WO2015064498A1 - フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物 - Google Patents

フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物 Download PDF

Info

Publication number
WO2015064498A1
WO2015064498A1 PCT/JP2014/078338 JP2014078338W WO2015064498A1 WO 2015064498 A1 WO2015064498 A1 WO 2015064498A1 JP 2014078338 W JP2014078338 W JP 2014078338W WO 2015064498 A1 WO2015064498 A1 WO 2015064498A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
phenyl
acrylate
diphenyl carbonate
mol
Prior art date
Application number
PCT/JP2014/078338
Other languages
English (en)
French (fr)
Inventor
亮 相澤
武士 松尾
直志 村田
浩幸 森
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2014555001A priority Critical patent/JP6459515B2/ja
Priority to KR1020167006357A priority patent/KR101821905B1/ko
Priority to EP14859028.4A priority patent/EP3064486B1/en
Priority to CN201480059411.6A priority patent/CN105722815B/zh
Priority to US15/025,507 priority patent/US9771315B2/en
Publication of WO2015064498A1 publication Critical patent/WO2015064498A1/ja
Priority to US15/284,750 priority patent/US9783480B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/42Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • C07C67/11Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond being mineral ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a method for producing phenyl (meth) acrylate and a phenyl (meth) acrylate composition.
  • Patent Document 1 Several methods have been proposed for producing phenyl (meth) acrylate (for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).
  • Patent Document 1 discloses a method of dehydrating (meth) acrylic acid and phenol under an acid catalyst.
  • Patent Document 2 discloses a method of reacting (meth) acrylic acid ester with diphenyl carbonate.
  • Non-Patent Document 1 discloses a method of reacting (meth) acrylic acid chloride and phenol in the presence of an amine.
  • Patent Document 1 since phenyl (meth) acrylate is decomposed by water produced by the reaction, it is difficult to bias the equilibrium of the reaction to the production system, and phenyl (meth) acrylate is efficiently synthesized. Can not do it.
  • the method described in Patent Document 2 requires an excess of (meth) acrylic acid ester relative to diphenyl carbonate, so that the amount of phenyl (meth) acrylate produced per reaction volume is small.
  • the reaction apparatus may be corroded by hydrogen chloride derived from the raw material (meth) acrylic acid chloride.
  • (meth) acrylic acid chloride is expensive, the manufacturing cost of the phenyl (meth) acrylate manufactured becomes high.
  • an object of the present invention is to provide a method capable of producing phenyl (meth) acrylate at low cost and in high yield.
  • the present inventors have found that the above object can be achieved by reacting (meth) acrylic acid and diphenyl carbonate, and have completed the present invention. . That is, the present invention includes the following [1] to [13].
  • the NR 1 R 2 group is bonded to any one of the 2-position, 3-position and 4-position of the pyridine ring.
  • R 1 and R 2 are each independently hydrogen, substituted or An unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, wherein R 1 and R 2 are optional; To form a cyclic structure.
  • R 3 represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms. 30 aryl groups.
  • phenyl (meth) acrylate can be produced at low cost and in high yield.
  • (meth) acrylic acid and diphenyl carbonate are reacted. That is, in the method according to the present invention, (meth) acrylic acid and diphenyl carbonate are used as raw materials, and these are reacted. When carbon dioxide is by-produced, the reaction becomes non-equilibrium and the raw materials can be completely reacted. Therefore, in the method according to the present invention, phenyl (meth) acrylate can be produced at a low cost and in a high yield.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Phenyl (meth) acrylate means phenyl acrylate and / or phenyl methacrylate.
  • the MAA adduct (methacrylic acid adduct) is a compound represented by the formula (3).
  • the AA adduct (acrylic acid adduct) is a compound represented by the formula (4).
  • the (meth) acrylic acid adduct means a compound represented by the formula (3) and / or a compound represented by the formula (4).
  • the PhOH adduct (phenol adduct) is a compound represented by the following formula (5). Moreover, a phenylmethacrylate dimer is a compound represented by following formula (6). The PHA-PhOH adduct is a compound represented by the following formula (7).
  • Diphenyl carbonate The purity of diphenyl carbonate used in the present invention is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and 85% by mass or more. Is more preferably 90% by mass or more, and most preferably 95% by mass or more. By using diphenyl carbonate having a purity of 50% by mass or more, the production amount of phenyl (meth) acrylate per reaction volume can be increased.
  • (Meth) acrylic acid The purity of (meth) acrylic acid used in the present invention is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more. Preferably, it is more preferably 85% by mass or more, particularly preferably 90% by mass or more, and most preferably 95% by mass or more.
  • (meth) acrylic acid having a purity of 50% by mass or more the amount of phenyl (meth) acrylate produced per reaction volume can be increased.
  • methacrylic acid is preferable.
  • methacrylic acid the phenyl ester can be obtained in a high yield by a short reaction.
  • a catalyst may or may not be used, but it is preferable to use it from the viewpoint of improving the reaction rate.
  • the catalyst is not particularly limited, but it is possible to use a nitrogen-containing organic compound, a Group 1 metal compound, a Group 2 metal compound, a trifluoromethanesulfonic acid metal compound, or the like of phenyl (meth) acrylate. This is preferable from the viewpoint of improving the production rate.
  • These catalysts may be used individually by 1 type, and may use 2 or more types together.
  • the nitrogen-containing organic compound is not particularly limited, and for example, primary amines such as monomethylamine, aniline, o-toluidine, o-anisidine; dimethylamine, diethylamine, piperidine Secondary amines such as: trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, diethylisopropylamine, tri-n-butylamine, triisobutylamine, tri-tert-butylamine, tri-n-octylamine, tri- And tertiary amines such as 2-ethylhexylamine and 1,4-diazabicyclo [2.2.2] octane; and heterocyclic compounds such as pyridine, pyrrole, quinoline and acridine. Further, a nitrogen-containing organic compound having two or more of a primary amine moiety, a secondary amine moiety, a terti
  • nitrogen-containing organic compounds a nitrogen-containing organic compound having two or more nitrogen atoms in one molecule is preferable, and a nitrogen-containing organic compound having two or more nitrogen atoms having a conjugated interaction is more preferable.
  • the nitrogen-containing organic compound include 4-aminopyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, imidazole, 1-methylimidazole, pyrimidine, 1,8-diazabicyclo [5.4.0] undec-7. -Can mention en.
  • the nitrogen-containing organic compound represented by the formula (1) or (2) is particularly preferably a phenyl (meth) acrylate production rate. It is preferable from the viewpoint of improvement.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and an n-octyl group. Group, 2-ethylhexyl and the like.
  • Examples of the alkenyl group include a vinyl group, an allyl group, and a 1-butenyl group.
  • Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a 9-anthracenyl group.
  • Examples of the substituent of the alkyl group, alkenyl group and aryl group include a fluoro group, a chloro group, a bromo group, an iodo group, a methoxy group, an ethoxy group, an acetyl group, a trimethylsilyl group, a dimethylphosphino group, a nitrile group, and a nitro group.
  • R 1 and R 2 When R 1 and R 2 are bonded to form a cyclic structure, a carbon-carbon bond, a carbon-oxygen bond, a carbon-nitrogen bond, a carbon-sulfur bond, a sulfur-sulfur bond, a carbon-phosphorus bond, R 1 and R 2 may be bonded by a carbon-silicon bond or the like.
  • the substituted or unsubstituted alkyl group, alkenyl group and aryl group of R 3 in the formula (3) can be the same groups as R 1 and R 2 in the formula (1).
  • Examples of the nitrogen-containing organic compound represented by the formula (1) include 2-aminopyridine, 2- (methylamino) pyridine, 2-dimethylaminopyridine, 3-aminopyridine, 3- (methylamino) pyridine, 3-dimethylaminopyridine, 4-aminopyridine, 4- (methylamino) pyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-anilinopyridine, 4-pyrrolidinopyridine, 4- (4-pyridyl) morpholine , 4- (4-aminopiperidino) pyridine and the like.
  • Examples of the nitrogen-containing organic compound represented by the formula (2) include imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 1-phenylimidazole and the like. Is mentioned.
  • nitrogen-containing organic compounds represented by the formula (1) or (2) 4-aminopyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, imidazole, and 1-methylimidazole are preferable, 4-aminopyridine, 4-Dimethylaminopyridine and 4-diethylaminopyridine are more preferable. These may use 1 type and may use 2 or more types together.
  • the Group 1 metal compound is not particularly limited. As the Group 1 metal, lithium, sodium, and potassium are preferable, lithium and sodium are more preferable, and lithium is further preferable.
  • the Group 1 metal compound is preferably a compound having a ligand.
  • the ligand include (meth) acrylate ion, formate ion, acetate ion, acetylacetonate ion, trifluoro-2,4-pentanedionate ion, phenoxy ion, methoxy ion, hydroxide ion, carbonate Ions, bicarbonate ions, and the like.
  • the ligand is preferably an ionic ligand, and more preferably an ionic ligand composed of an organic molecule from the viewpoint of improving the production rate of phenyl (meth) acrylate.
  • the ionic ligand composed of an organic molecule is preferably a carboxylate ion ligand or an aromatic alkoxy ion ligand, and is preferably a (meth) acrylate ion ligand or a phenoxy ion ligand. More preferred are a methacrylate ion ligand and a phenoxy ion ligand.
  • Examples of the Group 1 metal compound having an ionic ligand composed of an organic molecule include lithium (meth) acrylate, lithium formate, lithium acetate, lithium phenoxide, lithium methoxide, sodium (meth) acrylate, sodium formate. Sodium acetate, sodium phenoxide, sodium methoxide, potassium (meth) acrylate, potassium formate, potassium acetate, potassium phenoxide, potassium methoxide and the like.
  • lithium (meth) acrylate, sodium (meth) acrylate, potassium (meth) acrylate, lithium phenoxide, sodium phenoxide, potassium phenoxide are preferred, lithium (meth) acrylate, sodium (meth) acrylate, Lithium phenoxide and sodium phenoxide are more preferable, lithium (meth) acrylate and lithium phenoxide are more preferable, and lithium methacrylate and lithium phenoxide are particularly preferable.
  • lithium (meth) acrylate, sodium (meth) acrylate, potassium (meth) acrylate, lithium phenoxide, sodium phenoxide, potassium phenoxide are preferred, lithium (meth) acrylate, sodium (meth) acrylate, Lithium phenoxide and sodium phenoxide are more preferable, lithium (meth) acrylate and lithium phenoxide are more preferable, and lithium methacrylate and lithium phenoxide are particularly preferable. These may use 1 type and may use 2 or more types together.
  • the Group 2 metal compound is not particularly limited. As the Group 2 metal, beryllium, magnesium and calcium are preferable, magnesium and calcium are more preferable, and magnesium is more preferable.
  • the Group 2 metal compound is preferably a compound having a ligand.
  • the ligand can be the same ligand as the Group 1 metal compound.
  • the Group 2 metal compound is preferably a magnesium compound having an ionic ligand composed of an organic molecule.
  • Group 2 metal compound having an ionic ligand composed of an organic molecule examples include beryllium (meth) acrylate, beryllium formate, beryllium acetate, beryllium phenoxide, beryllium methoxide, magnesium (meth) acrylate, and magnesium formate.
  • magnesium (meth) acrylate, calcium (meth) acrylate, magnesium phenoxide, calcium phenoxide, magnesium acetylacetonate, and calcium acetylacetonate are preferred, and magnesium (meth) acrylate, magnesium phenoxide, magnesium acetylacetonate Are more preferred, magnesium (meth) acrylate and magnesium phenoxide are more preferred, and magnesium methacrylate and magnesium phenoxide are particularly preferred. These may use 1 type and may use 2 or more types together.
  • Trifluoromethanesulfonic acid metal compound The trifluoromethanesulfonic acid metal compound is not particularly limited.
  • the metal contained in the trifluoromethanesulfonic acid metal compound include samarium, scandium, lanthanum, cerium, tin, copper, europium, hafnium, neodymium, nickel, silver, thulium, ytterbium, yttrium, and zinc. Of these, samarium, scandium, lanthanum, cerium, and hafnium are preferred, samarium, scandium, and lanthanum are more preferred, and samarium is more preferred.
  • trifluoromethanesulfonic acid metal compound samarium trifluoromethanesulfonate, scandium trifluoromethanesulfonate, and lanthanum trifluoromethanesulfonate are preferable, and samarium trifluoromethanesulfonate is more preferable. These may use 1 type and may use 2 or more types together.
  • the amount of (meth) acrylic acid used in the present invention is not particularly limited as long as phenyl (meth) acrylate is efficiently obtained, but with respect to 1 mol of diphenyl carbonate. 0.1 mol or more, preferably 0.5 mol or more, more preferably 0.8 mol or more, still more preferably 0.9 mol or more, and particularly preferably 0.95 mol or more.
  • the amount of (meth) acrylic acid can be 5 mol or less, preferably 3 mol or less, more preferably 2 mol or less, and still more preferably 1.6 mol or less, relative to 1 mol of diphenyl carbonate. 1.3 mol or less is particularly preferable.
  • the amount of the catalyst used is not particularly limited as long as phenyl (meth) acrylate is efficiently obtained, but it is 0.00001 mol or more per 1 mol of diphenyl carbonate.
  • 0.00005 mol to 1 mol preferably 0.0001 mol to 0.6 mol, more preferably 0.001 mol to 0.3 mol, More preferably, it is more than mol and 0.2 mol or less, 0.03 mol or more and 0.15 mol or less is especially preferable, and 0.05 mol or more and 0.1 mol or less is most preferable.
  • the catalyst may be dissolved in the reaction solution or not dissolved, but is preferably dissolved.
  • the production rate of phenyl (meth) acrylate can be improved.
  • reaction When reacting (meth) acrylic acid and diphenyl carbonate (hereinafter sometimes simply referred to as “reaction”), a solvent may be used, but it is preferable not to use a solvent from the viewpoint of productivity.
  • a solvent the kind is not specifically limited unless it reacts with (meth) acrylic acid, diphenyl carbonate, a catalyst, and phenyl (meth) acrylate.
  • the solvent examples include hydrocarbon solvents such as hexane, toluene and xylene; ether solvents such as diethyl ether and tetrahydrofuran; ketone solvents such as acetone and methyl ethyl ketone; amide solvents such as dimethylformamide and dimethylacetamide. It is done. These may use 1 type and may use 2 or more types together.
  • the reaction temperature is not particularly limited, but is preferably 60 ° C. or higher and 180 ° C. or lower, more preferably 80 ° C. or higher and 160 ° C. or lower, still more preferably 95 ° C. or higher and 150 ° C. or lower, 110 It is particularly preferable that the temperature is not lower than 140 ° C and not higher than 140 ° C. By setting the reaction temperature to 60 ° C. or higher, the reaction can proceed smoothly. By setting the reaction temperature to 180 ° C. or lower, polymerization and side reactions can be suppressed.
  • the reaction temperature does not need to be constant and may be changed within a preferable range.
  • the reaction time is not particularly limited and can be appropriately selected depending on the scale and conditions of the reaction.
  • the reaction time can be 1 hour or more and 80 hours or less, preferably 2 hours or more and 40 hours or less, more preferably 3 hours or more and 20 hours or less. By setting the reaction time to 1 hour or longer, the reaction can proceed smoothly. By setting the reaction time to 80 hours or less, polymerization and side reactions can be suppressed.
  • the pressure at the time of reacting is not particularly limited, and may be any of a reduced pressure state, an atmospheric pressure state, and a pressurized state.
  • the form of the reactor for carrying out the reaction is not particularly limited, and a batch tank reactor, a continuous tank reactor, a continuous tube reactor or the like can be used, and a batch tank reactor is preferable. .
  • the method of introducing the reaction raw materials ((meth) acrylic acid, diphenyl carbonate, catalyst, solvent, etc.) into the reactor is not particularly limited, and all the reaction raw materials are reacted at one time before or during heating. Or part or all of the reaction raw materials may be added stepwise during heating, or part or all of the reaction raw materials may be added continuously during heating. Moreover, the introduction method which combined these may be used.
  • a reaction liquid containing diphenyl carbonate and a catalyst when a catalyst is used is preferably added in portions or continuously, and more preferably continuously added.
  • divided addition means adding (meth) acrylic acid to the reaction solution in two or more portions.
  • continuous addition means adding (meth) acrylic acid continuously to a reaction liquid by dripping etc. Continuous addition may be performed in two or more sections.
  • each addition amount may or may not be constant, but it is preferable to reduce the addition amount by one of the two adjacent additions. More preferably, the amount added is reduced with all additions. Further, the interval of addition may be constant, increased, or decreased, but is preferably constant or increased, and more preferably increased.
  • the addition rate may be constant, increased, or decreased, but it is preferable to reduce the addition rate in a part of the continuous addition period. Moreover, it is preferable that the addition rate is constant in all the sections to be continuously added or the addition rate is decreased.
  • the concentration of (meth) acrylic acid in the reaction solution is not particularly limited, and may be constant or not constant. However, it is preferable that the concentration of (meth) acrylic acid is low in a part of the section where the reaction is performed, and it is more preferable that the concentration of (meth) acrylic acid is low in all the sections where the reaction is performed. Specifically, when the concentration of (meth) acrylic acid is low, the number of moles of (meth) acrylic acid in the reaction solution is divided by the sum of the number of moles of diphenyl carbonate and the number of moles of phenyl (meth) acrylate. The value (molar ratio) is 0.0001 or more and 1 or less.
  • the molar ratio is preferably 0.0001 or more and 0.8 or less, more preferably 0.0001 or more and 0.6 or less, and further preferably 0.0001 or more and 0.4 or less. It is especially preferable that it is 0.0001 or more and 0.2 or less.
  • the temperature of the reaction solution is not particularly limited, but is preferably 60 ° C or higher and 180 ° C or lower, and 80 ° C or higher and 160 ° C or lower. Is more preferably 95 ° C. or higher and 150 ° C. or lower, and particularly preferably 110 ° C. or higher and 140 ° C. or lower.
  • the time required for adding (meth) acrylic acid in portions or continuously is not particularly limited, but is preferably 30 minutes or more, more preferably 60 minutes or more, and 90 minutes or more. More preferably, it is particularly preferably 120 minutes or longer.
  • the gas phase part in the reaction vessel is oxygenated. It is preferable to use a gas atmosphere, and it is more preferable to blow an oxygen-containing gas such as oxygen or air into the reaction solution.
  • the oxygen-containing gas may be introduced from two or more locations in the reaction vessel.
  • a polymerization inhibitor into the reaction solution so that the polymerization inhibitor coexists in the reaction solution.
  • the polymerization inhibitor is not particularly limited.
  • quinone polymerization inhibitors such as benzoquinone; phenol, 1,4-benzenediol, 4-methoxyphenol, 2,6-di-tert-butylphenol, 2 , 4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, etc.
  • Phenol polymerization inhibitors include amine polymerization inhibitors such as alkylated diphenylamine, N, N′-diphenyl-p-phenylenediamine, phenothiazine; 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (HO-TEMPO), 4-benzoyloxy-2,2,6,6-tetramethylpiperi N-oxyl polymerization inhibitors such as N-oxyl (BTOX) and 4-acetoxy-2,2,6,6-tetramethylpiperidine-N-oxyl; metallic copper, copper sulfate, copper dimethyldithiocarbamate, diethyl Examples thereof include copper dithiocarbamate polymerization inhibitors such as copper dithiocarbamate and copper dibutyldithiocarbamate.
  • amine polymerization inhibitors such as alkylated diphenylamine, N, N′-diphenyl-p-phenylenediamine, phenothiazin
  • phenol, 1,4-benzenediol, 4-methoxyphenol, phenothiazine, HO-TEMPO and BTOX are preferred, phenol, 1,4-benzenediol, 4-methoxyphenol and BTOX are more preferred, and phenol is further preferable.
  • These polymerization inhibitors may be used alone or in combination of two or more.
  • the phenyl (meth) acrylate obtained in the present invention can be purified as necessary. It does not specifically limit about the purification method, A well-known method can be used.
  • Examples of the method for purifying phenyl (meth) acrylate include liquid separation, distillation, and crystallization. These may be implemented alone or in combination of two or more. It is preferable to purify phenyl (meth) acrylate by liquid separation and distillation.
  • the phenyl (meth) acrylate When the phenyl (meth) acrylate is washed by liquid separation, it can be washed using an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the alkali concentration and the number of washings of the aqueous alkali solution to be used can be appropriately selected according to the reaction conditions and the like.
  • the distillation method is not particularly limited, and examples thereof include simple distillation, precision distillation, and thin film distillation. Distillation may be performed under reduced pressure, atmospheric pressure, or increased pressure, but is preferably performed under reduced pressure.
  • Phenyl (meth) acrylate composition (hereinafter also referred to as the first composition) according to the present invention comprises phenyl (meth) acrylate in an amount of 90% by mass to 99.999% by mass. And 0.001 mass% or more and 10 mass% or less of diphenyl carbonate.
  • the first composition preferably contains 95% by mass or more and 99.999% by mass or less of phenyl (meth) acrylate, and 0.001% by mass or more and 5% by mass or less of diphenyl carbonate, and 98% of phenyl (meth) acrylate is contained.
  • the first composition contains 90% by mass or more and 99.999% by mass or less of phenyl (meth) acrylate
  • the influence on the polymer physical properties can be suppressed.
  • the first composition contains 0.001 mass% or more and 10 mass% or less of diphenyl carbonate
  • polymerization during storage is suppressed and handling becomes easy.
  • unexpected polymerization can be suppressed by containing diphenyl carbonate in an amount of 0.001 mass% to 10 mass%.
  • the first composition may comprise 90% by mass or more and 99.999% by mass or less of phenyl (meth) acrylate and 0.001% by mass or more and 10% by mass or less of diphenyl carbonate. That is, the first composition may have a total of phenyl (meth) acrylate and diphenyl carbonate of 100% by mass.
  • the first composition can be suitably produced by the method for producing phenyl (meth) acrylate according to the present invention.
  • the contents of phenyl (meth) acrylate and diphenyl carbonate can be adjusted within the range according to the present invention, for example, by changing the catalyst and reaction time.
  • the phenyl (meth) acrylate composition (hereinafter also referred to as the second composition) according to the present invention comprises phenyl (meth) acrylate in an amount of 90% by mass to 99.999% by mass, and (meth) acrylic acid addition.
  • the body is contained in an amount of 0.001% by mass to 10% by mass.
  • the second composition preferably contains 95% by mass to 99.999% by mass of phenyl (meth) acrylate and 0.001% by mass to 5% by mass of (meth) acrylic acid adduct.
  • (meth) acrylate It is more preferable that 98% by mass or more and 99.999% by mass or less of (meth) acrylate and 0.001% by mass or more and 2% by mass or less of (meth) acrylic acid adduct are included, and 99% by mass or more of phenyl (meth) acrylate. It is more preferable that 99.999 mass% or less and (meth) acrylic acid adduct are contained in an amount of 0.001 mass% to 1 mass%, and phenyl (meth) acrylate is 99.5 mass% to 99.999 mass%. And (meth) acrylic acid adducts are particularly preferably contained in an amount of 0.001% to 0.5% by mass.
  • the second composition contains 90% by mass or more and 99.999% by mass or less of phenyl (meth) acrylate, the influence on the physical properties of the polymer can be suppressed. Moreover, melting
  • a 2nd composition may consist of 90 mass% or more and 99.999 mass% phenyl (meth) acrylate, and 0.001 mass% or more and (meth) acrylic acid adduct. That is, the second composition may have a total of phenyl (meth) acrylate and (meth) acrylic acid adduct of 100% by mass.
  • the second composition can be suitably produced by the method for producing phenyl (meth) acrylate according to the present invention.
  • the content of phenyl (meth) acrylate and (meth) acrylic acid adduct can be adjusted within the range according to the present invention, for example, by changing the method of introducing (meth) acrylic acid into the reactor. .
  • the storage container for the first composition and the second composition is not particularly limited, and examples thereof include a glass container, a resin container, a metal storage tank, a drum can, and a lorry.
  • the first composition and the second composition are not particularly limited.
  • food additives for example, food additives, cosmetic additives, pharmaceutical raw materials, fragrances, synthetic resin raw materials, resin additives, paints, various materials, etc. Can be used.
  • Diphenyl carbonate having a purity of 99% by mass purchased from Tokyo Chemical Industry Co., Ltd. was used.
  • Methacrylic acid having a purity of 99.9% by mass produced by Mitsubishi Rayon Co., Ltd. was used.
  • Acrylic acid with a purity of 98% by mass purchased from Wako Pure Chemical Industries, Ltd. was used.
  • Example 1 In a 200 mL glass container equipped with an air introduction tube, 25.8 g (300 mmol) of methacrylic acid, 40.0 g (187 mmol) of diphenyl carbonate, 0.6 g (6 mmol) of sodium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.02 g of benzenediol and 0.02 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added. While air was blown into the mixture at a flow rate of 10 mL / min, the internal temperature was heated to 140 ° C. and stirred for 6 hours.
  • Examples 2 to 14> instead of using 0.6 g (6 mmol) of sodium methacrylate as the catalyst, the same operation as in Example 1 was performed except that the catalyst species and the catalyst amount (charge amount) shown in Table 1 were used. Table 1 also shows the conversion rate of diphenyl carbonate, the yield of phenyl methacrylate, and the yield of phenyl methacrylate relative to diphenyl carbonate in the obtained reaction solution.
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • phenyl methacrylate can be efficiently obtained with various catalysts (amine compounds, Group 1 metal compounds, Group 2 metal compounds, and trifluoromethanesulfonic acid metal compounds).
  • Example 15 A 200 mL glass three-necked flask equipped with a Dimroth cooler and an air introduction tube was charged with 45.0 g (523 mmol) of methacrylic acid, 79.9 g (373 mmol) of diphenyl carbonate, 4.9 g (45 mmol) of sodium methacrylate as a catalyst, As polymerization inhibitors, 0.04 g of 1,4-benzenediol and 0.04 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added.
  • reaction solution was transferred to a separatory funnel, 19 g of n-hexane and 42 g of a 15% by mass aqueous sodium hydroxide solution were added, shaken vigorously, and allowed to stand to separate into an oil layer and an aqueous layer.
  • the aqueous layer was extracted from the bottom, and then the same operation was carried out without adding n-hexane to the oil layer, once with 60 g of 15% by mass aqueous sodium hydroxide, once with 40 g of 15% by mass aqueous sodium hydroxide, The oil layer was washed twice with 50 g of water.
  • the obtained liquid was transferred to a 100 mL flask equipped with an air introduction tube, and distilled at 71 to 74 ° C. by distillation at a pressure of 1 to 2 torr (0.1 to 0.3 kPa) while introducing air.
  • phenyl methacrylate having a purity of 99.9% by mass was obtained.
  • Example 16> In a 300 mL glass four-necked flask equipped with a Dimroth cooler and an air introduction tube, 48.2 g (560 mmol) of methacrylic acid, 100.3 g (468 mmol) of diphenyl carbonate, 5.5 g (28 mmol) of magnesium methacrylate as a catalyst, As polymerization inhibitors, 0.02 g of 1,4-benzenediol and 0.02 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added. While air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated to an internal temperature of 140 ° C. and stirred for 9 hours.
  • the mass of the reaction solution at the end of the reaction was 132 g.
  • the composition of this reaction solution was 52% by mass of phenyl methacrylate, 34% by mass of phenol, 5% by mass of methacrylic acid, the rest was a magnesium compound derived from a catalyst, etc., and diphenyl carbonate was 0.003% by mass or less. .
  • reaction solution was transferred to a separatory funnel, 23 g of n-hexane and 55 g of water were added, and the mixture was shaken vigorously and allowed to stand to separate into an oil layer and an aqueous layer.
  • the aqueous layer was extracted from the bottom, and then the same operation was performed on the oil layer without adding n-hexane, and once with 55 g of water, once with 50 g of a 15% by mass aqueous sodium hydroxide solution, and 15% by mass sodium hydroxide.
  • the oil layer was washed once with 100 g of aqueous solution, twice with 50 g of 15 mass% aqueous sodium hydroxide solution and twice with 50 g of water.
  • the obtained liquid was transferred to a 100 mL flask equipped with an air introduction tube, and distilled at 57 to 74 ° C. by distillation at a pressure of 2 to 11 torr (0.3 to 1.5 kPa) while introducing air.
  • phenyl methacrylate having a purity of 99.6% by mass was obtained.
  • This distillate contained 0.029% by mass of the MAA adduct.
  • Example 17 In a 200 mL glass container equipped with an air inlet tube, 8.0 g (93 mmol) of methacrylic acid, 40.0 g (187 mmol) of diphenyl carbonate, 2.2 g (11 mmol) of magnesium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.02 g of benzenediol, 0.02 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 3.2 g (19 mmol) of diphenyl ether as an internal standard substance were added.
  • Example 18 to 21 The same operation as in Example 17 was performed except that the amount of methacrylic acid put in the glass container was changed to the amount shown in Table 2.
  • Table 2 also shows the molar ratio of methacrylic acid used as a raw material to diphenyl carbonate used as a raw material, and the amount of phenyl methacrylate produced every heating hour.
  • MAA represents methacrylic acid
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • Example 22 In a 200 mL glass container equipped with an air introduction tube, 21.2 g (246 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 1.2 g (6 mmol) of magnesium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.006 g of benzenediol, 0.006 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While air was blown into the mixture at a flow rate of 10 mL / min, the mixture was heated to an internal temperature of 100 ° C. and stirred for 16 hours.
  • the conversion rate of diphenyl carbonate in the obtained reaction liquid was 28.2%.
  • the produced phenyl methacrylate was 8.8 g (54 mmol).
  • the yield of phenyl methacrylate relative to diphenyl carbonate was 27%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 94%.
  • Examples 23 to 26> The same operation as in Example 22 was performed except that the reaction temperature was changed to the values shown in Table 3.
  • Table 3 also shows the conversion rate of diphenyl carbonate, the amount of phenyl methacrylate produced, the yield of phenyl methacrylate relative to diphenyl carbonate, and the selectivity of phenyl methacrylate.
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • Example 27 In a 200 mL glass container equipped with an air inlet tube, 21.2 g (246 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 2.4 g (12 mmol) of magnesium methacrylate as a catalyst, and phenol of 0.2 as a polymerization inhibitor. 001 g and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated to an internal temperature of 130 ° C. and stirred for 5 hours.
  • the polymerization inhibitor was changed from 1,4-benzenediol and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl to phenol in a high yield even if it was replaced with phenol. was found to be obtained.
  • Example 28 In a 50 mL glass three-necked flask equipped with an air inlet tube, 6.5 g (90 mmol) of acrylic acid, 16.0 g (75 mmol) of diphenyl carbonate, 0.5 g (4 mmol) of 4-dimethylaminopyridine as a catalyst, polymerization prohibited As an agent, 0.004 g of phenol and 1.3 g (7 mmol) of diphenyl ether as an internal standard substance were added. While air was blown into this mixed solution at a flow rate of 10 mL / min, the internal temperature was heated to 130 ° C. and stirred for 6 hours. Then, it heated so that internal temperature might be 140 degreeC, and stirred for 3 hours.
  • Example 29 In a 200 mL glass container equipped with an air inlet tube, 21.2 g (246 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 3.6 g (18 mmol) of magnesium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.006 g of benzenediol, 0.006 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated to an internal temperature of 130 ° C. and stirred for 5 hours.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 95%.
  • the produced phenyl methacrylate was 29.3 g (180 mmol).
  • the yield of phenyl methacrylate with respect to diphenyl carbonate was 88%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 93%.
  • Example 30 In a 50 mL glass three-necked flask equipped with an air introduction tube, 11.2 g (131 mmol) of methacrylic acid, 23.2 g (108 mmol) of diphenyl carbonate, 1.4 g (13 mmol) of sodium methacrylate as a catalyst, and as a polymerization inhibitor 0.01 g of 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl and 0.01 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added. While air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated to an internal temperature of 130 ° C. and stirred for 3.0 hours.
  • Examples 31 and 32> The same operation as in Example 30 was performed except that the amount of sodium methacrylate added to the flask was changed to the amount shown in Table 4 and the heating time was changed to the value shown in Table 4.
  • Table 4 shows the molar ratio of sodium methacrylate used as a catalyst to diphenyl carbonate used as a raw material, the heating time, the conversion rate of diphenyl carbonate in the obtained reaction solution, the amount of phenyl methacrylate formed, and the yield of phenyl methacrylate relative to diphenyl carbonate. It was written together.
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • Example 33 In a 200 mL glass container equipped with an air inlet tube, 22.6 g (263 mmol) of methacrylic acid, 43.0 g (201 mmol) of diphenyl carbonate, 0.7 g (6 mmol) of sodium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.02 g of benzenediol and 0.02 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added. While air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated to an internal temperature of 140 ° C. and stirred for 3.5 hours.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 36%.
  • the produced phenyl methacrylate was 11.5 g (71 mmol).
  • the yield of phenyl methacrylate relative to diphenyl carbonate was 35%.
  • Example 34 In a 200 mL glass container equipped with an air inlet tube, 12.3 g (143 mmol) of methacrylic acid, 43.0 g (201 mmol) of diphenyl carbonate, 0.7 g (6 mmol) of sodium methacrylate as a catalyst, and 1,4 as a polymerization inhibitor -0.02 g of benzenediol and 0.02 g of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl were added. While the air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated and stirred so that the internal temperature became 140 ° C.
  • methacrylic acid is obtained at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 hours. 1.7 g (20 mmol) of acid was added and the final methacrylic acid charge was 22.6 g (263 mmol). Stir until the heating time is 3.5 hours.
  • Table 5 shows the conversion rate of diphenyl carbonate in the reaction solution obtained, the amount of phenyl methacrylate produced, and the yield of phenyl methacrylate relative to diphenyl carbonate.
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • Example 35 In a 200 mL glass container equipped with an air inlet tube, 21.2 g (246 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 2.4 g (12 mmol) of magnesium methacrylate as a catalyst, and phenol of 0.2 as a polymerization inhibitor. 04 g and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While blowing air at a flow rate of 10 mL per minute into this mixed solution, the mixture was heated to an internal temperature of 140 ° C. and stirred for 5 hours.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 98.8%.
  • the produced phenyl methacrylate was 30.3 g (187 mmol).
  • the yield of phenyl methacrylate with respect to diphenyl carbonate was 91%.
  • the produced MAA adduct was 1.05 g (4.2 mmol).
  • the yield of MAA adduct based on diphenyl carbonate was 2.07%.
  • the generated PhOH adduct was 0.27 g (1.1 mmol).
  • the yield of the PhOH adduct based on diphenyl carbonate was 0.51%.
  • the produced phenyl methacrylate dimer was 0.84 g (2.6 mmol).
  • the yield of phenyl methacrylate dimer based on diphenyl carbonate was 2.52%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 92%.
  • Example 36 In a 200 mL glass container equipped with an air introduction tube, 9.2 g (106 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 2.4 g (12 mmol) of magnesium methacrylate as a catalyst, and phenol of 0.2 as a polymerization inhibitor. 04 g and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While the air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated and stirred so that the internal temperature became 140 ° C. When the time when the internal temperature reached 140 ° C.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 98.9%.
  • the produced phenyl methacrylate was 30.7 g (189 mmol).
  • the yield of phenyl methacrylate with respect to diphenyl carbonate was 92%.
  • the produced MAA adduct was 0.57 g (2.3 mmol).
  • the yield of MAA adduct based on diphenyl carbonate was 1.12%.
  • the produced PhOH adduct was 0.19 g (0.8 mmol).
  • the yield of PhOH adduct based on diphenyl carbonate was 0.37%.
  • the produced phenyl methacrylate dimer was 0.79 g (2.4 mmol).
  • the yield of phenyl methacrylate dimer based on diphenyl carbonate was 2.38%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 93%.
  • Example 37 In a 200 mL glass container equipped with an air introduction tube, 9.2 g (106 mmol) of methacrylic acid, 44.0 g (205 mmol) of diphenyl carbonate, 2.4 g (12 mmol) of magnesium methacrylate as a catalyst, and phenol of 0.2 as a polymerization inhibitor. 04 g and 3.5 g (21 mmol) of diphenyl ether as an internal standard substance were added. While the air was blown into the mixture at a flow rate of 10 mL per minute, the mixture was heated and stirred so that the internal temperature became 140 ° C. Assuming that the time when the internal temperature reached 140 ° C.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 99.0%.
  • the produced phenyl methacrylate was 30.9 g (190 mmol).
  • the yield of phenyl methacrylate with respect to diphenyl carbonate was 93%.
  • the produced MAA adduct was 0.53 g (2.1 mmol).
  • the yield of MAA adduct based on diphenyl carbonate was 1.04%.
  • the generated PhOH adduct was 0.20 g (0.8 mmol).
  • the yield of PhOH adduct based on diphenyl carbonate was 0.39%.
  • the produced phenyl methacrylate dimer was 0.79 g (2.4 mmol).
  • the yield of phenyl methacrylate dimer based on diphenyl carbonate was 2.38%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 94%.
  • Example 38 In a 1 L glass four-necked flask equipped with a Dimroth cooler and an air introduction tube, 193.1 g (2.24 mol) of methacrylic acid, 400.0 g (1.87 mol) of diphenyl carbonate, and 21.8 g of magnesium methacrylate as a catalyst (0.11 mol), 0.4 g of phenol was added as a polymerization inhibitor.
  • the internal temperature was heated to 100 ° C. and stirred for 2 hours. Then, it heated so that internal temperature might be set to 120 degreeC, and stirred for 2 hours. Then, when it heated and stirred for 14 hours so that internal temperature might be 130 degreeC, 527.0g reaction liquid was obtained.
  • the conversion rate of diphenyl carbonate in the obtained reaction solution was 99.5%.
  • the produced phenyl methacrylate was 268.3 g (1.65 mol).
  • the yield of phenyl methacrylate with respect to diphenyl carbonate was 88%.
  • the produced MAA adduct was 11.1 g (44.7 mmol).
  • the yield of MAA adduct based on diphenyl carbonate was 2.4%.
  • the produced PhOH adduct was 3.4 g (13.3 mmol).
  • the yield of the PhOH adduct based on diphenyl carbonate was 0.7%.
  • the produced phenyl methacrylate dimer was 8.5 g (26.2 mmol).
  • the yield of phenyl methacrylate dimer based on diphenyl carbonate was 2.8%.
  • the selectivity of phenyl methacrylate (the value obtained by dividing the yield of phenyl methacrylate by the conversion rate of diphenyl carbonate) was 88%.
  • reaction solution was transferred to a separatory funnel, 120 g of n-hexane and 150 g of a 9% by mass hydrogen chloride aqueous solution were added, and the mixture was shaken vigorously and allowed to stand to separate into an oil layer and an aqueous layer.
  • the aqueous layer was extracted from the bottom, and then the same operation was carried out without adding n-hexane to the oil layer, once with 100 g of water, three times with 200 g of a 15% by weight aqueous sodium hydroxide solution, twice with 200 g of water, The oil layer was washed.
  • the obtained liquid was purified by distillation using a thin-film distillation apparatus under conditions of a heating medium temperature of 72 ° C., a pressure of 0.7 to 0.8 torr (0.09 to 0.11 kPa), and a liquid feeding amount of 3.6 mL / min.
  • a heating medium temperature of 72 ° C. a pressure of 0.7 to 0.8 torr (0.09 to 0.11 kPa)
  • a liquid feeding amount 3.6 mL / min.
  • 227.6 g (1.40 mol) of phenyl methacrylate having a purity of 99.7% by mass was obtained as a distillate.
  • the overall yield based on diphenyl carbonate was 75%.
  • the distillate contained 0.050% by mass of diphenyl carbonate, 0.006% by mass of phenol, 0.165% by mass of MAA adduct, and 0.007% by mass of PhOH adduct.
  • Example 39 In a 30 mL glass test tube, 5.6 g of a composition containing 90.0% by mass of phenyl methacrylate and 10.0% by mass of diphenyl carbonate was put. When heated in an oil bath at 120 ° C. for 6 hours, it did not polymerize and remained liquid.
  • Examples 40 to 44> The same operation as in Example 39 was performed except that the contents of the glass test tube were changed to those shown in Table 7.
  • the state of the contents after heating is also shown in Table 7.
  • DPC represents diphenyl carbonate
  • PHMA represents phenyl methacrylate.
  • Example 45 In a 50 mL glass three-necked flask equipped with an air inlet tube, 12.1 g (168 mmol) of acrylic acid, 12.0 g (56 mmol) of diphenyl carbonate, 0.34 g (6 mmol) of magnesium hydroxide as a catalyst, and as a polymerization inhibitor 0.01 g of phenol and 0.95 g (5 mmol) of diphenyl ether as an internal standard substance were added. While air was blown into this mixed solution at a flow rate of 10 mL / min, the internal temperature was heated to 135 ° C. and stirred for 12 hours.
  • Example 46 The same operation as in Example 45 was performed, except that 0.34 g (6 mmol) of magnesium hydroxide placed in the flask was changed to 0.68 g (6 mmol) of 4-dimethylaminopyridine.
  • the amount of phenyl acrylate produced and the yield of phenyl acrylate with respect to diphenyl carbonate are also shown in Table 8.
  • PHA represents phenyl acrylate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 安価かつ高収率でフェニル(メタ)アクリレートを製造できる方法を提供する。本発明に係るフェニル(メタ)アクリレートの製造方法は、(メタ)アクリル酸と炭酸ジフェニルとを反応させる。また、本発明に係るフェニル(メタ)アクリレート組成物は、フェニル(メタ)アクリレートを90~99.999質量%、及び炭酸ジフェニルを0.001~10質量%含む。また、本発明に係るフェニル(メタ)アクリレート組成物は、フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び特定の化合物を0.001質量%以上10質量%以下含む。

Description

フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物
 本発明はフェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物に関する。
 フェニル(メタ)アクリレートの製造方法としては、いくつかの方法が提案されている(例えば、特許文献1、特許文献2、非特許文献1)。
 特許文献1は、(メタ)アクリル酸とフェノールとを酸触媒下で脱水反応させる方法を開示している。特許文献2は、(メタ)アクリル酸エステルと炭酸ジフェニルとを反応させる方法を開示している。非特許文献1は、(メタ)アクリル酸クロリドとフェノールとをアミン存在下で反応させる方法を開示している。
特開2011-105667号公報 特開2007-246503号公報
Journal of Organic Chemistry,1977,42,3965
 しかしながら、特許文献1に記載された方法では、反応によって生成する水によりフェニル(メタ)アクリレートが分解するため、反応の平衡を生成系に偏らせることが難しく、フェニル(メタ)アクリレートを効率よく合成することができない。特許文献2に記載された方法では、炭酸ジフェニルに対して余剰の(メタ)アクリル酸エステルを必要とするため、反応容積あたりのフェニル(メタ)アクリレートの生成量が少ない。また、非特許文献1に記載された方法では、原料の(メタ)アクリル酸クロリド由来の塩化水素により反応装置が腐食する可能性がある。また、(メタ)アクリル酸クロリドが高価であるため、製造されるフェニル(メタ)アクリレートの製造コストが高くなる。
 従って、本発明の目的は、安価かつ高収率でフェニル(メタ)アクリレートを製造できる方法を提供することにある。
 本発明者等は、従来技術の課題に鑑みて鋭意検討を重ねた結果、(メタ)アクリル酸と炭酸ジフェニルとを反応させることにより上記目的を達成できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の[1]から[13]である。
 [1](メタ)アクリル酸と炭酸ジフェニルとを反応させる、フェニル(メタ)アクリレートの製造方法。
 [2](メタ)アクリル酸と炭酸ジフェニルとを触媒存在下で反応させる、[1]に記載のフェニル(メタ)アクリレートの製造方法。
 [3]触媒が、窒素含有有機化合物、第1族金属化合物、第2族金属化合物及びトリフルオロメタンスルホン酸金属化合物から選ばれる少なくとも1種である、[2]に記載のフェニル(メタ)アクリレートの製造方法。
 [4]触媒が下記式(1)または(2)で示される窒素含有有機化合物である、[3]に記載のフェニル(メタ)アクリレートの製造方法。
Figure JPOXMLDOC01-appb-C000005
 
(式(1)中、NR基はピリジン環の2位、3位、4位のいずれか1つに結合している。RおよびRは、それぞれ独立に、水素、置換又は非置換の炭素数1~30のアルキル基、置換又は非置換の炭素数2~30のアルケニル基、或いは置換又は非置換の炭素数6~30のアリール基である。RとRが任意に結合して、環状構造を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000006
 
(式(2)中、Rは水素、置換又は非置換の炭素数1~30のアルキル基、置換又は非置換の炭素数2~30のアルケニル基、或いは置換又は非置換の炭素数6~30のアリール基である。)
 [5]第2族金属化合物が、有機分子からなるイオン性配位子を有するマグネシウム化合物である、[3]に記載のフェニル(メタ)アクリレートの製造方法。
 [6]触媒の使用量が、炭酸ジフェニル1モルに対して0.00001モル以上4モル以下である、[2]から[5]のいずれかに記載のフェニル(メタ)アクリレートの製造方法。
 [7]触媒の使用量が、炭酸ジフェニル1モルに対して0.0001モル以上0.6モル以下である、[6]に記載のフェニル(メタ)アクリレートの製造方法。
 [8]触媒の使用量が、炭酸ジフェニル1モルに対して0.03モル以上0.15モル以下である、[7]に記載のフェニル(メタ)アクリレートの製造方法。
 [9](メタ)アクリル酸の使用量が、炭酸ジフェニル1モルに対して0.1モル以上5モル以下である、[1]から[8]のいずれかに記載のフェニル(メタ)アクリレートの製造方法。
 [10](メタ)アクリル酸の使用量が、炭酸ジフェニル1モルに対して0.8モル以上1.6モル以下である、[9]に記載のフェニル(メタ)アクリレートの製造方法。
 [11](メタ)アクリル酸を、炭酸ジフェニルに対して分割添加または連続添加する、[1]から[10]のいずれかに記載のフェニル(メタ)アクリレートの製造方法。
 [12]フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上10質量%以下含む、フェニル(メタ)アクリレート組成物。
 [13]フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び下記式(3)で表される化合物および/または下記式(4)で表される化合物を0.001質量%以上10質量%以下含む、フェニル(メタ)アクリレート組成物。
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
 本発明によれば、安価かつ高収率でフェニル(メタ)アクリレートを製造することができる。
 本発明に係るフェニル(メタ)アクリレートの製造方法は、(メタ)アクリル酸と炭酸ジフェニルとを反応させる。即ち、本発明に係る方法では、原料として(メタ)アクリル酸と炭酸ジフェニルとを用い、これらを反応させる。二酸化炭素が副生することにより、反応が非平衡となり、原料を完全に反応させることができる。したがって、本発明に係る方法ではフェニル(メタ)アクリレートを安価に、かつ高収率で製造することができる。
 本発明に係るフェニル(メタ)アクリレートの製造方法について以下に詳しく説明する。なお、本明細書において、(メタ)アクリル酸は、アクリル酸および/またはメタクリル酸を意味する。また、フェニル(メタ)アクリレートは、フェニルアクリレートおよび/またはフェニルメタクリレートを意味する。また、MAA付加体(メタクリル酸付加体)は、前記式(3)で表される化合物である。また、AA付加体(アクリル酸付加体)は、前記式(4)で表される化合物である。また、(メタ)アクリル酸付加体は、前記式(3)で表される化合物および/または前記式(4)で表される化合物を意味する。また、PhOH付加体(フェノール付加体)は、下記式(5)で表される化合物である。また、フェニルメタクリレート二量体は、下記式(6)で表される化合物である。また、PHA-PhOH付加体は、下記式(7)で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
 (1)炭酸ジフェニル
 本発明で用いられる炭酸ジフェニルの純度は、特に限定されるものではないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましく、95質量%以上であることが最も好ましい。純度が50質量%以上の炭酸ジフェニルを使用することにより、反応容積あたりのフェニル(メタ)アクリレートの生成量を多くすることができる。
 (2)(メタ)アクリル酸
 本発明で用いられる(メタ)アクリル酸の純度は、特に限定されるものではないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましく、95質量%以上であることが最も好ましい。純度が50質量%以上の(メタ)アクリル酸を使用することにより、反応容積あたりのフェニル(メタ)アクリレートの生成量を多くすることができる。
 本発明で用いられる(メタ)アクリル酸としては、メタクリル酸が好ましい。メタクリル酸を用いることにより、短時間の反応でフェニルエステルを高収率で得ることができる。
 (3)触媒
 (メタ)アクリル酸と炭酸ジフェニルとを反応させる際、触媒は使用しても、使用しなくてもよいが、使用するほうが反応速度向上の観点から好ましい。該触媒としては、特に限定されるものではないが、窒素含有有機化合物、第1族金属化合物、第2族金属化合物、トリフルオロメタンスルホン酸金属化合物等を使用することが、フェニル(メタ)アクリレートの生成速度向上の観点から好ましい。これらの触媒は1種を単独で使用してもよく、2種以上を併用してもよい。
 (3-1)窒素含有有機化合物
 窒素含有有機化合物としては、特に限定されるものではなく、例えば、モノメチルアミン、アニリン、o-トルイジン、o-アニシジン等の1級アミン;ジメチルアミン、ジエチルアミン、ピペリジン等の2級アミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、ジエチルイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-tert-ブチルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、1,4-ジアザビシクロ[2.2.2]オクタン等の3級アミン;ピリジン、ピロール、キノリン、アクリジン等の複素環式化合物等が挙げられる。また、1分子内に、1級アミン部位、2級アミン部位、3級アミン部位、複素環式化合物の窒素部位のいずれか2つ以上を有する窒素含有有機化合物でもよい。
 上記窒素含有有機化合物のうち、1分子内に窒素原子を2つ以上有する窒素含有有機化合物が好ましく、2つ以上の窒素原子が共役相互作用を有する窒素含有有機化合物がより好ましい。該窒素含有有機化合物としては、例えば、4-アミノピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、イミダゾール、1-メチルイミダゾール、ピリミジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンを挙げることができる。
 上記2つ以上の窒素原子が共役相互作用を有する窒素含有有機化合物のうち、特に前記式(1)または(2)で示される窒素含有有機化合物であることが、フェニル(メタ)アクリレートの生成速度向上の観点から好ましい。前記式(1)のRおよびRにおいて、アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基等が挙げられる。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、9-アントラセニル基等が挙げられる。アルキル基、アルケニル基及びアリール基の置換基としては、例えば、フルオロ基、クロロ基、ブロモ基、ヨード基、メトキシ基、エトキシ基、アセチル基、トリメチルシリル基、ジメチルホスフィノ基、ニトリル基、ニトロ基等が挙げられる。RとRが結合して環状構造を形成している場合には、炭素-炭素結合、炭素-酸素結合、炭素-窒素結合、炭素-硫黄結合、硫黄-硫黄結合、炭素-リン結合、炭素-ケイ素結合等によりRとRが結合していてもよい。前記式(3)のRの置換又は非置換のアルキル基、アルケニル基、アリール基は、前記式(1)のRおよびRと同様の基であることができる。
 前記式(1)で表される窒素含有有機化合物としては、例えば、2-アミノピリジン、2-(メチルアミノ)ピリジン、2-ジメチルアミノピリジン、3-アミノピリジン、3-(メチルアミノ)ピリジン、3-ジメチルアミノピリジン、4-アミノピリジン、4-(メチルアミノ)ピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-アニリノピリジン、4-ピロリジノピリジン、4-(4-ピリジル)モルホリン、4-(4-アミノピペリジノ)ピリジン等が挙げられる。
 前記式(2)で表される窒素含有有機化合物としては、例えば、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、1-フェニルイミダゾール等が挙げられる。
 前記式(1)または(2)で表される窒素含有有機化合物のうち、4-アミノピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、イミダゾール、1-メチルイミダゾールが好ましく、4-アミノピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジンがより好ましい。これらは一種を用いてもよく、二種以上を併用してもよい。
 (3-2)第1族金属化合物
 第1族金属化合物としては、特に限定されない。第1族金属としては、リチウム、ナトリウム、カリウムが好ましく、リチウム、ナトリウムがより好ましく、リチウムがさらに好ましい。
 第1族金属化合物は、配位子を有する化合物であることが好ましい。配位子としては、例えば、(メタ)アクリル酸イオン、ギ酸イオン、酢酸イオン、アセチルアセトナートイオン、トリフルオロ-2,4-ペンタンジオナトイオン、フェノキシイオン、メトキシイオン、水酸化物イオン、炭酸イオン、炭酸水素イオン等が挙げられる。
 配位子は、イオン性配位子であることが好ましく、フェニル(メタ)アクリレートの生成速度向上の観点から、有機分子からなるイオン性配位子であることがより好ましい。有機分子からなるイオン性配位子は、カルボン酸イオン配位子、芳香族アルコキシイオン配位子であることが好ましく、(メタ)アクリル酸イオン配位子、フェノキシイオン配位子であることがより好ましく、メタクリル酸イオン配位子、フェノキシイオン配位子であることがさらに好ましい。
 有機分子からなるイオン性配位子を有する第1族金属化合物としては、例えば、(メタ)アクリル酸リチウム、ギ酸リチウム、酢酸リチウム、リチウムフェノキシド、リチウムメトキシド、(メタ)アクリル酸ナトリウム、ギ酸ナトリウム、酢酸ナトリウム、ナトリウムフェノキシド、ナトリウムメトキシド、(メタ)アクリル酸カリウム、ギ酸カリウム、酢酸カリウム、カリウムフェノキシド、カリウムメトキシド等が挙げられる。これらのうち、(メタ)アクリル酸リチウム、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、リチウムフェノキシド、ナトリウムフェノキシド、カリウムフェノキシドが好ましく、(メタ)アクリル酸リチウム、(メタ)アクリル酸ナトリウム、リチウムフェノキシド、ナトリウムフェノキシドがより好ましく、(メタ)アクリル酸リチウム、リチウムフェノキシドがさらに好ましく、メタクリル酸リチウム、リチウムフェノキシドが特に好ましい。これらは一種を用いてもよく、二種以上を併用してもよい。
 (3-3)第2族金属化合物
 第2族金属化合物としては、特に限定されない。第2族金属としては、ベリリウム、マグネシウム、カルシウムが好ましく、マグネシウム、カルシウムがより好ましく、マグネシウムがさらに好ましい。
 第2族金属化合物は、配位子を有する化合物であることが好ましい。配位子は、第1族金属化合物と同様の配位子であることができる。特に、フェニル(メタ)アクリレートの生成速度向上の観点から、第2族金属化合物は、有機分子からなるイオン性配位子を有するマグネシウム化合物であることが好ましい。
 有機分子からなるイオン性配位子を有する第2族金属化合物としては、例えば、(メタ)アクリル酸ベリリウム、ギ酸ベリリウム、酢酸ベリリウム、ベリリウムフェノキシド、ベリリウムメトキシド、(メタ)アクリル酸マグネシウム、ギ酸マグネシウム、酢酸マグネシウム、マグネシウムフェノキシド、マグネシウムメトキシド、マグネシウムアセチルアセトナート、ビス(トリフルオロ-2,4-ペンタンジオナト)マグネシウム、(メタ)アクリル酸カルシウム、ギ酸カルシウム、酢酸カルシウム、カルシウムフェノキシド、カルシウムメトキシド、カルシウムアセチルアセトナート、ビス(トリフルオロ-2,4-ペンタンジオナト)カルシウム等が挙げられる。これらのうち、(メタ)アクリル酸マグネシウム、(メタ)アクリル酸カルシウム、マグネシウムフェノキシド、カルシウムフェノキシド、マグネシウムアセチルアセトナート、カルシウムアセチルアセトナートが好ましく、(メタ)アクリル酸マグネシウム、マグネシウムフェノキシド、マグネシウムアセチルアセトナートがより好ましく、(メタ)アクリル酸マグネシウム、マグネシウムフェノキシドがさらに好ましく、メタクリル酸マグネシウム、マグネシウムフェノキシドが特に好ましい。これらは一種を用いてもよく、二種以上を併用してもよい。
 (3-4)トリフルオロメタンスルホン酸金属化合物
 トリフルオロメタンスルホン酸金属化合物としては、特に限定されない。トリフルオロメタンスルホン酸金属化合物に含まれる金属としては、サマリウム、スカンジウム、ランタン、セリウム、スズ、銅、ユウロピウム、ハフニウム、ネオジム、ニッケル、銀、ツリウム、イッテルビウム、イットリウム、亜鉛等を挙げることができる。これらのうち、サマリウム、スカンジウム、ランタン、セリウム、ハフニウムが好ましく、サマリウム、スカンジウム、ランタンがより好ましく、サマリウムがさらに好ましい。
 より詳細には、トリフルオロメタンスルホン酸金属化合物としては、トリフルオロメタンスルホン酸サマリウム、トリフルオロメタンスルホン酸スカンジウム、トリフルオロメタンスルホン酸ランタンが好ましく、トリフルオロメタンスルホン酸サマリウムがより好ましい。これらは一種を用いてもよく、二種以上を併用してもよい。
 (4)フェニル(メタ)アクリレートの製造
 本発明で使用する(メタ)アクリル酸の量は、効率良くフェニル(メタ)アクリレートが得られる限り特に限定されるものではないが、炭酸ジフェニル1モルに対して、0.1モル以上とすることができ、0.5モル以上が好ましく、0.8モル以上がより好ましく、0.9モル以上がさらに好ましく、0.95モル以上が特に好ましい。
 また、(メタ)アクリル酸の量は、炭酸ジフェニル1モルに対して、5モル以下とすることができ、3モル以下が好ましく、2モル以下がより好ましく、1.6モル以下がさらに好ましく、1.3モル以下が特に好ましい。
 (メタ)アクリル酸の量を炭酸ジフェニル1モルに対して、0.1モル以上5モル以下にすることにより、反応容積あたりのフェニル(メタ)アクリル酸の生成量を多くすることができる。
 本発明において触媒を使用する場合には、触媒の使用量は、効率良くフェニル(メタ)アクリレートが得られる限り特に限定されるものではないが、炭酸ジフェニル1モルに対して0.00001モル以上4モル以下とすることができ、0.00005モル以上1モル以下が好ましく、0.0001モル以上0.6モル以下がより好ましく、0.001モル以上0.3モル以下がさらに好ましく、0.01モル以上0.2モル以下がよりさらに好ましく、0.03モル以上0.15モル以下が特に好ましく、0.05モル以上0.1モル以下が最も好ましい。
 触媒の使用量を炭酸ジフェニル1モルに対して0.00001モル以上にすることにより、不純物による触媒活性の低下を効果的に抑制することができる。触媒の使用量を炭酸ジフェニル1モルに対して4モル以下とすることにより、フェニル(メタ)アクリレートの生産性や生成物の純度低下を効率的に防ぐことができる。
 また、触媒は、反応液に溶解した状態であってもよく、溶解していない状態であってもよいが、溶解した状態であることが好ましい。触媒が反応液に溶解した状態であることにより、フェニル(メタ)アクリレートの生成速度を向上させることができる。
 (メタ)アクリル酸と炭酸ジフェニルとを反応させる(以下、単に「反応」ということがある)際は、溶媒を使用してもよいが、生産性の観点から溶媒を使用しないことが好ましい。溶媒を使用する場合は、(メタ)アクリル酸、炭酸ジフェニル、触媒、フェニル(メタ)アクリレートと反応しない限り、その種類は特に限定されない。溶媒としては、例えば、ヘキサン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 反応温度は特に限定されるものでないが、60℃以上180℃以下であることが好ましく、80℃以上160℃以下であることがより好ましく、95℃以上150℃以下であることがさらに好ましく、110℃以上140℃以下であることが特に好ましい。反応温度を60℃以上とすることで、反応を円滑に進行させることができる。反応温度を180℃以下とすることにより、重合や副反応を抑えることができる。なお、反応温度は一定である必要はなく、好ましい範囲で変化させてもよい。
 反応時間は特に限定されるものでなく、反応の規模や条件等に応じて適宜選択することができる。反応時間は1時間以上80時間以下とすることができ、2時間以上40時間以下が好ましく、3時間以上20時間以下がより好ましい。反応時間を1時間以上とすることにより反応を円滑に進行させることができる。反応時間を80時間以下とすることにより重合や副反応を抑えることができる。
 反応させる際の圧力は、特に限定されるものではなく、減圧した状態、大気圧、加圧した状態のいずれでもよい。
 反応を行う反応器の形態は、特に限定されるものではなく、バッチ式槽型反応器、連続式槽型反応器、連続式管型反応器等が使用でき、バッチ式槽型反応器が好ましい。
 反応原料((メタ)アクリル酸、炭酸ジフェニル、触媒、溶媒等)の反応器への導入方法については、特に制限されるものでなく、加熱前または加熱中に全ての反応原料を一度に反応器に導入してもよいし、加熱中に一部または全ての反応原料を段階的に添加してもよく、加熱中に一部または全ての反応原料を連続的に添加してもよい。また、これらを組みあわせた導入方法でもよい。
 特に、(メタ)アクリル酸の反応器への導入方法については、反応速度向上とフェニル(メタ)アクリレートの生産性向上の観点から、炭酸ジフェニルと、触媒を使用する場合は触媒とを含む反応液に、(メタ)アクリル酸を分割添加または連続添加することが好ましく、連続添加することがより好ましい。なお、分割添加とは、(メタ)アクリル酸を2回以上に分けて反応液に添加することを示す。また、連続添加とは、(メタ)アクリル酸を滴下等により反応液に継続的に添加することを示す。連続添加は、2以上の区間に分けて行ってもよい。
 (メタ)アクリル酸を分割添加する場合、各添加量は一定でも、一定でなくてもよいが、隣接する2回の添加のいずれかで添加量を減少させることが好ましく、隣接する2回の添加の全てで添加量を減少させることがより好ましい。また、添加する間隔は一定でも、増加させても、減少させてもよいが、一定または増加させることが好ましく、増加させることがより好ましい。
 (メタ)アクリル酸を連続添加する場合、その添加速度は一定でも、増加させても、減少させてもよいが、連続添加する区間の一部で添加速度を減少させることが好ましい。また、連続添加するすべての区間で添加速度が一定である、または添加速度を減少させることが好ましい。
 (メタ)アクリル酸を分割添加または連続添加する場合、反応液中の(メタ)アクリル酸の濃度は特に限定されるものではなく、一定でも、一定でなくてもよい。しかしながら、反応を行う区間の一部において(メタ)アクリル酸の濃度が低いことが好ましく、反応を行うすべての区間において(メタ)アクリル酸の濃度が低いことがより好ましい。(メタ)アクリル酸の濃度が低いとは、具体的には、反応液中の(メタ)アクリル酸のモル数を、炭酸ジフェニルのモル数とフェニル(メタ)アクリレートのモル数の和で割った値(モル比)が0.0001以上1以下であることを示す。上記モル比は、0.0001以上0.8以下であることが好ましく、0.0001以上0.6以下であることがより好ましく、0.0001以上0.4以下であることがさらに好ましく、0.0001以上0.2以下であることが特に好ましい。
 (メタ)アクリル酸を分割添加または連続添加する場合、反応液の温度は、特に制限されるものではないが、60℃以上180℃以下であることが好ましく、80℃以上160℃以下であることがより好ましく、95℃以上150℃以下であることがさらに好ましく、110℃以上140℃以下であることが特に好ましい。
 (メタ)アクリル酸を分割添加または連続添加する際の所要時間は、特に制限されるものではないが、30分以上であることが好ましく、60分以上であることがより好ましく、90分以上であることがさらに好ましく、120分以上であることが特に好ましい。
 (メタ)アクリル酸を分割添加または連続添加することにより、(メタ)アクリル酸を一括導入する方法に比べて、反応速度が速くなる。さらに、MAA付加体、PhOH付加体、フェニルメタクリレート二量体、AA付加体及びPHA-PhOH付加体の副生を抑制することができ、フェニル(メタ)アクリレートの生成量が増加する。
 反応時、生成物の精製時、生成物を含む溶液及び精製フェニル(メタ)アクリレート溶液を保存する際には、原料や生成物の重合を防止するために、反応容器中の気相部を酸素含有ガス雰囲気にすることが好ましく、反応溶液中に酸素や空気等の酸素含有ガスを吹き込むことがより好ましい。酸素含有ガスは反応容器の2か所以上から導入してもよい。
 また、反応溶液中に重合禁止剤を添加して、重合防止剤を反応溶液中に共存させることが好ましい。重合防止剤としては、特に限定されるものではないが、例えばベンゾキノン等のキノン系重合防止剤;フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のフェノール系重合防止剤;アルキル化ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、フェノチアジン等のアミン系重合防止剤;4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(HO-TEMPO)、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(BTOX)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル系重合防止剤;金属銅、硫酸銅、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合防止剤等が挙げられる。これらのうち、フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、フェノチアジン、HO-TEMPO、BTOXが好ましく、フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、BTOXがより好ましく、フェノールがさらに好ましい。これらの重合防止剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 (5)フェニル(メタ)アクリレートの精製
 本発明において得られたフェニル(メタ)アクリレートは、必要に応じて精製を行うことができる。精製方法については特には限定されず、公知の方法を使用することができる。
 フェニル(メタ)アクリレートを精製する方法としては、例えば分液、蒸留、晶析等を挙げることができる。これらを単独で実施してもよいし、2以上を組み合わせて実施してもよい。分液と蒸留によりフェニル(メタ)アクリレートを精製することが好ましい。
 分液にて、フェニル(メタ)アクリレートを洗浄する場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液を使用して洗浄することができる。使用するアルカリ水溶液のアルカリの濃度や洗浄回数については、反応条件等に応じて適宜選択することができる。
 蒸留方法としては、特に限定されるものではなく、例えば、単蒸留、精密蒸留、薄膜蒸留等が挙げられる。蒸留は、減圧下、大気圧下、加圧下のいずれで実施してもよいが、減圧下で実施することが好ましい。
 (6)フェニル(メタ)アクリレート組成物
 本発明に係るフェニル(メタ)アクリレート組成物(以下、第一の組成物とも示す)は、フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上10質量%以下含む。第一の組成物は、フェニル(メタ)アクリレートを95質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上5質量%以下含むことが好ましく、フェニル(メタ)アクリレートを98質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上2質量%以下含むことがより好ましく、フェニル(メタ)アクリレートを99質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上1質量%以下含むことがさらに好ましく、フェニル(メタ)アクリレートを99.5質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上0.5質量%以下含むことが特に好ましい。
 第一の組成物がフェニル(メタ)アクリレートを90質量%以上99.999質量%以下含むことでポリマー物性への影響を抑制することができる。また、第一の組成物が炭酸ジフェニルを0.001質量%以上10質量%以下含むことで保存中の重合が抑制されて取扱いが容易になる。フェニル(メタ)アクリレートの精製が不十分で触媒が残存した場合においても、炭酸ジフェニルが0.001質量%以上10質量%以下含まれることによって、予期せぬ重合を抑制することができる。第一の組成物は、90質量%以上99.999質量%以下のフェニル(メタ)アクリレート、及び0.001質量%以上10質量%以下の炭酸ジフェニルからなってもよい。すなわち、第一の組成物は、フェニル(メタ)アクリレートと炭酸ジフェニルとの合計が100質量%であってもよい。
 第一の組成物は、本発明に係るフェニル(メタ)アクリレートの製造方法により好適に製造することができる。フェニル(メタ)アクリレートと炭酸ジフェニルの含有量は、例えば、触媒や反応時間を変更すること等により、本発明に係る範囲内に調整することができる。
 また、本発明に係るフェニル(メタ)アクリレート組成物(以下、第二の組成物とも示す)は、フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び(メタ)アクリル酸付加体を0.001質量%以上10質量%以下含む。第二の組成物は、フェニル(メタ)アクリレートを95質量%以上99.999質量%以下、及び(メタ)アクリル酸付加体を0.001質量%以上5質量%以下含むことが好ましく、フェニル(メタ)アクリレートを98質量%以上99.999質量%以下、及び(メタ)アクリル酸付加体を0.001質量%以上2質量%以下含むことがより好ましく、フェニル(メタ)アクリレートを99質量%以上99.999質量%以下、及び(メタ)アクリル酸付加体を0.001質量%以上1質量%以下含むことがさらに好ましく、フェニル(メタ)アクリレートを99.5質量%以上99.999質量%以下、及び(メタ)アクリル酸付加体を0.001質量%以上0.5質量%以下含むことが特に好ましい。
 第二の組成物がフェニル(メタ)アクリレートを90質量%以上99.999質量%以下含むことでポリマー物性への影響を抑制することができる。また、第二の組成物が、分子鎖がフェニル(メタ)アクリレートより長い(メタ)アクリル酸付加体を0.001質量%以上10質量%以下含むことで、フェニル(メタ)アクリレート組成物の融点を下げることができ、寒冷地においても凍結することがなく取扱いが容易になる。第二の組成物は、90質量%以上99.999質量%以下のフェニル(メタ)アクリレート、及び0.001質量%以上10質量%以下の(メタ)アクリル酸付加体からなってもよい。すなわち、第二の組成物は、フェニル(メタ)アクリレートと(メタ)アクリル酸付加体との合計が100質量%であってもよい。
 第二の組成物は、本発明に係るフェニル(メタ)アクリレートの製造方法により好適に製造することができる。フェニル(メタ)アクリレートと(メタ)アクリル酸付加体の含有量は、例えば(メタ)アクリル酸の反応器への導入方法を変更すること等により、本発明に係る範囲内に調整することができる。
 第一の組成物及び第二の組成物の保存容器は、特に限定されるものではなく、例えば、ガラス製容器、樹脂製容器、金属製の貯蔵タンク、ドラム缶、ローリーなどが挙げられる。
 第一の組成物及び第二の組成物は、特に限定されるものではないが、例えば食品添加物、化粧品添加物、医薬品原料、香料、合成樹脂原料、樹脂添加剤、塗料、各種材料等に用いることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例において、炭酸ジフェニル、フェニル(メタ)アクリレート等の分析は、液体クロマトグラフィー又はガスクロマトグラフィーにより行った。
 炭酸ジフェニルは、東京化成株式会社より購入した純度が99質量%のものを使用した。メタクリル酸は、三菱レイヨン株式会社において製造した純度が99.9質量%のものを使用した。アクリル酸は和光純薬工業株式会社より購入した純度が98質量%のものを使用した。
 <実施例1>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸25.8g(300mmol)、炭酸ジフェニル40.0g(187mmol)、触媒としてメタクリル酸ナトリウム0.6g(6mmol)、重合禁止剤として1,4-ベンゼンジオール0.02g及び4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱して6時間攪拌した。
 その結果、得られた反応液の炭酸ジフェニルの転化率は45%であった。生成したフェニルメタクリレートは13.6g(84mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は45%であった。
 <実施例2~14>
 触媒として、メタクリル酸ナトリウム0.6g(6mmol)を用いる代わりに、表1に示す触媒種と触媒量(仕込み量)を用いた以外は、実施例1と同様の操作を行った。得られた反応液の炭酸ジフェニルの転化率、フェニルメタクリレートの生成量、炭酸ジフェニルに対するフェニルメタクリレートの収率を表1に併記した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000012
 
 これらの実施例から、種々の触媒(アミン化合物、第1族金属化合物、第2族金属化合物及びトリフルオロメタンスルホン酸金属化合物)で、効率的にフェニルメタクリレートが得られることが分かった。
 <実施例15>
 ジムロート冷却器、空気導入管を備えた200mLのガラス製三つ口フラスコに、メタクリル酸45.0g(523mmol)、炭酸ジフェニル79.9g(373mmol)、触媒としてメタクリル酸ナトリウム4.9g(45mmol)、重合禁止剤として1,4-ベンゼンジオール0.04g及び4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.04gを入れた。
 この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して26時間攪拌したところ、炭酸ジフェニルの濃度が0.003質量%以下である反応液を得た。
 得られた反応液を分液ロートに移し、n-ヘキサン19gと15質量%水酸化ナトリウム水溶液42gを加え、激しく振って混合させた後、静置すると油層と水層に分離した。水層を下部から抜き出し、次いで、油層に対してn-ヘキサンを加えることなく同様の操作を行い、15質量%水酸化ナトリウム水溶液60gで1回、15質量%水酸化ナトリウム水溶液40gで1回、水50gで2回、油層を洗浄した。
 得られた油層に、重合禁止剤として4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを加えた後、空気を導入しながら、25℃、50torr(6.7kPa)の条件でエバポレーターを用いて、n-ヘキサンを留去し、濃縮した。
 得られた液を、空気導入管を備えた100mLフラスコに移し、空気を導入しながら、圧力1~2torr(0.1~0.3kPa)で蒸留することで、71~74℃の留出物として、純度99.9質量%であるフェニルメタクリレートを得た。
 この実施例から、メタクリル酸ナトリウムを触媒として用いたとき、洗浄と蒸留を行うことで、フェニルメタクリレートを高純度で単離できることが分かった。
 <実施例16>
 ジムロート冷却器、空気導入管を備えた300mLのガラス製四つ口フラスコに、メタクリル酸48.2g(560mmol)、炭酸ジフェニル100.3g(468mmol)、触媒としてメタクリル酸マグネシウム5.5g(28mmol)、重合禁止剤として1,4-ベンゼンジオール0.02g及び4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱して9時間攪拌した。
 反応終了時の反応液の質量は132gであった。この反応液の組成は、フェニルメタクリレートが52質量%、フェノールが34質量%、メタクリル酸が5質量%、残りは触媒由来のマグネシウム化合物等であり、炭酸ジフェニルは0.003質量%以下であった。
 次に得られた反応液を分液ロートに移し、n-ヘキサン23gと水55gを加え、激しく振って混合させた後、静置すると油層と水層に分離した。水層を下部から抜き出し、次いで、油層に対してn-ヘキサンを加えることなく同様の操作を行い、水55gで1回、15質量%水酸化ナトリウム水溶液50gで1回、15質量%水酸化ナトリウム水溶液100gで1回、15質量%水酸化ナトリウム水溶液50gで2回、水50gで2回、油層を洗浄した。
 得られた油層に、重合禁止剤として4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを加えた後、空気を導入しながら、25℃、50torr(6.7kPa)の条件でエバポレーターを用いて、n-ヘキサンを留去し、濃縮した。
 得られた液を、空気導入管を備えた100mLフラスコに移し、空気を導入しながら、圧力2~11torr(0.3~1.5kPa)で蒸留することで、57~74℃の留出物として、純度99.6質量%であるフェニルメタクリレートを得た。この留出物には、MAA付加体が0.029質量%含まれていた。
 この実施例から、メタクリル酸マグネシウムを触媒として用いたとき、洗浄と蒸留を行うことで、フェニルメタクリレートを高純度で単離できることが分かった。
 <実施例17>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸8.0g(93mmol)、炭酸ジフェニル40.0g(187mmol)、触媒としてメタクリル酸マグネシウム2.2g(11mmol)、重合禁止剤として1,4-ベンゼンジオール0.02gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02g、および内部標準物質としてジフェニルエーテル3.2g(19mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が130℃になるように加熱して5時間攪拌した。この結果、反応で生成したフェニルメタクリレートは14.0g(86mmol)であった。
 <実施例18~21>
 ガラス製容器に入れるメタクリル酸の量を、表2に示す量に変えた以外は実施例17と同様の操作を行った。原料として用いた炭酸ジフェニルに対する原料として用いたメタクリル酸のモル比、加熱時間1時間ごとのフェニルメタクリレートの生成量を表2に併記した。なお、表中のMAAはメタクリル酸、DPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000013
 
 これらの実施例から、炭酸ジフェニルに対して種々のモル比の(メタ)アクリル酸を用いても、フェニルメタクリレートが多く生成することが分かった。
 <実施例22>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸21.2g(246mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム1.2g(6mmol)、重合禁止剤として1,4-ベンゼンジオール0.006gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.006g、および内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が100℃になるように加熱して16時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は28.2%であった。生成したフェニルメタクリレートは8.8g(54mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は27%であった。また、フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は94%であった。
 <実施例23~26>
 反応温度を表3に示す値に変えた以外は、実施例22と同様の操作を行った。得られた反応液の炭酸ジフェニルの転化率、フェニルメタクリレートの生成量、炭酸ジフェニルに対するフェニルメタクリレートの収率、フェニルメタクリレートの選択率を表3に併記した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000014
 
 これらの実施例から、種々の反応温度において、非常に高い選択率でフェニルメタクリレートが得られることが分かった。
 <実施例27>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸21.2g(246mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム2.4g(12mmol)、重合禁止剤としてフェノール0.001g、内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が130℃になるように加熱して5時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は89%であった。生成したフェニルメタクリレートは27.9g(172mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は84%であった。
 この実施例から、重合禁止剤を1,4-ベンゼンジオールと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルから、フェノールに代えても、高収率でフェニルメタクリレートが得られることが分かった。
 <実施例28>
 空気導入管を備えた50mLのガラス製三つ口フラスコに、アクリル酸6.5g(90mmol)、炭酸ジフェニル16.0g(75mmol)、触媒として4-ジメチルアミノピリジン0.5g(4mmol)、重合禁止剤としてフェノール0.004g、内部標準物質としてジフェニルエーテル1.3g(7mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が130℃になるように加熱して6時間攪拌した。続いて、内温が140℃になるように加熱して3時間攪拌した。
 この結果、生成したフェニルアクリレートは6.5g(44mmol)であった。炭酸ジフェニルに対するフェニルアクリレートの収率は59%であった。
 この実施例から、原料をメタクリル酸からアクリル酸に代えても、効率よくフェニルエステルが得られることが分かった。
 <実施例29>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸21.2g(246mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム3.6g(18mmol)、重合禁止剤として1,4-ベンゼンジオール0.006gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.006g、および内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が130℃になるように加熱して5時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は95%であった。生成したフェニルメタクリレートは29.3g(180mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は88%であった。フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は93%であった。
 この実施例から、触媒であるメタクリル酸マグネシウムの量を増やすと、さらに効率よくフェニルエステルが得られることが分かった。
 <実施例30>
 空気導入管を備えた50mLのガラス製三つ口フラスコに、メタクリル酸11.2g(131mmol)、炭酸ジフェニル23.2g(108mmol)、触媒としてメタクリル酸ナトリウム1.4g(13mmol)、重合禁止剤として4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.01gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.01gを入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が130℃になるように加熱して3.0時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は59%であった。生成したフェニルメタクリレートは10.1g(62mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は58%であった。
 <実施例31、32>
 フラスコに入れるメタクリル酸ナトリウムを表4に示す量に変え、加熱時間を表4に示す値に変えた以外は、実施例30と同様の操作を行った。原料として用いた炭酸ジフェニルに対する触媒として用いたメタクリル酸ナトリウムのモル比、加熱時間、得られた反応液の炭酸ジフェニルの転化率、フェニルメタクリレートの生成量、炭酸ジフェニルに対するフェニルメタクリレートの収率を表4に併記した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000015
 
 これらの実施例から、メタクリル酸ナトリウムの量を変えても、効率よくフェニルメタクリレートが得られることが分かった。
 <実施例33>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸22.6g(263mmol)、炭酸ジフェニル43.0g(201mmol)、触媒としてメタクリル酸ナトリウム0.7g(6mmol)、重合禁止剤として1,4-ベンゼンジオール0.02gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱して3.5時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は36%であった。生成したフェニルメタクリレートは11.5g(71mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は35%であった。
 <実施例34>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸12.3g(143mmol)、炭酸ジフェニル43.0g(201mmol)、触媒としてメタクリル酸ナトリウム0.7g(6mmol)、重合禁止剤として1,4-ベンゼンジオール0.02gと4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.02gを入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱攪拌した。内温が140℃になった時点を0時間としたとき、0.5時間、1.0時間、1.5時間、2.0時間、2.5時間、3.0時間の時点でそれぞれメタクリル酸1.7g(20mmol)を添加し、最終的なメタクリル酸投入量は22.6g(263mmol)となった。加熱時間が3.5時間になるまで攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は45%であった。生成したフェニルメタクリレートは14.5g(89mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は45%であった。
 表5に得られた反応液の炭酸ジフェニルの転化率、フェニルメタクリレートの生成量、炭酸ジフェニルに対するフェニルメタクリレートの収率を記載した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000016
 
 これらの実施例から、メタクリル酸を分割添加しながら反応させることで、フェニルメタクリレートの生成速度が向上することが分かった。
 <実施例35>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸21.2g(246mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム2.4g(12mmol)、重合禁止剤としてフェノール0.04g、および内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱して5時間攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は98.8%であった。生成したフェニルメタクリレートは30.3g(187mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は91%であった。生成したMAA付加体は1.05g(4.2mmol)であった。炭酸ジフェニルに対するMAA付加体の収率は2.07%であった。生成したPhOH付加体は0.27g(1.1mmol)であった。炭酸ジフェニルに対するPhOH付加体の収率は0.51%であった。生成したフェニルメタクリレート二量体は0.84g(2.6mmol)であった。炭酸ジフェニルに対するフェニルメタクリレート二量体の収率は2.52%であった。フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は92%であった。
 <実施例36>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸9.2g(106mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム2.4g(12mmol)、重合禁止剤としてフェノール0.04g、および内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱攪拌した。内温が140℃になった時点を0時間としたとき、0.5時間の時点でメタクリル酸3.5g(40mmol)を添加し、1.0時間、1.5時間、2.0時間、2.5時間、3.0時間の時点でそれぞれメタクリル酸1.7g(20mmol)を添加し、最終的なメタクリル酸投入量は21.2g(246mmol)となった。加熱時間が5.0時間になるまで攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は98.9%であった。生成したフェニルメタクリレートは30.7g(189mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は92%であった。生成したMAA付加体は0.57g(2.3mmol)であった。炭酸ジフェニルに対するMAA付加体の収率は1.12%であった。生成したPhOH付加体は0.19g(0.8mmol)であった。炭酸ジフェニルに対するPhOH付加体の収率は0.37%であった。生成したフェニルメタクリレート二量体は0.79g(2.4mmol)であった。炭酸ジフェニルに対するフェニルメタクリレート二量体の収率は2.38%であった。フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は93%であった。
 <実施例37>
 空気導入管を備えた200mLのガラス製容器に、メタクリル酸9.2g(106mmol)、炭酸ジフェニル44.0g(205mmol)、触媒としてメタクリル酸マグネシウム2.4g(12mmol)、重合禁止剤としてフェノール0.04g、および内部標準物質としてジフェニルエーテル3.5g(21mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が140℃になるように加熱攪拌した。内温が140℃になった時点を0時間としたとき、30分~90分の期間に0.113g/分の流量でメタクリル酸6.8g(80mmol)を連続添加した。また、95分~185分の期間に0.058g/分の流量でメタクリル酸5.2g(60mmol)を連続添加した。最終的なメタクリル酸投入量は21.2g(246mmol)となった。加熱時間が5.0時間になるまで攪拌した。
 この結果、得られた反応液の炭酸ジフェニルの転化率は99.0%であった。生成したフェニルメタクリレートは30.9g(190mmol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は93%であった。生成したMAA付加体は0.53g(2.1mmol)であった。炭酸ジフェニルに対するMAA付加体の収率は1.04%であった。生成したPhOH付加体は0.20g(0.8mmol)であった。炭酸ジフェニルに対するPhOH付加体の収率は0.39%であった。生成したフェニルメタクリレート二量体は0.79g(2.4mmol)であった。炭酸ジフェニルに対するフェニルメタクリレート二量体の収率は2.38%であった。フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は94%であった。
 表6に得られた反応液の炭酸ジフェニルの転化率、フェニルメタクリレートの生成量、炭酸ジフェニルに対するフェニルメタクリレートの収率、炭酸ジフェニルに対するMAA付加体の収率、炭酸ジフェニルに対するPhOH付加体の収率、炭酸ジフェニルに対するフェニルメタクリレート二量体の収率を記載した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレート、MAAはメタクリル酸を示す。
Figure JPOXMLDOC01-appb-T000017
 
 これらの実施例から、メタクリル酸を分割添加または連続添加しながら反応させることで、副反応が抑制され、フェニルメタクリレートの生成量が増えることが分かった。
 <実施例38>
 ジムロート冷却器、空気導入管を備えた1Lのガラス製四つ口フラスコに、メタクリル酸193.1g(2.24mol)、炭酸ジフェニル400.0g(1.87mol)、触媒としてメタクリル酸マグネシウム21.8g(0.11mol)、重合禁止剤としてフェノール0.4gを入れた。
 この混合液に空気を毎分20mLの流量で吹き込みながら、内温が100℃になるように加熱して2時間攪拌した。続いて、内温が120℃になるように加熱して2時間攪拌した。続いて、内温が130℃になるように加熱して14時間攪拌したところ、527.0gの反応液を得た。
 得られた反応液の炭酸ジフェニルの転化率は99.5%であった。生成したフェニルメタクリレートは268.3g(1.65mol)であった。炭酸ジフェニルに対するフェニルメタクリレートの収率は88%であった。生成したMAA付加体は11.1g(44.7mmol)であった。炭酸ジフェニルに対するMAA付加体の収率は2.4%であった。生成したPhOH付加体は3.4g(13.3mmol)であった。炭酸ジフェニルに対するPhOH付加体の収率は0.7%であった。生成したフェニルメタクリレート二量体は8.5g(26.2mmol)であった。炭酸ジフェニルに対するフェニルメタクリレート二量体の収率は2.8%であった。フェニルメタクリレートの選択率(フェニルメタクリレートの収率を炭酸ジフェニルの転化率で割った値)は88%であった。
 得られた反応液を分液ロートに移し、n-ヘキサン120gと9質量%塩化水素水溶液150gを加え、激しく振って混合させた後、静置すると油層と水層に分離した。水層を下部から抜き出し、次いで、油層に対してn-ヘキサンを加えることなく同様の操作を行い、水100gで1回、15質量%水酸化ナトリウム水溶液200gで3回、水200gで2回、油層を洗浄した。
 得られた油層に、重合禁止剤としてフェノチアジン0.6gを加えた後、空気を導入しながら、20℃、70~120torr(9.3~16.0kPa)の条件でエバポレーターを用いて、n-ヘキサンを留去し、濃縮した。
 得られた液を、熱媒温度72℃、圧力0.7~0.8torr(0.09~0.11kPa)、送液量3.6mL/分の条件で薄膜蒸留装置にて蒸留精製を行ったところ、留出物として純度99.7質量%であるフェニルメタクリレート227.6g(1.40mol)を得た。炭酸ジフェニルに対する全収率は75%であった。また、この留出物には、炭酸ジフェニルが0.050質量%、フェノールが0.006質量%、MAA付加体が0.165質量%、PhOH付加体が0.007質量%含まれていた。
 この実施例から、薄膜蒸留を用いても、高純度のフェニルメタクリレートが得られることが分かった。
 <実施例39>
 30mLのガラス製試験管に、フェニルメタクリレートを90.0質量%、及び炭酸ジフェニルを10.0質量%含む組成物を5.6g入れた。120℃のオイルバスで6時間加熱したところ、重合せず、液体のままであった。
 <比較例1>
 30mLのガラス製試験管に、フェニルメタクリレートを99.9質量%含み、炭酸ジフェニルを含まない組成物を5.0g入れた。120℃のオイルバスで6時間加熱したところ、重合して固体が得られた。
 <実施例40~44>
 ガラス製試験管の内容物を表7に示す物に変えた以外は、実施例39と同様の操作を行った。加熱後の内容物の状態を表7に併記した。なお、表中のDPCは炭酸ジフェニル、PHMAはフェニルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000018
 
 これらの実施例から、フェニルメタクリレート組成物に炭酸ジフェニルが0.001質量%以上10質量%以下含まれると、重合を抑制できることがわかった。
 <実施例45>
 空気導入管を備えた50mLのガラス製三つ口フラスコに、アクリル酸12.1g(168mmol)、炭酸ジフェニル12.0g(56mmol)、触媒として水酸化マグネシウム0.34g(6mmol)、重合禁止剤としてフェノール0.01g、内部標準物質としてジフェニルエーテル0.95g(5mmol)を入れた。この混合液に空気を毎分10mLの流量で吹き込みながら、内温が135℃になるように加熱して12時間攪拌した。
 この結果、生成したフェニルアクリレートは4.1g(28mmol)であった。炭酸ジフェニルに対するフェニルアクリレートの収率は49%であった。
 <実施例46>
 フラスコに入れる水酸化マグネシウム0.34g(6mmol)を4-ジメチルアミノピリジン0.68g(6mmol)に変えた以外は、実施例45と同様の操作を行った。フェニルアクリレートの生成量、炭酸ジフェニルに対するフェニルアクリレートの収率を表8に併記した。なお、表中のPHAはフェニルアクリレートを示す。
Figure JPOXMLDOC01-appb-T000019
 
 この出願は、2013年10月30日に出願された日本出願特願2013-225352を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (13)

  1.  (メタ)アクリル酸と炭酸ジフェニルとを反応させる、フェニル(メタ)アクリレートの製造方法。
  2.  (メタ)アクリル酸と炭酸ジフェニルとを触媒存在下で反応させる、請求項1に記載のフェニル(メタ)アクリレートの製造方法。
  3.  触媒が、窒素含有有機化合物、第1族金属化合物、第2族金属化合物及びトリフルオロメタンスルホン酸金属化合物から選ばれる少なくとも1種である、請求項2に記載のフェニル(メタ)アクリレートの製造方法。
  4.  触媒が下記式(1)または(2)で示される窒素含有有機化合物である、請求項3に記載のフェニル(メタ)アクリレートの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、NR基はピリジン環の2位、3位、4位のいずれか1つに結合している。RおよびRは、それぞれ独立に、水素、置換又は非置換の炭素数1~30のアルキル基、置換又は非置換の炭素数2~30のアルケニル基、或いは置換又は非置換の炭素数6~30のアリール基である。RとRが任意に結合して、環状構造を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、Rは水素、置換又は非置換の炭素数1~30のアルキル基、置換又は非置換の炭素数2~30のアルケニル基、或いは置換又は非置換の炭素数6~30のアリール基である。)
  5.  第2族金属化合物が、有機分子からなるイオン性配位子を有するマグネシウム化合物である、請求項3に記載のフェニル(メタ)アクリレートの製造方法。
  6.  触媒の使用量が、炭酸ジフェニル1モルに対して0.00001モル以上4モル以下である、請求項2に記載のフェニル(メタ)アクリレートの製造方法。
  7.  触媒の使用量が、炭酸ジフェニル1モルに対して0.0001モル以上0.6モル以下である、請求項6に記載のフェニル(メタ)アクリレートの製造方法。
  8.  触媒の使用量が、炭酸ジフェニル1モルに対して0.03モル以上0.15モル以下である、請求項7に記載のフェニル(メタ)アクリレートの製造方法。
  9.  (メタ)アクリル酸の使用量が、炭酸ジフェニル1モルに対して0.1モル以上5モル以下である、請求項1に記載のフェニル(メタ)アクリレートの製造方法。
  10.  (メタ)アクリル酸の使用量が、炭酸ジフェニル1モルに対して0.8モル以上1.6モル以下である、請求項9に記載のフェニル(メタ)アクリレートの製造方法。
  11.  (メタ)アクリル酸を、炭酸ジフェニルに対して分割添加または連続添加する、請求項1に記載のフェニル(メタ)アクリレートの製造方法。
  12.  フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び炭酸ジフェニルを0.001質量%以上10質量%以下含む、フェニル(メタ)アクリレート組成物。
  13.  フェニル(メタ)アクリレートを90質量%以上99.999質量%以下、及び下記式(3)で表される化合物および/または下記式(4)で表される化合物を0.001質量%以上10質量%以下含む、フェニル(メタ)アクリレート組成物。
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
     
PCT/JP2014/078338 2013-10-30 2014-10-24 フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物 WO2015064498A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014555001A JP6459515B2 (ja) 2013-10-30 2014-10-24 フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物
KR1020167006357A KR101821905B1 (ko) 2013-10-30 2014-10-24 페닐(메트)아크릴레이트의 제조 방법 및 페닐(메트)아크릴레이트 조성물
EP14859028.4A EP3064486B1 (en) 2013-10-30 2014-10-24 Phenyl(meta)acrylate production method and phenyl(meta)acrylate composition
CN201480059411.6A CN105722815B (zh) 2013-10-30 2014-10-24 (甲基)丙烯酸苯酯的制造方法和(甲基)丙烯酸苯酯组合物
US15/025,507 US9771315B2 (en) 2013-10-30 2014-10-24 Phenyl (meth)acrylate production method and phenyl (meth)acrylate composition
US15/284,750 US9783480B2 (en) 2013-10-30 2016-10-04 Phenyl (meth)acrylate production method and phenyl (meth)acrylate composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225352 2013-10-30
JP2013-225352 2013-10-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/025,507 A-371-Of-International US9771315B2 (en) 2013-10-30 2014-10-24 Phenyl (meth)acrylate production method and phenyl (meth)acrylate composition
US15/284,750 Division US9783480B2 (en) 2013-10-30 2016-10-04 Phenyl (meth)acrylate production method and phenyl (meth)acrylate composition

Publications (1)

Publication Number Publication Date
WO2015064498A1 true WO2015064498A1 (ja) 2015-05-07

Family

ID=53004104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078338 WO2015064498A1 (ja) 2013-10-30 2014-10-24 フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物

Country Status (7)

Country Link
US (2) US9771315B2 (ja)
EP (1) EP3064486B1 (ja)
JP (1) JP6459515B2 (ja)
KR (1) KR101821905B1 (ja)
CN (1) CN105722815B (ja)
TW (1) TWI546283B (ja)
WO (1) WO2015064498A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275427B2 (en) * 2016-11-09 2019-04-30 Honeywell International Inc. Systems and methods for contextual tagging of data on vehicle display

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286894A (ja) * 1992-02-10 1993-11-02 Kyorin Pharmaceut Co Ltd カルボン酸エステル又はカルボン酸チオエステルの新規製造方法
JPH07126213A (ja) * 1993-11-01 1995-05-16 Teijin Ltd 芳香族ジカルボン酸ジアリールエステルの製造方法
JP2003089672A (ja) * 2001-07-10 2003-03-28 Nippon Shokubai Co Ltd ミカエル型付加物の分解方法
JP2003104974A (ja) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd 5−フェノキシカルボニルベンゾトリアゾールの製造方法
JP2003226667A (ja) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp (メタ)アクリル酸類製造時の副生物の分解方法
JP2003252830A (ja) * 2002-02-27 2003-09-10 Teijin Ltd アダマンタンジカルボン酸ジアリールエステルの製造方法
JP2007246503A (ja) 2006-02-14 2007-09-27 Mitsubishi Rayon Co Ltd 不飽和カルボン酸フェニルの製造方法
JP2011105667A (ja) 2009-11-19 2011-06-02 Mitsubishi Rayon Co Ltd フェニルエステルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1115252B (de) * 1959-12-18 1961-10-19 Bayer Ag Verfahren zur Herstellung von Carbonsaeurearylestern
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
CN1318374A (zh) * 2000-04-19 2001-10-24 刘学博 心脑脉通注射液的制备方法
CN1589253A (zh) * 2001-11-28 2005-03-02 三菱化学株式会社 制备(甲基)丙烯酸化合物的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286894A (ja) * 1992-02-10 1993-11-02 Kyorin Pharmaceut Co Ltd カルボン酸エステル又はカルボン酸チオエステルの新規製造方法
JPH07126213A (ja) * 1993-11-01 1995-05-16 Teijin Ltd 芳香族ジカルボン酸ジアリールエステルの製造方法
JP2003089672A (ja) * 2001-07-10 2003-03-28 Nippon Shokubai Co Ltd ミカエル型付加物の分解方法
JP2003104974A (ja) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd 5−フェノキシカルボニルベンゾトリアゾールの製造方法
JP2003226667A (ja) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp (メタ)アクリル酸類製造時の副生物の分解方法
JP2003252830A (ja) * 2002-02-27 2003-09-10 Teijin Ltd アダマンタンジカルボン酸ジアリールエステルの製造方法
JP2007246503A (ja) 2006-02-14 2007-09-27 Mitsubishi Rayon Co Ltd 不飽和カルボン酸フェニルの製造方法
JP2011105667A (ja) 2009-11-19 2011-06-02 Mitsubishi Rayon Co Ltd フェニルエステルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERIC A. GUNNEWEGH: "Zeolite catalysed synthesis of coumarin derivatives", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 100, no. 1-3, 1995, pages 87 - 92, XP055290832 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 42, 1977, pages 3965

Also Published As

Publication number Publication date
KR101821905B1 (ko) 2018-01-24
JPWO2015064498A1 (ja) 2017-03-09
US20160244396A1 (en) 2016-08-25
EP3064486A1 (en) 2016-09-07
TWI546283B (zh) 2016-08-21
US9771315B2 (en) 2017-09-26
CN105722815A (zh) 2016-06-29
EP3064486A4 (en) 2016-10-26
EP3064486B1 (en) 2021-06-09
TW201516031A (zh) 2015-05-01
CN105722815B (zh) 2018-09-11
KR20160043010A (ko) 2016-04-20
US20170022136A1 (en) 2017-01-26
JP6459515B2 (ja) 2019-01-30
US9783480B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
US8710262B2 (en) Method for producing (meth)acrylic anhydride, method for storing (meth)acrylic anhydride, and method for producing (meth)acrylate
EP3235801B1 (en) Carboxylic acid ester production method
JP6747560B2 (ja) カルボン酸エステルの製造方法
JP6459515B2 (ja) フェニル(メタ)アクリレートの製造方法及びフェニル(メタ)アクリレート組成物
WO2015146294A1 (ja) 鉄触媒によるエステル交換反応
JPWO2014046261A1 (ja) ヒドロキシアルキルアクリレート、およびその製造方法
JP2016203171A (ja) エステル交換反応用触媒及びそれを用いたエステル化合物の製造方法
JP5960839B2 (ja) 6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸ジエステルの製造方法
JPWO2013180210A1 (ja) ヒドロキシアルキル(メタ)アクリレートおよびその製造方法
WO2015190286A1 (ja) (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法
JP5289490B2 (ja) エーテル基を有する(メタ)アクリル酸エステルの製造方法
JP6844106B2 (ja) 不飽和カルボン酸シリルエステルの蒸留方法
JP6957875B2 (ja) 2−メチル−2−ヒドロキシ−1−プロピル(メタ)アクリレートおよび/または3−メチル−3−ヒドロキシ−1−ブチル(メタ)アクリレートの製造方法ならびに組成物
JP6269361B2 (ja) シュウ酸ジフェニルの製造方法、炭酸ジフェニルの製造方法およびポリカーボネートの製造方法
US8697899B2 (en) Methods for producing iron methacrylate and hydroxyalkyl methacrylate
JP2012031090A (ja) (メタ)アクリル酸チオエステルの製造方法
JP2011042602A (ja) 2−(3−ニトロベンジリデン)アセト酢酸イソプロピルの製造方法
JP6859761B2 (ja) ラクトン化合物の製造方法
JP2007204428A (ja) クロロチオールホルメートの製造法
JP2012224761A (ja) 芳香族ポリカーボネートの製造方法
JP2010241720A (ja) 3−メチルチオプロパナールの製造方法
JP2018065778A (ja) 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシンの製造方法
JP2012036139A (ja) ヒドロキシエステル誘導体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006357

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014859028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025507

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE