WO2015045330A1 - Fuel cell and manufacturing method therefor - Google Patents

Fuel cell and manufacturing method therefor Download PDF

Info

Publication number
WO2015045330A1
WO2015045330A1 PCT/JP2014/004771 JP2014004771W WO2015045330A1 WO 2015045330 A1 WO2015045330 A1 WO 2015045330A1 JP 2014004771 W JP2014004771 W JP 2014004771W WO 2015045330 A1 WO2015045330 A1 WO 2015045330A1
Authority
WO
WIPO (PCT)
Prior art keywords
pores
fuel cell
fuel electrode
fuel
metal oxide
Prior art date
Application number
PCT/JP2014/004771
Other languages
French (fr)
Japanese (ja)
Inventor
新田 高弘
聡司 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015045330A1 publication Critical patent/WO2015045330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a solid oxide fuel cell and a method for manufacturing the same.
  • a fuel cell having a structure in which a solid oxide electrolyte is supported by a fuel electrode.
  • a porous electrode is employed in order to provide fuel gas permeability.
  • the porous fuel electrode is manufactured by firing an unfired sheet formed using raw material powder and a pore former. By this sintering, the raw material powder is sintered to form a sintered body, and the pore former disappears, whereby pores are formed in the sintered body (see, for example, Patent Document 1).
  • the fuel electrode In the structure where the fuel electrode supports the electrolyte, the fuel electrode is required to have high strength.
  • the porous fuel electrode has a problem that the strength is low because the partition walls between the pores formed by the pore former are thin. Therefore, if an attempt is made to thicken the partition walls between the pores in order to improve the strength of the fuel electrode, the pores are likely to become independent, and the air permeability of the fuel gas cannot be ensured.
  • the present disclosure aims to improve the strength of the fuel electrode while ensuring the air permeability of the fuel gas.
  • a fuel cell includes a solid oxide electrolyte, and a fuel electrode that supports the electrolyte and is composed of a composite of metal and oxygen ion conductive ceramics.
  • a fuel electrode that supports the electrolyte and is composed of a composite of metal and oxygen ion conductive ceramics.
  • a plurality of first pores are formed in a dispersed manner, and second pores are formed in the partition between adjacent first pores.
  • the average diameter of the first pores is larger than the average thickness of the partition walls, the average diameter of the second pores is smaller than the average thickness of the partition walls, and the adjacent first pores communicate with each other through the second pores.
  • the first pores can be communicated with each other by the second pore provided in the partition. Therefore, according to this aspect, the strength of the fuel electrode can be improved while ensuring the gas gas permeability.
  • FIG. 6 is a flowchart showing a manufacturing process of a fuel cell in an embodiment of the present disclosure. It is a figure for demonstrating the manufacturing method of the fuel cell in one Embodiment of this indication, Comprising: It is a schematic diagram which shows the structure of the partition before a reduction process. It is a figure for demonstrating the manufacturing method of the fuel cell in one Embodiment of this indication, Comprising: It is a schematic diagram which shows the structure of the partition after a reduction
  • a plurality of fuel cells of the present embodiment are stacked to constitute a fuel cell stack.
  • a flat plate fuel cell stack is configured by stacking a plurality of flat plate fuel cells 1.
  • the fuel cell 1 includes a solid oxide electrolyte 2, a fuel electrode 3, an active layer 4, and an air electrode 5.
  • Electrolyte 2 is made of a solid oxide having oxygen ion conductivity, that is, ceramics.
  • ceramics include stabilized zirconia in which a rare earth oxide typified by yttria stabilized zirconia (hereinafter referred to as YSZ) is dissolved, ceria-based solid solution, perovskite oxide, and the like.
  • the fuel electrode 3 is provided on one side of the electrolyte 2 and supports the electrolyte 2.
  • the fuel electrode 3 is composed of a mixture of a metal typified by Ni and ceramics having oxygen ion conductivity.
  • the ceramic include stabilized zirconia in which a rare earth oxide is solid-solved, ceria-based solid solution, and the like, similar to the ceramic that constitutes the electrolyte 2.
  • the active layer 4 is disposed between the fuel electrode 3 and the electrolyte 2. Similar to the fuel electrode 3, the active layer 4 is made of metal and ceramics having oxygen ion conductivity. The active layer 4 is higher in oxygen ion conductivity than the fuel electrode 3, that is, the oxygen ion conductive ceramic content is higher than that of the fuel electrode 3 in order to increase the activity.
  • the air electrode 5 is provided on the other surface side opposite to the one surface side of the electrolyte 2.
  • the air electrode 5 is made of metal or metal oxide.
  • the metal include Pt and Au.
  • the metal oxide include lanthanum-cobalt oxide and lanthanum-nickel oxide.
  • the fuel electrode 3 includes first pores 31 that are formed in a distributed manner, and second pores 33 that are formed inside a partition wall 32 between adjacent first pores 31. .
  • the first pores 31 are large pores formed by a pore former as described later.
  • the partition wall 32 is a structural portion that exists between the adjacent first pores 31 when the cut surface of the fuel electrode 3 is viewed.
  • the adjacent first pores 31 refer to the first pores 31 that are not directly connected to each other on the cut surface of the fuel electrode 3 and are separated from each other.
  • the interval between the adjacent first pores 31 is the thickness t1 of the partition wall 32.
  • the second pores 33 are minute pores formed by volume contraction due to reduction of the metal oxide in the partition walls.
  • the average diameter d1 of the first pores 31 is larger than the average thickness t1 of the partition walls 32, and the average diameter d2 of the second pores 33 is smaller than the average thickness t1 of the partition walls 32.
  • the average diameter d2 of the second pores 33 is 1/5 or more and 1/10 or less of the average diameter d1 of the first pores 31. Illustrating these specific sizes, the average diameter d1 of the first pores 31 is not less than 1 ⁇ m and not more than 10 ⁇ m, the average diameter d2 of the second pores 33 is not less than 0.1 ⁇ m and less than 1 ⁇ m, and the average thickness of the partition walls 32
  • the length t1 is not less than 1 ⁇ m and not more than 10 ⁇ m.
  • a plurality of the second pores 33 are connected inside the partition wall 32. Adjacent first pores 31 communicate with each other through a plurality of second pores 33. For this reason, when the fuel gas is supplied to the fuel electrode 3, the fuel gas flows from the first pore 31 into the adjacent first pore 31 via the second pore 33. In this way, the fuel gas diffuses inside the fuel electrode 3.
  • FIG. 2 shows a state in which a plurality of second pores 33 are continuous in the two-dimensional direction, but actually a plurality of second pores 33 are continuous in the three-dimensional direction.
  • the second pores 33 can be confirmed one by one, and the diameter of the second pores 33 can be measured.
  • the length in the direction orthogonal to the longitudinal direction is the diameter d ⁇ b> 2 of the second pores 33.
  • the fuel cell 1 having the above-described configuration is manufactured by sequentially performing the sheet forming step S1, the firing step S2, and the reduction step S3.
  • a metal oxide powder such as nickel oxide (NiO), a ceramic powder such as YSZ, and a pore former such as resin or carbon were dispersed in a solvent.
  • the average particle size of the metal oxide powder is made larger than the average particle size of the ceramic powder. This is because the second pores 33 are formed in the partition wall 32 so that the adjacent first pores 31 are sufficiently communicated with each other.
  • the particle diameter and the amount of addition of the pore former the size of the first pores 31 in the fuel electrode 3 after manufacture, the thickness of the partition walls 32, and the combined porosity of the first and second pores 33 are desired. Set to be the value of. Then, the formed slurry is formed into a sheet and dried to form an unfired sheet.
  • the laminate in which the unfired sheets are laminated is fired.
  • the metal oxide powder and the ceramic powder are sintered, and the pore former disappears, whereby the first pores 31 and the partition walls 32 are formed.
  • the partition wall 32 is composed of a metal oxide 321 and a ceramic 322.
  • the fired body after the firing step is heated in a reducing gas atmosphere.
  • the metal oxide in the partition wall 32 in the fuel electrode 3 is reduced to become a metal, and the partition wall 32 is formed of a composite of the metal 323 and the ceramic 322 as shown in FIG.
  • the reduction of the metal oxide 321 causes volume shrinkage, and the second pores 33 are formed in the partition wall 32.
  • the metal oxide 321 is NiO
  • the NiO is reduced to Ni as shown in the following formula, resulting in volume shrinkage.
  • the first pores 31 have a shape corresponding to the shape of the pore former. For this reason, when the spherical pore former is used, the formed first pores 31 are spherical or spheroid. On the other hand, since the 2nd pore 33 is formed by volume contraction, it becomes an unspecified shape.
  • the plurality of first pores 31 are formed in a distributed manner, and the second pores 33 are formed in the partition walls 32 between the adjacent first pores 31.
  • the formed configuration is adopted.
  • the average diameter d1 of the first pores 31 is larger than the average thickness t1 of the partition walls 32
  • the average diameter d2 of the second pores 33 is smaller than the average thickness t1 of the partition walls 32.
  • the pores 31 communicate with each other through the second pores 33.
  • the first pores 31 can be communicated with each other by the second pores 33 provided in the partition wall 32. Therefore, according to the present disclosure, it is possible to improve the strength of the fuel electrode 3 while ensuring the permeability of the fuel gas.
  • the average diameter d2 of the second pores 33 is not less than 1/5 and not more than 1/10 of the average diameter d1 of the first pores 31, and is specifically not less than 0.1 ⁇ m and less than 1 ⁇ m.
  • the strength is improved by increasing the thickness of the partition wall 32 rather than the strength reduction by forming the second pores 33 in the partition wall 32. Greatly contributes.
  • the laminate in which the unfired sheets that are the electrolyte 2, the fuel electrode 3, the active layer 4, and the air electrode 5 are laminated is fired, but each unfired sheet is fired separately and joined together. May be.
  • the fuel cell 1 was set as the structure by which the electrolyte 2, the fuel electrode 3, the active layer 4, and the air electrode 5 were laminated
  • a fuel electrode was formed independently by the following method.
  • a slurry was prepared in which NiO powder, YSZ powder in which 8 mol% of yttria was dissolved, polyvinyl butyral (PVB) as a binder, and pore former were dispersed in 2-butisoaluminum and ethanol as a mixed solvent.
  • the mass ratio of the NiO powder and the YSZ powder was 60:40.
  • the amount of pore former added was set so as to achieve the porosity shown in Tables 1 to 3 below.
  • the average particle size of each powder and the material of the pore former used in each example are as follows.
  • NiO powder 0.7 ⁇ m YSZ powder: 0.6 ⁇ m Porous material (acrylic): 10 ⁇ m (Examples 4 to 6) NiO powder: 0.7 ⁇ m YSZ powder: 0.6 ⁇ m Porous material (acrylic + carbon): 3 ⁇ m
  • the green sheet was formed using the adjusted slurry, and this green sheet was baked at 1325 ° C. Thereafter, the fired sheet was heated at 800 ° C. in an N 2 gas atmosphere, and NiO was reduced while replacing the N 2 gas with 100% hydrogen gas, thereby forming a fuel electrode.
  • each formed fuel electrode was observed with a scanning electron microscope (SEM). As a result, it was confirmed that in each of the fuel electrodes of Examples 1 to 6, second pores having an average diameter of 0.1 ⁇ m or more and less than 1 ⁇ m were formed in the partition walls.
  • the porosity, strength, and average partition wall thickness of each fuel electrode were measured.
  • the porosity was measured by Archimedes method.
  • the strength was measured by a 4-point bending test.
  • the average partition wall thickness was determined from the SEM image. The results are shown in Tables 1 to 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell is provided with a solid-oxide electrolyte (2) and a fuel electrode (3) that supports said electrolyte. The fuel electrode comprises a complex of a metal and a ceramic that conducts oxygen ions. A plurality of first pores (31) are formed in the fuel electrode in a dispersed manner, and second pores (33) are formed inside dividing walls (32) between adjacent first pores. The mean diameter (d1) of the first pores is larger than the mean thickness (t1) of said dividing walls, and the mean diameter (d2) of the second pores is smaller than said mean thickness. Adjacent first pores are connected via second pores.

Description

燃料電池セルおよびその製造方法Fuel cell and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年9月24日に出願された日本出願番号2013-196806号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2013-196806 filed on September 24, 2013, the contents of which are incorporated herein by reference.
 本開示は、固体酸化物型の燃料電池セルおよびその製造方法に関するものである。 The present disclosure relates to a solid oxide fuel cell and a method for manufacturing the same.
 この種の燃料電池セルとして、固体酸化物型の電解質を燃料極で支持する構造の燃料電池セルがある。また、燃料極としては、燃料ガスの通気性を持たせるために、多孔化されたものが採用されている。多孔化された燃料極は、原料粉末および造孔材を用いて形成された未焼成シートを焼成することで製造される。この焼成によって原料粉末が焼結して焼結体が形成されるとともに、造孔材が消失することで、焼結体内に気孔が形成される(例えば、特許文献1参照)。 As this type of fuel cell, there is a fuel cell having a structure in which a solid oxide electrolyte is supported by a fuel electrode. Further, as the fuel electrode, a porous electrode is employed in order to provide fuel gas permeability. The porous fuel electrode is manufactured by firing an unfired sheet formed using raw material powder and a pore former. By this sintering, the raw material powder is sintered to form a sintered body, and the pore former disappears, whereby pores are formed in the sintered body (see, for example, Patent Document 1).
特開2012-99497号公報JP 2012-99497 A
 燃料極が電解質を支持する構造では、燃料極が高強度であることが求められる。しかし、多孔化した燃料極は、造孔材により形成された気孔同士の間の隔壁が薄いために、強度が低いという問題がある。そこで、燃料極の強度を向上させるために、気孔同士の間の隔壁を厚く形成しようとすると、気孔が独立しやすくなり、燃料ガスの通気性を確保できなくなってしまう。 In the structure where the fuel electrode supports the electrolyte, the fuel electrode is required to have high strength. However, the porous fuel electrode has a problem that the strength is low because the partition walls between the pores formed by the pore former are thin. Therefore, if an attempt is made to thicken the partition walls between the pores in order to improve the strength of the fuel electrode, the pores are likely to become independent, and the air permeability of the fuel gas cannot be ensured.
 本開示は上記点に鑑みて、燃料ガスの通気性を確保しつつ、燃料極の強度を向上させることを目的とする。 In view of the above points, the present disclosure aims to improve the strength of the fuel electrode while ensuring the air permeability of the fuel gas.
 本開示のある態様にかかる燃料電池セルは、固体酸化物型の電解質と、電解質を支持するとともに、金属と酸素イオン伝導性のセラミックスの複合体で構成された燃料極とを備える。燃料極は、複数の第1気孔が分散形成されているとともに、隣り合う第1気孔同士の間の隔壁の内部に第2気孔が形成されている。 A fuel cell according to an aspect of the present disclosure includes a solid oxide electrolyte, and a fuel electrode that supports the electrolyte and is composed of a composite of metal and oxygen ion conductive ceramics. In the fuel electrode, a plurality of first pores are formed in a dispersed manner, and second pores are formed in the partition between adjacent first pores.
 第1気孔の平均径は、隔壁の平均厚さよりも大きく、第2気孔の平均径は、隔壁の平均厚さよりも小さく、隣り合う第1気孔は、第2気孔を介して連通している。 The average diameter of the first pores is larger than the average thickness of the partition walls, the average diameter of the second pores is smaller than the average thickness of the partition walls, and the adjacent first pores communicate with each other through the second pores.
 これによれば、第1気孔同士の間の隔壁を厚くしても、隔壁内に設けた第2気孔によって第1気孔同士を連通させることができる。よって、本態様によれば、燃料ガスの通気性を確保しつつ、燃料極の強度を向上させることができる。 According to this, even if the partition between the first pores is thickened, the first pores can be communicated with each other by the second pore provided in the partition. Therefore, according to this aspect, the strength of the fuel electrode can be improved while ensuring the gas gas permeability.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
本開示の一実施形態における燃料電池セルの断面図である。 図1の領域A1の拡大図である。 本開示の一実施形態における燃料電池セルの製造工程を示すフローチャートである。 本開示の一実施形態における燃料電池セルの製造方法を説明するための図であって、還元工程前の隔壁の構造を示す模式図である。 本開示の一実施形態における燃料電池セルの製造方法を説明するための図であって、還元工程後の隔壁の構造を示す模式図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is sectional drawing of the fuel battery cell in one Embodiment of this indication. It is an enlarged view of area | region A1 of FIG. 6 is a flowchart showing a manufacturing process of a fuel cell in an embodiment of the present disclosure. It is a figure for demonstrating the manufacturing method of the fuel cell in one Embodiment of this indication, Comprising: It is a schematic diagram which shows the structure of the partition before a reduction process. It is a figure for demonstrating the manufacturing method of the fuel cell in one Embodiment of this indication, Comprising: It is a schematic diagram which shows the structure of the partition after a reduction | restoration process.
 以下、本開示の実施形態について図に基づいて説明する。本実施形態の燃料電池セルは、複数積層されて燃料電池スタックを構成するものである。例えば、平板形状の燃料電池セル1が複数積層されることにより、平板積層型燃料電池スタックが構成される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. A plurality of fuel cells of the present embodiment are stacked to constitute a fuel cell stack. For example, a flat plate fuel cell stack is configured by stacking a plurality of flat plate fuel cells 1.
 図1に示すように、燃料電池セル1は、固体酸化物型の電解質2と、燃料極3と、活性層4と、空気極5とを備えている。 As shown in FIG. 1, the fuel cell 1 includes a solid oxide electrolyte 2, a fuel electrode 3, an active layer 4, and an air electrode 5.
 電解質2は、酸素イオン伝導性を有する固体酸化物、すなわち、セラミックスで構成されている。このセラミックスとしては、イットリア安定化ジルコニア(以下、YSZと記す。)に代表される希土類酸化物が固溶された安定化ジルコニア、セリア系固溶体、ペロブスカイト型酸化物等が挙げられる。 Electrolyte 2 is made of a solid oxide having oxygen ion conductivity, that is, ceramics. Examples of the ceramic include stabilized zirconia in which a rare earth oxide typified by yttria stabilized zirconia (hereinafter referred to as YSZ) is dissolved, ceria-based solid solution, perovskite oxide, and the like.
 燃料極3は、電解質2の一面側に設けられており、電解質2を支持している。燃料極3は、Niに代表される金属と、酸素イオン伝導性を有するセラミックスとの混合物で構成されている。このセラミックスとしては、電解質2を構成するセラミックスと同様に、希土類酸化物が固溶された安定化ジルコニア、セリア系固溶体等が挙げられる。 The fuel electrode 3 is provided on one side of the electrolyte 2 and supports the electrolyte 2. The fuel electrode 3 is composed of a mixture of a metal typified by Ni and ceramics having oxygen ion conductivity. Examples of the ceramic include stabilized zirconia in which a rare earth oxide is solid-solved, ceria-based solid solution, and the like, similar to the ceramic that constitutes the electrolyte 2.
 活性層4は、燃料極3と電解質2との間に配置されている。活性層4は、燃料極3と同様に、金属と、酸素イオン伝導性を有するセラミックスで構成されている。活性層4は、燃料極3よりも酸素イオン伝導性が高くなるように、すなわち、活性を高めるために酸素イオン伝導性のセラミックスの含有割合が燃料極3よりも高くなっている。 The active layer 4 is disposed between the fuel electrode 3 and the electrolyte 2. Similar to the fuel electrode 3, the active layer 4 is made of metal and ceramics having oxygen ion conductivity. The active layer 4 is higher in oxygen ion conductivity than the fuel electrode 3, that is, the oxygen ion conductive ceramic content is higher than that of the fuel electrode 3 in order to increase the activity.
 空気極5は、電解質2の一面側と反対の他面側に設けられている。空気極5は、金属または金属酸化物で構成される。金属としては、Pt、Au等が挙げられる。金属酸化物としては、ランタン-コバルト系酸化物や、ランタン-ニッケル系酸化物等が挙げられる。 The air electrode 5 is provided on the other surface side opposite to the one surface side of the electrolyte 2. The air electrode 5 is made of metal or metal oxide. Examples of the metal include Pt and Au. Examples of the metal oxide include lanthanum-cobalt oxide and lanthanum-nickel oxide.
 図2に示すように、燃料極3は、分散形成された第1気孔31と、隣り合う第1気孔31同士の間の隔壁32の内部に形成された第2気孔33とを有している。 As shown in FIG. 2, the fuel electrode 3 includes first pores 31 that are formed in a distributed manner, and second pores 33 that are formed inside a partition wall 32 between adjacent first pores 31. .
 第1気孔31は、後述の通り、造孔材によって形成された大きな気孔である。隔壁32は、燃料極3の切断面を見たときに、隣り合う第1気孔31同士の間に存在する構造部である。隣り合う第1気孔31とは、燃料極3の切断面において、第1気孔同士が直に連なっておらず、離れている第1気孔31同士を指す。隣り合う第1気孔31同士の間隔が隔壁32の厚さt1である。第2気孔33は、後述の通り、隔壁内の金属酸化物の還元による体積収縮によって形成された微小な気孔である。 The first pores 31 are large pores formed by a pore former as described later. The partition wall 32 is a structural portion that exists between the adjacent first pores 31 when the cut surface of the fuel electrode 3 is viewed. The adjacent first pores 31 refer to the first pores 31 that are not directly connected to each other on the cut surface of the fuel electrode 3 and are separated from each other. The interval between the adjacent first pores 31 is the thickness t1 of the partition wall 32. As will be described later, the second pores 33 are minute pores formed by volume contraction due to reduction of the metal oxide in the partition walls.
 第1気孔31の平均径d1は、隔壁32の平均厚さt1よりも大きく、第2気孔33の平均径d2は、隔壁32の平均厚さt1よりも小さい。第2気孔33の平均径d2は、第1気孔31の平均径d1の1/5以上1/10以下である。これらの具体的な大きさを例示すると、第1気孔31の平均径d1は1μm以上10μm以下であり、第2気孔33の平均径d2は0.1μm以上1μm未満であり、隔壁32の平均厚さt1は1μm以上10μm以下である。 The average diameter d1 of the first pores 31 is larger than the average thickness t1 of the partition walls 32, and the average diameter d2 of the second pores 33 is smaller than the average thickness t1 of the partition walls 32. The average diameter d2 of the second pores 33 is 1/5 or more and 1/10 or less of the average diameter d1 of the first pores 31. Illustrating these specific sizes, the average diameter d1 of the first pores 31 is not less than 1 μm and not more than 10 μm, the average diameter d2 of the second pores 33 is not less than 0.1 μm and less than 1 μm, and the average thickness of the partition walls 32 The length t1 is not less than 1 μm and not more than 10 μm.
 第2気孔33は、隔壁32の内部で複数連なっている。隣り合う第1気孔31同士は、複数連なった第2気孔33を介して連通している。このため、燃料極3に燃料ガスが供給されると、燃料ガスは第1気孔31から第2気孔33を介して隣りの第1気孔31に流入する。このようにして、燃料ガスが燃料極3内部を拡散する。 A plurality of the second pores 33 are connected inside the partition wall 32. Adjacent first pores 31 communicate with each other through a plurality of second pores 33. For this reason, when the fuel gas is supplied to the fuel electrode 3, the fuel gas flows from the first pore 31 into the adjacent first pore 31 via the second pore 33. In this way, the fuel gas diffuses inside the fuel electrode 3.
 なお、図2では、第2気孔33が二次元方向に複数連なっている様子を示しているが、実際には、第2気孔33は三次元方向に複数連なっている。実際の切断面を観察すると、第2気孔33を1つずつ確認することができ、第2気孔33の径を測定することが可能である。ちなみに、図2のように、連続する第2気孔33では、その長手方向に対して直交する方向での長さが、第2気孔33の径d2である。 Note that FIG. 2 shows a state in which a plurality of second pores 33 are continuous in the two-dimensional direction, but actually a plurality of second pores 33 are continuous in the three-dimensional direction. When the actual cut surface is observed, the second pores 33 can be confirmed one by one, and the diameter of the second pores 33 can be measured. Incidentally, as shown in FIG. 2, in the continuous second pores 33, the length in the direction orthogonal to the longitudinal direction is the diameter d <b> 2 of the second pores 33.
 上記した構成の燃料電池セル1では、燃料極3に水素等の燃料ガスが供給されるとともに、空気極5に空気等の酸化剤ガスが供給されると、電解質2を介した水素と酸素との電気化学反応により、電気エネルギが発生する。このとき、空気極5から燃料極3に向かって、酸素イオンが電解質2中を移動する。 In the fuel cell 1 having the above-described configuration, when a fuel gas such as hydrogen is supplied to the fuel electrode 3 and an oxidant gas such as air is supplied to the air electrode 5, hydrogen and oxygen via the electrolyte 2 are Electric energy is generated by the electrochemical reaction. At this time, oxygen ions move in the electrolyte 2 from the air electrode 5 toward the fuel electrode 3.
 次に、上記した構成の燃料電池セル1の製造方法について説明する。 Next, a method for manufacturing the fuel cell 1 having the above-described configuration will be described.
 図3に示すように、シート形成工程S1と、焼成工程S2と、還元工程S3とを順に行うことで、上記した構成の燃料電池セル1が製造される。 As shown in FIG. 3, the fuel cell 1 having the above-described configuration is manufactured by sequentially performing the sheet forming step S1, the firing step S2, and the reduction step S3.
 シート形成工程S1では、電解質2、燃料極3、活性層4、空気極5のそれぞれとなる未焼成シートを形成する。 In the sheet forming step S <b> 1, unfired sheets to be the electrolyte 2, the fuel electrode 3, the active layer 4, and the air electrode 5 are formed.
 燃料極3となる未焼成シートを形成する際では、酸化ニッケル(NiO)等の金属酸化物粉末と、YSZ等のセラミックス粉末と、樹脂またはカーボン等の造孔材とを、溶媒に分散させたスラリーを形成する。このとき、金属酸化物粉末とセラミックス粉末の大小関係については、金属酸化物粉末の平均粒径をセラミックス粉末の平均粒径よりも大きくする。これは、隣り合う第1気孔31同士を十分に連通させるように、隔壁32に第2気孔33を形成するためである。また、造孔材の粒径および添加量については、製造後の燃料極3における第1気孔31の大きさ、隔壁32の厚さ、第1、第2気孔33を合わせた気孔率が、所望の値となるように設定する。そして、形成したスラリーをシート状に成形し、乾燥させることで、未焼成シートを形成する。 When forming an unfired sheet to be the fuel electrode 3, a metal oxide powder such as nickel oxide (NiO), a ceramic powder such as YSZ, and a pore former such as resin or carbon were dispersed in a solvent. Form a slurry. At this time, regarding the size relationship between the metal oxide powder and the ceramic powder, the average particle size of the metal oxide powder is made larger than the average particle size of the ceramic powder. This is because the second pores 33 are formed in the partition wall 32 so that the adjacent first pores 31 are sufficiently communicated with each other. As for the particle diameter and the amount of addition of the pore former, the size of the first pores 31 in the fuel electrode 3 after manufacture, the thickness of the partition walls 32, and the combined porosity of the first and second pores 33 are desired. Set to be the value of. Then, the formed slurry is formed into a sheet and dried to form an unfired sheet.
 その後、焼成工程S2で、未焼成シートを積層した積層体を焼成する。燃料極3となる未焼成シートを焼成すると、金属酸化物粉末とセラミックス粉末とが焼結するとともに、造孔材が消失することによって、第1気孔31と隔壁32とが形成される。この段階では、図4に示すように、隔壁32は、金属酸化物321とセラミックス322とによって構成される。 Thereafter, in the firing step S2, the laminate in which the unfired sheets are laminated is fired. When the unsintered sheet serving as the fuel electrode 3 is fired, the metal oxide powder and the ceramic powder are sintered, and the pore former disappears, whereby the first pores 31 and the partition walls 32 are formed. At this stage, as shown in FIG. 4, the partition wall 32 is composed of a metal oxide 321 and a ceramic 322.
 その後、還元工程S3で、焼成工程後の焼成体を、還元性ガス雰囲気下で加熱する。これにより、燃料極3における隔壁32内の金属酸化物が還元して金属となり、図5に示すように、隔壁32が金属323とセラミックス322との複合体によって構成される。このとき、金属酸化物321が還元することで、体積収縮が起き、隔壁32に第2気孔33が形成される。例えば、金属酸化物321がNiOのとき、水素ガス雰囲気下で加熱すると、下記式のように、NiOが還元してNiとなることで、体積収縮が起きる。 Thereafter, in the reducing step S3, the fired body after the firing step is heated in a reducing gas atmosphere. Thereby, the metal oxide in the partition wall 32 in the fuel electrode 3 is reduced to become a metal, and the partition wall 32 is formed of a composite of the metal 323 and the ceramic 322 as shown in FIG. At this time, the reduction of the metal oxide 321 causes volume shrinkage, and the second pores 33 are formed in the partition wall 32. For example, when the metal oxide 321 is NiO, when heated in a hydrogen gas atmosphere, the NiO is reduced to Ni as shown in the following formula, resulting in volume shrinkage.
Figure JPOXMLDOC01-appb-C000001
 第1気孔31は、造孔材の形状に応じた形状となる。このため、球状の造孔材を用いた場合、形成される第1気孔31は、球状もしくは回転楕円体状となる。一方、第2気孔33は、体積収縮によって形成されるため、不特定な形状となる。
Figure JPOXMLDOC01-appb-C000001
The first pores 31 have a shape corresponding to the shape of the pore former. For this reason, when the spherical pore former is used, the formed first pores 31 are spherical or spheroid. On the other hand, since the 2nd pore 33 is formed by volume contraction, it becomes an unspecified shape.
 以上の説明の通り、本実施形態では、燃料極3の構成として、複数の第1気孔31が分散形成されているとともに、隣り合う第1気孔31同士の間の隔壁32に第2気孔33が形成された構成を採用している。この構成では、第1気孔31の平均径d1は、隔壁32の平均厚さt1よりも大きく、第2気孔33の平均径d2は、隔壁32の平均厚さt1よりも小さく、隣り合う第1気孔31は、第2気孔33を介して連通している。 As described above, in the present embodiment, as the configuration of the fuel electrode 3, the plurality of first pores 31 are formed in a distributed manner, and the second pores 33 are formed in the partition walls 32 between the adjacent first pores 31. The formed configuration is adopted. In this configuration, the average diameter d1 of the first pores 31 is larger than the average thickness t1 of the partition walls 32, and the average diameter d2 of the second pores 33 is smaller than the average thickness t1 of the partition walls 32. The pores 31 communicate with each other through the second pores 33.
 これによれば、第1気孔31同士の間の隔壁32を厚くしても、隔壁32内に設けた第2気孔33によって、第1気孔31同士を連通させることができる。よって、本開示によれば、燃料ガスの通気性を確保しつつ、燃料極3の強度を向上させることができる。 According to this, even if the partition wall 32 between the first pores 31 is thickened, the first pores 31 can be communicated with each other by the second pores 33 provided in the partition wall 32. Therefore, according to the present disclosure, it is possible to improve the strength of the fuel electrode 3 while ensuring the permeability of the fuel gas.
 また、第2気孔33の大きさは、微小であるため、隔壁32の内部に複数連なって形成されている。第2気孔33の平均径d2は、第1気孔31の平均径d1の1/5以上1/10以下であって、具体的には、0.1μm以上1μm未満である。このように、隔壁32の内部に形成された第2気孔33は微小であるので、隔壁32に第2気孔33を形成することによる強度低下よりも、隔壁32を厚くすることによる強度向上の方が大きく寄与する。 Further, since the size of the second pores 33 is very small, a plurality of second pores 33 are formed inside the partition wall 32. The average diameter d2 of the second pores 33 is not less than 1/5 and not more than 1/10 of the average diameter d1 of the first pores 31, and is specifically not less than 0.1 μm and less than 1 μm. As described above, since the second pores 33 formed in the partition wall 32 are very small, the strength is improved by increasing the thickness of the partition wall 32 rather than the strength reduction by forming the second pores 33 in the partition wall 32. Greatly contributes.
 本開示は上記実施形態に限定されるものではなく、下記のように、特許請求の範囲に記載した範囲内において適宜変更が可能である。 The present disclosure is not limited to the above embodiment, and can be appropriately changed within the scope described in the claims as follows.
 上記実施形態では、電解質2、燃料極3、活性層4、空気極5のそれぞれとなる未焼成シートを積層した積層体を焼成したが、各未焼成シートを別々に焼成し、それらを接合してもよい。また、上記実施形態では、燃料電池セル1を、電解質2、燃料極3、活性層4、空気極5が積層された構成としたが、活性層4を省略した構成や、これら以外の他の層を含む構成としてもよい。 In the above-described embodiment, the laminate in which the unfired sheets that are the electrolyte 2, the fuel electrode 3, the active layer 4, and the air electrode 5 are laminated is fired, but each unfired sheet is fired separately and joined together. May be. Moreover, in the said embodiment, although the fuel cell 1 was set as the structure by which the electrolyte 2, the fuel electrode 3, the active layer 4, and the air electrode 5 were laminated | stacked, the structure which abbreviate | omitted the active layer 4, and other than these It is good also as a structure containing a layer.
 なお、上記実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily essential except when clearly stated to be essential and clearly considered essential in principle. .
 実施例1~6として、下記の方法により、燃料極を単独で形成した。 As Examples 1 to 6, a fuel electrode was formed independently by the following method.
 NiO粉末と、8mol%のイットリアを固溶したYSZ粉末と、バインダーとしてのポリビニルブチラール(PVB)と、造孔材とを、混合溶媒としての2-ブタイソアルミおよびエタノールに分散させたスラリーを調整した。NiO粉末とYSZ粉末の質量比は、60:40とした。また、各実施例では、下記の表1~3に示す気孔率となるように、造孔材の添加量を設定した。各実施例で用いた各粉末の平均粒径や、造孔材の材質は次の通りである。
(実施例1~3)
NiO粉末         :0.7μm
YSZ粉末         :0.6μm
造孔材(アクリル)     :10μm
(実施例4~6)
NiO粉末         :0.7μm
YSZ粉末         :0.6μm
造孔材(アクリル+カーボン):3μm
 そして、調整したスラリーを用いて、未焼成シートを形成し、この未焼成シートを1325℃にて焼成した。その後、焼成したシートをNガス雰囲気下で800℃にて加熱し、Nガスを100%水素ガスに置換しながら、NiOを還元することにより、燃料極を形成した。
A slurry was prepared in which NiO powder, YSZ powder in which 8 mol% of yttria was dissolved, polyvinyl butyral (PVB) as a binder, and pore former were dispersed in 2-butisoaluminum and ethanol as a mixed solvent. The mass ratio of the NiO powder and the YSZ powder was 60:40. In each example, the amount of pore former added was set so as to achieve the porosity shown in Tables 1 to 3 below. The average particle size of each powder and the material of the pore former used in each example are as follows.
(Examples 1 to 3)
NiO powder: 0.7 μm
YSZ powder: 0.6 μm
Porous material (acrylic): 10 μm
(Examples 4 to 6)
NiO powder: 0.7 μm
YSZ powder: 0.6 μm
Porous material (acrylic + carbon): 3μm
And the green sheet was formed using the adjusted slurry, and this green sheet was baked at 1325 ° C. Thereafter, the fired sheet was heated at 800 ° C. in an N 2 gas atmosphere, and NiO was reduced while replacing the N 2 gas with 100% hydrogen gas, thereby forming a fuel electrode.
 形成した各燃料極について、走査型電子顕微鏡(SEM)により微細構造を観察した。その結果、実施例1~6の燃料極のいずれも、平均径が0.1μm以上1μm未満の大きさの第2気孔が隔壁に形成されていることを確認できた。 The fine structure of each formed fuel electrode was observed with a scanning electron microscope (SEM). As a result, it was confirmed that in each of the fuel electrodes of Examples 1 to 6, second pores having an average diameter of 0.1 μm or more and less than 1 μm were formed in the partition walls.
 また、各燃料極の気孔率、強度、隔壁平均厚さを測定した。気孔率は、アルキメデス法にて測定した。強度は、4点曲げ試験にて測定した。隔壁平均厚さは、SEM画像から求めた。その結果を、表1~3に示す。 Also, the porosity, strength, and average partition wall thickness of each fuel electrode were measured. The porosity was measured by Archimedes method. The strength was measured by a 4-point bending test. The average partition wall thickness was determined from the SEM image. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1の実施例1、4、表2の実施例2、5、表3の実施例3、6に示されるように、気孔率が同じもの同士を比較すると、隔壁が厚い方が、強度が高いことを確認できた。 
Figure JPOXMLDOC01-appb-T000003
As shown in Examples 1 and 4 in Table 1, Examples 2 and 5 in Table 2, and Examples 3 and 6 in Table 3, when the same porosity is compared, the thicker the partition, It was confirmed that it was expensive.

Claims (6)

  1.  固体酸化物型の電解質(2)と、
     前記電解質を支持するとともに、金属と酸素イオン伝導性のセラミックスの複合体で構成された燃料極(3)とを備え、
     前記燃料極は、複数の第1気孔(31)が分散形成されているとともに、隣り合う前記第1気孔同士の間の隔壁(32)の内部に第2気孔(33)が形成されており、
     前記第1気孔の平均径(d1)は、前記隔壁の平均厚さ(t1)よりも大きく、前記第2気孔の平均径(d2)は、前記隔壁の平均厚さよりも小さく、
     隣り合う前記第1気孔は、前記第2気孔を介して連通していることを特徴とする燃料電池セル。
    A solid oxide electrolyte (2);
    A fuel electrode (3) configured to support the electrolyte and composed of a composite of metal and oxygen ion conductive ceramics,
    The fuel electrode has a plurality of first pores (31) dispersedly formed, and second pores (33) are formed inside the partition walls (32) between the adjacent first pores,
    The average diameter (d1) of the first pores is larger than the average thickness (t1) of the partition walls, the average diameter (d2) of the second pores is smaller than the average thickness of the partition walls,
    Adjacent first pores communicate with each other through the second pores.
  2.  前記第2気孔は、前記隔壁の内部に複数連なって形成されており、
     隣り合う前記第1気孔は、複数連なった前記第2気孔を介して連通していることを特徴とする請求項1に記載の燃料電池セル。
    A plurality of the second pores are formed in the partition wall;
    2. The fuel cell according to claim 1, wherein the adjacent first pores communicate with each other via a plurality of the second pores.
  3.  前記第2気孔の平均径は、前記第1気孔の平均径の1/5以上1/10以下であることを特徴とする請求項1または2に記載の燃料電池セル。 3. The fuel cell according to claim 1, wherein an average diameter of the second pores is 1/5 or more and 1/10 or less of an average diameter of the first pores.
  4.  前記隔壁の平均厚さは、1μm以上10μm以下であり、
     前記第2気孔の平均径は、0.1μm以上1μm未満であることを特徴とする請求項1ないし3のいずれか1つに記載の燃料電池セル。
    The average thickness of the partition walls is 1 μm or more and 10 μm or less,
    4. The fuel cell according to claim 1, wherein an average diameter of the second pores is 0.1 μm or more and less than 1 μm.
  5.  請求項1ないし4のいずれか1つに記載の燃料電池セルの製造方法であって、
     金属酸化物粉末、酸素イオン伝導性のセラミックス粉末および造孔材を用いて、前記燃料極となる未焼成シートを形成するシート形成工程(S1)と、
     前記未焼成シートを焼成することにより、前記金属酸化物粉末と前記セラミックス粉末とを焼結させとともに、前記造孔材の消失によって前記第1気孔と前記隔壁とを形成する焼成工程(S2)と、
     前記焼成工程後に、前記隔壁内の前記金属酸化物を還元させることにより、前記隔壁に前記第2気孔を形成する還元工程(S3)とを順に行うことを特徴とする燃料電池セルの製造方法。
    A method for producing a fuel cell according to any one of claims 1 to 4,
    A sheet forming step (S1) for forming an unsintered sheet serving as the fuel electrode using a metal oxide powder, an oxygen ion conductive ceramic powder, and a pore former;
    A firing step (S2) of firing the green sheet to sinter the metal oxide powder and the ceramic powder and forming the first pores and the partition walls by disappearance of the pore former. ,
    After the firing step, the reduction step (S3) of forming the second pores in the partition by reducing the metal oxide in the partition is sequentially performed.
  6.  前記シート形成工程では、前記金属酸化物粉末の平均粒径が前記セラミックス粉末の平均粒径よりも大きいという関係を有する前記金属酸化物粉末と前記セラミックス粉末とを用いることを特徴とする請求項5に記載の燃料電池セルの製造方法。 The said sheet | seat formation process uses the said metal oxide powder and the said ceramic powder which have the relationship that the average particle diameter of the said metal oxide powder is larger than the average particle diameter of the said ceramic powder, The ceramic powder is used. The manufacturing method of the fuel cell described in 1.
PCT/JP2014/004771 2013-09-24 2014-09-17 Fuel cell and manufacturing method therefor WO2015045330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-196806 2013-09-24
JP2013196806A JP2015064948A (en) 2013-09-24 2013-09-24 Fuel cell and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2015045330A1 true WO2015045330A1 (en) 2015-04-02

Family

ID=52742503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004771 WO2015045330A1 (en) 2013-09-24 2014-09-17 Fuel cell and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2015064948A (en)
WO (1) WO2015045330A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486138B2 (en) * 2015-02-18 2019-03-20 行政院原子能委員會核能研究所 Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087415A (en) * 2002-08-29 2004-03-18 Araco Corp Electrode substrate for fuel cell and its manufacturing method
JP2005141969A (en) * 2003-11-05 2005-06-02 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
JP2008004422A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
JP2011129264A (en) * 2009-12-15 2011-06-30 Ngk Insulators Ltd Manufacturing method of fuel cell
JP2013143199A (en) * 2012-01-06 2013-07-22 Noritake Co Ltd Electrode for solid oxide fuel cell, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087415A (en) * 2002-08-29 2004-03-18 Araco Corp Electrode substrate for fuel cell and its manufacturing method
JP2005141969A (en) * 2003-11-05 2005-06-02 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
JP2008004422A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
JP2011129264A (en) * 2009-12-15 2011-06-30 Ngk Insulators Ltd Manufacturing method of fuel cell
JP2013143199A (en) * 2012-01-06 2013-07-22 Noritake Co Ltd Electrode for solid oxide fuel cell, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015064948A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP2008004422A (en) Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
JP2016031933A (en) Proton-conducting laminate structure
JP5791552B2 (en) FUEL CELL AND METHOD FOR PRODUCING LAMINATED SINTERED BODY
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2001196069A (en) Fuel cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
WO2016068200A1 (en) Cell, cell stack device, module, and module storage device
JP6174577B2 (en) Cell and cell stack device, electrochemical module, and electrochemical device
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
WO2018198352A1 (en) Solid oxide electrochemical cell and production method therefor
JP2012074307A (en) Power generation cell for solid oxide fuel cell
JP2009230874A (en) Structural body for cell, method for manufacturing same and utilization of same
KR101572477B1 (en) Anode serving as support of solid oxide fuel cell and manufacturing method thereof
WO2015045330A1 (en) Fuel cell and manufacturing method therefor
WO2015025642A1 (en) Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
KR101335063B1 (en) Method of large powewr solid oxide fuel cell
JP2012185928A (en) Manufacturing method of fuel electrode support type power generation cell
WO2004109827A1 (en) Substrate for electrochemical cell and electrochemical cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849440

Country of ref document: EP

Kind code of ref document: A1