WO2015056758A1 - 樹脂組成物、およびゴム組成物 - Google Patents

樹脂組成物、およびゴム組成物 Download PDF

Info

Publication number
WO2015056758A1
WO2015056758A1 PCT/JP2014/077608 JP2014077608W WO2015056758A1 WO 2015056758 A1 WO2015056758 A1 WO 2015056758A1 JP 2014077608 W JP2014077608 W JP 2014077608W WO 2015056758 A1 WO2015056758 A1 WO 2015056758A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin derivative
modified
oil
modified lignin
rubber
Prior art date
Application number
PCT/JP2014/077608
Other languages
English (en)
French (fr)
Inventor
村井威俊
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to ES14853796.2T priority Critical patent/ES2677554T3/es
Priority to JP2015542665A priority patent/JP6555531B2/ja
Priority to EP14853796.2A priority patent/EP3059274B1/en
Publication of WO2015056758A1 publication Critical patent/WO2015056758A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin

Definitions

  • the present invention relates to a resin composition using lignin derivatives and a rubber composition using them.
  • wood-based waste materials such as bark, thinned wood, and building waste have been disposed of so far.
  • protection of the global environment is becoming an important issue, and from this point of view, the reuse and recycling of wood-based waste materials are being considered.
  • Main components of general wood are cellulose derivatives, hemicellulose derivatives and lignin derivatives.
  • lignin contained at a ratio of about 30% has a structure containing abundant aromatic rings, resin compositions and tires used as resin raw materials are disclosed (for example, Patent Document 1). 2).
  • the lignin derivative has a highly polar structure rich in phenolic hydroxyl groups and alcoholic hydroxyl groups, compositions and tires used as tackifiers and antioxidants have been disclosed (for example, And Patent Document 3), and the performance as a reinforcing material of the rubber composition is also expected.
  • the lignin derivative when a lignin derivative is dissolved in a black liquor containing sodium hydroxide and sodium sulfide, and the lignin derivative is recovered from the black liquor in which the lignin derivative is dissolved, the lignin derivative may not be suitable for molding because of poor heat melting properties. is there. Moreover, the mechanical strength of the rubber composition at the time of mix
  • phenolization biomass resin for example, patent document 4 modified
  • plant-derived degree is low since it contains many phenols
  • heat resistance and mechanical strength of lignin may be lowered, and there is no description about the rubber reinforcing effect.
  • One of the objects of the present invention is to provide a lignin modified with a plant-derived compound, thereby providing a modified lignin having excellent curability and a high rubber reinforcing effect. Furthermore, the object is to provide a rubber composition that improves molding characteristics or elastic modulus while maintaining a high degree of plant origin, and is excellent in moldability and mechanical strength while maintaining a high degree of plant origin. Another object of the present invention is to provide a resin composition.
  • the present invention is as follows. (1) A modified lignin derivative, wherein the lignin derivative is modified with a plant-derived compound. (2) The modified lignin derivative according to (1), wherein the plant-derived compound contains one or more selected from the group consisting of a substance containing a phenol structure, a substance containing rosin acid, and a substance having an unsaturated bond. . (3) The phenol structure-containing substance contains at least one selected from cashew oil, urushi extract, cardanol, curdall, methyl curdall, anacardic acid, urushiol, laccol, thiol, and purified products thereof. The modified lignin derivative according to (2).
  • the lignin derivative contains one having a polystyrene-equivalent number average molecular weight of 200 to 5000 measured by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • the modified lignin derivative as described.
  • a resin composition comprising the modified lignin derivative according to any one of (1) to (10).
  • (12) A rubber composition comprising the modified lignin derivative according to any one of (1) to (10) and a diene rubber.
  • a cured product obtained by curing the rubber composition according to any one of (12) to (14).
  • (16) A molding material comprising the modified lignin derivative according to any one of (1) to (10).
  • a lignin modified with a plant-derived compound was developed, whereby a modified lignin having excellent curability and a high rubber reinforcing effect could be provided. Furthermore, it became possible to provide a resin composition excellent in moldability and mechanical strength, or a rubber composition that improves the elastic modulus while maintaining a high degree of plant origin.
  • the modified lignin derivative of the present invention is characterized in that the lignin derivative is modified with a plant-derived compound, and the addition (introduction) of the phenol structure causes the lignin derivative and the phenol-containing compound to be bound by a chemical bond. Is.
  • Lignin together with cellulose and hemicellulose, is a major component that forms the skeleton of plants that exist as lignocellulose and is one of the most abundant substances in nature.
  • lignin derivatives are compounds having a phenol derivative as a unit structure, and this unit structure has chemically and biologically stable carbon-carbon bonds and carbon-oxygen-carbon bonds, so that it is chemically deteriorated. And is less susceptible to biological degradation. For this reason, a lignin derivative is useful as a resin raw material.
  • the lignin derivative used in the present invention is obtained by decomposing biomass.
  • Biomass is a plant or a processed product of a plant, and these are formed by capturing and fixing carbon dioxide in the atmosphere in the process of photosynthesis, and thus contribute to the suppression of the increase in carbon dioxide in the atmosphere. For this reason, it can contribute to suppression of global warming by utilizing biomass industrially.
  • Examples of the treatment method for decomposing biomass used in the present invention to obtain a lignin derivative include a method of treating a plant or a processed plant product with a chemical, a method of hydrolyzing, a steam explosion method, a supercritical water treatment method, Examples include a critical water treatment method, a mechanical treatment method, a cresol sulfate method, a pulp production method, and a by-product of a biofuel production method. From the viewpoint of environmental load, a steam explosion method, a supercritical water treatment method, a subcritical water treatment method, and a mechanical treatment method are preferred. From the viewpoint of the purity of the obtained lignin derivative, the steam explosion method and the subcritical water treatment method are more preferable.
  • the lignin derivative include a guaiacylpropane structure represented by the following formula (1), a syringylpropane structure represented by the following formula (2), and a 4-hydroxyphenylpropane structure represented by the following formula (3).
  • a guaiacylpropane structure represented by the following formula (1) a guaiacylpropane structure represented by the following formula (1)
  • a syringylpropane structure represented by the following formula (2) and a 4-hydroxyphenylpropane structure represented by the following formula (3).
  • From conifers mainly guaiacylpropane structures, from deciduous trees, mainly guaiacylpropane structures and syringylpropane structures, and from herbs, mainly guaiacylpropane structures, syringylpropane structures, and 4-hydroxypropylene structures. Each phenylpropane structure is extracted.
  • the lignin derivative in the present invention is preferably one in which at least one of the ortho-position and para-position of the aromatic ring is unsubstituted with respect to the hydroxyl group.
  • a lignin derivative is excellent in reactivity because it contains a large number of reaction sites where a curing agent acts due to electrophilic substitution reaction on the aromatic ring and steric hindrance can be reduced in the reaction with a hydroxyl group.
  • the lignin derivative may contain a lignin degradation product, a cellulose degradation product, and a hemicellulose degradation product, with a compound having a lignin skeleton as a main component.
  • the lignin derivative may be a lignin derivative having a functional group (lignin secondary derivative).
  • the functional group possessed by the lignin secondary derivative is not particularly limited, but for example, those in which two or more of the same functional groups can react with each other or those capable of reacting with other functional groups are suitable.
  • Specific examples include an epoxy group, a methylol group, a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, and an isocyanate group.
  • a lignin derivative having a methylol group introduced (methylolated) is preferably used.
  • Such a lignin secondary derivative is self-cross-linked by a self-condensation reaction between methylol groups and is more cross-linked to an alkoxymethyl group or a hydroxyl group in the following cross-linking agent.
  • a cured product having a particularly homogeneous and rigid skeleton and excellent in solvent resistance can be obtained.
  • the number average molecular weight of the lignin derivative in the present invention is not particularly limited, but since the workability of a normal denaturation process is improved, the number average molecular weight in terms of polystyrene measured by gel permeation chromatography is 200 to 5,000. Those having a molecular weight of 300 to 3000 are more preferable.
  • a modified lignin derivative modified with such a lignin derivative having a number average molecular weight has a higher degree of compatibility between its reactivity (curability) and meltability or solubility. Therefore, a resin composition having a high degree of compatibility between solvent resistance and moldability after curing can be obtained.
  • the lignin derivative in the present invention is dissolved in a solvent to prepare a measurement sample.
  • the solvent used at this time is not particularly limited as long as it can dissolve the lignin derivative, but from the viewpoint of measurement accuracy of gel permeation chromatography, for example, tetrahydrofuran is preferable.
  • the number average molecular weight of the lignin derivative can be calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
  • the molecular weight of the standard polystyrene used for preparing the calibration curve is not particularly limited.
  • the number average molecular weight is 427,000, 190,000, 96,400, 37,900, 18,100.
  • Standard polystyrene (manufactured by Tosoh) of 10,200, 5,970, 2,630, 1,050 and 500 can be used.
  • the lignin derivative in the present invention may have a carboxyl group.
  • it may bridge
  • it may act as a catalyst of a crosslinking agent and the crosslinking reaction of a lignin derivative and a crosslinking agent can be accelerated
  • the carboxyl group can be confirmed by the presence or absence of absorption of a peak at 172 to 174 ppm when subjected to 13 C-NMR analysis belonging to the carboxyl group. it can.
  • the softening point of the lignin derivative of the present invention is not particularly limited, but is preferably 200 ° C. or less because the workability of a normal modification process is improved, and further 80 to 160 ° C. when the lower limit is also specified. It is preferably 85 to 150 ° C., more preferably 90 to 140 ° C. If the softening point is less than the above range, there is too much heat melting and fluidity, and many burrs are generated at the time of molding, and the handling property is poor when making the resin composition and rubber composition. There is a big thing. On the other hand, if the softening point exceeds the above range, the heat melting property and fluidity may be poor and molding may not be possible.
  • the softening point is changed by controlling the amount of the volatile component within a certain range, controlling the average molecular weight of the lignin derivative according to the decomposition temperature of the biomass, and replacing a part of the lignin derivative with the other resin component. Can do.
  • the lignin derivative of the present invention can be similarly made into a resin composition and a rubber composition within the above range even if a part of the solvent insoluble component is contained.
  • the method for measuring the softening point was a ring and ball softening point tester (ASP-MG2 type manufactured by Meltech Co., Ltd.) according to JIS K2207.
  • a lignin derivative obtained by decomposing biomass is used as the resin composition of the present invention
  • a large amount of low molecular weight components may be mixed, causing a decrease in volatile content, odor, and softening point during heating.
  • These components can be used as they are, or can be removed by heating, drying or the like of the lignin derivative to control the softening point and odor.
  • the plant-derived compound used in the present invention refers to a plant-derived component such as a substance containing a phenol structure, a substance containing rosin acid, or an oil having an unsaturated bond.
  • the substance containing the phenol structure represents cashew oil, urushi extract, cardanol, curdall, methyl curdall, anacardic acid, urushiol, laccol, thiol, and purified products thereof
  • the substance containing the rosin acid is Terpene oil, tall oil, gum rosin, wood rosin, and purified products thereof are shown.
  • the oil having an unsaturated bond indicates tung oil, linseed oil, coconut oil, shiso oil, walnut oil, coconut oil, safflower oil, sunflower oil, and purified products thereof.
  • the said plant-derived substance can use what contains at least 1 or more types chosen, respectively.
  • the plant-derived compound used for modification is preferably biomass-derived tung oil, linseed oil, tall oil, or cashew oil from the viewpoint of practical use.
  • vegetable oil contains the aliphatic acid and rosin acid type compound which have a long-chain alkyl group
  • when using for a molding material it is excellent in the moldability especially when using as a binder like a friction material, a casting, etc.
  • when blended with rubber it is excellent in compatibility with rubber and workability of rubber.
  • cashew oils contain cardanol and cardol, which are phenolic compounds having a long-chain alkenyl group.
  • a modified lignin derivative in which a long-chain alkyl group or alkenyl group is present when used as a modifier for a lignin derivative, a modified lignin derivative in which a long-chain alkyl group or alkenyl group is present. Obtainable. Therefore, when it mix
  • ⁇ Aldehydes> it can modify
  • the catalyst an acid catalyst that becomes a novolak type or an alkali catalyst that becomes a resol type is used.
  • the novolak type is excellent in storage stability, modification with an acid catalyst is desirable.
  • aldehydes to be used include formaldehyde, acetaldehyde, paraformaldehyde and the like.
  • saccharides, furfural, furfuryl alcohol, and the like can be used as compounds for adding and modifying phenols.
  • the method for synthesizing the modified lignin derivative is not particularly limited.For example, a method in which a reaction apparatus is charged with a lignin derivative, a vegetable oil as a phenol-containing compound, an acidic catalyst, and reacted while sequentially adding aldehydes under reflux conditions, Alternatively, there may be mentioned a method in which a lignin derivative and an acidic catalyst are charged into a reaction apparatus, and a reaction is performed while adding vegetable oils sequentially under reflux conditions.
  • a lignin derivative can be thrown in and it can also modify
  • the plant-derived compound is preferably modified with 0.01 to 300 parts by weight, more preferably 5 to 200 parts by weight, most preferably 100 parts by weight of the lignin derivative. 10 to 150 parts by weight. If it is below the above range, the effect of modification is not observed. Moreover, when it is beyond the range, there is a possibility of sticking, resulting in poor handling properties.
  • reaction molar ratio (F / P) of phenols structure (P) contained in lignin and plant-derived compounds and aldehydes (F) Is not particularly limited because it can be adjusted depending on the reaction conditions.
  • lignin derivatives and vegetable oil-based compounds are often mixtures, it is difficult to calculate accurately, and although it is a reference, 0.1 to 3.0 is preferable, 0.4 to 2.5 is more preferable, More preferably, it is 0.5 to 1.5.
  • reaction mole number (P) of the said phenols structure shows the functional group mole number of phenols
  • the reaction mole number (P) of the said phenols structure shows the functional group mole number of phenols
  • the number of functional group moles of the phenol structure is calculated in addition to the number of reaction moles (P) of the phenol structure.
  • vegetable oil is a mixture, it is difficult to calculate it strictly, but it can be calculated from the median value of the mixing component ratio. For example, in the case of cashew oil used in the examples of the present invention, it is about 0.0032 (mol / g).
  • the hydroxyl equivalent of the lignin derivative used for this invention can be measured with the following method, for example.
  • the modification rate is not particularly limited, but it is preferably 10 to 70% by weight, more preferably 20 to 50% by weight, even more preferably, based on the whole modified lignin derivative. Is 30 to 45% by weight. If the modification rate is less than the above lower limit, the modification effect may not be sufficiently exhibited. On the other hand, when the above upper limit is exceeded, the modified lignin derivative is difficult to solidify, and handling becomes difficult, and the reaction is difficult to control and a gelled product may be produced.
  • inorganic acids such as hydrochloric acid, a sulfuric acid, phosphoric acid, phosphorous acid, oxalic acid, diethyl sulfuric acid, paratoluenesulfonic acid, organic phosphonic acid And organic acids such as zinc salts and metal salts such as zinc acetate. These can be used alone or in combination of two or more.
  • succinic acid such as sulfuric acid, diethyl sulfuric acid, and paratoluene sulfonic acid
  • sulfonic acid-based substances such as phosphoric acid and phosphorous acid
  • succinic acid sulfuric acid such as sulfuric acid, diethyl sulfuric acid, and paratoluene sulfonic acid
  • sulfonic acid-based substances such as phosphoric acid and phosphorous acid
  • oxalic acid, sulfuric acid, and sulfonic acid-based substances are preferable. Substances are preferred.
  • the amount of the acidic catalyst to be added is not particularly limited, but is preferably in the range of 0.05 to 5 parts by weight, particularly preferably 0.3 to 2.5 parts by weight with respect to 100 parts by weight of the lignin derivative. If the addition amount of the acidic catalyst is less than the lower limit, the reaction may not proceed sufficiently. On the other hand, when the above upper limit is exceeded, a gelled product may be produced depending on the reaction conditions, as in the case where the reaction molar ratio is high.
  • a reaction solvent can be used.
  • the reaction solvent is not particularly limited, and water, an organic solvent, and the like can be used. Usually, water or methanol is used. Moreover, you may carry out without using a reaction solvent, using paraformaldehyde as aldehydes.
  • organic solvent examples include alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin; ethylene glycol monomethyl ether, ethylene Examples thereof include glycol ethers such as glycol monoethyl ether, diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, ethers such as 1,4-dioxane, and aromatics such as toluene and xylene. These can be used alone or in combination of two or more.
  • alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol
  • ketones such as acetone and methyl ethyl ketone
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin
  • a modified lignin derivative may be synthesized by modifying a lignin derivative using a phenol in combination with the plant-derived compound.
  • phenols include phenols and alkylphenols, such as cresols such as o-cresol, m-cresol, and p-cresol, o-ethylphenol, m-ethylphenol, and p-ethylphenol.
  • cresols such as o-cresol, m-cresol, and p-cresol
  • o-ethylphenol m-ethylphenol
  • p-ethylphenol p-ethylphenol
  • Ethylphenols butylphenols such as isopropylphenol, butylphenol and p-tert-butylphenol
  • long-chain alkylphenols such as p-tert-amylphenol, p-octylphenol, p-nonylphenol and p-cumylphenol. .
  • These can be used individually or in mixture of 2 or more types.
  • the addition amount of phenols is 5 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, and 500 parts by weight or less, 300 parts by weight with respect to 100 parts by weight of the lignin derivative.
  • it is 200 parts by weight or less, 100 parts by weight or less, or 80 parts by weight or less.
  • the molecular weight of the modified lignin derivative is not particularly limited, but the number average molecular weight is preferably 400 to 5000, and more preferably 500 to 3000. When the number average molecular weight is within the above range, the handleability of the resin is good. If the number average molecular weight is below the lower limit, it may become a highly viscous material, or it may become a solidified substance during summer storage even if it is solidified, which may reduce the handleability. Moreover, when it exceeds the said upper limit, it may become difficult to melt
  • the number average molecular weight can be analyzed using the same method as for the lignin derivative. Depending on the modification conditions, some of the components may become solvent-insoluble components. In that case, most of the dissolved components may be analyzed, but when there are many insoluble components, it is desirable to change to a suitable solvent.
  • the form of the modified lignin derivative used in the composition of the present invention is not particularly limited, but may be fine powder, granular, pellet or varnish. In view of handling properties when kneaded with rubber, it is preferable to use granular and pellet shapes.
  • the resin composition of the present invention may contain, in addition to the modified lignin derivative, a phenolic resin, a filler described later, a crosslinking agent, and the like.
  • the method for producing a resin composition of the present invention may include a step of kneading a lignin derivative and a phenolic resin.
  • mixing is not specifically limited also when a filler, a crosslinking agent, anti-aging agent, and another additive are included.
  • examples of the kneader include a Banbury mixer, a kneader, a roll, and a biaxial kneader.
  • an organic solvent may be used as necessary.
  • the organic solvent is not particularly limited.
  • the solid content concentration in the resin composition is not particularly limited, but is, for example, about 60 to 98% by mass, preferably about 70 to 95% by mass.
  • modified lignin derivatives When using a modified lignin derivative and a phenolic resin, they may be kneaded as described above, but the modified lignin derivative may be introduced into a reactor after reaction with the phenolic resin, and melt mixed. In addition, after a modified lignin derivative is reacted, a phenol resin is charged into a reactor or the like and melt mixed. Other additives can be mixed in advance in the same manner.
  • a lignin derivative and a phenolic resin can be mixed with a mixer such as a hot plate, a mixer or a roll to obtain a mixed resin.
  • the modified lignin derivative described in the present invention can be used as a rubber composition.
  • the rubber composition includes the modified lignin derivative and the diene rubber. Further, the composition can contain a phenolic resin.
  • the method for producing the rubber composition includes a step of kneading the raw rubber and the modified lignin derivative. If necessary, the raw rubber and optional components may be premixed and then kneaded. Also, for example, in the case of including a phenolic resin, a filler, a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, and other additives, the order of kneading is not particularly limited. .
  • examples of the kneader include a Banbury mixer, a kneader, and rolls.
  • an organic solvent may be used as necessary.
  • the organic solvent is not particularly limited.
  • the solid content concentration in the rubber composition is not particularly limited, but is, for example, about 60 to 98% by mass, preferably about 70 to 95% by mass.
  • modified lignin derivatives When using a modified lignin derivative and a phenolic resin, they may be kneaded as described above, but the modified lignin derivative may be introduced into a reactor after reaction with the phenolic resin, and melt mixed. In addition, after a modified lignin derivative is reacted, a phenol resin is charged into a reactor or the like and melt mixed. Other additives can be mixed in advance in the same manner.
  • ⁇ Raw rubber> examples of the raw rubber that can be used in the present invention include natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), ethylene propylene diene rubber (EPDM), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR) and the like can be exemplified, and these may be used alone or in admixture of two or more.
  • natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) are superior in properties such as trauma resistance, wear resistance, fatigue resistance, and flex crack growth resistance. Of these, one or more rubbers are preferred, and natural rubber and / or butadiene rubber (BR) are more preferred from the viewpoint of availability.
  • the amount of bound styrene in the styrene butadiene rubber (SBR) is preferably 10% or more, and more preferably 15% or more.
  • SBR styrene butadiene rubber
  • the amount of bound styrene is preferably 60% or less, and more preferably 50% or less.
  • the butadiene rubber (BR) is preferably a high cis BR in which 90% or more of the butadiene unit bonds are cis 1,4-bonds.
  • the high cis BR it is possible to reduce hysteresis loss and improve fuel efficiency.
  • the wear resistance, the flex crack growth resistance and the aging resistance can be improved satisfactorily.
  • the content of SBR and / or BR is preferably 50% by mass or less in the rubber component, and 30% by mass or less. Is more preferable.
  • the content of SBR and / or BR is 50% by mass or less, the ratio of petroleum resources in the rubber component can be kept low, and the burden on the environment can be further reduced.
  • the rubber component of the present invention is a functional group-containing natural rubber containing at least one functional group selected from an alkoxyl group, alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group, and silanol group.
  • (Modified natural rubber) and / or a functional group-containing diene rubber When natural rubber and / or diene rubber contains these functional groups, the dispersibility of these fillers is improved by reacting or interacting with the surface of fillers such as silica and carbon black.
  • alkoxyl group alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group
  • At least one functional group selected from silanol groups is preferably contained in the functional group-containing natural rubber or the functional group-containing diene rubber in the range of 0.001 to 80 mol%.
  • the content of the functional group is 0.001 mol% or more, the effect of reacting or interacting with the surface of the silica or carbon black can be obtained satisfactorily, and if it is 80 mol% or less, the unvulcanized rubber composition An increase in viscosity at the time of production is suppressed, and workability is improved.
  • the content of such a functional group is more preferably in the range of 0.01 to 50 mol%, and further preferably in the range of 0.02 to 25 mol%.
  • a method of incorporating natural rubber and / or diene rubber with at least one functional group selected from an alkoxyl group, an alkoxysilyl group, an epoxy group, a glycidyl group, a carbonyl group, an ester group, a hydroxy group, an amino group, and a silanol group For example, a method of introducing a functional group into a polymerization terminal of a styrene-butadiene copolymer polymerized with an organolithium initiator in a hydrocarbon solvent, a natural rubber or a diene rubber by the chlorohydrin method, direct oxidation And a method of epoxidation by a method such as a hydrogen peroxide method, an alkyl hydroperoxide method, and a peracid method.
  • the rubber composition of the present invention is natural rubber and / or modified natural rubber, styrene butadiene rubber (SBR), or butadiene rubber (BR) so that the content in the rubber component is in the range of 50 to 100% by mass. It is preferable to contain. When the content is 50% by mass or more, the effect of improving E ′ (storage modulus) and the effect of reducing tan ⁇ around 60 ° C. are particularly prominent.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • natural rubber and / or modified natural rubber occupy 100% by mass of the rubber component in terms of a small environmental load.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • higher abrasion resistance and flex crack growth resistance are required by combining other rubbers, it is advantageous in that these performances can be adjusted.
  • the content of the rubber compound is not particularly limited, but is preferably 100 parts by weight or more and 10,000 parts by weight or less, and 200 parts by weight or more and 5000 parts by weight with respect to 100 parts by weight of the modified lignin derivative. More preferably, it is 300 parts by weight or more and 2000 parts by weight or less.
  • the content of the rubber compound is too small, the hardness becomes too high and the elongation at the time of cutting decreases, and when it is too large, the reinforcing effect decreases.
  • a filler may be further used.
  • the filler those usually used in a resin composition or a rubber composition can be employed.
  • the filler it is preferable to use one containing at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber, and an inorganic filler is particularly preferable.
  • an inorganic filler is particularly preferable.
  • silica is used, the effect of reducing tan ⁇ can be satisfactorily obtained.
  • E ′ storage elastic modulus
  • the content of the filler is preferably in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • E ′ storage elastic modulus
  • E ′ Storage modulus
  • the silica When silica is blended as a filler, the silica is in the range of 10 to 150 parts by mass and the silane coupling agent is 1 to 20% by mass with respect to the silica content with respect to 100 parts by mass of the rubber component. It is preferable to mix each so that it may become in the range.
  • the silica content when the silica content is 10 parts by mass or more with respect to 100 parts by mass of the rubber component, the effect of improving the E ′ (storage elastic modulus) of the tire rubber composition is good, and 150 parts by mass. When it is below, there is little possibility that E '(storage elastic modulus) will rise too much, and the workability at the time of preparation of the rubber composition for tires is good.
  • the content of silica is further preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 100 parts by mass or less, and further preferably 80 parts by mass or less.
  • the silica those conventionally used for reinforcing rubber can be used.
  • the silica can be appropriately selected from dry silica, wet silica, colloidal silica, and the like.
  • N 2 SA nitrogen adsorption specific surface area
  • N2SA of silica is 20 m 2 / g or more, it is preferable in terms of a large reinforcing effect on the tire rubber composition, and when it is 600 m 2 / g or less, the dispersibility of the silica in the tire rubber composition is good. It is preferable in that it can prevent an increase in heat generation during use of a pneumatic tire using the rubber composition.
  • the rubber composition of the present invention can contain a filler other than the above depending on the application.
  • a filler examples include talc, calcined clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide and alumina, magnesium silicate, and carbonic acid.
  • Carbonates such as calcium, magnesium carbonate and hydrotalcite, oxides such as zinc oxide and magnesium oxide, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, barium sulfate, calcium sulfate and sulfurous acid Sulphate or sulfite such as calcium, zinc borate, barium metaborate, aluminum borate, borate such as calcium borate, sodium borate, nitride such as aluminum nitride, boron nitride, silicon nitride, etc.
  • inorganic fillers such as fiber powder, glass fiber, carbon fiber, etc., wood powder, pal Pulverized powder, cellulose fibers, cloth pulverized powder, cured thermosetting resin powder, aramid fibers, organic fillers, and the like, such as talc.
  • the rubber component contains epoxidized natural rubber, it is also preferable in that the silica and the rubber component are likely to interact.
  • a cross-linking agent can be added to the rubber composition of the present invention as necessary.
  • the cross-linking agent is not particularly limited as long as it can cross-link with the modified lignin derivative and / or rubber compound, and both, but those containing a compound represented by the following formula (4) preferable.
  • [Z in Formula (4) is any one of a melamine residue, a urea residue, a glycolyl residue, an imidazolidinone residue, and an aromatic ring residue.
  • M represents an integer of 2 to 14.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • —CH 2 OR represents the nitrogen atom of the melamine residue, the nitrogen atom of the primary amino group of the urea residue, the nitrogen atom of the secondary amino group of glycolyl residue, or the secondary amino group of the imidazolidinone residue. It is directly bonded to either the nitrogen atom or the carbon atom of the aromatic ring residue.
  • a rubber composition containing such a compound is excellent in mechanical properties after curing, and contributes to improvement in durability and appearance of the cured product.
  • the compound represented by the above formula (4) contained in the cross-linking agent can form a polyfunctional cross-linking point, so that the modified lignin derivative is cross-linked with high density and uniformity, and a homogeneous and rigid skeleton It is because it forms.
  • the rigid skeleton improves the mechanical properties and durability (boiling resistance, etc.) of the cured product, and also suppresses the occurrence of blisters and cracks, thereby improving the appearance of the cured product.
  • —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or 2 of an imidazolidinone residue.
  • R contained in at least one of “—CH 2 OR” is an alkyl group.
  • the melamine residue refers to a group having a melamine skeleton represented by the following formula (A).
  • the urea residue means a group having a urea skeleton represented by the following formula (B).
  • glycolyl residue refers to a group having a glycolyl skeleton represented by the following formula (C).
  • the imidazolidinone residue means a group having an imidazolidinone skeleton represented by the following formula (D).
  • the aromatic ring residue means a group having an aromatic ring (benzene ring).
  • a compound represented by any one of the following formulas (5) to (8) is particularly preferably used. These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the modified lignin derivative to reliably crosslink the modified lignin derivative and cause self-crosslinking by self-condensation reaction between functional groups. As a result, a cured product having a particularly homogeneous and rigid skeleton and excellent in mechanical properties, durability and appearance can be obtained.
  • X is CH 2 OR or a hydrogen atom
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • N represents an integer of 1 to 3.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • a compound represented by the following formula (9) or (10) is particularly preferably used. These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the modified lignin derivative to specifically crosslink the modified lignin derivative, and also cause self-crosslinking by self-condensation reaction between functional groups. As a result, a cured product having a particularly uniform and rigid skeleton and excellent mechanical properties, durability and appearance can be obtained.
  • n an integer of 1 to 3.
  • n an integer of 1 to 3.
  • the cross-linking agent may contain at least one compound of hemisamethylenetetramine, quinuclidine, and pidgin instead of or together with the compound represented by the formula (4). .
  • a cured product containing such a cross-linking agent has excellent mechanical strength and high durability and appearance. This is because hexamethylenetetramine, quinuclidine and pididine crosslink the modified lignin derivative with high density and uniformity to form a homogeneous and rigid skeleton.
  • cross-linking agent components other than the above compounds may be used.
  • cross-linking agent component other than the above compound include, for example, orthocresol novolac epoxy resin, bisphenol A type epoxy resin, epoxidized glycerin, epoxidized linseed oil, epoxy resin such as epoxidized soybean oil, hexamethylene diisocyanate, toluene diisocyanate.
  • an isocyanate compound a compound capable of crosslinking by electrophilic substitution reaction on the aromatic ring of a modified lignin derivative, aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural, aldehyde sources such as polyoxymethylene, hexamethylene
  • aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural
  • aldehyde sources such as polyoxymethylene, hexamethylene
  • a known phenolic resin such as a resol type phenolic resin, a known crosslinking agent, a compound capable of crosslinking by electrophilic substitution reaction on the aromatic ring of a lignin derivative, and the like
  • the amount of the compound is preferably 5 to 150 parts by mass, more preferably 7.5 to 50 parts by mass with respect to 100 parts by mass of the modified lignin derivative.
  • the rubber composition of the present invention comprises a rubber component, a modified lignin derivative and a filler, a softener, a tackifier, an antioxidant, an ozone degradation inhibitor, an antiaging agent, sulfur, other vulcanizing agents, and a vulcanizing agent.
  • Additives as required, such as accelerators, vulcanization accelerators, peroxides, zinc oxide, stearic acid, and the like can be appropriately blended.
  • the vulcanizing agent an organic peroxide or a sulfur vulcanizing agent can be used.
  • organic peroxide examples include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne 3 or 1,3-bis (t-butylperoxypropyl) benzene or the like can be used.
  • sulfur type vulcanizing agent sulfur, morpholine disulfide, etc. can be used, for example. Of these, sulfur is preferred.
  • Vulcanization accelerators include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine, aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Those containing at least one of them can be used.
  • amine-based, phenol-based and imidazole-based compounds, carbamic acid metal salts, waxes and the like can be appropriately selected and used.
  • the rubber composition of the present invention can further be appropriately mixed with compounding agents usually used in the rubber industry, such as stearic acid and zinc oxide.
  • a raw rubber, a modified lignin derivative, and optional components are kneaded by a closed kneader such as a Banbury mixer and do not contain a vulcanization system.
  • a rubber composition is obtained.
  • the kneading conditions vary depending on the kneader.
  • a vulcanizing agent and a vulcanization accelerator are added to the rubber composition obtained by the above (1) using rolls such as open rolls and the kneader, and kneaded again to obtain a vulcanization system
  • a rubber composition containing is obtained.
  • the cured product and tire of the rubber composition can be obtained by molding the rubber composition.
  • the molding method varies depending on the application and is not particularly limited. However, when molding using a mold, the produced rubber composition is molded using a mold equipped with a hydraulic press, and the rubber composition A cured product is obtained.
  • the rubber composition of the present invention when used for a tire tread, it is produced by a usual method. That is, the rubber composition is extruded into the shape of a tread portion of a tire at an unvulcanized stage, and bonded together by a normal method on a tire molding machine to form an unvulcanized tire.
  • the unvulcanized tire can be heated and pressurized in a vulcanizer to obtain a tire.
  • the molding temperature is preferably about 100 to 280 ° C., more preferably about 120 to 250 ° C., and further preferably about 130 to 230 ° C. If the molding temperature exceeds 230 ° C, the rubber may be deteriorated. If it is less than 100 ° C, molding may not be possible.
  • the present invention is a molding material containing the modified lignin derivative of the present invention.
  • the molding material of the present invention is applied to, for example, semiconductor parts, aircraft parts, automobile parts, castings, industrial machine parts, electronic parts, electric parts, and mechanical parts.
  • the resin composition used in the molding material of the present invention includes, as described above, the modified lignin derivative, in addition to this, a phenolic resin, a filler, a crosslinking agent, and the like described later.
  • the molding method is not particularly limited, and the molding material of the present invention can be formed into a molded product using a known molding method such as an injection molding method, a compression molding method, an extrusion molding method, a cast molding method, or the like.
  • the form of the molded product thus obtained may be any form, for example, an intermediate molded product before the molding material is made into a final molded product or a final molded product. .
  • Example 1 Extraction of lignin derivative 100 parts of cedar wood flour (60 mesh under) and 400 parts of a solvent made of pure water were mixed and introduced into a 1 L autoclave. Then, while stirring the contents at 300 rpm, as a pretreatment, the mixture was stirred for 15 minutes at room temperature. After sufficiently blending the cedar wood flour and the solvent, it was treated at 300 ° C. and 10 MPa for 60 minutes to obtain cedar wood flour. Disassembled. Subsequently, the obtained decomposition product was filtered, and the solid component separated by filtration was recovered. Next, the obtained solid component was immersed in 250 parts of acetone for 12 hours. This was filtered to recover acetone-soluble components. Subsequently, acetone was distilled off from the acetone-soluble component and dried to obtain 15.2 parts of a lignin derivative. The number average molecular weight was 410 and the softening point was 108 ° C.
  • Example 2 In the production of the modified lignin derivative, the same as Example 1 except that 3 parts of oxalic acid was used.
  • Example 3 In the production of the modified lignin derivative, the same as Example 1 except that 39 parts of 37% formaldehyde aqueous solution was used.
  • Example 4 In the production of the modified lignin derivative, the same as Example 1 except that 40 parts of cashew oil and 39 parts of 37% formaldehyde aqueous solution were used.
  • Example 5 In the production of the modified lignin derivative, the same as Example 3 except that 1 part of paratoluenesulfonic acid (PTSA) was added instead of oxalic acid.
  • PTSA paratoluenesulfonic acid
  • Example 6 In the production of the modified lignin derivative, the same as in claim 1 except that no aqueous formaldehyde solution is added and 1 part of sulfuric acid is added instead of oxalic acid.
  • Example 7 In the production of the modified lignin derivative, the same as in claim 1 except that 29 parts of an aqueous formaldehyde solution and 1 part of sulfuric acid instead of oxalic acid were added.
  • Example 8 In extraction of a lignin derivative, it is the same as Claim 1 except having used the rice straw instead of the cedar wood flour.
  • the lignin derivative had a number average molecular weight of 390 and a softening point of 98 ° C.
  • Example 9 In extraction of a lignin derivative, it is the same as Claim 1 except having used beech wood flour instead of cedar wood flour.
  • the lignin derivative had a number average molecular weight of 420 and a softening point of 110 ° C.
  • Example 10 The production of the rubber composition was the same as in Example 1 except that 75 parts by weight of the modified lignin derivative and 25 parts by weight of the phenol novolac resin were used.
  • Example 11 The production of the rubber composition was the same as in Example 1 except that 75 parts by weight of the modified lignin derivative and 25 parts by weight of the cashew oil-modified novolak resin were used.
  • Example 12 The production of the rubber composition was the same as Example 1 except that 280 parts by mass of carbon black and 70 parts by mass of silica were added, and 5 parts of a silica coupling agent was further added.
  • Example 13 The production of the modified lignin derivative is the same as in claim 1 except that 20 parts of tall oil is used instead of cashew oil, no formaldehyde aqueous solution is added, and 1 part of sulfuric acid is added instead of oxalic acid.
  • Example 14 The production of the modified lignin derivative is the same as in claim 1 except that 20 parts of linseed oil is used instead of cashew oil, no aqueous formaldehyde solution is added, and 1 part of sulfuric acid is added instead of oxalic acid.
  • Example 15 to 18 In the production of the modified lignin derivative, it is the same as claim 1 except that phenol is used in addition to cashew oil. Cashew oil and phenol were 20 parts and 60 parts in Example 15, 30 parts and 40 parts in Example 16, 40 parts and 30 parts in Example 17, and 60 parts and 20 parts in Example 18, respectively.
  • Example 19 In the production of a modified lignin derivative, 80 parts of cashew oil, 37% formaldehyde aqueous solution was used as the lignin derivative using a lignin derivative (Lignol Lignin (Powder): manufactured by Lignol) obtained by the Alcell (registered trademark) method. Was 39 parts and the acid was paratoluenesulfonic acid (PTSA).
  • a lignin derivative Lignol Lignin (Powder): manufactured by Lignol
  • Alcell registered trademark
  • Comparative Example 2 The same as Comparative Example 1 except that 100 parts by mass of phenol novolac resin was used instead of the modified lignin derivative.
  • Natural rubber Tochi made RSS3 Curing agent: Hexamethylenetetramine carbon black: manufactured by Mitsubishi Chemical Corporation, HAF Silica: manufactured by Evonik, Ultrasil VN3 (BET specific surface area: 175 m 2 / g) Silane coupling agent: Si-69, manufactured by Evonik Zinc oxide: Stearic acid manufactured by Sakai Chemical Industry Co., Ltd .: NOF Beads Stearic Acid YR Sulfur: manufactured by Hosoi Chemical Co., Ltd., fine sulfur vulcanization accelerator: manufactured by Ouchi Shinsei Chemical Co., Ltd., MSA-G Novolac type phenolic resin: Sumitomo Bakelite, PR-50731 Cashew oil-modified phenolic resin: PR-12686, manufactured by Sumitomo Bakelite Co., Ltd.
  • the cured product of the rubber composition obtained in each example is excellent in the reciprocal of the tan ⁇ value, which is a measure of low thermal energy generated by repeated deformation, and is a storage, which is a measure of hardness.
  • the elastic modulus was also high, and the tensile stress at break and the elongation at break were high.
  • ⁇ Preparation of resin composition 15 parts by mass of hexamethylenetetramine was added to 100 parts by mass of the modified lignin derivative or lignin at room temperature, and pulverized and mixed to prepare a lignin derivative composition.
  • the appearance evaluation criteria are as follows. Evaluation criteria ⁇ : The surface of the molded product is smooth, and the surface of the molded product has no irregularities that are visible to the naked eye, or has 1 to 2 strains, wrinkles, and spots. ⁇ : Unevenness that can be seen with the naked eye is observed on the surface of the molded product, or there are 3 to 5 strains, wrinkles, and spots.
  • the modified lignin derivative of the present invention is suitable for rubber reinforcement or a molding material.
  • the rubber composition containing the modified lignin derivative of the present invention has low thermal energy generated by repeated deformation and is suitable for applications requiring excellent elastic modulus, tensile stress at break and elongation at break, particularly tire applications. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の目的の1つは、植物由来化合物で変性されたリグニンを提供することであり、それによって硬化性に優れる、また高いゴム補強効果を有する変性リグニンを提供することにある。さらには、高い植物由来度を維持しながら、成形特性、又は弾性率を向上させるゴム組成物を提供することにある。 リグニン誘導体に、植物由来化合物を用いて変性したことを特徴とする変性リグニン誘導体。一又は複数の実施形態において、前記植物由来化合物は、桐油、亜麻仁油、カシューオイル、トール油の少なくとも1種類を含む。

Description

樹脂組成物、およびゴム組成物
 本発明は、リグニン誘導体を用いた樹脂組成物及びそれらを用いたゴム組成物に関する。
 樹皮、間伐材、建築廃材等の木質系廃材(バイオマス)は、これまでその多くが廃棄処分されている。しかしながら、地球環境保護が重要課題になりつつあり、その観点から、木質系廃材の再利用、リサイクルが検討され始めている。
 一般的な木質の主要成分は、セルロース誘導体、ヘミセルロース誘導体およびリグニン誘導体である。このうち、約30%の割合で含まれるリグニンは、芳香環を豊富に含む構造を有しているため、樹脂原料として利用した樹脂組成物およびタイヤ等が開示されている(例えば、特許文献1、2参照。)。
 また、リグニン誘導体は、フェノール性水酸基やアルコール性水酸基を豊富に含む極性の高い構造を有しているため、粘着性付与剤および酸化防止剤として利用した組成物およびタイヤが開示されており(例えば、特許文献3参照)、また、ゴム組成物の補強材としての性能も期待されている。
特表2011-522085号公報 特開2008-285626号公報 特表2012-229330号公報 特開2004-352978号公報
 しかしながら、水酸化ナトリウムと硫化ナトリウムを含む黒液にリグニン誘導体を溶解し、該リグニン誘導体が溶解した黒液からリグニン誘導体を回収した場合、リグニン誘導体は熱溶融性が悪く成形加工に適さないことがある。また、得られたリグニン誘導体は、配合した場合のゴム組成物の機械的強度が低下している。(例えば、特許文献1参照)。
 フェノールと濃硫酸と処理して得られたフェノールを付加したリグノフェノールの場合、(例えば、特許文献2参照)についても検討されているが、フェノールを多く含有するため植物由来度が低くなる。
また、特許文献2において、種々のリグノフェノール誘導体を用いた系が示されているが、ゴム組成物としての特性が十分でない。
 また、植物油等で変性したフェノール化バイオマス樹脂(例えば、特許文献4)が開示されているが、フェノールを多く含むことから植物由来度が低く、さらにはセルロース等の脂肪族成分を多く含むために、リグニンが有する耐熱性や機械的強度を低下させる恐れがあり、またゴム補強効果に対する記載はなかった。
 このように、リグニン誘導体を使用して高いゴム補強効果を得ることは困難であり、さらには高い植物由来度と高いゴム補強効果の高度な両立はより難しかった。また、成形品を得る場合にも、リグニン誘導体を使用すると成形が難しくなることや、機械的強度が低くなることがあった。
 本発明の目的の1つは、植物由来化合物で変性されたリグニンを提供することであり、それによって硬化性に優れる、また高いゴム補強効果を有する変性リグニンを提供することにある。さらには、高い植物由来度を維持しながら、成形特性、又は弾性率を向上させるゴム組成物を提供することにあり、高い植物由来度を維持しながら、成形性、及び、機械的強度に優れた樹脂組成物を提供することにある。
 本発明は以下の通りである。
(1)変性リグニン誘導体であって、リグニン誘導体に、植物由来化合物を用いて変性したことを特徴とする変性リグニン誘導体。
(2)前記植物由来化合物が、フェノール構造を含有する物質、ロジン酸を含有する物質、不飽和結合を有する物質よりなる群から選択される1種以上を含有する(1)記載の変性リグニン誘導体。
(3)前記フェノール構造含有する物質が、カシューオイル、ウルシ抽出物、カルダノール、カードル、メチルカードル、アナカルド酸、ウルシオール、ラッコール、チチオール及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、(2)に記載の変性リグニン誘導体。
(4)前記ロジン酸を含有する物質が、テルペン油、トール油、ガムロジン、ウッドロジン、及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、(2)または(3)に記載の変性リグニン誘導体。
(5)前記不飽和結合を有する物質が、桐油、亜麻仁油、芥子油、紫蘇油、胡桃油、荏油、紅花油、向日葵油、及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、(2)ないし(4)のいずれかに記載の変性リグニン誘導体。
(6)前記リグニン誘導体100重量部に対して、植物由来化合物を0.01~300重量部を用いて変性させたものである(1)ないし(5)のいずれか1項に記載の変性リグニン誘導体。
(7)リグニン誘導体を、前記植物由来化合物とフェノール類とを用いて変性した、(1)ないし(6)にいずれかに記載の変性リグニン誘導体。
(8)前記リグニン誘導体が、ゲル浸透クロマトグラフィー(GPC)分析により測定されたポリスチレン換算の数平均分子量が200~5000であるものを含有するものである(1)から(7)のいずれかに記載の変性リグニン誘導体。
(9)前記リグニン誘導体の軟化点が200℃以下であることを特徴とする(1)ないし(8)のいずれかに記載の変性リグニン誘導体。
(10)ゴム補強、又は、成形材料に用いるための、(1)ないし(9)のいずれかに記載の変性リグニン誘導体。
(11)(1)ないし(10)のいずれかに記載の変性リグニン誘導体を含むことを特徴とする樹脂組成物。
(12)(1)ないし(10)のいずれかに記載の変性リグニン誘導体と、ジエン系ゴムを含むことを特徴とするゴム組成物。
(13)さらに、充填剤を含有するものである(12)に記載のゴム組成物。
(14)前記充填剤は、少なくともカーボンブラック、シリカ、アルミナ、およびセルロースファイバーよりなる群から選択される1種以上を含有するものである、(12)または(13)に記載のゴム組成物。
(15)(12)ないし(14)のいずれかに記載のゴム組成物を硬化して得られることを特徴とする硬化物。
(16)(1)ないし(10)のいずれかに記載の変性リグニン誘導体を含む、成形材料。
 本発明により、植物由来化合物で変性されたリグニンを開発し、それによって硬化性に優れる、また高いゴム補強効果を有する変性リグニンを提供することができた。さらには、高い植物由来度を維持しながら、成形性、及び、機械的強度に優れた樹脂組成物、又は弾性率を向上させるゴム組成物を提供することが可能となった。
 本発明の変性リグニン誘導体は、リグニン誘導体に、植物由来化合物を用いて変性したことを特徴としており、前記フェノール構造の付加(導入)が、リグニン誘導体とフェノール含有化合物とを化学結合により結合させたものである。
 以下、樹脂組成物の各成分について順次説明する。
 <リグニン誘導体>
 まず、リグニン誘導体について説明する。リグニンは、セルロースおよびヘミセルロースとともに、リグノセルロースとして存在する植物体の骨格を形成する主要成分であり、かつ、自然界に最も豊富に存在する物質の1つである。なかでもリグニン誘導体は、フェノール誘導体を単位構造とする化合物であり、この単位構造は、化学的および生物学的に安定な炭素-炭素結合や炭素-酸素-炭素結合を有するため、化学的な劣化や生物的分解を受け難い。このため、リグニン誘導体は、樹脂原料として有用とされる。
 本発明に用いられるリグニン誘導体は、バイオマスを分解して得られたものである。バイオマスとは、植物または植物の加工品であるが、これらは光合成の過程で大気中の二酸化炭素を取り込み固定化してなるものであるため、大気中の二酸化炭素の増加抑制に寄与している。このため、バイオマスを工業的に利用することによって、地球温暖化の抑制に寄与することができる。
 本発明で用いられるバイオマスを分解してリグニン誘導体を得る処理方法としては、例えば、植物または植物加工品を、薬品処理する方法、加水分解処理する方法、水蒸気爆砕法、超臨界水処理法、亜臨界水処理法、機械的に処理する方法、硫酸クレゾール法、パルプ製造法及びバイオ燃料製造法の副産物、などが挙げられる。環境負荷の点から、水蒸気爆砕法、超臨界水処理法、亜臨界水処理法、機械的に処理する方法が好ましい。得られるリグニン誘導体の純度の点から、水蒸気爆砕法、亜臨界水処理法が更に好ましい。
 リグニン誘導体の具体例としては、下記式(1)で表わされるグアイアシルプロパン構造、下記式(2)で表わされるシリンギルプロパン構造、下記式(3)で表わされる4-ヒドロキシフェニルプロパン構造等が挙げられる。なお、針葉樹類からは主にグアイアシルプロパン構造が、広葉樹類からは主にグアイアシルプロパン構造およびシリンギルプロパン構造が、草本類からは主にグアイアシルプロパン構造、シリンギルプロパン構造および4-ヒドロキシフェニルプロパン構造がそれぞれ抽出される。
Figure JPOXMLDOC01-appb-C000001
 また、本発明におけるリグニン誘導体は、水酸基に対して芳香環のオルト位およびパラ位の少なくとも一方が無置換になっているものが好ましい。このようなリグニン誘導体は、芳香環への親電子置換反応により硬化剤が作用する反応サイトを多く含み、水酸基での反応において立体障害が低減できることになるため、反応性に優れたものとなる。
 ここでリグニン誘導体とは、リグニン骨格を有する化合物を主成分としつつ、リグニン分解物、セルロース分解物およびヘミセルロース分解物を含んでいてもよい。
 また、リグニン誘導体は、上記基本構造の他、リグニン誘導体に官能基を有するもの(リグニン二次誘導体)であってもよい。
 リグニン二次誘導体が有する官能基としては、特に限定されないが、例えば2個以上の同じ官能基が互いに反応し得るもの、または他の官能基と反応し得るものが好適である。具体的には、エポキシ基、メチロール基の他、炭素-炭素不飽和結合を有するビニル基、エチニル基、マレイミド基、シアネート基、イソシアネート基等が挙げられる。このうち、メチロール基を導入した(メチロール化した)リグニン誘導体が好ましく用いられる。このようなリグニン二次誘導体は、メチロール基同士の自己縮合反応により自己架橋が生じるとともに、下記架橋剤中のアルコキシメチル基や水酸基に対してより架橋するものとなる。その結果、特に均質で剛直な骨格を有し、耐溶剤性に優れた硬化物が得られる。
 また、本発明におけるリグニン誘導体の数平均分子量は特に限定されないが、通常の変性工程の作業性が良くなることから、ゲル浸透クロマトグラフィーにより測定されたポリスチレン換算の数平均分子量が200~5000であるものが好ましく、300~3000であるものがより好ましい。このような数平均分子量のリグニン誘導体を用いて変性された変性リグニン誘導体は、その反応性(硬化性)と溶融性または溶解性とをより高度に両立するものとなる。したがって、硬化後の耐溶剤性と成形性とを高度に両立する樹脂組成物が得られる。
 前記ゲル浸透クロマトグラフィーによって分子量を測定する方法の一例について説明する。
 本発明におけるリグニン誘導体を溶媒に溶解させ、測定サンプルを調製する。このときに用いられる溶媒は、リグニン誘導体を溶解できるものであれば特に限定されるものではないが、ゲル浸透クロマトグラフィーの測定精度の観点から、例えば、テトラヒドロフランが好ましい。
 次に、GPCシステム「HLC-8320GPC(東ソー製)」に、スチレン系ポリマー充填剤を充填した有機系汎用カラムである「TSKgelGMHXL(東ソー製)」、および「G2000HXL(東ソー製)」を直列に接続する。
 このGPCシステムに、前記の測定サンプルを200μL注入し、40℃において、溶離液のテトラヒドロフランを1.0mL/minで展開し、示差屈折率(RI)、および紫外吸光度(UV)を利用して保持時間を測定する。別途作製しておいた標準ポリスチレンの保持時間と分子量の関係を示した検量線から、前記リグニン誘導体の数平均分子量を算出することができる。
 検量線を作成するために使用する標準ポリスチレンの分子量としては、特に限定されるものではないが、例えば、数平均分子量が427,000、190,000、96,400、37,900、18,100、10,200、5,970、2,630、1,050および500の標準ポリスチレン(東ソー製)のものを用いることができる。
 さらに、本発明におけるリグニン誘導体は、カルボキシル基を有することがある。前記カルボキシル基を有する場合は、下記に記載する架橋剤と架橋することがあり、架橋点が増加することにより架橋密度を向上させることができるため、耐溶剤性に優れる。また架橋剤の触媒として作用することもあり、リグニン誘導体と架橋剤の架橋反応を促進させることが出来るため、耐溶剤性や硬化速度に優れる。
 なお、上述したリグニン誘導体中がカルボキシル基を有する場合は、そのカルボキシル基は、カルボキシル基に帰属する13C-NMR分析に供されたとき、172~174ppmのピークの吸収の有無によって確認することができる。
 本発明のリグニン誘導体の軟化点は、特に限定されないが、通常の変性工程の作業性が良くなることから、200℃以下であることが好ましく、さらに下限も併せて規定すると80~160℃であることが好ましく、85~150℃であるものがより好ましく、90~140℃であることがさらに好ましい。軟化点が前記範囲を下回ると、熱溶融性、流動性がありすぎて成形時にバリが多く発生し、また樹脂組成物、及びゴム組成物にする際にハンドリング性が悪いため、製造時のロスが大きい事がある。また、軟化点が前記範囲を上回ると、熱溶融性、流動性が悪く、成形ができない事がある。軟化点は前記揮発成分量を一定範囲に制御することと、バイオマスの分解温度によってリグニン誘導体の平均分子量を制御することと、リグニン誘導体の一部を前記その他の樹脂成分に置き換えることによって変化させることができる。なお、本発明のリグニン誘導体は一部溶媒不溶分が含まれていても、上記の範囲内で同様に樹脂組成物、ゴム組成物にすることが出来る。
 前記軟化点を測定する方法はJIS K2207に準じて、環球式軟化点試験機(メルテック(株)製ASP-MG2型)を用いた。
 本発明の樹脂組成物として、バイオマスを分解して得られたリグニン誘導体を用いる場合は、低分子量の成分が多量に混入することがあり、加熱時の揮発分や臭気、軟化点の低下を引き起こすことがある。これらの成分は、そのまま利用することも出来るし、リグニン誘導体の加熱、乾燥等によって除去し、軟化点や臭気をコントロールすることが出来る。
 <植物由来化合物>
 本発明において用いる植物由来化合物は、フェノール構造を含有する物質、ロジン酸を含有する物質、不飽和結合を有する油等の植物由来成分を指す。
前記フェノール構造を含有する物質は、カシューオイル、ウルシ抽出物、カルダノール、カードル、メチルカードル、アナカルド酸、ウルシオール、ラッコール、チチオール及びそれらの精製物を示し、前記ロジン酸を含有する物質が、テルペン油、トール油、ガムロジン、ウッドロジン、及びそれらの精製物を示す。さらに、前記不飽和結合を有する油が、桐油、亜麻仁油、芥子油、紫蘇油、胡桃油、荏油、紅花油、向日葵油、及びそれらの精製物を示す。
前記植物由来物質は、各々選ばれる少なくとも1種以上を含むものを使用することができる。
 特に、本発明において、変性に用いる植物由来化合物は、バイオマス由来である桐油、亜麻仁油、トール油、カシューオイルが実用状の観点から好ましい。また植物油は長鎖アルキル基を持つ脂肪族酸やロジン酸系化合物を含むために、成形材料に用いる場合、特に摩擦材や鋳物等のように結合剤として用いる場合の成形性に優れる。また、ゴムに配合した場合の、ゴムとの相溶性やゴムの作業性に優れる。同様に、カシューオイル類は長鎖のアルケニル基を有するフェノール化合物であるカルダノールやカルドールを含むので、リグニン誘導体の変性剤として使用したときに長鎖のアルキル基またはアルケニル基が存在する変性リグニン誘導体を得ることができる。そのため、ゴムに配合した場合、ゴムとの相溶性に優れており、弾性率を向上する等の効果がある。また、成形材料に用いる場合は、成形性を付与するとともに、架橋剤の反応点であるフェノール化合物であり、アルケニル基の不飽和結合をもつために機械強度が高くなる。
 <アルデヒド類>
 本発明において、リグニン及び/又はフェノール構造含有化合物と反応可能であるアルデヒド類等を用いて変性することが出来る。触媒としては、ノボラック型になる酸触媒、レゾール型になるアルカリ触媒が用いられるが、ノボラック型は保存性に優れるため酸触媒による変性が望ましい。また用いるアルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、パラホルムアルデヒド等が挙げられ、同様にフェノール類を付加させ変性させる化合物として糖類、フルフラール、フルフリルアルコール等も用いることが出来る。
 <変性リグニン誘導体合成方法>
 前記変性リグニン誘導体を合成する方法としては特に限定されないが、例えば、反応装置にリグニン誘導体、フェノール含有化合物として植物油類、酸性触媒を仕込み、還流条件下でアルデヒド類を逐次添加しながら反応させる方法、あるいは、反応装置にリグニン誘導体、酸性触媒を仕込み、還流条件下で植物油類を逐次添加しながら反応させる方法、などが挙げられる。なお、不飽和結合有する植物由来化合物を使用する場合は、予め植物由来化合物と酸を仕込みで重合を行ってから、リグニン誘導体を投入し、上記の方法のように変性させることも出来る。
 変性リグニン誘導体合成においては、前記リグニン誘導体100重量部に対して、前記植物由来化合物を0.01~300重量部を用いて変性させることが好ましく、さらに好ましくは5~200重量部、もっとも好ましくは10~150重量部である。
前記範囲以下であれば変性の効果が見られない。また範囲以上である場合、固着する可能性があり、ハンドリング性が悪くなることが生じる。
 また、変性リグニン誘導体を合成する際にホルムアルデヒド類を使用する場合、リグニン及び植物由来化合物に含まれるフェノール類構造(P)及び、とアルデヒド類(F)との反応モル比(F/P)としては、反応条件によって調節することが出来るため、特に限定されない。またリグニン誘導体や植物油来化合物は混合物であることが多いために、厳密に計算することは難しく、参考ではあるが0.1~3.0が好ましく、0.4~2.5がより好ましく、さらに好ましくは0.5~1.5である。反応モル比が、上記下限値未満であると変性の効果が充分に発現しないことがあり、上記上限値を超えると反応条件によってはゲル化することがある。
なお、前記フェノール類構造の反応モル数(P)は、フェノール類の官能基モル数を示すもので、リグニン誘導体の場合、水酸基当量の逆数を用いて計算することが出来る。またフェノール骨格を持つ植物油類を用いる場合は、そのフェノール類構造の官能基モル数も、前記フェノール類構造の反応モル数(P)に加えて計算する。なお、一般に植物油は混合物であるために厳密に計算することは難しいが、混合成分比の中央値から計算して算出することが出来る。例えば、本発明の実施例で用いたカシューオイルの場合、約0.0032(mol/g)となる。
 なお、本発明に用いられるリグニン誘導体の水酸基当量は、例えば、以下の方法によって測定することができる。共栓三角フラスコに前記リグニン誘導体試料1.0g、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gと、を入れて溶解させ、この溶液を60℃で3時間保持した後、純水1mlを添加する。このようにして得られた溶液を、pH=10を終点として、0.1mol/LのNaOH水溶液で滴定し、次式によって水酸基当量を求めることができる。
水酸基当量(g/eq)=1000*W/(((TB*f*S/SB)-(T*f))*N)
式中の各記号の意味は次の通り。
W :試料重量(g)
TB:ブランクの滴定量(ml)
SB:ブランクの無水酢酸-ピリジン混合液の量(g)
T :試料入りの滴定量(ml)
S :試料入りで加えた無水酢酸-ピリジン混合液の量(g)
f :水酸化ナトリウム標準水溶液のファクタ-
 N: 水酸化ナトリウム標準水溶液の規定度
 上記変性リグニン誘導体において、変性率としては、特に限定されないが、変性リグニン誘導体全体に対して、10~70重量%を用いたものであることが好ましく、より好ましくは20~50重量%、さらに好ましくは30~45重量%である。
変性率が上記下限値より少ないと、変性の効果が充分に発現しないことがある。一方、上記上限値を越えると、変性リグニン誘導体が固形化しにくく、取扱いが難しくなったり、反応が制御しにくくなりゲル化物を生成したりすることがある。
上記変性リグニン誘導体を合成する際に用いられる酸性触媒としては特に限定されないが、例えば、塩酸、硫酸、リン酸、亜リン酸等の無機酸類、蓚酸、ジエチル硫酸、パラトルエンスルホン酸、有機ホスホン酸等の有機酸類、酢酸亜鉛等の金属塩類等が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。
これらの中でも、蓚酸、または硫酸、ジエチル硫酸、パラトルエンスルホン酸などの硫酸またはスルホン酸系物質、リン酸、亜リン酸などのリン酸系物質が好ましく、これらの中でも蓚酸、硫酸またはスルホン酸系物質が好ましい。
 上記酸性触媒の添加量は特に限定されないが、リグニン誘導体100重量部に対して、0.05~5重量部の範囲内が好ましく、特に0.3~2.5重量部が好ましい。
酸性触媒の添加量が上記下限値より少ないと、反応が十分に進行しないことがある。一方、上記上限値を越えると、反応モル比が高い場合と同様、反応条件によってはゲル化物を生成することがある。
 上記変性リグニン誘導体を合成する際には、反応溶媒を用いることができる。この反応溶媒としては特に限定されず、水、有機溶媒などを用いることができるが、通常は水またはメタノールが用いられる。また、アルデヒド類としてパラホルムアルデヒドを用いて反応溶媒を用いずに行ってもよい。有機溶媒としては例えば、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル等のグリコールエーテル類、1,4-ジオキサン等のエーテル類、トルエン、キシレン等の芳香族類などが挙げられる。これらを単独または2種類以上組み合わせて使用することができる。
 なお、一又は複数の実施形態において、リグニン誘導体を、前記植物由来化合物に加えてフェノール類を併用して変性して変性リグニン誘導体を合成してもよい。
 前記フェノール類は、具体的には、フェノールやアルキルフェノールであって、例えば、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p-tert-ブチルフェノール等のブチルフェノール類、p-tert-アミルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等の長鎖アルキルフェノール類などが挙げられる。これらを単独あるいは2種以上を混合して使用することができる。
 フェノール類の添加量は、一又は複数の実施形態において、リグニン誘導体100重量部に対して5重量部以上、20重量部以上、又は30重量部以上であり、また500重量部以下、300重量部以下、200重量部以下、100重量部以下、又は80重量部以下である。
 上記変性リグニン誘導体の分子量としては特に限定されないが、数平均分子量で400~5000であることが好ましく、より好ましくは500~3000である。数平均分子量が上記範囲内であると、樹脂の取扱い性が良好である。数平均分子量が上記下限値を下回ると高粘度な粘凋の物質になったり、固形化しても夏期貯蔵時に固結する物質になったりすることがあり、取扱い性が低下することがある。また、上記上限値を上回ると溶剤類に溶解しにくくなったり、配合物との相溶性が低下したりすることがある。
 なお、上記数平均分子量は、前記リグニン誘導体と同様の方法を用いて分析することが出来る。なお、変性条件によっては、一部が溶剤不溶成分になることがある。その場合は大部分の溶解成分を分析すればよいが、不溶成分が多い場合は適した溶媒に変更することが望ましい。
 本発明の組成物で用いられる変性リグニン誘導体の形態としては特に限定されないが、微粉末状、もしくは粒状、ペレット状、ワニス状のものが考えられる。ゴムに混練する際のハンドリング性から、粒状、ペレット状を使うことが好ましい。
 <樹脂組成物>
 本発明の樹脂組成物は、前記変性リグニン誘導体、これ以外に、フェノール系樹脂、後述する充填剤、架橋剤等を含んでも良い。
本発明の樹脂組成物の製造方法は、リグニン誘導体とフェノール系樹脂を混練する工程を含んでもよい。なお、必要に応じて、任意成分を予備混合した後に混練してもよい。また、充填剤、架橋剤、老化防止剤、およびその他の添加剤を含む場合も、その混練の順番は、特に限定されるものではない。
ここに、混練機としては、バンバリーミキサー、ニーダー、ロール、二軸混練機類などを挙げることができる。
 また、混練するときには、必要に応じて、有機溶媒を用いてもよい。有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、m-クレゾール、クロロホルム等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。また、樹脂組成物中の固形分濃度は、特に制限されないが、一例として60~98質量%程度とされ、好ましくは70~95質量%程度とされる。
 変性リグニン誘導体とフェノール系樹脂を用いる場合は、上記の通り混練しても良いが、フェノール系樹脂を反応して得た後の反応器等に変性リグニン誘導体を投入し、溶融混合しても良く、また変性リグニン誘導体を反応させて得た後、反応器等にフェノール系樹脂を投入して溶融混合させる。なお、その他添加物に関しても同様に予め混合することが出来る。
 製造方法の一例としては、リグニン誘導体とフェノール系樹脂を、熱板、ミキサーやロールなどの混合機により混合して、混合樹脂として得ることが出来る。
 <ゴム組成物>
 本発明に記載した、変性リグニン誘導体は、ゴム組成物として使用することが可能である。この場合、ゴム組成物に関しては、前記の変性リグニン誘導体、ジエン系ゴムを含むことを特徴とする。さらに、上記組成物にフェノール系樹脂を含むことも可能である。
 <ゴム組成物の製造方法>
 ゴム組成物の製造方法としては、原料ゴムと、変性リグニン誘導体を混練する工程を含む。なお、必要に応じて、原料ゴムおよび任意成分を予備混合した後に混練してもよい。また、例えば、フェノール系樹脂、充填剤、架橋剤、加硫剤、加硫促進剤、老化防止剤、およびその他の添加剤を含む場合も、その混練の順番は、特に限定されるものではない。
ここに、混練機としては、バンバリーミキサー、ニーダー、ロール類などを挙げることができる。
 また、混練するときには、必要に応じて、有機溶媒を用いてもよい。有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、m-クレゾール、クロロホルム等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。また、ゴム組成物中の固形分濃度は、特に制限されないが、一例として60~98質量%程度とされ、好ましくは70~95質量%程度とされる。
 変性リグニン誘導体とフェノール系樹脂を用いる場合は、上記の通り混練しても良いが、フェノール系樹脂を反応して得た後の反応器等に変性リグニン誘導体を投入し、溶融混合しても良く、また変性リグニン誘導体を反応させて得た後、反応器等にフェノール系樹脂を投入して溶融混合させる。なお、その他添加物に関しても同様に予め混合することが出来る。
 <原料ゴム>
 本発明において使用できる原料ゴムとしては、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、エチレンプロピレンジエンゴム(EPDM)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)等を例示でき、これらは単独で用いても2種以上を混合して用いてもよい。特に、耐外傷性、耐摩耗性、耐疲労特性および耐屈曲亀裂成長性等の特性に優れることから、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)のうち1種以上のゴムが好ましく、さらに、入手のしやすさの点で、天然ゴムおよび/またはブタジエンゴム(BR)がより好ましい。
 上記のスチレンブタジエンゴム(SBR)の結合スチレン量は、10%以上が好ましく、15%以上がより好ましい。結合スチレン量が10%以上である場合、本発明ゴム組成物をたとえばタイヤのキャップトレッド用として用いた場合のグリップ性能が特に良好である。また、結合スチレン量は、60%以下が好ましく、50%以下がより好ましい。
 ブタジエンゴム(BR)は、ブタジエンユニットの結合のうち90%以上がシス1,4-結合である高シスBRであることが好ましい。該高シスBRを配合することにより、ヒステリシスロスを低減して燃費を改善することが可能である。また、耐摩耗性、耐屈曲亀裂成長性および耐老化性能を良好に改善することができる。
 スチレンブタジエンゴム(SBR)および/またはブタジエンゴム(BR)を配合する場合、SBRおよび/またはBRの含有率は、ゴム成分中で50質量%以下であることが好ましく、30質量%以下であることがより好ましい。SBRおよび/またはBRの含有率が50質量%以下である場合、ゴム成分中の石油資源比率を低く抑え、環境への負荷をより小さくすることができる。
 本発明のゴム成分は、アルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基を含む官能基含有天然ゴム(改質天然ゴム)および/または官能基含有ジエン系ゴムを含むことが出来る。天然ゴムおよび/またはジエン系ゴムがこれらの官能基を含む場合、シリカやカーボンブラック等の充填剤の表面と反応または相互作用してこれらの充填剤の分散性が良好となる。
 官能基含有天然ゴム(改質天然ゴム)および/または官能基含有ジエン系ゴムを含む場合は、アルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基は、官能基含有天然ゴム中または官能基含有ジエン系ゴム中に0.001~80モル%の範囲内で含まれることが好ましい。官能基の含有量が0.001モル%以上であれば、上記のシリカやカーボンブラックの表面と反応または相互作用する効果が良好に得られ、80モル%以下であれば未加硫ゴム組成物の製造時の粘度上昇が抑えられ、加工性が良好となる。かかる官能基の含有量は、0.01~50モル%の範囲内、さらに0.02~25モル%の範囲内であることがより好ましい。
 天然ゴムおよび/またはジエン系ゴムにアルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基を含有させる方法としては、たとえば、炭化水素溶媒中で、有機リチウム開始剤を用いて重合されたスチレン-ブタジエン共重合体の重合末端に官能基を導入する方法や、天然ゴムあるいはジエン系ゴムをクロルヒドリン法、直接酸化法、過酸化水素法、アルキルヒドロペルオキシド法、過酸法等の方法によりエポキシ化する方法等が挙げられる。
 本発明のゴム組成物は、ゴム成分中の含有量が50~100質量%の範囲内となるように天然ゴムおよび/または改質天然ゴム、またはスチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)を含むことが好ましい。
上記の含有量が50質量%以上である場合、E’(貯蔵弾性率)の向上効果および60℃付近のtanδの低減効果が特に顕著に発現する。
 なお、ゴム成分の100質量%を天然ゴムおよび/または改質天然ゴムが占めることが環境への負荷が小さい点で好ましいが、たとえば上記のスチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)等の他のゴムを組合せることによって、より高い耐摩耗性や耐屈曲亀裂成長性が必要な場合、これらの性能を調整できる点で好都合である。
 前記ゴム化合物の含有量は、特に限定されるものではないが、変性リグニン誘導体100質量部に対して、100重量部以上、10000質量部以下であるのが好ましく、200重量部以上、5000質量部以下であるのがより好ましく、300重量部以上、2000質量部以下であるのがさらに好ましい。前記ゴム化合物の含有量が少なすぎる場合は、硬度が高くなりすぎて切断時の伸びが少なくなり、多すぎる場合は、補強効果が少なくなる。
 (充填剤)
 次に、充填剤について説明する。
本発明においては、さらに充填剤を用いても良い。
充填剤としては、樹脂組成物またはゴム組成物において通常用いられるものを採用できる。充填剤としては、少なくともカーボンブラック、シリカ、アルミナ、およびセルロースファイバーよりなる群から選択される1種以上を含有するものを使用することが好ましく、特に無機充填剤が好ましい。特に、シリカおよびカーボンブラックから選択される少なくとも1種を含むことが好ましい。シリカを用いるとtanδの低減効果が良好に得られるが、特に本発明の樹脂組成物とシリカとを組合せて用いる場合、E’(貯蔵弾性率)の向上効果と60℃付近でのtanδの低減効果とが特に良好となる。
 充填剤の含有量は、ゴム成分100質量部に対して、10~150質量部の範囲内であることが好ましい。充填剤の該含有量が10質量部以上である場合、タイヤ用ゴム組成物のE’(貯蔵弾性率)の向上効果が良好であり、該含有量が150質量部以下である場合、E’(貯蔵弾性率)が過度に上昇するおそれが少なく、ゴム組成物の調製時の加工性が良好であるとともに、ゴム組成物中の充填剤の分散性が悪化することによる耐摩耗性や破断伸び等の低下、および70℃付近でのtanδの不必要な増大とそれによる燃費の悪化、を招くおそれが少ない。
 充填剤としてシリカが配合される場合、ゴム成分の100質量部に対して、シリカを10~150質量部の範囲内、およびシランカップリング剤を該シリカの含有量に対して1~20質量%の範囲内となるようにそれぞれ配合することが好ましい。タイヤ用ゴム組成物において、ゴム成分100質量部に対するシリカの含有量が10質量部以上である場合、タイヤ用ゴム組成物のE’(貯蔵弾性率)の向上効果が良好であり、150質量部以下である場合、E’(貯蔵弾性率)が過度に上昇するおそれが少なく、タイヤ用ゴム組成物の調製時の加工性が良好である。また、ゴム組成物中のシリカの分散性が悪化することによる耐摩耗性や破断伸びの低下、および70℃付近でのtanδの不必要な増大とそれによる燃費の悪化、を招くおそれを少なくできる。シリカの該含有量は、さらに20質量部以上、さらに30質量部以上であることがより好ましく、また、さらに100質量部以下、さらに80質量部以下であることが好ましい。
 シリカとしては、従来ゴム補強用として慣用されているものが使用でき、たとえば乾式法シリカ、湿式法シリカ、コロイダルシリカ等の中から適宜選択して用いることができる。特に、窒素吸着比表面積(N2SA)が20~600m2/gの範囲内、さらに40~500m2/gの範囲内、さらに50~450m2/gの範囲内であるものを用いることが好ましい。シリカのN2SAが20m2/g以上である場合タイヤ用ゴム組成物に対する補強効果が大きい点で好ましく、600m2/g以下である場合タイヤ用ゴム組成物中での該シリカの分散性が良好で、該ゴム組成物を用いた空気入りタイヤの使用時における発熱性の増大を防止できる点で好ましい。
 また、本発明のゴム組成物は、用途により、前記以外の充填剤を含むことが出来る。充填剤を添加する場合は、その充填剤としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスのようなケイ酸塩、酸化チタン、アルミナのような酸化物、ケイ酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトのような炭酸塩、酸化亜鉛、酸化マグネシウムのような酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムのような水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムのような硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムのようなホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素のような窒化物等の粉末、ガラス繊維、炭素繊維等の繊維片といった無機充填剤の他、木粉、パルプ粉砕粉、セルロースファイバー、布粉砕粉、熱硬化性樹脂硬化物粉、アラミド繊維、タルクのような有機充填剤等が挙げられる。
 また、ゴム成分がエポキシ化天然ゴムを含む場合、シリカとゴム成分とが相互作用し易い点でも好ましい。
 (架橋剤)
 次に、架橋剤について説明する。
 本発明のゴム組成物には、必要に応じて架橋剤を添加することができる。架橋剤を添加する場合は、その架橋剤は、変性リグニン誘導体またはゴム化合物、およびその両方と架橋し得るものであれば特に限定されないが、下記式(4)で表される化合物を含むものが好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(4)中のZはメラミン残基、尿素残基、グリコリル残基、イミダゾリジノン残基および芳香環残基のうちのいずれか1種である。また、mは2~14の整数を表す。また、Rは独立して炭素数1~4のアルキル基または水素原子である。ただし、-CH2ORは、メラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子および芳香環残基の芳香環の炭素原子のいずれかに直接結合している。]
 このような化合物を含むゴム組成物は、硬化後の機械的特性に優れるとともに、硬化物の耐久性および外観の向上に寄与する。これは、架橋剤中に含まれる上記式(4)で表される化合物が、多官能性の架橋点を形成し得るため、変性リグニン誘導体を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。剛直な骨格によって硬化物の機械的特性および耐久性(耐煮沸性等)が向上するとともに、膨れや亀裂等の発生が抑制されるため硬化物の外観も向上することとなる。
 また、-CH2ORは、前述したようにメラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子および芳香環残基の芳香環の炭素原子のうちのいずれかに直接結合しているが、同一の窒素原子または炭素原子に2つ以上の「-CH2OR」が結合している場合、そのうちの少なくとも1つの「-CH2OR」が含む「R」はアルキル基であるのが好ましい。これにより、変性リグニン誘導体を確実に架橋させることができる。
 なお、本明細書においてメラミン残基とは、下記式(A)で表されるメラミン骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000003
 また、本明細書において尿素残基とは、下記式(B)で表される尿素骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000004
 また、本明細書においてグリコリル残基とは、下記式(C)で表されるグリコリル骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000005
 また、本明細書においてイミダゾリジノン残基とは、下記式(D)で表されるイミダゾリジノン骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000006
 また、本明細書において芳香環残基とは、芳香環(ベンゼン環)を有する基のことをいう。
 また、上記式(4)で表される化合物としては、特に、下記式(5)~(8)のうちのいずれかで表される化合物が好ましく用いられる。これらは、変性リグニン誘導体中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応し変性リグニン誘導体を確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、特に均質で剛直な骨格を有し、機械的特性、耐久性および外観に優れた硬化物が得られる。
Figure JPOXMLDOC01-appb-C000007
[式(5)中、XはCH2ORまたは水素原子であり、Rは独立して炭素数1~4のアルキル基または水素原子である。また、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000008
[式(6)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
Figure JPOXMLDOC01-appb-C000009
[式(7)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
Figure JPOXMLDOC01-appb-C000010
[式(8)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
 また、上記式(5)で表される化合物としては、特に、下記式(9)または(10)で表される化合物が好ましく用いられる。これらは、変性リグニン誘導体中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応し変性リグニン誘導体を特に確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、とりわけ均質で剛直な骨格を有し、機械的特性、耐久性および外観に優れた硬化物が得られる。
Figure JPOXMLDOC01-appb-C000011
[式(9)中、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000012
[式(10)中、nは1~3の整数を表す。]
 また、上記架橋剤は、上記式(4)で表される化合物に代えて、またはこの化合物とともに、ヘミサメチレンテトラミン、キヌクリジンおよびピジンのうちの少なくとも1種の化合物を含むものであってもよい。このような架橋剤を含む硬化物は、機械的強度に優れるとともに、耐久性および外観の高いものとなる。これは、ヘキサメチレンテトラミン、キヌクリジンおよびピジンが変性リグニン誘導体を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。
 また、架橋剤には、上記化合物以外の架橋剤成分を用いてもよい。上記化合物以外の架橋剤成分としては、例えば、オルソクレゾールノボラックエポキシ樹脂、ビスフェノールA型エポキシ樹脂、エポキシ化グリセリン、エポキシ化亜麻仁油、エポキシ化大豆油のようなエポキシ樹脂、ヘキサメチレンジイソシアネート、トルエンジイソシアネートのようなイソシアネート化合物、変性リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物として、ホルムアルデヒド、アセトアルデヒド、パラホルムアルデヒド、フルフラールのようなアルデヒド類、ポリオキシメチレンのようなアルデヒド源、ヘキサメチレンテトラミンの他、レゾール型フェノール樹脂等の通常のフェノール樹脂で公知の架橋剤、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物等を挙げることができる。また、変性リグニン誘導体100質量部に対して上記化合物は5~150質量部であるのが好ましく、7.5~50質量部であるのがより好ましい。
 <その他の成分>
 本発明のゴム組成物は、ゴム成分、変性リグニン誘導体および充填剤に加え、軟化剤、粘着付与剤、酸化防止剤、オゾン劣化防止剤、老化防止剤、硫黄、その他の加硫剤、加硫促進剤、加硫促進助剤、過酸化物、酸化亜鉛、ステアリン酸等、必要に応じた添加剤が適宜配合され得る。
 加硫剤としては、有機過酸化物もしくは硫黄系加硫剤を使用できる。有機過酸化物としては、たとえば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3あるいは1,3-ビス(t-ブチルパーオキシプロピル)ベンゼン等を使用することができる。また、硫黄系加硫剤としては、たとえば、硫黄、モルホリンジスルフィドなどを使用することができる。これらの中では硫黄が好ましい。
 加硫促進剤としては、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系またはアルデヒド-アンモニア系、イミダゾリン系、もしくは、キサンテート系加硫促進剤のうち少なくとも一つを含むものを使用することが可能である。
 老化防止剤としては、アミン系、フェノール系、イミダゾール系の各化合物や、カルバミン酸金属塩、ワックスなどを適宜選択して使用することが可能である。
 本発明のゴム組成物は、さらに、ステアリン酸、酸化亜鉛等の、通常ゴム工業にて使用される配合剤を適宜配合することができる。
 製造方法の一例を下記に示す。
(1)原料ゴムと、変性リグニン誘導体と、任意成分(加硫剤および加硫促進剤を除く)とを、バンバリーミキサーなどの密閉式混練機により混練して、加硫系を含有していないゴム組成物を得る。ここに、混練条件(温度・時間)は混練機により異なる。
(2)上記(1)により得られたゴム組成物に、オープンロールなどのロール類や前記混練機を用いて加硫剤および加硫促進剤を添加し、再度混練して、加硫系を含有するゴム組成物を得る。
 <ゴム組成物の硬化物およびタイヤの製造方法>
 次に、ゴム組成物の硬化物およびタイヤを得る工程について説明する。ゴム組成物の硬化物およびタイヤは、ゴム組成物を成形することによって得ることができる。成形方法としては用途によって異なるため、特に限定されるものではないが、金型を用いて成形する場合は、作製したゴム組成物を、油圧プレスを備えた金型を用いて成形し、ゴム組成物の硬化物を得る。
 一例として、本発明のゴム組成物をタイヤのトレッドに用いる場合は、通常の方法により製造される。すなわち、前記ゴム組成物を未加硫の段階でタイヤのトレッド部の形状に押出し加工し、タイヤ成形機上で通常の方法により貼り合わせて未加硫タイヤを成形する。該未加硫タイヤを加硫機中で加熱・加圧してタイヤを得ることができる。
 成形の温度は、100~280℃程度であるのが好ましく、120~250℃程度であるのがより好ましく、130~230℃程度であるのがさらに好ましい。成形の温度が230℃を超えるである場合、ゴムの劣化の恐れがあり、また100℃未満の場合は成形が出来ない恐れがある。
 <成形材料>
 本発明は、その他の態様において、本発明の変性リグニン誘導体を含む成形材料である。本発明の成形材料は、例えば、半導体部品、航空機部品、自動車部品、鋳物、産業用機械部品、電子部品、電気部品、機構部品の用途に適用される。
 本発明の成形材料に用いられる樹脂組成物は、上述の通りに前記変性リグニン誘導体、これ以外に、フェノール系樹脂、後述する充填剤、架橋剤等が用いられる。
 なお、成形方法は特に限定されず、本発明の成形材料は、公知の成形法、例えば、射出成形法、圧縮成形法、押出成形法、キャスト成形法等を用いて成形品とすることができる。このようにして得られる成形品の形態は、どのような形態であってもよく、例えば、成形材料を最終成形品にする前の中間成形品であっても、最終成形品であってもよい。
 本発明を実施例により説明する。しかし本発明はこれらの実施例によって限定されるものではない。また、ここに記載されている「部」は「重量部」を、「%」は「重量%」を示す。
 (実施例1)
 (1)リグニン誘導体の抽出
スギ木粉(60メッシュアンダー)100部と、純水からなる溶媒400部と、を混合し、これを1Lオートクレーブに導入した。そして内容物を300rpmで攪拌しながら、前処理として室温で15分間撹拌を行い、スギ木粉と溶媒とを十分になじませた後、300℃、10MPaで60分間処理して、スギ木粉を分解した。
次いで、得られた分解物を濾過し、濾別された固形成分を回収した。
次いで、得られた固形成分をアセトン250部に12時間浸漬した。これを濾過し、アセトン可溶成分を回収した。
次いで、前記アセトン可溶成分からアセトンを留去し、乾燥することで、リグニン誘導体15.2部を得た。数平均分子量は410、軟化点は108℃であった。
 (2)変性リグニン誘導体の製造
撹拌装置、還流冷却器及び温度計を備えた反応装置にフェノール100部、カシューオイル60部、及びシュウ酸1部を仕込み後、反応装置が110℃に達した時点で反応器をセットした。反応装置の温度が130℃に達してから、37%ホルムアルデヒド水溶液35部を10分間逐添後、50分間還流反応を行った。次いで反応装置を160℃に昇温し、常圧脱水を30分行った。その後30分真空脱水を行い、内容物を反応器より取出して常温で固形の変性リグニンを153部得た。
 (3)ゴム組成物の作製
変性リグニン誘導体100部と天然ゴム化合物500部、カーボンブラック400部、樹脂架橋剤としてヘキサメチレンテトラミン20部、加硫剤として硫黄10部、加硫促進助剤として酸化亜鉛10部、離型剤としてステアリン酸15部を、バンバリーミキサーを100℃加熱して混練し、ゴム組成物を得た。
 (実施例2)
変性リグニン誘導体の製造において、シュウ酸を3部とした以外は実施例1と同じ。
 (実施例3)
変性リグニン誘導体の製造において、37%ホルムアルデヒド水溶液を39部とした以外は実施例1に同じ。
 (実施例4)
変性リグニン誘導体の製造において、カシューオイル40部、37%ホルムアルデヒド水溶液を39部とした以外は実施例1に同じ。
 (実施例5)
変性リグニン誘導体の製造において、シュウ酸の代わりにパラトルエンスルホン酸(PTSA)を1部加えた以外は、実施例3に同じ。
 (実施例6)
変性リグニン誘導体の製造において、ホルムアルデヒド水溶液を添加せず、シュウ酸の代わりに硫酸を1部加えた以外は請求項1に同じ。
 (実施例7)
変性リグニン誘導体の製造において、ホルムアルデヒド水溶液を29部、シュウ酸の代わりに硫酸を1部加えた以外は請求項1に同じ。
 (実施例8)
 リグニン誘導体の抽出において、スギ木粉の代わりに稲わらを用いた以外は請求項1に同じ。なお、リグニン誘導体は、数平均分子量は390、軟化点は98℃であった。
 (実施例9)
 リグニン誘導体の抽出において、スギ木粉の代わりにブナ木粉を用いた以外は請求項1に同じ。なお、リグニン誘導体は、数平均分子量は420、軟化点は110℃であった。
 (実施例10)
 ゴム組成物の作製において、変性リグニン誘導体75重量部とフェノールノボラック樹脂25重量部を用いた以外は実施例1に同じ。
 (実施例11)
 ゴム組成物の作製において、変性リグニン誘導体75重量部とカシューオイル変性ノボラック樹脂25重量部を用いた以外は実施例1に同じ。
 (実施例12)
 ゴム組成物の作製において、カーボンブラック280質量部とシリカ70質量部を用いて、さらにシリカカップリング剤を5部加えた以外は実施例1に同じ。
 (実施例13)
 変性リグニン誘導体の製造において、カシューオイルの代わりにトール油20部を用い、ホルムアルデヒド水溶液を添加せず、シュウ酸の代わりに硫酸を1部加えた以外は請求項1に同じ。
 (実施例14)
 変性リグニン誘導体の製造において、カシューオイルの代わりに亜麻仁油20部を用い、ホルムアルデヒド水溶液を添加せず、シュウ酸の代わりに硫酸を1部加えた以外は請求項1に同じ。
 (実施例15~18)
 変性リグニン誘導体の製造において、カシューオイルに加えてフェノールを用いた以外は請求項1に同じ。カシューオイル及びフェノールは、それぞれ、実施例15では20部および60部、実施例16では30部および40部、実施例17では40部および30部、実施例18では60部および20部とした。
 (実施例19)
変性リグニン誘導体の製造において、リグニン誘導体として、アルセル(Alcell(登録商標))法により得られたリグニン誘導体(Lignol Lignin(Powder):Lignol社製)を用いて、カシューオイル80部、37%ホルムアルデヒド水溶液を39部とし、酸をパラトルエンスルホン酸(PTSA)とした以外は実施例1に同じ。
 (比較例1)
 変性リグニン誘導体を用いず、実施例1に従ってゴム組成物を得た。
 (比較例2)
 変性リグニン誘導体の代わりにフェノールノボラック樹脂を100質量部用いた以外は、比較例1に同じ。
 上記実施例で得られた変性リグニン、また比較例の樹脂を用い、表1に示す配合(部)で加熱混練した各種ゴム配合組成物を、油圧プレスにて160℃20分間加硫して、厚さ2mmの加硫ゴムシートを作製した。評価結果を表1に示す。
 以下に、実施例および比較例において用いた各種原料について説明する。
天然ゴム:東知製RSS3
硬化剤:ヘキサメチレンテトラミン
カーボンブラック:三菱化学社製、HAF
シリカ:エボニック社製、Ultrasil VN3(BET比表面積:175m2/g)
シランカップリング剤:エボニック社製、Si-69
酸化亜鉛:堺化学工業社製
ステアリン酸:日油社製ビーズステアリン酸YR
硫黄:細井化学工業社製、微粉硫黄
加硫促進剤:大内新興化学工業社製、MSA-G
ノボラック型フェノール樹脂:住友ベークライト社製、PR-50731
カシューオイル変性フェノール樹脂:住友ベークライト社製、PR-12686
 (a)ムーニー粘度
JIS K 6300に準拠して、東洋精機社製ムーニー粘度計を用いムーニー粘度を測定した。
(b)硬度(タイプD)
JIS K 6253に準拠して、東洋精機社製デュロメーターを用い硬さ(タイプD)を測定した。
(c)切断時引張応力・切断時伸び/JIS K6251に準拠して、東洋精機社製ストログラフを用い、引張速度50mm/分で測定した
(d)貯蔵弾性率、tanδ
TAインスツルメント社製動的粘弾性測定装置を用い、動的歪2%の条件下で、60℃における貯蔵弾性率とtanδを測定した。結果は比較例1のtanδの逆数を100とした場合の、他の実施例および比較例の値を算出した。ここで、tanδの逆数の値が大きいことは、粘弾性特性のtanδが小さいことを意味し、繰返し変形で発生する熱エネルギーを抑えることができ、タイヤ場合は、燃費性能を高めることができるものとなる。
Figure JPOXMLDOC01-appb-T000013
 表1から明らかなように、各実施例で得られたゴム組成物の硬化物は、繰返し変形で発生する熱エネルギーの低さの目安であるtanδ値の逆数に優れ、硬度の目安である貯蔵弾性率も高く、さらに、切断時引張応力および切断時伸びが高いものであった。本発明による変性リグニンを用いることで、上記の優れた特性と高い植物由来度を高度に両立することが出来るため、環境負荷が低減することが出来る。
 [成形材料としての評価]
 実施例1、5、15及び18の変性リグニン誘導体を用いて樹脂成形体を調製し、以下の方法により外観及び曲げ強度の評価を行った(実施例20~23)。その結果を表2に示す。
 <樹脂組成物の調製>
 変性リグニン誘導体又はリグニン100質量部にヘキサメチレンテトラミン15質量部を常温で添加し、粉砕混合してリグニン誘導体組成物を調製した。
 <樹脂成形体の調製>
 リグニン誘導体組成物に対し、ガラス繊維(ガラスミルドファイバー、日東紡績(株)製、基準繊維径10±1.5μm、平均繊維長90μm)を、リグニン誘導体組成物との混合比率で50.5重量%となるように添加した。ラボプラストミルにて90℃50rpmにて混練し、混練したものを175℃3minの条件にて圧縮成形を行い、幅10mm、長さ100mm、高さ4mmの樹脂成形体を得た。
 <外観>
 得られた樹脂成形体について、外観を目視で確認し、評価した。なお、外観の評価基準は以下のとおりである。
評価基準
 ○:成形品の表面が平滑で、成形品の表面に肉眼で分かる凹凸が認められない、または、ひずみ、しわ、斑点が1~2個である。
 △:成形品の表面に肉眼で分かる凹凸が認められる、または、ひずみ、しわ、斑点が3~5個である。
 ×:成形品の表面に肉眼で分かる著しい凹凸が認められる、または、ひずみ、しわ、斑点が6個以上である。
 <曲げ強度>
 樹脂成形体を用いて、JIS K6911に準拠して曲げ強度を求めた。樹脂成形体を用いて、JIS K6911に準拠して曲げ強度を求めた。具体的には、精密万能試験機(島津製作所社製 オートグラフAG-Xplus)にて、2mm/分の速度で荷重をかけて三点曲げ試験を行った。
Figure JPOXMLDOC01-appb-T000014
 表2から明らかなように、変性リグニン誘導体を成形材料として使用した実施例20~23の成形品は、比較例3及び4に比べて外観及び/又は曲げ強度に優れていた。
 本発明の変性リグニン誘導体は、ゴム補強、又は、成形材料の用途に好適である。例えば、本発明の変性リグニン誘導体を含むゴム組成物は、繰返し変形で発生する熱エネルギーが低く、優れた弾性率、切断時引張り応力および切断時伸びが要求される用途、特にタイヤ用途に好適に用いることができる。

Claims (16)

  1.  変性リグニン誘導体であって、リグニン誘導体に、植物由来化合物を用いて変性したことを特徴とする変性リグニン誘導体。
  2.  前記植物由来化合物が、フェノール構造を含有する物質、ロジン酸を含有する物質、不飽和結合を有する物質よりなる群から選択される1種以上を含有する請求項1記載の変性リグニン誘導体。
  3.  前記フェノール構造含有する物質が、カシューオイル、ウルシ抽出物、カルダノール、カードル、メチルカードル、アナカルド酸、ウルシオール、ラッコール、チチオール及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、請求項2に記載の変性リグニン誘導体。
  4.  前記ロジン酸を含有する物質が、テルペン油、トール油、ガムロジン、ウッドロジン、及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、請求項2または3に記載の変性リグニン誘導体。
  5.  前記不飽和結合を有する物質が、桐油、亜麻仁油、芥子油、紫蘇油、胡桃油、荏油、紅花油、向日葵油、及びそれらの精製物から選ばれる少なくとも1種以上を含むものである、請求項2ないし4のいずれか1項に記載の変性リグニン誘導体。
  6.  前記リグニン誘導体100重量部に対して、植物由来化合物を0.01~300重量部を用いて変性させたものである請求項1ないし5のいずれか1項に記載の変性リグニン誘導体。
  7.  リグニン誘導体を、前記植物由来化合物とフェノール類とを用いて変性した、請求項1ないし6のいずれか1項に記載の変性リグニン誘導体。
  8.  前記リグニン誘導体が、ゲル浸透クロマトグラフィー(GPC)分析により測定されたポリスチレン換算の数平均分子量が200~5000であるものを含有するものである請求項1から7のいずれか1項に記載の変性リグニン誘導体。
  9.  前記リグニン誘導体の軟化点が200℃以下であることを特徴とする請求項1ないし8のいずれか1項に記載の変性リグニン誘導体。
  10.  ゴム補強、又は、成形材料に用いるための、請求項1ないし8のいずれか1項に記載の変性リグニン誘導体。
  11.  請求項1ないし10のいずれか1項に記載の変性リグニン誘導体を含むことを特徴とする樹脂組成物。
  12.  請求項1ないし10のいずれか1項に記載の変性リグニン誘導体と、ジエン系ゴムを含むことを特徴とするゴム組成物。
  13.  さらに、充填剤を含有するものである請求項12に記載のゴム組成物。
  14.  前記充填剤は、少なくともカーボンブラック、シリカ、アルミナ、およびセルロースファイバーよりなる群から選択される1種以上を含有するものである、請求項13に記載のゴム組成物。
  15.  請求項11ないし13のいずれか1項に記載のゴム組成物を硬化して得られることを特徴とする硬化物。
  16.  請求項1ないし10のいずれか1項に記載の変性リグニン誘導体を含む、成形材料。
PCT/JP2014/077608 2013-10-16 2014-10-16 樹脂組成物、およびゴム組成物 WO2015056758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES14853796.2T ES2677554T3 (es) 2013-10-16 2014-10-16 Composición de resina y composición de caucho
JP2015542665A JP6555531B2 (ja) 2013-10-16 2014-10-16 樹脂組成物、およびゴム組成物
EP14853796.2A EP3059274B1 (en) 2013-10-16 2014-10-16 Resin composition and rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013215145 2013-10-16
JP2013-215145 2013-10-16

Publications (1)

Publication Number Publication Date
WO2015056758A1 true WO2015056758A1 (ja) 2015-04-23

Family

ID=52828199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077608 WO2015056758A1 (ja) 2013-10-16 2014-10-16 樹脂組成物、およびゴム組成物

Country Status (4)

Country Link
EP (1) EP3059274B1 (ja)
JP (1) JP6555531B2 (ja)
ES (1) ES2677554T3 (ja)
WO (1) WO2015056758A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158149A1 (ja) * 2015-03-31 2016-10-06 ハリマ化成株式会社 インキ用樹脂およびインキ
WO2016171275A1 (ja) * 2015-04-24 2016-10-27 花王株式会社 樹脂用添加剤
JP2016204664A (ja) * 2015-04-24 2016-12-08 花王株式会社 樹脂用添加剤
JP2017132852A (ja) * 2016-01-26 2017-08-03 日本化薬株式会社 変性リグニン、エポキシ樹脂、およびその製造方法
WO2018079594A1 (ja) * 2016-10-26 2018-05-03 花王株式会社 ゴム組成物
WO2019026825A1 (ja) * 2017-07-31 2019-02-07 東レ株式会社 リグニンの製造方法
WO2020140155A1 (en) 2019-01-04 2020-07-09 Suzano Canada Inc. Lignin-enhanced butyl rubbers
JP2021529862A (ja) * 2018-06-26 2021-11-04 スザノ カナダ インコーポレイテッド レオロジー的に定義されたリグニン組成物
CN113801380A (zh) * 2020-06-17 2021-12-17 韩国轮胎与科技株式会社 包含木质素化合物的环保轮胎用橡胶组合物
CN115895278A (zh) * 2022-11-23 2023-04-04 宁国市瑞普密封件有限公司 一种耐高温发动机缸密封垫材料及其制备方法
CN116178976A (zh) * 2023-02-21 2023-05-30 上海昶法新材料有限公司 一种改性木质素的制备方法及其在天然橡胶中的应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733546B2 (ja) * 2014-09-12 2020-08-05 住友ベークライト株式会社 ゴム組成物およびリグニン誘導体の製造方法
JP7444536B2 (ja) * 2018-08-31 2024-03-06 イーストマン ケミカル カンパニー 樹脂組成物及び樹脂成形体
CN112266651B (zh) * 2020-10-23 2022-11-18 四川上愚生物科技有限公司 丙烯基苯酚类化合物在制备浅色生漆中的应用、浅色生漆及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352978A (ja) 2003-05-06 2004-12-16 Fuji Carbon Kk バイオマス樹脂組成物、その製造方法および該バイオマス樹脂組成物からなる成形材料
JP2008285626A (ja) 2007-05-21 2008-11-27 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009079198A (ja) * 2007-09-25 2009-04-16 Kono Shinsozai Kaihatsu Kk 新規のリグニンフェノール系樹脂及びその製造方法
JP2011522085A (ja) 2008-05-30 2011-07-28 ソシエテ ド テクノロジー ミシュラン タイヤ部品中のリグニン
JP2012229330A (ja) 2011-04-26 2012-11-22 Gun Ei Chem Ind Co Ltd タッキファイヤー、ゴム組成物およびタイヤ
JP2014055215A (ja) * 2012-09-11 2014-03-27 Akebono Brake Ind Co Ltd 摩擦材
CN103756060A (zh) * 2013-12-16 2014-04-30 华南理工大学 一种腰果酚改性木质素填充的橡胶复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276591B2 (en) * 2003-05-06 2007-10-02 Fuji Carbon Co., Ltd. Biomass resin composition, process for preparing the same and molding material using the biomass composition
US8409403B2 (en) * 2009-10-23 2013-04-02 David H. Blount Production of amino lignin and amino lignin cellulose resins and adhesives
JP5397361B2 (ja) * 2010-11-17 2014-01-22 住友ベークライト株式会社 プリプレグの製造方法
US9534650B2 (en) * 2012-03-23 2017-01-03 Akebono Brake Industry Co., Ltd. Friction material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352978A (ja) 2003-05-06 2004-12-16 Fuji Carbon Kk バイオマス樹脂組成物、その製造方法および該バイオマス樹脂組成物からなる成形材料
JP2008285626A (ja) 2007-05-21 2008-11-27 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物およびこれを用いた空気入りタイヤ
JP2009079198A (ja) * 2007-09-25 2009-04-16 Kono Shinsozai Kaihatsu Kk 新規のリグニンフェノール系樹脂及びその製造方法
JP2011522085A (ja) 2008-05-30 2011-07-28 ソシエテ ド テクノロジー ミシュラン タイヤ部品中のリグニン
JP2012229330A (ja) 2011-04-26 2012-11-22 Gun Ei Chem Ind Co Ltd タッキファイヤー、ゴム組成物およびタイヤ
JP2014055215A (ja) * 2012-09-11 2014-03-27 Akebono Brake Ind Co Ltd 摩擦材
CN103756060A (zh) * 2013-12-16 2014-04-30 华南理工大学 一种腰果酚改性木质素填充的橡胶复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TON THAT MINH TAN: "Cardanol-lignin-based epoxy resins: synthesis and characterization", JOURNAL OF POLYMER MATERIALS, vol. 13, no. 3, 1996, pages 195 - 199, XP008183357 *
TON THAT MINH TAN: "Cardanol-lignin-based polyurethanes", POLYMER INTERNATIONAL, vol. 41, no. 1, 1996, pages 13 - 16, XP055333663 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781281B2 (en) 2015-03-31 2020-09-22 Harima Chemicals, Incorporated Resin for ink and ink
WO2016158149A1 (ja) * 2015-03-31 2016-10-06 ハリマ化成株式会社 インキ用樹脂およびインキ
US10717852B2 (en) 2015-04-24 2020-07-21 Kao Corporation Additive for resins
WO2016171275A1 (ja) * 2015-04-24 2016-10-27 花王株式会社 樹脂用添加剤
JP2016204664A (ja) * 2015-04-24 2016-12-08 花王株式会社 樹脂用添加剤
JP2017132852A (ja) * 2016-01-26 2017-08-03 日本化薬株式会社 変性リグニン、エポキシ樹脂、およびその製造方法
JP6383899B1 (ja) * 2016-10-26 2018-08-29 花王株式会社 ゴム組成物
CN109890890B (zh) * 2016-10-26 2022-02-22 花王株式会社 橡胶组合物
WO2018079594A1 (ja) * 2016-10-26 2018-05-03 花王株式会社 ゴム組成物
US11066539B2 (en) 2016-10-26 2021-07-20 Kao Corporation Rubber composition
CN109890890A (zh) * 2016-10-26 2019-06-14 花王株式会社 橡胶组合物
WO2019026825A1 (ja) * 2017-07-31 2019-02-07 東レ株式会社 リグニンの製造方法
JP2021529862A (ja) * 2018-06-26 2021-11-04 スザノ カナダ インコーポレイテッド レオロジー的に定義されたリグニン組成物
WO2020140155A1 (en) 2019-01-04 2020-07-09 Suzano Canada Inc. Lignin-enhanced butyl rubbers
CN113801380A (zh) * 2020-06-17 2021-12-17 韩国轮胎与科技株式会社 包含木质素化合物的环保轮胎用橡胶组合物
JP2021195534A (ja) * 2020-06-17 2021-12-27 ハンコック タイヤ アンド テクノロジー カンパニー リミテッド リグニン化合物を含む環境に優しいタイヤ用ゴム組成物
JP7171806B2 (ja) 2020-06-17 2022-11-15 ハンコック タイヤ アンド テクノロジー カンパニー リミテッド リグニン化合物を含む環境に優しいタイヤ用ゴム組成物
CN115895278A (zh) * 2022-11-23 2023-04-04 宁国市瑞普密封件有限公司 一种耐高温发动机缸密封垫材料及其制备方法
CN115895278B (zh) * 2022-11-23 2024-03-12 宁国市瑞普密封件有限公司 一种耐高温发动机缸密封垫材料及其制备方法
CN116178976A (zh) * 2023-02-21 2023-05-30 上海昶法新材料有限公司 一种改性木质素的制备方法及其在天然橡胶中的应用

Also Published As

Publication number Publication date
EP3059274A4 (en) 2017-06-14
ES2677554T3 (es) 2018-08-03
JPWO2015056758A1 (ja) 2017-03-09
EP3059274B1 (en) 2018-06-06
JP6555531B2 (ja) 2019-08-07
EP3059274A1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6555531B2 (ja) 樹脂組成物、およびゴム組成物
JP6541007B2 (ja) フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物
JP6733546B2 (ja) ゴム組成物およびリグニン誘導体の製造方法
WO2015056757A1 (ja) 樹脂組成物、ゴム組成物、および硬化物
JP2023024831A (ja) 改質リグニンの製造方法及び改質リグニン、並びに改質リグニン含有樹脂組成材料
JP6406948B2 (ja) ゴム補強用のリグニン誘導体、ゴム補強用のリグニン誘導体の製造方法、リグニン樹脂組成物およびゴム組成物
JP6422708B2 (ja) ゴム補強用のリグニン誘導体の製造方法、リグニン樹脂組成物の製造方法およびゴム組成物の製造方法
JP2023024830A (ja) 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
JP2012092179A (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP5771088B2 (ja) 固形レゾール型バイオマスフェノール樹脂およびゴム組成物
JP2007002032A (ja) 変性フェノール樹脂とその製造方法、および変性フェノール樹脂組成物
JP2020050814A (ja) フェノール変性リグニン樹脂を含む樹脂材料、それを用いたフェノール変性リグニン樹脂組成物および構造体
JP2020050815A (ja) フェノール変性リグニン樹脂を含有する樹脂材料の製造方法、それを用いた構造体の製造方法
JP6645440B2 (ja) リグニン樹脂組成物、硬化物および成形物
JP2015017241A (ja) ゴム配合用フェノール樹脂組成物、ゴム組成物及びタイヤ
JP2010229364A (ja) 変性フェノール樹脂とその製造方法、変性フェノール樹脂組成物、及び、ゴム配合組成物
JP2012162603A (ja) 空気入りタイヤ
JP2014051573A (ja) ゴム組成物、硬化物およびタイヤ
JP2012180438A (ja) ゴム配合用変性フェノール樹脂組成物
JP2014205928A (ja) 繊維被覆用ゴム組成物およびそれを用いた空気入りタイヤ
JP2008208230A (ja) ゴム配合用乾性油変性フェノール樹脂及びゴム配合物
JP2013249402A (ja) ゴム組成物
JP2013049746A (ja) ゴム配合用フェノール樹脂組成物
JP2016222835A (ja) 樹脂組成物、樹脂組成物の製造方法、および、成形品
JP2005330320A (ja) 車載部品成形用木質樹脂材料およびそれから成形された車載部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014853796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853796

Country of ref document: EP