WO2015053076A1 - 気密封止形のledランプ - Google Patents

気密封止形のledランプ Download PDF

Info

Publication number
WO2015053076A1
WO2015053076A1 PCT/JP2014/075195 JP2014075195W WO2015053076A1 WO 2015053076 A1 WO2015053076 A1 WO 2015053076A1 JP 2014075195 W JP2014075195 W JP 2014075195W WO 2015053076 A1 WO2015053076 A1 WO 2015053076A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
led lamp
helium
gas
hermetically sealed
Prior art date
Application number
PCT/JP2014/075195
Other languages
English (en)
French (fr)
Inventor
石川 洋祐
雅三 陸名
泰久 松本
将幸 松崎
信雄 福田
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Priority to JP2014546235A priority Critical patent/JP5999458B2/ja
Publication of WO2015053076A1 publication Critical patent/WO2015053076A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb

Definitions

  • the present invention relates to a hermetically sealed LED lamp.
  • the illumination lamp has been developed and put into practical use in general, incandescent bulbs, fluorescent lamps, HID lamps, and LED lamps.
  • the LED lamp is a lamp using a light emitting diode element (LED element) as a light source. LED lamps are capable of emitting white light due to the development of blue LED elements, and their use as illumination lamps has recently been expanding.
  • LED element light emitting diode element
  • FIGS. 1A to 1C are diagrams showing examples of LED lamps that are currently widely sold. These LED lamps 100 are generally lamps having an output of 10 W or less (typically about 7 W). As shown in FIGS. 1A to 1C, although there are various lamp shapes, the lamp basically includes a base 102, a heat radiating portion 104, and a globe 106.
  • the heat dissipating part 104 is formed from aluminum die-casting, and in many cases, heat dissipating fins are formed on the outer peripheral surface.
  • the globe 106 is made of a translucent resin.
  • LED elements are semiconductor elements and do not need to be placed in a vacuum atmosphere or a predetermined gas atmosphere. Accordingly, the aluminum die cast part 104 and the globe 106 are fixed with an appropriate adhesive. For this reason, the internal space formed by the aluminum die cast part 104 and the globe 106 is not hermetically sealed between the outside of the lamp (hereinafter referred to as “non-hermetic sealed type” or “open type”). .)
  • JP 2010-16223 “Lamp” (Release Date: 2010/01/21), Patent No. 5081746, Applicant: Panasonic Corporation International Publication WO 2010/004702 “Light Source for Light Bulb Shape Lighting” (International Publication Date: 2010/01/14), Patent No. 5129329, Applicant: Panasonic Corporation JP 2012-156036 "LED lamp” (release date: 2012/08/16), applicant: Iwasaki Electric Co., Ltd.
  • the LED element is a semiconductor element, and there is a close relationship between the temperature of the semiconductor junction and the element lifetime. That is, when the temperature of the joint at the time of use is relatively low, the device lifetime becomes long, but as the temperature increases, the device lifetime decreases rapidly. Therefore, in the LED lamp, when the temperature of the LED element is high, the lamp life is shortened and the lamp illuminance is also deteriorated.
  • a low molecular weight gas for example, helium gas
  • a copper light source support having a long shape in the lamp axis direction is arranged, and a plurality of LED elements are mounted as light sources around the copper light source support.
  • a through-hole is formed in the light source support along the lamp axis to form a cooling gas flow path, and the LED element is efficiently cooled from the back surface.
  • this invention it is confirmed that there is a certain cooling effect, and the effect is shown in a graph in FIG.
  • an object of the present invention is to provide an airtightly sealed LED lamp having a high cooling and heat dissipation function and at the same time, no discoloration occurs in the LED element.
  • the LED lamp according to the present invention is, on one side, a hermetically sealed LED lamp having an outer sphere that covers the LED light source, and the sealed gas in the outer sphere is helium, It is a mixed gas of helium and oxygen mixed with at least oxygen.
  • the mixed gas may be a mixed gas generated by mixing air or dry air with helium gas.
  • the LED lamp according to the present invention is, on one side, a hermetically sealed LED lamp having an outer sphere that covers the LED light source, the helium gas enclosed in the outer sphere, and a solid oxygen dispenser.
  • a mixed gas of helium and oxygen is generated in the outer sphere by oxygen supplied from the oxygen dispenser.
  • the mixed gas may be a mixed gas in which 2 to 10% oxygen is mixed in a volume ratio with respect to the helium gas.
  • the present invention it is possible to provide a hermetically sealed LED lamp having a high cooling and heat dissipation function and at the same time, no discoloration occurs in the LED element.
  • FIG. 1A is a diagram showing an example of a non-hermetic LED lamp that is currently widely sold.
  • FIG. 1B is a diagram showing another example of a non-hermetic LED lamp that is currently widely sold.
  • FIG. 1C is a diagram showing still another example of a non-hermetic LED lamp that is currently widely sold.
  • FIG. 2A is a diagram illustrating an example of an airtightly sealed LED lamp according to the first embodiment of the present invention, and is a front view of the LED lamp.
  • FIG. 2B is a diagram showing an example of a hermetically sealed LED lamp according to the first embodiment of the present invention, and is a perspective view seen obliquely from below so that the positional relationship of the four light source supports can be understood. .
  • FIG. 1A is a diagram showing an example of a non-hermetic LED lamp that is currently widely sold.
  • FIG. 1B is a diagram showing another example of a non-hermetic LED lamp that is currently widely sold.
  • FIG. 3 is a view for explaining a light source support used in the LED lamp shown in FIGS. 2A and 2B.
  • FIG. 4 is a diagram illustrating an LED element used in the LED lamp shown in FIGS. 2A and 2B.
  • FIG. 5 is a diagram showing the relationship between the sealed gas and the luminous flux maintenance factor.
  • FIG. 6 is a diagram showing the relationship between the sealing gas and the cooling effect by the junction temperature.
  • FIG. 7 is a flow of a method for manufacturing a hermetically sealed LED lamp according to the present embodiment, and a simple lamp diagram at that stage is shown on the right side of each step.
  • FIGS. 1A to 1C are diagrams showing an example of an LED lamp according to this embodiment of the present invention.
  • FIG. 2A is a front view of the LED lamp
  • FIG. 2B is a perspective view seen from obliquely below so that the positional relationship of the four light source supports can be understood.
  • the LED lamp 10 is intended for an LED lamp of about 12 W having a higher output than the low-power LED lamp of about 7 W currently widely advertised and sold as described in FIGS. 1A to 1C. For this reason, cooling and heat dissipation means become a further important consideration.
  • a plurality of LED elements 18 are arranged inside an outer sphere 6 whose one end is hermetically sealed with a base 2.
  • the plurality of LED elements 18 are mounted and fixed on the light source support 14 at appropriate intervals.
  • the light source support 14 is positioned and supported at an appropriate position inside the outer sphere 6 by a support column 20 extending from a stem 8 fixed to one end of the outer sphere 6. If desired, an insulating tube (not shown) is placed on the portion of the column 20 adjacent to the light source support 14 to ensure electrical insulation between the light source support 14 and the column 20.
  • a heat shielding member 24 may be provided inside the outer sphere 6 near the base 2.
  • the heat shielding member 24 is formed of, for example, a ceramic, a metal plate, a mica plate, or the like.
  • the base 2 may be a screw-in type (E type) or an insertion type used in incandescent bulbs or HID lamps.
  • the outer sphere 6 is a BT tube made of translucent hard glass such as borosilicate glass, for example. However, it may be any shape.
  • the outer sphere 6 may be either a transparent type or a diffusion type (a type of frosted glass). Similar to known incandescent bulbs and HID lamps, the space between the base 2 and the outer sphere 6 is hermetically sealed, and the space between the outer space and the outer space is hermetically sealed.
  • the LED lamp 10 includes a light source support piece composed of four light source support pieces 14-1 to 14-4.
  • a mounting board 16 is fixed to the outer peripheral surface of each light source support piece 14-1 to 14-4, and four LED elements 18 are mounted on each mounting board 16.
  • a heat conductive sheet (not shown) may be interposed between the outer peripheral surface of the light source support 14 and the mounting substrate 16.
  • FIG. 3 is a diagram for explaining the light source support 14.
  • the outer shapes of the light source support pieces 14-1 to 14-4 are plate-like bodies made of a material having good heat conductivity, such as copper, aluminum, heat conductive resin, and the like.
  • the heat conductive resin is obtained by mixing a metal powder / metal piece into the resin to increase the heat conduction coefficient.
  • the four light source support pieces 14-1 to 14-4 are arranged so as to form a generally rectangular shape when viewed in the axial section. Further, the light source support pieces adjacent to each other are not connected and are arranged with a slit (gap) 26 therebetween.
  • the illustrated light source support 14 is arranged so that the four light source support pieces form a rectangle when viewed in the axial cross section, but is not limited thereto. That is, three light source support pieces may be arranged to form a triangle, or any number (n) of light source support pieces may be arranged to form an arbitrary polygon (n square). May be. Further, the LED elements mounted on each light source support 14 may have any desired number.
  • Power is supplied to each LED element 18 by lead wires (not shown) that connect the LED elements in series.
  • the light source support 14 is a good electrical conductor, the light source support may be used as a feeder line.
  • the mounting substrate 16 is made of a printed wiring board, and a necessary circuit pattern for supplying power to the LED element is formed.
  • the mounting substrate 16 has a relatively thin plate thickness or is formed as a metal core substrate (metal core substrate).
  • the metal core substrate is a known technique. Due to the good thermal conductivity of the metal, a high heat dissipation and cooling effect can be expected.
  • FIG. 4 is a schematic cross-sectional view of the LED element 18.
  • a white gallium nitride GaN chip 32 is mounted on an aluminum nitride AlN substrate 30, and a transparent silicone adhesion layer 36 is formed on the surface of the gallium nitride chip.
  • a silicone sealant 34 is formed on the side surfaces of the gallium nitride chip 32 and the silicone adhesion layer 36 to protect them.
  • light yellow phosphor sheets 38 and 40 are formed on the silicone adhesion layer 36 and the silicone sealant 34.
  • the phosphor sheet on the silicone adhesion layer 36 forms a phosphor sheet phosphor layer 40 in which an inorganic phosphor is mixed with silicone, and the phosphor sheet on the silicone sealant 34 is a phosphor made of silicone.
  • the body sheet scattering layer 38 is formed.
  • a substantially hemispherical silicone lens 42 covers the phosphor sheet phosphor layer 40.
  • the present inventors have confirmed that the silicone adhesion layer 36 that was originally transparent has turned brown. Furthermore, it was also confirmed that no discoloration was observed for each element other than the silicone adhesion layer 36. Since the silicone adhesion layer 36 that has turned brown is seen through the light yellow translucent phosphor sheet phosphor layer 40, the entire LED element appears to be discolored.
  • paragraph 0017 of the above-mentioned patent document 1 states that “the inside of the valve 9 may be filled with an inert gas (for example, nitrogen). The inside of the valve 9 is made airtight. Thus, it is possible to prevent the resin (silicone resin) and phosphor particles constituting the sealing body 17 from being deteriorated due to oxidation.
  • paragraph 0040 of the aforementioned Patent Document 2 states that “in order to prevent the LED and the phosphor from absorbing moisture, nitrogen gas or dry air is sealed in the inner space of the groove 41 or the internal gas is exhausted. "It is preferable to keep it in a vacuum state”.
  • paragraph 0067 of the above-mentioned patent document 3 states that “the inside of the outer sphere is filled with a low molecular weight gas, so there is no oxygen, and the LED element 18, the related circuit pattern, and other components are oxidized. There is no corrosion. "
  • the present inventors verified the degree of occurrence of discoloration by experiments by changing the composition of the sealed gas, that is, using a mixed gas in which various gases are mixed with the helium gas He. As a result, in a mixed gas in which a predetermined amount of oxygen O 2 is mixed with the helium gas He, I found no discoloration.
  • the degree of color change of the LED element is quantitatively defined by taking the deterioration of the light flux due to the color change as the light flux maintenance factor.
  • Table 1 shows experimental data on the relationship between the sealed gas and the luminous flux maintenance factor. Each data shown in Table 1 shows an average value of measured values of at least five lamps manufactured under each condition.
  • the conventional example is an LED lamp in which only helium gas is enclosed in an outer sphere.
  • the light flux maintenance factor data shows that the light flux has decreased to 6.6% of the initial light flux.
  • the present embodiment is an LED lamp in which a mixed gas of helium He and oxygen O 2 is enclosed.
  • a mixed gas volume% of 97% helium and 3% oxygen
  • a mixed gas volume%) of 93% helium and oxygen 7% (volume%)
  • the light flux is 100% of the initial light flux after 491 hours have elapsed since lighting. .2% was maintained.
  • the mixing ratio of helium and oxygen it is necessary to accumulate further data, but at the present time, when the ratio of oxygen with respect to the mixed gas of helium and oxygen is at least about 2 to 10%, a good luminous flux maintenance factor Ml. Will be secured.
  • the comparative example is an LED lamp enclosing air.
  • Air is a mixed gas (volume%) of nitrogen N 2 78% and oxygen O 2 21%.
  • the hermetic sealed lamp in which air is sealed is considered to be the same as an open (non-hermetic sealed) lamp.
  • the luminous flux maintained 95.0% of the initial luminous flux when 856 hours had elapsed after lighting.
  • FIG. 5 is a graph showing the lighting time t and the luminous flux maintenance factor Ml in Table 1 using the gas composition as a parameter.
  • FIG. 6 is a graph showing the relationship between the gas composition in Table 1 and the junction temperature Tj.
  • the air of the comparative example it is known from experience that the cooling effect is lower than that of helium or a mixed gas mainly composed of helium, but the cooling effect of air itself is considerably high.
  • the allowable temperature of the junction temperature Tj was 135 ° C. or less.
  • FIG. 7 is a flow of a method for manufacturing a hermetically sealed LED lamp according to the present embodiment, and a simple lamp diagram at that stage is shown on the right side of each step.
  • step S1 the LED element 18 is fixed to the light source support 14, the light source support is attached to the support column 20, the mount is formed, and the stem 8 is attached.
  • step S2 the mount is inserted into the outer sphere 6 and the stem 8 to which the mount is attached and the outer sphere 6 are heated and sealed with a burner.
  • step S3 the vacuum is once exhausted from the sealed outer sphere through the exhaust pipe. Thereafter, a predetermined mixed gas of helium and oxygen is sealed, and chip-off (dissolve the exhaust pipe with a burner and seal it) is hermetically sealed.
  • the LED lamp 10 is completed through the lighting test and inspection in step S5.
  • steps S2 to S4 the outer sphere mounting portion, stem, etc. are heated to a high temperature close to 1000 ° C. by the burner.
  • a heat shielding member 24 (see FIGS. 2A and 2B) is provided between the base mounting portion of the outer sphere and the LED element 18. It has been.
  • the oxygen dispenser is a component intended to intentionally add a predetermined amount of oxygen into the lamp bulb when the lamp is lit.
  • organic matter remaining in the outer bulb of the lamp is decomposed by the energy of the discharge tube to generate carbon, which adheres to the surface of the discharge tube (burner) and forms a thin film.
  • the oxygen dispenser When the oxygen dispenser is sealed in advance, the oxygen dispenser releases carbon in a predetermined amount, so that the carbon is changed to carbon monoxide or carbon dioxide before the carbon adheres to the surface of the discharge tube, thereby preventing the adhesion. .
  • an oxygen dispenser that intentionally adds a predetermined amount of oxygen into the outer bulb of the lamp can be used for generating a mixed gas of helium and oxygen in this embodiment in its function.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

【課題】高い冷却・放熱機能を有し、同時にLED素子に変色が発生することがない気密封止形のLEDランプを提供することを目的とする。 【解決手段】この気密封止形のLEDランプは、LED光源を覆う外球を有する気密封止形のLEDランプであって、前記外球内に、ヘリウムに対して、少なくとも酸素を混入したヘリウムと酸素の混合ガスを封入している。或いは、混合ガスの代わりに、前記外球内に封入されたヘリウムガスと、固体の酸素ディスペンサーとを備え、ランプ点灯時には、前記酸素ディスペンサーの供給する酸素により、前記外球内でヘリウムと酸素の混合ガスが生成されようにしてもよい。

Description

気密封止形のLEDランプ
 本発明は、気密封止形のLEDランプに関する。
 照明用ランプは、概して、白熱電球、蛍光灯、HIDランプ、LEDランプと順次開発され、実用化されてきた。LEDランプは、発光ダイオード素子(LED素子)を光源として利用したランプである。LEDランプは、青色LED素子の開発により白色の発光が可能となり、最近、照明用ランプとして利用が拡がりつつある。
 図1A~1Cは、現在広く販売されているLEDランプの一例を示す図である。これらのLEDランプ100は、一般に、出力が10W以下(典型的には7W程度)のランプである。図1A~1Cに示すように、ランプ形状は種々あるが、基本的に、口金102、放熱部104及びグローブ106から成っている。放熱部104は、アルミニウムのダイキャストから形成され、多くの場合、外周面に放熱フィンが形成されている。グローブ106は、透光性の樹脂から成る。
 LED素子は、白熱電球、蛍光灯、HIDランプ等と異なり、半導体素子であるため真空雰囲気又は所定のガス雰囲気中に配置する必要性がない。従って、アルミダイキャスト部分104とグローブ106との間は、適当な接着剤で固定されている。このため、アルミダイキャスト部分104とグローブ106とで形成される内部空間は、ランプ外部との間で気密封止にはなってない(以下、「非気密封止形」又は「開放形」という。)。
 本発明者等は、本発明に関連する次の先行特許文献が存在することを承知している。
特開2010-16223「ランプ」(公開日:2010/01/21)、特許第5081746号、出願人:パナソニック株式会社 国際公開WO 2010/004702「電球形状照明用光源」(国際公開日:2010/01/14)、特許第5129329号、出願人:パナソニック株式会社 特開2012-156036「LEDランプ」(公開日:2012/08/16)、出願人:岩崎電気株式会社
 LED素子は、半導体素子であり、半導体の接合部の温度と素子寿命が密接な関係にある。即ち、使用時の接合部の温度が比較的低い場合には素子寿命は長期間となるが、温度が高くなるにつれ素子寿命は急激に短くなる。従って、LEDランプでは、LED素子の温度が高いとランプ寿命が短縮化し、ランプ照度も劣化する。
 そのため、本出願人は、前掲特許文献3により、次のようなアイデアを提案した。即ち、気密封止されたランプ構成において、ランプ内に冷却ガスとしての低分子量ガス(例えば、ヘリウムガス)を封入する。ランプ内には、ランプ軸線方向に長い形状の銅製の光源支持体を配置し、その周囲に光源として複数個のLED素子を搭載する。光源支持体にはランプ軸線に沿って貫通孔を形成して冷却ガス流路とし、LED素子を裏面からも効率良く冷却する。この発明に関しては、一定の冷却効果が有ることが確認され、特許文献3の図6にその効果がグラフで示されている。
 特許文献3の出願後、本発明者等は、特許文献3に記載のLEDランプより更に高い冷却・放熱手段を備えたLEDランプの構成の研究開発を進めてきた。一方、この研究開発の過程において、ランプ内にヘリウム100%の冷却ガスを封入した場合、LED素子に変色が発生することが判明した。
 そこで、本発明は、高い冷却・放熱機能を有し、同時にLED素子に変色が発生することがない気密封止形のLEDランプを提供することを目的とする。
 上記目的に鑑みて、本発明に係るLEDランプは、一面では、LED光源を覆う外球を有する気密封止形のLEDランプであって、前記外球内の封入ガスは、ヘリウムに対して、少なくとも酸素を混入したヘリウムと酸素の混合ガスである。
 更に、上記気密封止形のLEDランプでは、前記混合ガスは、ヘリウムガスに対して、大気又は乾燥空気を混入して生成した混合ガスであってよい。
 更に、本発明に係るLEDランプは、一面では、LED光源を覆う外球を有する気密封止形のLEDランプであって、前記外球内に封入されたヘリウムガスと、固体の酸素ディスペンサーとを備え、ランプ点灯時には、前記酸素ディスペンサーの供給する酸素により、前記外球内でヘリウムと酸素の混合ガスが生成される。
 更に、上記気密封止形のLEDランプでは、前記混合ガスは、ヘリウムガスに対して、体積比で2~10%の酸素を混入した混合ガスであってよい。
 本発明によれば、高い冷却・放熱機能を有し、同時にLED素子に変色が発生することがない気密封止形のLEDランプを提供することが出来る。
図1Aは、現在広く販売されている非気密封止形のLEDランプの一例を示す図である。 図1Bは、現在広く販売されている非気密封止形のLEDランプの他の一例を示す図である。 図1Cは、現在広く販売されている非気密封止形のLEDランプの更に他の一例を示す図である。 図2Aは、本発明の第1実施形態に係る気密封止形のLEDランプの一例を示す図であり、LEDランプの正面図である。 図2Bは、本発明の第1実施形態に係る気密封止形のLEDランプの一例を示す図であり、4枚の光源支持体の位置関係が分かるように斜め下方から見た斜視図である。 図3は、図2A及び2Bに示すLEDランプで使用される光源支持体を説明する図である。 図4は、図2A及び2Bに示すLEDランプで使用されるLED素子を説明する図である。 図5は、封入ガスと光束維持率の関係を示す図である。 図6は、封入ガスと冷却効果の関係を、ジャンクション温度により示した図である。 図7は、本実施形態に係る気密封止形のLEDランプの製造方法のフローであり、各ステップの右側にその段階の簡単なランプの図を示している。
 以下、本発明に係るLEDランプの実施形態に付いて、添付の図面を参照しながら詳細に説明する。なお、図中、同じ要素に対しては同じ参照符号を付して、重複した説明を省略する。また、以下に説明する実施形態は、例示であって、本発明の範囲を限定するものではないことを承知されたい。
 (LEDランプの構成)
  図2A及び2Bは、本発明の本実施形態に係るLEDランプの一例を示す図である。ここで、図2AはLEDランプの正面図であり、図2Bは4個の光源支持体の位置関係が分かるように斜め下方から見た斜視図である。このLEDランプ10は、図1A~1Cで説明した現在広く宣伝・販売されている7W程度の低出力LEDランプより高出力の12W程度のLEDランプを対象としている。このため、冷却・放熱手段が更に重要な検討事項となる。
 図2Aに示すLEDランプ10は、一端が口金2で気密封止された外球6の内部に、複数個のLED素子18が配置されている。複数個のLED素子18は、光源支持体14に適当な間隔で搭載され固定される。
 更に、この光源支持体14は、外球6の一端に固着されたステム8から延在する支柱20によって、外球6の内部の適当な箇所に位置決め支持されている。所望により、光源支持体14に隣接する支柱20の部分には、絶縁性チューブ(図示せず。)が被せられ、光源支持体14と支柱20との間の電気絶縁性が確保される。
 更に、口金2に近い外球6の内部には、熱遮蔽部材24が設けられていてもよい。熱遮蔽部材24は、例えば、セラミック、金属板、マイカ板等で形成されている。
 外球6の内部空間22に封入されるガスに関しては、後で、詳しく説明する。
 (各構成要素の説明)
 図2Aに示すLEDランプ10の各要素に関して簡単に説明する。
 口金2は、白熱電球やHIDランプで使用されているねじ込みタイプ(E型)や差し込みタイプであってよい。外球6は、例えば、ホウケイ酸ガラス等の透光性の硬質ガラスから成るBT管である。しかし、任意の形状であってよい。外球6は、透明タイプ又は拡散タイプ(曇りガラスのタイプ)のいずれであってもよい。公知の白熱電球やHIDランプと同様に、口金2と外球6との間は気密封止され、外球内部空間と外部空間との間は気密封止状態となっている。
 図2Bに示すように、このLEDランプ10では、4枚の光源支持体片14-1~14-4から成る光源支持体片を備えている。各光源支持体片14-1~14-4の外周面には、実装基板16が固定され、各実装基板16には4個のLED素子18が実装されている。所望により、光源支持体14の外周面と実装基板16との間に、熱伝導シート(図示せず。)を介在配置してもよい。
 図3は、この光源支持体14を説明する図である。光源支持体片14-1~14-4の外形は、板状体であり、熱伝導性の良好な材質から成り、例えば、銅、アルミニウム、熱伝導樹脂等から成る。熱伝導樹脂は、樹脂に金属粉・金属片を混入して熱伝導係数を高くしたものである。
 4枚の光源支持体片14-1~14-4は、軸方向断面で見ると、概して矩形を形成するように配置されている。更に、隣接する光源支持体片の間は接続されてなく、スリット(間隙)26を空けて配置されている。図示する光源支持体14は、4枚の光源支持体片が軸方向断面で見ると矩形を形成するように配置しているが、これに限定されない。即ち、3枚の光源支持体片で三角形を形成するように配置してもよく、任意の枚数(n個)の光源支持体片で任意の多角形(n角形)を形成するように配置してもよい。更に、各光源支持体14に実装されるLED素子も、任意所望の個数であってよい。
 各LED素子18に対する給電は、LED素子を直列に接続するリード線(図示せず。)により行われる。光源支持体14が良好な電気伝導体の場合、光源支持体を給電線として利用してもよい。
 実装基板16は、プリント配線板から成り、LED素子に給電するための必要な回路パターンが形成されている。LED素子18の放熱・冷却効果を高めるため、実装基板16は、板厚を比較的薄くするか、或いはメタルコア基板(金属コア基板)として形成することが好ましい。プリント配線板の技術分野に於いて、メタルコア基板は公知の技術である。金属の良好な熱伝導性により、高い放熱・冷却効果が期待できる。
 (LED素子の変色とその対策)
 図2A及び2Bに示すLEDランプに於いて、外球内に封入するガスとして、冷却性能が高い観点から、100%のヘリウムガスHeを使用していた。しかし、点灯後、比較的短時間でLED素子が茶色に変色し、その結果、光束が劣化する現象が発生した。
 図4は、LED素子18の概略断面図である。LED素子18は、窒化アルミニウムAlN基板30の上に、白色の窒化ガリウムGaN系チップ32が搭載され、窒化ガリウム系チップの表面に透明なシリコーン密着層36が形成されている。窒化ガリウム系チップ32とシリコーン密着層36の側面には、シリコーン封止剤34が形成され、これらを保護している。シリコーン密着層36及びシリコーン封止剤34の上には、薄黄色の蛍光体シート38,40が、形成されている。シリコーン密着層36の上にある蛍光体シートは、シリコーンに無機蛍光体を混入した蛍光体シート蛍光体層40を形成し、シリコーン封止剤34の上にある蛍光体シートは、シリコーンから成る蛍光体シート散乱層38を形成している。蛍光体シート蛍光体層40の上を、ほぼ半球形状のシリコーンレンズ42が覆っている。
 本発明者等は、茶色に変色したLED素子18の各構成要素を分析した結果、元々透明であったシリコーン密着層36が、茶色に変色していることを確認した。更に、シリコーン密着層36以外の各要素に関しては、変色は見られないことも確認した。茶色に変色したシリコーン密着層36が、薄黄色の半透明の蛍光体シート蛍光体層40を透して見えるので、LED素子全体が変色しているように見える。
 従来の常識では、ヘリウムガスHeは、反応性が低い不活性ガスと知られているため、LED素子18の各要素への悪影響はないと考えられていた。また、酸素ガスは、構成要素を酸化し劣化する原因となるため、排除することが好ましいと考えられていた。実際、前掲特許文献1の段落0017には、「バルブ9の内部は、…不活性ガス(例えば、窒素である。)が封入されていても良い。バルブ9の内部を気密状体にすることで、封止体17を構成する樹脂(シリコーン樹脂)や蛍光体粒子が酸化により劣化するのを防ぐことができる。」の記載がある。同様に、前掲特許文献2の段落0040には、「LEDおよび蛍光体が吸湿することを防止するため、グルーブ41の内部空間に窒素ガスや乾燥空気を封入するか、内部のガスを排気して真空状態にしておくのが好ましい。」の記載がある。同様に、前掲特許文献3の段落0067には、「外球内部は、低分子量ガスで満たされているため、酸素は存在しなく、LED素子18、関連する回路パターン、その他の構成要素が酸化、腐食することもない。」の記載がある。
 しかし、本発明者等が確認したLEDランプでは、点灯後、比較的短時間でシリコーン密着層36に茶色の変色が発生している。現時点では、シリコーン密着層36の変色の原因を究明するには至っていない。
 そこで、本発明者等は、封入ガスの組成を変えて、即ち、ヘリウムガスHeに対して種々のガスを混入した混合ガスを用いて、変色の発生の度合いを実験により検証した。その結果、ヘリウムガスHeに対して、所定量の酸素O2を混入した混合ガスでは、長期間、
変色が発生しないことを発見した。LED素子の変色の程度は、変色による光束の劣化を光束維持率として捉え、定量的に規定している。
 表1は、封入ガスと光束維持率の関係の実験データである。表1に示す各データは、夫々の条件で製造した少なくとも5個のランプの測定値の平均値を示している。
Figure JPOXMLDOC01-appb-T000001
 従来例は、外球内にヘリウムガスのみを封入したLEDランプである。点灯後100時間経過した時点で、光束維持率のデータより、光束は初期光束の6.6%まで低下したことが判る。
 本実施例は、ヘリウムHeと酸素O2の混合ガスを封入したLEDランプである。ヘリ
ウム97%と酸素3%の混合ガス(体積%)及びヘリウム93%と酸素7%の混合ガス(体積%)のいずれの場合も、点灯後491時間経過した時点で、光束は初期光束の100.2%を維持していた。ヘリウムと酸素の混合比に関しては、更なるデータの蓄積が必要であるが、現時点で、ヘリウムと酸素の混合ガスに関して酸素の比率が少なくとも2~10%程度の範囲では、良好な光束維持率Mlが確保されよう。
 比較例は、空気を封入したLEDランプである。空気は、窒素N278%と酸素O221%の混合ガス(体積%)である。乾燥空気を封入した場合、点灯後1000時間経過した時点で、光束は初期光束の97.8%を維持していた。大気を封入した気密封止型ランプは、結局、開放形(非気密封止形)ランプと同じと考えられる。大気中の開放形ランプの場合、点灯後856時間経過した時点で、光束は初期光束の95.0%を維持していた。
 なお、ヘリウムガスの一部を酸素で置き換えたため、冷却性能の低下が懸念された。しかし、LED素子のジャンクション温度Tjのデータで見る限り、ヘリウム100%のランプではTj=121℃であり、ヘリウムと酸素の混合ガスのランプではTj=103~105℃であり、冷却性能の低下は見られなかった。なお、本実施例において使用したLED素子のジャンクション温度Tjの許容温度は、135℃である。
 図5は、表1の点灯時間tと光束維持率Mlを、ガス組成をパラメータにして示したグラフである。
 図6は、表1のガス組成とジャンクション温度Tjの関係を示したグラフである。なお、比較例の空気に関しては、経験上、ヘリウムやヘリウムを主体とした混合ガスに比較すれば冷却効果は低いが、元々、空気自体の冷却効果はかなり高いことが知られている。比較例の空気の場合も、ジャンクション温度Tjの許容温度135℃以下であった。
 (LEDランプの製造方法)
 図7は、本実施形態に係る気密封止形のLEDランプの製造方法のフローであり、各ステップの右側にその段階の簡単なランプの図を示している。
 ステップS1のマウント組立工程で、LED素子18を光源支持体14に固定し、光源支持体を支柱20に取り付けてマウントを形成、ステム8を取り付ける。
 ステップS2の封止工程で、マウントを外球6の外球内部に挿入し、マウントが取り付けられたステム8と外球6とをバーナーで熱して封着する。
 ステップS3の排気行程で、封止済みの外球内部から排気管を通じて一度真空状態に排気する。その後、所定のヘリウムと酸素の混合ガスを封入し、チップオフ(排気管をバーナーで溶かして封着すること)して気密封止する。
 ステップS4の口金付け工程で、口金2のトップ部及びサイド部を半田付けする。
 ステップS5の点灯試験、検査を経て、LEDランプ10が完成する。
 ここで、ステップS2~S4では、 外球の取り付け部、ステム等がバーナーによって1000℃近くの高温に熱せられる。この熱が、外球内部のLED素子18に伝わって損傷しないようにするため、熱遮蔽部材24(図2A,図2B参照)が、外球の口金取り付け部分とLED素子18との間に設けられている。
 [その他の実施形態]
 表1、図5及び図6に関連して、密封形LEDランプにヘリウムと酸素の混合ガスを封入した場合、比較的長期間、光束維持率Ml[%]が高く維持されることを説明した。
 ランプ製造時にヘリウムと酸素の混合ガスを封入する代わりに、ランプ外球内に、ヘリウムガスと固体の「酸素ディスペンサー」とを封入して、ランプ点灯時には、前記酸素ディスペンサーの供給する酸素により、前記外球内でヘリウムと酸素の混合ガスが生成されるようにしてもよい。この混合ガスは、ヘリウムガスに対して、体積比で2~10%の酸素が混入した混合ガスとなることが好ましい。
 酸素ディスペンサーは、ランプ点灯時に所定量の酸素をランプ外球内に意図的に添加することを目的とする部品である。例えば、従来の放電ランプでは、ランプ外球内に残留した有機物が放電管のエネルギーにより分解されて炭素が発生し、放電管(バーナー)の表面に付着し薄膜を形成する。予め酸素ディスペンサーを封入しておくと、酸素ディスペンサーは、所定量の酸素を放出することにより、炭素が放電管の表面に付着する前に、一酸化炭素や二酸化炭素に変えて、付着を防止する。
 なお、シリコーン密着層36の変色の原因及びヘリウムと酸素の混合ガスを封入した場合に変色が抑制されるメカニズムが、ランプ外球内に残留した有機物の炭化及び酸素による炭化抑制と同じであるか否かを含めて、現時点では不明である。
 しかし、所定量の酸素をランプ外球内に意図的に添加する酸素ディスペンサーは、その機能に於いて、本実施形態におけるヘリウムと酸素の混合ガスの生成に利用出来る。
 [まとめ]
 以上により、本発明に係る気密封止形のLEDランプの実施形態に付いて説明したが、これらは例示であって、本発明を限定するものではない。
 本実施形態では、ヘリウムと酸素の混合ガスについて説明したが、例えば、他の種類のガスを混入した場合であっても、それが新たな効果を生じる別の発明でない限り、本発明の範囲内である。従って、ヘリウムに対して、大気又は乾燥空気を混入して、ヘリウムと酸素の混合ガスを生成する場合も、本発明の範囲内である。本発明の技術的範囲は、添付の特許請求の範囲の記載によって定められる。
 2:口金、 6:外球、 8:ステム、 10:LEDランプ、 14:光源支持体、
 1 4-1,14-2,14-3,14-4:光源支持体片、 16:実装基板、 17:封止 体、 18:LED素子、 20:支柱、 22:内部空間、 24:熱遮蔽部材、 30 :基板、 32:窒化ガリウム系チップ、 34:シリコーン封止剤、 36:シリコーン 密着層、 38:蛍光体シート、 38:蛍光体シート散乱層、 40:蛍光体シート蛍光 体層、 42:シリコーンレンズ、 100:LEDランプ、 102:口金、 104: 放熱部,アルミダイキャスト部分、 106:グローブ、
 Tj:ジャンクション温度、 Ml:光束維持率、

Claims (4)

  1.  LED光源を覆う外球を有する気密封止形のLEDランプにおいて、
     前記外球内の封入ガスは、ヘリウムに対して、少なくとも酸素を混入したヘリウムと酸素の混合ガスである、気密封止形のLEDランプ。
  2.  請求項1に記載の気密封止形のLEDランプにおいて、
     前記混合ガスは、ヘリウムガスに対して、大気又は乾燥空気を混入して生成した混合ガスである、気密封止形のLEDランプ。
  3.  LED光源を覆う外球を有する気密封止形のLEDランプにおいて、
     前記外球内に封入されたヘリウムガスと、固体の酸素ディスペンサーとを備え、
     ランプ点灯時には、前記酸素ディスペンサーの供給する酸素により、前記外球内でヘリウムと酸素の混合ガスが生成される、気密封止形のLEDランプ。
  4.  請求項1又は3に記載の気密封止形のLEDランプにおいて、
     前記混合ガスは、ヘリウムガスに対して、体積比で2~10%の酸素を混入した混合ガスである、気密封止形のLEDランプ。
PCT/JP2014/075195 2013-10-11 2014-09-24 気密封止形のledランプ WO2015053076A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014546235A JP5999458B2 (ja) 2013-10-11 2014-09-24 気密封止形のledランプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214111 2013-10-11
JP2013214111 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015053076A1 true WO2015053076A1 (ja) 2015-04-16

Family

ID=52812896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075195 WO2015053076A1 (ja) 2013-10-11 2014-09-24 気密封止形のledランプ

Country Status (2)

Country Link
JP (2) JP5999458B2 (ja)
WO (1) WO2015053076A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029194A (zh) * 2015-09-15 2018-05-11 飞利浦照明控股有限公司 在密封的充气led灯中延迟氧耗尽的阻挡层
CN110440157A (zh) * 2019-08-01 2019-11-12 佛山电器照明股份有限公司 一种led玻璃灯
US10663116B2 (en) 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
GB2601358A (en) * 2020-11-27 2022-06-01 Lumishore Ltd LED lighting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582667A (zh) * 2017-05-11 2019-12-17 通用电气公司 玻璃led组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181659U (ja) * 2010-02-15 2013-02-21 オスラム ゲーエムベーハー ガス封入ランプ
WO2013154932A1 (en) * 2012-04-13 2013-10-17 Cree, Inc. Gas cooled led lamp
WO2014045489A1 (ja) * 2012-09-21 2014-03-27 パナソニック株式会社 照明用光源及び照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8430534B2 (en) * 2008-09-16 2013-04-30 Koninklijke Philips Electronics N.V. LED lamp and method for producing the same
EP2458273B1 (en) * 2010-11-30 2014-10-15 LG Innotek Co., Ltd. Lighting device
JP5448253B2 (ja) * 2011-01-27 2014-03-19 岩崎電気株式会社 Ledランプ
US10030863B2 (en) * 2011-04-19 2018-07-24 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
JP5559824B2 (ja) * 2011-11-09 2014-07-23 岩崎電気株式会社 ランプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181659U (ja) * 2010-02-15 2013-02-21 オスラム ゲーエムベーハー ガス封入ランプ
WO2013154932A1 (en) * 2012-04-13 2013-10-17 Cree, Inc. Gas cooled led lamp
WO2014045489A1 (ja) * 2012-09-21 2014-03-27 パナソニック株式会社 照明用光源及び照明装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663116B2 (en) 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
CN108029194A (zh) * 2015-09-15 2018-05-11 飞利浦照明控股有限公司 在密封的充气led灯中延迟氧耗尽的阻挡层
CN110440157A (zh) * 2019-08-01 2019-11-12 佛山电器照明股份有限公司 一种led玻璃灯
CN110440157B (zh) * 2019-08-01 2021-02-12 佛山电器照明股份有限公司 一种led玻璃灯
GB2601358A (en) * 2020-11-27 2022-06-01 Lumishore Ltd LED lighting apparatus

Also Published As

Publication number Publication date
JP2016225315A (ja) 2016-12-28
JP5999458B2 (ja) 2016-09-28
JP6179647B2 (ja) 2017-08-16
JPWO2015053076A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6179647B2 (ja) Ledランプの光源
US8337049B2 (en) Bulb-type lighting source
JP5818167B2 (ja) Ledランプ
JP5448253B2 (ja) Ledランプ
JP6261119B2 (ja) Ledランプ用の光源支持体及びその組立体
JP2009117328A (ja) 照明装置
JP2007157690A (ja) Ledランプ
JP2010016223A (ja) ランプ
JP2008300570A (ja) 発光装置
JP4096927B2 (ja) Led照明光源
CA3043641C (en) Led bulb with glass envelope
JP2011096594A (ja) 電球型ledランプ
WO2014045489A1 (ja) 照明用光源及び照明装置
US11085590B2 (en) Glass LED assembly
JP2012113943A (ja) Led発光ユニット及びその製造方法
JP5743191B2 (ja) 照明装置および照明器具
JP5679526B2 (ja) Ledランプ
JP2019220491A (ja) 照明用光源及び照明装置
JP2016012467A (ja) 気密封止形のledランプ
JP2012074251A (ja) ランプ
TWM467020U (zh) 發光二極體(led)燈
WO2016021354A1 (ja) 発光装置、照明装置、および発光装置の製造方法
JP2012182086A (ja) 照明装置および照明器具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014546235

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851586

Country of ref document: EP

Kind code of ref document: A1