WO2015064185A1 - 竪型ローラミル - Google Patents

竪型ローラミル Download PDF

Info

Publication number
WO2015064185A1
WO2015064185A1 PCT/JP2014/071679 JP2014071679W WO2015064185A1 WO 2015064185 A1 WO2015064185 A1 WO 2015064185A1 JP 2014071679 W JP2014071679 W JP 2014071679W WO 2015064185 A1 WO2015064185 A1 WO 2015064185A1
Authority
WO
WIPO (PCT)
Prior art keywords
stationary
solid
roller mill
vertical roller
cone
Prior art date
Application number
PCT/JP2014/071679
Other languages
English (en)
French (fr)
Inventor
有馬 謙一
松本 慎治
卓一郎 大丸
串岡 清則
菅 啓史
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013228354A external-priority patent/JP6165593B2/ja
Priority claimed from JP2013242059A external-priority patent/JP6045478B2/ja
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112014004987.5T priority Critical patent/DE112014004987B4/de
Priority to US14/909,789 priority patent/US10722898B2/en
Priority to KR1020167003296A priority patent/KR101766604B1/ko
Priority to CN201480044306.5A priority patent/CN105451886B/zh
Publication of WO2015064185A1 publication Critical patent/WO2015064185A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/001Air flow directing means positioned on the periphery of the horizontally rotating milling surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/30Passing gas through crushing or disintegrating zone the applied gas acting to effect material separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a vertical roller mill applied to, for example, a pulverized coal-fired boiler, and more particularly to a vertical roller mill equipped with a fixed classifier.
  • pulverized coal machine such as a vertical roller mill 10 shown in FIGS. 7 and 8, and pulverized pulverized coal is used as a fuel.
  • the grinding roller 13 turns while rotating on the grinding table 12 installed at the lower part in the housing 11.
  • symbol 14 in a figure is a coal input pipe which inject
  • the raw material carbon introduced into the vertical roller mill 10 is pulverized by being caught between the pulverizing table 12 and the pulverizing roller to be pulverized coal.
  • the pulverized coal is air-borne and transported by a hot air jetted from a throat 15 disposed around the crushing table 12 to a stationary classifier 20 disposed above the inside of the housing 11 while being dried.
  • coarse particles having a large particle diameter are subjected to gravity classification which is dropped by gravity and returned to the crushing table 12, and therefore, the particles are repeatedly crushed until a desired particle diameter is obtained.
  • pulverized coal of product particles containing coarse particles is further classified by a classifier disposed at the top of the grinding table 12.
  • classifiers include stationary, rotary, and a combination of stationary and rotary types, and the classifier shown is stationary.
  • the rotary classifier performs classification by collision and inertia force by the rotating blades, and is known to have high classification performance.
  • Pulverized coal transported by air flow is dried by hot air and further classified by passing through the stationary classifier 20.
  • the classified pulverized coal passes through the pulverized coal outlet 16 communicating with the inside of the stationary classifier 20 from the inside to the upper side of the outside of the housing 11, and is air-borne and conveyed to the boiler by the primary air for conveyance.
  • the fixed classifier 20 is provided with a large number of fixed blade inlet windows 22 opened at equal intervals in the circumferential direction on the upper end side of the cone 21.
  • the fixed blade inlet window 22 is an opening provided through the wall surface forming the cone 21 and a flow for conveying pulverized coal by air flow (hereinafter referred to as “solid-gas two-phase flow”) passes It becomes an inlet and a flow path for flowing into the inside of the cone 21. Then, on the inner wall side of the cone 21, a large number of fixed blades 23 paired with the respective fixed blade inlet windows 22 are attached.
  • an inner cylinder 24 is provided inside the cone 21 to form a wall surface facing the fixed blade inlet window 22 and the fixed blade 23.
  • the stationary vanes 23 are all mounted in the same direction in an inclined manner in order to impart a swirl to the solid-gas two-phase flow, that is, with an inclination angle ⁇ from a radial line toward the axial center of the cone 21. Therefore, if the inclination angle ⁇ of the fixed blade 23 is increased or decreased, the strength of the swirling flow is also changed according to the opening degree (angle) of the fixed blade 23, so that the classification of fineness can be adjusted.
  • symbol 25 in a figure is a cone exit which supplies the raw material coal and the coarse particle classified by the classifier 20 on the crushing table 12. As shown in FIG.
  • the fixed classifier 20 described above is a cyclone-type classifier and has a simple structure without a drive unit, and therefore has advantages such as low cost and easy maintenance.
  • the fixed classifier 20 has poor accuracy in classification in the coarse grain area, and coarse grains in pulverized coal (coarse grains exceeding 100 mesh which adversely affects the flammability) increase, so the combustion discharged from the boiler It becomes a factor to increase the unburned component contained in the exhaust gas.
  • the classification principle of the fixed classifier 20 will be briefly described.
  • the particles of pulverized coal are coarse particles by the swirling flow It is classified by centrifugation into fine powder. Thereafter, the fine powder having a small particle size and light weight is wound on the reverse rising flow from below, enters from the lower side of the inner cylinder 24 to the inside, and flows out from the pulverized coal outlet 16 to the outside of the vertical roller mill 10.
  • the coarse particles having a large particle size separated by centrifugal separation can not ride on the flow entering the inside of the inner cylinder 24 from the lower side of the inner cylinder 24 because of the large weight, and reach the inner wall of the cone 21. It falls downward by gravity.
  • the coarse particles are finally dropped onto the grinding table 12 from the coal feed pipe 14 opening at the center of the lower part of the cone 21 and crushed again.
  • the stationary blade 23 imparts a swirl to the solid-gas two-phase flow that has undergone gravity classification after crushing, and the centrifugal force produces coarse particles and fine particles.
  • the coarse powder close to the product particle size particle size of about 150 ⁇ m, which is the middle of coarse particles / fine particles and based on unburned matter
  • the coarse powder is weak in centrifugal effect and therefore partly due to fluctuation of air flow etc. It flows toward the center near the inner cylinder 24 and tends to turn and descend near the inner cylinder 24.
  • the probability that the coarse powder is incorporated into the reverse upflow of fine powder increases, and there is a problem that the classification efficiency is lowered due to the increase of the amount of coarse powder incorporated into the product fine powder.
  • the first cause is, as shown by a broken line arrow in FIG. 8A, a part of coarse particles (coarse in the figure) included in the solid-gas two-phase flow passing through the fixed blade inlet window 22 between the fixed blades 23.
  • the particles Pc collide with and repel the outer surface (surface facing the inner wall surface of the cone 21) of the inner cylinder 24, and collide again with the back side (convex curved surface) of the fixed blade 23.
  • the second cause is a part of the coarse particles contained in the solid-gas two-phase flow when passing through the fixed blade inlet window 22 between the fixed blades 23, as shown by the broken line arrow in FIG.
  • the coarse particles Pd) in the inside directly collide with the back side of the fixed blade 23.
  • the coarse particles Pc and Pd that collided with the back side of the fixed blade 23 are repelled to the vicinity of the outer surface of the inner cylinder 24 because the fixed blade 23 is made of an iron plate having a relatively high repulsive force.
  • Stall That is, the solid-gas two-phase flow passing through the fixed blade inlet window 22 between the fixed blades 23 collides with the surface on the back side of the fixed blade 23 with some of the coarse particles, and receives relatively strong repulsive force. Since movement to the vicinity of the outer surface of the cylinder 24 causes a stall, the above-described coarse particles Pc, Pd fall along the outer surface of the inner cylinder 24 by gravity.
  • the coarse particles Pc, Pd ride on an air flow for particulate conveyance which rises toward the inside (the pulverized coal outlet 16) of the inner cylinder 24 during falling It becomes.
  • the coarse particles Pc and Pd that collided with the back side of the fixed blade 23 are considered to be stalled near the outer surface of the inner cylinder 24 and flow out from the pulverized coal outlet 16 together with the fine particles.
  • Such outflow of coarse particles Pc and Pd is not preferable because it reduces the classification efficiency of the stationary classifier 20.
  • the present invention has been made in view of the above circumstances, and the purpose thereof is that in a vertical roller mill equipped with a fixed classifier, the proportion of coarse particles in product pulverized coal (which adversely affects the flammability)
  • the purpose is to reduce the ratio of coarse particles to an extent exceeding 100 mesh.
  • the present invention adopts the following means in order to solve the above-mentioned problems.
  • a cyclone type fixing in which fine powder having a small particle diameter is classified by centrifugal force and discharged to the outside by passing a solid-gas two-phase flow which conveys powder obtained by pulverizing solid.
  • the stationary type classifier introduces the solid-gas two-phase flow into the interior from a stationary blade inlet window opened to a cone-like member, and the stationary blade inlet window
  • the fine powder passes through the lower end side of the inner cylinder provided on the inner side of the cone-shaped member from the upper fine powder outlet to the outside by giving a swirl to the solid-gas two-phase flow with a fixed blade attached near the inner side of It is comprised so that it may flow out and it is the vertical roller mill which formed the surface layer in which the coefficient of restitution of the collided particle
  • a surface layer is formed on the outer surface of the inner cylinder, in which the coefficient of restitution of the collided particles is higher than that of the iron plate, so in the flow of the solid-gas two-phase flow passing through the fixed vanes, the outer surface of the inner cylinder
  • the coarse particles that collide with the metal will repel sufficiently (largely) as compared with the conventional iron plate, and as a result, the speed reduction (stall) of the coarse particles can be prevented or suppressed.
  • ceramics having high hardness and being hard to be worn by collision of coarse particles can be exemplified.
  • a cyclone type fixing in which fine powder having a small particle diameter is classified by centrifugal force and discharged to the outside by passing a solid-gas two-phase flow which conveys powder obtained by crushing solid.
  • the stationary type classifier introduces the solid-gas two-phase flow into the interior from a stationary blade inlet window opened to a cone-like member, and the stationary blade inlet window
  • the fine powder passes through the lower end side of the inner cylinder provided on the inner side of the cone-shaped member from the upper fine powder outlet to the outside by giving a swirl to the solid-gas two-phase flow with a fixed blade attached near the inner side of
  • the outer surface of the inner cylinder is continuously provided with a large number of inclined surfaces in the circumferential direction for repelling the collided particles in the direction separating from the outer surface.
  • the coarse particles colliding with the outer surface of the inner cylinder are repelled away from the inner cylinder by the inclined surface, and further, they receive sufficient centrifugal force, so the velocity of the coarse particles decreases. (Stalling) can be prevented or suppressed.
  • suitable inclined surfaces include those formed by forming the outer surface of the inner cylinder in a sawtooth cross-sectional shape, and those formed by collision vanes installed on the outer surface.
  • a cyclone type fixing in which fine powder having a small particle diameter is classified by centrifugal force and discharged to the outside by passing a solid-gas two-phase flow which conveys powder obtained by crushing solid.
  • the stationary type classifier introduces the solid-gas two-phase flow into the interior from a stationary blade inlet window opened to a cone-like member, and the stationary blade inlet window
  • the fine powder passes through the lower end side of the inner cylinder provided on the inner side of the cone-shaped member from the upper fine powder outlet to the outside by giving a swirl to the solid-gas two-phase flow with a fixed blade attached near the inner side of
  • a cyclone type fixing in which fine powder having a small particle diameter is classified by centrifugal force and discharged to the outside by passing a solid-gas two-phase flow which conveys powder obtained by crushing solid.
  • the stationary type classifier introduces the solid-gas two-phase flow into the interior from a stationary blade inlet window opened to a cone-like member, and the stationary blade inlet window
  • the fine powder passes through the lower end side of the inner cylinder provided on the inner side of the cone-shaped member from the upper fine powder outlet to the outside by giving a swirl to the solid-gas two-phase flow with a fixed blade attached near the inner side of It is comprised so that it may flow out and it is the vertical roller mill which formed the surface layer whose coefficient of restitution of the collided particle is lower than the iron plate surface in the field which becomes the back side of the above-mentioned fixed blade.
  • the surface on the back side of the fixed blade is a surface layer in which the coefficient of restitution of the collided particles is lower than the iron plate surface.
  • the amount of repulsion of particles repelled and re-collimated after impact on the surface is reduced as compared to the conventional iron plate.
  • the particles colliding with the back side of the stationary blade especially the coarse particles having a large particle diameter, do not reach the vicinity of the inner cylinder without reaching the vicinity of the inner cylinder, and have sufficient centrifugal force near the stationary blade attached to the cone-like member. In order to receive it, it moves to the inner wall surface of the cone-like member and falls.
  • copper can be illustrated, for example.
  • the coarse particles are moved in the direction of separating from the cone-like member by preventing or suppressing the speed decrease (stall) of the coarse particles colliding with the outer surface of the cone-like member, It moves to the inner surface of the cone-like member by the centrifugal force. Therefore, the coarse particles colliding with the outer surface of the cone-like member fall on the grinding table without being discharged from the pulverized coal outlet together with the fine particles and are crushed again. In addition, since the coarse particles colliding with the reflecting plate also increase the speed in the falling direction, they will fall on the crushing table and be crushed again without flowing out of the pulverized coal outlet together with the fine particles.
  • the amount of repulsion of particles colliding with the back side of the fixed blade is reduced, whereby particles such as coarse particles colliding with the back side of the fixed blade do not reach the vicinity of the inner cylinder. It stalls, receives sufficient centrifugal force near the fixed blade, moves to the inner surface of the cone-like member, and falls. For this reason, the coarse particles colliding with the back surface of the fixed blade are dropped on the grinding table without being discharged from the pulverized coal outlet together with the fine particles and crushed again.
  • the vertical roller mill equipped with the stationary classifier according to the present invention can improve the classification efficiency by reducing the proportion of coarse particles in the product pulverized coal. For this reason, if the vertical roller mill of the present invention is applied to a pulverized coal-fired boiler, the ratio of coarse particles in product pulverized coal can be reduced, and the unburned component in ash can be reduced. Therefore, as a classifier for low grade coal with relatively good flammability, there is no drive unit and a simple structure, so it is possible to adopt a fixed classifier that can be easily maintained at low cost, and inexpensive low grade coal. It is possible to realize a coal (pulverized coal) -fired boiler which is made into pulverized coal fuel and burned.
  • FIG. 8A is a cross-sectional view showing a peripheral structure of a stationary classifier (a cross-sectional view taken along the line BB in FIG. 8B) showing a conventional vertical roller mill
  • FIG. 8B is a periphery of the stationary classifier.
  • It is a longitudinal cross-sectional view which shows a structure.
  • the vertical roller mill 10 shown in FIG. 7 is, for example, an apparatus (pulverized coal machine) for manufacturing pulverized coal to be a fuel of pulverized coal burning boiler.
  • raw material coal is pulverized into pulverized coal, and the pulverized coal after gravity classification is classified by the stationary classifier 20.
  • product fines classified through the fixed classifier 20 are classified as pulverized coal fuel having a desired degree of fineness from the pulverized coal outlet (milled powder outlet) 16 provided on the upper part of the vertical roller mill 10,
  • the air is transported to the pulverized coal-fired boiler by the primary air.
  • the configuration of the vertical roller mill 10 according to the present embodiment is the same as that of the prior art described above except for the configuration of the stationary classifier 20 described later, and thus the detailed description thereof will be omitted.
  • the solid-gas two-phase flow for conveying the pulverized coal (powder) obtained by crushing the raw material coal (solid) in an air flow passes through.
  • a cyclone-type fixed classifier 20 is provided at the upper portion inside the housing 11 to classify small fine powder of the above by centrifugal force and to discharge it to a pulverized coal-fired boiler (outside).
  • the stationary classifier 20 introduces a solid-gas two-phase flow into the inside of the cone from a stationary vane inlet window 22 opened in a cone (cone-like member) 21 and fixes the stationary vane 23 attached near the inner side of the stationary vane inlet window 22.
  • the small particle size and light weight fine powder flow out from the upper pulverized coal outlet 16 to the outside of the cone through the lower end side of the inner cylinder 24 provided inside the cone 21.
  • fine powder smaller than the desired particle size is classified on the reverse rising flow rising through the lower end of the inner cylinder 24 installed in the fixed classifier 20, and pulverized coal opened at the upper part As it flows out through the outlet 16, this fines are supplied from the stationary classifier 20 and the vertical roller mill 10 to the pulverized coal-fired boiler as product pulverizeds (dusted coal for fuel).
  • a stationary classifier 20A configured as shown in FIG. 1 is employed instead of the stationary classifier 20 described above. That is, in the stationary type classifier 20A of the present embodiment, a high resilience inner cylinder 24A of a two-layer structure in which the surface layer 30 made of ceramics is formed on the outer surface of the inner cylinder 24 made of iron plate.
  • the surface layer 30 forms an inner cylinder outer surface having a coefficient of restitution of collided particles higher than that of the conventional inner cylinder outer surface, and for example, a ceramic plate having high hardness is made of an iron plate inner cylinder outer surface It should be a structure attached to
  • the surface layer 30 mentioned above has a higher coefficient of restitution of impacted particles than the iron plate surface. For this reason, when a part of the coarse particles contained in the flow of the solid-gas two-phase flow that has passed through the fixed vanes 23 collides with the surface layer 30 formed on the outer surface of the high resilience inner cylinder 24A, the conventional iron plate It will be greatly repulsed in comparison. As a result, the coarse particles colliding with the surface layer 30 move sufficiently away from the surface layer 30, which is the outer surface of the high resilience inner cylinder 24A, as shown by the arrow f in FIG. 1A, for example. Since the particles move to the inner wall side of the cone 21 due to the sufficient centrifugal force of the swirling flow, the coarse particles do not stall due to the speed reduction.
  • the coarse particles colliding with the surface layer 30 are prevented from flowing out from the pulverized coal outlet 16 with the fine particles on the reverse rising flow because the stall is prevented or suppressed, and moreover, on the crushing table 12 Since it is dropped to be crushed again, the ratio of coarse particles in the product pulverized coal can be reduced to improve the classification efficiency.
  • the vertical roller mill 10 provided with the fixed classifier 20A of the present embodiment can reduce the ratio of coarse particles in product pulverized coal by applying it to a pulverized coal-fired boiler, so the unburned fraction in ash can be reduced. Can be reduced.
  • the material forming the surface layer 30 is not particularly limited as long as the coefficient of restitution of the particles is higher than that of the iron plate.
  • a stationary classifier 20B having a configuration provided with a sloped inner cylinder 24B is employed instead of the stationary classifier 20 described above.
  • the configuration other than the inclined surface inner cylinder 24B is the same as that of the conventional example described above. That is, the stationary type classifier 20B of the present embodiment includes the inclined inner surface cylinder 24B in which a large number of inclined surfaces 40 are continuously formed in the circumferential direction on the outer surface of the inner cylinder 24 in a concavo-convex shape.
  • the inclined surface 40 in the present embodiment is set to an angle at which the colliding particles such as coarse particles are repelled in the direction away from the outer surface of the inner cylinder 24.
  • the inclination angle of the inclined surface 40 takes into consideration the inflow angle of the coarse particles, as in the flow of the coarse particles shown by the arrow f in the figure, and the coarse particles colliding with the inclined surface 40 repel to a cone
  • the inclination angle toward the inner wall surface direction of 21 is set. That is, since the inflow angle of the coarse particles is an angle determined by the solid-gas two-phase flow passing through the fixed blade inlet window 22 and being given a swirl by the fixed blade 23, the inclination angle of the inclined surface 40 is the inflow It may be an angle at which coarse particles colliding with the inclined surface 40 at an angle repel outward. Further, in the present embodiment shown in FIG. 2, by forming the outer surface of the inner cylinder 24 into a sawtooth cross-sectional shape, a large number of inclined surfaces 40 of the same shape continuous in an uneven shape in the circumferential direction are formed.
  • the coarse particles that do not stop even when they collide with the inclined surface 40 fall on the inclined inner wall surface of the cone 21 without riding on the reverse rising flow that rises by passing the lower end of the inclined surface inner cylinder 24B.
  • the coarse particles further fall along the inner wall surface of the cone 21 and finally fall on the grinding table 12 to be crushed again.
  • the coarse particles colliding with the inclined surface 40 are prevented from flowing out from the pulverized coal outlet 16 together with the fine particles on the reverse rising flow because the stall is prevented or suppressed, and moreover, on the crushing table 12 Since it is dropped to be crushed again, the ratio of coarse particles in the product pulverized coal can be reduced to improve the classification efficiency.
  • the above-described inclined surface inner cylinder 24B is not limited to the structure in which the outer surface of the inner cylinder 24 has a sawtooth cross-sectional shape, and for example, the inclined surface inner cylinder 24C constituting the stationary classifier 20C shown in FIG.
  • a modified structure in which a large number of collision vanes 50 which form inclined surfaces on the outer surface 24 may be employed. Since the collision vane 50 functions in the same manner as the inclined surface 40 even in the inclined surface inner cylinder 24C in which the inclined surface is formed by the collision vane 50, it is possible to obtain the same function and effect as the above-described inclined surface inner cylinder 24B. it can.
  • the stationary type classifier 20D of this embodiment as shown in FIG. 4, instead of the stationary type classifier 20 described above, between the outer surface of the inner cylinder 24 and the stationary blade inlet window 22 and the stationary blade 23 A stationary classifier 20D in which an inverted conical reflector 60 is installed is employed.
  • the configuration other than the reflection plate 60 is the same as that of the above-described conventional example.
  • the reflecting plate 60 is an inverted conical plate installed all around the inside of the cone 21 and forms a downward inclined surface with respect to the horizontal direction.
  • the coarse particles colliding with the reflection plate 60 increase their downward falling velocity after repulsion, and as a result, they do not get on the reverse rising flow, and the cone 21 Falls on the sloped inner wall surface of the The coarse particles further fall along the inner wall surface of the cone 21 and finally fall on the grinding table 12 to be crushed again.
  • the coarse particles colliding with the reflecting plate 60 do not get out of the pulverized coal outlet 16 with the fine particles on the reverse rising flow due to the increase of the downward falling speed, and moreover, on the crushing table 12 Since it falls and is crushed again, the ratio of coarse particles in the product pulverized coal can be reduced to improve the classification efficiency.
  • a stationary classifier 20E configured as shown in FIGS. 5 and 6 is employed instead of the stationary classifier 20 described above. That is, in the stationary type classifier 20E of the present embodiment, a low repulsion stationary blade 23A in which a low resilience layer 70 made of a material (a low resilience material) having a lower coefficient of restitution than an iron plate is formed on the surface on the back side of the stationary blade 23. Is used.
  • the low resilience fixed blade 23A shown in the figure has a two-layer structure of a fixed blade 23 made of an iron plate and a low resilience layer 70.
  • a low repulsion layer 70 is formed by sticking a low repulsion material or the like on the back side surface where the fixed blade 23 bulges in a convex shape.
  • the low repulsion material suitable in this case has a high hardness that is less likely to be worn away by particle collisions.
  • a part of coarse particles Pa included in the flow of solid-gas two-phase flow passing through the low repulsive stationary blade 23A is It collides with the outer surface of the inner cylinder 24 and repels.
  • the coarse particles Pa largely repel and move toward the low resilience fixed blade 23A, and thus collide again with the low resilience layer 70 formed on the back side of the low resilience fixed vane 20E.
  • the repulsion coefficient of the colliding particles is set to be lower than that of the iron plate surface, so the repulsion amount of coarse particles Pa (distance reachable from repulsion surface) is lower than that of the conventional iron plate surface. , Stall without reaching near the outer surface of the inner cylinder 24.
  • coarse particles Pb included in the solid-gas two-phase flow that has passed through the low repulsion fixed vanes 23A directly collide with the low repulsive layer 70 formed in part on the back surface of the low repellant fixed vanes 23A. resist.
  • the repulsion coefficient of the collided particles is set lower than that of the iron plate surface, so that the repulsion amount of the coarse particles Pb is lower than that of the conventional iron plate surface. Stall without reaching.
  • the coarse particles Pa and Pb which have fallen are subjected to a sufficient centrifugal force on the swirling flow formed in the vicinity of the low repulsive fixed vanes 23A attached to the cone 21.
  • the coarse particles Pa and Pb which have fallen are moved to the inner wall surface of the cone 21 by centrifugal force and fall to the crushing table 12 along the inner wall surface of the cone 21. That is, the coarse particles Pa and Pb which collide with the low repulsion layer 70 move to the inner wall surface of the cone 21 under centrifugal force and fall to the crushing table 12 along the inner wall surface of the cone 21. There is no such thing as riding on a reverse rising flow rising through the lower end, and finally it falls onto the grinding table 12 and is crushed again.
  • the coarse particles Pa and Pb colliding with the low repulsion layer 70 are prevented from flowing out from the pulverized coal outlet 16 together with the fine particles on the reverse rising flow due to the reduction of the restitution amount. Since it falls and is crushed again, the ratio of coarse particles in the product pulverized coal can be reduced to improve the classification efficiency. In addition, with regard to the fixed blade 23, the classification efficiency can be improved without changing the angle or the shape.
  • the material forming the low resilience layer 70 is not particularly limited as long as the coefficient of restitution of the particles is lower than that of the iron plate. However, in view of the fact that particles such as coarse particles always collide and are polished (worn), it is desirable to use a material having a hardness higher than that of an iron plate as the low repulsion layer 70.
  • the vertical roller mill 10 provided with the fixed classifiers 20A to 20E has a ratio of coarse particles in product pulverized coal (eg, coarser than 100 mesh). Since the grain ratio can be reduced, if this is applied to a pulverized coal-fired boiler, the coarse grain ratio in product pulverized coal can be reduced, and the unburned content in ash can be reduced. Therefore, as a classifier for low grade coal with relatively good flammability, fixed classifiers 20A to 20E can be adopted at low cost and easy to maintain because they have a simple structure without a drive unit, which is inexpensive.
  • a pulverized coal-fired boiler can be realized in which low-grade coal is used as pulverized coal fuel and burned.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

固定式分級機を備えた竪型ローラミルにおいて、製品微粉炭中の粗粒割合を低減する。粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機(20A)をハウジング(11)内に備えている竪型ローラミルにおいて、固定式分級機(20A)は、コーン(21)に開口する固定羽根入口窓(22)から固気二相流を内部に導入し、固定羽根入口窓(22)の内側近傍に取り付けた固定羽根(23)で固気二相流に旋回を与えることにより、微粉がコーン(21)の内側に設けた内筒(24)の下端部側を通って上部の微粉炭出口(16)から外部へ流出するように構成され、内筒(24)の外表面に、衝突した粒子の反発係数が鉄板表面より高い表面層(30)を形成した。

Description

竪型ローラミル
 本発明は、たとえば微粉炭焚きボイラ等に適用される竪型ローラミルに係り、特に、固定式分級機を備えた竪型ローラミルに関する。
 従来、石炭焚きボイラでは、たとえば図7及び図8に示した竪型ローラミル10のような微粉炭機(ミル)へ原料炭を投入し、粉砕した微粉炭を燃料として使用する。竪型ローラミル10の内部では、ハウジング11内の下部に設置された粉砕テーブル12上を粉砕ローラ13が回転しながら旋回する。なお、図中の符号14は、原料炭を投入する石炭投入管である。
 竪型ローラミル10内に投入された原料炭は、粉砕テーブル12と粉砕ローラとの間に噛み込まれることにより粉砕されて微粉炭となる。この微粉炭は、粉砕テーブル12の周囲に配設されたスロート15から噴出する熱風により、乾燥されながらハウジング11内の上方に配置された固定式分級機20へと気流搬送される。このとき、粒径の大きい粗大粒子は、重力により落下して粉砕テーブル12上に戻される重力分級が行われるため、所望の粒径になるまで繰り返して粉砕を受けることとなる。
 上述した重力分級による1次分級の後には、粗粒を含む製品粒子の微粉炭が粉砕テーブル12の上部に配置された分級機によりさらに分級される。このような分級機には、固定式、回転式、及び固定式/回転式を組み合わせた方式があり、図示の分級機は固定式である。なお、回転式分級機は、回転羽根による衝突・慣性力により分級を行うもので、高い分級性能を有することが知られている。
 気流搬送された微粉炭は熱風により乾燥され、さらに、固定式分級機20を通過することにより分級される。分級された微粉炭は、固定式分級機20の内部からハウジング11の外部上方へ連通する微粉炭出口16を通り、搬送用の1次空気によりボイラまで気流搬送される。
 固定式分級機20は、コーン21の上端部側において周方向へ等ピッチに開口する多数の固定羽根入口窓22を備えている。この固定羽根入口窓22は、コーン21を形成する壁面を貫通して設けられた開口部であり、微粉炭を気流搬送する流れ(以下、「固気二相流」と呼ぶ)が通過してコーン21の内部へ流入するための入口及び流路となる。
 そして、コーン21の内壁側には、各固定羽根入口窓22と対になる多数の固定羽根23が取り付けられている。
 また、コーン21の内側には、固定羽根入口窓22及び固定羽根23と対向する壁面を形成する内筒24が設けられている。
 固定羽根23は、固気二相流に旋回を与えるため全てが同方向に傾斜して、すなわち、コーン21の軸中心に向かう半径方向の線から傾斜角度θを有して取り付けられている。従って、固定羽根23の傾斜角度θを増減すれば、固定羽根23の開度(角度)に応じて旋回流の強さも変化するので、分級する微粉度の調整が可能となる。
 なお、図中の符号25は、原料炭及び分級機20で分級された粗粒を粉砕テーブル12上へ供給するコーン出口である。
 上述した固定式分級機20はサイクロン型の分級機であり、駆動部がなくシンプルな構造となるため、低コストで保守が容易等のメリットを有している。しかし、固定式分級機20は粗粒域分級の精度が劣り、微粉炭中の粗粒(燃焼性に悪影響を与える100メッシュを超える程度の粗粒)が増加するため、ボイラから排出される燃焼排ガス中に含まれる未燃分を増加させる要因となる。
 ここで、固定式分級機20の分級原理を簡単に説明すると、固定羽根入口窓22から隣接する固定羽根23の間を通過する固気二相流は、微粉炭の粒子が旋回流により粗粒と微粉とに遠心分級される。この後、粒径が小さく軽量の微粉は、下方からの反転上昇流に乗って巻き上げられ、内筒24の下方から内側に入って微粉炭出口16から竪型ローラミル10の外部へ流出する。しかし、遠心分離された粒径の大きい粗粒は、重量が大きいため内筒24の下方から内筒24の内側に入る流れに乗れないためコーン21の内壁に至り、コーン21の内壁面に沿って重力により下方に落下する。
 この粗粒は、最終的にはコーン21の下部中央に開口する石炭投入管14から粉砕テーブル12上へ落下して再度粉砕される。
 上述した固定式の分級機を備えた竪型ローラミルについては、下記の特許文献1に開示された従来技術において、製品微粉炭中の粗粒割合を低減するため、羽根入口窓の近傍に偏流板を設けることや、内筒の傾きを変えることが行われている。
特開2011-104563号公報
 上述したように、竪型ローラミル10の固定式分級機20においては、粉砕後の重力分級を経た固気二相流に対して固定羽根23が旋回を与え、遠心力により粗粒と微粉とに分級しているが、製品粒子径に近い粗粉(粗粒/微粒の中間であり未燃分の基になる粒子径150μm程度)は遠心効果が弱く、従って、気流の変動等により一部が内筒24近くの中心方向へ流れ込み、内筒24の近辺で旋回・下降する傾向を示す。この結果、粗粉は微粉の反転上昇流に紛れ込む確率が増え、製品微粉に紛れ込む粗粉量の増加により、分級効率が低下するという問題を有している。
 分級効率低下の主な原因としては、例えば下記の二つが考えられる。
 第1の原因は、図8(a)に破線矢印で示すように、固定羽根23間の固定羽根入口窓22を通過した固気二相流に含まれる粗粒子の一部(図中の粗粒子Pc)が、内筒24の外表面(コーン21の内壁面と対向する面)に衝突して反発し、固定羽根23の背側(凸状の曲面)に再度衝突することである。
 第2の原因は、図8(a)に破線矢印で示すように、固定羽根23間の固定羽根入口窓22を通過する際に、固気二相流に含まれる粗粒子の一部(図中の粗粒子Pd)が、固定羽根23の背側に直接衝突することである。
 上述した二つの原因において、固定羽根23の背側に衝突した粗粒子Pc,Pdは、固定羽根23が比較的反発力の高い鉄板製であるため、内筒24の外表面近傍まで反発して失速する。すなわち、固定羽根23間の固定羽根入口窓22を通過した固気二相流は、粗粒子の一部が固定羽根23の背側となる面に衝突し、比較的強い反発力を受けて内筒24の外表面付近まで移動して失速するので、上述した粗粒子Pc,Pdが重力により内筒24の外表面に沿って落下する。
 しかし、この粗粒子Pc,Pdは、図8(b)に実線矢印で示すように、落下途中において内筒24の内側(微粉炭出口16)に向かって上昇する微粒子搬送用の気流に乗ることとなる。
 この結果、固定羽根23の背側に衝突した粗粒子Pc,Pdは、内筒24の外表面付近で失速し、微粒子とともに微粉炭出口16から流出するものと考えられる。このような粗粒子Pc,Pdの流出は、固定式分級機20の分級効率を低下させるため好ましくない。
 近年、世界的なエネルギー資源の逼迫を背景に、廉価な低品位炭の利用ニーズが増加しており、比較的燃焼性のよい低品位炭用の分級機として、固定式分級機の適用を可能にすることが期待されている。
 また、石炭焚きボイラにおいては、高効率(灰中未燃分の低減)・低NOx燃料の要求も高く、製品微粉炭中の粗粒割合を低減可能とする固定式分級機が求められている。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、固定式分級機を備えた竪型ローラミルにおいて、製品微粉炭中の粗粒割合(燃焼性に悪影響を与える100メッシュを超える程度となる粗粒の割合)を低減することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の第1の態様は、固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、前記内筒の外表面に、衝突した粒子の反発係数が鉄板表面より高い表面層を形成した竪型ローラミルである。
 この構成によれば、内筒の外表面に、衝突した粒子の反発係数が鉄板表面より高い表面層を形成したので、固定羽根を通過した固気二相流の流れにおいて、内筒の外表面に衝突する粗粒子は、従来の鉄板と比較して十分に(大きく)反発することになり、この結果、粗粒子の速度低下(失速)を防止または抑制できる。
 この場合、好適な表面層としては、硬度が高く粗粒子の衝突により摩耗しにくいセラミックスを例示できる。
 本発明の第2の態様は、固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、前記内筒の外表面に、衝突した粒子を前記外表面から離間する方向へ反発する多数の傾斜面を周方向へ凹凸状に連続して設けた竪型ローラミルである。
 この構成によれば、内筒の外表面に、衝突した粒子を外表面から離間する方向へ反発する多数の傾斜面を周方向へ凹凸状に連続して設けたので、固定羽根を通過した固気二相流の流れにおいて、内筒の外表面に衝突する粗粒子は、傾斜面により内筒から離れる方向へ反発することになり、さらに、十分な遠心力を受けるので、粗粒子の速度低下(失速)を防止または抑制できる。
 この場合、好適な傾斜面には、内筒の外表面を鋸歯断面形状にして形成されたものや、外表面に設置した衝突ベーンにより形成されたものがある。
 本発明の第3の態様は、固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、前記内筒の外表面と前記固定羽根入口窓及び前記固定羽根との間に逆円錐形の反射板を設置した竪型ローラミルである。
 この構成によれば、前記内筒の外表面と前記固定羽根入口窓及び前記固定羽根との間に逆円錐形の反射板を設置したので、固定羽根を通過した固気二相流の流れにおいて、反射板に衝突する粗粒子は、落下方向の速度が増加する。
 本発明の第4の態様は、固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、前記固定羽根の背側となる面に、衝突した粒子の反発係数が鉄板表面より低い表面層を形成した竪型ローラミルである。
 この構成によれば、固定羽根の背側となる面は、衝突した粒子の反発係数が鉄板表面より低い表面層となっているので、固定羽根の背側に直接衝突した粒子や、内筒外表面への衝突後に反発して再度衝突する粒子の反発量は、従来の鉄板と比較して低下する。この結果、固定羽根の背側に衝突する粒子は、特に粒径の大きい粗粒子は、内筒近傍まで到達することなく失速し、コーン状部材に取り付けられた固定羽根近傍において十分な遠心力を受けるため、コーン状部材の内壁面まで移動して落下する。
 この場合、好適な表面層としては、例えば銅を例示できる。
 上述した本発明によれば、コーン状部材の外表面に衝突する粗粒子の速度低下(失速)が防止または抑制されることにより、粗粒子はコーン状部材から離間する方向へ移動するとともに、十分な遠心力によりコーン状部材の内面まで移動する。従って、コーン状部材の外表面に衝突する粗粒子は、微粒子とともに微粉炭出口から流出することなく粉砕テーブル上に落下して再度粉砕されることとなる。また、反射板に衝突した粗粒子も落下方向の速度が増加するので、微粒子とともに微粉炭出口から流出することなく粉砕テーブル上に落下して再度粉砕されることとなる。
 また、上述した本発明によれば、固定羽根の背側面に衝突した粒子の反発量が低減されることにより、固定羽根背側面に衝突した粗粒子等の粒子は内筒近傍まで到達することなく失速し、固定羽根近傍の十分な遠心力を受けてコーン状部材の内面まで移動して落下する。このため、固定羽根背側面に衝突する粗粒子は、微粒子とともに微粉炭出口から流出することなく粉砕テーブル上に落下して再度粉砕されることとなる。
 この結果、本発明の固定式分級機を備えた竪型ローラミルは、製品微粉炭中の粗粒割合を低減して分級効率を向上させることができる。このため、本発明の竪型ローラミルを微粉炭焚きボイラに適用すれば、製品微粉炭中の粗粒割合を低減可能となり、灰中未燃分を低減することができる。従って、比較的燃焼性のよい低品位炭用の分級機として、駆動部がなくシンプルな構造のため、低コストで保守が容易な固定式分級機を採用することができ、廉価な低品位炭を微粉炭燃料にして燃焼させる石炭(微粉炭)焚きボイラを実現できる。
本発明に係る竪型ローラミルについて第1の実施形態を示す図で、(a)は固定式分級機の周辺構造を示す横断面図(図1(b)のA-A断面図)、(b)は固定式分級機の周辺構造を示す縦断面図である。 本発明に係る竪型ローラミルについて第2の実施形態を示す図で、内筒の外表面構造を示す横断面図である。 図2に示す竪型ローラミルの変形例を示す図で、内筒の外表面構造を示す横断面図である。 本発明に係る竪型ローラミルについて第3の実施形態を示す図で、固定式分級機の周辺構造を示す縦断面図である。 本発明に係る竪型ローラミルについて第4の実施形態を示す図であり、固定式分級機を構成する固定羽根の断面形状を示す断面図である。 図5に示した断面形状を有する固定羽根を備えた固定式分級機の作用効果を示す図で、(a)は固定式分級機の横断面図(図6(b)のA-A断面図)、(b)は固定式分級機の縦断面図である。 竪型ローラミルの概略構成例を示す縦断面図である。 従来の竪型ローラミルを示す図で、(a)は固定式分級機の周辺構造を示す横断面図(図8(b)のB-B断面図)、(b)は固定式分級機の周辺構造を示す縦断面図である。
 以下、本発明に係る竪型ローラミルの一実施形態を図面に基づいて説明する。
 図7に示す竪型ローラミル10は、たとえば微粉炭焚きボイラの燃料となる微粉炭を製造する装置(微粉炭機)である。この竪型ローラミル10は、原料炭を粉砕して微粉炭とし、重力分級後の微粉炭が固定式分級機20により分級される。この結果、固定式分級機20を通過して分級された製品微粉は、所望の微粉度を有する微粉炭燃料として、竪型ローラミル10の上部に設けられた微粉炭出口(微粉出口)16から、1次空気により微粉炭焚きボイラへ気流搬送される。
 なお、本実施形態に係る竪型ローラミル10の構成は、後述する固定式分級機20の構成を除いて上述した従来技術と同様であり、従って、その詳細な説明は省略する。
 すなわち、本発明に係る竪型ローラミル10は、原料炭(固体)を粉砕した微粉炭(粉体)を気流搬送する固気二相流(微粉炭+1次空気)が通過することにより、粒径の小さい微粉を遠心力により分級して微粉炭焚きボイラ(外部)へ流出させるサイクロン型の固定式分級機20をハウジング11内の上部に備えている。この固定式分級機20は、コーン(コーン状部材)21に開口する固定羽根入口窓22から固気二相流をコーン内部に導入し、固定羽根入口窓22の内側近傍に取り付けた固定羽根23で固気二相流に旋回を与えることにより、粒径が小さく軽量の微粉がコーン21の内側に設けた内筒24の下端部側を通って上部の微粉炭出口16からコーン外部へ流出するように構成されている。
 換言すれば、所望の粒径より小さい微粉は、固定式分級機20内に設置された内筒24の下端部を通過して上昇する反転上昇流に乗って分級され、上部に開口する微粉炭出口16を通って流出するので、この微粉は、固定式分級機20及び竪型ローラミル10から微粉炭焚きボイラへ製品微粉(燃料用微粉炭)として供給される。
<第1の実施形態>
 本実施形態では、上述した固定式分級機20に代えて、図1に示すように構成された固定式分級機20Aが採用されている。すなわち、本実施形態の固定式分級機20Aには、鉄板製である内筒24の外表面にセラミックスよりなる表面層30を形成した二層構造の高反発内筒24Aが採用されている。
 この表面層30は、衝突した粒子の反発係数が従来の内筒外表面である鉄板表面より高い内筒外表面を形成するものであり、例えば硬度の高いセラミックス板を鉄板製の内筒外表面に張り付けた構造とすればよい。
 上述した表面層30は、衝突した粒子の反発係数が鉄板表面より高い。このため、固定羽根23を通過した固気二相流の流れに含まれる粗粒子は、その一部が高反発内筒24Aの外表面に形成された表面層30に衝突すると、従来の鉄板と比較して大きく反発することになる。
 この結果、表面層30に衝突した粗粒子は、例えば図1(a)の図中に矢印fで示すように、高反発内筒24Aの外表面である表面層30から離れる方向へ十分な移動をするとともに、旋回流の十分な遠心力によりコーン21の内壁面側まで移動するので、粗粒子が速度低下により失速することはない。
 すなわち、表面層30に衝突しても失速しない粗粒子は、高反発内筒24Aの下端部を通過して上昇する反転上昇流に乗るようなことはなく、従って、コーン21の傾斜した内壁面に落下する。この粗粒子は、コーン21の内壁面に沿って落下し、最終的には粉砕テーブル12の上に落下して再度粉砕される。
 上述したように、表面層30に衝突した粗粒子は、失速が防止または抑制されたことにより、反転上昇流に乗って微粒子とともに微粉炭出口16から流出することがなく、しかも、粉砕テーブル12上に落下して再度粉砕されるので、製品微粉炭中の粗粒割合を低減して分級効率を向上させることができる。
 従って、本実施形態の固定式分級機20Aを備えた竪型ローラミル10は、微粉炭焚きボイラに適用することにより、製品微粉炭中の粗粒割合を低減可能となるので、灰中未燃分を低減することができる。この結果、比較的燃焼性のよい低品位炭用の分級機として、駆動部のないシンプルな構造で、しかも、低コストで保守が容易な固定式分級機20Aの採用が可能となる。
 本実施形態において、表面層30を形成する素材は、粒子の反発係数が鉄板より高いものであれば特に限定されることはない。しかし、表面層30は、粗粒子等の粒子が衝突することにより研磨されて摩耗することを考慮すれば、鉄板より硬度の高いセラミックスの採用が望ましい。
<第2の実施形態>
 本実施形態では、上述した固定式分級機20に代えて、図2に示すように、傾斜面内筒24Bを備えた構成の固定式分級機20Bが採用されている。なお、本実施形態の固定式分級機20Bにおいて、傾斜面内筒24B以外の構成は上述した従来例と同様である。
 すなわち、本実施形態の固定式分級機20Bは、内筒24の外表面に周方向へ凹凸状に連続して多数の傾斜面40が形成された傾斜面内筒24Bを備えている。本実施形態の傾斜面40は、衝突した粗粒子等の粒子を内筒24の外表面から離間する方向へ反発する角度に設定されている。
 具体的には、傾斜面40の傾斜角度は、図中に矢印fで示す粗粒子の流れのように、粗粒子の流入角度を考慮し、傾斜面40に衝突した粗粒子が反発してコーン21の内壁面方向へ向かう傾斜角度に設定されている。すなわち、粗粒子の流入角度は、固気二相流が固定羽根入口窓22を通過し、固定羽根23で旋回を与えられることにより定まる角度であるから、傾斜面40の傾斜角度は、この流入角度で傾斜面40に衝突した粗粒子が外向きに反発する角度であればよい。
 そして、図2に示す本実施形態では、内筒24の外表面を鋸歯断面形状にすることにより、周方向へ凹凸状に連続する同形状の傾斜面40が多数形成されている。
 このように、衝突した粗粒子を外表面24から離間する方向へ反発する多数の傾斜面40を周方向へ連続して設けたので、固定羽根23を通過した固気二相流の流れにおいて、内筒24の外表面に向かう粗粒子は、傾斜面内筒24Bの傾斜面40に衝突することにより内筒24から離れる方向へ反発する。さらに、内筒24から離間する方向へ反発した粗粒子は、十分な遠心力によりコーン21の内壁面まで移動するので、粗粒子の速度低下を防止または抑制できる。
 従って、傾斜面40に衝突しても失速しない粗粒子は、傾斜面内筒24Bの下端部を通過して上昇する反転上昇流に乗らず、コーン21の傾斜した内壁面に落下する。この粗粒子は、さらにコーン21の内壁面に沿って落下し、最終的には粉砕テーブル12の上に落下して再度粉砕される。
 上述したように、傾斜面40に衝突した粗粒子は、失速が防止または抑制されたことにより、反転上昇流に乗って微粒子とともに微粉炭出口16から流出することがなく、しかも、粉砕テーブル12上に落下して再度粉砕されるので、製品微粉炭中の粗粒割合を低減して分級効率を向上させることができる。
 ところで、上述した傾斜面内筒24Bは、内筒24の外表面を鋸歯断面形状にする構造に限定されることはなく、例えば図3に示す固定式分級機20Cを構成する傾斜面内筒24Cのように、外表面24に傾斜面を形成する衝突ベーン50を多数設置した変形例の構造を採用してもよい。
 このような衝突ベーン50により傾斜面を形成した傾斜面内筒24Cとしても、衝突ベーン50が傾斜面40と同様に機能するので、上述した傾斜面内筒24Bと同様の作用効果を得ることができる。
<第3の実施形態>
 本実施形態の固定式分級機20Dでは、上述した固定式分級機20に代えて、図4に示すように、内筒24の外表面と固定羽根入口窓22及び固定羽根23との間に、逆円錐形の反射板60を設置した固定式分級機20Dが採用されている。なお、本実施形態の固定式分級機20Dにおいて、反射板60以外の構成は上述した従来例と同様である。
 反射板60は、コーン21の内部に全周にわたって設置された逆円錐形の板材であり、水平方向に対して下向きの傾斜面を形成している。
 このため、固定羽根23を通過した固気二相流の流れにおいて、図4に実線矢印fで示すように、反射板60に衝突する粗粒子は、下向きの落下方向に反発することでその速度が増加する。
 すなわち、反射板60がない場合、図4に破線矢印f´で示すように、内筒24の外表面に反発した後の粗粒子は、反射板60に衝突した場合と比較して下向きの速度成分が小さく、内筒24の下端部を通過して上昇する反転上昇流に巻き込まれやすい。
 しかし、コーン21の内部に反射板60を設けたことにより、反射板60に衝突した粗粒子は、反発後に下向きの落下方向速度が増加し、この結果、反転上昇流には乗らず、コーン21の傾斜した内壁面に落下する。この粗粒子は、さらにコーン21の内壁面に沿って落下し、最終的には粉砕テーブル12の上に落下して再度粉砕される。
 上述したように、反射板60に衝突した粗粒子は、下向きの落下速度が増加したことにより、反転上昇流に乗って微粒子とともに微粉炭出口16から流出することがなく、しかも粉砕テーブル12上に落下して再度粉砕されるので、製品微粉炭中の粗粒割合を低減して分級効率を向上させることができる。
<第4の実施形態>
 本実施形態では、上述した固定式分級機20に代えて、図5及び図6に示すように構成された固定式分級機20Eが採用されている。すなわち、本実施形態の固定式分級機20Eでは、固定羽根23の背側となる面に、鉄板より反発係数の低い素材(低反発材)よりなる低反発層70を形成した低反発固定羽根23Aが用いられている。
 図示の低反発固定羽根23Aは、鉄板製の固定羽根23と低反発層70との二層構造である。具体的には、固定羽根23が凸状に膨出する背側の面に、低反発材を張り付けるなどして低反発層70を形成している。この場合に好適な低反発材は、鉄板より反発係数が低いことに加えて、粒子の衝突により摩耗しにくい高い硬度を有することが望ましい。
 このような固定式分級機20Eにおいて、例えば図6(a)に実線で示すように、低反発固定羽根23Aを通過した固気二相流の流れに含まれる粗粒子Paは、その一部が内筒24の外表面に衝突して反発する。この粗粒子Paは、大きく反発して低反発固定羽根23A側へ移動するので、低反発固定羽根20Eの背側に形成された低反発層70に再度衝突する。しかし、この低反発層70は、衝突した粒子の反発係数が鉄板表面よりも低く設定されているので、粗粒子Paの反発量(反発面から到達可能な距離)が従来の鉄板面より低下し、内筒24の外表面付近まで到達することなく失速する。
 また、低反発固定羽根23Aを通過した固気二相流の流れに含まれる粗粒子Pbは、その一部が低反発固定羽根23Aの背側面に形成された低反発層70に直接衝突して反発する。しかし、この低反発層70は、衝突した粒子の反発係数が鉄板表面よりも低く設定されているので、粗粒子Pbの反発量が従来の鉄板面より低下し、内筒24の外表面付近まで到達することなく失速する。
 この結果、失速した粗粒子Pa,Pbは、コーン21に取り付けられた低反発固定羽根23Aの近傍に形成される旋回流に乗って十分な遠心力を受けることとなる。このため、失速した粗粒子Pa,Pbは、遠心力によりコーン21の内壁面まで移動し、コーン21の内壁面に沿って粉砕テーブル12まで落下する。
 すなわち、低反発層70に衝突した粗粒子Pa,Pbは、遠心力を受けてコーン21の内壁面まで移動し、コーン21の内壁面に沿って粉砕テーブル12まで落下するので、内筒24の下端部を通過して上昇する反転上昇流に乗るようなことはなく、最終的には粉砕テーブル12の上に落下して再度粉砕される。
 上述したように、低反発層70に衝突した粗粒子Pa,Pbは、反発量の低減により反転上昇流に乗って微粒子とともに微粉炭出口16から流出することがなく、しかも、粉砕テーブル12上に落下して再度粉砕されるので、製品微粉炭中の粗粒割合を低減して分級効率を向上させることができる。また、固定羽根23については、角度や形状を変更することなく分級効率の向上が可能になる。
 なお、本実施形態において、低反発層70を形成する素材は、粒子の反発係数が鉄板より低いものであれば特に限定されることはない。しかし、低反発層70は、粗粒子等の粒子が常に衝突して研磨される(摩耗する)ことを考慮すれば、鉄板より硬度の高い素材を採用することが望ましい。
 このように、上述した各実施形態及びその変形例によれば、固定式分級機20A~20Eを備えた竪型ローラミル10は、製品微粉炭中の粗粒割合(たとえば100メッシュを超える程度の粗粒割合)を低減できるため、これを微粉炭焚きボイラに適用すれば、製品微粉炭中の粗粒割合が低減し、灰中未燃分を低減することができる。従って、比較的燃焼性のよい低品位炭用の分級機として、駆動部がなくシンプルな構造のため、低コストで保守が容易な固定式分級機20A~20Eを採用することができ、廉価な低品位炭を微粉炭燃料にして燃焼させる微粉炭焚きボイラを実現できる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 10  竪型ローラミル
 11  ハウジング
 12  粉砕テーブル
 13  粉砕ローラ
 14  石炭投入管
 15  スロート
 16  微粉炭出口(微粉出口)
 20,20A~20E  固定式分級機
 21  コーン(コーン状部材)
 22  固定羽根入口窓
 23  固定羽根
 24  内筒
 24A  高反発内筒
 24B,24C  傾斜面内筒
 30  表面層
 40  傾斜面
 50  衝突ベーン
 60  反射板
 70  低反発層

Claims (6)

  1.  固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、
     前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、
     前記内筒の外表面に、衝突した粒子の反発係数が鉄板表面より高い表面層を形成した竪型ローラミル。
  2.  固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、
     前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、
     前記内筒の外表面に、衝突した粒子を前記外表面から離間する方向へ反発する多数の傾斜面を周方向へ凹凸状に連続して設けた竪型ローラミル。
  3.  前記傾斜面は、前記外表面を鋸歯断面形状にして形成されている請求項2に記載の竪型ローラミル。
  4.  前記傾斜面は、前記外表面に設置した衝突ベーンにより形成されている請求項2に記載の竪型ローラミル。
  5.  固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、
     前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、
     前記内筒の外表面と前記固定羽根入口窓及び前記固定羽根との間に逆円錐形の反射板を設置した竪型ローラミル。
  6.  固体を粉砕した粉体を気流搬送する固気二相流が通過することにより、粒径の小さい微粉を遠心力により分級して外部へ流出させるサイクロン型の固定式分級機をハウジング内に備えている竪型ローラミルにおいて、
     前記固定式分級機は、コーン状部材に開口する固定羽根入口窓から前記固気二相流を内部に導入し、前記固定羽根入口窓の内側近傍に取り付けた固定羽根で前記固気二相流に旋回を与えることにより、前記微粉が前記コーン状部材の内側に設けた内筒の下端部側を通って上部の微粉出口から外部へ流出するように構成され、
     前記固定羽根の背側となる面に、衝突した粒子の反発係数が鉄板表面より低い表面層を形成した竪型ローラミル。
     
     
     
     
     
PCT/JP2014/071679 2013-11-01 2014-08-19 竪型ローラミル WO2015064185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004987.5T DE112014004987B4 (de) 2013-11-01 2014-08-19 Vertikale Walzenmühle
US14/909,789 US10722898B2 (en) 2013-11-01 2014-08-19 Vertical roller mill
KR1020167003296A KR101766604B1 (ko) 2013-11-01 2014-08-19 수직형 롤러 밀
CN201480044306.5A CN105451886B (zh) 2013-11-01 2014-08-19 立式辊碾机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-228354 2013-11-01
JP2013228354A JP6165593B2 (ja) 2013-11-01 2013-11-01 竪型ローラミル
JP2013242059A JP6045478B2 (ja) 2013-11-22 2013-11-22 竪型ローラミル
JP2013-242059 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015064185A1 true WO2015064185A1 (ja) 2015-05-07

Family

ID=53003800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071679 WO2015064185A1 (ja) 2013-11-01 2014-08-19 竪型ローラミル

Country Status (5)

Country Link
US (1) US10722898B2 (ja)
KR (1) KR101766604B1 (ja)
CN (1) CN105451886B (ja)
DE (1) DE112014004987B4 (ja)
WO (1) WO2015064185A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985081B1 (de) * 2014-08-12 2017-03-22 Loesche GmbH Verfahren und Luftstrom-Vertikalmühle zur Mahlung von heißem und feuchtem Rohmaterial sowie kanalartiges Segment
CN106140398A (zh) * 2016-08-26 2016-11-23 江苏海建股份有限公司 新型的自动排铁式立磨磨盘及排难磨物料方法
CN111632741B (zh) * 2020-05-26 2022-03-08 南通利元亨机械有限公司 耐磨型蜗壳进料机座
CN114029154A (zh) * 2021-11-29 2022-02-11 西安热工研究院有限公司 一种磨煤机粉量调节装置及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751630A (ja) * 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd 竪型ローラミルの分級装置
US5667149A (en) * 1995-07-03 1997-09-16 Foster Wheeler Energy Corporation Solids pulverizer mill and process utilizing interactive air port nozzles
WO1999010101A1 (en) * 1997-08-22 1999-03-04 Transfield Pty. Ltd. Removal of non-combustibles from coal in mills
JPH11347494A (ja) * 1998-04-16 1999-12-21 Alstom France Sa ボイラの上流側に配置されると共に分離弁部材を備える燃料粒子セパレ―タ
JP2002018301A (ja) * 2000-07-04 2002-01-22 Babcock Hitachi Kk 分級装置および竪型ミル
WO2011062240A1 (ja) * 2009-11-20 2011-05-26 三菱重工業株式会社 竪型ローラミル

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497569A (en) 1982-09-21 1985-02-05 Xerox Corporation Copy processing system for a reproduction machine
KR870003032A (ko) 1985-09-05 1987-04-14 송태욱 피복용 쎄락믹스 및 그 피복 방법
US5039317A (en) * 1990-07-05 1991-08-13 Allied-Signal Inc. Radial inflow particle separation method and apparatus
JPH0544266A (ja) 1991-08-08 1993-02-23 Misawa Homes Co Ltd ユニツト住宅用セツテイングプレート
JPH0751629A (ja) 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd 竪型ローラミルの分級装置
US5605292A (en) 1995-09-06 1997-02-25 March-Southwestern Corp. Pulverizer mill high performance classifier system
JPH10230181A (ja) 1997-02-19 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd 竪型ミル
JP2000042439A (ja) 1998-07-28 2000-02-15 Babcock Hitachi Kk 竪型ローラミル
CN1152754C (zh) 1999-04-16 2004-06-09 阿尔斯托姆法国公司 设置在锅炉上游的具有单个隔离阀的燃料颗粒分离器
US6588598B2 (en) 1999-11-15 2003-07-08 Rickey E. Wark Multi-outlet diffuser system for classifier cones
US6607079B2 (en) 2001-08-16 2003-08-19 Foster Wheeler Energy Corporation System and method for controlling particle flow distribution between the outlets of a classifier
US7762484B2 (en) * 2008-04-14 2010-07-27 Owens Corning Intellectual Capital, Llc Blowing wool machine flow control
DE102008038776B4 (de) 2008-08-12 2016-07-07 Loesche Gmbh Verfahren zur Sichtung eines Mahlgut-Fluid-Gemisches und Mühlensichter
JP5638318B2 (ja) * 2010-08-27 2014-12-10 三菱重工業株式会社 竪型ローラミル
HK1146686A2 (en) * 2011-03-04 2011-06-30 Wong Yan Kwong Portable food processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751630A (ja) * 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd 竪型ローラミルの分級装置
US5667149A (en) * 1995-07-03 1997-09-16 Foster Wheeler Energy Corporation Solids pulverizer mill and process utilizing interactive air port nozzles
WO1999010101A1 (en) * 1997-08-22 1999-03-04 Transfield Pty. Ltd. Removal of non-combustibles from coal in mills
JPH11347494A (ja) * 1998-04-16 1999-12-21 Alstom France Sa ボイラの上流側に配置されると共に分離弁部材を備える燃料粒子セパレ―タ
JP2002018301A (ja) * 2000-07-04 2002-01-22 Babcock Hitachi Kk 分級装置および竪型ミル
WO2011062240A1 (ja) * 2009-11-20 2011-05-26 三菱重工業株式会社 竪型ローラミル

Also Published As

Publication number Publication date
US10722898B2 (en) 2020-07-28
CN105451886B (zh) 2018-06-01
DE112014004987T5 (de) 2016-08-04
KR20160029847A (ko) 2016-03-15
KR101766604B1 (ko) 2017-08-08
US20160199844A1 (en) 2016-07-14
CN105451886A (zh) 2016-03-30
DE112014004987B4 (de) 2023-08-17

Similar Documents

Publication Publication Date Title
EP2502680A1 (en) Vertical roller mill
KR101131539B1 (ko) 분급기, 상기 분급기를 구비한 수직형분쇄기, 및 상기수직형분쇄기를 구비한 석탄분보일러장치
JP4865865B2 (ja) 分級装置及びそれを備えた竪型粉砕装置ならびに石炭焚ボイラ装置
US9211547B2 (en) Classifier
WO2017138302A1 (ja) 分級機、粉砕分級装置及び微粉炭焚きボイラ
WO2015064185A1 (ja) 竪型ローラミル
JP5638318B2 (ja) 竪型ローラミル
CN107847984B (zh) 分级机、粉碎分级装置及粉煤焚烧炉
KR102111226B1 (ko) 분쇄 장치, 분쇄 장치의 스로트 및 미분탄 연소 보일러
JP2009297597A (ja) 竪型ローラミル
JPH10109045A (ja) 竪型ローラミル
JP6165593B2 (ja) 竪型ローラミル
JP6275442B2 (ja) 竪型ローラミル
WO2017138294A1 (ja) 粉砕装置及び微粉炭焚きボイラ
JP6045478B2 (ja) 竪型ローラミル
JP4562871B2 (ja) 分級装置および竪型ミル
JP2016083638A (ja) 竪型ローラミル
JP4272456B2 (ja) 分級機及びそれを備えた竪型粉砕機、石炭焚ボイラ装置
JP2011240233A (ja) 竪型粉砕装置ならびに石炭焚ボイラ装置
WO2014112528A1 (ja) 竪型粉砕分級装置
TW201825202A (zh) 分級機、直立式粉碎機以及燃煤鍋爐

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044306.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909789

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167003296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140049875

Country of ref document: DE

Ref document number: 112014004987

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857618

Country of ref document: EP

Kind code of ref document: A1