WO2015064116A1 - 画像取得装置及び画像取得装置の画像取得方法 - Google Patents

画像取得装置及び画像取得装置の画像取得方法 Download PDF

Info

Publication number
WO2015064116A1
WO2015064116A1 PCT/JP2014/051804 JP2014051804W WO2015064116A1 WO 2015064116 A1 WO2015064116 A1 WO 2015064116A1 JP 2014051804 W JP2014051804 W JP 2014051804W WO 2015064116 A1 WO2015064116 A1 WO 2015064116A1
Authority
WO
WIPO (PCT)
Prior art keywords
image acquisition
speed
sample
image
image sensor
Prior art date
Application number
PCT/JP2014/051804
Other languages
English (en)
French (fr)
Inventor
岩瀬 富美雄
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US15/031,083 priority Critical patent/US9911028B2/en
Priority to DK14856848.8T priority patent/DK3064981T3/da
Priority to EP14856848.8A priority patent/EP3064981B1/en
Priority to CN201480058554.5A priority patent/CN105683805B/zh
Publication of WO2015064116A1 publication Critical patent/WO2015064116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture

Definitions

  • the present invention relates to an image acquisition device and an image acquisition method of the image acquisition device.
  • an image acquisition device for acquiring a still image of a sample such as a tissue cell
  • Partial images are acquired sequentially, and then the partial images are combined to acquire an image of the entire sample.
  • an image acquisition method called a tiling scan method is used.
  • the stage is moved so that a predetermined region of the sample is included in the field of view of the objective lens, and then the partial image is acquired using a two-dimensional imaging device such as an area sensor while the stage is stopped. . Thereafter, the same operation is repeatedly executed to acquire a still image of the entire sample.
  • Patent Documents 1 to 3 propose an image acquisition method for acquiring a partial image using a two-dimensional image sensor without stopping the stage. More specifically, for example, in the image acquisition method described in Patent Document 1, the stage is moved and the sample is intermittently irradiated with light in synchronization with the movement of the stage, while continuously using a two-dimensional image sensor. Partial images are acquired.
  • the present invention has been made to solve the above problems, and an object thereof is to provide an image acquisition device and an image acquisition method for the image acquisition device that can execute partial image acquisition and overall image synthesis at high speed. .
  • an image acquisition apparatus includes a stage on which a sample is placed, a light emitting unit that irradiates instantaneous light, and an objective lens that is disposed so as to face the sample on the stage.
  • a light guide optical system Including a light guide optical system, an image pickup device for picking up a light image of the sample guided by the light guide optical system, a drive unit for moving the visual field position of the objective lens with respect to the sample at a predetermined speed, and controlling the light emitting means
  • a control unit that has a plurality of pixel columns and sequentially captures images at a predetermined frame rate, and the speed is a speed set based on at least the frame rate. It is characterized by being.
  • the drive unit moves the visual field position of the objective lens with respect to the sample at a predetermined speed, and the two-dimensional image sensor sequentially captures the optical image of the sample at a predetermined frame rate. Therefore, the time required for acquiring the partial image over the entire sample is shortened.
  • the moving speed of the visual field position is a speed set based on the frame rate of the image sensor. Therefore, the movement of the visual field position is synchronized with the imaging of the imaging device, and it is possible to capture only the necessary partial images. Therefore, in this image acquisition device, partial image acquisition and overall image synthesis can be performed at high speed.
  • the predetermined speed is preferably a speed set based on at least the number of pixel columns of the image sensor.
  • the moving speed of the visual field position is set in consideration of the relationship between the number of pixel columns of the image sensor and the sample area captured by one imaging, only necessary partial images are captured more reliably. It becomes possible.
  • the predetermined speed is preferably a speed set based on at least the optical magnification of the light guide optical system.
  • the moving speed of the visual field position is set in consideration of the size of the visual field of the objective lens, it is possible to capture an image at a desired position more reliably.
  • the predetermined speed is preferably a speed set based on at least the pixel width of the pixel row of the image sensor. In this case, since the moving speed of the visual field position is set in consideration of the pixel width of the image sensor, it is possible to capture more reliably at a desired position.
  • the predetermined speed is a speed that is set so that a part of two regions of the sample continuously imaged by the image sensor overlap each other. In this case, part of the two regions of the sample that are continuously imaged overlap each other, so that when the obtained partial images are synthesized, the partial images can be smoothly synthesized, and the whole image without a break is obtained. You can get it.
  • the predetermined speed is a speed set based on the number of pixel columns of the image sensor corresponding to the overlapping area where two areas partially overlap each other. In this case, since the moving speed of the visual field position is set in consideration of the relationship between the overlapping region and the number of pixel columns of the image sensor corresponding to the region, the overlapping region is more reliably formed.
  • the imaging device outputs a trigger signal indicating that all of the pixel columns are exposed to the control unit, and the control unit exposes all of the pixel columns based on the trigger signal output from the imaging device. It is preferable to irradiate instantaneous light from the light emitting means during the period. In this case, since it is possible to irradiate instantaneous light during a period in which all of the pixel columns are exposed, each partial image can be reliably acquired.
  • An image acquisition method of an image acquisition apparatus includes a stage on which a sample is placed, a light emitting means for irradiating instantaneous light, and a light guide including an objective lens arranged to face the sample on the stage.
  • An optical system an imaging device that captures a light image of the sample guided by the light guide optical system, a drive unit that moves the visual field position of the objective lens with respect to the sample at a predetermined speed, and a control unit that controls the light emitting means
  • An image acquisition method of an image acquisition apparatus comprising: a two-dimensional image sensor that has a plurality of pixel rows and sequentially images at a predetermined frame rate as an image sensor; It is characterized by setting based on the rate.
  • the drive unit moves the visual field position of the objective lens with respect to the sample at a predetermined speed, and the two-dimensional image sensor sequentially captures the optical image of the sample at a predetermined frame rate. Therefore, the time required for acquiring the partial image over the entire sample is shortened.
  • the moving speed of the visual field position is set based on the frame rate of the image sensor. Therefore, the movement of the visual field position is synchronized with the imaging of the imaging device, and it is possible to capture only the necessary partial images. Therefore, in this image acquisition method of the image acquisition device, partial image acquisition and overall image synthesis can be performed at high speed.
  • the predetermined speed based on at least the number of pixel columns of the image sensor.
  • the moving speed of the visual field position is set in consideration of the relationship between the number of pixel rows of the image sensor and the sample area captured by one imaging, only necessary partial images are captured more reliably. Is possible.
  • the predetermined speed it is preferable to set the predetermined speed so that a part of two regions of the sample continuously imaged by the image sensor overlap each other. In this case, part of the two regions of the sample that are continuously imaged overlap each other, so that when the obtained partial images are synthesized, the partial images can be smoothly synthesized, and the whole image without a break is obtained. You can get it.
  • FIG. 1 It is a figure which shows one Embodiment of the image acquisition apparatus which concerns on this invention. It is a figure which shows the light-receiving surface of the image pick-up element which comprises the image acquisition apparatus shown in FIG. It is a figure which shows an example of the scan of the image acquisition area
  • FIG. 1 is a diagram showing an embodiment of an image acquisition apparatus according to the present invention.
  • the image acquisition apparatus 1 includes a stage 2 on which a sample S is placed, a light source 3 (light emitting means) that irradiates instantaneous light toward the sample, and a sample S on the stage 2.
  • the light guide optical system 5 including the objective lens 25 arranged in such a manner and the image sensor 6 that captures the light image of the sample S guided by the light guide optical system 5 are provided.
  • the image acquisition apparatus 1 also includes a stage drive unit 11 (drive unit) that moves the visual field position of the objective lens 25 with respect to the sample S, an objective lens drive unit 12 that changes the focal position of the objective lens 25 with respect to the sample S, and a light source.
  • a stage drive unit 11 drive unit
  • an objective lens drive unit 12 that changes the focal position of the objective lens 25 with respect to the sample S
  • a light source 3 includes a light source control unit 13 (control unit) that controls the image processing unit 14 and an image processing unit 14.
  • the sample S observed by the image acquisition device 1 is a biological sample such as tissue cells, for example, and is placed on the stage 2 in a state of being sealed in a slide glass.
  • the light source 3 is disposed on the bottom surface side of the stage 2.
  • a flash lamp type light source such as a laser diode (LD), a light emitting diode (LED), a super luminescent diode (SLD), or a xenon flash lamp is used.
  • the light guide optical system 5 includes an illumination optical system 21 disposed between the light source 3 and the stage 2 and a microscope optical system 22 disposed between the stage 2 and the image sensor 6.
  • the illumination optical system 21 has a Koehler illumination optical system composed of, for example, a condenser lens 23 and a projection lens 24.
  • the illumination optical system 21 guides light from the light source 3 and irradiates the sample S with uniform light. ing.
  • the microscope optical system 22 includes an objective lens 25 and an imaging lens 26 disposed on the rear stage side (imaging element 6 side) of the objective lens 25, and guides the optical image of the sample S to the imaging element 6.
  • the light image of the sample S is an image by transmitted light in the case of bright field illumination, scattered light in the case of dark field illumination, and light emission (fluorescence) in the case of light emission measurement. Moreover, the image by the reflected light from the sample S may be sufficient.
  • the light guide optical system 5 an optical system corresponding to image acquisition of a transmitted light image, a scattered light image, and a light emission (fluorescence) image of the sample S can be employed.
  • the image sensor 6 is a two-dimensional image sensor having a plurality of pixel columns. Examples of such an image sensor 6 include a CCD image sensor and a CMOS image sensor. On the light receiving surface 6a of the image sensor 6, as shown in FIG. 2, for example, a pixel row 31 (a first pixel row 31 1 , a second pixel row 31 2 , 3 pixel columns 31 3 ,..., M-2th pixel column 31 M-2 , M ⁇ 1th pixel column 31 M ⁇ 1 , and Mth pixel column 31 M ) are arranged in parallel with each other. It is arranged. The length (pixel width) P in the arrangement direction (reading direction) of each pixel column 31 is, for example, about 1.5 ⁇ m.
  • the image sensor 6 sequentially captures the optical image of the sample S guided by the light guide optical system 5 at a predetermined frame rate ⁇ (for example, less than 30 fps (Frames Per Second)).
  • the stage drive unit 11 is configured by a motor such as a stepping motor (pulse motor) or an actuator such as a piezo actuator.
  • the stage drive unit 11 drives the stage 2 in the XY directions with respect to a plane having a predetermined angle (for example, 90 degrees) with respect to a plane orthogonal to the optical axis of the objective lens 25.
  • a predetermined angle for example, 90 degrees
  • the sample S is imaged at a high magnification such as 20 times or 40 times.
  • the field of view F of the objective lens 25 is small with respect to the sample S, and the region where an image can be acquired by one imaging is also small with respect to the sample S as shown in FIG. Therefore, in order to image the entire sample S, it is necessary to move the field of view F of the objective lens 25 with respect to the sample S.
  • the image acquisition region 32 is set so as to include the sample S with respect to the sample container (for example, a slide glass) holding the sample S, and the image acquisition region 32 and the objective lens 25 on the sample S are set. Based on the field of view F, the positions of the plurality of divided regions 33 are set. Then, by capturing a part of the sample S corresponding to the divided region 33 and acquiring partial image data corresponding to the divided region 33, the field of view F of the objective lens 25 and the position of the divided region 33 to be imaged next are obtained. Then, image capturing is performed again to acquire partial image data. Thereafter, in the image acquisition device 1, this operation is repeatedly executed, and the image processing unit 14 combines the acquired partial image data to form an entire image (synthesized image data) of the sample S.
  • the sample container for example, a slide glass
  • the stage drive unit 11 moves the stage 2 so that the position of the field of view F of the objective lens 25 with respect to the sample S moves in the scanning direction along the imaging line Ln (n is a natural number) composed of a plurality of divided regions 33.
  • the imaging line Ln (n is a natural number) composed of a plurality of divided regions 33.
  • a bidirectional scan in which the scanning direction is reversed between the adjacent imaging lines Ln is employed.
  • unidirectional scanning in which the scanning direction is the same between adjacent imaging lines Ln may be employed.
  • the direction along the imaging line Ln corresponds to the arrangement direction of the pixel columns 31 on the light receiving surface 6a of the imaging element 6.
  • the stage driving unit 11 drives the stage 2 at a speed set based on the frame rate ⁇ of the image sensor 6. That is, the stage drive unit 11 drives the stage 2 at such a speed that the timing at which the field of view F of the objective lens 25 becomes the position of each divided region 33 and the timing at which the image sensor 6 captures images.
  • the stage drive unit 11 drives the stage 2 at a speed V expressed by the following formula (1) based on, for example, the number M of pixel columns in the pixel column 31.
  • V A ⁇ M ⁇ ⁇ (1)
  • the stage drive part 11 is driving the stage 2 with the speed V shown, for example by following formula (2) which rewritten Formula (1).
  • V H1 ⁇ ⁇ (2)
  • H1 represents the length of the visual field F of the objective lens 25 in the direction along the imaging line Ln.
  • the objective lens driving unit 12 is configured by a motor such as a stepping motor (pulse motor) or an actuator such as a piezo actuator, similarly to the stage driving unit 11.
  • the objective lens driving unit 12 drives the objective lens 25 in the Z direction along the optical axis of the objective lens 25. Thereby, the focal position of the objective lens 25 with respect to the sample S moves.
  • the light source controller 13 emits instantaneous light from the light source 3 as shown in FIG. That is, first, the image sensor 6 alternately performs exposure and readout, and then performs pixel columns 31 (first pixel column 31 1 , second pixel column 31 2 , third pixel column 31 3 ... Mth The trigger signal is output to the light source controller 13 when all of the pixel columns 31 M ) are exposed.
  • the light source control unit 13 causes the light source 3 to irradiate instantaneous light based on a trigger signal indicating that all of the pixel columns 31 output from the image sensor 6 are exposed.
  • the stage driving unit 11 drives the stage 2 to move the position of the field of view F of the objective lens 25 with respect to the sample S, and the imaging element 6 that is a two-dimensional imaging element.
  • a light image of the sample S is sequentially captured at a predetermined frame rate ⁇ . Therefore, the time for acquiring the partial image over the entire sample S is shortened.
  • the stage drive unit 11 drives the stage 2 at a speed based on the frame rate ⁇ of the image sensor 6. Therefore, driving of the stage 2 (movement of the position of the field of view F of the objective lens 25) and imaging are performed so that the timing when the field of view F of the objective lens 25 becomes the position of each divided region 33 coincides with the timing of imaging by the imaging device 6. Since the imaging of the element 6 is synchronized, it is possible to capture only partial images corresponding to the divided regions 33. Therefore, the image acquisition device 1 can execute acquisition of partial images and synthesis of the entire image at high speed.
  • the light source control unit 13 outputs the light from the light source 3 during the period in which all the pixel columns 31 are exposed based on the trigger signal indicating that all the pixel columns 31 output from the image sensor 6 are exposed. Irradiate momentary light. Therefore, partial images can be reliably acquired in all of the divided regions 33.
  • the present invention is not limited to the above embodiment.
  • the light source control unit 13 irradiates the instantaneous light from the light source 3 based on the trigger signal output from the image sensor 6, but the light source control unit 13 is the timing to irradiate the instantaneous light from the light source 3. Is set to be synchronized with the timing at which the image sensor 6 captures an image based on the frame rate ⁇ of the image sensor 6, so that the instantaneous light is emitted from the light source 3 during the period when all the pixel columns 31 are exposed. Also good. Even in this case, partial images can be reliably acquired in all of the divided regions 33.
  • instantaneous light is emitted from the light source 3, but continuous light (CW light) may be emitted from the light source 3, and a shutter may be provided between the light source 3 and the sample S.
  • the light emitting means is composed of the light source 3 and the shutter, and the light source control unit 13 controls the opening and closing of the shutter, thereby irradiating the sample S with the instantaneous light during the period in which all the pixel columns 31 are exposed. It becomes possible to make it.
  • the stage driving unit 11 drives the stage 2 to move the visual field position of the objective lens 25 with respect to the sample S.
  • the light guide optical system 5 including the objective lens 25 is guided.
  • An optical optical system drive unit (drive unit) may be provided, and the visual field position of the objective lens 25 with respect to the sample S may be moved by the light guide optical system drive unit.
  • the objective lens driving unit 12 moves the objective lens 25 in the optical axis direction, thereby moving the focal position of the objective lens 25 with respect to the sample S in the optical axis direction of the objective lens 25.
  • the stage drive unit 11 may move the stage 2 in the optical axis direction of the objective lens 25, thereby moving the focal position of the objective lens 25 with respect to the sample S in the optical axis direction of the objective lens 25.
  • the stage driving unit 11 drives the stage 2 so that the two divided regions 33 that are continuously imaged are in contact with each other.
  • the stage driving unit 11 has two images that are continuously imaged.
  • the stage 2 may be driven so that parts of the two divided regions 33 overlap each other.
  • the stage drive part 11 may drive the stage 2 so as overlap region R where a part of the divided regions 33 S and a part of the divided regions 33 S + 1 is overlapped is formed.
  • the stage drive unit 11 drives the stage 2 at a speed V ′ represented by the following equation (4) based on the number N of pixel columns on the light receiving surface 6a of the image sensor 6 corresponding to the overlapping region R, for example. can do.
  • V ′ A ⁇ (MN) ⁇ ⁇ (4)
  • the field of view F of the objective lens 25 is divided regions 33 when a position of the S + 1, for example of the image pickup device 6 first in the light receiving surface 6a pixel columns 31 1 and the second pixel column 31 2 correspond to the overlap region R.
  • the stage 2 is driven at a speed V ′ indicated by
  • V ′ (H1 ⁇ H2) ⁇ ⁇ (5)
  • H2 represents the length of the overlapping region R in the direction along the imaging line Lt.
  • the driving speed of the stage 2 is set in consideration of the relationship between the overlapping region R and the number N of pixel columns on the light receiving surface 6a of the image sensor 6 corresponding to the overlapping region R, the overlapping region R is formed reliably.
  • the partial images can be synthesized smoothly, and an unbroken whole image can be acquired.
  • SYMBOLS 1 ... Image acquisition device, 2 ... Stage, 3 ... Light source (light emission means), 5 ... Light guide optical system, 6 ... Image pick-up element, 11 ... Stage drive part (drive part), 12 ... Objective lens drive part, 13 ... Light source control unit (control unit), 14 ... image processing unit, 22 ... microscope optical system, 25 ... objective lens, 31 ... pixel array, 32 ... image acquisition region, 33 ... divided region, F ... field of view of objective lens, R ... Overlapping area, S ... sample.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Microscoopes, Condenser (AREA)
  • Studio Devices (AREA)
  • Image Input (AREA)

Abstract

 この画像取得装置1では、ステージ駆動部11(駆動部)が試料に対する対物レンズ25の視野位置を所定の速度で移動させると共に、二次元撮像素子6が試料Sの光像を所定のフレームレートで順次撮像していく。そのため、試料S全体にわたって部分画像を取得するために要する時間が短縮される。また、この画像取得装置1では、視野位置の移動速度は、撮像素子6のフレームレートに基づいて設定された速度である。そのため、視野位置の移動と撮像素子6の撮像とが同期されることとなり、必要な部分画像のみを撮像することが可能となる。したがって、この画像取得装置1では、部分画像の取得及び全体画像の合成を高速に実行できる。

Description

画像取得装置及び画像取得装置の画像取得方法
 本発明は、画像取得装置及び画像取得装置の画像取得方法に関する。
 組織細胞などの試料の静止画像を取得するための画像取得装置において、試料が撮像素子の撮像視野に対して大きい場合、例えば試料が載置されたステージを対物レンズに対して移動させながら試料の部分画像を順次取得していき、その後に部分画像を合成することで試料全体の画像を取得している。
 従来、このような画像取得装置では、例えばタイリングスキャン方式と呼ばれる画像取得方法が用いられている。タイリングスキャン方式では、試料の所定領域が対物レンズの視野に含まれるようにステージを移動させ、その後にステージを停止させた状態でエリアセンサなどの二次元撮像素子を用いて部分画像を取得する。以降、同様の動作を繰り返し実行することで試料全体の静止画像を取得している。
 しかしながら、タイリングスキャン方式では、ステージの移動と停止とを繰り返しながら部分画像を取得していくため、試料全体にわたって部分画像を取得するために長時間を要することが問題となる場合があった。これに対して、例えば特許文献1~3では、ステージの停止を伴わずに、二次元撮像素子を用いて部分画像を取得する画像取得方法が提案されている。より具体的には、例えば特許文献1に記載の画像取得方法では、ステージを移動させると共にステージの移動に同期させて断続的に試料に光を照射し、一方で二次元撮像素子を用いて連続的に部分画像を取得している。
特開2003-222801号公報 特表2000-501844号公報 特開昭63-191063号公報
 しかしながら、例えば特許文献1に記載の画像取得方法では、撮像素子は試料に光が照射されていない期間中にも部分画像を取得し続けるため、得られる部分画像の中に不要な画像が多数含まれることとなる。不要な画像は試料全体の静止画像を合成する際に排除する必要があるため、不要な画像が多数含まれることによって全体画像の合成に要する時間が長くなるおそれがあった。
 本発明は、上記の課題解決のためになされたものであり、部分画像の取得及び全体画像の合成を高速に実行できる画像取得装置及び画像取得装置の画像取得方法を提供することを目的とする。
 上記課題の解決のため、本発明に係る画像取得装置は、試料が載置されるステージと、瞬間光を照射する光出射手段と、ステージ上の試料と対峙するように配置された対物レンズを含む導光光学系と、導光光学系によって導光された試料の光像を撮像する撮像素子と、試料に対する対物レンズの視野位置を所定の速度で移動させる駆動部と、光出射手段を制御する制御部と、を備え、撮像素子は、複数の画素列を有し、所定のフレームレートで順次撮像していく二次元撮像素子であり、速度は、少なくともフレームレートに基づいて設定された速度であることを特徴としている。
 この画像取得装置では、駆動部が試料に対する対物レンズの視野位置を所定の速度で移動させると共に、二次元撮像素子が試料の光像を所定のフレームレートで順次撮像していく。そのため、試料全体にわたって部分画像を取得するために要する時間が短縮される。また、この画像取得装置では、視野位置の移動速度は、撮像素子のフレームレートに基づいて設定された速度である。そのため、視野位置の移動と撮像素子の撮像とが同期されることとなり、必要な部分画像のみを撮像することが可能となる。したがって、この画像取得装置では、部分画像の取得及び全体画像の合成を高速に実行できる。
 所定の速度は、少なくとも撮像素子の画素列数に基づいて設定された速度であることが好ましい。この場合、撮像素子の画素列数と一回の撮像で撮像される試料の領域との関係を勘案して視野位置の移動速度が設定されるため、より確実に必要な部分画像のみを撮像することが可能となる。
 所定の速度は、少なくとも導光光学系の光学倍率に基づいて設定された速度であることが好ましい。この場合、対物レンズの視野の大きさを勘案して視野位置の移動速度が設定されるため、より確実に所望の位置で撮像することが可能となる。
 所定の速度は、少なくとも撮像素子の画素列の画素幅に基づいて設定された速度であることが好ましい。この場合、撮像素子の画素幅を勘案して視野位置の移動速度が設定されるため、より確実に所望の位置で撮像することが可能となる。
 所定の速度は、撮像素子によって連続して撮像される試料の二つの領域の一部が互いに重畳するように設定された速度であることが好ましい。この場合、連続して撮像される試料の二つの領域の一部が互いに重畳するため、得られる部分画像を合成したときに部分画像間をスムーズに合成することができ、切れ目のない全体画像を取得できる。
 所定の速度は、二つの領域の一部が互いに重畳する重畳領域に対応する撮像素子の画素列数に基づいて設定された速度であることが好ましい。この場合、重畳領域と該領域に対応する撮像素子の画素列数との関係を勘案して視野位置の移動速度が設定されるため、より確実に重畳領域が形成される。
 撮像素子は、画素列の全てが露光していることを示すトリガ信号を制御部に出力し、制御部は、撮像素子から出力されたトリガ信号に基づいて、画素列の全てが露光している期間中に光出射手段から瞬間光を照射させることが好ましい。この場合、確実に画素列の全てが露光している期間中に瞬間光を照射させることができるため、各部分画像を確実に取得できる。
 本発明に係る画像取得装置の画像取得方法は、試料が載置されるステージと、瞬間光を照射する光出射手段と、ステージ上の試料と対峙するように配置された対物レンズを含む導光光学系と、導光光学系によって導光された試料の光像を撮像する撮像素子と、試料に対する対物レンズの視野位置を所定の速度で移動させる駆動部と、光出射手段を制御する制御部と、を備えた画像取得装置の画像取得方法であって、撮像素子として、複数の画素列を有し、所定のフレームレートで順次撮像していく二次元撮像素子を用い、速度を、少なくともフレームレートに基づいて設定することを特徴としている。
 この画像取得装置の画像取得方法では、駆動部が試料に対する対物レンズの視野位置を所定の速度で移動させると共に、二次元撮像素子が試料の光像を所定のフレームレートで順次撮像していく。そのため、試料全体にわたって部分画像を取得するために要する時間が短縮される。また、この画像取得装置の画像取得方法では、視野位置の移動速度を、撮像素子のフレームレートに基づいて設定している。そのため、視野位置の移動と撮像素子の撮像とが同期されることとなり、必要な部分画像のみを撮像することが可能となる。したがって、この画像取得装置の画像取得方法では、部分画像の取得及び全体画像の合成を高速に実行できる。
 所定の速度を、少なくとも撮像素子の画素列数に基づいて設定することが好ましい。この場合、撮像素子の画素列数と一回の撮像で撮像される試料の領域との関係を勘案して視野位置の移動速度を設定するため、より確実に必要な部分画像のみを撮像することが可能となる。
 所定の速度を、撮像素子によって連続して撮像される試料の二つの領域の一部が互いに重畳するように設定することが好ましい。この場合、連続して撮像される試料の二つの領域の一部が互いに重畳するため、得られる部分画像を合成したときに部分画像間をスムーズに合成することができ、切れ目のない全体画像を取得できる。
 本発明によれば、部分画像の取得及び全体画像の合成を高速に実行できる。
本発明に係る画像取得装置の一実施形態を示す図である。 図1に示した画像取得装置を構成する撮像素子の受光面を示す図である。 試料に対する画像取得領域のスキャンの一例を示す図である。 撮像素子における露光期間及び読み出し期間と瞬間光の照射との関係の一例を示す図である。 変形例に係る画像取得領域のスキャンと撮像素子の受光面との関係の一例を示す図である。
 以下、図面を参照しながら、本発明に係る画像取得装置の好適な実施形態について詳細に説明する。
 図1は、本発明に係る画像取得装置の一実施形態を示す図である。同図に示すように、画像取得装置1は、試料Sが載置されるステージ2と、試料に向けて瞬間光を照射する光源3(光出射手段)と、ステージ2上の試料Sと対峙するように配置された対物レンズ25を含む導光光学系5と、導光光学系5によって導光された試料Sの光像を撮像する撮像素子6とを備えている。
 また、画像取得装置1は、試料Sに対する対物レンズ25の視野位置を移動させるステージ駆動部11(駆動部)と、試料Sに対する対物レンズ25の焦点位置を変更させる対物レンズ駆動部12と、光源3を制御する光源制御部13(制御部)と、画像処理部14とを備えている。
 画像取得装置1で観察する試料Sは、例えば組織細胞などの生体サンプルであり、スライドガラスに密封された状態でステージ2に載置される。光源3は、ステージ2の底面側に配置されている。光源3としては、例えばレーザダイオード(LD)、発光ダイオード(LED)、スーパールミネッセントダイオード(SLD)、キセノンフラッシュランプといったフラッシュランプ方式光源などが用いられる。
 導光光学系5は、光源3とステージ2との間に配置される照明光学系21と、ステージ2と撮像素子6との間に配置される顕微鏡光学系22とによって構成されている。照明光学系21は、例えば集光レンズ23と投影レンズ24とによって構成されるケーラー照明光学系を有し、光源3からの光を導光して試料Sに均一な光を照射するようになっている。
 一方、顕微鏡光学系22は、対物レンズ25と、対物レンズ25の後段側(撮像素子6側)に配置された結像レンズ26とを有し、試料Sの光像を撮像素子6に導光する。なお、試料Sの光像とは、明視野照明の場合は透過光、暗視野照明の場合は散乱光、発光計測の場合は発光(蛍光)による像である。また、試料Sからの反射光による像であってもよい。これらの場合、導光光学系5として、試料Sの透過光画像、散乱光画像、及び発光(蛍光)画像の画像取得に対応した光学系を採用することができる。
 撮像素子6は、複数の画素列を有する二次元撮像素子である。このような撮像素子6としては、例えばCCDイメージセンサやCMOSイメージセンサが挙げられる。撮像素子6の受光面6aには、図2に示すように、例えば複数の画素が一次元に配置されてなる画素列31(第1の画素列31、第2の画素列31、第3の画素列31、…、第M-2の画素列31M-2、第M-1の画素列31M-1、第Mの画素列31)が互いに平行になるようにM列配列されている。各画素列31の配列方向(読出し方向)における長さ(画素幅)Pは、例えば1.5μm程度となっている。撮像素子6は、所定のフレームレートα(例えば30fps(Frames Per Second)未満)で導光光学系5によって導光された試料Sの光像を順次撮像していく。
 ステージ駆動部11は、例えばステッピングモータ(パルスモータ)といったモータやピエゾアクチュエータといったアクチュエータによって構成されている。ステージ駆動部11は、ステージ2を対物レンズ25の光軸の直交面に対して所定の角度(例えば90度)を有する面についてXY方向に駆動する。これにより、ステージ2に固定された試料Sが対物レンズの光軸に対して移動し、試料Sに対する対物レンズ25の視野位置が移動することとなる。
 画像取得装置1では、例えば20倍や40倍といった高倍率で試料Sの撮像が行われる。このため、対物レンズ25の視野Fは、試料Sに対して小さく、図3に示すように、一回の撮像で画像を取得できる領域も試料Sに対して小さくなる。したがって、試料Sの全体を撮像するためには、対物レンズ25の視野Fを試料Sに対して移動させる必要がある。
 そこで、画像取得装置1では、試料Sを保持する試料容器(例えばスライドガラス)に対して試料Sを含むように画像取得領域32を設定し、画像取得領域32及び対物レンズ25の試料S上の視野Fに基づいて複数の分割領域33の位置を設定する。そして、分割領域33に対応する試料Sの一部を撮像することで、分割領域33に対応する部分画像データを取得した後、対物レンズ25の視野Fが次に撮像する分割領域33の位置となったら、再び撮像を行って部分画像データを取得する。以降、画像取得装置1では、この動作が繰り返し実行され、画像処理部14は、取得した部分画像データを合成して試料Sの全体画像(合成画像データ)を形成する。
 このとき、ステージ駆動部11は、複数の分割領域33から構成される撮像ラインLn(nは自然数)に沿ったスキャン方向に試料Sに対する対物レンズ25の視野Fの位置が移動するようにステージ2を駆動する。隣接する撮像ラインLn間での試料Sに対する対物レンズ25の視野位置の移動は、例えば図3に示すように、隣り合う撮像ラインLn間でスキャン方向が反転する双方向スキャンが採用される。また、隣り合う撮像ラインLn間でスキャン方向が同方向となる一方向スキャンが採用されてもよい。なお、撮像ラインLnに沿った方向は、撮像素子6の受光面6aにおける各画素列31の配列方向に対応している。
 また、ステージ駆動部11は、撮像素子6のフレームレートαに基づいて設定した速度でステージ2を駆動している。すなわち、ステージ駆動部11は、対物レンズ25の視野Fが各分割領域33の位置となるタイミングと撮像素子6が撮像するタイミングとが合致するような速度でステージ2を駆動している。
 具体的には、ステージ駆動部11は、例えば画素列31の画素列数Mに基づいて下記式(1)で示される速度Vでステージ2を駆動している。
 V=A×M×α  …(1)
ただし、式(1)中、Aはピクセルレゾリューション(=画素列31の配列方向における長さP/顕微鏡光学系22の光学倍率)を表す。
 また、ステージ駆動部11は、例えば式(1)を書き換えた下記式(2)で示される速度Vでステージ2を駆動しているともいえる。
 V=H1×α  …(2)
ただし、式(2)中、H1は、対物レンズ25の視野Fの撮像ラインLnに沿った方向における長さを表す。
 対物レンズ駆動部12は、ステージ駆動部11と同様に、例えばステッピングモータ(パルスモータ)といったモータやピエゾアクチュエータといったアクチュエータによって構成されている。対物レンズ駆動部12は、対物レンズ25を対物レンズ25の光軸に沿ったZ方向に駆動する。これにより、試料Sに対する対物レンズ25の焦点位置が移動する。
 光源制御部13は、図4に示すように光源3から瞬間光を照射させる。すなわち、まず、撮像素子6は、露光と読み出しとを交互に行っていき、画素列31(第1の画素列31、第2の画素列31、第3の画素列31…第Mの画素列31)の全てが露光しているときにトリガ信号を光源制御部13に出力する。
 続いて、光源制御部13は、撮像素子6から出力された画素列31の全てが露光していることを示すトリガ信号に基づいて、光源3から瞬間光を照射させる。瞬間光は、例えば下記式(3)で示されるパルス幅Wを有している。
 W=A/V  …(3)
瞬間光が式(3)で表されるパルス幅Wを有していることによって、試料Sの所定の箇所からの光像を画素列31のうち所定の一列にのみ受光させることが容易となる。そのため、歪みが抑制された静止画像を得ることが可能となる。以降、画像取得装置1では、上述した動作が繰り返し実行される。
 以上説明したように、画像取得装置1では、ステージ駆動部11がステージ2を駆動することで試料Sに対する対物レンズ25の視野Fの位置を移動させると共に、二次元撮像素子である撮像素子6が試料Sの光像を所定のフレームレートαで順次撮像していく。そのため、試料S全体にわたって部分画像を取得するための時間が短縮される。また、画像取得装置1では、ステージ駆動部11は、撮像素子6のフレームレートαに基づいた速度でステージ2を駆動する。そのため、対物レンズ25の視野Fが各分割領域33の位置となるタイミングと撮像素子6が撮像するタイミングとが合致するようにステージ2の駆動(対物レンズ25の視野Fの位置の移動)と撮像素子6の撮像とが同期されることとなり、各分割領域33に対応した部分画像のみを撮像することが可能となる。したがって、画像取得装置1では、部分画像の取得及び全体画像の合成を高速に実行できる。
 また、光源制御部13は、撮像素子6から出力される画素列31の全てが露光していることを示すトリガ信号に基づいて、画素列31の全てが露光している期間中に光源3から瞬間光を照射させる。そのため、分割領域33の全てにおいて確実に部分画像を取得できる。
 本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、光源制御部13は撮像素子6から出力されるトリガ信号に基づいて光源3から瞬間光を照射させていたが、光源制御部13は、光源3から瞬間光を照射させるタイミングを撮像素子6のフレームレートαに基づいて撮像素子6が撮像するタイミングと同期するように設定することによって、画素列31の全てが露光している期間中に光源3から瞬間光を照射させてもよい。この場合でも、分割領域33の全てにおいて確実に部分画像を取得できる。
 また、上記実施形態では、光源3から瞬間光を出射させていたが、光源3から連続光(CW光)を出射させ、光源3と試料Sとの間にシャッターを設けてもよい。この場合、光出射手段は光源3とシャッターとによって構成され、光源制御部13がシャッターの開閉を制御することにより、画素列31の全てが露光している期間中に瞬間光を試料Sに照射させることが可能となる。
 また、上記実施形態では、ステージ駆動部11がステージ2を駆動することにより、試料Sに対する対物レンズ25の視野位置を移動させていたが、対物レンズ25を含む導光光学系5を駆動する導光光学系駆動部(駆動部)を設け、導光光学系駆動部により試料Sに対する対物レンズ25の視野位置を移動させてもよい。
 また、上記実施形態では、対物レンズ駆動部12が対物レンズ25をその光軸方向に移動させることにより、試料Sに対する対物レンズ25の焦点位置を対物レンズ25の光軸方向に移動させていたが、ステージ駆動部11がステージ2を対物レンズ25の光軸方向に移動させることにより、試料Sに対する対物レンズ25の焦点位置を対物レンズ25の光軸方向に移動させてもよい。
 また、上記実施形態では、ステージ駆動部11は連続して撮像される二つの分割領域33同士が接するようにステージ2を駆動していたが、ステージ駆動部11は、連続して撮像される二つの分割領域33の一部同士が重畳するようにステージ2を駆動してもよい。
 すなわち、図5(a)に示すように、撮像素子6によって撮像ラインLt(tは1以上n以下の自然数)における分割領域33に続いて分割領域33S+1が撮像される場合に、ステージ駆動部11は、分割領域33の一部と分割領域33S+1の一部とが互いに重畳する重畳領域Rが形成されるようにステージ2を駆動してもよい。
 具体的には、ステージ駆動部11は、例えば重畳領域Rに対応する撮像素子6の受光面6aにおける画素列数Nに基づいて、下記式(4)で示される速度V’でステージ2を駆動することができる。
 V’=A×(M-N)×α  …(4)
 この場合、図5(b)に示すように、対物レンズ25の視野Fが分割領域33の位置となったときには、例えば撮像素子6の受光面6aにおける第M-1の画素列31M-1及び第Mの画素列31が重畳領域Rに対応する。一方、図5(c)に示すように、対物レンズ25の視野Fが分割領域33S+1の位置となったときには、例えば撮像素子6の受光面6aにおける第1の画素列31及び第2の画素列31が重畳領域Rに対応する。
 そして、上述したように、ステージ駆動部11は、重畳領域Rに対応する撮像素子6の受光面6aにおける画素列数N(図5に示した例ではN=2)に基づいて、式(4)で示される速度V’でステージ2を駆動する。なお、この場合、ステージ駆動部11は、例えば式(4)を書き換えた下記式(5)で示される速度V’でステージ2を駆動しているともいえる。
 V’=(H1-H2)×α  …(5)
ただし、式(5)中、H2は、撮像ラインLtに沿った方向における重畳領域Rの長さを表す。
 この場合、重畳領域Rと重畳領域Rに対応する撮像素子6の受光面6aにおける画素列数Nとの関係を勘案してステージ2の駆動速度を設定するため、確実に重畳領域Rが形成される。したがって、得られる部分画像を合成したときに部分画像間をスムーズに合成することができ、切れ目のない全体画像を取得できる。
 1…画像取得装置、2…ステージ、3…光源(光出射手段)、5…導光光学系、6…撮像素子、11…ステージ駆動部(駆動部)、12…対物レンズ駆動部、13…光源制御部(制御部)、14…画像処理部、22…顕微鏡光学系、25…対物レンズ、31…画素列、32…画像取得領域、33…分割領域、F…対物レンズの視野、R…重畳領域、S…試料。

Claims (10)

  1.  試料が載置されるステージと、
     瞬間光を照射する光出射手段と、
     前記ステージ上の前記試料と対峙するように配置された対物レンズを含む導光光学系と、
     前記導光光学系によって導光された前記試料の光像を撮像する撮像素子と、
     前記試料に対する前記対物レンズの視野位置を所定の速度で移動させる駆動部と、
     前記光出射手段を制御する制御部と、を備え、
     前記撮像素子は、複数の画素列を有し、所定のフレームレートで順次撮像していく二次元撮像素子であり、
     前記速度は、少なくとも前記フレームレートに基づいて設定された速度であることを特徴とする画像取得装置。
  2.  前記速度は、少なくとも前記撮像素子の前記画素列数に基づいて設定された速度であることを特徴とする請求項1に記載の画像取得装置。
  3.  前記速度は、少なくとも前記導光光学系の光学倍率に基づいて設定された速度であることを特徴とする請求項1又は2に記載の画像取得装置。
  4.  前記速度は、少なくとも前記撮像素子の前記画素列の画素幅に基づいて設定された速度であることを特徴とする請求項1~3のいずれか一項に記載の画像取得装置。
  5.  前記速度は、前記撮像素子によって連続して撮像される前記試料の二つの領域の一部が互いに重畳するように設定された速度であることを特徴とする請求項1~4のいずれか一項に記載の画像取得装置。
  6.  前記速度は、前記二つの領域の一部が互いに重畳する重畳領域に対応する前記撮像素子の画素列数に基づいて設定された速度であることを特徴とする請求項5に記載の画像取得装置。
  7.  前記撮像素子は、前記画素列の全てが露光していることを示すトリガ信号を前記制御部に出力し、
     前記制御部は、前記撮像素子から出力された前記トリガ信号に基づいて、前記画素列の全てが露光している期間中に前記光出射手段から前記瞬間光を照射させることを特徴とする請求項1~6のいずれか一項に記載の画像取得装置。
  8.  試料が載置されるステージと、
     瞬間光を照射する光出射手段と、
     前記ステージ上の前記試料と対峙するように配置された対物レンズを含む導光光学系と、
     前記導光光学系によって導光された前記試料の光像を撮像する撮像素子と、
     前記試料に対する前記対物レンズの視野位置を所定の速度で移動させる駆動部と、
     前記光出射手段を制御する制御部と、を備えた画像取得装置の画像取得方法であって、
     前記撮像素子として、複数の画素列を有し、所定のフレームレートで順次撮像していく二次元撮像素子を用い、
     前記速度を、少なくとも前記フレームレートに基づいて設定することを特徴とする画像取得装置の画像取得方法。
  9.  前記速度を、少なくとも前記撮像素子の前記画素列数に基づいて設定することを特徴とする請求項8に記載の画像取得装置の画像取得方法。
  10.  前記速度を、前記撮像素子によって連続して撮像される前記試料の二つの領域の一部が互いに重畳するように設定することを特徴とする請求項8又は9に記載の画像取得装置の画像取得方法。
PCT/JP2014/051804 2013-11-01 2014-01-28 画像取得装置及び画像取得装置の画像取得方法 WO2015064116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/031,083 US9911028B2 (en) 2013-11-01 2014-01-28 Image acquisition device and image acquisition method for image acquisition device
DK14856848.8T DK3064981T3 (da) 2013-11-01 2014-01-28 Billedregistreringsanordning og fremgangsmåde til billedregistrering til billedregistreringsanordning
EP14856848.8A EP3064981B1 (en) 2013-11-01 2014-01-28 Image acquisition device and image acquisition method for image acquisition device
CN201480058554.5A CN105683805B (zh) 2013-11-01 2014-01-28 图像取得装置以及图像取得装置的图像取得方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228560A JP6154291B2 (ja) 2013-11-01 2013-11-01 画像取得装置及び画像取得装置の画像取得方法
JP2013-228560 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064116A1 true WO2015064116A1 (ja) 2015-05-07

Family

ID=53003740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051804 WO2015064116A1 (ja) 2013-11-01 2014-01-28 画像取得装置及び画像取得装置の画像取得方法

Country Status (7)

Country Link
US (1) US9911028B2 (ja)
EP (1) EP3064981B1 (ja)
JP (1) JP6154291B2 (ja)
CN (1) CN105683805B (ja)
DK (1) DK3064981T3 (ja)
HU (1) HUE059480T2 (ja)
WO (1) WO2015064116A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698451B2 (ja) * 2016-07-11 2020-05-27 オリンパス株式会社 観察装置
CN107782738A (zh) * 2016-08-31 2018-03-09 上海微电子装备(集团)股份有限公司 一种自动光学检测装置及其检测方法
JP6865010B2 (ja) * 2016-10-19 2021-04-28 オリンパス株式会社 顕微鏡システムおよび標本観察方法
JP6842387B2 (ja) * 2017-08-31 2021-03-17 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
JP7023659B2 (ja) * 2017-09-29 2022-02-22 キヤノン株式会社 撮像装置、撮像システム、移動体
JP6920978B2 (ja) * 2017-12-18 2021-08-18 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
FR3081552B1 (fr) * 2018-05-23 2020-05-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede d'observation d'un echantillon fluorescent par imagerie defocalisee
CN109752916A (zh) * 2018-12-26 2019-05-14 江苏大学 一种平面激光拍摄装置及其方法
KR102596730B1 (ko) * 2022-02-16 2023-11-02 주식회사 팍스웰 렌즈없는 광학 시스템

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191063A (ja) 1987-02-03 1988-08-08 Sumitomo Electric Ind Ltd 顕微鏡画像の処理方式
JPH09281405A (ja) * 1996-04-17 1997-10-31 Olympus Optical Co Ltd 顕微鏡システム
JPH11326233A (ja) * 1998-05-12 1999-11-26 Mitsui Mining & Smelting Co Ltd 材料表面検査装置
JP2000501844A (ja) 1995-07-19 2000-02-15 モルフォメトリックス テクノロジーズ インク. 顕微鏡スライドの自動走査
JP2003222801A (ja) 2002-01-29 2003-08-08 Olympus Optical Co Ltd 顕微鏡画像撮影装置
JP2009128648A (ja) * 2007-11-26 2009-06-11 Olympus Corp 顕微鏡観察システム
JP2010002534A (ja) * 2008-06-19 2010-01-07 Nikon Corp 顕微鏡装置
JP2010271550A (ja) * 2009-05-21 2010-12-02 Olympus Corp 顕微鏡システム
JP2014026233A (ja) * 2012-07-30 2014-02-06 Olympus Corp 撮像システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2383487B (en) * 2001-12-18 2006-09-27 Fairfield Imaging Ltd Method and apparatus for acquiring digital microscope images
EP1439385B1 (en) * 2003-01-15 2008-11-12 Negevtech Ltd. Method and system for fast on-line electro-optical detection of wafer defects
JP4102842B1 (ja) * 2006-12-04 2008-06-18 東京エレクトロン株式会社 欠陥検出装置、欠陥検出方法、情報処理装置、情報処理方法及びそのプログラム
JP5365407B2 (ja) * 2009-08-17 2013-12-11 ソニー株式会社 画像取得装置及び画像取得方法
CN102854615B (zh) * 2012-04-27 2015-07-22 麦克奥迪实业集团有限公司 一种对显微切片的全自动扫描***及方法
WO2014127468A1 (en) * 2013-02-25 2014-08-28 Huron Technologies International Inc. Microscopy slide scanner with variable magnification

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191063A (ja) 1987-02-03 1988-08-08 Sumitomo Electric Ind Ltd 顕微鏡画像の処理方式
JP2000501844A (ja) 1995-07-19 2000-02-15 モルフォメトリックス テクノロジーズ インク. 顕微鏡スライドの自動走査
JPH09281405A (ja) * 1996-04-17 1997-10-31 Olympus Optical Co Ltd 顕微鏡システム
JPH11326233A (ja) * 1998-05-12 1999-11-26 Mitsui Mining & Smelting Co Ltd 材料表面検査装置
JP2003222801A (ja) 2002-01-29 2003-08-08 Olympus Optical Co Ltd 顕微鏡画像撮影装置
JP2009128648A (ja) * 2007-11-26 2009-06-11 Olympus Corp 顕微鏡観察システム
JP2010002534A (ja) * 2008-06-19 2010-01-07 Nikon Corp 顕微鏡装置
JP2010271550A (ja) * 2009-05-21 2010-12-02 Olympus Corp 顕微鏡システム
JP2014026233A (ja) * 2012-07-30 2014-02-06 Olympus Corp 撮像システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064981A4

Also Published As

Publication number Publication date
CN105683805A (zh) 2016-06-15
US20160267317A1 (en) 2016-09-15
EP3064981A4 (en) 2017-04-05
CN105683805B (zh) 2018-09-28
EP3064981B1 (en) 2022-04-20
HUE059480T2 (hu) 2022-11-28
JP2015087719A (ja) 2015-05-07
DK3064981T3 (da) 2022-06-13
EP3064981A1 (en) 2016-09-07
JP6154291B2 (ja) 2017-06-28
US9911028B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
JP6154291B2 (ja) 画像取得装置及び画像取得装置の画像取得方法
JP6266601B2 (ja) 画像取得装置、試料のフォーカスマップを作成する方法及びシステム
JP5545612B2 (ja) 画像処理システム、画像処理方法、及びプログラム
JP5639670B2 (ja) 画像取得装置及び撮像装置
US20150177506A1 (en) Microscope device and microscope system
JP6496772B2 (ja) 画像取得装置及び画像取得方法
WO2014174919A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP6134249B2 (ja) 画像取得装置及び画像取得装置の画像取得方法
JP6433888B2 (ja) 画像取得装置、試料の合焦点情報を取得する方法及びシステム
JP6797574B2 (ja) 走査型顕微鏡
JP5296861B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
WO2014112084A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP2008051772A (ja) 蛍光画像取得装置、及び蛍光画像取得方法
JP6076205B2 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP5770958B1 (ja) 画像取得装置及び撮像装置
JP6475307B2 (ja) 画像取得装置、撮像装置、及び算出ユニット
JP5562582B2 (ja) 蛍光観察装置
WO2022059442A1 (ja) 撮像装置および撮像方法
JP6240056B2 (ja) 画像取得装置及び撮像装置
JP2010014964A (ja) 生体観察装置
JP2011013483A (ja) コンフォーカル顕微鏡
JP2009025632A (ja) 走査型顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014856848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856848

Country of ref document: EP