JP2016031933A - Proton-conducting laminate structure - Google Patents

Proton-conducting laminate structure Download PDF

Info

Publication number
JP2016031933A
JP2016031933A JP2015145686A JP2015145686A JP2016031933A JP 2016031933 A JP2016031933 A JP 2016031933A JP 2015145686 A JP2015145686 A JP 2015145686A JP 2015145686 A JP2015145686 A JP 2015145686A JP 2016031933 A JP2016031933 A JP 2016031933A
Authority
JP
Japan
Prior art keywords
proton conductive
oxide
laminated structure
dense layer
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015145686A
Other languages
Japanese (ja)
Inventor
十志明 山口
Toshiaki Yamaguchi
十志明 山口
寛之 島田
Hiroyuki Shimada
寛之 島田
俊男 鈴木
Toshio Suzuki
俊男 鈴木
藤代 芳伸
Yoshinobu Fujishiro
芳伸 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015145686A priority Critical patent/JP2016031933A/en
Publication of JP2016031933A publication Critical patent/JP2016031933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide, by enabling the formation of a remarkably improved dense layer, a novel laminate structure of a dense layer having proton conductivity and a porous supporting body, a highly efficient proton conducting cell based thereon, and a manufacturing method thereof.SOLUTION: A proton-conducting laminate structure comprises: a porous supporting body with a porosity of 10-50 vol.%; and a proton-conducting dense layer integrally provided on the porous supporting body. The porous supporting body includes a mixed material of an oxide of Ba(Ce,Zr,A)O(where A represents at least one of Y, Yb and In), and an oxide of MeOx (where Me represents at least one of Ti, Cr, Mn, Fe, Co, Ni and Cu). The dense layer consists of a material including an oxide of Ba(Ce,Zr,A)O(where A represents at least one of Y, Yb and In). The dense layer includes, by 2-5 wt.%, ions of Me (where Me represents at least one of Ti, Cr, Mn, Fe, Co, Ni and Cu) included in the porous supporting body.SELECTED DRAWING: Figure 5

Description

本発明は、プロトン伝導性を有する緻密層および多孔質支持体が接合されたプロトン伝導性積層構造体、さらには多孔質支持体および緻密層をそれぞれ燃料極および電解質層として機能させ、緻密層上に空気極層を積層させることを特徴とするプロトン伝導性セルおよび、それらの作製方法に関するものである。   The present invention relates to a proton conductive laminated structure in which a dense layer having proton conductivity and a porous support are joined, and further allowing the porous support and the dense layer to function as a fuel electrode and an electrolyte layer, respectively. The present invention relates to a proton conductive cell characterized by laminating an air electrode layer and a manufacturing method thereof.

従来より、無機材料において、多孔質支持体と緻密層との積層体は、緻密層に選択的なイオンの拡散性を付与することでガス分離膜や燃料電池として利用されている。   Conventionally, in an inorganic material, a laminate of a porous support and a dense layer has been used as a gas separation membrane or a fuel cell by imparting selective ion diffusivity to the dense layer.

例えば、プロトン伝導性を有する酸化物材料を緻密層に選択することで、水素分離膜や固体酸化物形燃料電池(以下、SOFC)として機能する積層構造体となることが知られている。   For example, it is known that a laminated structure functioning as a hydrogen separation membrane or a solid oxide fuel cell (hereinafter referred to as SOFC) is selected by selecting an oxide material having proton conductivity as a dense layer.

プロトン伝導性材料がより緻密であることにより、ガス分離膜ではガス分離性能が向上し、SOFCでは燃料が無駄に消費されず効率が向上する等、様々な利点がある。材料コスト削減の観点から進められている、多孔質電極支持体上へプロトン伝導性材料の薄膜形成技術についても、薄膜のより緻密化を実現するためのさらなる開発が求められている。   Since the proton conductive material is denser, the gas separation membrane has improved gas separation performance, and the SOFC has various advantages such as improved efficiency without wasteful consumption of fuel. Further development of a technique for forming a denser thin film is also required for a technique for forming a thin film of a proton conductive material on a porous electrode support, which is being promoted from the viewpoint of reducing material costs.

また、これまで、プロトン伝導性材料の一つとして、化学的な安定性および高いプロトン伝導性を有するものとして、難焼結性のペロブスカイト系無機材料Ba(CeZr)O3に対し、四価のCe/Zrサイトを三価のYやYb,Inで置換することで酸素空孔を形成させイオン伝導性を付与するとともに、YやYb,In,遷移金属など種々のカチオンを添加することで焼結性を改善するとの報告が行われてきている。(非特許文献1、2;特許文献1、2)。 In addition, as one of the proton conductive materials so far, as a material having chemical stability and high proton conductivity, it is tetravalent to the hardly sinterable perovskite inorganic material Ba (CeZr) O 3. By replacing the Ce / Zr site with trivalent Y, Yb, or In, oxygen vacancies are formed to impart ionic conductivity, and various cations such as Y, Yb, In, and transition metals are added. Reports have been made to improve cohesion. (Non-patent documents 1 and 2; Patent documents 1 and 2).

しかし、その焼成条件は一般的に、1400〜1700℃の高温域であるにもかかわらず、十分に緻密な薄膜電解質は実現しておらず、プロトン伝導性セル性能としては不十分なものであった。さらに、理論起電力を発現することのできる緻密なプロトン伝導性薄膜の報告例はなく、これらの材料特性を生かした高性能プロトン伝導性セルは実現していなかった。   However, although the firing conditions are generally in the high temperature range of 1400 to 1700 ° C., a sufficiently dense thin film electrolyte has not been realized, and the proton conductive cell performance is insufficient. It was. Furthermore, there has been no report of a dense proton conductive thin film capable of expressing a theoretical electromotive force, and a high-performance proton conductive cell utilizing these material characteristics has not been realized.

Ba(CeZr)O3酸化物材料を、実用的なガス分離膜やSOFCなどのデバイスへ適用するためには、多孔質電極上に電解質層として緻密なBa(CeZr)O3薄膜形成が必要である。従来では、難焼結性で知られるBa(CeZr)O3酸化物の焼結には、遷移金属など種々の酸化物が焼結助剤として用いられてきたが、その効果については十分な検討はなされておらず、緻密なBa(CeZr)O3薄層形成も報告されていない。 In order to apply Ba (CeZr) O 3 oxide materials to practical gas separation membranes and devices such as SOFC, it is necessary to form a dense Ba (CeZr) O 3 thin film as an electrolyte layer on the porous electrode. is there. Conventionally, various oxides such as transition metals have been used as sintering aids for sintering Ba (CeZr) O 3 oxide, which is known for its poor sinterability. No dense Ba (CeZr) O 3 thin layer formation has been reported.

F. Zhao, C. Jin, C. Yang, S. Wang, F. Chen, Journal of Power Sources, 196 (2011) 688-691F. Zhao, C. Jin, C. Yang, S. Wang, F. Chen, Journal of Power Sources, 196 (2011) 688-691 S.Nikodemski, J. Tong, R. O’Hayre, Solid State Ionics 253 (2013) 201-210S. Nikodemski, J. Tong, R. O’Hayre, Solid State Ionics 253 (2013) 201-210

特開2012-84460JP2012-84460 特開2012-221556JP2012-221556

以上のとおりの背景から、本発明は、格段に改善された緻密層を形成することを可能として、プロトン伝導性を有する緻密層と多孔質支持体との新しい積層構造体と、これに基づく効率の高いプロトン伝導性セルおよびその作製方法を提供することを課題としている。   From the background as described above, the present invention makes it possible to form a markedly improved dense layer, a new laminated structure of a dense layer having proton conductivity and a porous support, and efficiency based thereon It is an object of the present invention to provide a proton conductive cell having a high density and a manufacturing method thereof.

上記課題を解決するための本発明は、以下のことを特徴としている。   The present invention for solving the above-described problems is characterized by the following.

(1)気孔率が10〜50vol%の多孔質支持体上にプロトン伝導性を有する緻密層が配設一体化されたプロトン伝導性積層構造体であり、当該多孔質支持体がBa(Ce,Zr,A)O3(A=Y,Yb,Inの少なくとも一種)酸化物とMeOx(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)酸化物との混合材料で構成され、当該緻密層の材料がBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)酸化物であり、当該緻密層に多孔質支持体に含まれるMeイオン(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)が2〜5wt%含有されていることを特徴とするプロトン伝導性積層構造体。
(2)当該緻密層の厚みが5〜30ミクロンであることを特徴とするプロトン伝導性積層構造体。
(3)当該多孔質支持体がチューブ形状であることを特徴とするプロトン伝導性積層構造体。
(4)当該プロトン伝導性積層構造体の多孔質支持体が燃料極として機能し、かつ多孔質支持体上に形成された電解質層として機能するBa(Ce,Zr,A)O3(A=Y,Yb,Inの少なくとも一種)緻密層上に、Ba(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)酸化物および酸化物活物質との混合材料が空気極層として積層されていることを特徴とするプロトン導電性セル。
(5)当該空気極層の酸化物活物質が、ペロブスカイト型酸化物CDO3 (C=La,Ba,Sr,Caの少なくとも一種;D=Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)であることを特徴とするプロトン伝導性セル。
(6)当該プロトン伝導性積層構造体が、Ba(Ce,Zr,A)O3(A=Y,Yb,Inの少なくとも一種)酸化物とMeOx (Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)酸化物との混合材料からなる多孔質支持体とBa(Ce,Zr,A)O3 (A=Y,Yb,In)塗布膜とを同時焼成することにより作製される作製方法。
(7)当該プロトン伝導性積層構造体が、多孔質支持体においてMeイオン(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)がBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)粒内に固溶し、連続する塗布膜のBa(Ce,Zr,A)O3(A=Y,Yb,Inの少なくとも一種)へ拡散することでBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)緻密層が形成される同時焼成により作製される作製方法。
(8)当該プロトン伝導性積層構造体の同時焼成温度が1250から1500℃の範囲である作製方法。
(1) A proton conductive laminated structure in which a dense layer having proton conductivity is disposed and integrated on a porous support having a porosity of 10 to 50 vol%, and the porous support is Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide and mixed material of MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) oxide And the material of the dense layer is Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide, and Me ions contained in the porous support in the dense layer ( A proton-conductive laminated structure containing 2 to 5 wt% of Me = Ti, Cr, Mn, Fe, Co, Ni, or Cu).
(2) A proton conductive laminated structure, wherein the dense layer has a thickness of 5 to 30 microns.
(3) A proton conductive laminated structure, wherein the porous support is tube-shaped.
(4) Ba (Ce, Zr, A) O 3 (A = where the porous support of the proton conductive laminated structure functions as a fuel electrode and also functions as an electrolyte layer formed on the porous support. A mixed material of Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide and oxide active material is formed on the air electrode on the dense layer. A proton conductive cell, which is laminated as a layer.
(5) The oxide active material of the air electrode layer is a perovskite oxide CDO 3 (C = at least one of La, Ba, Sr, Ca; D = at least one of Cr, Mn, Fe, Co, Ni, Cu) ), A proton conducting cell.
(6) The proton conductive laminated structure includes Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide and MeO x (Me = Ti, Cr, Mn, Fe, By co-firing a porous support made of a mixed material of at least one of Co, Ni, and Cu) and a Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) coating film Manufacturing method to be manufactured.
(7) The proton conductive laminated structure is such that the Me ion (at least one of Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) is Ba (Ce, Zr, A) O 3 in the porous support. (At least one of A = Y, Yb, In) Solid solution within the grain and diffuse into the continuous coating film Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) A production method in which Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, and In) is formed by simultaneous firing.
(8) A production method in which the simultaneous firing temperature of the proton conductive laminated structure is in the range of 1250 to 1500 ° C.

本発明のプロトン伝導性積層構造体においては欠陥の少ない、さらには欠陥のほとんどない緻密層であることで、これに基づくプロトン伝導性セルの発電効率や最大出力密度は大幅に向上し、従来技術では全く予期できないレベルを実現可能としている。また、本発明ではこのような優れた特性を実現可能とするプロトン伝導性積層構造体の新しい作製方法を実現している。   In the proton conductive laminated structure of the present invention, the power generation efficiency and maximum output density of the proton conductive cell based on this are greatly improved by being a dense layer with few defects and almost no defects. So it is possible to achieve a level that is completely unexpected. Further, the present invention realizes a new method for producing a proton conductive laminated structure that can realize such excellent characteristics.

実施例1において作製されたプロトン伝導性積層構造体の(a)外観写真と(b)破断面微細構造(SEM)写真。(A) Appearance photograph and (b) Fracture surface microstructure (SEM) photograph of the proton conductive laminated structure produced in Example 1. 参照データのバルク体粒内のNi濃度と実施例1でのプロトン伝導性積層構造体の緻密層から検出されたNi濃度。Ni density | concentration in the bulk body grain of reference data, and Ni density | concentration detected from the dense layer of the proton conductive laminated structure in Example 1. FIG. 比較例1での多孔質支持体上に形成したBa(CeZr)O3層の外観写真。An appearance photograph of a Ba (CeZr) O 3 layer formed on the porous support in Comparative Example 1. 実施例2において作製したプロトン伝導性セルの断面SEM像。2 is a cross-sectional SEM image of the proton conductive cell produced in Example 2. FIG. 実施例2での500℃セル発電性能を示した図。The figure which showed the 500 degreeC cell power generation performance in Example 2. FIG. 実施例2での250℃セル発電性能を示した図。The figure which showed the 250 degreeC cell power generation performance in Example 2. FIG.

上記のとおり、本発明では、多孔質支持体としては気孔率が10〜50vol%であり、Ba(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)酸化物とMeOx(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)酸化物との混合材料で構成されており、緻密層は材料がBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)酸化物であり、「Ba(Ce,Zr,A)O3+MeOx」支持体とBa(Ce,Zr,A)O3塗布膜を同時焼成することにより得られる多孔質支持体と緻密層とのプロトン伝導性積層構造体と、さらに、Ba(Ce,Zr,A)O3緻密層上へ空気極層を形成したプロトン伝導性セルを基本的特徴とし、特徴的な作製方法としては、同時焼成時に、多孔質支持体においてBa(Ce,Zr,A)O3(A=Y,Yb,In)粒内に固溶したMeイオン(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少なくとも一種)が、2〜5wt%の含有割合で連続的に存在するBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少なくとも一種)塗布膜へ拡散することでBa(Ce,Zr,A)O3(A=Y,Yb,Inの少なくとも一種)緻密層が形成されるようにしている。 As described above, in the present invention, the porous support has a porosity of 10 to 50 vol%, and Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide and MeO. x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) It is composed of a mixed material with an oxide, and the dense layer is made of Ba (Ce, Zr, A) O 3 (A = At least one of Y, Yb and In) oxide, and by simultaneously firing a “Ba (Ce, Zr, A) O 3 + MeO x ” support and a Ba (Ce, Zr, A) O 3 coating film The basic features are the proton-conductive laminate structure of the resulting porous support and dense layer, and a proton-conductive cell in which an air electrode layer is formed on a Ba (Ce, Zr, A) O 3 dense layer. As a characteristic production method, the Me ions (Me = Ti, solid solution) in Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) grains in the porous support at the time of co-firing. At least one of Cr, Mn, Fe, Co, Ni, and Cu) continuously in a content ratio of 2 to 5 wt% Present Ba (Ce, Zr, A) O 3 (A = Y, Yb, at least one of In) Ba by diffusing to the coating layer (Ce, Zr, A) O 3 (A = Y, Yb, the In At least one) a dense layer is formed.

本発明において、多孔質支持体は、前記のBa(Ce,Zr,A)O3(A=Y,Yb,In)酸化物とMeOx (Me=Ti,Cr,Mn,Fe,Co,Ni,Cu)酸化物との混合材料で構成される。ここで、AについてのY,Yb,Inはいずれか一種、もしくは複数種であってもよい。またMeについても一種もしくは複数種であってもよい。Ba(Ce,Zr,A)O3、すなわちBCZにおいては、Ce,Zr,Aの比率は、例えばCea,Zrb,Acとしてa+b+c=1であれば適宜でよく、より好ましくはaは、0〜0.8、bは0.1〜0.9、cは0.05〜0.3の範囲が考慮される。 In the present invention, the porous support includes the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) oxide and MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni). , Cu) Consists of mixed materials with oxides. Here, Y, Yb and In for A may be any one kind or plural kinds. Further, Me may be one kind or plural kinds. In Ba (Ce, Zr, A) O 3 , that is, BCZ, the ratio of Ce, Zr, A may be appropriate if, for example, Ce a , Zr b , A c is a + b + c = 1. Preferably, a is in the range of 0 to 0.8, b is in the range of 0.1 to 0.9, and c is in the range of 0.05 to 0.3.

Ba(Ce,Zr,A)O3(A=Y,Yb,In)酸化物、すなわちBCZとMeOx(Me=Ti,Cr,Mn,Fe,Co,Ni,Cu)酸化物との混合比については、本発明のプロトン伝導性積層構造体の用途や特性に応じて適宜に選択される。例えば電気化学セルとして用いる場合には、BCZ:MeOx=0.5:0.5〜0.3:0.7が好適な範囲の目安として考慮される。 Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) oxide, that is, mixing ratio of BCZ and MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) oxide Is appropriately selected according to the use and characteristics of the proton conductive laminated structure of the present invention. For example, when used as an electrochemical cell, BCZ: MeO x = 0.5: 0.5 to 0.3: 0.7 is considered as a suitable range.

このような支持体の作製方法としては一軸加圧成形、射出成形、押出成形、鋳込み成形など方法と問わず、形状も平板型やチューブ型いずれにも適用可能である。また、支持体の多孔化については、焼成条件や成形体密度によりある程度制御が可能だが、多孔度が不十分な場合は、カーボンや炭化水素系の造孔剤を用いることで不足分を補うことが可能である。ただし、本多孔質支持体を燃料電池などプロトン伝導性セルの燃料極として活用する場合、支持体としての強度と電気伝導性を両立する必要があり、焼成後の支持体の気孔率としては10〜50vol%の範囲が望ましい。   Regardless of methods such as uniaxial pressure molding, injection molding, extrusion molding, and cast molding, such a support can be produced in any form of flat plate type and tube type. In addition, the porosity of the support can be controlled to some extent by the firing conditions and the density of the compact, but if the porosity is insufficient, the shortage can be compensated by using carbon or hydrocarbon-based pore formers. Is possible. However, when this porous support is used as a fuel electrode of a proton conductive cell such as a fuel cell, it is necessary to achieve both strength and electrical conductivity as the support, and the porosity of the support after firing is 10 A range of ~ 50 vol% is desirable.

次に、上記同様のBa(Ce,Zr,A)O3(A=Y,Yb,In)塗布膜については、スクリーン印刷法、スプレーコート法、転写法、ディップコート法などを用いることができ、いずれの手法においても、溶媒中におけるBa(Ce,Zr,A)O3(A=Y,Yb,In)粒子分散性を最適化することにより、高い成形密度の塗布膜を得ることができる。本塗布膜は、多孔質支持体との同時焼成において、焼結が進行するが、その焼成後に得られる緻密層の膜厚としては5〜30ミクロンの範囲が望ましい。このBa(Ce,Zr,A)O3 (A=Y,Yb,In)緻密層をプロトン伝導性セルの電解質として活用する場合、電解質のオーミック抵抗損失を低減するために、極力、薄層化することが必要である。一方で、極度の薄膜化は膜の欠陥によるガスリークを引き起こすことがあるため、膜の欠陥を防ぐために5ミクロン以上、また全体セル抵抗の1割以下に抑えることのできる30ミクロン以下が最適である。 Next, for the same Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) coating film, the screen printing method, spray coating method, transfer method, dip coating method, etc. can be used. In any method, a coating film with a high molding density can be obtained by optimizing the dispersibility of Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) particles in a solvent. . The coating film undergoes sintering during co-firing with the porous support, and the film thickness of the dense layer obtained after the firing is desirably in the range of 5 to 30 microns. When this Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) dense layer is used as the electrolyte of proton conductive cells, the layer is made as thin as possible to reduce the ohmic resistance loss of the electrolyte. It is necessary to. On the other hand, extreme thinning may cause gas leakage due to film defects. Therefore, in order to prevent film defects, 5 microns or more and 30 microns or less that can be suppressed to 10% or less of the total cell resistance are optimal. .

Ba(Ce,Zr,A)O3(A=Y,Yb,In)およびMeOx(Me=Ti,Cr,Mn,Fe,Co,Ni,Cu)との混合材料からなる多孔質支持体とBa(Ce,Zr,A)O3 (A=Y,Yb,In)塗布膜との同時焼成は、1250〜1500℃の温度範囲が好ましい。後述するが、Ba(Ce,Zr,A)O3 (A=Y,Yb,In)塗布膜の緻密化にはMeイオン拡散量を最適化するが、1250℃以下ではMeイオン拡散量が不十分であり緻密膜が得られず、逆に1500℃以上ではMeイオン拡散量が過剰となりBa(Ce,Zr,A)O3(A=Y,Yb,In)緻密膜の化学的安定性が低下してしまう。 A porous support made of a mixed material of Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) and MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu); The co-firing with the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) coating film is preferably in the temperature range of 1250 to 1500 ° C. As will be described later, the Me ion diffusion amount is optimized for densification of the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) coating film, but the Me ion diffusion amount is less than 1250 ° C. It is sufficient and a dense film cannot be obtained. Conversely, at 1500 ° C or higher, the Me ion diffusion amount becomes excessive, and the chemical stability of the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) dense film is improved. It will decline.

本発明にて作製したプロトン伝導性積層構造体のBa(Ce,Zr,A)O3(A=Y,Yb,In)緻密層について、SEM-EDX組成分析を行ったところ、緻密性および化学的安定性を両立するのは緻密層へのMeイオン固溶量が2〜5wt%の範囲であることが望ましい。Meイオン固溶量が2wt%以下と不十分な場合はBa(Ce,Zr,A)O3(A=Y,Yb,In)塗布膜の緻密化が進行せず、逆に5wt%以上拡散する場合はBa(Ce,Zr,A)O3(A=Y,Yb,In)粒内に完全に固溶できず一部、MeOxとして粒界に析出し、化学的安定性を低下させる。一般的には、Ba(Ce,Zr,A)O3の緻密体を得るには、(1)1500℃以上の高温焼成を繰り返す、もしくは、(2)事前に焼結助剤としてMeOx粉末を混合したBa(Ce,Zr,A)O3混合粉体を出発原料として用いるが、(1)1500℃以上の繰り返し高温焼成時にBa等の構成元素が揮発し目的組成からズレが生じる問題があり、また、(2)MeOxとの混合粉体を出発原料として用いる場合、Ba(Ce,Zr,A)O3へ固溶されず一部のMeOxが粒界に残留したり、残留させないよう焼結助剤を含んでいるにもかかわらず1500℃以上の高温焼成を繰り返すことで完全なMeOx固溶を試みる結果、(1)と同様、目的組成からのズレが生じる問題がある。一方、本発明においては、同時焼成の際に、多孔質支持体の構成成分であるMeイオンをBa(Ce,Zr,A)O3塗布膜へ拡散させることで粒界にMeOx残留分を析出させることなくBa(Ce,Zr,A)O3膜緻密化を促進させる手法であり、Ba(Ce,Zr,A)O3薄膜の緻密化および化学的安定性の両面において、その同時焼成温度によりMeイオンの拡散量を最適化することが可能である。 SEM-EDX composition analysis was performed on the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) dense layer of the proton conductive laminated structure produced in the present invention. It is desirable that the Me ion solid solution amount in the dense layer is in the range of 2 to 5 wt% to achieve both the mechanical stability. When the Me ion solid solution amount is insufficient at 2 wt% or less, the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) coating film does not progress, and conversely, it diffuses by 5 wt% or more. In this case, Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) cannot be completely dissolved in the grains, and some of them precipitate as MeO x at grain boundaries, reducing the chemical stability. . In general, to obtain a dense body of Ba (Ce, Zr, A) O 3 , (1) repeat high-temperature firing at 1500 ° C. or higher, or (2) MeO x powder as a sintering aid in advance Ba (Ce, Zr, A) O 3 mixed powder mixed with is used as a starting material, but (1) there is a problem that constituent elements such as Ba volatilize during repeated high-temperature firing at 1500 ° C or more, causing deviation from the target composition Yes, (2) When mixed powder with MeO x is used as the starting material, some MeO x remains at the grain boundaries without being dissolved in Ba (Ce, Zr, A) O 3 As a result of attempting complete MeO x solid solution by repeating high-temperature firing at 1500 ° C or higher despite containing a sintering aid so as not to cause a problem, as in (1), there is a problem of deviation from the target composition . On the other hand, in the present invention, at the time of simultaneous firing, Me ions, which are constituent components of the porous support, are diffused into the Ba (Ce, Zr, A) O 3 coating film, whereby MeO x residue is formed at the grain boundaries. It is a technique that promotes densification of Ba (Ce, Zr, A) O 3 film without precipitating, and co-firing in both densification and chemical stability of Ba (Ce, Zr, A) O 3 thin film It is possible to optimize the diffusion amount of Me ions depending on the temperature.

次に、空気極層をBa(Ce,Zr,A)O3(A=Y,Yb,In)緻密層上へ形成させるプロトン伝導性セルについてだが、組成としてはプロトン伝導パスとなるBa(Ce,Zr,A)O3(A=Y,Yb,In)、すなわちBCZおよび電子伝導性を有する賦活剤との混合物を用いるが、賦活剤材料としてはCDO3 (C=La,Ba,Sr,Ca;D=Cr,Mn,Fe,Co,Ni,Cu)組成のペロブスカイト型酸化物が望ましい。 Next, regarding the proton conductive cell in which the air electrode layer is formed on the Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) dense layer, the composition is Ba (Ce , Zr, A) O 3 (A = Y, Yb, In), that is, a mixture of BCZ and an activator having electronic conductivity is used. As the activator material, CDO 3 (C = La, Ba, Sr, Perovskite-type oxides with a composition of Ca; D = Cr, Mn, Fe, Co, Ni, Cu) are desirable.

前記BCZとCDO3との混合比については、例えば、BCZ:CDO3=0.9:0.1〜0.6:0.4が好適な範囲の目安として考慮される。 As for the mixing ratio of BCZ and CDO 3 , for example, BCZ: CDO 3 = 0.9: 0.1 to 0.6: 0.4 is considered as a suitable range.

次に実施例によってさらに説明する。もちろん、本発明は以下の例によって限定されることはない。   Next, the present invention will be further described with reference to examples. Of course, the present invention is not limited by the following examples.

本実施例では、以下の手順に従って、遷移金属種がBa(Ce,Zr,A)O3の焼結性に及ぼす影響を調べた。 In this example, the effect of transition metal species on the sinterability of Ba (Ce, Zr, A) O 3 was examined according to the following procedure.

Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3をBa(Ce,Zr,A)O3組成として選択し、MeOxとして2wt%となるようにMn, Fe, Co, Ni酸化物を焼結助剤として用い、1300〜1350℃, 2h焼成した際の焼結密度を表1にまとめた。遷移金属(焼結助剤)を無添加の場合、焼結密度が1400℃焼成で58.1%, 1450℃焼成で65.2%だったのに対し、いずれの遷移金属においても100℃以上の低温となる1300〜1350℃焼成で69%以上の焼結密度が得られた。Coイオンは、1300℃焼成で焼結密度96.7%が得られたが、1350℃焼成では一部溶融が見られ、焼成温度幅が限られるのに対し、Niイオンは安定して98%以上の焼結密度が得られた。 Ba (Ce 0.7 Zr 0.1 Y 0.1 Yb 0.1 ) O 3 is selected as the Ba (Ce, Zr, A) O 3 composition, and Mn, Fe, Co, Ni oxides are sintered so that MeO x is 2 wt%. Table 1 summarizes the sintered density when calcined at 1300 to 1350 ° C for 2 hours. When no transition metal (sintering aid) was added, the sintering density was 58.1% when fired at 1400 ° C and 65.2% when fired at 1450 ° C, whereas all transition metals had a low temperature of 100 ° C or higher. A sintering density of 69% or more was obtained by firing at 1300-1350 ° C. As for Co ions, sintering density of 96.7% was obtained by firing at 1300 ° C, but partial melting was seen by firing at 1350 ° C, and the firing temperature range was limited, while Ni ions were stably over 98%. A sintered density was obtained.

本実施例では、以下の手順に従って、Niイオンが種々のCe/Zr/A比を有するBa(Ce,Zr,A)O3の焼結性に及ぼす影響を調べた。 In this example, the influence of Ni ions on the sinterability of Ba (Ce, Zr, A) O 3 having various Ce / Zr / A ratios was examined according to the following procedure.

2wt%となるようにNi酸化物を焼結助剤として選択し、種々のBa(Ce,Zr,A)O3組成を1350〜1450℃, 2h焼成した際の焼結密度を表2にまとめた。遷移金属(焼結助剤)を無添加の場合、1450℃焼成で焼結密度が43.8〜65.2%だったのに対し、Niイオン効果により、いずれの組成比においても100℃以上の低温となる1350℃焼成で83%以上の焼結密度が得られた。Ba(Ce0.1Zr0.7Y0.2)O3組成では一部溶融が見られたのに対し、Ba(Ce0.7Zr0.1Y0.1Yb0.1)O3組成では最も高い99%以上の焼結密度が得られた。 Table 2 summarizes the sintering density when Ni oxide was selected as a sintering aid so that it would be 2 wt%, and various Ba (Ce, Zr, A) O 3 compositions were fired at 1350-1450 ° C for 2 hours. It was. When no transition metal (sintering aid) was added, the sintering density was 43.8 to 65.2% after firing at 1450 ° C, but the Ni ion effect resulted in a low temperature of 100 ° C or higher at any composition ratio. A sintered density of 83% or more was obtained by firing at 1350 ° C. In the Ba (Ce 0.1 Zr 0.7 Y 0.2 ) O 3 composition, partial melting was observed, whereas in the Ba (Ce 0.7 Zr 0.1 Y 0.1 Yb 0.1 ) O 3 composition, the highest sintered density of 99% or more was obtained. It was.

本実施例では、実施例1,2より最も優位性のある結果が得られたNiOとBa(Ce0.7Zr0.1Y0.1Yb0.1)O3の組み合わせにて、以下の手順に従って、プロトン伝導性積層構造体およびプロトン伝導性セルを作製した。 In this example, the combination of NiO and Ba (Ce 0.7 Zr 0.1 Y 0.1 Yb 0.1 ) O 3 that gave the most superior results over Examples 1 and 2 was followed by the following procedure in accordance with the following procedure. Structures and proton conducting cells were fabricated.

まず、多孔質支持体としてNiOとBa(Ce0.7Zr0.1Y0.1Yb0.1)O3(以下、BCZ)との混合粉体に対し、セルロース系バインダー、造孔剤および水を加えて混合し、押出成形法にて外形φ6mmのチューブ状成形体を成形した。 First, to the mixed powder of NiO and Ba (Ce 0.7 Zr 0.1 Y 0.1 Yb 0.1 ) O 3 (hereinafter referred to as BCZ) as a porous support, a cellulose binder, a pore former and water are added and mixed, A tubular molded body having an outer diameter of 6 mm was formed by an extrusion molding method.

次に、ボールミル混合にて調製したエタノール/トルエン混合溶媒系の前記同様のBCZ粒子分散スラリー中へ、50mm長さに切断した上記チューブ状成形体を1mm/secの引き上げ速度にてディップコートし、乾燥後、1300℃にて2hの条件でBCZ塗布膜とチューブ状成形体を同時焼成した。図1に、(a)得られたプロトン伝導性積層構造体の外観写真と(b)破断面微構造写真を示す。外観写真より同時焼成により全長約40mm、外形φ4mmの多孔質支持体上を約35mm長さでBCZコーティングされているのがわかる。また破断面構造より、多孔質支持体上に厚み約10ミクロンのBCZ緻密層が形成されているのがわかる。なお、アルキメデス法により、NiOとBCZの混合組成である多孔質支持体は気孔率が約30vol%であった。   Next, in the same BCZ particle-dispersed slurry of ethanol / toluene mixed solvent system prepared by ball mill mixing, dip-coating the above-mentioned tubular molded body cut to a length of 50 mm at a lifting speed of 1 mm / sec, After drying, the BCZ coating film and the tubular molded body were simultaneously fired at 1300 ° C. for 2 hours. FIG. 1 shows (a) a photograph of the appearance of the obtained proton conductive multilayer structure and (b) a photograph of a fracture surface microstructure. From the appearance photograph, it can be seen that BCZ coating is applied to a porous support with a total length of about 40 mm and an outer diameter of 4 mm by a simultaneous firing with a length of about 35 mm. From the fracture surface structure, it can be seen that a dense BCZ layer having a thickness of about 10 microns is formed on the porous support. The porosity of the porous support having a mixed composition of NiO and BCZ by the Archimedes method was about 30 vol%.

次に、本BCZ緻密層中に含まれるNi固溶量を求めるため、参照データとしてまず0.5〜5wt%となるようにNiOを添加したBCZとの混合粉体をエタノール混合により調製し、一軸加圧成形にて柱状成形体を作製し、それぞれ1300℃にて2hの条件でバルク体を作製した。なお、NiO無添加のBCZ粉体を1300℃焼成したところ、クラックが発生したり破砕されており、焼結体は得られなかったことから、一般的に報告されているようにNiO添加はBCZ焼結に効果があった。   Next, in order to determine the amount of Ni solid solution contained in the BCZ dense layer, as a reference data, first, a mixed powder with BCZ to which NiO is added so as to be 0.5 to 5 wt% is prepared by ethanol mixing, and uniaxial addition Columnar shaped bodies were produced by pressure forming, and bulk bodies were produced at 1300 ° C. for 2 hours. Note that when NiO-free BCZ powder was fired at 1300 ° C, cracks were generated or crushed, and sintered bodies were not obtained. There was an effect on sintering.

このバルク体について、粒内のNi固溶量をSEM-EDX組成分析より求めた値を図2の白丸にて示す。図2で表記しているMeは、この実施例ではNiを、Aは、YとYbを示している。0.5〜3wt%NiO添加までは単調に検出Ni濃度は上昇し、3〜5wt%にかけてNi検出濃度が4.5原子数%に落ち着くことから、BCZ中へのNi固溶量は約5wt%が上限であることがわかる。ここで、本発明にて作製したプロトン伝導性積層構造体のBCZ緻密層について、SEM-EDX組成分析を行ったところ、Ni検出濃度は4.5原子数%であり、バルク体参照データから緻密膜には固溶限界量までNiが拡散していることがわかる。   With respect to this bulk body, the value obtained by the SEM-EDX composition analysis of the Ni solid solution amount in the grains is shown by white circles in FIG. Me shown in FIG. 2 represents Ni in this example, and A represents Y and Yb. The detected Ni concentration increases monotonically until 0.5 to 3 wt% NiO is added, and the Ni detected concentration settles down to 4.5 atomic% over 3 to 5 wt%. Therefore, the upper limit of the Ni solid solution amount in BCZ is about 5 wt%. I know that there is. Here, when the SEM-EDX composition analysis was performed on the BCZ dense layer of the proton conductive laminated structure produced in the present invention, the Ni detection concentration was 4.5 atomic%, and from the bulk body reference data to the dense film It can be seen that Ni diffuses to the solid solution limit.

なお、多孔質支持体とBCZ塗布膜の同時焼成温度を1250〜1350℃で試した結果、BCZ緻密膜中のNi検出濃度は3.5〜4.8原子数%であり、多孔質支持体の気孔率は50〜20vol%であった。BCZ緻密層の厚みは、ディップコーティングの引き上げ速度やスラリー中の粒子濃度により5〜30ミクロンにて制御が可能である。
[比較例1]
In addition, as a result of trying the simultaneous firing temperature of the porous support and the BCZ coating film at 1250-1350 ° C., the Ni detection concentration in the BCZ dense film is 3.5-4.8 atomic%, the porosity of the porous support is It was 50-20 vol%. The thickness of the BCZ dense layer can be controlled at 5 to 30 microns depending on the dip coating pulling rate and the particle concentration in the slurry.
[Comparative Example 1]

実施例3において、塗布に用いたBCZ粒子分散スラリーはNiOを含んでいなかったにもかかわらずBCZ緻密層からNiが検出されたのは、多孔質支持体の構成材料であるNiイオンが同時焼成過程においてBCZ塗布膜へ拡散したためと示唆される。   In Example 3, although the BCZ particle-dispersed slurry used for coating did not contain NiO, Ni was detected from the BCZ dense layer because the Ni ions constituting the porous support were simultaneously detected. This is probably due to diffusion into the BCZ coating film during the firing process.

そこで、比較例として多孔質支持体としてNiOとY添加ZrO2(以下、YSZ)との混合組成を選択し、実施例3と同様、BCZ粒子分散スラリーへディップコーティングし、乾燥後に1300〜1400℃にて2hの条件で同時焼成を行った。ここで、NiOとYSZ混合組成からなる多孔質支持体は、NiO,YSZ,セルロースバインダー,造孔剤および水を混合し、チューブ形状に押出成形法した。同時焼成体の外観図を図3に示すが、BCZ塗布膜はひび割れており緻密層が得られなかった。 Therefore, as a comparative example, a mixed composition of NiO and Y-added ZrO 2 (hereinafter referred to as YSZ) is selected as a porous support, dip-coated onto a BCZ particle-dispersed slurry as in Example 3, and dried at 1300-1400 ° C. And co-fired under the condition of 2h. Here, a porous support composed of a mixed composition of NiO and YSZ was mixed with NiO, YSZ, a cellulose binder, a pore-forming agent and water, and extruded into a tube shape. The appearance of the co-fired product is shown in FIG. 3. The BCZ coating film was cracked and a dense layer was not obtained.

このことから、単に支持体中にNiが含まれているだけではなく、NiOとBCZの混合組成の多孔質支持体である必要があり、多孔質支持体の構成成分であるBCZ粒内に拡散し固溶したNiイオンが連続して接しているBCZ塗布膜へ拡散することがBCZ緻密層の形成に必須であることが初めて確認された。   Therefore, it is necessary not only to contain Ni in the support but also to be a porous support with a mixed composition of NiO and BCZ, and to diffuse into the BCZ grains that are constituents of the porous support. For the first time, it was confirmed that the diffusion of Ni ions in solid solution into the BCZ coating film in contact with each other was essential for the formation of the dense BCZ layer.

実施例3で作製したプロトン伝導性積層構造体のBCZ緻密層へさらに、空気極層をコーティングし、1100℃にて1時間の条件にて焼き付けることでプロトン伝導性セルを得た。空気極層の成膜に用いた粒子分散スラリーは、エタノール/トルエン混合溶媒に対し前記同様のBCZ粉体に賦活剤として(LaSr)(CoFe)O3粉体を添加し、ボールミル混合により調製したものである。図4に、プロトン伝導性セルの破断面写真を示す。約10ミクロンのBCZ緻密層上に約30ミクロン厚みの空気極層が形成されているのがわかる。 Further, an air electrode layer was further coated on the BCZ dense layer of the proton conductive multilayer structure produced in Example 3, and baked at 1100 ° C. for 1 hour to obtain a proton conductive cell. The particle-dispersed slurry used for film formation of the air electrode layer was prepared by adding (LaSr) (CoFe) O 3 powder as an activator to the BCZ powder similar to the ethanol / toluene mixed solvent and ball mill mixing. Is. FIG. 4 shows a photograph of a fracture surface of the proton conducting cell. It can be seen that an air electrode layer having a thickness of about 30 microns is formed on a BCZ dense layer of about 10 microns.

ここで、NiOとBCZの混合組成である多孔質支持体は燃料極として機能させることで、プロトン伝導性燃料電池となる。   Here, a porous support having a mixed composition of NiO and BCZ functions as a fuel electrode, thereby forming a proton conductive fuel cell.

室温加湿H2を多孔質支持体へ、室温加湿空気を空気極へ供給し、500℃にて発電評価を行った結果を図5に示す。ネルンスト式(1)
FIG. 5 shows the results of power generation evaluation performed at 500 ° C. by supplying room temperature humidified H 2 to the porous support and room temperature humidified air to the air electrode. Nernst formula (1)

より算出した理論起電力に対する開回路電圧は1.12Vであり理論起電力の約99%を示し、最大出力密度は0.19W/cm2であった。この結果は、表3に比較して示すように、同じチューブ型燃料電池構造を用いている既存の参考技術より理論起電力が約9%改善すると同時に、最大出力密度も2倍以上に高性能化されていることを示している。 The open circuit voltage relative to the theoretical electromotive force calculated was 1.12 V, indicating about 99% of the theoretical electromotive force, and the maximum output density was 0.19 W / cm 2 . As shown in Table 3, the results show that the theoretical electromotive force is improved by about 9% compared to the existing reference technology using the same tubular fuel cell structure, and the maximum output density is more than doubled. It is shown that.

さらに、図6に示すように、本プロトン伝導性セルは250℃という低温においても理論起電力の99%を示すとともに、発電が可能であった。   Furthermore, as shown in FIG. 6, this proton conductive cell showed 99% of the theoretical electromotive force even at a low temperature of 250 ° C. and was capable of generating electricity.

このことから、上記プロトン伝導性積層構造体を元にしたプロトン伝導性セルは、同時焼成においてBCZ塗布膜へ適量のNi拡散させることにより、BCZ層の緻密化を最適化し、理論起電力および出力密度を改善することで、効率を向上できたことが確認された。
なお、実施例ではこれらのMeの金属群の中でNiの例を開示しているが、非特許文献2にも記載のように、その他のMe金属群もセラミックスの焼結助剤として利用されているものであり、同等の効果が期待できる。
From this, the proton conductive cell based on the above proton conductive laminated structure optimizes the densification of the BCZ layer by diffusing an appropriate amount of Ni into the BCZ coating film in simultaneous firing, and the theoretical electromotive force and output It was confirmed that the efficiency could be improved by improving the density.
In the examples, Ni is disclosed among these Me metal groups. However, as described in Non-Patent Document 2, other Me metal groups are also used as sintering aids for ceramics. The same effect can be expected.

以上詳述したように、本発明は、プロトン伝導性積層構造体およびプロトン伝導性セルに関するものであり、本発明によれば、既存技術より約10%向上した理論起電力は発電効率を10%程度改善することに相当し、かつ発電出力密度の大幅な向上が可能であり、従来よりも小型高性能SOFCシステムを構築することができる。さらに、作動温度を250℃という低温下が可能であり、幅広く当セルを利用したシステムを構築し、提供することが可能となる。また本発明は、燃料電池のみならず、水蒸気電解システムなど他の電気化学反応システムに関する新技術・新製品も提供するものとして有用である。   As described above in detail, the present invention relates to a proton conductive laminated structure and a proton conductive cell. According to the present invention, a theoretical electromotive force improved by about 10% from the existing technology has a power generation efficiency of 10%. This corresponds to a degree of improvement, and the power generation output density can be greatly improved, and a smaller high-performance SOFC system can be constructed. Furthermore, the operating temperature can be as low as 250 ° C., and a system using this cell can be constructed and provided. The present invention is useful not only for providing fuel cells but also for providing new technologies and new products relating to other electrochemical reaction systems such as a steam electrolysis system.

Claims (8)

気孔率が10〜50vol%の多孔質支持体上にプロトン伝導性を有する緻密層が配設一体化されたプロトン伝導性積層構造体であり、多孔質支持体がBa(Ce,Zr,A)O3(A=Y,Yb,Inの少くとも一種)酸化物とMeOx(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少くとも一種)酸化物との混合材料で構成され、緻密層の材料がBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少くとも一種)酸化物であり、当該緻密層には、多孔質支持体に含まれるMeイオン(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少くとも一種)が2〜5wt%含有されていることを特徴とするプロトン伝導性積層構造体。 A proton conductive laminated structure in which a dense layer having proton conductivity is disposed and integrated on a porous support having a porosity of 10 to 50 vol%, and the porous support is Ba (Ce, Zr, A) It is composed of a mixed material of O 3 (at least one of A = Y, Yb, In) oxide and MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) oxide. The material of the dense layer is Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) oxide, and the dense layer contains Me ions ( A proton conductive laminated structure characterized by containing 2 to 5 wt% of Me = Ti, Cr, Mn, Fe, Co, Ni, Cu). 緻密層の厚みが5〜30ミクロンであることを特徴とする請求項1のプロトン伝導性積層構造体。 2. The proton conductive laminated structure according to claim 1, wherein the dense layer has a thickness of 5 to 30 microns. 多孔質支持体がチューブ形状であることを特徴とする請求項1または2のプロトン伝導性積層構造体。 3. The proton conductive laminated structure according to claim 1 or 2, wherein the porous support has a tube shape. 請求項1から3のうちのいずれか一項のプロトン伝導性積層構造体において、プロトン伝導性積層構造体の多孔質支持体が燃料極として機能し、かつ多孔質支持体上に形成された電解質層として機能するBa(Ce,Zr,A)O3(A=Y,Yb,Inの少くとも一種)緻密層上に、Ba(Ce,Zr,A)O3 (A=Y,Yb,Inの少くとも一種)酸化物および酸化物活物質との混合材料が空気極層として積層されていることを特徴とするプロトン導電性セル。 4. The proton conductive laminated structure according to claim 1, wherein the porous support of the proton conductive laminated structure functions as a fuel electrode and is formed on the porous support. Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) on the dense layer Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) A proton conductive cell characterized in that a mixed material of an oxide and an oxide active material is laminated as an air electrode layer. 当該空気極層の酸化物活物質が、ペロブスカイト型酸化物CDO3 (C=La,Ba,Sr,Caの少くとも一種;D=Cr,Mn,Fe,Co,Ni,Cuの少くとも一種)であることを特徴とする請求項4のプロトン伝導性セル。 The oxide active material of the air electrode layer is perovskite oxide CDO 3 (C = La, Ba, Sr, Ca at least one type; D = Cr, Mn, Fe, Co, Ni, Cu at least one type) The proton conductive cell according to claim 4, wherein: 請求項1から3のうちのいずれか一項のプロトン伝導性積層構造体の作製方法であって、プロトン伝導性積層構造体が、Ba(Ce,Zr,A)O3(A=Y,Yb,Inの少くとも一種)酸化物とMeOx (Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少くとも一種)酸化物との混合材料からなる多孔質支持体とBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少くとも一種)塗布膜とを同時焼成することにより作製することを特徴とする作製方法。 The method for producing a proton conductive laminated structure according to any one of claims 1 to 3, wherein the proton conductive laminated structure is Ba (Ce, Zr, A) O 3 (A = Y, Yb). , In) and a porous support made of a mixed material of an oxide and MeO x (Me = Ti, Cr, Mn, Fe, Co, Ni, Cu) oxide and Ba (Ce, A manufacturing method characterized by being manufactured by co-firing Zr, A) O 3 (at least one of A = Y, Yb, In) coating film. プロトン伝導性積層構造体が、多孔質支持体においてMeイオン(Me=Ti,Cr,Mn,Fe,Co,Ni,Cuの少くとも一種)がBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少くとも一種)粒内に固溶し、連続する塗布膜のBa(Ce,Zr,A)O3(A=Y,Yb,Inの少くとも一種)へ拡散することでBa(Ce,Zr,A)O3 (A=Y,Yb,Inの少くとも一種)緻密層が形成される同時焼成により作製することを特徴とする請求項6の作製方法。 The proton-conducting laminated structure is such that Me ions (at least one of Me = Ti, Cr, Mn, Fe, Co, Ni, and Cu) are Ba (Ce, Zr, A) O 3 (A = (At least one of Y, Yb, In) is dissolved in the grains and diffused into Ba (Ce, Zr, A) O 3 (A = Y, Yb, In) of the continuous coating film. 7. The method according to claim 6, wherein Ba (Ce, Zr, A) O 3 (at least one of A = Y, Yb, In) is formed by simultaneous firing to form a dense layer. プロトン伝導性積層構造体の同時焼成温度が1250から1500℃の範囲であることを特徴とする請求項6または7の作製方法。 The method according to claim 6 or 7, wherein the simultaneous firing temperature of the proton conductive laminated structure is in the range of 1250 to 1500 ° C.
JP2015145686A 2014-07-25 2015-07-23 Proton-conducting laminate structure Pending JP2016031933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145686A JP2016031933A (en) 2014-07-25 2015-07-23 Proton-conducting laminate structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014152237 2014-07-25
JP2014152237 2014-07-25
JP2015145686A JP2016031933A (en) 2014-07-25 2015-07-23 Proton-conducting laminate structure

Publications (1)

Publication Number Publication Date
JP2016031933A true JP2016031933A (en) 2016-03-07

Family

ID=55442177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145686A Pending JP2016031933A (en) 2014-07-25 2015-07-23 Proton-conducting laminate structure

Country Status (1)

Country Link
JP (1) JP2016031933A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159584A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 Proton-conducting electrolyte
WO2018212344A1 (en) * 2017-05-18 2018-11-22 国立研究開発法人産業技術総合研究所 Multilayer structure of electrode and mixed ion/electron conductive electrolyte and method for producing same
JP2019021578A (en) * 2017-07-20 2019-02-07 東京瓦斯株式会社 Fuel cell system
JP2020024847A (en) * 2018-08-07 2020-02-13 東京瓦斯株式会社 Fuel cell and manufacturing method of fuel cell
WO2021193129A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Electrode material, membrane-electrode assembly, electrochemical cell, and fuel battery system
JP2021195288A (en) * 2020-06-16 2021-12-27 共立エレックス株式会社 Ceramic sheet coating method
WO2023058281A1 (en) * 2021-10-04 2023-04-13 パナソニックホールディングス株式会社 Electrode catalyst, membrane electrode assembly, electrochemical cell, and fuel cell system
CN116926484A (en) * 2023-08-05 2023-10-24 苏州六九新材料科技有限公司 Processing technology of zirconium yttrium chromium alloy sputtering target material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021787B2 (en) 2017-02-28 2022-02-17 国立研究開発法人産業技術総合研究所 Proton conductive electrolyte
CN110476287B (en) * 2017-02-28 2022-09-23 国立研究开发法人产业技术综合研究所 Proton-conducting electrolyte
WO2018159584A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 Proton-conducting electrolyte
CN110476287A (en) * 2017-02-28 2019-11-19 国立研究开发法人产业技术综合研究所 Proton-conductive electrolyte
JPWO2018159584A1 (en) * 2017-02-28 2020-01-09 国立研究開発法人産業技術総合研究所 Proton conductive electrolyte
JP7129707B2 (en) 2017-05-18 2022-09-02 国立研究開発法人産業技術総合研究所 LAMINATED STRUCTURE OF IONIC AND ELECTRONIC MIXED CONDUCTIVE ELECTROLYTE AND ELECTRODE, AND METHOD FOR MANUFACTURING THE SAME
JPWO2018212344A1 (en) * 2017-05-18 2020-03-26 国立研究開発法人産業技術総合研究所 Laminated structure of mixed ion / electron conductive electrolyte and electrode, and method of manufacturing the same
WO2018212344A1 (en) * 2017-05-18 2018-11-22 国立研究開発法人産業技術総合研究所 Multilayer structure of electrode and mixed ion/electron conductive electrolyte and method for producing same
JP7029122B2 (en) 2017-07-20 2022-03-03 東京瓦斯株式会社 Fuel cell system
JP2019021578A (en) * 2017-07-20 2019-02-07 東京瓦斯株式会社 Fuel cell system
JP2020024847A (en) * 2018-08-07 2020-02-13 東京瓦斯株式会社 Fuel cell and manufacturing method of fuel cell
JP7088776B2 (en) 2018-08-07 2022-06-21 東京瓦斯株式会社 Fuel cell and fuel cell manufacturing method
WO2021193129A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Electrode material, membrane-electrode assembly, electrochemical cell, and fuel battery system
JP2021195288A (en) * 2020-06-16 2021-12-27 共立エレックス株式会社 Ceramic sheet coating method
WO2023058281A1 (en) * 2021-10-04 2023-04-13 パナソニックホールディングス株式会社 Electrode catalyst, membrane electrode assembly, electrochemical cell, and fuel cell system
JP7344417B2 (en) 2021-10-04 2023-09-13 パナソニックホールディングス株式会社 Electrocatalysts, membrane electrode assemblies, electrochemical cells and fuel cell systems
CN116926484A (en) * 2023-08-05 2023-10-24 苏州六九新材料科技有限公司 Processing technology of zirconium yttrium chromium alloy sputtering target material
CN116926484B (en) * 2023-08-05 2024-01-30 苏州六九新材料科技有限公司 Processing technology of zirconium yttrium chromium alloy sputtering target material

Similar Documents

Publication Publication Date Title
JP2016031933A (en) Proton-conducting laminate structure
JP5160131B2 (en) Electrolyte / electrode assembly and method for producing the same
WO2017014069A1 (en) Electrolyte layer-anode composite member for fuel cell and method for manufacturing said member
WO2016080019A1 (en) Anode for solid oxide fuel cell and manufacturing method therefor, and manufacturing method for electrolyte layer-electrode assembly for fuel cell
KR101796502B1 (en) Method of manufacturing interconnect coating layer and ceramic interconnects including the interconnect coating layer
JP6121954B2 (en) Solid oxide fuel cell
JP2013197036A (en) Fuel cell and method for manufacturing laminated sintered body
JP7129707B2 (en) LAMINATED STRUCTURE OF IONIC AND ELECTRONIC MIXED CONDUCTIVE ELECTROLYTE AND ELECTRODE, AND METHOD FOR MANUFACTURING THE SAME
JP2015172213A (en) Electrochemical cell and method of producing the same
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2004087353A (en) Substrate tube for solid electrolyte fuel cell
JP2004362849A (en) Base plate for electrochemical cell and electrochemical cell
JP2021144795A (en) Solid oxide fuel cell and manufacturing method thereof
JP2016072216A (en) Solid oxide fuel cell stack
JP6524756B2 (en) Solid oxide fuel cell stack
JP2015118922A (en) Solid oxide type fuel battery and air electrode material
JP6712119B2 (en) Solid oxide fuel cell stack
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
JP5412534B2 (en) Method for producing composite substrate and method for producing solid oxide fuel cell
KR101276690B1 (en) Solid oxide fuel cell having the improved electrodes and its preparation
WO2015045330A1 (en) Fuel cell and manufacturing method therefor
JP5196216B2 (en) Electrochemical reactor
JP2017199601A (en) Solid electrolyte membrane and method of producing the same, and fuel cell
JP2023182176A (en) High temperature steam electrolytic cell and production method thereof
JP6712118B2 (en) Solid oxide fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107