WO2015052760A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2015052760A1
WO2015052760A1 PCT/JP2013/077290 JP2013077290W WO2015052760A1 WO 2015052760 A1 WO2015052760 A1 WO 2015052760A1 JP 2013077290 W JP2013077290 W JP 2013077290W WO 2015052760 A1 WO2015052760 A1 WO 2015052760A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
motor
motor generator
hybrid vehicle
Prior art date
Application number
PCT/JP2013/077290
Other languages
English (en)
French (fr)
Inventor
良祐 伊東
孝夫 安藤
大城 岩佐
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/077290 priority Critical patent/WO2015052760A1/ja
Publication of WO2015052760A1 publication Critical patent/WO2015052760A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle control apparatus that starts an engine by a motor generator in a hybrid vehicle having an engine and a motor generator.
  • the present invention has been made paying attention to the above problems, and controls a hybrid vehicle capable of improving fuel efficiency while suppressing changes in vehicle deceleration and engine start shocks at the time of engine start request during coast regenerative operation.
  • An object is to provide an apparatus.
  • a control apparatus for a hybrid vehicle includes an engine, a motor generator, a first clutch interposed between the engine and the motor generator, a drive for the motor generator, and a drive system.
  • a second clutch interposed between the wheels, and during coast regeneration operation by the motor generator in the electric vehicle mode in which the first clutch is disengaged and the second clutch is engaged to travel.
  • An engine start control means is provided for performing engine start control using the motor generator as an engine start motor when an engine start request is generated.
  • the engine start control means includes a second clutch control unit, a motor rotation number control unit, and a motoring control unit.
  • the second clutch control unit slip-engages the second clutch, and maintains the second clutch engagement capacity at this time at an amount at which a predetermined deceleration due to the regenerative torque of the motor generator is generated.
  • the motor rotation speed control unit reduces the rotation speed of the motor generator to be smaller than the second clutch output rotation speed.
  • the motoring control unit engages or slips the first clutch and puts the motor into a motoring state in which the engine is rotated without fuel injection.
  • the second clutch control unit slip-engages the second clutch, so that the motor torque fluctuation accompanying the engine start control is transmitted to the drive wheels. It is possible to prevent and suppress engine start shock. Further, the second clutch control unit maintains the second clutch engagement capacity at the time of slip engagement of the second clutch at an amount that generates a predetermined deceleration due to the regenerative torque of the motor generator. For this reason, the vehicle deceleration during the regenerative operation by the motor generator is maintained, and changes in the vehicle deceleration can be absorbed.
  • the motor rotation speed control unit makes the rotation speed of the motor generator smaller than the second clutch output rotation speed, so that the regenerative state can be reliably continued, the motor torque can be increased, and the engine can be quickly motored. Can be in a state. Further, in the motoring control unit, the motor generator is brought into a motoring state in which the engine is rotated without fuel injection by engaging or slip-engaging the first clutch. Here, the engine start request is generated in the coast state. That is, it is necessary for the engine to rotate (cranking), but the engine combustion torque is not required. Therefore, by rotating the motor generator without rotating the engine, the engine can be rotated while suppressing excessive fuel consumption, and deterioration of fuel consumption can be prevented.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied. It is a figure which shows an example of the driving mode switching map in FF hybrid vehicle of Example 1.
  • FIG. It is a flowchart which shows the flow of the engine starting control process (engine starting control means) performed with a hybrid control module.
  • Example 1 First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the FF hybrid vehicle” and “the detailed configuration of the engine start control process”.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the FF hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied will be described below with reference to FIG.
  • the drive system of the FF hybrid vehicle (an example of a hybrid vehicle) includes a starter motor 1, a horizontally mounted engine 2 (abbreviated as “ENG”), and a first clutch 3 (abbreviated as “CL1”). , A motor generator 4 (abbreviated as “MG”), a second clutch 5 (abbreviated as “CL2”), and a belt type continuously variable transmission 6 (abbreviated as “CVT”).
  • the output shaft of the belt-type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10L and 10R, which are drive wheels, via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9L and 9R.
  • the left and right rear wheels 11L and 11R are driven wheels.
  • the starter motor 1 is a cranking motor that has a gear that meshes with an engine starting gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
  • the horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and serves as a drive source for the FF hybrid vehicle.
  • the horizontal engine 2 includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
  • a compressor (not shown) for an indoor air conditioner is driven by the horizontal engine 2.
  • the intake negative pressure of the horizontally placed engine 2 is introduced into a negative pressure booster (not shown).
  • the first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically operated and is interposed between the horizontal engine 2 and the motor generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Be controlled.
  • the motor generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3 and serves as a drive source for the FF hybrid vehicle.
  • a positive torque (drive torque) command is output from the motor controller 83 to the inverter 26
  • the motor generator 4 performs a drive operation to generate drive torque using the discharge power from the high-power battery 21,
  • the front wheels 10L, 10R are driven (powering).
  • a negative torque (power generation torque) command is output from the motor controller 83 to the inverter 26
  • a power generation operation is performed to convert rotational energy from the left and right front wheels 10L, 10R into electric energy, and the generated power is
  • the charging power of the high-power battery 21 is used (regeneration).
  • the motor generator 4 and the inverter 26 are connected via an AC harness 27.
  • the second clutch 5 is a normally closed wet multi-plate friction clutch by hydraulic operation that is interposed between the motor generator 4 and the left and right front wheels 10L, 10R as drive wheels, and is completely engaged by the second clutch hydraulic pressure. / Slip fastening / release is controlled.
  • the second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
  • the belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure.
  • the sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
  • the first clutch 3, the motor generator 4 and the second clutch 5 constitute a drive system for one motor and two clutches
  • “EV mode” is the main travel mode (drive mode) by this drive system.
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor generator 4 is used as a drive source. That's it.
  • the running mode in which the motor generator 4 regenerates and coasts decelerates with the accelerator off (accelerator release state) is referred to as “coast regenerative operation” or “sailing mode running”. At this time, it does not matter whether or not the brake is operated.
  • the “HEV mode” is a hybrid vehicle mode in which the first and second clutches 3 and 5 are engaged and the horizontal engine 2 and the motor generator 4 are used as driving sources. " When this “HEV mode” is subdivided according to how the motor generator 4 is used, the engine vehicle mode (0 torque command to the motor generator 4), the motor assist mode (positive torque command to the motor generator 4), the engine power generation mode (motor generator 4) Negative torque command).
  • the “WSC mode” the horizontal engine 2 is operated, the first clutch 3 is engaged, and the second clutch 5 is slip-engaged with a transmission torque capacity corresponding to the required driving force. This is an engine-use slip mode that travels while being included in the power source.
  • the operating point determined by the accelerator opening and the vehicle speed is determined by the position on the switching map shown in FIG. Furthermore, switching from the “EV mode” to the “HEV mode” (output of the engine start request) is also performed according to the system requirements listed below, regardless of the position of the operating point on the map of FIG. ⁇
  • the battery charge capacity battery SOC
  • the negative pressure for braking in the negative pressure booster decreases and a negative pressure generation request is output
  • an engine diagnosis request is output
  • the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated.
  • the regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
  • the power system of the FF hybrid vehicle includes a high-power battery 21 as a motor generator power source and a 12V battery 22 as a 12V system load power source.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor generator 4, and for example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts the direct current from the DC harness 25 into the three-phase alternating current to the AC harness 27 during power running that drives the motor generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V system load, which is an auxiliary machine. For example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 to 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. Is configured to manage.
  • the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle.
  • Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • a lithium battery controller 86 abbreviation: “LBC”.
  • the hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like.
  • the engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
  • the motor controller 83 performs power running control, regeneration control, and the like of the motor generator 4 by the inverter 26.
  • the motor controller 83 receives output rotation speed information of the motor generator 4 from the MG rotation speed sensor 94.
  • the CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
  • FIG. 3 is a flowchart showing the flow of engine start control processing (engine start control means) executed by the hybrid control module. Hereinafter, each step of FIG. 3 showing the detailed configuration of the engine start control process will be described. This engine start control process is repeatedly executed during the “EV mode”.
  • step S1 it is determined whether or not the current traveling mode (driving mode) is “coast regenerative operation”. If YES (coast regenerative operation), the process proceeds to step S2. If NO (other than coast regeneration), proceed to return.
  • the determination of the coast regenerative operation is performed when the accelerator is in an OFF state while regenerating with the motor generator 4 in the “EV mode”.
  • step S2 following the determination of “coast regenerative operation” in step S1, it is determined whether an engine start request due to a system request has occurred in the coast state. If YES (engine start requested by system request), the process proceeds to step S3. If NO (no engine start requested by system request), proceed to return.
  • This "engine request by system request” means that when a compressor operation request for an indoor air conditioner is output, the negative pressure for braking in the negative pressure booster decreases and a negative pressure generation request is output.
  • an engine diagnosis request is output.
  • the accelerator is OFF. Therefore, there is no increase in required driving force. That is, it is necessary to rotate (crank) the horizontal engine 2 based on the engine start request, but no engine combustion torque is required.
  • the process proceeds to step S4.
  • step S4 following the output of the CL2 slip command in step S3, it is determined whether or not the clutch engagement capacity of the second clutch 5 is within a predetermined set range. If YES (the second clutch torque is within the set range), the process proceeds to step S5. If NO (the second clutch torque is outside the set range), step S4 is repeated.
  • the fact that the second clutch torque is within the set range means that the actual second clutch torque is within a predetermined error range with respect to the second clutch torque (target value) set in step S3. It is in place.
  • the second clutch torque is detected by a second clutch torque sensor (not shown).
  • step S5 following the determination that the second clutch torque is within the set range in step S4, the CL1 hydraulic pressure command for setting the hydraulic pressure of the first clutch 3 to the standby hydraulic pressure, and the output rotational speed of the motor generator 4 are reduced.
  • the MG rotational speed command for making it smaller than the 2-clutch output rotational speed is output, and the process proceeds to step S6.
  • the rotation speed of the motor generator 4 starts to be reduced.
  • the motor rotation speed is gradually reduced with time.
  • the “second clutch output rotational speed” is the input rotational speed (PRI rotational speed) to the belt type continuously variable transmission 6 and is detected by the transmission input rotational speed sensor 95.
  • the “standby hydraulic pressure” is a hydraulic pressure that eliminates play of the hydraulic pressure of the first clutch 3, and is the state immediately before the first clutch 3 starts the engagement operation.
  • step S6 following the output of the CL1 hydraulic pressure command and the MG rotational speed command in step S5, it is determined whether or not the rotational speed of the motor generator 4 to be made smaller than the second clutch output rotational speed has fallen below a preset determination threshold value. to decide. If YES (MG rotational speed ⁇ determination threshold), the process proceeds to step S7. If NO (MG rotational speed ⁇ determination threshold), step S6 is repeated.
  • the “determination threshold value” is set to a rotational speed at which the output torque from the motor generator 4 reaches the torque necessary for engine cranking.
  • step S7 following the determination of MG rotation speed ⁇ determination threshold value in step S6, a CL1 hydraulic pressure command for changing the hydraulic pressure of the first clutch 3 to the cranking hydraulic pressure and a cranking command for the horizontal engine 2 are output. Proceed to S8. As a result, the rotation of the motor generator 4 is transmitted to the horizontal engine 2 and the engine speed starts to increase.
  • the “cranking hydraulic pressure” is a clutch engagement hydraulic pressure capable of transmitting a torque necessary for engine cranking.
  • step S8 following the output of the CL1 hydraulic pressure command and the cranking command in step S7, it is determined whether or not the rotational speed of the horizontally placed engine 2 is equal to or higher than a preset engine startable rotational speed. If YES (ENG rotational speed ⁇ engine startable rotational speed), the process proceeds to step S9. If NO (ENG engine speed ⁇ engine startable engine speed), step S8 is repeated.
  • the “engine startable rotation speed” is a rotation speed at which the horizontally mounted engine 2 can operate independently by injecting and igniting a certain amount of air and fuel. Here, the rotation speed is set lower than the determination threshold value set in step S6.
  • step S9 following the determination that ENG rotational speed ⁇ engine startable rotational speed in step S8, a CL1 hydraulic pressure command for changing the hydraulic pressure of the first clutch 3 to the engagement hydraulic pressure is output, and the process proceeds to step S10.
  • step S10 following the output of the CL1 hydraulic pressure command in step S9, it is determined whether or not the first clutch 3 is completely engaged. If YES (CL1 engagement complete), the process proceeds to step S11. If NO (CL1 is not fastened), step S10 is repeated.
  • the engagement determination of the first clutch 3 is performed based on the clutch stroke of the first clutch. At this time, air / fuel injection and ignition operations are not performed for the horizontally placed engine 2. That is, the horizontally placed engine 2 is in a motoring state that rotates with the rotation of the motor generator 4 and rotates without fuel injection.
  • step S11 following the determination that the CL1 engagement is completed in step S10, a CL2 engagement command for engaging the second clutch 5 is output, and the process proceeds to step S12.
  • step S12 following the output of the CL2 engagement command in step S11, it is determined whether or not the second clutch 5 is completely engaged. If YES (CL2 conclusion), proceed to return. If NO (CL2 not fastened), step S12 is repeated.
  • the engagement determination of the second clutch 5 is a predetermined value at which the differential rotation in the second clutch 5 becomes zero and the clutch engagement capacity (second clutch torque) in the second clutch 5 can be determined to be the engagement torque. To do that.
  • FIG. 4 shows the accelerator position, vehicle G, CL2 torque command, CL1 hydraulic pressure command, ENG rotation speed, MG rotation speed when the engine start request is generated by the system request in the coast regenerative operation in the control device of the first embodiment. It is a time chart which shows each characteristic of PRI rotation speed.
  • the engine start control operation of the first embodiment will be described with reference to FIG.
  • FF hybrid vehicle of Embodiment 1 while regenerated by the motor-generator 4 during the "EV mode", during the coast regenerative operation to the coasting deceleration in a state released accelerator foot, at time t 1 shown in FIG. 4, for example, indoor air-conditioning
  • a compressor operation request is output
  • an engine start request due to a system request is generated.
  • the process proceeds from step S1 to step S2 to step S3, and a CL2 slip command for setting the second clutch 5 in the slip engagement state is output.
  • the second clutch torque command (command for the clutch engagement capacity in the second clutch 5) is set to an amount at which a predetermined deceleration due to the regenerative torque of the motor generator 4 during the coast regenerative operation is generated in the vehicle.
  • step S4 the clutch engagement capacity of the second clutch 5 (second clutch torque) falls within a predetermined range
  • the deceleration acting on the vehicle is determined to have become about coast deceleration.
  • the process proceeds from step S4 to step S5, and the CL1 hydraulic pressure command for setting the hydraulic pressure of the first clutch 3 to the standby hydraulic pressure and the output rotational speed of the motor generator 4 are reduced to be smaller than the second clutch output rotational speed.
  • MG speed command is output. For this reason, the engagement hydraulic pressure of the first clutch 3 rises to the standby hydraulic pressure. Further, the rotation speed of the motor generator 4 gradually decreases with time.
  • the motor torque can be increased by reducing the motor speed.
  • the process proceeds, and the CL1 hydraulic pressure command to the engagement oil pressure of the first clutch 3 cranking hydraulic to step S6 ⁇ step S7, horizontal A cranking command for the setting engine 2 is output.
  • the hydraulic pressure of the first clutch 3 rises to the cranking hydraulic pressure. Since the cranking hydraulic pressure is lower than the engagement hydraulic pressure, the first clutch 3 is in the slip engagement state.
  • the motor rotation speed has reached the determination threshold value, which is the rotation speed at which the output torque from the motor generator 4 reaches the torque required for engine cranking. That is, the motor generator 4 is in a state where it can output motor torque necessary for cranking. Therefore, the horizontal engine 2 can be quickly cranked by the motor generator 4.
  • the first clutch hydraulic pressure command is increased, since the hydraulic pressure command of the first clutch 3 reaches the engagement hydraulic pressure at time t 6 time, as the first clutch 3 is engaged, it proceeds to step S10 ⁇ step S11 Thus, a CL2 engagement command for engaging the second clutch 5 is output. Thereafter, the second clutch torque command increases, and with the increase of the second clutch torque command, the output rotational speed of the motor generator 4 and the rotational speed of the horizontal engine 2 increase. At this time, the horizontal engine 2 is not injected and ignited with air and fuel, and the horizontal engine 2 is rotated along with the rotation of the motor generator 4.
  • the second clutch 5 when an engine start request due to a system request is generated in the coast state during the coast regeneration operation, the second clutch 5 is slip-engaged and the second at this time
  • the motor generator 4 has a characteristic that the motor torque decreases as the motor rotation speed increases. That is, the cranking torque may be insufficient at a predetermined motor speed or higher, regardless of the rating of the motor generator.
  • the first clutch differential rotation at the time of starting the engine that is, the difference between the engine rotation speed and the motor rotation speed
  • the emitted-heat amount of the 1st clutch 3 at the time of engine starting can be reduced, and durability of the 1st clutch 3 can be improved.
  • Example 1 when transverse engine 2 is in the motoring state, that is, in after time t 5 in FIG. 4, and sets the rotation speed of motor generator 4 to the value of the above engine starting rotational speed. Thereby, when the engine combustion torque is required, the horizontal engine 2 can be quickly exploded, and the required torque can be obtained in a short time.
  • the motor generator 4 when the rotational speed of the motor generator 4 is reduced, the motor generator 4 is gradually lowered with time. That is, the motor speed is prevented from changing rapidly. As a result, even when the rotational speed of the motor generator 4 is reduced before the second clutch 5 is completely released, it is possible to reduce shocks due to fluctuations in the motor rotational speed and torque.
  • the second clutch 5 maintains the second clutch engagement capacity at such an amount that a predetermined deceleration due to the regenerative torque of the motor generator 4 is generated until the first clutch 3 is completely engaged. And continue the slip fastening. Then, after the first clutch 3 is completely engaged, the engagement of the second clutch 5 is started. For this reason, it is possible to prevent the motor rotation speed from dropping during engine startup and to prevent the occurrence of a vehicle shock. Further, after the first clutch 3 is engaged, the engine torque can be used in addition to the motor torque. Therefore, when the second clutch 5 is engaged, even if the load on the motor generator 4 increases, it is possible to make it difficult for the rotation speed drop to occur.
  • the drive system includes an engine (horizontal engine) 2, a motor generator 4, a first clutch 3 interposed between the engine 2 and the motor generator 4, the motor generator 4 and drive wheels (left and right).
  • a second clutch 5 interposed between the front wheels 10L and 10R, and engine start control means (FIG. 3) for performing engine start control using the motor generator as an engine start motor when an engine start request is generated.
  • the engine start control means (FIG. 3) When an engine start request is generated in a coast state during coast regeneration operation by the motor generator 4 in the electric vehicle mode (EV mode) in which the first clutch 3 is disengaged and the second clutch 5 is engaged.
  • a second clutch control section (step S4) for slip-engaging the second clutch 5 and maintaining the second clutch engagement capacity at this time at an amount at which a predetermined deceleration due to the regenerative torque of the motor generator 4 is generated;
  • a motor rotation speed control unit (step S6) for reducing the rotation speed of the motor generator 4 to be smaller than the second clutch output rotation speed;
  • a motoring control unit (step S7) that slips the first clutch 3 and puts the engine 2 in a motoring state in which the motor generator 4 rotates without fuel injection; It was set as the structure which has.
  • the motor rotation speed control unit is configured to set the rotation speed of the motor generator 4 to a value equal to or higher than the engine startable rotation speed when the engine (horizontal engine) 2 is in a motoring state.
  • step S5 The motor rotation speed control unit (step S5) is configured to gradually decrease with time when the rotation speed of the motor generator 4 is reduced. Thereby, in addition to the effect of (1) or (2), even when slip engagement of the second clutch 5 is delayed, shock due to motor rotation speed fluctuation or torque fluctuation can be reduced.
  • the second clutch control unit maintains the second clutch in a slip-engaged state until the first clutch 3 is completely engaged, and when the first clutch 3 is completely engaged, the second clutch 5 is started (step S10, step S11).
  • the hybrid vehicle control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
  • the hydraulic pressure of the first clutch 3 when engine cranking is performed, the hydraulic pressure of the first clutch 3 is set to the cranking hydraulic pressure, and the engine is started in the slip engagement state.
  • the first clutch hydraulic pressure may be set to the engagement hydraulic pressure, and the engine may be started (cranking) after the first clutch 3 is in the engagement state.
  • Embodiment 1 shows an example in which the hybrid vehicle control device of the present invention is applied to an FF hybrid vehicle.
  • the control device of the present invention can be applied not only to FF hybrid vehicles but also to FR hybrid vehicles, 4WD hybrid vehicles, and plug-in hybrid vehicles. In short, it can be applied to any hybrid vehicle.
  • a belt-type continuously variable transmission is used as the automatic transmission
  • the present invention is not limited to this, and a stepped automatic transmission may be used.
  • a clutch or a brake included in the transmission may be used as the second clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

コースト回生運転中のエンジン始動要求時の車両減速度の変化やエンジン始動ショックを抑制しつつ、燃費向上を図ることができるハイブリッド車両の制御装置を提供すること。 EVモードでのコースト回生運転中に、コースト状態でエンジン始動要求が生じたとき、モータジェネレータ(4)をエンジン始動モータとしてエンジン始動制御を行うエンジン始動制御手段(図3)は、第2クラッチ(5)をスリップ締結すると共に、第2クラッチ締結容量を、モータジェネレータ(4)の回生トルクによる減速度が発生する量に維持する第2クラッチ制御部と、モータジェネレータ(4)の回転数を低減させ、第2クラッチ出力回転数よりも小さくするモータ回転数制御部と、第1クラッチ(3)を締結又はスリップ締結し、モータジェネレータ(4)によってエンジン(2)をモータリング状態にするモータリング制御部と、を有する構成とした。

Description

ハイブリッド車両の制御装置
 本発明は、エンジンとモータジェネレータを有するハイブリッド車両において、モータジェネレータによってエンジン始動を行うハイブリッド車両の制御装置に関するものである。
 従来、エンジンと駆動輪の間に、一対のクラッチを有するデュアルクラッチトランスミッションを介装し、このデュアルクラッチトランスミッション内の一方のトルク伝達経路にモータを接続したハイブリッド車両が知られている。そして、このハイブリッド車両において、一対のクラッチを両方とも開放し、モータの駆動力のみで走行する電気自動車モードでの減速時、ブースタの負圧が閾値以下になったら、一対のクラッチのうちの少なくとも一方を締結又はスリップ締結してエンジン始動するハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。
特開2009-137405号公報
 ところで、従来のハイブリッド車両の制御装置にあっては、エンジン始動時に締結又はスリップ締結するクラッチの締結容量については不明である。そのため、車両減速度の変化やエンジンが始動したときの始動ショックを吸収することが難しかった。
 また、ブースタ負圧を得るためにも拘らずエンジン燃焼状態にしてしまうと、燃費が悪化するという問題も発生する。
 本発明は、上記問題に着目してなされたもので、コースト回生運転中のエンジン始動要求時における車両減速度の変化やエンジン始動ショックを抑制しつつ、燃費向上を図ることができるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明のハイブリッド車両の制御装置は、駆動系に、エンジンと、モータジェネレータと、前記エンジンと前記モータジェネレータの間に介装した第1クラッチと、前記モータジェネレータと駆動輪の間に介装した第2クラッチと、を有し、前記第1クラッチを開放し、前記第2クラッチを締結して走行する電気自動車モードでの前記モータジェネレータによるコースト回生運転中に、コースト状態でエンジン始動要求が生じたとき、前記モータジェネレータをエンジン始動モータとしてエンジン始動制御を行うエンジン始動制御手段を備えている。
 前記エンジン始動制御手段は、第2クラッチ制御部と、モータ回転数制御部と、モータリング制御部と、を有している。
 前記第2クラッチ制御部は、前記第2クラッチをスリップ締結し、このときの第2クラッチ締結容量を、前記モータジェネレータの回生トルクによる所定の減速度が発生する量に維持する。
 前記モータ回転数制御部は、前記モータジェネレータの回転数を低減させ、第2クラッチ出力回転数よりも小さくする。
 前記モータリング制御部は、前記第1クラッチを締結又はスリップ締結し、前記モータジェネレータによってエンジンを燃料噴射なしで回転するモータリング状態にする。
 よって、本発明のハイブリッド車両の制御装置では、エンジン始動要求時、第2クラッチ制御部によって第2クラッチをスリップ締結することで、エンジン始動制御に伴うモータトルク変動が駆動輪に伝達されることを防止し、エンジン始動ショックを抑制することができる。
 また、第2クラッチ制御部では、第2クラッチのスリップ締結時の第2クラッチ締結容量を、モータジェネレータの回生トルクによる所定の減速度が発生する量に維持する。このため、モータジェネレータによる回生運転中の車両減速度が維持され、車両減速度の変化を吸収することができる。
 そして、モータ回転数制御部によって、モータジェネレータの回転数を第2クラッチ出力回転数よりも小さくすることで、回生状態を確実に継続すると共に、モータトルクの増大を図り、エンジンを速やかにモータリング状態にすることができる。
 さらに、モータリング制御部では、第1クラッチを締結又はスリップ締結することで、モータジェネレータによってエンジンを燃料噴射なしで回転するモータリング状態にする。ここで、エンジン始動要求はコースト状態で発生している。すなわち、エンジンが回転すること(クランキング)は必要であるが、エンジン燃焼トルクを必要としている状態ではない。そのため、エンジンを燃焼せずにモータジェネレータの回転に連れ回すことで、余計な燃料消費を抑えつつエンジンを回転させることができ、燃費悪化を防止することができる。
実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。 実施例1のFFハイブリッド車両における走行モード切替マップの一例を示す図である。 ハイブリッドコントロールモジュールにて実行されるエンジン始動制御処理(エンジン始動制御手段)の流れを示すフローチャートである。 実施例1の制御装置において、コースト回生運転時にシステム要求によるエンジン始動要求が発生した際のアクセル開度、車両G、CL2トルク指令、CL1油圧指令、ENG回転数、MG回転数、PRI回転数の各特性を示すタイムチャートである。
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 まず、実施例1のハイブリッド車両の制御装置の構成を、「FFハイブリッド車両の全体システム構成」、「エンジン始動制御処理の詳細構成」に分けて説明する。
 [FFハイブリッド車両の全体システム構成]
 図1は、実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。以下、図1に基づいて、実施例1のハイブリッド車両の制御装置が適用されたFFハイブリッド車両の全体システム構成を説明する。
 FFハイブリッド車両(ハイブリッド車両の一例)の駆動系としては、図1に示すように、スタータモータ1と、横置きエンジン2(略称「ENG」)と、第1クラッチ3(略称「CL1」)と、モータジェネレータ4(略称「MG」)と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9L,9Rを介し、駆動輪である左右の前輪10L,10Rに駆動連結される。なお、左右の後輪11L,11Rは、従動輪としている。
 前記スタータモータ1は、横置きエンジン2のクランク軸に設けられたエンジン始動用ギヤに噛み合うギヤを持ち、エンジン始動時にクランク軸を回転駆動するクランキングモータである。
 前記横置きエンジン2は、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、FFハイブリッド車両の駆動源となる。この横置きエンジン2は、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。また、この横置きエンジン2によって室内エアコン用のコンプレッサ(不図示)が駆動される。さらに、横置きエンジン2の吸気負圧は、図示しない負圧ブースタに導入される。
 前記第1クラッチ3は、横置きエンジン2とモータジェネレータ4との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/開放が制御される。
 前記モータジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータであり、FFハイブリッド車両の駆動源となる。このモータジェネレータ4は、モータコントローラ83からインバータ26に対し正のトルク(駆動トルク)指令が出力されている時には、強電バッテリ21からの放電電力を使って駆動トルクを発生する駆動動作をし、左右の前輪10L,10Rを駆動する(力行)。一方、モータコントローラ83からインバータ26に対し負のトルク(発電トルク)指令が出力されている時には、左右の前輪10L,10Rからの回転エネルギーを電気エネルギーに変換する発電動作をし、発電した電力を強電バッテリ21の充電電力とする(回生)。
なお、このモータジェネレータ4とインバータ26は、ACハーネス27を介して接続される。
 前記第2クラッチ5は、モータジェネレータ4と駆動輪である左右の前輪10L,10Rとの間に介装された油圧作動によるノーマルクローズの湿式多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1の第2クラッチ5は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5とされる。
 前記ベルト式無段変速機6は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。このベルト式無段変速機6には、メインオイルポンプ14(メカ駆動)と、サブオイルポンプ15(モータ駆動)と、メインオイルポンプ14からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧として第1,第2クラッチ油圧及び変速油圧を作り出す図外のコントロールバルブユニットと、を有する。なお、メインオイルポンプ14は、モータジェネレータ4のモータ軸(=変速機入力軸)により回転駆動される。サブオイルポンプ15は、主に潤滑冷却用油を作り出す補助ポンプとして用いられる。
 前記FFハイブリッド車両では、第1クラッチ3とモータジェネレータ4と第2クラッチ5により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な走行モード(駆動態様)として、「EVモード」と「HEVモード」と「WSCモード」を有する。
前記「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータジェネレータ4のみを駆動源とする電気自動車モードであり、この「EVモード」による走行を「EV走行」という。この「EVモード」時に、モータジェネレータ4で回生しながら、アクセルOFF(アクセル足離し状態)でコースト減速する走行モードを、「コースト回生運転」又は「セーリングモード走行」という。なお、このときにはブレーキ操作の有無は問わない。
前記「HEVモード」は、第1,第2クラッチ3,5を締結して横置きエンジン2とモータジェネレータ4を駆動源とするハイブリッド車モードであり、この「HEVモード」による走行を「HEV走行」という。この「HEVモード」を、モータジェネレータ4の使い方によって細分化すると、エンジン車モード(モータジェネレータ4に0トルク指令)・モータアシストモード(モータジェネレータ4に正トルク指令)・エンジン発電モード(モータジェネレータ4に負トルク指令)となる。
前記「WSCモード」は、横置きエンジン2を作動させた状態で、第1クラッチ3を締結すると共に第2クラッチ5を要求駆動力に応じた伝達トルク容量でスリップ締結し、横置きエンジン2を動力源に含みながら走行するエンジン使用スリップモードである。
この走行モード(駆動態様)は、アクセル開度と車速により決まる運転点が、図2に示す切替マップ上で存在する位置により決まる。さらに、「EVモード」から「HEVモード」への切替(エンジン始動要求の出力)は、図2のマップ上での運転点の位置に拘らず、以下に列挙するシステム要求によっても行われる。
 ・バッテリ充電容量(バッテリSOC)が一定値以下になったとき
 ・室内エアコン用のコンプレッサの作動要求が出力されたとき
 ・負圧ブースタ内のブレーキ用負圧が減少して負圧生成要求が出力されたとき
 ・エンジン診断要求が出力されたとき
 なお、図1の回生協調ブレーキユニット16は、ブレーキ操作時、原則として回生動作を行うことに伴い、トータル制動トルクをコントロールするデバイスである。この回生協調ブレーキユニット16には、ブレーキペダルと、横置きエンジン2の吸気負圧を用いる負圧ブースタと、マスタシリンダと、を備える。そして、ブレーキ操作時、ペダル操作量に基づく要求制動力から回生制動力を差し引いた分を液圧制動力で分担するというように、回生分/液圧分の協調制御を行う。
 FFハイブリッド車両の電源システムとしては、図1に示すように、モータジェネレータ電源としての強電バッテリ21と、12V系負荷電源としての12Vバッテリ22と、を備えている。
 前記強電バッテリ21は、モータジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。
 前記強電バッテリ21とモータジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。
 前記12Vバッテリ22は、補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等で搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。前記DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。
 FFハイブリッド車両の制御システムとしては、図1に示すように、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段として、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。このハイブリッドコントロールモジュール81に接続される制御手段として、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。ハイブリッドコントロールモジュール81を含むこれらの制御手段は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。
 前記ハイブリッドコントロールモジュール81は、各制御手段、イグニッションスイッチ91、アクセル開度センサ92、車速センサ93等からの入力情報に基づき、様々な制御を行う。エンジンコントロールモジュール82は、横置きエンジン2の燃料噴射制御や点火制御や燃料カット制御等を行う。モータコントローラ83は、インバータ26によるモータジェネレータ4の力行制御や回生制御等を行う。このモータコントローラ83には、MG回転数センサ94からモータジェネレータ4の出力回転数情報が入力される。CVTコントロールユニット84は、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6の変速油圧制御等を行う。このCVTコントロールユニット84には、変速機入力回転数センサ95からの変速機入力回転数情報(=第2クラッチ出力回転数情報)が入力される。リチウムバッテリコントローラ86は、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。
 [エンジン始動制御処理の詳細構成]
 図3は、ハイブリッドコントロールモジュールにて実行されるエンジン始動制御処理(エンジン始動制御手段)の流れを示すフローチャートである。以下、エンジン始動制御処理の詳細構成を表す図3の各ステップについて説明する。なお、このエンジン始動制御処理は、「EVモード」中に繰り返し実行される。
 ステップS1では、現在の走行モード(駆動態様)が「コースト回生運転」であるか否かを判断する。YES(コースト回生運転)のときには、ステップS2へ進む。NO(コースト回生運転以外)のときには、リターンへ進む。
ここで、コースト回生運転の判断は、「EVモード」時に、モータジェネレータ4で回生しながら、アクセルOFF状態であるときに行う。
 ステップS2では、ステップS1での「コースト回生運転」との判断に続き、コースト状態のままでシステム要求によるエンジン始動要求が生じたか否かを判断する。YES(システム要求によるエンジン始動要求あり)の場合は、ステップS3に進む。NO(システム要求によるエンジン始動要求なし)の場合は、リターンヘ進む。
この「システム要求によるエンジン始動要求」とは、ここでは、室内エアコン用のコンプレッサの作動要求が出力されたとき、負圧ブースタ内のブレーキ用負圧が減少して負圧生成要求が出力されたとき、エンジン診断要求が出力されたとき、である。また、上記エンジン始動要求が出力されたときは「コースト状態のまま」であり、アクセルOFF状態である。そのため、要求駆動力の増加はない。すなわち、エンジン始動要求に基づいて横置きエンジン2を回転(クランキング)する必要はあるが、エンジン燃焼トルクは不要である。
 ステップS3では、ステップS2でのシステム要求によるエンジン始動要求ありとの判断に続き、第2クラッチ5のクラッチ締結容量(=第2クラッチトルク)を低下させてスリップ締結状態にするCL2スリップ指令を出力し、ステップS4へ進む。
ここで、第2クラッチ締結容量(=第2クラッチトルク)は、コースト回生運転中のモータジェネレータ4の回生トルクによって車両に作用する所定の減速度と同程度の減速度が車両に発生する量に設定される。
 ステップS4では、ステップS3でのCL2スリップ指令の出力に続き、第2クラッチ5のクラッチ締結容量が所定の設定範囲内に収まっているか否かを判断する。YES(第2クラッチトルクが設定範囲内)の場合はステップS5へ進む。NO(第2クラッチトルクは設定範囲外)の場合はステップS4を繰り返す。
ここで、第2クラッチトルクが設定範囲内に収まっていることとは、ステップS3にて設定した第2クラッチトルク(目標値)に対して、実際の第2クラッチトルクが所定の誤差範囲内に収まっていることである。なお、第2クラッチトルクは、図示しない第2クラッチトルクセンサによって検出する。
 ステップS5では、ステップS4での第2クラッチトルクが設定範囲内との判断に続き、第1クラッチ3の油圧をスタンバイ油圧にするCL1油圧指令と、モータジェネレータ4の出力回転数を低減させ、第2クラッチ出力回転数よりも小さくするMG回転数指令を出力し、ステップS6へ進む。
これにより、モータジェネレータ4の回転数は低減を開始するが、このとき、時間に伴ってモータ回転数を徐々に低減する。
なお、「第2クラッチ出力回転数」とは、ベルト式無段変速機6への入力回転数(PRI回転数)であり、変速機入力回転数センサ95によって検出される。また、「スタンバイ油圧」とは、第1クラッチ3の油圧の遊びを解消する油圧であり、第1クラッチ3を締結動作が開始する直前の状態にすることである。
 ステップS6では、ステップS5でのCL1油圧指令とMG回転数指令の出力に続き、第2クラッチ出力回転数よりも小さくするモータジェネレータ4の回転数が、予め設定した判定閾値を下回ったか否かを判断する。YES(MG回転数<判定閾値)の場合はステップS7へ進む。NO(MG回転数≧判定閾値)の場合はステップS6を繰り返す。
ここで、「判定閾値」は、モータジェネレータ4からの出力トルクが、エンジンクランキングに必要なトルクに達する回転数に設定される。
 ステップS7では、ステップS6でのMG回転数<判定閾値との判断に続き、第1クラッチ3の油圧をクランキング油圧にするCL1油圧指令と、横置きエンジン2のクランキング指令を出力し、ステップS8へ進む。
これにより、モータジェネレータ4の回転が横置きエンジン2へと伝達され、エンジン回転数が上昇を開始する。
ここで、「クランキング油圧」とは、エンジンクランキングに必要なトルクを伝達可能なクラッチ締結油圧である。
 ステップS8では、ステップS7でのCL1油圧指令とクランキング指令の出力に続き、横置きエンジン2の回転数が、予め設定したエンジン始動可能回転数以上になったか否かを判断する。YES(ENG回転数≧エンジン始動可能回転数)の場合にはステップS9へ進む。NO(ENG回転数<エンジン始動可能回転数)の場合にはステップS8を繰り返す。
ここで、「エンジン始動可能回転数」とは、一定量の空気及び燃料を噴射して点火することで、横置きエンジン2が自立運転可能となる回転数である。ここでは、ステップS6において設定した判定閾値よりも低い回転数に設定される。
 ステップS9では、ステップS8でのENG回転数≧エンジン始動可能回転数との判断に続き、第1クラッチ3の油圧を締結油圧にするCL1油圧指令を出力し、ステップS10へ進む。
 ステップS10では、ステップS9でのCL1油圧指令の出力に続き、第1クラッチ3が完全に締結したか否かを判断する。YES(CL1締結完了)の場合にはステップS11へ進む。NO(CL1未締結)の場合にはステップS10を繰り返す。
ここで、第1クラッチ3の締結判断は、第1クラッチのクラッチストロークに基づいて行う。また、このとき、横置きエンジン2に対しては、空気・燃料の噴射及び点火動作は行われない。つまり、横置きエンジン2は、モータジェネレータ4の回転に連れ回り、燃料噴射なしで回転するモータリング状態となる。
 ステップS11では、ステップS10でのCL1締結完了との判断に続き、第2クラッチ5を締結するCL2締結指令を出力し、ステップS12へ進む。
 ステップS12では、ステップS11でのCL2締結指令の出力に続き、第2クラッチ5が完全に締結したか否かを判断する。YES(CL2締結)の場合にはリターンへ進む。NO(CL2未締結)の場合にはステップS12を繰り返す。
ここで、第2クラッチ5の締結判断は、第2クラッチ5における差回転がゼロになると共に、第2クラッチ5におけるクラッチ締結容量(第2クラッチトルク)が、締結トルクとなったと判断できる所定値に達したことで行う。
 次に、実施例1のFFハイブリッド車両の制御装置におけるエンジン始動制御作用を説明する。
 [エンジン始動制御作用]
 図4は、実施例1の制御装置において、コースト回生運転時にシステム要求によるエンジン始動要求が発生した際のアクセル開度、車両G、CL2トルク指令、CL1油圧指令、ENG回転数、MG回転数、PRI回転数の各特性を示すタイムチャートである。以下、図4に基づき、実施例1のエンジン始動制御作用を説明する。
 実施例1のFFハイブリッド車両において、「EVモード」中にモータジェネレータ4で回生しながら、アクセル足離し状態でコースト減速するコースト回生運転中、図4に示す時刻t時点で、例えば室内エアコン用コンプレッサの作動要求が出力されると、システム要求によるエンジン始動要求が発生する。
これにより、図3に示すフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、第2クラッチ5をスリップ締結状態にするCL2スリップ指令が出力される。このとき、第2クラッチトルク指令(第2クラッチ5におけるクラッチ締結容量に対する指令)は、コースト回生運転中のモータジェネレータ4の回生トルクによる所定の減速度が車両に発生する量に設定される。
 時刻t時点で、第2クラッチ5におけるクラッチ締結容量(第2クラッチトルク)が所定の範囲内に収まり、車両に作用する減速度がコースト減速度程度になったと判断される。
これにより、ステップS4→ステップS5へと進み、第1クラッチ3の油圧をスタンバイ油圧にするCL1油圧指令と、モータジェネレータ4の出力回転数を低減して、第2クラッチ出力回転数よりも小さくするMG回転数指令が出力される。
このため、第1クラッチ3の締結油圧は上昇してスタンバイ油圧になる。また、モータジェネレータ4の回転数は、時間に伴って徐々に低減する。なお、モータ回転数の低減を図ることで、モータトルクの増大を図ることができる。
 時刻t時点で、モータジェネレータ4の回転数が予め設定した判定閾値に達すると、ステップS6→ステップS7へと進み、第1クラッチ3の締結油圧をクランキング油圧にするCL1油圧指令と、横置きエンジン2のクランキング指令が出力される。これにより、第1クラッチ3の油圧は上昇してクランキング油圧になる。なお、このクランキング油圧は締結油圧よりも低いため、第1クラッチ3はスリップ締結状態になる。
また、このとき、モータ回転数は、モータジェネレータ4からの出力トルクが、エンジンクランキングに必要なトルクに達する回転数である判定閾値に達している。つまり、モータジェネレータ4は、クランキングに必要なモータトルクを出力可能な状態になっている。そのため、モータジェネレータ4によって横置きエンジン2を速やかにクランキングすることができる。
 そして、時刻t時点で、横置きエンジン2の回転数が上昇を開始し、時刻t時点で、モータ回転数とエンジン回転数が一致する。つまり、時刻t時点で、第1クラッチ3における差回転がゼロになる。またこのとき、モータ回転数は判定閾値に維持され、この判定閾値はエンジン始動可能回転数よりも高い回転数となっている。つまり、この時刻t時点で、エンジン回転数はエンジン始動可能回転数を上回っている。そのため、ステップS9へと進み、第1クラッチ3の油圧を締結油圧にするCL1油圧指令が出力される。そして、第1クラッチ油圧指令が上昇し、時刻t時点において第1クラッチ3の油圧指令が締結油圧に達したことから、この第1クラッチ3が締結したとして、ステップS10→ステップS11へと進んで、第2クラッチ5を締結するCL2締結指令が出力される。その後、第2クラッチトルク指令が上昇し、この第2クラッチトルク指令の上昇に伴って、モータジェネレータ4の出力回転数と横置きエンジン2の回転数が上昇する。
このとき、横置きエンジン2に対して空気・燃料の噴射及び点火は行われず、横置きエンジン2はモータジェネレータ4の回転に連れ回ることとなる。
 そして、時刻t時点で、エンジン回転数とモータ回転数と変速機入力回転数(=第2クラッチ出力回転数)が一致すると共に、第2クラッチトルク指令が締結トルクに達したことで、第2クラッチ5の締結が完了したとして、エンジン始動制御が終了する。
 このように、実施例1のハイブリッド車両の制御装置では、コースト回生運転中にコースト状態のままでシステム要求によるエンジン始動要求が発生したら、第2クラッチ5をスリップ締結すると共に、このときの第2クラッチ締結容量を、モータジェネレータ4の回生トルクによる所定の減速度が発生する量に設定する。さらに、モータ回転数を変速機入力回転数(=第2クラッチ出力回転数)よりも小さくする。そして、第1クラッチ3をスリップ締結して、モータジェネレータ4によって横置きエンジン2を燃料噴射なしで回転するモータリング状態にする。
 ここで、コースト回生運転中では、アクセルOFF状態であるため、エンジン始動時のモータトルク変動が車輪軸に伝達されると、意図しない押し出しショックが発生することがある。これに対し、第2クラッチ5をスリップ締結したことで、エンジン始動に伴うモータジェネレータ4のモータトルク変動が、駆動輪である左右の前輪10L,10Rに伝達されることが防止され、エンジン始動ショックを抑制することができる。
 また、車両減速度が維持されずに抜けてしまうと加速したと誤解されるが、実施例1では、モータジェネレータによる回生運転中の車両減速度が維持され、車両減速度の変化を吸収することができる。このため、押し出しショックを感じさせないようにできる。
 さらに、モータジェネレータ4は、モータ回転数が高くなるとモータトルクが低くなるという特性を有している。つまり、モータジェネレータの定格に拘らず、所定のモータ回転数以上では、クランキングトルクが不足してしまうことがある。
しかしながら、実施例1では、モータジェネレータ4の回転数を変速機入力回転数(=第2クラッチ出力回転数)よりも小さくすることで、モータトルクの増大を図ることができ、速やかなエンジン始動(クランキング)を可能とすることができる。
 そして、コースト状態でのシステム要求によるエンジン始動要求発生時では、横置きエンジン2を回転させること(クランキング)は必要であるが、エンジン燃焼トルクは必ずしも必要ではない。そのため、燃料させずにモータジェネレータ4に対して横置きエンジン2を連れ回す(モータリング状態にする)ことで、余計な燃料消費を抑えて燃費悪化を防止することができる。
 さらに、モータジェネレータ4の回転数を低減することで、エンジン始動時の第1クラッチ差回転、つまりエンジン回転数とモータ回転数の差を小さくすることができる。これにより、エンジン始動時の第1クラッチ3の発熱量を低減し、第1クラッチ3の耐久性を向上することができる。
 さらに、この実施例1では、横置きエンジン2がモータリング状態のとき、つまり、図4における時刻t以降では、モータジェネレータ4の回転数をエンジン始動回転数以上の値に設定している。
これにより、エンジン燃焼トルクが必要となった場合には、横置きエンジン2を速やかに完爆させることができ、必要トルクを短時間で得ることができる。
 また、この実施例1では、モータジェネレータ4の回転数を低減する際、時間に伴って徐々に低くしていく。つまり、モータ回転数が急激に変化しないようにしている。これにより、第2クラッチ5が完全開放する前にモータジェネレータ4の回転数を低減してしまった場合であっても、モータ回転数の変動やトルクの変動に伴うショックを低減することができる。
 また、第1クラッチ3を完全に締結する前に第2クラッチ5における第2クラッチ締結容量を上昇させると、モータジェネレータ4の負荷が増大することになり、モータ回転数が落ち込み、車両ショックが発生するおそれがある。
これに対し、この実施例1では、第2クラッチ5は、第1クラッチ3が完全に締結するまでは第2クラッチ締結容量をモータジェネレータ4の回生トルクによる所定の減速度が発生する量に維持し、スリップ締結し続ける。そして、第1クラッチ3が完全に締結してからこの第2クラッチ5の締結を開始する。
そのため、エンジン始動中のモータ回転数の落ち込みを防止し、車両ショックの発生を防止することができる。また、第1クラッチ3が締結したのちは、モータトルクに加えてエンジントルクも利用することができる。そのため、第2クラッチ5を締結したことで、モータジェネレータ4の負荷が増大しても、回転数落ち込みを発生しにくくすることができる。
 次に、効果を説明する。
 実施例1のハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 駆動系に、エンジン(横置きエンジン)2と、モータジェネレータ4と、前記エンジン2と前記モータジェネレータ4の間に介装した第1クラッチ3と、前記モータジェネレータ4と駆動輪(左右前輪)10L,10Rの間に介装した第2クラッチ5と、を有し、エンジン始動要求が生じたら、前記モータジェネレータをエンジン始動モータとしてエンジン始動制御を行うエンジン始動制御手段(図3)を備えたハイブリッド車両の制御装置において、
 前記エンジン始動制御手段(図3)は、
 前記第1クラッチ3を開放し、前記第2クラッチ5を締結して走行する電気自動車モード(EVモード)での前記モータジェネレータ4によるコースト回生運転中に、コースト状態でエンジン始動要求が生じたとき、
 前記第2クラッチ5をスリップ締結し、このときの第2クラッチ締結容量を、前記モータジェネレータ4の回生トルクによる所定の減速度が発生する量に維持する第2クラッチ制御部(ステップS4)と、
 前記モータジェネレータ4の回転数を低減し、第2クラッチ出力回転数よりも小さくするモータ回転数制御部(ステップS6)と、
 前記第1クラッチ3をスリップ締結し、前記モータジェネレータ4によってエンジン2を燃料噴射なしで回転するモータリング状態にするモータリング制御部(ステップS7)と、
 を有する構成とした。
 これにより、コースト回生運転中のエンジン始動要求時における車両減速度の変化やエンジン始動ショックを抑制しつつ、燃費向上を図ることができる。
 (2) 前記モータ回転数制御部は、前記エンジン(横置きエンジン)2がモータリング状態のとき、前記モータジェネレータ4の回転数を、エンジン始動可能回転数以上の値に設定する構成とした。
 これにより、上記(1)の効果に加え、エンジン燃焼トルクが必要となったときに、横置きエンジン2を速やかに完爆させ、必要トルクを短時間で得ることができる。
 (3) 前記モータ回転数制御部(ステップS5)は、前記モータジェネレータ4の回転数を低減する際、時間に伴って徐々に小さくする構成とした。
 これにより、上記(1)又は(2)の効果に加え、第2クラッチ5のスリップ締結が遅れた場合であっても、モータ回転数変動やトルク変動によるショックを低減することができる。
 (4) 前記第2クラッチ制御部は、前記第1クラッチ3が完全に締結するまでは、第2クラッチをスリップ締結状態に維持し、前記第1クラッチ3が完全に締結したら、前記第2クラッチ5の締結を開始する(ステップS10,ステップS11)構成とした。
 これにより、上記(1)から(3)のいずれかの効果に加え、エンジン始動中のモータ回転数の落ち込みを防止することができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、エンジンクランキングを行う際に、第1クラッチ3の油圧をクランキング油圧にし、スリップ締結状態にしてエンジン始動する例を示したが、これに限らない。第1クラッチ油圧を締結油圧にし、この第1クラッチ3を締結状態にしてからエンジン始動(クランキング)してもよい。
 実施例1では、本発明のハイブリッド車両の制御装置をFFハイブリッド車両に適用する例を示した。しかし、本発明の制御装置は、FFハイブリッド車両に限らず、FRハイブリッド車両や4WDハイブリッド車両、プラグインハイブリッド車両に対しても適用することができる。要するに、ハイブリッド車両であれば適用できる。
 また、自動変速機としてベルト式無段変速機とする例を示したが、これに限らず、有段の自動変速機であってもよい。このときには、第2クラッチとして変速機の内部に有するクラッチやブレーキを用いてもよい。

Claims (4)

  1.  駆動系に、エンジンと、モータジェネレータと、前記エンジンと前記モータジェネレータの間に介装した第1クラッチと、前記モータジェネレータと駆動輪の間に介装した第2クラッチと、を有し、エンジン始動要求が生じたら、前記モータジェネレータをエンジン始動モータとしてエンジン始動制御を行うエンジン始動制御手段を備えたハイブリッド車両の制御装置において、
     前記エンジン始動制御手段は、
     前記第1クラッチを開放し、前記第2クラッチを締結して走行する電気自動車モードでの前記モータジェネレータによるコースト回生運転中に、コースト状態でエンジン始動要求が生じたとき、
     前記第2クラッチをスリップ締結し、このときの第2クラッチ締結容量を、前記モータジェネレータの回生トルクによる所定の減速度が発生する量に維持する第2クラッチ制御部と、
     前記モータジェネレータの回転数を低減し、第2クラッチ出力回転数よりも小さくするモータ回転数制御部と、
     前記第1クラッチを締結又はスリップ締結し、前記モータジェネレータによってエンジンを燃料噴射なしで回転するモータリング状態にするモータリング制御部と、
     を有する
     ことを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記モータ回転数制御部は、前記エンジンがモータリング状態のとき、前記モータジェネレータの回転数を、エンジン始動可能回転数以上の値に設定する
     ことを特徴とするハイブリッド車両の制御装置。
  3.  請求項1又は請求項2に記載されたハイブリッド車両の制御装置において、
     前記モータ回転数制御部は、前記モータジェネレータの回転数を低減する際、時間に伴って徐々に小さくする
     ことを特徴とするハイブリッド車両の制御装置。
  4.  請求項1から請求項3のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記第2クラッチ制御部は、前記第1クラッチが完全に締結するまでは、第2クラッチをスリップ締結状態に維持し、前記第1クラッチが完全に締結したら、前記第2クラッチの締結を開始する
     ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2013/077290 2013-10-08 2013-10-08 ハイブリッド車両の制御装置 WO2015052760A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077290 WO2015052760A1 (ja) 2013-10-08 2013-10-08 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077290 WO2015052760A1 (ja) 2013-10-08 2013-10-08 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2015052760A1 true WO2015052760A1 (ja) 2015-04-16

Family

ID=52812611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077290 WO2015052760A1 (ja) 2013-10-08 2013-10-08 ハイブリッド車両の制御装置

Country Status (1)

Country Link
WO (1) WO2015052760A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721905A (zh) * 2021-01-07 2021-04-30 浙江吉利控股集团有限公司 双电机混合动力***中发动机的启动方法和装置及车辆
US11383693B2 (en) * 2018-04-02 2022-07-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087080A (ja) * 2000-09-14 2002-03-26 Isuzu Motors Ltd ハイブリッド駆動装置
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010167961A (ja) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd ハイブリッド車両の変速制御装置および変速制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087080A (ja) * 2000-09-14 2002-03-26 Isuzu Motors Ltd ハイブリッド駆動装置
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010167961A (ja) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd ハイブリッド車両の変速制御装置および変速制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383693B2 (en) * 2018-04-02 2022-07-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN112721905A (zh) * 2021-01-07 2021-04-30 浙江吉利控股集团有限公司 双电机混合动力***中发动机的启动方法和装置及车辆
CN112721905B (zh) * 2021-01-07 2022-04-08 浙江吉利控股集团有限公司 双电机混合动力***中发动机的启动方法和装置及车辆

Similar Documents

Publication Publication Date Title
JP6112214B2 (ja) ハイブリッド車両の制御装置
JP6292239B2 (ja) 4輪駆動電動車両の制御装置
JP6065987B2 (ja) ハイブリッド車両の制御装置
JP6070855B2 (ja) ハイブリッド車両の制御装置
JP6369210B2 (ja) ハイブリッド車両の制御装置
JP6070854B2 (ja) ハイブリッド車両の制御装置
JP6187057B2 (ja) ハイブリッド車両の制御装置
JP6187059B2 (ja) ハイブリッド車両の制御装置
JP6229399B2 (ja) ハイブリッド車両の制御装置
JP6194735B2 (ja) ハイブリッド車両の制御装置
WO2015052760A1 (ja) ハイブリッド車両の制御装置
JP6369209B2 (ja) ハイブリッド車両の制御装置
JP6433695B2 (ja) 車両の発進制御装置
JP6286972B2 (ja) ハイブリッド車両の制御装置
JP6287513B2 (ja) ハイブリッド車両の制御装置
WO2015198809A1 (ja) ハイブリッド車両の制御装置
JP6229398B2 (ja) ハイブリッド車両の制御装置
WO2015037042A1 (ja) ハイブリッド車両の制御装置
JP6318801B2 (ja) 車載オイルポンプの駆動切り替え制御装置
JP6488798B2 (ja) ハイブリッド車両の制御装置
WO2015037043A1 (ja) ハイブリッド車両の制御装置
WO2016013061A1 (ja) 車両の変速油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP