する信号処理部と、受信部によって前記少なくとも1つの第1信号が受信されていない場合に、送信装置に対して第1ストリームの送信の要求を行う送信部とを備える。
 受信部は、複数の受信信号のそれぞれに含まれる前記第1ストリームおよび前記第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号に基づいて、前記少なくとも1つの第1信号及び前記少なくとも1つの第2信号を選択してもよい。
 受信部は、複数の受信信号のそれぞれに含まれるトレーニング信号を用いて指向性制御を行ってもよい。
 本開示の一態様の送信方法は、複数の送信アンテナを備える送信装置で実行される送信方法であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する処理と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する処理とを含み、送信処理では、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。
 本開示の一態様の受信方法は、複数の受信アンテナを備える受信装置で実行される受信方法あって、送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する処理と、受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する処理と、受信処理において少なくとも1つの第1信号が受信されていない場合に、送信装置に対して第1ストリームの送信の要求を行う送信処理とを含む。
 本開示によれば、疑似オムニパターンのアンテナを用いる場合と比較して、複数ストリームのマルチキャスト/ブロードキャスト通信における通信距離を拡大できる可能性がある。
 本開示は、複数のアンテナを用いる通信において有用である。
 700     基地局
 701     アンテナ
 702,703 送信ビーム
 704     端末
 705,706 受信指向性

Claims (8)

  1.  複数の送信アンテナを備える送信装置であって、
     第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号処理部と、
     前記第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、前記第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、前記複数の第1送信信号及び前記複数の前記第2送信信号を同一時間に送信する送信部とを備え、
     前記送信部は、さらに、端末から前記第1ストリームの送信の要求を受けた場合には、前記複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、前記第1ベースバンド信号から生成して送信する
     送信装置。
  2.  前記複数の第1送信信号及び前記複数の第2送信信号のそれぞれは、当該送信信号が前記第1ストリームおよび前記第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号を含む
     請求項1記載の送信装置。
  3.  前記複数の第1送信信号及び前記複数の第2送信信号のそれぞれは、受信装置が指向性制御を行うためのトレーニング信号を含む
     請求項1記載の送信装置。
  4.  複数の受信アンテナを備える受信装置であって、
     送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する受信部と、
     受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する信号処理部と、
     前記受信部によって前記少なくとも1つの第1信号が受信されていない場合に、前記送信装置に対して前記第1ストリームの送信の要求を行う送信部と
     を備える受信装置。
  5.  前記受信部は、複数の受信信号のそれぞれに含まれる前記第1ストリームおよび前記第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号に基づいて、前記少なくとも1つの第1信号及び前記少なくとも1つの第2信号を選択する
     請求項4記載の受信装置。
  6.  前記受信部は、複数の受信信号のそれぞれに含まれるトレーニング信号を用いて前記指向性制御を行う
     請求項4記載の受信装置。
  7.  複数の送信アンテナを備える送信装置で実行される送信方法であって、
     第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号生成処理と、
     前記第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、前記第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、前記複数の第1送信信号及び前記複数の前記第2送信信号を同一時間に送信する送信処理とを含み、
     前記送信処理では、さらに、端末から前記第1ストリームの送信の要求を受けた場合には、前記複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、前記第1ベースバンド信号から生成して送信する
     送信方法。
  8.  複数の受信アンテナを備える受信装置で実行される受信方法であって、
     送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する受信処理と、
     受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する信号処理と、
     前記受信処理において前記少なくとも1つの第1信号が受信されていない場合に、前記送信装置に対して前記第1ストリームの送信の要求を行う送信処理と
     を含む受信方法。
PCT/JP2017/033195 2016-09-21 2017-09-14 送信方法、送信装置、受信方法及び受信装置 WO2018056158A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22184287.5A EP4092924A1 (en) 2016-09-21 2017-09-14 Transmission method, transmission device, reception method, and reception device
CN201780057492.XA CN109716668B (zh) 2016-09-21 2017-09-14 发送方法、发送装置、接收方法以及接收装置
CN202210997662.5A CN115361046A (zh) 2016-09-21 2017-09-14 发送方法、发送装置、接收方法以及接收装置
JP2018541007A JP7148404B2 (ja) 2016-09-21 2017-09-14 送信方法、送信装置、受信方法及び受信装置
EP17852935.0A EP3518432A4 (en) 2016-09-21 2017-09-14 TRANSMISSION PROCEDURE, TRANSMIT DEVICE, RECEIVER METHOD AND RECEPTION DEVICE
US16/359,330 US20190222294A1 (en) 2016-09-21 2019-03-20 Transmitting method, transmitting device, receiving method, and receiving device
US16/932,015 US11671166B2 (en) 2016-09-21 2020-07-17 Transmitting method, transmitting device, receiving method, and receiving device
US18/140,980 US20230261730A1 (en) 2016-09-21 2023-04-28 Transmitting method, transmitting device, receiving method, and receiving device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016184796 2016-09-21
JP2016-184796 2016-09-21
JP2017132797 2017-07-06
JP2017-132797 2017-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/359,330 Continuation US20190222294A1 (en) 2016-09-21 2019-03-20 Transmitting method, transmitting device, receiving method, and receiving device

Publications (1)

Publication Number Publication Date
WO2018056158A1 true WO2018056158A1 (ja) 2018-03-29

Family

ID=61689559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033195 WO2018056158A1 (ja) 2016-09-21 2017-09-14 送信方法、送信装置、受信方法及び受信装置

Country Status (5)

Country Link
US (3) US20190222294A1 (ja)
EP (2) EP4092924A1 (ja)
JP (1) JP7148404B2 (ja)
CN (2) CN115361046A (ja)
WO (1) WO2018056158A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865935B (zh) * 2019-11-27 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055536A1 (ja) 2009-11-04 2011-05-12 日本電気株式会社 無線通信システムの制御方法、無線通信システム、及び無線通信装置
JP5037615B2 (ja) * 2007-07-05 2012-10-03 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
JP2015119349A (ja) * 2013-12-18 2015-06-25 株式会社Nttドコモ 無線基地局、移動局、及び無線通信方法
JP2015523757A (ja) * 2012-04-30 2015-08-13 サムスン エレクトロニクス カンパニー リミテッド 多数のアンテナを有する無線システムにおける制御チャンネルビーム管理のための装置及び方法
JP2015185952A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037615B1 (ja) 1970-12-21 1975-12-03
JP3987229B2 (ja) * 1999-03-16 2007-10-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システム及びその基地局並びにその通信方法
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
US8179903B2 (en) * 2008-03-12 2012-05-15 Qualcomm Incorporated Providing multiple levels of service for wireless communication devices communicating with a small coverage access point
US8934405B2 (en) * 2008-05-06 2015-01-13 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for retransmission scheduling and control in multi-carrier wireless communication networks
CN101582747B (zh) * 2008-05-16 2012-04-04 浙江大学 波束形成方法及其装置
JP2012010205A (ja) * 2010-06-25 2012-01-12 Sharp Corp 通信システム、通信装置および通信方法
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
JP5784740B2 (ja) * 2011-09-08 2015-09-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法及び信号生成装置
US8887222B2 (en) * 2011-09-14 2014-11-11 Qualcomm Incorporated Multicasting in a wireless display system
US9503171B2 (en) * 2013-01-04 2016-11-22 Electronics And Telecommunications Research Institute Method for transmitting signal using multiple antennas
EP3020144B1 (en) * 2013-07-08 2021-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming
US20160261325A1 (en) * 2013-11-04 2016-09-08 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
WO2017073048A1 (ja) * 2015-10-30 2017-05-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法及び受信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037615B2 (ja) * 2007-07-05 2012-10-03 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
WO2011055536A1 (ja) 2009-11-04 2011-05-12 日本電気株式会社 無線通信システムの制御方法、無線通信システム、及び無線通信装置
JP2015523757A (ja) * 2012-04-30 2015-08-13 サムスン エレクトロニクス カンパニー リミテッド 多数のアンテナを有する無線システムにおける制御チャンネルビーム管理のための装置及び方法
JP2015119349A (ja) * 2013-12-18 2015-06-25 株式会社Nttドコモ 無線基地局、移動局、及び無線通信方法
JP2015185952A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置

Also Published As

Publication number Publication date
US20200350978A1 (en) 2020-11-05
CN109716668B (zh) 2022-09-09
US20230261730A1 (en) 2023-08-17
EP4092924A1 (en) 2022-11-23
JPWO2018056158A1 (ja) 2019-06-27
CN109716668A (zh) 2019-05-03
CN115361046A (zh) 2022-11-18
JP7148404B2 (ja) 2022-10-05
US20190222294A1 (en) 2019-07-18
US11671166B2 (en) 2023-06-06
EP3518432A1 (en) 2019-07-31
EP3518432A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP7336474B2 (ja) 送信装置および送信方法
JP7506228B2 (ja) 受信装置、及び通信方法
US20230261730A1 (en) Transmitting method, transmitting device, receiving method, and receiving device
WO2019151164A1 (ja) 通信装置、及び、通信装置の制御方法
JP7366757B2 (ja) 通信システム、及び、制御方法
JP2024098080A (ja) 通信装置、及び、通信方法
WO2019239881A1 (ja) 送信方法、および送信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852935

Country of ref document: EP

Effective date: 20190423