WO2015060084A1 - 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液 - Google Patents

銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液 Download PDF

Info

Publication number
WO2015060084A1
WO2015060084A1 PCT/JP2014/076270 JP2014076270W WO2015060084A1 WO 2015060084 A1 WO2015060084 A1 WO 2015060084A1 JP 2014076270 W JP2014076270 W JP 2014076270W WO 2015060084 A1 WO2015060084 A1 WO 2015060084A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
aliphatic hydrocarbon
dispersion
solvent
aliphatic
Prior art date
Application number
PCT/JP2014/076270
Other languages
English (en)
French (fr)
Inventor
和樹 岡本
由紀 井口
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US15/030,816 priority Critical patent/US11091663B2/en
Priority to EP18163367.8A priority patent/EP3369501B1/en
Priority to KR1020167010156A priority patent/KR20160073972A/ko
Priority to KR1020177023246A priority patent/KR102100289B1/ko
Priority to EP14855617.8A priority patent/EP3061547B1/en
Priority to CN201480057633.4A priority patent/CN105658358A/zh
Priority to JP2015543772A priority patent/JP5972479B2/ja
Publication of WO2015060084A1 publication Critical patent/WO2015060084A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating

Definitions

  • the present invention relates to a method for producing a silver nanoparticle-containing dispersion and a silver nanoparticle-containing dispersion. Moreover, this invention is applied also to the manufacturing method of the metal nanoparticle containing dispersion containing metals other than silver, and this metal nanoparticle containing dispersion.
  • Silver nanoparticles can be sintered even at low temperatures. Utilizing this property, in the manufacture of various electronic devices, a silver coating composition containing silver nanoparticles is used to form electrodes and conductive circuit patterns on a substrate. Silver nanoparticles are usually dispersed in an organic solvent. Silver nanoparticles have an average primary particle size of about several nanometers to several tens of nanometers, and the surface thereof is usually coated with an organic stabilizer (protective agent). When the substrate is a plastic film or sheet, it is necessary to sinter the silver nanoparticles at a low temperature (for example, 200 ° C. or less) lower than the heat resistance temperature of the plastic substrate.
  • a low temperature for example, 200 ° C. or less
  • Japanese Patent Application Laid-Open No. 2010-265543 discloses a silver compound that decomposes by heating to produce metallic silver, a medium / short chain alkylamine having a boiling point of 100 ° C. to 250 ° C., and a medium / short chain alkyl diamine having a boiling point of 100 ° C. to 250 ° C.
  • a method for producing coated silver ultrafine particles comprising a first step of preparing a complex compound containing a silver compound, the alkylamine and the alkyldiamine, and a second step of thermally decomposing the complex compound is disclosed. (Claim 3, paragraphs [0061] and [0062]).
  • Japanese Patent Application Laid-Open No. 2012-162767 discloses a mixture of an amine mixture containing an alkylamine having 6 or more carbon atoms and an alkylamine having 5 or less carbon atoms and a metal compound containing a metal atom.
  • a method for producing coated metal fine particles which includes a first step of producing a complex compound containing, and a second step of thermally decomposing the complex compound to produce metal fine particles (Claim 1). It is also disclosed that the coated silver fine particles can be dispersed in an organic solvent such as an alcohol solvent such as butanol, a nonpolar solvent such as octane, or a mixed solvent thereof (paragraph [0079]).
  • Japanese Patent Application Laid-Open No. 2013-142172 discloses a method for producing silver nanoparticles, which is composed of an aliphatic hydrocarbon group and one amino group, and the aliphatic hydrocarbon group has a total carbon number of 6 or more.
  • An amine mixture containing an aliphatic hydrocarbon diamine (C) comprising a group and two amino groups and the total number of carbons of the aliphatic hydrocarbon group being 8 or less, a silver compound, and the amine mixture To produce a complex compound containing the silver compound and the amine, and heat-decompose the complex compound to thermally decompose to form silver nanoparticles. (Claims ).
  • a silver coating composition called a so-called silver ink can be prepared by dispersing the obtained silver nanoparticles in a suspended state in an appropriate organic solvent (dispersion medium).
  • organic solvent dispersing the obtained silver nanoparticles in a suspended state in an appropriate organic solvent (dispersion medium).
  • organic solvent such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane; aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, etc .; methanol, ethanol, propanol Alcohol solvents such as n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol and the like have been disclosed (paragraph [0085]).
  • Japanese Patent Application Laid-Open No. 2013-142173 discloses a method for producing silver nanoparticles, which is composed of an aliphatic hydrocarbon group and one amino group, and the aliphatic hydrocarbon group has a total number of carbon atoms of 6 or more.
  • An amine mixed solution is prepared, and the silver compound and the amine mixed solution are mixed to form a complex compound containing the silver compound and the amine, and the complex compound is heated and thermally decomposed to produce silver nano
  • a method for producing silver nanoparticles comprising forming particles is disclosed (Claim 1).
  • a silver coating composition called a so-called silver ink is obtained by dispersing the obtained silver nanoparticles in a suitable organic solvent (dispersion medium) in a suspended state. And similar organic solvents are disclosed (paragraph [0076]).
  • Silver nanoparticles have an average primary particle diameter of about several nanometers to several tens of nanometers, and are more likely to aggregate than micron ( ⁇ m) size particles. Therefore, the reduction reaction of the silver compound (thermal decomposition reaction in the above patent document) is organic so that the surface of the obtained silver nanoparticles is coated with an organic stabilizer (protective agent such as aliphatic amine or aliphatic carboxylic acid). It is carried out in the presence of a stabilizer.
  • an organic stabilizer protecting agent such as aliphatic amine or aliphatic carboxylic acid
  • the silver nanoparticles are a silver coating composition (silver ink, silver paste) containing the particles in an organic solvent.
  • the organic stabilizer In order to develop conductivity, it is necessary to remove the organic stabilizer covering the silver nanoparticles and sinter the silver particles at the time of firing after application on the substrate. If the firing temperature is low, the organic stabilizer is difficult to remove. If the degree of sintering of the silver particles is not sufficient, a low resistance value cannot be obtained. That is, the organic stabilizer present on the surface of the silver nanoparticles contributes to the stabilization of the silver nanoparticles, but prevents the silver nanoparticles from being sintered (particularly, sintering at low temperature firing).
  • an aliphatic amine compound and / or an aliphatic carboxylic acid compound having a relatively long chain for example, having 8 or more carbon atoms
  • the distance between the individual silver nanoparticles is easily secured. Nanoparticles are easy to stabilize.
  • long-chain aliphatic amine compounds and / or aliphatic carboxylic acid compounds are difficult to remove if the firing temperature is low.
  • an oleylamine having 18 carbon atoms and a saturated aliphatic amine having 1 to 18 carbon atoms are used in combination as the aliphatic amine compound.
  • oleylamine is used as the main component of the protective agent, sintering of silver nanoparticles during low-temperature firing is hindered.
  • the reaction rate of the complex compound formation reaction between oleylamine and silver oxalate is not sufficient.
  • the silver nanoparticle-containing ink needs to not clog the inkjet head.
  • TFTs thin film transistors
  • LCDs liquid crystal displays
  • TFT gate electrodes are required to have a smooth surface.
  • a fired coating film of silver nanoparticles is used for a gate electrode of a TFT
  • surface smoothness of the fired coating film is necessary.
  • a silver nanoparticle-containing ink in which silver nanoparticles are dispersed in an organic solvent in a very stable state is required.
  • a silver fired coating film having excellent surface smoothness may be required.
  • an object of the present invention is to provide a silver nanoparticle-containing dispersion in which excellent conductivity (low resistance value) is exhibited by firing at a low temperature for a short time, and the silver nanoparticles are dispersed stably in a dispersion solvent. It is in providing a liquid and its manufacturing method.
  • Another object of the present invention is to provide a silver nanoparticle-containing dispersion liquid suitable for various printing applications, particularly suitable for inkjet applications, and a method for producing the same.
  • an object of the present invention is to provide a silver nanoparticle-containing dispersion capable of forming a silver fired coating film having excellent surface smoothness, and a method for producing the same.
  • the present inventors When preparing silver nanoparticles by a so-called pyrolysis method, the present inventors have formed silver nanoparticles formed when a relatively short carbon chain length aliphatic amine compound is used as a complexing agent and / or protective agent. It has been found that the above object can be achieved by dispersing the particles in a mixed dispersion solvent containing alcohol solvent and aliphatic hydrocarbon solvent in a specific ratio.
  • the present invention includes the following inventions.
  • a method for producing a silver nanoparticle-containing dispersion An aliphatic hydrocarbon monoamine (A) comprising an aliphatic hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 6 or more, and further comprising an aliphatic hydrocarbon group and one amino group
  • An amine containing at least one of aliphatic hydrocarbon diamines (C) having a total carbon number of 8 or less is mixed with a silver compound to produce a complex compound containing the silver compound and the amines, The complex compound is heated and thermally decomposed to form silver nanoparticles, The silver nanoparticles are dispersed in a dispersion solvent containing 50 to 90% by weight of an alcohol solvent
  • the aliphatic hydrocarbon solvent is selected from the group consisting of linear hydrocarbons, branched hydrocarbons, and cyclic structure-containing hydrocarbons, any one of (1) (to (4) above Of producing a silver nanoparticle-containing dispersion liquid.
  • the production of the silver nanoparticle-containing dispersion liquid according to any one of the above items, wherein the amines include the aliphatic hydrocarbon monoamine (A) and the aliphatic hydrocarbon monoamine (B). Method.
  • the production of the silver nanoparticle-containing dispersion liquid according to any one of the above items, wherein the amines include the aliphatic hydrocarbon monoamine (A) and the aliphatic hydrocarbon diamine (C). Method.
  • the amines include the aliphatic hydrocarbon monoamine (A), the aliphatic hydrocarbon monoamine (B), and the aliphatic hydrocarbon diamine (C).
  • the silver nanoparticle-containing dispersion liquid according to any one of the above items, wherein, in the step of producing a complex compound containing the silver compound and the amines, an aliphatic carboxylic acid is used in addition to the amines. Manufacturing method.
  • the aliphatic hydrocarbon diamine (C) is an alkylene diamine in which one of the two amino groups is a primary amino group and the other is a tertiary amino group (1 )
  • the aliphatic amine is used in an amount of 1 to 50 moles as the total of the monoamine (A), the monoamine (B) and the diamine (C) with respect to 1 mole of silver atoms of the silver compound.
  • Silver oxalate molecules contain two silver atoms.
  • the aliphatic amines are added in an amount of 2 to 2 as a total of the monoamine (A), the monoamine (B), and the diamine (C) with respect to 1 mol of silver oxalate.
  • a silver nanoparticle-containing dispersion liquid containing silver nanoparticles and a dispersion solvent produced by the method according to any one of (1) to (10) above.
  • a silver nanoparticle-containing dispersion comprising silver nanoparticles and a dispersion solvent for dispersing the silver nanoparticles
  • the silver nanoparticles include an aliphatic hydrocarbon monoamine (A) composed of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more, An aliphatic hydrocarbon monoamine (B) comprising a hydrogen group and one amino group, and the aliphatic hydrocarbon group having a total carbon number of 5 or less, and comprising an aliphatic hydrocarbon group and two amino groups, and An amine containing at least one of aliphatic hydrocarbon diamines (C) whose total number of carbons of the aliphatic hydrocarbon group is 8 or less is mixed with a silver compound, and the complex containing the silver compound and the amines is mixed.
  • A aliphatic hydrocarbon monoamine
  • B comprising a hydrogen group and one amino group
  • the dispersion liquid containing silver nanoparticles wherein the dispersion solvent contains 50 to 90% by weight of an alcohol solvent and 10 to 50% by weight of an aliphatic hydrocarbon solvent.
  • the silver compound is preferably silver oxalate.
  • a silver nanoparticle-containing dispersion liquid comprising silver nanoparticles having a surface coated with a protective agent, and a dispersion solvent for dispersing the silver nanoparticles
  • the protective agent includes an aliphatic hydrocarbon monoamine (A) composed of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more, and further includes an aliphatic hydrocarbon An aliphatic hydrocarbon monoamine (B) having a total number of carbons of the aliphatic hydrocarbon group of 5 or less, and an aliphatic hydrocarbon group and two amino groups.
  • the silver nanoparticle-containing dispersion liquid according to any one of the above items, wherein the alcohol solvent is an aliphatic alcohol having 4 or more carbon atoms.
  • the aliphatic hydrocarbon solvent is selected from the group consisting of linear hydrocarbons, branched hydrocarbons, and cyclic structure-containing hydrocarbons, according to any one of (11) to (13) above. Silver nanoparticle-containing dispersion.
  • a substrate On the substrate, a silver nanoparticle-containing dispersion liquid produced by the method according to any one of the above items or the silver nanoparticle-containing dispersion solution according to any of the above items is applied and formed.
  • the silver conductive layer may be patterned. Firing is performed at a temperature of 200 ° C. or lower, for example 150 ° C. or lower, preferably 120 ° C. or lower, for 2 hours or shorter, for example 1 hour or shorter, preferably 30 minutes or shorter, more preferably 15 minutes or shorter. More specifically, it is performed under conditions of about 90 ° C. to 120 ° C. and about 10 minutes to 15 minutes, for example, 120 ° C. for 15 minutes.
  • the surface roughness Ra of the baked silver conductive layer is, for example, 0.03 ⁇ m or less.
  • a silver nanoparticle-containing dispersion produced by the method according to any one of the above items or the silver nanoparticle-containing dispersion according to any of the above items is applied onto a substrate, and silver A method for producing a silver conductive material, comprising forming a nanoparticle-containing coating layer and then firing the coating layer to form a silver conductive layer.
  • a patterned silver conductive layer may be formed by pattern-coating the silver nanoparticle-containing dispersion. Firing is performed at a temperature of 200 ° C. or lower, for example 150 ° C. or lower, preferably 120 ° C. or lower, for 2 hours or shorter, for example 1 hour or shorter, preferably 30 minutes or shorter, more preferably 15 minutes or shorter.
  • the surface roughness Ra of the baked silver conductive layer is, for example, 0.03 ⁇ m or less.
  • a method for producing a dispersion containing metal nanoparticles An aliphatic hydrocarbon monoamine (A) comprising an aliphatic hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 6 or more, and further comprising an aliphatic hydrocarbon group and one amino group And an aliphatic hydrocarbon monoamine (B) in which the total number of carbon atoms of the aliphatic hydrocarbon group is 5 or less, and an aliphatic hydrocarbon group and two amino groups, and the aliphatic hydrocarbon group An amine containing at least one of aliphatic hydrocarbon diamines (C) having a total carbon number of 8 or less and a metal compound are mixed to produce a complex compound containing the metal compound and the amine; The complex compound is heated and thermally decomposed to form metal nanoparticles, The metal nanoparticles are dispersed in a dispersion solvent containing 50 to 90% by weight of an alcohol solvent and 10 to 50% by weight of an aliphatic hydro
  • a metal nanoparticle-containing dispersion comprising metal nanoparticles and a dispersion solvent for dispersing the metal nanoparticles
  • the metal nanoparticles include an aliphatic hydrocarbon monoamine (A) composed of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more.
  • An aliphatic hydrocarbon monoamine (B) comprising a hydrogen group and one amino group, and the aliphatic hydrocarbon group having a total carbon number of 5 or less, and comprising an aliphatic hydrocarbon group and two amino groups
  • An amine containing at least one of the aliphatic hydrocarbon diamines (C) whose total number of carbons of the aliphatic hydrocarbon group is 8 or less and a metal compound are mixed to form a complex containing the metal compound and the amine. It is formed by generating a compound and heating and complexing the complex compound,
  • the dispersion liquid containing metal nanoparticles, wherein the dispersion solvent contains 50 to 90% by weight of an alcohol solvent and 10 to 50% by weight of an aliphatic hydrocarbon solvent.
  • a metal nanoparticle-containing dispersion comprising metal nanoparticles having a surface coated with a protective agent and a dispersion solvent for dispersing the metal nanoparticles
  • the protective agent includes an aliphatic hydrocarbon monoamine (A) composed of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more, and further includes an aliphatic hydrocarbon An aliphatic hydrocarbon monoamine (B) having a total number of carbons of the aliphatic hydrocarbon group of 5 or less, and an aliphatic hydrocarbon group and two amino groups.
  • a printing metal ink comprising the metal nanoparticle-containing dispersion according to any one of the above items.
  • Metal ink for ink-jet printing comprising the metal nanoparticle-containing dispersion according to any one of the above items.
  • the surface of the formed silver nanoparticles is covered with these aliphatic amine compounds.
  • the aliphatic hydrocarbon monoamine (B) and the aliphatic hydrocarbon diamine (C) have a short carbon chain length, they are calcined at a low temperature of 200 ° C. or lower, for example 150 ° C. or lower, preferably 120 ° C. or lower. In addition, it is easily removed from the surface of the silver particles in a short time of 2 hours or less, for example 1 hour or less, preferably 30 minutes or less. Further, due to the presence of the monoamine (B) and / or the diamine (C), the amount of the aliphatic hydrocarbon monoamine (A) deposited on the silver particle surface can be small. Accordingly, even in the case of firing at the low temperature, these aliphatic amine compounds are easily removed from the surface of the silver particles in the short time, and the sintering of the silver particles proceeds sufficiently.
  • the silver nanoparticles whose surface is coated with these aliphatic amine compounds are dispersed in a mixed dispersion solvent containing an alcohol solvent and an aliphatic hydrocarbon solvent in a specific ratio.
  • the mixed dispersion solvent disperses silver nanoparticles whose surface is coated with aliphatic amine compounds having a short carbon chain length in a very stable state.
  • the silver nanoparticle-containing dispersion (silver ink) and a method for producing the same are provided.
  • the silver nanoparticle-containing dispersion (silver ink) of the present invention is suitable for inkjet applications.
  • the silver nanoparticle containing dispersion liquid (silver ink) which can form the silver baking coating film excellent in surface smoothness, and its manufacturing method are provided.
  • the present invention is also applied to a metal nanoparticle-containing dispersion (metal ink) containing a metal other than silver and a method for producing the same.
  • a conductive film and a conductive wiring excellent in surface smoothness can be formed on various plastic substrates having low heat resistance such as PET and polypropylene.
  • the silver nanoparticle-containing dispersion liquid (silver ink) of the present invention is suitable for device applications of various recent electronic devices.
  • FIG. 4 is a photograph showing an inkjet discharge situation (initial stage) of the silver nanoparticle ink obtained in Example 2.
  • FIG. It is a photograph which shows the inkjet discharge condition (after intermittently leaving for 5 minutes) of the silver nanoparticle ink obtained in Example 2.
  • FIG. It is a photograph which shows the inkjet discharge condition (after 5 minutes intermittent leaving) of the silver nanoparticle ink obtained in Example 3.
  • silver nanoparticles are formed.
  • an aliphatic hydrocarbon monoamine (A) comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms of the aliphatic hydrocarbon group is 6 or more
  • An aliphatic hydrocarbon monoamine (B) comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbons of the aliphatic hydrocarbon group being 5 or less, and an aliphatic hydrocarbon group and two amino groups
  • the silver compound and the amine mixture are mixed to produce a complex compound containing the silver compound and the amines.
  • the mixing of the silver compound and the amines is not necessarily performed using the mixed amines.
  • the amines may be sequentially added to the silver compound.
  • the method for forming silver nanoparticles in the present invention mainly includes the preparation process of the amine mixture, the formation process of the complex compound, and the thermal decomposition process of the complex compound.
  • the term “nanoparticle” means that the size (average primary particle diameter) of primary particles obtained by a transmission electron microscope (TEM) is less than 1000 nm.
  • the particle size is intended to exclude the protective agent (stabilizer) present (coated) on the surface (that is, the size of silver itself).
  • the silver nanoparticles have an average primary particle diameter of, for example, 0.5 nm to 100 nm, preferably 0.5 nm to 50 nm, more preferably 0.5 nm to 25 nm, and still more preferably 0.5 nm to 20 nm. Yes.
  • the silver compound a silver compound that is easily decomposed by heating to form metallic silver is used.
  • silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, and silver phthalate; silver fluoride, silver chloride, silver bromide, silver iodide, etc.
  • Silver sulfate; silver sulfate, silver nitrate, silver carbonate, and the like can be used, but silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated.
  • Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained as it is by thermal decomposition, and impurities derived from the reducing agent do not easily remain.
  • a metal compound that is easily decomposed by heating to produce a target metal is used instead of the silver compound.
  • a metal salt corresponding to the above silver compound for example, a metal carboxylate; a metal halide; a metal salt compound such as a metal sulfate, a metal nitrate, or a metal carbonate is used. be able to.
  • metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the above silver compound and a metal compound other than the above silver may be used in combination.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd. Based on the total metal, silver accounts for at least 20% by weight, usually at least 50% by weight, for example at least 80% by weight.
  • the aliphatic hydrocarbon amine compounds functioning as a complexing agent and / or a protective agent
  • the aliphatic hydrocarbon amine (A) having 6 or more carbon atoms and an aliphatic having 5 or less carbon atoms are further included.
  • the hydrocarbon amine (B) and at least one of the aliphatic hydrocarbon diamine (C) having 8 or less carbon atoms are used.
  • an “aliphatic hydrocarbon monoamine” is a compound composed of 1 to 3 monovalent aliphatic hydrocarbon groups and one amino group.
  • a “hydrocarbon group” is a group consisting only of carbon and hydrogen.
  • the aliphatic hydrocarbon amine (A) and the aliphatic hydrocarbon amine (B) are, as necessary, a hetero atom (an atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom. ).
  • aliphatic hydrocarbon diamine means a divalent aliphatic hydrocarbon group (alkylene group), two amino groups intervening the aliphatic hydrocarbon group, and, in some cases, hydrogen of the amino group. It is a compound comprising an aliphatic hydrocarbon group (alkyl group) substituted with atoms.
  • the aliphatic hydrocarbon diamine (C) may have a substituent containing a hetero atom (atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom in the hydrocarbon group as necessary. Good.
  • the aliphatic hydrocarbon monoamine (A) having a total carbon number of 6 or more has a high function as a protective agent (stabilizer) on the surface of the silver particles to be generated by the hydrocarbon chain.
  • the aliphatic monohydrocarbon amine (A) includes primary amines, secondary amines, and tertiary amines.
  • primary amines include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine
  • saturated aliphatic hydrocarbon monoamines such as amines (that is, alkyl monoamines).
  • saturated aliphatic hydrocarbon monoamine examples include branched aliphatic hydrocarbon amines such as isohexylamine, 2-ethylhexylamine, and tert-octylamine, in addition to the above-mentioned linear aliphatic monoamine. Also included is cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (namely, alkenyl monoamines) such as oleylamine can be mentioned.
  • Secondary amines include N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, N, N-dioctylamine, N , N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine, N-propyl-N -Dialkyl monoamines such as butylamine.
  • Examples of the tertiary amine include tributylamine and trihexylamine.
  • saturated aliphatic hydrocarbon monoamines having 6 or more carbon atoms are preferred.
  • the upper limit of the number of carbon atoms is not particularly defined, but saturated aliphatic monoamines having up to 18 carbon atoms are usually preferred in consideration of availability, ease of removal during firing, and the like.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • aliphatic hydrocarbon monoamines (A) only one type may be used, or two or more types may be used in combination.
  • the aliphatic hydrocarbon monoamine (B) having a total carbon number of 5 or less has a shorter carbon chain length than the aliphatic monoamine (A) having a total carbon number of 6 or more, it itself has a low function as a protective agent (stabilizer).
  • the polarity is higher and the coordination ability of the silver compound to silver is higher, which is considered to be effective in promoting complex formation.
  • the carbon chain length is short, it can be removed from the surface of the silver particles in a short time of 30 minutes or less or 20 minutes or less even in low-temperature firing of 120 ° C. or less, or about 100 ° C. or less. Effective for low-temperature firing of silver nanoparticles.
  • Examples of the aliphatic hydrocarbon monoamine (B) include ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like.
  • Examples thereof include saturated aliphatic hydrocarbon monoamines having 2 to 5 carbon atoms (that is, alkyl monoamines).
  • dialkyl monoamines such as N, N-dimethylamine and N, N-diethylamine are also included.
  • n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable.
  • the aliphatic hydrocarbon monoamines (B) only one type may be used, or two or more types may be used in combination.
  • Aliphatic hydrocarbon diamine (C) having a total carbon number of 8 or less has high coordination ability to silver of silver compounds and is effective in promoting complex formation.
  • the aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of silver compounds to silver is increased.
  • the aliphatic hydrocarbon diamine (C) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and can produce silver nanoparticles more efficiently. .
  • the protective film of the silver particle containing the said aliphatic diamine (C) has high polarity, the dispersion stability of the silver particle in the dispersion medium containing a highly polar solvent improves. Furthermore, since the aliphatic diamine (C) has a short carbon chain length, the surface of the silver particles can be obtained in a short time of 30 minutes or less or 20 minutes or less even when firing at a low temperature of 120 ° C. or less, or about 100 ° C. or less. Therefore, it is effective for low-temperature and short-time firing of the obtained silver nanoparticles.
  • the aliphatic hydrocarbon diamine (C) is not particularly limited, but includes ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1 , 3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N— Diethyl-1,3-propanediamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl- 1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine 1,5-pentanediamine, 1,5-d
  • alkylene diamines having a total carbon number of 8 or less, in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the ability of the silver compound to coordinate to silver is high, Effective in promoting complex formation.
  • one of the two amino groups is a primary amino group
  • An alkylenediamine having a total carbon number of 8 or less, wherein —NH 2 ) and the other one is a tertiary amino group (—NR 1 R 2 ) is preferred.
  • a preferred alkylenediamine is represented by the following structural formula.
  • R represents a divalent alkylene group
  • R 1 and R 2 may be the same or different and each represents an alkyl group, provided that the total number of carbon atoms of R, R 1 and R 2 is 8
  • the alkylene group usually does not contain a hetero atom (an atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom, but may optionally have a substituent containing the hetero atom.
  • the alkyl group usually does not contain a heteroatom such as an oxygen atom or a nitrogen atom, but may optionally have a substituent containing the heteroatom.
  • one of the two amino groups is a primary amino group
  • the ability of the silver compound to coordinate to silver is increased, which is advantageous for complex formation
  • the other is a tertiary amino group. Since the tertiary amino group has poor coordination ability to silver atoms, the complex formed is prevented from having a complex network structure.
  • a high temperature may be required for the thermal decomposition process of the complex.
  • a diamine having a total carbon number of 6 or less is preferable, and a diamine having a total carbon number of 5 or less is more preferable from the viewpoint that it can be removed from the surface of the silver particles in a short time even in low-temperature firing.
  • the aliphatic hydrocarbon diamine (C) only one type may be used, or two or more types may be used in combination.
  • the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms the aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms, and the aliphatic hydrocarbon diamine (C) having 8 or less carbon atoms.
  • the use ratio with either one or both is not particularly limited, but based on the total amines [(A) + (B) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Total amount of the aliphatic monoamine (B) and the aliphatic diamine (C): 35 mol% to 95 mol% It is good to do.
  • the function of protecting and stabilizing the surface of the silver particles produced can be easily obtained by the carbon chain of the component (A).
  • the protective stabilization function may be weakly expressed.
  • the protective stabilization function is sufficient, but the component (A) is difficult to be removed by low-temperature firing.
  • aliphatic monoamine (A) and both the aliphatic monoamine (B) and the aliphatic diamine (C) are used, their use ratio is not particularly limited, but the total amines Based on [(A) + (B) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic monoamine (B): 5 mol% to 70 mol% Aliphatic diamine (C): 5 mol% to 50 mol% It is good to do.
  • the lower limit of the content of the component (A) is preferably 10 mol% or more, more preferably 20 mol% or more.
  • the content of the aliphatic monoamine (B) By setting the content of the aliphatic monoamine (B) to 5 mol% to 70 mol%, a complex formation promoting effect can be easily obtained, and it can contribute itself to low temperature and short time baking. In this case, the effect of assisting the removal of the aliphatic diamine (C) from the surface of the silver particles is easily obtained. If the content of the component (B) is less than 5 mol%, the effect of promoting complex formation may be weak, or the component (C) may be difficult to remove from the surface of the silver particles during firing. On the other hand, when the content of the component (B) exceeds 70 mol%, a complex formation promoting effect can be obtained, but the content of the aliphatic monoamine (A) is relatively decreased, and silver particles are generated.
  • the aliphatic diamine (C) By setting the content of the aliphatic diamine (C) to 5 mol% to 50 mol%, a complex formation promoting effect and a thermal decomposition promoting effect of the complex can be easily obtained, and the aliphatic diamine (C) is contained. Since the protective film of silver particles has a high polarity, the dispersion stability of silver particles in a dispersion medium containing a highly polar solvent is improved. When the content of the component (C) is less than 5 mol%, the complex formation promoting effect and the thermal decomposition promoting effect of the complex may be weak.
  • the content of the component (C) exceeds 50 mol%, the complex formation promoting effect and the thermal decomposition promoting effect of the complex are obtained, but the content of the aliphatic monoamine (A) is relatively reduced. Therefore, it is difficult to achieve protection and stabilization of the surface of the silver particles to be produced.
  • About the minimum of content of the said (C) component 5 mol% or more is preferable and 10 mol% or more is more preferable.
  • About the upper limit of content of the said (C) component 45 mol% or less is preferable and 40 mol% or less is more preferable.
  • aliphatic monoamine (A) and the aliphatic monoamine (B) are used (without using the aliphatic diamine (C)), their use ratio is not particularly limited. Considering the action, based on the total amines [(A) + (B)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic monoamine (B): 35 mol% to 95 mol% It is good to do.
  • the use ratio thereof is not particularly limited. Considering the action, based on the total amines [(A) + (C)], for example, Aliphatic monoamine (A): 5 mol% to 65 mol% Aliphatic diamine (C): 35 mol% to 95 mol% It is good to do.
  • the above-mentioned use ratios of the aliphatic monoamine (A), the aliphatic monoamine (B) and / or the aliphatic diamine (C) are all examples, and various changes are possible.
  • the total number of carbon atoms is 6 depending on the use ratio thereof.
  • the adhesion amount of the above aliphatic monoamine (A) on the silver particle surface is small. Therefore, even in the case of firing at a low temperature for a short time, these aliphatic amine compounds are easily removed from the surface of the silver particles, and the silver particles are sufficiently sintered.
  • the total amount of the amines [(A), (B) and / or (C)] is not particularly limited, but the amine component is used with respect to 1 mol of silver atoms of the starting silver compound.
  • the total amount of [(A) + (B) + (C)] is preferably about 1 to 50 mol. If the total amount of the amine component [(A) + (B) + (C)] is less than 1 mole with respect to 1 mole of the silver atom, silver that is not converted into the complex compound in the complex compound forming step There is a possibility that the compound remains, and in the subsequent thermal decomposition step, the uniformity of the silver particles is impaired, the particles may be enlarged, or the silver compound may remain without being thermally decomposed.
  • the total amount of the amine components is preferably about 2 mol or more, for example.
  • the complex compound formation step and the thermal decomposition step can be performed satisfactorily.
  • about the minimum of the total amount of the said amine component, 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound, and 6 mol or more is more preferable.
  • the silver oxalate molecule contains two silver atoms.
  • an aliphatic carboxylic acid (D) may be further used as a stabilizer.
  • the aliphatic carboxylic acid (D) is preferably used together with the amines, and can be used by being included in the amine mixed solution.
  • aliphatic carboxylic acid (D) a saturated or unsaturated aliphatic carboxylic acid is used.
  • aliphatic carboxylic acid a saturated or unsaturated aliphatic carboxylic acid is used.
  • saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid
  • unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid
  • saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable.
  • the number of carbon atoms By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, a space between the silver particle and other silver particles can be secured, so that the effect of preventing aggregation of the silver particles is improved.
  • saturated or unsaturated aliphatic monocarboxylic acid compounds having up to 18 carbon atoms are usually preferred.
  • octanoic acid, oleic acid and the like are preferably used.
  • the aliphatic carboxylic acids (D) only one type may be used, or two or more types may be used in combination.
  • the aliphatic carboxylic acid (D) When the aliphatic carboxylic acid (D) is used, it may be used in an amount of, for example, about 0.05 to 10 mol, preferably 0.1 to 5 mol, relative to 1 mol of silver atoms in the starting silver compound. More preferably 0.5 to 2 mol is used.
  • the amount of the component (D) When the amount of the component (D) is less than 0.05 mol with respect to 1 mol of the silver atom, the effect of improving the stability in the dispersed state by the addition of the component (D) is weak.
  • the amount of the component (D) reaches 10 mol, the effect of improving the stability in a dispersed state is saturated, and the component (D) is hardly removed by low-temperature firing.
  • the aliphatic carboxylic acid (D) may not be used.
  • an amine mixed solution containing the aliphatic monoamine (A) and one or both of the aliphatic monoamine (B) and the aliphatic diamine (C) is prepared. Liquid preparation step].
  • the amine mixed solution can be prepared by stirring each amine (A), (B) and / or (C) component, and, if used, the carboxylic acid (D) component at a predetermined ratio at room temperature. .
  • a silver compound and an amine mixed solution containing each amine (A), (B) and / or (C) component are mixed to form a complex compound containing the silver compound and the amine [complex compound Generation step].
  • a metal compound containing the target metal is used instead of the silver compound.
  • Powdered silver compound (or metal compound) and a predetermined amount of amine mixture are mixed.
  • the mixing is preferably carried out while stirring at room temperature, or while appropriately cooling to room temperature or lower and stirring because the coordination reaction of amines to the silver compound (or metal compound) involves heat generation.
  • An excess of amines serves as a reaction medium. Since the complex compound to be formed generally exhibits a color corresponding to its constituent components, the end point of the complex compound formation reaction can be detected by detecting the end of the color change of the reaction mixture by appropriate spectroscopy or the like. .
  • the complex compound formed by silver oxalate is generally colorless (observed as white when visually observed), but even in such a case, the complex compound is formed on the basis of a change in form such as a change in viscosity of the reaction mixture. The generation state can be detected. In this way, a silver-amine complex (or metal-amine complex) is obtained in a medium mainly composed of amines.
  • the obtained complex compound is heated and pyrolyzed to form silver nanoparticles [complex compound pyrolysis step].
  • a metal compound containing a metal other than silver is used, target metal nanoparticles are formed.
  • Silver nanoparticles (metal nanoparticles) are formed without using a reducing agent. However, if necessary, an appropriate reducing agent may be used as long as the effects of the present invention are not impaired.
  • amines control the manner in which atomic metals generated by the decomposition of metal compounds aggregate to form fine particles, and on the surface of the formed metal fine particles.
  • a film By forming a film, it plays the role of preventing reaggregation between the fine particles. That is, by heating a complex compound of a metal compound and an amine, the metal compound is thermally decomposed while maintaining the coordinate bond of the amine to the metal atom to produce an atomic metal, and then the amine is coordinated. It is considered that the metal atoms are aggregated to form metal nanoparticles covered with an amine protective film.
  • the thermal decomposition is preferably performed while stirring the complex compound in a reaction medium mainly composed of amines.
  • the thermal decomposition is preferably performed within a temperature range in which the coated silver nanoparticles (or coated metal nanoparticles) are generated. From the viewpoint of preventing amine from being removed from the silver particle surface (or metal particle surface), the above temperature range is used. It is preferable to carry out at as low a temperature as possible.
  • a complex compound of silver oxalate it can be set to, for example, about 80 ° C. to 120 ° C., preferably about 95 ° C. to 115 ° C., more specifically about 100 ° C. to 110 ° C.
  • the thermal decomposition of the complex compound is preferably performed in an inert gas atmosphere such as argon, but the thermal decomposition can also be performed in the air.
  • Use water or organic solvent for decantation and cleaning operations examples include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; toluene, xylene, mesitylene, and the like
  • Aromatic hydrocarbon solvents such as: alcohol solvents such as methanol, ethanol, propanol, butanol, etc .; acetonitrile; and mixed solvents thereof may be used.
  • the silver nanoparticles of the present invention since no reducing agent is required, there is no by-product derived from the reducing agent, and the separation of the coated silver nanoparticles from the reaction system is simple, and high purity coating is achieved. Silver nanoparticles are obtained.
  • an appropriate reducing agent may be used as necessary as long as the effects of the present invention are not impaired.
  • the protective agent includes the aliphatic monoamine (A), and further includes one or both of the aliphatic monoamine (B) and the aliphatic diamine (C). Carboxylic acid (D) is contained. Their content in the protective agent is equivalent to their use in the amine mixture. The same applies to metal nanoparticles.
  • the silver nanoparticles formed as described above are dispersed in a dispersion solvent (dispersion medium) containing 50 to 90% by weight of an alcohol solvent and 10 to 50% by weight of an aliphatic hydrocarbon solvent, A dispersion containing silver nanoparticles is prepared.
  • a dispersion solvent dispersion medium containing 50 to 90% by weight of an alcohol solvent and 10 to 50% by weight of an aliphatic hydrocarbon solvent
  • the alcohol-based dispersion solvent is not particularly limited, and an aliphatic alcohol selected from linear alcohols, branched alcohols, and cyclic structure-containing alcohols can be used.
  • an aliphatic alcohol selected from linear alcohols, branched alcohols, and cyclic structure-containing alcohols
  • Alcohol solvents disperse silver nanoparticles well.
  • an alcohol solvent is used as the main component of the dispersion solvent
  • the surface of the silver conductive layer obtained by applying and baking the silver nanoparticle-containing dispersion on the substrate becomes smooth.
  • the alcohol solvent has a vapor pressure at room temperature (15 to 25 ° C.) that is about one order lower than that of an aliphatic hydrocarbon solvent that requires an equivalent boiling point. This is thought to be due to hydrogen bonding in the alcohol. Since the vapor pressure of the alcohol solvent is small, if the alcohol solvent is used as the main component of the dispersion solvent, the volatility of the dispersion solvent as a whole is suppressed. Therefore, when the silver nanoparticle-containing dispersion is used as various printing inks, it is preferable because the ink becomes non-volatile.
  • the vapor pressure at 25 ° C. of cyclohexanemethanol (bp: 181 ° C.) is 0.034 kPa
  • the vapor pressure at 25 ° C. of decalin (bp: 190 ° C.) having approximately the same boiling point is 0.31 kPa. .
  • aliphatic alcohols having 4 or more carbon atoms are preferable, and n-butanol (bp: 117 ° C.), isobutanol (bp: 108 ° C.), sec-butanol (bp: 99 0.5 ° C), tert-butanol (bp: 83 ° C), n-pentanol (bp: 138 ° C), cyclopentanol (bp: 140 ° C), n-hexanol (bp: 157.47 ° C), 2- Ethylhexanol (bp: 183.5 ° C), cyclohexanol (bp: 163 ° C), cyclohexanemethanol (bp: 181 ° C), n-heptanol (bp: 176 ° C), n-octanol (bp: 195.28 ° C)
  • the cyclic structure-containing alcohol has a smaller molecular size and a higher boiling point than a chain alcohol having the same carbon number.
  • n-hexanol has a bp of 157.47 ° C.
  • cyclohexanol has a bp of 163 ° C.
  • n-heptanol has a bp of 176.81 ° C
  • cyclohexanemethanol has a bp of 181 ° C.
  • cyclic structure-containing alcohol When the cyclic structure-containing alcohol is used, silver nanoparticles whose surface is coated with an amine protecting agent having a short carbon chain length can be dispersed more favorably.
  • the cyclic structure-containing alcohol is presumably because it is sterically compact compared to chain hydrocarbons, and therefore easily enters the gaps between the agglomerated particles and has the effect of loosening the agglomeration of the particles.
  • 1 type may be used and 2 or more types may be used in combination.
  • the aliphatic hydrocarbon dispersion solvent is non-polar and is not particularly limited, and is selected from linear hydrocarbons, branched hydrocarbons, and cyclic structure-containing hydrocarbons (alicyclic hydrocarbons).
  • Aliphatic hydrocarbons can be used.
  • n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, etc. branched isomers thereof, etc.
  • aliphatic hydrocarbons Those having about 5 to 14 carbon atoms may be used.
  • the aliphatic hydrocarbon solvent disperses silver nanoparticles well.
  • Alicyclic hydrocarbon is an established term, but is a carbocyclic compound other than an aromatic compound, and is a compound composed only of carbon and hydrogen.
  • the alicyclic hydrocarbon includes a cycloalkane having a saturated carbocycle, a cycloalkene having an unsaturated bond in the carbocycle, a cycloalkyne, and a monocyclic structure or a polycyclic structure (bicyclic structure, Tricyclic structures and the like).
  • the alicyclic hydrocarbon is liquid at room temperature (25 ° C.), and is, for example, a compound containing a 6-membered to 12-membered ring structure, but containing a 6-membered ring structure. Are preferred.
  • Examples of the compound containing a 6-membered ring structure as the alicyclic hydrocarbon include cyclohexanes, terpene-based 6-membered ring compounds, decalin and the like.
  • Cyclohexanes include cyclohexane (boiling point bp: 80.7 ° C); methylcyclohexane (bp: 100.4 ° C), ethylcyclohexane (bp: 132 ° C), n-propylcyclohexane (bp: 157 ° C), isopropylcyclohexane ( bp: 151 ° C), n-butylcyclohexane (bp: 180 ° C), isobutylcyclohexane (bp: 169 ° C), sec-butylcyclohexane (bp: 179 ° C), tert-butylcyclohexane (bp: 171 ° C), etc.
  • Examples include cyclohexane substituted with lower alkyl groups of 1 to 6; bicyclohexyl (bp: 227 ° C.) and the like.
  • Terpenic 6-membered ring compounds include ⁇ -pinene (bp: 155 to 156 ° C.), ⁇ -pinene (bp: 164 to 166 ° C.), limonene (bp: 175.5 to 176 ° C., 763 mmHg ° C.), ⁇ - Monocyclic such as terpinene (bp: 173.5 to 174.8 ° C., 755 mmHg), ⁇ -terpinene (bp: 173 to 174 ° C.), ⁇ -terpinene (bp: 183 ° C.), terpinolene (bp: 186 ° C.), etc. Monoterpenes are exemplified.
  • Examples of the alicyclic hydrocarbons other than the six-membered ring structure include cycloheptane (bp: 118 to 120 ° C.), cycloheptene (bp: 115 ° C.), cyclooctane (bp: 148 to 149 ° C., 749 mmHg), Examples thereof include cyclooctene (bp: 145 to 146 ° C.), cyclodecane (bp: 201 ° C.), cyclododecene (bp: 241 ° C.) and the like.
  • cyclododecane is solid at room temperature (melting point: 63 ° C.), but can be used by dissolving in the above exemplified alicyclic hydrocarbon which is liquid at room temperature.
  • polycyclic structures examples include decalin [(cis isomer, bp: 195.7 ° C .; trans isomer 185.5 ° C.], bicyclo [2,2,2] octane (bp: 169.5 to 170.5 mmHg), etc. Is mentioned.
  • cyclohexanes substituted with an alkyl group having 3 to 4 carbon atoms such as n-propylcyclohexane, isopropylcyclohexane and n-butylcyclohexane, terpene compounds such as limonene and terpinene, and polycyclic structure compounds such as decalin Etc. are preferred.
  • the alicyclic hydrocarbon has a smaller molecular size and a higher boiling point than chain hydrocarbons having the same carbon number.
  • bp of n-hexane is 69 ° C.
  • that of cyclohexane is 80.7 ° C.
  • 1-hexanol bp 157.47 ° C.
  • the n-octane bp is 125.7 ° C, while the cyclooctane bp is 148 to 149 ° C (749 mmHg).
  • 1-octanol bp 195.28 ° C.
  • alicyclic hydrocarbon When an alicyclic hydrocarbon is used as the aliphatic hydrocarbon solvent, silver nanoparticles whose surface is coated with an amine protecting agent having a short carbon chain length can be more favorably dispersed. It is presumed that alicyclic hydrocarbons are sterically compact compared to chain hydrocarbons, so that they easily enter the gaps between the aggregated particles and have an action of loosening the aggregation of the particles. As the aliphatic hydrocarbon, only one kind may be used, or two or more kinds may be used in combination.
  • the mixed dispersion solvent includes an alcohol solvent and an aliphatic hydrocarbon solvent.
  • a solvent having a relatively high boiling point is used as the alcohol solvent and / or aliphatic hydrocarbon solvent
  • the use environment temperature of the silver nanoparticle-containing dispersion liquid ink for example, 10 to 30 ° C. or room temperature (15 Therefore, even when the silver nanoparticle-containing ink is used for inkjet printing, the inkjet head is not clogged.
  • the dispersion solvent has high volatility, the silver nanoparticles
  • the ink concentration gradually increases in the environment in which the contained ink is used, and the ink jet head is likely to be clogged, and the volatility of the dispersion solvent is not preferable in other printing methods than ink jet printing.
  • a cyclic structure-containing alcohol as the alcohol solvent and / or to use an alicyclic hydrocarbon as the aliphatic hydrocarbon solvent.
  • an alicyclic hydrocarbon as the aliphatic hydrocarbon solvent.
  • the alcohol solvent has a vapor pressure of about one order of magnitude lower than that of an aliphatic hydrocarbon solvent that requires the same boiling point, and the volatility of the dispersion solvent as a whole is suppressed. Therefore, the alcohol solvent can contribute to the suppression of the volatility of the entire dispersion solvent and to lowering the firing temperature.
  • the mixed dispersion solvent is Alcohol-based solvent: 50 to 90% by weight, and aliphatic hydrocarbon-based solvent: 10 to 50% by weight.
  • the amount of the alcohol solvent is 50% by weight or more, an effect on the surface smoothness of the silver conductive layer after the baking of the alcohol solvent can be easily obtained, and an aliphatic hydrocarbon solvent requiring an equivalent boiling point and The effect of suppressing volatility when compared is easily obtained.
  • the upper limit of the amount of the alcohol solvent is 90% by weight or less. When the amount of the alcohol solvent exceeds 90% by weight, the amount of the aliphatic hydrocarbon solvent becomes less than 10% by weight, and it is difficult to obtain the effect of improving the dispersibility of the aliphatic hydrocarbon solvent.
  • the mixed dispersion solvent is It preferably contains 60 to 90% by weight of an alcohol solvent and 10 to 40% by weight of an aliphatic hydrocarbon solvent. Both of these may be 100% by weight, or another organic solvent may be further used as the balance in an amount that does not impair the object of the present invention.
  • aromatic hydrocarbon solvents such as toluene, xylene, mesitylene and the like can be mentioned.
  • Dispersion containing silver nanoparticles in suspension by mixing and stirring the powder of the coated silver nanoparticles in the dry state or wet state obtained in the post-treatment step of the silver nanoparticles and the dispersion solvent described above A liquid can be prepared.
  • the said silver nanoparticle is based also on a use purpose, it is good to make it contain in the silver nanoparticle containing dispersion liquid in the ratio of 10 weight% or more, or 25 weight% or more, Preferably it is 30 weight% or more.
  • the upper limit of the silver nanoparticle content is 80% by weight or less.
  • the mixing / dispersing of the powder of the coated silver nanoparticles and the dispersion solvent may be performed once or may be performed several times.
  • the silver nanoparticle-containing dispersion (ink) obtained by the present invention is excellent in stability.
  • the silver ink is stable without causing aggregation and fusion in a refrigerated state (for example, 5 ° C. or lower) for a period of 1 month or longer at a silver concentration of 50% by weight, for example.
  • the prepared silver nanoparticle-containing dispersion is applied onto a substrate and then baked.
  • Calcination can be performed at a temperature of 200 ° C. or lower, for example, room temperature (25 ° C.) or higher and 150 ° C. or lower, preferably room temperature (25 ° C.) or higher and 120 ° C. or lower. However, in order to complete the sintering of silver by firing in a short time, it is performed at a temperature of 60 ° C. or higher and 200 ° C. or lower, such as 80 ° C. or higher and 150 ° C. or lower, preferably 90 ° C. or higher. Good.
  • the firing time may be appropriately determined in consideration of the amount of silver ink applied, the firing temperature, etc., for example, within several hours (eg, 3 hours or 2 hours), preferably within 1 hour, more preferably within 30 minutes, More preferably, it may be 10 minutes to 20 minutes.
  • the silver nanoparticles are configured as described above, the sintering of the silver particles sufficiently proceeds even by such a firing process at a low temperature and in a short time. As a result, excellent conductivity (low resistance value) is exhibited.
  • a silver conductive layer having a low resistance value (for example, 10 ⁇ cm or less and in the range of 3 to 10 ⁇ cm) is formed.
  • the resistance value of bulk silver is 1.6 ⁇ cm.
  • the substrate can be a glass substrate, a heat resistant plastic substrate such as a polyimide film, or a polyester film such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film.
  • a general-purpose plastic substrate having low heat resistance such as a polyolefin-based film such as polypropylene can also be suitably used.
  • baking in a short time reduces the load on these general-purpose plastic substrates having low heat resistance, and improves production efficiency.
  • the silver nanoparticle-containing ink according to the present invention uses a mixed dispersion solvent containing an alcohol solvent and an aliphatic hydrocarbon solvent in a specific ratio, a very good dispersion state can be obtained. Therefore, the silver conductive layer after coating and baking is excellent in surface smoothness.
  • the center line surface roughness Ra of the baked silver conductive layer is, for example, 0.03 ⁇ m or less, and preferably 0.025 ⁇ m or less. For example, Ra of 0.03 ⁇ m or less can be obtained without performing a treatment for smoothing the surface (for example, breathing or polishing).
  • the silver conductive material obtained by the present invention includes various electronic devices such as electromagnetic wave control materials, circuit boards, antennas, heat sinks, liquid crystal displays, organic EL displays, field emission displays (FEDs), IC cards, IC tags, solar It can be applied to batteries, LED elements, organic transistors, capacitors (capacitors), electronic paper, flexible batteries, flexible sensors, membrane switches, touch panels, EMI shields, and the like. In particular, it is effective for electronic materials that require surface smoothness, and for example, is effective as a gate electrode of a thin film transistor (TFT) in a liquid crystal display.
  • TFT thin film transistor
  • the thickness of the silver conductive layer may be appropriately determined according to the intended use. Without being particularly limited, for example, it may be selected from the range of 5 nm to 10 ⁇ m, preferably 100 nm to 5 ⁇ m, more preferably 300 nm to 2 ⁇ m.
  • the ink mainly containing silver nanoparticles has been described.
  • the present invention is also applied to ink containing metal nanoparticles containing a metal other than silver.
  • the obtained silver fired film was measured using a four-terminal method (Loresta GP MCP-T610).
  • the measuring range limit of this device is 10 7 ⁇ cm.
  • Ra of the fired silver film With respect to the obtained silver fired film, the center line surface roughness Ra ( ⁇ m) was measured based on JIS-B-0601 using Surfcoder ET-4000 (manufactured by Kosaka Laboratory). If the value of Ra is 0.03 ⁇ m or less, it is generally a mirror surface and excellent in surface smoothness.
  • the lower limit of Ra is not particularly limited, but the value obtained after firing is about 0.001 ⁇ m.
  • N N-dimethyl-1,3-propanediamine
  • N N-dimethylaminopropylamine
  • n-Butylamine MW: 73.14
  • Reagent manufactured by Tokyo Chemical Industry n-hexylamine MW: 101.19
  • Reagent n-octylamine MW: 129.25
  • Reagent n-butanol manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 1 (Preparation of silver nanoparticles) A 100 mL flask was charged with 3.0 g (9.9 mmol) of silver oxalate, and 4.5 g of n-butanol was added thereto to prepare an n-butanol slurry of silver oxalate. To this slurry, n-butylamine 8.67 g (118.5 mmol), n-hexylamine 6.00 g (59.3 mmol), n-octylamine 5.74 g (44.4 mmol), dodecylamine 2.
  • This silver nanoparticle dispersion was applied on an alkali-free glass plate by spin coating to form a coating film. After the coating film was formed, the coating film was quickly baked in a blast drying furnace at 120 ° C. for 15 minutes to form a 0.6 ⁇ m-thick silver fired film.
  • This silver nanoparticle dispersion was applied on an alkali-free glass plate by spin coating to form a coating film. After the coating film was formed, the coating film was quickly baked in a blast drying furnace at 120 ° C. for 15 minutes to form a 0.8 ⁇ m thick silver fired film.
  • FIG. 1 is a photograph showing the state of ink ejection from an inkjet head from the side, and ink droplets are favorably ejected from each head arranged at equal intervals in the left-right direction of the photograph. I understand that.
  • This silver nanoparticle dispersion was applied on an alkali-free glass plate by spin coating to form a coating film. After the coating film was formed, the coating film was quickly baked in a blast drying furnace at 120 ° C. for 15 minutes to form a 0.8 ⁇ m thick silver fired film.
  • this silver nanoparticle dispersion was used for inkjet printing (inkjet head KM-512MH manufactured by Konica Minolta) to evaluate inkjet discharge.
  • inkjet head KM-512MH manufactured by Konica Minolta To evaluate inkjet discharge.
  • FIG. 3 Photo of the initial ejection situation.
  • FIG. 4 With regard to re-discharge after intermittently standing, when the discharge was stopped for 5 minutes from the initial discharge and the discharge was restarted, it was confirmed that the nozzles were not clogged and discharged well from all the heads (FIG. 4: (Photo of the discharge status after 5 minutes intermittent standing).

Abstract

 低温焼成によって優れた導電性が発現し、且つ銀ナノ粒子が分散溶剤中に良好に安定に分散された銀ナノ粒子含有分散液、及びその製造方法を提供する。 【解決手段】脂肪族炭化水素基と1つのアミノ基とからなり且つ該炭化水素基の炭素総数6以上の脂肪族モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該炭化水素基の炭素総数5以下の脂肪族モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該炭化水素基の炭素総数8以下の脂肪族ジアミン(C)のうちの少なくとも一方を含むアミン類と、銀化合物とを混合して、前記銀化合物及び前記アミン類を含む錯化合物を生成させ;前記錯化合物を加熱して熱分解させて銀ナノ粒子を形成し;前記銀ナノ粒子をアルコール系溶剤及び脂肪族炭化水素系溶剤を特定割合で含む溶剤に分散する;ことを含む銀ナノ粒子含有分散液の製造方法。

Description

銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液
 本発明は、銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液に関する。また、本発明は、銀以外の金属を含む金属ナノ粒子含有分散液の製造方法及び該金属ナノ粒子含有分散液にも適用される。
 銀ナノ粒子は、低温でも焼結させることができる。この性質を利用して、種々の電子素子の製造において、基板上に電極や導電回路パターンを形成するために、銀ナノ粒子を含む銀塗料組成物が用いられている。銀ナノ粒子は、通常、有機溶剤中に分散されている。銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、通常、その表面は有機安定剤(保護剤)で被覆されている。基板がプラスチックフィルム又はシートの場合には、プラスチック基板の耐熱温度未満の低温(例えば、200℃以下)で銀ナノ粒子を焼結させることが必要である。
 特に最近では、フレキシブルプリント配線基板として、すでに使用されている耐熱性のポリイミドのみならず、ポリイミドよりも耐熱性は低いが加工が容易で且つ安価なPET(ポリエチレンテレフタレート)やポリプロピレンなどの各種プラスチック製の基板に対しても、微細な金属配線(例えば、銀配線)を形成する試みがなされている。耐熱性の低いプラスチック製の基板を用いた場合には、金属ナノ粒子(例えば、銀ナノ粒子)をさらに低温で焼結させることが必要である。
 例えば、特開2008-214695号公報には、シュウ酸銀とオレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを含む銀超微粒子の製造方法が開示されている(請求項1)。また、前記方法において、前記シュウ酸銀と前記オレイルアミンに加えて総炭素数1~18の飽和脂肪族アミンを反応させる(請求項2、3)と、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮でき、しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができることが開示されている(段落[0011])。
 特開2010-265543号公報には、加熱により分解して金属銀を生成する銀化合物と、沸点100℃~250℃の中短鎖アルキルアミン及び沸点100℃~250℃の中短鎖アルキルジアミンとを混合して、銀化合物と前記アルキルアミン及び前記アルキルジアミンを含む錯化合物を調製する第1工程と、前記錯化合物を加熱分解させる第2工程とを含む被覆銀超微粒子の製造方法が開示されている(請求項3、段落[0061]、[0062])。
 特開2012-162767号公報には、炭素数6以上のアルキルアミンと、炭素数5以下のアルキルアミンとを含むアミン混合液と、金属原子を含む金属化合物を混合して、前記金属化合物とアミンを含む錯化合物を生成する第1工程と、前記錯化合物を加熱分解して金属微粒子を生成する第2工程とを含む被覆金属微粒子の製造方法が開示されている(請求項1)。また、被覆銀微粒子をブタノール等のアルコール溶剤、オクタン等の非極性溶剤、又はそれらの混合溶剤等の有機溶剤に分散可能であることが開示されている(段落[0079])。
 特開2013-142172号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)と、脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)とを含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール等のようなアルコール溶剤が開示されている(段落[0085])。
 特開2013-142173号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを特定の割合で含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、上記の特開2013-142172号公報と同様に、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、同様の有機溶剤が開示されている(段落[0076])。
特開2008-214695号公報 特開2010-265543号公報 特開2012-162767号公報 特開2013-142172号公報 特開2013-142173号公報
 銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、ミクロン(μm)サイズの粒子に比べ、凝集しやすい。そのため、得られる銀ナノ粒子の表面が有機安定剤(脂肪族アミンや脂肪族カルボン酸などの保護剤)で被覆されるように、銀化合物の還元反応(上記特許文献における熱分解反応)は有機安定剤の存在下で行われる。
 一方、銀ナノ粒子は、該粒子を有機溶剤中に含む銀塗料組成物(銀インク、銀ペースト)とされる。導電性発現のためには、基板上への塗布後の焼成時において、銀ナノ粒子を被覆している有機安定剤は除去されて銀粒子が焼結することが必要である。焼成の温度が低ければ、有機安定剤は除去されにくくなる。銀粒子の焼結度合いが十分でなければ、低い抵抗値は得られない。すなわち、銀ナノ粒子の表面に存在する有機安定剤は、銀ナノ粒子の安定化に寄与するが、一方、銀ナノ粒子の焼結(特に、低温焼成での焼結)を妨げる。
 有機安定剤として比較的長鎖(例えば、炭素数8以上)の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物を用いると、個々の銀ナノ粒子同士の互いの間隔が確保されやすいため、銀ナノ粒子が安定化されやすい。一方、長鎖の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物は、焼成の温度が低ければ、除去されにくい。
 このように、銀ナノ粒子の安定化と、低温焼成での低抵抗値の発現とは、トレードオフの関係にある。
 特開2008-214695号公報においては、上述のように、脂肪族アミン化合物として、炭素数18のオレイルアミンと炭素数1~18の飽和脂肪族アミンとが組み合わされて用いられる。しかしながら、オレイルアミンを保護剤の主成分として用いると、低温焼成での銀ナノ粒子の焼結は妨げられる。また、オレイルアミンとシュウ酸銀との錯化合物形成反応の反応速度は十分ではない。
 特開2010-265543号公報においては、上述のように、脂肪族アミン化合物として、沸点100℃~250℃の中短鎖アルキルアミン(段落[0061])と沸点100℃~250℃の中短鎖アルキルジアミン(段落[0062])とが組み合わされて用いられる。この方法によれば、オレイルアミンを保護剤の主成分として用いることに起因する上記問題は改善される。
 しかしながら、特開2010-265543号公報においては、保護剤として上記中短鎖アルキルアミンと上記中短鎖アルキルジアミンとが用いられているので、長鎖のオレイルアミンを保護剤の主成分として用いた場合に比べ、得られた銀ナノ粒子の有機溶剤に対する分散性が悪くなる。特開2012-162767号公報においても同様である。
 このように、低温焼成での銀ナノ粒子の焼結が可能であり、且つ銀ナノ粒子が有機溶剤中に良好に安定に分散された銀ナノ粒子含有インクは今のところ開発されていない。
 さらに、インクジェット印刷を考慮すると、銀ナノ粒子含有インクはインクジェットヘッドの目詰まりを起こさないものである必要がある。
 さらに、最近、液晶ディスプレイ(LCD)に薄膜トランジスタ(TFT:thin film transistor) が応用されており、TFTのゲート電極には、その表面の平滑性が要求される。銀ナノ粒子の焼成塗膜をTFTのゲート電極に用いる場合には、焼成塗膜の表面平滑性が必要である。表面平滑性に優れる焼成塗膜を形成するためには、銀ナノ粒子が有機溶剤中に非常に安定な状態で分散された銀ナノ粒子含有インクが必要である。TFTのゲート電極以外にも、表面平滑性に優れる銀焼成塗膜が要求されることもある。
 そこで、本発明の目的は、低温、短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ銀ナノ粒子が分散溶剤中に良好に安定に分散された銀ナノ粒子含有分散液、及びその製造方法を提供することにある。また、本発明の目的は、各種印刷用途に好適な、特にインクジェット用途にも好適な銀ナノ粒子含有分散液、及びその製造方法を提供することにある。特に、本発明の目的は、表面平滑性に優れる銀焼成塗膜を形成し得る銀ナノ粒子含有分散液、及びその製造方法を提供することにある。
 本発明者らは、いわゆる熱分解法により銀ナノ粒子を調製するに際して、錯形成剤及び/又は保護剤として比較的短い炭素鎖長の脂肪族アミン化合物を用いた場合に、形成された銀ナノ粒子をアルコール系溶剤及び脂肪族炭化水素系溶剤を特定割合で含む混合分散溶剤に分散することによって、上記目的が達成できることを見出した。
  本発明には、以下の発明が含まれる。
 (1)  銀ナノ粒子含有分散液の製造方法であって、
 脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン類と、銀化合物とを混合して、前記銀化合物及び前記アミン類を含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成し、
 前記銀ナノ粒子を、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含む分散溶剤に分散する、
ことを含む銀ナノ粒子含有分散液の製造方法。
 (2)  前記銀化合物は、シュウ酸銀である、上記(1) に記載の銀ナノ粒子含有分散液の製造方法。
 (3)  前記アルコール系溶剤は、直鎖状アルコール、分岐状アルコール、及び環状構造含有アルコールからなる群から選ばれる、上記(1) 又は(2) に記載の銀ナノ粒子含有分散液の製造方法。
 ・ 前記アルコール系溶剤は、炭素数4以上の脂肪族アルコールである、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (4)  前記環状構造含有アルコールは、六員環構造を含んでいる、上記(3)に記載の銀ナノ粒子含有分散液の製造方法。
 (5)  前記脂肪族炭化水素溶剤は、直鎖状炭化水素、分岐状炭化水素、及び環状構造含有炭化水素からなる群から選ばれる、上記(1) ~(4)のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (6)  前記環状構造含有炭化水素は、六員環構造を含んでいる、上記(1) ~(5)のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 ・ 前記アミン類は、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素モノアミン(B)を含んでいる、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 ・ 前記アミン類は、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素ジアミン(C)を含んでいる、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 ・ 前記アミン類は、前記脂肪族炭化水素モノアミン(A)、前記脂肪族炭化水素モノアミン(B)、及び前記脂肪族炭化水素ジアミン(C)を含んでいる、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 ・ 前記銀化合物及び前記アミン類を含む錯化合物の生成工程において、前記アミン類の他に、さらに、脂肪族カルボン酸を用いる、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (7)  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下のアルキルモノアミンである、上記(1) ~(6) のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (8)  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、上記(1) ~(7) のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (9) 前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、上記(1) ~(8)のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 (10) 前記銀化合物の銀原子1モルに対して、前記脂肪族アミン類を前記モノアミン(A)、前記モノアミン(B)及び前記ジアミン(C)の合計として1~50モル用いる、上記(1) ~(9)のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
シュウ酸銀分子は、銀原子2個を含んでいる。前記銀化合物がシュウ酸銀である場合には、シュウ酸銀1モルに対して、前記脂肪族アミン類を前記モノアミン(A)、前記モノアミン(B)及び前記ジアミン(C)の合計として2~100モル用いる、上記(1) ~(9)のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
 ・ 上記(1) ~(10)のうちのいずれかに記載の方法により製造される、銀ナノ粒子と分散溶剤とを含む銀ナノ粒子含有分散液。
 ・ 銀ナノ粒子と、前記銀ナノ粒子を分散する分散溶剤とを含む銀ナノ粒子含有分散液であって、
 前記銀ナノ粒子は、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン類と、銀化合物とを混合して、前記銀化合物及び前記アミン類を含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させることにより形成されるものであり、
 前記分散溶剤は、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含んでいる、銀ナノ粒子含有分散液。
 前記銀化合物は、シュウ酸銀であることが好ましい。
 (11) 保護剤によって表面が被覆された銀ナノ粒子と、前記銀ナノ粒子を分散する分散溶剤とを含む銀ナノ粒子含有分散液であって、
 前記保護剤は、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含んでおり、
 前記分散溶剤は、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含んでいる、銀ナノ粒子含有分散液。
 (12)  前記アルコール系溶剤は、直鎖状アルコール、分岐状アルコール、及び環状構造含有アルコールからなる群から選ばれる、上記(11)に記載の銀ナノ粒子含有分散液。
 ・ 前記アルコール系溶剤は、炭素数4以上の脂肪族アルコールである、上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液。
 (13)  前記環状構造含有アルコールは、六員環構造を含んでいる、上記(12)に記載の銀ナノ粒子含有分散液。
 (14)  前記脂肪族炭化水素溶剤は、直鎖状炭化水素、分岐状炭化水素、及び環状構造含有炭化水素からなる群から選ばれる、上記(11) ~(13)うちのいずれかに記載の銀ナノ粒子含有分散液。
 (15)  前記環状構造含有炭化水素は、六員環構造を含んでいる、上記(14) に記載の銀ナノ粒子含有分散液。
 (16)  前記銀ナノ粒子は、10重量%以上の割合で含まれている、上記(11) ~(15)のうちのいずれかに記載の銀ナノ粒子含有分散液。
 (17) 印刷用インクとして用いられる、上記(11) ~(16)のうちのいずれかに記載の銀ナノ粒子含有分散液。
 ・ 上記(11) ~(16)のうちのいずれかに記載の銀ナノ粒子含有分散液からなる印刷用銀インク。
 (18) インクジェット印刷用インクとして用いられる、上記(11) ~(16)のうちのいずれかに記載の銀ナノ粒子含有分散液。
 ・ 上記(11) ~(16)のうちのいずれかに記載の銀ナノ粒子含有分散液からなるインクジェット印刷用銀インク。
 ・ 基板と、
 前記基板上に、上記各項のうちのいずれかに記載の方法により製造される銀ナノ粒子含有分散液又は上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液が塗布され、形成された塗布層が焼成されてなる銀導電層と、
を含む銀導電材料。
銀導電層はパターン化されていることもある。
焼成は、200℃以下、例えば150℃以下、好ましくは120℃以下の温度で、2時間以下、例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下の時間で行われる。より具体的には、90℃~120℃程度、10分~15分間程度の条件、例えば、120℃、15分間の条件で行われる。前記焼成された銀導電層の表面粗さRaは、例えば0.03μm以下である。
 ・ 基板上に、上記各項のうちのいずれかに記載の方法により製造される銀ナノ粒子含有分散液又は上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液を塗布し、銀ナノ粒子含有塗布層を形成し、その後、前記塗布層を焼成して銀導電層を形成することを含む銀導電材料の製造方法。
銀ナノ粒子含有分散液をパターン塗布して、パターン化された銀導電層を形成しても良い。
焼成は、200℃以下、例えば150℃以下、好ましくは120℃以下の温度で、2時間以下、例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下の時間で行われる。より具体的には、90℃~120℃程度、10分~15分間程度の条件、例えば、120℃、15分間の条件で行われる。前記焼成された銀導電層の表面粗さRaは、例えば0.03μm以下である。
 ・ 基板上に、前記ナノ粒子含有分散液を塗布し、銀ナノ粒子含有塗布層を形成し、その後、前記塗布層を焼成して形成された銀導電層であって、前記焼成された銀導電層の表面粗さRaが0.03μm以下である銀導電層。焼成後に、平滑化処理を行うことなく、0.03μm以下の表面粗さRaが得られる。
 (19) 上記各項のうちのいずれかに記載の方法により製造される銀ナノ粒子含有分散液又は上記各項のうちのいずれかに記載の銀ナノ粒子含有分散液の塗布及び焼成により形成された銀導電層を有する電子デバイス。電子デバイスとしては、各種の配線基板、モジュール等が含まれる。
 ・ 金属ナノ粒子含有分散液の製造方法であって、
 脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン類と、金属化合物とを混合して、前記金属化合物及び前記アミン類を含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させて、金属ナノ粒子を形成し、
 前記金属ナノ粒子を、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含む分散溶剤に分散する、
ことを含む金属ナノ粒子含有分散液の製造方法。
 ・  金属ナノ粒子と、前記金属ナノ粒子を分散する分散溶剤とを含む金属ナノ粒子含有分散液であって、
 前記金属ナノ粒子は、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン類と、金属化合物とを混合して、前記金属化合物及び前記アミン類を含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させることにより形成されるものであり、
 前記分散溶剤は、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含んでいる、金属ナノ粒子含有分散液。
 ・ 保護剤によって表面が被覆された金属ナノ粒子と、前記金属ナノ粒子を分散する分散溶剤とを含む金属ナノ粒子含有分散液であって、
 前記保護剤は、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含んでおり、
 前記分散溶剤は、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含んでいる、金属ナノ粒子含有分散液。
 ・ 上記各項のうちのいずれかに記載の金属ナノ粒子含有分散液からなる印刷用金属インク。
 ・ 上記各項のうちのいずれかに記載の金属ナノ粒子含有分散液からなるインクジェット印刷用金属インク。
 本発明において、錯形成剤及び/又は保護剤として機能する脂肪族アミン化合物類として、炭素総数6以上の脂肪族炭化水素モノアミン(A)と、炭素総数5以下の脂肪族炭化水素モノアミン(B)及び炭素総数8以下の脂肪族炭化水素ジアミン(C)の少なくとも一方とを用いる。形成された銀ナノ粒子の表面は、これらの脂肪族アミン化合物類によって被覆されている。
 前記脂肪族炭化水素モノアミン(B)、及び前記脂肪族炭化水素ジアミン(C)は、炭素鎖長が短いため、200℃以下、例えば150℃以下、好ましくは120℃以下の低温での焼成の場合にも、2時間以下、例えば1時間以下、好ましくは30分間以下の短い時間で、銀粒子表面から除去されやすい。また、前記モノアミン(B)及び/又は前記ジアミン(C)の存在により、前記脂肪族炭化水素モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温での焼成の場合にも前記短い時間で、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
 これらの脂肪族アミン化合物類によって表面が被覆された銀ナノ粒子は、アルコール系溶剤及び脂肪族炭化水素系溶剤を特定割合で含む混合分散溶剤中に分散される。前記混合分散溶剤は、炭素鎖長が短い脂肪族アミン化合物類によって表面が被覆された銀ナノ粒子を非常に安定な状態で分散する。
 このようにして、本発明によれば、低温、短時間での焼成によって優れた導電性(低い抵抗値)が発現し、且つ銀ナノ粒子が分散溶剤中に非常に安定な状態で分散された銀ナノ粒子含有分散液(銀インク)、及びその製造方法が提供される。本発明の銀ナノ粒子含有分散液(銀インク)は、インクジェット用途に好適である。さらに、本発明によれば、表面平滑性に優れる銀焼成塗膜を形成し得る銀ナノ粒子含有分散液(銀インク)、及びその製造方法が提供される。
 また、本発明は、銀以外の金属を含む金属ナノ粒子含有分散液(金属インク)、及びその製造方法にも適用される。 
本発明によれば、PET及びポリプロピレンなどの耐熱性の低い各種プラスチック基板上にも、表面平滑性に優れる導電膜、導電配線を形成することができる。本発明の銀ナノ粒子含有分散液(銀インク)は、最近の種々の電子機器の素子用途に好適である。
実施例2で得られた銀ナノ粒子インクのインクジェット吐出状況(初期)を示す写真である。 実施例2で得られた銀ナノ粒子インクのインクジェット吐出状況(5分間欠放置後)を示す写真である。 実施例3で得られた銀ナノ粒子インクのインクジェット吐出状況(初期)を示す写真である。 実施例3で得られた銀ナノ粒子インクのインクジェット吐出状況(5分間欠放置後)を示す写真である。
 本発明において、まず、銀ナノ粒子を形成する。
 銀ナノ粒子の形成方法において、まず、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン混合液を調製する。次に、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミン類を含む錯化合物を生成させる。ただし、前記銀化合物と前記アミン類との混合は、必ずしも混合された状態のアミン類を用いて行う必要はない。前記銀化合物に対して、前記アミン類を順次添加してもよい。
 次に、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する。このように、本発明における銀ナノ粒子の形成方法は、アミン混合液の調製工程と、錯化合物の生成工程と、錯化合物の熱分解工程とを主として含む。
 本明細書において、「ナノ粒子」なる用語は、透過電子顕微鏡(TEM)により求められた一次粒子の大きさ(平均一次粒子径)が1000nm未満であることを意味している。また、粒子の大きさは、表面に存在(被覆)している保護剤(安定剤)を除外した大きさ(すなわち、銀自体の大きさ)を意図している。本発明において、銀ナノ粒子は、例えば0.5nm~100nm、好ましくは0.5nm~50nm、より好ましくは0.5nm~25nm、さらに好ましくは0.5nm~20nmの平均一次粒子径を有している。
 本発明において、銀化合物としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀などのカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀などのハロゲン化銀;硫酸銀、硝酸銀、炭酸銀等を用いることができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じにくいという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留しにくい点で有利である。
 銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、加熱により容易に分解して、目的とする金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いることができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。
 また、銀との複合物を得るために、上記の銀化合物と、上記の銀以外の他の金属化合物を併用してもよい。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。銀複合物は、銀と1又は2以上の他の金属からなるものであり、Au-Ag、Ag-Cu、Au-Ag-Cu、Au-Ag-Pd等が例示される。金属全体を基準として、銀が少なくとも20重量%、通常は少なくとも50重量%、例えば少なくとも80重量%を占める。
 本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物類として、前記炭素総数6以上の脂肪族炭化水素アミン(A)と、さらに、前記炭素総数5以下の脂肪族炭化水素アミン(B)、及び前記炭素総数8以下の脂肪族炭化水素ジアミン(C)の少なくとも一方とを用いる。
 本明細書において、確立された用語であるが、「脂肪族炭化水素モノアミン」とは、1~3個の1価の脂肪族炭化水素基と1つのアミノ基とからなる化合物である。「炭化水素基」とは、炭素と水素とのみからなる基である。ただし、前記脂肪族炭化水素アミン(A)、及び前記脂肪族炭化水素アミン(B)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。
 また、「脂肪族炭化水素ジアミン」とは、2価の脂肪族炭化水素基(アルキレン基)と、該脂肪族炭化水素基を介在した2つのアミノ基と、場合によっては、該アミノ基の水素原子を置換した脂肪族炭化水素基(アルキル基)とからなる化合物である。ただし、前記脂肪族炭化水素ジアミン(C)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。
 炭素総数6以上の脂肪族炭化水素モノアミン(A)は、その炭化水素鎖によって、生成する銀粒子表面への保護剤(安定化剤)としての高い機能を有する。
 前記脂肪族モノ炭化水素アミン(A)としては、第一級アミン、第二級アミン、及び第三級アミンが含まれる。第一級アミンとしては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとして、上記の直鎖脂肪族モノアミンの他に、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分枝脂肪族炭化水素アミンが挙げられる。また、シクロヘキシルアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(すなわち、アルケニルモノアミン)が挙げられる。
 第二級アミンとしては、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N-プロピル-N-ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンとしては、トリブチルアミン、トリヘキシルアミン等が挙げられる。
 これらの内でも、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数6以上とすることにより、アミノ基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6~12のアルキルモノアミンが好ましく用いられる。前記脂肪族炭化水素モノアミン(A)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 炭素総数5以下の脂肪族炭化水素モノアミン(B)は、炭素総数6以上の脂肪族モノアミン(A)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記脂肪族モノアミン(A)に比べると極性が高く銀化合物の銀への配位能が高く、そのため錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼成に効果がある。
 前記脂肪族炭化水素モノアミン(B)としては、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の炭素数2~5の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。また、N,N-ジメチルアミン、N,N-ジエチルアミン等のジアルキルモノアミンが挙げられる。
 これらの内でも、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記脂肪族炭化水素モノアミン(B)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 炭素総数8以下の脂肪族炭化水素ジアミン(C)は、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物の銀への配位能が高くなる。また、前記脂肪族炭化水素ジアミン(C)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。さらに、前記脂肪族ジアミン(C)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短い時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間焼成に効果がある。
 前記脂肪族炭化水素ジアミン(C)としては、特に限定されないが、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、1,4-ブタンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、1,5-ペンタンジアミン、1,5-ジアミノ-2-メチルペンタン、1,6-ヘキサンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素総数8以下のアルキレンジアミンであり、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。
 これらの内でも、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(-NH)であり、他の1つが第三級アミノ基(-NR)である炭素総数8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。
 RN-R-NH
 ここで、Rは、2価のアルキレン基を表し、R及びRは、同一又は異なっていてもよく、アルキル基を表し、ただし、R、R及びRの炭素数の総和は8以下である。該アルキレン基は、通常は酸素原子又は窒素原子等のヘテロ原子(炭素及び水素以外の原子)を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。また、該アルキル基は、通常は酸素原子又は窒素原子等のヘテロ原子を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。
 2つのアミノ基のうちの1つが第一級アミノ基であると、銀化合物の銀への配位能が高くなり、錯体形成に有利であり、他の1つが第三級アミノ基であると、第三級アミノ基は銀原子への配位能に乏しいため、形成される錯体が複雑なネットワーク構造となることが防止される。錯体が複雑なネットワーク構造となると、錯体の熱分解工程に高い温度が必要となることがある。さらに、これらの内でも、低温焼成においても短時間で銀粒子表面から除去され得るという観点から、炭素総数6以下のジアミンが好ましく、炭素総数5以下のジアミンがより好ましい。前記脂肪族炭化水素ジアミン(C)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、前記炭素総数6以上の脂肪族炭化水素モノアミン(A)と、前記炭素総数5以下の脂肪族炭化水素モノアミン(B)及び前記炭素総数8以下の脂肪族炭化水素ジアミン(C)のいずれか一方又は両方との使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A):5モル%~65モル%
前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の合計量:35モル%~95モル%
とするとよい。前記脂肪族モノアミン(A)の含有量を5モル%~65モル%とすることによって、該(A)成分の炭素鎖によって、生成する銀粒子表面の保護安定化機能が得られやすい。前記(A)成分の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記(A)成分の含有量が65モル%を超えると、保護安定化機能は十分であるが、低温焼成によって該(A)成分が除去されにくくなる。
 前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の両方とを用いる場合には、それらの使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%~65モル%
前記脂肪族モノアミン(B): 5モル%~70モル%
前記脂肪族ジアミン(C):  5モル%~50モル%
とするとよい。
 この場合には、前記(A)成分の含有量の下限については、10モル%以上が好ましく、20モル%以上がより好ましい。前記(A)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
 前記脂肪族モノアミン(B)の含有量を5モル%~70モル%とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼成に寄与でき、さらに、焼成時において前記脂肪族ジアミン(C)の銀粒子表面からの除去を助ける作用が得られやすい。前記(B)成分の含有量が5モル%未満では、錯体形成促進効果が弱かったり、あるいは、焼成時において前記(C)成分が銀粒子表面から除去されにくいことがある。一方、前記(B)成分の含有量が70モル%を超えると、錯体形成促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(B)成分の含有量の下限については、10モル%以上が好ましく、15モル%以上がより好ましい。前記(B)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
 前記脂肪族ジアミン(C)の含有量を5モル%~50モル%とすることによって、錯体形成促進効果及び錯体の熱分解促進効果が得られやすく、また、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。前記(C)成分の含有量が5モル%未満では、錯体形成促進効果及び錯体の熱分解促進効果が弱いことがある。一方、前記(C)成分の含有量が50モル%を超えると、錯体形成促進効果及び錯体の熱分解促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(C)成分の含有量の下限については、5モル%以上が好ましく、10モル%以上がより好ましい。前記(C)成分の含有量の上限については、45モル%以下が好ましく、40モル%以下がより好ましい。
 前記脂肪族モノアミン(A)と前記脂肪族モノアミン(B)とを用いる(前記脂肪族ジアミン(C)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(B)]を基準として、例えば、
前記脂肪族モノアミン(A):  5モル%~65モル%
前記脂肪族モノアミン(B): 35モル%~95モル%
とするとよい。
 前記脂肪族モノアミン(A)と前記脂肪族ジアミン(C)とを用いる(前記脂肪族モノアミン(B)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%~65モル%
前記脂肪族ジアミン(C): 35モル%~95モル%
とするとよい。
 以上の前記脂肪族モノアミン(A)、前記脂肪族モノアミン(B)及び/又は前記脂肪族ジアミン(C)の使用割合は、いずれも例示であり、種々の変更が可能である。
 本発明においては、銀化合物の銀への配位能が高い前記脂肪族モノアミン(B)、及び/又は前記脂肪族ジアミン(C)を用いるので、それらの使用割合に応じて、前記炭素総数6以上の脂肪族モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼成の場合にも、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
 本発明において、前記アミン類[(A)、(B)及び/又は(C)]の合計量としては、特に限定されないが、原料の前記銀化合物の銀原子1モルに対して、前記アミン成分の合計量[(A)+(B)+(C)]として1~50モル程度とするとよい。前記アミン成分の合計量[(A)+(B)+(C)]が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。一方、前記アミン成分の合計量[(A)+(B)+(C)]が、前記銀原子1モルに対して、50モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン成分の合計量を例えば2モル程度以上とするとよい。前記アミン成分の合計量を2~50モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン成分の合計量の下限については、前記銀化合物の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましい。なお、シュウ酸銀分子は、銀原子2個を含んでいる。
 本発明において、銀ナノ粒子の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(D)を用いてもよい。前記脂肪族カルボン酸(D)は、前記アミン類と共に用いるとよく、前記アミン混合液中に含ませて用いることができる。前記脂肪族カルボン酸(D)を用いることにより、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上することがある。
 前記脂肪族カルボン酸(D)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
 これらの内でも、炭素数8~18の飽和又は不飽和の脂肪族モノカルボンが好ましい。炭素数8以上とすることにより、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(D)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 前記脂肪族カルボン酸(D)は、用いる場合には、原料の前記銀化合物の銀原子1モルに対して、例えば0.05~10モル程度用いるとよく、好ましくは0.1~5モル、より好ましくは0.5~2モル用いるとよい。前記(D)成分の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記(D)成分の添加による分散状態での安定性向上効果は弱い。一方、前記(D)成分の量が10モルに達すると、分散状態での安定性向上効果が飽和するし、また、低温焼成での該(D)成分の除去がされにくくなる。ただし、脂肪族カルボン酸(D)を用いなくてもよい。
 本発明において、まず、前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のいずれか一方又は両方とを含むアミン混合液を調製する[アミン混合液の調製工程]。
 アミン混合液は、各アミン(A)、(B)及び/又は(C)成分、及び用いる場合には前記カルボン酸(D)成分を、所定割合で室温にて攪拌して調製することができる。
 次に、銀化合物と、各アミン(A)、(B)及び/又は(C)成分を含むアミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させる[錯化合物生成工程]。銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、目的とする金属を含む金属化合物を用いる。
 粉末状の銀化合物(あるいは金属化合物)と、所定量のアミン混合液とを混合する。この際の混合は、室温で攪拌しながら、あるいは銀化合物(あるいは金属化合物)へのアミン類の配位反応は発熱を伴うため室温以下に適宜冷却して攪拌しながら行うとよい。アミン類の過剰分が反応媒体の役割を果たす。生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化の終了を適宜の分光法等により検出することにより、錯化合物の生成反応の終点を検知することができる。また、シュウ酸銀が形成する錯化合物は一般に無色(目視では白色として観察される)であるが、このような場合においても、反応混合物の粘性の変化などの形態変化に基づいて、錯化合物の生成状態を検知することができる。このようにして、アミン類を主体とする媒体中に銀-アミン錯体(あるいは金属-アミン錯体)が得られる。
 次に、得られた錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する[錯化合物の熱分解工程]。銀以外の他の金属を含む金属化合物を用いた場合には、目的とする金属ナノ粒子が形成される。還元剤を用いることなく、銀ナノ粒子(金属ナノ粒子)が形成される。ただし、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 このような金属アミン錯体分解法において、一般に、アミン類は、金属化合物の分解により生じる原子状の金属が凝集して微粒子を形成する際の様式をコントロールすると共に、形成された金属微粒子の表面に被膜を形成することで微粒子相互間の再凝集を防止する役割を果たしている。すなわち、金属化合物とアミンの錯化合物を加熱することにより、金属原子に対するアミンの配位結合を維持したままで金属化合物が熱分解して原子状の金属を生成し、次に、アミンが配位した金属原子が凝集してアミン保護膜で被覆された金属ナノ粒子が形成されると考えられる。
 この際の熱分解は、錯化合物をアミン類を主体とする反応媒体中で攪拌しながら行うことが好ましい。熱分解は、被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が生成する温度範囲内において行うとよいが、銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から前記温度範囲内のなるべく低温で行うことが好ましい。シュウ酸銀の錯化合物の場合には、例えば80℃~120℃程度、好ましくは95℃~115℃程度、より具体的には100℃~110℃程度とすることができる。シュウ酸銀の錯化合物の場合には、概ね100℃程度の加熱により分解が起こると共に銀イオンが還元され、被覆銀ナノ粒子を得ることができる。なお、一般に、シュウ酸銀自体の熱分解は200℃程度で生じるのに対して、シュウ酸銀-アミン錯化合物を形成することで熱分解温度が100℃程度も低下する理由は明らかではないが、シュウ酸銀とアミンとの錯化合物を生成する際に、純粋なシュウ酸銀が形成している配位高分子構造が切断されているためと推察される。
 また、錯化合物の熱分解は、アルゴンなどの不活性ガス雰囲気内において行うことが好ましいが、大気中においても熱分解を行うことができる。
 錯化合物の熱分解により、青色光沢を呈する懸濁液となる。この懸濁液から、過剰のアミン等の除去操作、例えば、銀ナノ粒子(あるいは金属ナノ粒子)の沈降、適切な溶剤(水、又は有機溶剤)によるデカンテーション・洗浄操作を行うことによって、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が得られる[銀ナノ粒子の後処理工程]。洗浄操作の後、乾燥すれば、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)の粉体が得られる。しかしながら、湿潤状態の銀ナノ粒子を銀ナノ粒子含有インクの調製に供してもよい。
 デカンテーション・洗浄操作には、水、又は有機溶剤を用いる。有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; シクロヘキサン等の脂環式炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、ブタノール等のようなアルコール溶剤; アセトニトリル; 及びそれらの混合溶剤を用いるとよい。
 本発明の銀ナノ粒子の形成工程においては還元剤を用いなくてもよいので、還元剤に由来する副生成物がなく、反応系から被覆銀ナノ粒子の分離も簡単であり、高純度の被覆銀ナノ粒子が得られる。しかしながら、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 このようにして、保護剤によって表面が被覆された銀ナノ粒子が形成される。前記保護剤は、前記脂肪族モノアミン(A)を含み、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のうちのいずれか一方又は両方を含み、さらに用いた場合には前記カルボン酸(D)を含んでいる。保護剤中におけるそれらの含有割合は、前記アミン混合液中のそれらの使用割合と同等である。金属ナノ粒子についても同様である。
 次に、以上のようにして形成される銀ナノ粒子を、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含む分散溶剤(分散媒体)中に分散して、銀ナノ粒子含有分散液を調製する。
 本発明において、アルコール系分散溶剤は特に限定されることはなく、直鎖状アルコール、分岐状アルコール、及び環状構造含有アルコールから選ばれる脂肪族アルコールを用いることができる。例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、 sec-ブタノール、tert-ブタノール、n-ペンタノール、n-ヘキサノール、2-エチルヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、ウンデカノール、ドデカノール等のような直鎖状又は分岐状の脂肪族アルコール; シクロペンタノール、シクロヘキサノール、シクロヘキサンメタノール等のような環状の(あるいは、環状構造を含有している)脂肪族アルコールなどが挙げられる。アルコール系分散溶剤は、不飽和結合のない飽和化合物が適切である。
 アルコール系溶剤は、銀ナノ粒子を良好に分散する。アルコール系溶剤を分散溶剤の主体として用いると、銀ナノ粒子含有分散液を基板上に塗布・焼成した銀導電層の表面が平滑なものとなる。また、アルコール系溶剤は、同等の沸点を要する脂肪族炭化水素溶剤と比べると、常温(15~25℃)における蒸気圧が1オーダー程度小さい。これは、アルコールにおける水素結合によるものと考えられる。アルコール系溶剤の蒸気圧が小さいため、アルコール系溶剤を分散溶剤の主体として用いると、分散溶剤全体としての揮発性が抑制される。そのため、銀ナノ粒子含有分散液を、各種印刷用インクとして用いた場合、インクが不揮発性のものとなるため好ましい。
 例えば、シクロヘキサンメタノール(bp:181℃)の25℃での蒸気圧は0.034kPaであり、ほぼ同等の沸点を有するデカリン(bp:190℃)の25℃での蒸気圧は0.31kPaである。
 これらの内でも、溶剤の不揮発性を考慮すると、炭素数4以上の脂肪族アルコールが好ましく、n-ブタノール(bp:117℃)、イソブタノール(bp:108℃)、 sec-ブタノール(bp:99.5℃)、tert-ブタノール(bp:83℃)、n-ペンタノール(bp:138℃)、シクロペンタノール(bp:140℃)、n-ヘキサノール(bp:157.47℃)、2-エチルヘキサノール(bp:183.5℃)、シクロヘキサノール(bp:163℃)、シクロヘキサンメタノール(bp:181℃)、n-ヘプタノール(bp:176℃)、n-オクタノール(bp:195.28℃)、n-ノナノール(bp:215℃)、n-デカノール(bp:230℃)、ウンデカノール(bp:250℃)、ドデカノール(bp:261℃)等の炭素数4以上12以下の脂肪族アルコールが好ましい。さらに、炭素数6以上12以下の脂肪族アルコールが好ましい。さらに、六員環構造を含んでいる環状構造含有アルコールが好ましい。
 前記環状構造含有アルコールは、同炭素数の鎖状のアルコールに比べ、分子サイズがコンパクトであり、且つ沸点が高くなる。例えば、n-ヘキサノールのbp:157.47℃であるのに対して、シクロヘキサノールのbp:163℃である。n-ヘプタノールのbp:176.81℃であるのに対して、シクロヘキサンメタノールのbp:181℃である。
 前記環状構造含有アルコールを用いると、炭素鎖長の短いアミン保護剤によって表面が被覆された銀ナノ粒子をより良好に分散できる。前記環状構造含有アルコールは、鎖状炭化水素に比べ立体的にコンパクトであるため、凝集した粒子の間隙に入り込みやすく、粒子の凝集をほぐす作用があるためと推測される。前記アルコールとして、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、脂肪族炭化水素系分散溶剤は非極性であり特に限定されることはなく、直鎖状炭化水素、分岐状炭化水素、及び環状構造含有炭化水素(脂環式炭化水素)から選ばれる脂肪族炭化水素を用いることができる。例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、n-トリデカン、n-テトラデカン等、これらの分岐状異性体等の脂肪族炭化水素が挙げられる。炭素数5~14程度のものを用いるとよい。脂肪族炭化水素系溶剤は、銀ナノ粒子を良好に分散する。
 「脂環式炭化水素」は、確立された用語であるが、芳香族化合物以外の炭素環式化合物であって、炭素と水素のみからなる化合物である。脂環式炭化水素には、炭素環が飽和構造のシクロアルカン、炭素環内に不飽和結合を有するシクロアルケン、シクロアルキンが含まれ、また、単環構造、又は多環構造(二環構造、三環構造など)の化合物が含まれる。本発明において、脂環式炭化水素は、常温(25℃)にて液体のものであり、例えば、六員環~十二員環構造を含んでいる化合物であるが、六員環構造を含んでいる化合物が好ましい。
 前記脂環式炭化水素として、六員環構造を含んでいる化合物としては、シクロヘキサン類、テルペン系六員環化合物、デカリン等が挙げられる。
 シクロヘキサン類としては、シクロヘキサン(沸点bp:80.7℃); メチルシクロヘキサン(bp:100.4℃)、エチルシクロヘキサン(bp:132℃)、n-プロピルシクロヘキサン(bp:157℃)、イソプロピルシクロヘキサン(bp:151℃)、n-ブチルシクロヘキサン(bp:180℃)、イソブチルシクロヘキサン(bp:169℃)、 sec-ブチルシクロヘキサン(bp:179℃)、tert-ブチルシクロヘキサン(bp:171℃)等の炭素数1~6の低級アルキル基で置換されたシクロヘキサン; ビシクロヘキシル(bp:227℃)等が例示される。
 テルペン系六員環化合物としては、α-ピネン(bp:155~156℃)、β-ピネン(bp:164~166℃)、リモネン(bp:175.5~176℃,763mmHg℃)、α-テルピネン(bp:173.5~174.8℃,755mmHg)、β-テルピネン(bp:173~174℃)、γ-テルピネン(bp:183℃)、テルピノレン(bp:186℃)等の単環式モノテルペンが例示される。
 前記脂環式炭化水素として、六員環構造以外のものとしては、シクロヘプタン(bp:118~120℃)、シクロヘプテン(bp:115℃)、シクロオクタン(bp:148~149℃,749mmHg)、シクロオクテン(bp:145~146℃)、シクロデカン(bp:201℃)、シクロドデセン(bp:241℃)等が挙げられる。
 また、シクロドデカンは、常温で固体(融点63℃)であるが、常温にて液体の上記例示の脂環式炭化水素に溶解して用いることは可能である。
 多環構造のものとしては、デカリン[(cis体,bp:195.7℃;trans体185.5℃]、ビシクロ[2,2,2]オクタン(bp:169.5~170.5mmHg)等が挙げられる。
 これらのうちで、n-プロピルシクロヘキサン、イソプロピルシクロヘキサン、n-ブチルシクロヘキサン等の炭素数3~4のアルキル基で置換されたシクロヘキサン類、リモネン、テルピネン等のテルペン系化合物、デカリン等の多環構造化合物等が好ましい。
 前記脂環式炭化水素は、同炭素数の鎖状の炭化水素に比べ、分子サイズがコンパクトであり、且つ沸点が高くなる。例えば、n-ヘキサンのbp:69℃であるのに対して、シクロヘキサンのbp:80.7℃である。因みに、1-ヘキサノールのbp:157.47℃。n-オクタンのbp:125.7℃であるのに対して、シクロオクタンのbp:148~149℃(749mmHg)である。因みに、1-オクタノールのbp:195.28℃。
 脂肪族炭化水素系溶剤として脂環式炭化水素を用いると、炭素鎖長の短いアミン保護剤によって表面が被覆された銀ナノ粒子をより良好に分散できる。脂環式炭化水素は、鎖状炭化水素に比べ立体的にコンパクトであるため、凝集した粒子の間隙に入り込みやすく、粒子の凝集をほぐす作用があるためと推測される。前記脂肪族炭化水素として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、混合分散溶剤は、アルコール系溶剤及び脂肪族炭化水素系溶剤を含む。アルコール系溶剤及び/又は脂肪族炭化水素系溶剤として、比較的高い沸点を有しているものを用いると、銀ナノ粒子含有分散液インクの使用環境温度(例えば10~30℃、あるいは常温(15~25℃)付近において揮発しにくい。従って、銀ナノ粒子含有インクをインクジェット印刷に用いた場合においても、インクジェットヘッドの目詰まりを起こすことがない。分散溶剤の揮発性が高いと、銀ナノ粒子含有インクの使用環境においてインクの濃度が徐々に高くなり、インクジェットヘッドの目詰まりを起こしやすい。また、インクジェット印刷以外の他の印刷法においても、分散溶剤の揮発性が高いことは好ましくない。
 このような観点から、本発明において、アルコール系溶剤として環状構造含有アルコールを用いるか、及び/又は脂肪族炭化水素系溶剤として脂環式炭化水素を用いることが好ましい。ただし、あまり沸点の高い溶剤を用いて揮発性の抑制を行うと、焼成の温度を高くしないと導電性能が得られにくくなる。この点に注意を要する。
 上述したように、アルコール系溶剤は、同等の沸点を要する脂肪族炭化水素溶剤と比べると、常温における蒸気圧が1オーダー程度小さく、分散溶剤全体としての揮発性が抑制される。そのため、アルコール系溶剤は、分散溶剤全体の揮発性の抑制と、焼成の低温化に寄与できる。
 以上のことを考慮して、本発明において、混合分散溶剤は、
アルコール系溶剤:50~90重量%、及び
脂肪族炭化水素系溶剤:10~50重量%を含む。
アルコール系溶剤の量を50重量%以上とすることにより、アルコール系溶剤の焼成後の銀導電層の表面平滑性への効果が得られやすく、また、同等の沸点を要する脂肪族炭化水素溶剤と比べた場合の揮発性抑制への効果が得られやすい。一方、アルコール系溶剤の量の上限については、90重量%以下とする。アルコール系溶剤の量が90重量%を超えると、脂肪族炭化水素系溶剤の量が10重量%未満となり、脂肪族炭化水素系溶剤の分散性向上の効果が得られにくい。用いるアルコール系溶剤及び脂肪族炭化水素系溶剤の種類にもよるが、混合分散溶剤は、
アルコール系溶剤60~90重量%、及び
脂肪族炭化水素系溶剤10~40重量%を含むことが好ましい。
これら両者で100重量%とするか、あるいは、本発明の目的を損なわない程度の量で、残部として他の有機溶剤をさらに併用してもよい。例えば、トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤が挙げられる。
 上記銀ナノ粒子の後処理工程で得られた乾燥状態あるいは湿潤状態の被覆銀ナノ粒子の粉体と、上述した分散溶剤とを混合攪拌することにより、懸濁状態の銀ナノ粒子を含有する分散液を調製することができる。前記銀ナノ粒子は、使用目的にもよるが、銀ナノ粒子含有分散液中に例えば10重量%以上、あるいは25重量%以上、好ましくは30重量%以上の割合で含まれるようにするとよい。前記銀ナノ粒子の含有量の上限としては、80重量%以下が目安である。被覆銀ナノ粒子の粉体と分散溶剤との混合・分散は、1回で行っても良いし、数回にて行っても良い。
 本発明により得られた銀ナノ粒子含有分散液(インク)は、安定性に優れている。前記銀インクは、例えば、50重量%の銀濃度において、1か月間以上の期間において冷蔵状態(例えば、5℃以下)で、凝集・融着を起こすことなく安定である。
 調製された銀ナノ粒子含有分散液を基板上に塗布し、その後、焼成する。
 塗布は、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷などの公知の方法により行うことができる。本発明による銀ナノ粒子含有インクにおいて、混合分散溶剤として、銀ナノインクの使用環境温度(例えば、常温(25℃)付近において揮発しにくい溶剤を選択すれば、インクジェット印刷用途にも好適である。印刷技術を用いると、パターン化された銀インク塗布層が得られ、焼成により、パターン化された銀導電層が得られる。
 焼成は、200℃以下、例えば室温(25℃)以上150℃以下、好ましくは室温(25℃)以上120℃以下の温度で行うことができる。しかしながら、短い時間での焼成によって、銀の焼結を完了させるためには、60℃以上200℃以下、例えば80℃以上150℃以下、好ましくは90℃)以上120℃以下の温度で行うことがよい。焼成時間は、銀インクの塗布量、焼成温度などを考慮して、適宜定めるとよく、例えば数時間(例えば3時間、あるいは2時間)以内、好ましくは1時間以内、より好ましくは30分間以内、さらに好ましくは10分間~20分間とするとよい。
 銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値)が発現する。低い抵抗値(例えば10μΩcm以下、範囲としては3~10μΩcm)を有する銀導電層が形成される。バルク銀の抵抗値は1.6μΩcmである。
 低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間での焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
 さらに、本発明による銀ナノ粒子含有インクは、アルコール系溶剤及び脂肪族炭化水素系溶剤を特定割合で含む混合分散溶剤を用いているので、非常に良好な分散状態が得られる。そのため、塗布・焼成後の銀導電層は、表面平滑性に優れている。前記焼成された銀導電層の中心線表面粗さRaは、例えば0.03μm以下であり、好ましくは0.025μm以下である。表面平滑化のための処理(例えば、ブレス、研磨)を行うことなく、例えば0.03μm以下のRaが得られる。
 本発明により得られる銀導電材料は、各種の電子デバイス、例えば、電磁波制御材、回路基板、アンテナ、放熱板、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等に適用することができる。とりわけ、表面平滑性が要求される電子素材に有効であり、例えば、液晶ディスプレイにおける薄膜トランジスタ(TFT)のゲート電極として有効である。
 銀導電層の厚みは、目的とする用途に応じて適宜定めるとよい。特に限定されることなく、例えば5nm~10μm、好ましくは100nm~5μm、より好ましくは300nm~2μmの範囲から選択するとよい。
 以上、主として銀ナノ粒子を含有するインクを中心に説明したが、本発明によれば、銀以外の金属を含む金属ナノ粒子を含有するインクにも適用される。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[銀焼成膜の比抵抗値]
 得られた銀焼成膜について、4端子法(ロレスタGP MCP-T610)を用いて測定した。この装置の測定範囲限界は、10Ωcmである。
[銀焼成膜の表面粗さRa]
 得られた銀焼成膜について、サーフコーダET-4000(小坂研究所社製)を用いて、JIS-B-0601に基づいて中心線表面粗さRa(μm)を測定した。
Raの値が0.03μm以下であれば、一般に鏡面状態の表面であり、表面平滑性に優れている。Raの下限値は特に限定されないが、焼成後に得られる値としては、0.001μm程度である。
 以下の試薬を各実施例及び比較例で用いた。
N,N-ジメチル-1,3-プロパンジアミン(N,N-ジメチルアミノプロピルアミン,MW:102.18):東京化成社製試薬
n-ブチルアミン(MW:73.14):東京化成社製試薬
n-ヘキシルアミン(MW:101.19):東京化成社製試薬
n-オクチルアミン(MW:129.25):東京化成社製試薬
n-ブタノール:和光純薬社製試薬特級
n-オクタン:和光純薬社製試薬特級
テトラデカン:和光純薬社製試薬特級
デカリン:東京化成社製試薬
シクロヘキサンメタノール:東京化成社製試薬
シュウ酸銀(MW:303.78):硝酸銀(和光純薬社製)とシュウ酸二水和物(和光純薬社製)とから合成したもの
[実施例1]
(銀ナノ粒子の調製)
 100mLフラスコにシュウ酸銀3.0g(9.9mmol)を仕込み、これに、4.5gのn-ブタノールを添加し、シュウ酸銀のn-ブタノールスラリーを調製した。このスラリーに、30℃で、n-ブチルアミン8.67g(118.5mmol)、n-ヘキシルアミン6.00g(59.3mmol)、n-オクチルアミン5.74g(44.4mmol)、ドデシルアミン2.75g(4.8mmol)、及びN,N-ジメチル-1,3-プロパンジアミン6.05g(59.3mmol)のアミン混合液を滴下した。30℃で2時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させた。錯形成後に、100℃にて加熱して、シュウ酸銀-アミン錯体を熱分解させて、濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を得た。
 冷却後、得られた懸濁液にメタノール30gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール9gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。
(銀ナノインクの調製と焼成)
 次に、湿った銀ナノ粒子に、分散溶剤としてn-ブタノール/n-オクタン混合溶剤(重量比=70/30)を銀濃度40wt%となるように加えて攪拌し、銀ナノ粒子分散液を調製した。
 この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.6μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、5.4μΩcmと良好な導電性を示した。また、得られた銀焼成膜の表面粗さを測定したところ、Ra=0.002μmであり、平滑な表面が得られた。
[実施例2]
 銀ナノインクの調製において、分散溶剤としてシクロヘキサンメタノール/デカリン混合溶剤(重量比=80/20)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
 この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.8μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、7.0μΩcmと良好な導電性を示した。また、得られた銀焼成膜の表面粗さを測定したところ、Ra=0.003μmであり、平滑な表面が得られた。
 さらに、この銀ナノ粒子分散液をインクジェット印刷(コニカミノルタ社製インクジェットヘッドKM-512MH)に用いて、インクジェット吐出評価を行った。銀ナノ粒子分散液の初期吐出に関しては、全てのヘッドから良好に吐出していることを確認した(図1:初期吐出状況の写真)。すなわち、図1は、インクジェットヘッドからのインクの吐出の様子を側方から捉えた写真であり、写真の左右方向に等間隔に配置された各ヘッドから、インク液滴が良好に吐出されていることが分かる。間欠放置後の再吐出に関しては、初期吐出から5分間吐出を止めて再度吐出を再開したところ、ノズルが詰まることはなく、全てのヘッドから良好に吐出していることを確認した(図2:5分間欠放置後の吐出状況の写真)。
[実施例3]
 銀ナノインクの調製において、分散溶剤としてシクロヘキサンメタノール/テトラデカン混合溶剤(重量比=70/30)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
 この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.8μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、9.0μΩcmと良好な導電性を示した。また、得られた銀焼成膜の表面粗さを測定したところ、Ra=0.021μmであり、平滑な表面が得られた。
 さらに、この銀ナノ粒子分散液をインクジェット印刷(コニカミノルタ社製インクジェットヘッドKM-512MH)に用いて、インクジェット吐出評価を行った。銀ナノ粒子分散液の初期吐出に関しては、全てのヘッドから良好に吐出していることを確認した(図3:初期吐出状況の写真)。間欠放置後の再吐出に関しては、初期吐出から5分間吐出を止めて再度吐出を再開したところ、ノズルが詰まることはなく、全てのヘッドから良好に吐出していることを確認した(図4:5分間欠放置後の吐出状況の写真)。
[比較例1]
 銀ナノインクの調製において、分散溶剤としてn-ブタノール/n-オクタン混合溶剤(重量比=30/70)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.5μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、4.7μΩcmと良好な導電性を示した。また、得られた銀焼成膜の表面粗さを測定したところ、Ra=0.146μmであった。銀焼成膜の表面は白くなっており、鏡面ではなかった。

Claims (15)

  1.  銀ナノ粒子含有分散液の製造方法であって、
     脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むアミン類と、銀化合物とを混合して、前記銀化合物及び前記アミン類を含む錯化合物を生成させ、
     前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成し、
     前記銀ナノ粒子を、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含む分散溶剤に分散する、
    ことを含む銀ナノ粒子含有分散液の製造方法。
  2.  前記銀化合物は、シュウ酸銀である、請求項1に記載の銀ナノ粒子含有分散液の製造方法。
  3.  前記アルコール系溶剤は、直鎖状アルコール、分岐状アルコール、及び環状構造含有アルコールからなる群から選ばれる、請求項1又は2に記載の銀ナノ粒子含有分散液の製造方法。
  4.  前記環状構造含有アルコールは、六員環構造を含んでいる、請求項3に記載の銀ナノ粒子含有分散液の製造方法。
  5.  前記脂肪族炭化水素溶剤は、直鎖状炭化水素、分岐状炭化水素、及び環状構造含有炭化水素からなる群から選ばれる、請求項1~4のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
  6.  前記環状構造含有炭化水素は、六員環構造を含んでいる、請求項5に記載の銀ナノ粒子含有分散液の製造方法。
  7.  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下のアルキルモノアミンである、請求項1~6のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
  8.  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、請求項1~7のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
  9.  前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、請求項1~8のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
  10.  前記銀化合物の銀原子1モルに対して、前記脂肪族アミン類を前記モノアミン(A)、前記モノアミン(B)及び前記ジアミン(C)の合計として1~50モル用いる、請求項1~9のうちのいずれかに記載の銀ナノ粒子含有分散液の製造方法。
  11.  保護剤によって表面が被覆された銀ナノ粒子と、前記銀ナノ粒子を分散する分散溶剤とを含む銀ナノ粒子含有分散液であって、
     前記保護剤は、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含んでおり、
     前記分散溶剤は、アルコール系溶剤50~90重量%及び脂肪族炭化水素系溶剤10~50重量%を含んでいる、銀ナノ粒子含有分散液。
  12.  前記銀ナノ粒子は、10重量%以上の割合で含まれている、請求項11に記載の銀ナノ粒子含有分散液。
  13.  印刷用インクとして用いられる、請求項11又は12に記載の銀ナノ粒子含有分散液。
  14.  インクジェット印刷用インクとして用いられる、請求項11又は12に記載の銀ナノ粒子含有分散液。
  15.  請求項11~14のうちのいずれかに記載の銀ナノ粒子含有分散液の塗布及び焼成により形成された銀導電層を有する電子デバイス。
PCT/JP2014/076270 2013-10-24 2014-10-01 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液 WO2015060084A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/030,816 US11091663B2 (en) 2013-10-24 2014-10-01 Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
EP18163367.8A EP3369501B1 (en) 2013-10-24 2014-10-01 Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
KR1020167010156A KR20160073972A (ko) 2013-10-24 2014-10-01 은 나노 입자 함유 분산액의 제조 방법 및 은 나노 입자 함유 분산액
KR1020177023246A KR102100289B1 (ko) 2013-10-24 2014-10-01 은 나노 입자 함유 분산액의 제조 방법 및 은 나노 입자 함유 분산액
EP14855617.8A EP3061547B1 (en) 2013-10-24 2014-10-01 Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
CN201480057633.4A CN105658358A (zh) 2013-10-24 2014-10-01 含有银纳米粒子的分散液的制造方法及含有银纳米粒子的分散液
JP2015543772A JP5972479B2 (ja) 2013-10-24 2014-10-01 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013221420 2013-10-24
JP2013-221420 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060084A1 true WO2015060084A1 (ja) 2015-04-30

Family

ID=52992687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076270 WO2015060084A1 (ja) 2013-10-24 2014-10-01 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液

Country Status (7)

Country Link
US (1) US11091663B2 (ja)
EP (2) EP3369501B1 (ja)
JP (1) JP5972479B2 (ja)
KR (2) KR20160073972A (ja)
CN (2) CN111545770A (ja)
TW (1) TWI613678B (ja)
WO (1) WO2015060084A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088734A (ja) * 2015-11-10 2017-05-25 株式会社アルバック 導電性金属インク
JP2017119891A (ja) * 2015-12-28 2017-07-06 国立大学法人山形大学 シュウ酸塩の分解方法、及びシュウ酸塩の分解のための錯化合物
JP2017160319A (ja) * 2016-03-09 2017-09-14 株式会社アルバック 凸版反転印刷用導電性金属インク
WO2019111795A1 (ja) 2017-12-07 2019-06-13 株式会社ダイセル インクジェット印刷用インク
JP2019102376A (ja) * 2017-12-07 2019-06-24 株式会社ダイセル インクジェット印刷用インク
JP2020015310A (ja) * 2018-07-24 2020-01-30 ゼロックス コーポレイションXerox Corporation 導電性三次元物品
CN114101656A (zh) * 2021-12-07 2022-03-01 浙江大学 一种具有万能分散特性银纳米颗粒的制备方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263649A1 (en) 2016-06-27 2018-01-03 Viavi Solutions Inc. Optical devices
KR102052720B1 (ko) 2016-06-27 2019-12-05 비아비 솔루션즈 아이엔씨. 고채도 플레이크
EP3584288B1 (en) 2016-06-27 2021-08-18 Viavi Solutions Inc. Magnetic articles
TWI623946B (zh) * 2016-07-05 2018-05-11 國立成功大學 奈米銀漿料之製備方法
EP3687716A1 (en) * 2017-09-25 2020-08-05 Eastman Kodak Company Method of making silver-containing dispersions with nitrogenous bases
CN108414492A (zh) * 2017-12-30 2018-08-17 厦门稀土材料研究所 利用自组装三维纳米结构为基底进行sers定量分析的方法
US20210324218A1 (en) * 2018-08-30 2021-10-21 Tanaka Kikinzoku Kogyo K.K. Silver ink for low-temperature calcination
CN114121339B (zh) * 2022-01-28 2022-05-31 西安宏星电子浆料科技股份有限公司 一种与tco透明导电膜层的接触电阻率低的导电银胶组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2012052225A (ja) * 2010-08-03 2012-03-15 Bando Chemical Industries Ltd コロイド分散液
JP2012162767A (ja) 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法
WO2013105530A1 (ja) * 2012-01-11 2013-07-18 国立大学法人山形大学 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2013142173A (ja) 2012-01-11 2013-07-22 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
WO2014021270A1 (ja) * 2012-08-02 2014-02-06 株式会社ダイセル 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724789B1 (en) * 2004-03-10 2010-12-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
US20080241262A1 (en) 2004-03-29 2008-10-02 The University Of Houston System Nanoshells and Discrete Polymer-Coated Nanoshells, Methods For Making and Using Same
US7270694B2 (en) * 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
JP4799881B2 (ja) * 2004-12-27 2011-10-26 三井金属鉱業株式会社 導電性インク
JP4660780B2 (ja) * 2005-03-01 2011-03-30 Dowaエレクトロニクス株式会社 銀粒子粉末の製造方法
EP2052043B1 (en) * 2006-08-07 2016-10-12 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
KR20090012605A (ko) * 2007-07-30 2009-02-04 삼성전기주식회사 금속 나노입자의 제조방법
US20090148600A1 (en) * 2007-12-05 2009-06-11 Xerox Corporation Metal Nanoparticles Stabilized With a Carboxylic Acid-Organoamine Complex
US20090214764A1 (en) * 2008-02-26 2009-08-27 Xerox Corporation Metal nanoparticles stabilized with a bident amine
US8298314B2 (en) * 2008-08-18 2012-10-30 Xerox Corporation Silver nanoparticles and process for producing same
US8361350B2 (en) * 2008-12-10 2013-01-29 Xerox Corporation Silver nanoparticle ink composition
TWI547326B (zh) * 2012-02-08 2016-09-01 Jx Nippon Mining & Metals Corp A surface-treated metal powder, and a method for producing the same
US9105373B2 (en) * 2013-06-19 2015-08-11 Xerox Corporation Safe method for manufacturing silver nanoparticle inks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2012052225A (ja) * 2010-08-03 2012-03-15 Bando Chemical Industries Ltd コロイド分散液
JP2012162767A (ja) 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法
WO2013105530A1 (ja) * 2012-01-11 2013-07-18 国立大学法人山形大学 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2013142173A (ja) 2012-01-11 2013-07-22 Daicel Corp 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP2013142172A (ja) 2012-01-11 2013-07-22 Yamagata Univ 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
WO2014021270A1 (ja) * 2012-08-02 2014-02-06 株式会社ダイセル 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3061547A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088734A (ja) * 2015-11-10 2017-05-25 株式会社アルバック 導電性金属インク
JP2017119891A (ja) * 2015-12-28 2017-07-06 国立大学法人山形大学 シュウ酸塩の分解方法、及びシュウ酸塩の分解のための錯化合物
JP2017160319A (ja) * 2016-03-09 2017-09-14 株式会社アルバック 凸版反転印刷用導電性金属インク
WO2019111795A1 (ja) 2017-12-07 2019-06-13 株式会社ダイセル インクジェット印刷用インク
JP2019102376A (ja) * 2017-12-07 2019-06-24 株式会社ダイセル インクジェット印刷用インク
KR20200096270A (ko) 2017-12-07 2020-08-11 주식회사 다이셀 잉크젯 인쇄용 잉크
JP7029282B2 (ja) 2017-12-07 2022-03-03 株式会社ダイセル インクジェット印刷用インク
JP2020015310A (ja) * 2018-07-24 2020-01-30 ゼロックス コーポレイションXerox Corporation 導電性三次元物品
KR20200011357A (ko) * 2018-07-24 2020-02-03 제록스 코포레이션 전도성 3차원 용품
JP7346101B2 (ja) 2018-07-24 2023-09-19 ゼロックス コーポレイション 導電性三次元物品
KR102582995B1 (ko) 2018-07-24 2023-09-27 제록스 코포레이션 전도성 3차원 용품
CN114101656A (zh) * 2021-12-07 2022-03-01 浙江大学 一种具有万能分散特性银纳米颗粒的制备方法及应用

Also Published As

Publication number Publication date
JP5972479B2 (ja) 2016-08-17
KR20160073972A (ko) 2016-06-27
EP3061547A4 (en) 2017-05-10
TW201523641A (zh) 2015-06-16
US20160264810A1 (en) 2016-09-15
CN105658358A (zh) 2016-06-08
US11091663B2 (en) 2021-08-17
JPWO2015060084A1 (ja) 2017-03-09
KR20170100046A (ko) 2017-09-01
KR102100289B1 (ko) 2020-04-13
EP3061547B1 (en) 2019-12-04
TWI613678B (zh) 2018-02-01
CN111545770A (zh) 2020-08-18
EP3369501A1 (en) 2018-09-05
EP3061547A1 (en) 2016-08-31
EP3369501B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP5972479B2 (ja) 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液
JP5923608B2 (ja) 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク
JP6037494B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6001861B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP5986636B2 (ja) 銀ナノ粒子の製造方法、銀塗料組成物の製造方法および銀導電材料の製造方法
JP6026565B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6151893B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6370936B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6378880B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543772

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014855617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014855617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15030816

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE