WO2015043487A1 - 喹唑啉类化合物及其制备方法与应用 - Google Patents

喹唑啉类化合物及其制备方法与应用 Download PDF

Info

Publication number
WO2015043487A1
WO2015043487A1 PCT/CN2014/087440 CN2014087440W WO2015043487A1 WO 2015043487 A1 WO2015043487 A1 WO 2015043487A1 CN 2014087440 W CN2014087440 W CN 2014087440W WO 2015043487 A1 WO2015043487 A1 WO 2015043487A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dimethoxyquinazolin
dihydroquinolin
carboxamide
yloxy
Prior art date
Application number
PCT/CN2014/087440
Other languages
English (en)
French (fr)
Inventor
李进
Original Assignee
苏州海特比奥生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州海特比奥生物技术有限公司 filed Critical 苏州海特比奥生物技术有限公司
Publication of WO2015043487A1 publication Critical patent/WO2015043487A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the invention relates to the technical field of medicine, in particular to a class of quinazoline tyrosine kinase inhibitors, a preparation method thereof and application thereof in preparing antitumor drugs.
  • Angiogenesis refers to the development of a new vascular system from an existing blood vessel. Normal angiogenesis occurs only in certain short-term, specific physiological processes, such as reproduction, wound healing, and the like. Abnormal angiogenesis is one of the pathological manifestations of malignant diseases such as tumors, rheumatoid arthritis, and diabetic retinopathy. Since Folkman's hypothesis that angiogenesis is closely related to the development of tumors, a large number of clinical practice and experimental studies have confirmed that inhibition of tumor-mediated angiogenesis can effectively inhibit tumor growth and metastasis.
  • the VEGF receptor is an important target for anti-angiogenesis.
  • studies on small molecule inhibitors targeting VEGF receptors have been very active, and a large number of structurally diverse inhibitors have been reported.
  • these inhibitors are all competitive inhibitors of ATP, and the concentration of ATP in cells, especially cancer cells, can reach 5mmol/L or more, so the inhibitor activity should be at least nanomolar.
  • the VEGF receptor belongs to the tyrosine kinase superfamily, and members of this family are widely involved in the transmission of biological signals in vivo. Due to the homology of the sequences, the three-dimensional structure of their ATP binding sites is highly conserved.
  • the invention uses computer-aided drug design technology and chemical synthesis means to design and synthesize novel VEGFR1, VEGFR2 based on comprehensive detection of the properties of VEGFR1, VEGFR2, VEGFR3 receptor active cavity and in-depth study of the mode of action of receptors and inhibitors.
  • the VEGFR3 receptor inhibitor series of compounds have found high-efficiency, low-toxic VEGFR1, VEGFR2, and VEGFR3 receptor-specific inhibitors.
  • R is selected from the group consisting of H, C 1-10 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 carbonyl, C 1-6 alkoxycarbonyl, carbonylamino, substituted carbonylamino, sulfonylamino, phenyl, substituted phenyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, substituted heterocycloalkyl, heteroaryl or Substituting a heteroaryl group.
  • substituted means that one or more hydrogen atoms are substituted with a substituent selected from the group consisting of C1-10 alkyl, halogenated C1-10 alkyl, C1-6 alkenyl, C1-6 alkynyl. , C1-6 alkoxy, halogenated C1-6 alkoxy, halogen, nitro, C1-6 alkylcarbonyl.
  • the halogenated C1-10 alkyl group comprises a trifluoromethyl group
  • the halogenated C1-6 alkoxy group comprises a trifluoromethoxy group
  • alkyl group refers to from 1 to 10 carbon atoms.
  • Alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl.
  • alkoxy group refers to an oxygen-containing alkyl group.
  • the alkyl group referred to in the alkoxy group, alkylthio group, alkylcarbonyl group, alkoxycarbonyl group or the like is as defined above.
  • alkenyl group means a straight or branched hydrocarbon group of 2 to 6 carbon atoms containing one or more carbon-carbon double bonds. These include, but are not limited to, vinyl, propenyl, and butenyl.
  • aryl group refers to a monocyclic aromatic hydrocarbon having 6 carbon atoms, a bicyclic aromatic hydrocarbon having 10 carbon atoms, a tricyclic aromatic hydrocarbon having 14 carbon atoms, and 1 ring per ring. - 4 substituents.
  • Aryl groups include, but are not limited to, phenyl, naphthyl, anthracenyl.
  • cycloalkyl refers to a saturated or partially unsaturated cyclic hydrocarbon containing from 3 to 8 carbon atoms.
  • Cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl.
  • heteroaryl means a monocyclic aromatic hydrocarbon of 5-8 atoms, a bicyclic aromatic hydrocarbon of 8-12 atoms or a tricyclic aromatic hydrocarbon of 11-14 atoms, and contains one or more hetero atoms ( For example, N, O, S).
  • Heteroaryl groups include, but are not limited to, pyridinyl, furyl, imidazolyl, benzimidazolyl, pyrimidinyl, thienyl, quinolyl, fluorenyl.
  • heterocycloalkyl group means a monocyclic non-aromatic alkyl group having 3 to 8 atoms, a bicyclic ring of 8 to 12 atoms or a tricyclic hydrocarbon group of 11 to 14 atoms, and contains one or more A hetero atom (eg N, O, S).
  • Heterocycloalkyl groups include, but are not limited to, piperazinyl, pyrrolidinyl, dietyl, morpholinyl, tetrahydrofuranyl.
  • the invention also includes all corresponding pharmaceutically acceptable salts, hydrates or prodrugs of the above compounds.
  • These salts may be formed by a positively charged moiety of the compound with a negatively charged opposite charge; or by a negatively charged moiety of the compound with a positive charge.
  • the compounds of the invention may contain a non-aromatic double bond with one or more asymmetric centers. Therefore, these compounds may exist as racemic mixtures, individual enantiomers, individual diastereomers, diastereomeric mixtures, cis or trans isomers. All of these isomers are expected.
  • prodrug of structural formula I generally refers to a substance which, when administered by a suitable method, can be converted to a compound of formula I or a salt thereof by metabolic or chemical reaction in a subject.
  • R in the formula I is selected from the group consisting of H, C 1-10 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, C 1-6 An alkylthio group, a C 1-6 carbonyl group, a C 1-6 alkoxycarbonyl group, a carbonylamino group, a sulfonylamino group, a phenyl group which may have a substituent selected from the substituent group A, may have a substituent selected from the substituent group A a saturated or partially unsaturated cycloalkyl group of 3 to 8 carbon atoms of the group, a heteroaromatic hydrocarbon having 5 to 14 atoms and having 1 or more hetero atoms, or a substituent selected from the substituent group A a heterocycloalkyl group having 3 to 14 atoms and having 1 or more hetero atoms selected from the substituent of the substituent group A;
  • substituent group A is a group consisting of (1) C 1-10 alkyl group, (2) C 1-6 alkenyl group, (3) C 1-6 alkynyl group, (4) C 1-6 alkoxy, (5) halogen, (6) nitro, (7) trifluoromethyl, (8) trifluoromethoxy or (9) C 1-6 alkylcarbonyl.
  • R group in formula I is selected from the group consisting of H, C 1-10 alkyl, C 1-6 alkoxy, or selected from the following structural units:
  • R 1 and R 2 are each independently selected from the group consisting of H, halogen, C 1-6 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, nitro, trifluoro Methyl, trifluoromethoxy or C 1-6 carbonyl.
  • the R is
  • R 1 is hydrogen and R 2 is a meta substitution.
  • the R group is selected from each of the R groups in the compounds of Table 1.
  • the compound of formula (I) of the invention is selected from the group consisting of:
  • the compound of the present invention can be prepared in the form of a pharmaceutically acceptable salt according to a conventional method; including organic acid salts and inorganic acid salts thereof: inorganic acids including, but not limited to, hydrochloric acid, sulfuric acid, phosphoric acid, diphosphoric acid, hydrobromic acid, nitric acid, etc.
  • organic acids include, but are not limited to, acetic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, lactic acid, p-toluenesulfonic acid, salicylic acid, oxalic acid, and the like.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier, and the above-mentioned compound or each optical isomer thereof, each crystal form, a pharmaceutically acceptable inorganic or organic salt, Hydrate, solvate or prodrug.
  • the invention also provides the use of a compound according to the invention, or each of its optical isomers, each crystalline form, a pharmaceutically acceptable inorganic or organic salt, hydrate, solvate or prodrug, which is used A tyrosine kinase inhibitor is prepared.
  • the invention also provides the use of a compound according to the invention, or each of its optical isomers, each crystalline form, a pharmaceutically acceptable inorganic or organic salt, hydrate, solvate or prodrug, which is used A medicament for inhibiting tyrosine kinase activity or for preparing a treatment, prevention, and alleviation of a disease associated with excessive tyrosine kinase activity.
  • the disease associated with excessive activity of tyrosine kinase is selected from the group consisting of a tumor, including but not limited to liver cancer, lung cancer, brain tumor, stomach cancer, kidney cancer, colon cancer, breast cancer, ovarian cancer. , prostate cancer, bone cancer, leukemia, skin cancer.
  • the VEGF receptor family is the most closely related to angiogenesis in the currently known members of the tyrosine kinase family, and those skilled in the art can expect to have a good inhibitory effect on VEGF receptor family members. Compounds should also have a good inhibitory effect on tumor angiogenesis.
  • the present invention also provides the use of the compound of the present invention, or each of its optical isomers, each crystalline form, a pharmaceutically acceptable inorganic or organic salt, hydrate, solvate or prodrug thereof. It is used to prepare angiogenesis inhibitors.
  • the invention also provides the use of a compound according to the invention, or each of its optical isomers, each crystalline form, a pharmaceutically acceptable inorganic or organic salt, hydrate, solvate or prodrug, which is used A medicament for preventing or treating a tumor is prepared.
  • the compounds of the present invention were tested at a molecular level for pharmacological activity, and the results showed that the compounds generally have good inhibitory activity against tyrosine kinases in vitro, particularly It has good inhibitory activity against three members of the VEGF receptor family, VEGFR1, VEGFR2 and VEGFR3.
  • Figure 1 is an X-ray single crystal diffraction pattern of the compound ZLZ-KZL-06.
  • the reaction solution was transferred to a separatory funnel, and the aqueous layer was separated.
  • the organic layer was washed twice with water (50 ml), and the organic layer was stood still, and pale yellow crystals were gradually separated and filtered to give a dry solid 28 g.
  • the butanone was purified to obtain 22 g of pure product. Yield: 65.3%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. After drying for 1 hour, the mixture was filtered, and then evaporated to dryness to give a yellow solid, and chloroform-n-decane was purified to yield 0.21 g. Yield: 28.1%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. g dry for 1 hour, filter, distill off most of the chloroform, add an appropriate amount of n-hexane, clarify, stand overnight, slowly precipitate the solid, and filter to give a solid. The solid was purified by chloroform-n-hexane to obtain a pure product (0.18 g). Yield: 24.3%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to dryness crystals. Yield: 21.9%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to dryness. Yield: 41.1%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the crystal structure of ZLZ-KZL-06 was measured on a Bruker APEX DUO (Double-Source Micro-Job Structure Analyzer).
  • the crystal structure data is as follows:
  • the R 1 value of all diffraction points is 0.1342, and the wR 2 value of all diffraction points is 0.2838;
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was further saturated with sodium hydrogencarbonate.
  • the solution was washed once with 5 ml of water, and then washed with water (10 ml) and shaken twice, and the chloroform layer was dried over 1.5 g of anhydrous magnesium sulfate for 1 hour, filtered, and evaporated to dryness to give a yellow solid solid, which was stirred in 10 ml of methanol and left to give a solid.
  • Crude column chromatography, mobile phase: methylene chloride: petroleum ether 1 : 5 obtained white solid, dried to yield 0.15 g. Yield: 21.1%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. g dry for 1 hour, filter, and chloroform to give a yellow sticky solid. Add 10 ml of methanol and stir, and let stand to give a solid. The crude product is dissolved in 2 ml of dichloromethane, then 6 ml of petroleum ether, 4 ml of ethyl acetate, clarified, and allowed to stand. The crystals were gradually precipitated to obtain a white solid, which was dried to give a pure product of 0.18 g. Yield: 25.4%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid. Yield: 30%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid. Yield: 20.3%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. g dry for 1 hour, filter, and lyophilize chloroform to obtain a yellow solid.
  • the crude product was dissolved in 4 ml of chloroform, and then heated under reflux. 5 ml of n-hexane was added, clarified, and allowed to stand, crystals were gradually precipitated, filtered, and dried to obtain a pure product of 0.23 g. , Yield: 28.8%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in dichloromethane, and then purified and purified to yield a pure product of 0.19 g, yield: 24.8%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in dichloromethane.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in dichloromethane, and then purified and purified to give a pure product (0.31 g, yield: 42.5%).
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude material was dissolved in methylene chloride, and then purified to yield 0.21 g.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. g drying for 1 hour, filtration, evaporation of chloroform to obtain a yellow solid, the crude product was dissolved in dichloromethane, and then purified by adding n-decane to a pure amount of 0.18 g. Yield: 23.4%.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride, and then purified to yield 0.22 g.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride, and then purified to yield purified product (0.35 g, yield: 46.7%).
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5. g dry for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was added to methanol (8 ml) and heated to reflux for 10 minutes. After filtration, the filter cake was dissolved in dichloromethane, and then purified by adding proper amount of n-decane to obtain a pure product of 0.47 g, yield: 62.7%. .
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness to give a yellow solid.
  • the crude product was dissolved in methylene chloride.
  • the reaction solution was transferred to a separatory funnel, and the chloroform layer was washed twice with water and 10 ml, and the chloroform layer was washed once with 5 ml of a saturated sodium hydrogencarbonate solution, and then washed with water (10 ml) and washed twice, and the chloroform layer was anhydrous magnesium sulfate 1.5.
  • the mixture was dried for 1 hour, filtered, and evaporated to dryness crystalljjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
  • Test Example 1 Inhibition of tyrosine kinase activity test in vitro
  • the EDTA was formulated to stop the buffer.
  • the test sample is formulated into a 10 mM storage solution, and diluted to the desired concentration with a buffer solution while ensuring a DMSO concentration of 10%; if only the inhibition rate at a certain concentration is measured, a concentration is used. If you need to determine the IC 50 value, the initial concentration is 10 mM, the dilution factor is 3, 10 concentrations are set, and each concentration is set.
  • kinase was added to the base buffer to prepare a kinase buffer; FAM-labeled peptide and ATP were added to the base buffer to prepare a peptide buffer.
  • VEGFR-1 FLT1
  • VEGFR-2 KDR
  • VEGFR-3 FLT4
  • VEGFR-1 FLT1
  • VEGFR-2 KDR
  • VEGFR-3 FLT4
  • VEGFR inhibition experiments showed that the compounds tested had certain inhibitory effects on VEGFR-1 (FLT1), VEGFR-2 (KDR) or VEGFR-3 (FLT4), and some of the compounds were strong against all three receptors. Inhibition.
  • Dissolution 1 mL of methanol was added and dissolved in 4 mL of DMSO to a final concentration of 0.6 mg/mL.
  • Nebulizer pressure 40 psig; drying gas temperature: 350 ° C
  • Nebulizer pressure 40 psig; drying gas temperature: 350 ° C
  • Nebulizer pressure 40 psig; drying gas temperature: 350 ° C
  • a series of concentrations of ZLZ-KZL-05, ZLZ-KZL-11 and ZLZ-KZL-27 are prepared: 20 ⁇ mol/L, 10 ⁇ mol/L, 5 ⁇ mol/L, 2 ⁇ mol/L, 1 ⁇ mol/L, 0.5 ⁇ mol/L, 0.2 ⁇ mol /L, 0.1 ⁇ mol/L.
  • Inoculated cells A single Caco-2 cell (derived from ATCC) suspension was formulated in MEM medium containing 10% fetal bovine serum, and seeded into 96-well plates at 5000 cells per well.
  • the Caco-2 cell absorption model was administered at a concentration of ⁇ 2% inhibition against Caco-2 cells, and the apparent permeability coefficient was measured. As a result, the three compounds 20 ⁇ mol/L, 10 ⁇ mol/L, and 5 ⁇ mol/L showed significant cytostatic effects on Caco-2 cells. Finally, the safe concentration of ZLZ-KZL-27 at a concentration of 0.5 ⁇ M was selected for Caco- 2 cell transmittance test.
  • Caco-2 cells were cultured in MEM medium (containing 10% FBS, 1% NEAA, 100 U ⁇ mL-1 penicillin-streptomycin, 10 mmol ⁇ L-1 HEPES), and a 37 ° C 5% CO 2 incubator. After 21 days of cell culture, the cell model was verified, and cells with cell transmembrane resistance greater than 600 ⁇ cm 2 and sodium fluorescein permeability less than 0.6% ⁇ h -1 ⁇ cm -2 were selected for drug transport experiments.
  • MEM medium containing 10% FBS, 1% NEAA, 100 U ⁇ mL-1 penicillin-streptomycin, 10 mmol ⁇ L-1 HEPES
  • the cells were carefully washed three times with HBSS solution, and the last time was incubated in the incubator for 30 min, and the HBSS solution was blotted dry.
  • the blank control group was added with HBSS solution on both sides of AP and BL.
  • the administration group was added with 0.5 ⁇ M 2N-27 HBSS solution (AP side 0.5 ml, BL side 1.5 ml) on the administration side, and blank HBSS solution was added to the receiving side.
  • the culture plate was incubated in an incubator, and 100 ⁇ L of the solution on the BL side and the AP side at 0, 30, 60, 90 and 120 min were collected, and 100 ⁇ L of the blank HBSS solution was added after sampling, and the sample was frozen in a refrigerator at -20 ° C.
  • the chemical composition in the transport liquid was quantitatively analyzed by HPLC.
  • HBSS solution Take ZBZ-KZL-27 with HBSS solution to prepare HBSS solution with concentration of 1 ⁇ mol/mL, 0.5 ⁇ mol/mL, 0.25 ⁇ mol/mL, 0.125 ⁇ mol/mL, 0.0625 ⁇ mol/mL, 0.3125 ⁇ mol/mL; take 100 ⁇ L HBSS solution+ 300 ⁇ L (with internal standard) acetonitrile.
  • the linear sample was obtained by vortexing for 20 min to obtain the supernatant; the internal standard solution was prepared with acetonitrile: 100 ng/mL ZLZ-KZL-27.
  • the measured apparent permeability coefficient P app of the compound is greater than 10 -5 , and it is generally considered that the apparent permeability coefficient P app of more than 10 -6 indicates that the oral absorption of the compound is good. This indicates that the absorption characteristics of ZLZ-KZL-27 are very good. Since the compounds provided in the present application all have the same parent core and the chemical structure difference between them is small, those skilled in the art should be able to predict that the compound provided by the present application should Both have good absorption and it is expected to develop oral preparations with high bioavailability.

Abstract

本发明涉及医药技术领域,特别涉及一类喹唑啉类酪氨酸激酶抑制剂、其制备方法及其在制备抗肿瘤药物中的应用,该类化合物具有结构通式(I)。本发明公开的化合物具有良好的酪氨酸激酶抑制活性,特别是VEGFR1、VEGFR2和VEGFR3抑制活性,部分优选化合物还进行了肝微粒体代谢速率研究和Caco-2模型中的吸收特性研究。

Description

喹唑啉类化合物及其制备方法与应用 技术领域
本发明涉及医药技术领域,特别涉及一类喹唑啉类酪氨酸激酶抑制剂、其制备方法及其在制备抗肿瘤药物中的应用。
背景技术
恶性肿瘤是严重影响人类健康、威胁人类生命的主要疾病之一,世界卫生组织和各国政府***门都把攻克癌症列为一项首要任务。目前,临床上常用的抗癌药物主要是细胞毒类药物,这类药物因其细胞毒的固有性质而具有难以避免的选择性差、毒副作用强、易产生耐药性等缺点。因此,寻找特异性高、毒性小、病人耐受性好的新靶标就成为抗癌药物研究的迫切需要。近年来,随着生命科学研究的飞速发展,众多基于癌细胞发生、发展机制的特异性靶点被鉴定出来,如:抑制肿瘤血管生成的血管内皮细胞生长因子(VEGFR1,VEGFR2,VEGFR3)等。血管生成(angiogenesis)是指从已存在的血管上发育出新的血管***。正常的血管生成只在某些短期、特定的生理过程中存在,如生殖、伤口愈合等。而异常的血管生成则是肿瘤、风湿性关节炎、糖尿病性视网膜病变等恶性疾病的病理表现之一。自从Folkman提出血管生成与肿瘤的发生发展密切相关的假说以来,大量的临床实践与实验研究证实了抑制肿瘤介导的血管生成可以有效地抑制肿瘤的生长和转移。
VEGF受体是抗血管生成的重要靶标。近年来,靶向VEGF受体的小分子抑制剂的研究非常活跃,大量结构各异的抑制剂被报道出来。但目前这些抑制剂仍存在一些问题,例如它们都是ATP的竞争性抑制剂,而细胞内尤其是癌细胞内的ATP浓度能达到5mmol/L以上,因此抑制剂活性应至少达到纳摩尔级水平才能表现出有效的抑制作用。另外,VEGF受体属于酪氨酸激酶超家族,该家族成员广泛参与体内生物信号的传导。由于序列的同源性,它们的ATP结合位点的三维结构是高度保守的。因此如何提高抑制剂在这些家族成员中的选择性极其重要。本发明应用计算机辅助药物设计技术和化学合成手段,在全面探测VEGFR1,VEGFR2,VEGFR3受体活性腔的性质、深入探讨受体与抑制剂的作用模式的基础上,设计、合成新型的VEGFR1,VEGFR2,VEGFR3受体抑制剂系列化合物,发现了高效、低毒的VEGFR1,VEGFR2,VEGFR3受体专属抑制剂。
发明内容
本发明的目的在于提供一类结构新颖的酪氨酸激酶抑制剂,特别是VEGFR抑制剂;本发明的另一个目的是提供该类化合物的制备方法;本发明的再一目的是提供该类化合物在制备预防或***药物中的应用。
本发明的具体技术方案如下:
在本发明的第一方面,发明人在抗肿瘤药物研究的过程中,发现了一类如式I所示的化合物,或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药,其中结构式I为:
Figure PCTCN2014087440-appb-000001
其中R选自H、C1-10烷基、C2-6烯基、C2-6炔基、C1-6烷氧基、C1-6烷硫基、C1-6羰基、C1-6烷氧羰基、羰基氨基、取代的羰基氨基、磺酰基氨基、苯基、取代苯基、环烷基、取代环烷基、杂环烷基、取代杂环烷基、杂芳基或取代杂芳基。
所述“取代”是指一个或多个氢原子被选自下组的取代基所取代:C1-10烷基、卤代的C1-10烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、卤代的C1-6烷氧基、卤素、硝基、C1-6烷基羰基。
优选地,所述卤代的C1-10烷基包括三氟甲基、所述卤代的C1-6烷氧基包括三氟甲氧基。
所述的“烷基”,除非另有说明,是指含有1-10个碳原子。烷基包括但不限于甲基,乙基,正丙基,异丙基,正丁基,异丁基,叔丁基。所述的“烷氧基”指的是含氧的烷基。所述的烷氧基、烷硫基、烷羰基、烷氧基羰基等中涉及的烷基定义如上述。
所述的“烯基”是指含有一个或多个碳碳双键的2-6个碳原子的直链或支链烃基。包括但不限于乙烯基、丙烯基和丁烯基。
所述的“芳基”,除非另有说明,是指含有6个碳原子的单环芳烃,10个碳原子的双环芳烃,14个碳原子的三环芳烃,且每个环上可以有1-4个取代基。芳基包括但不限于苯基,萘基,蒽基。
所述的“环烷基”,除非另有说明,是指含有3-8个碳原子的饱和或者部分不饱和的环状烃。环烷基包括但不限于环丙基,环丁基,环戊基,环戊烯基,环己基,环己烯基。
所述的“杂芳基”,是指5-8个原子的单环芳烃、8-12个原子的双环芳烃或11-14个原子的三环芳烃,并且含有1个或多个杂原子(例如N,O,S)。杂芳基包括但不限于吡啶基,呋喃基,咪唑基,苯并咪唑基,嘧啶基,噻吩基,喹啉基,吲哚基。
所述的“杂环烷基”,是指含有3-8个原子的单环非芳烃烷基、8-12个原子的双环或11-14个原子的三环烃基,并且含有1个或多个杂原子(例如N,O,S)。杂环烷基包括但不限于哌嗪基、吡咯烷基、二噁烷基、吗啉基、四氢呋喃基。
本发明还包括上述化合物的相应的所有药学上可以接受的盐、水合物或前药。这些盐可以由化合物中带正电荷的部分与具有相反电性的带负电荷形成;或者由化合物中带负电荷的部分与正电荷形成。
本发明化合物可以含有一个非芳香性的双键,具有一个或多个不对称中心。所以,这些化合物可以作为外消旋的混合物、单独的对映异构体、单独的非对映异构体、非对映异构体混合物、顺式或反式异构体存在。所有这些异构体都是可预期的。
所述的“结构式Ⅰ的前药”通常指一种物质,当用适当的方法施用后,可在受试者体内进行代谢或化学反应而转变成结构式Ⅰ的至少一种化合物或其盐。
在另一优选例中,所述式I中R选自H、C1-10烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、C1-6烷硫基、C1-6羰基、C1-6烷氧羰基、羰基氨基、磺酰基氨基、可以具有选自取代基组A的取代基的苯基、可以具有选自取代基组A的取代基的3-8个碳原子的饱和或者部分不饱和的环烷基、可以具有选自取代基组A的取代基的含5-14个原子且含有1个或多个杂原子的杂芳烃或可以具有选自取代基组A的取代基的含3-14个原子且含有1个或多个杂原子的杂环烷基;
其中,所述的取代基组A是由下列取代基组成的组:(1)C1-10烷基、(2)C1-6烯基、(3)C1-6炔基、(4)C1-6烷氧基、(5)卤素、(6)硝基、(7)三氟甲基、(8)三氟甲氧基或(9)C1-6烷基羰基。
优选的,式Ⅰ中的R基团选自H、C1-10烷基、C1-6烷氧基,或选自下列结构单元:
Figure PCTCN2014087440-appb-000002
其中,R1、R2各自独立的选自H、卤素、C1-6烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、硝基、三氟甲基、三氟甲氧基或C1-6羰基。
在另一优选例中,所述R为
Figure PCTCN2014087440-appb-000003
在另一优选例中,所述R1为氢,R2为间位取代。
在另一优选例中,所述R基选自表1化合物中的各R基团。
更优选的,本发明的式(Ⅰ)化合物,选自以下化合物:
N-(2-异丙基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-01);
N-(2,4,4-三甲基正戊烷-2-基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-02);
N-(4-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-04);
N-(3-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-05);
N-2-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-06);
N-(4-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-07);
N-(3-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-08);
N-(2-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-09);
N-(4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-10);
N-(3-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-11);
N-(2-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-12);
N-(4-硝基-2-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-14);
N-(3-硝基-4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-15);
N-(4-三氟甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-16);
N-(3-三氟甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-17);
N-(苯并间二氧杂环戊烯-5-基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-18);
N-(2,4-二甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-19);
N-(2,4-二氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-20);
N-(2-乙基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-21);
N-(4-正丁基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-22);
N-(环己基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-24);
N-(2-甲基-4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-25);
N-(2-甲氧基-5-甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-26);
N-(4-乙酰苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-27);
N-(2-甲基-4-硝基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-28);
N-(环戊基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺(化合物编号ZLZ-KZL-34)。
本发明所列的化合物,如结构式与命名相冲突的,以化学结构式为准。
表1中列出了本发明的优选结构:
表1
Figure PCTCN2014087440-appb-000004
Figure PCTCN2014087440-appb-000005
Figure PCTCN2014087440-appb-000006
本发明的化合物可按照常规方法制备为药用盐的形式;包括其有机酸盐及无机酸盐:无机酸包括(但不限于)盐酸、硫酸、磷酸、二磷酸、氢溴酸、硝酸等,有机酸包括(但不限于)乙酸、马来酸、富马酸、酒石酸、琥珀酸、乳酸、对甲苯磺酸、水杨酸、草酸等。
作为本发明的第二方面,提供了上述化合物的制备方法:
Figure PCTCN2014087440-appb-000007
(1)4-氯-6,7-二甲氧基喹唑啉与6-羟基-1,2,3,4-四氢喹啉在碱、催化剂的存在下(如2-丁酮,20%NaOH,nBu4NBr),反应生成6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉(Ⅱ);
(2)6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉(Ⅱ)与各种取代的异氰酸酯化合物反应(如可以在三氯甲烷存在下)生成相应的N-取代-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺类化合物(Ⅰ);
(3)按照常规方法制备为药学上可接受的盐的形式。
本发明还提供了一种药物组合物,其含有药学上可接受的赋形剂或载体,以及上述的化合物或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药。
本发明还提供了本发明所述的化合物、或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,它被用于制备酪氨酸激酶抑制剂。
本发明还提供了本发明所述的化合物、或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,它被用于制备抑制酪氨酸激酶活性的药物或用于制备治疗、预防以及缓解与酪氨酸激酶活性过高相关的疾病。
在本发明的一个优选例中,所述的与酪氨酸激酶活性过高相关疾病选自肿瘤,包括但不限于肝癌、肺癌、脑瘤、胃癌、肾癌、结肠癌、乳腺癌、卵巢癌、***癌、骨癌、白血病、皮肤癌。
同时,VEGF受体家族是目前已知的酪氨酸激酶家族成员中与血管生成(angiogenesis)关系最密切的,本领域技术人员能当能够预期到,对VEGF受体家族成员有良好抑制作用的化合物,对肿瘤血管生成应当也具有良好的抑制作用。
鉴于此,本发明还提供了本发明所述的化合物、或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,它被用于制备血管生成抑制剂。
本发明还提供了本发明所述的化合物、或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,它被用于制备预防或***的药物。
为评价本发明合成的化合物及其药物组合物的抗肿瘤活性,对本发明中的化合物进行了分子水平的药理活性测试,结果显示该类化合物普遍具有较好的体外抑制酪氨酸激酶活性,特别是对VEGF受体家族的三个成员VEGFR1、VEGFR2、VEGFR3具有良好的抑制活性。
附图说明
图1为化合物ZLZ-KZL-06的X射线单晶衍射图。
具体实施方式
以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于说明本发明而非用于限定本发明的范围。
实施例1:
6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉(Ⅱ)的制备
500ml圆底瓶中加入4-氯-6,7-二甲氧基喹唑啉22.5g(100.2mmol),丁酮250ml,四丁基溴化铵16.5g(51mmol),20%氢氧化钠溶液120ml,室温搅拌2分钟,另取6-羟基-1,2,3,4-四氢喹啉15g(100.5mmol),搅拌,加热至回流,反应1小时,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),完全反应。后处理。
反应液移至分液漏斗中,分出水层,有机层加入水50ml洗涤2次,有机层静置,慢慢析出淡黄色结晶,过滤,得干燥固体28g。丁酮精制得纯品22g。产率:65.3%。
1H NMR(600 MHz,CDCl3)δ8.65(s,1H),7.55(s,1H),7.31(s,1H),6.84(d,J=6.5 Hz,2H),6.55-6.52(m,1H),5.30(d,J=2.1 Hz,1H),4.06(s,6H),3.34-3.31(m,2H),2.80(t,J=6.1Hz,2H),1.99-1.93(m,2H).HRMS[M+H]338.35。
实施例2(ZLZ-KZL-01的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-异丙基苯异氰酸酯0.45g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),室温反应2小时后变浅黄色混浊状,共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,氯仿-正巳烷精制得纯品0.21g。产率:28.1%。
1H NMR(600 MHz,CDCl3)δ8.65(s,1H),7.75(d,J=9.0 Hz,1H),7.55(s,1H),7.53(d,J=8.7 Hz,1H),7.24(d,J=2.5 Hz,1H),7.23-7.19(m,2H),7.16(d,J=2.6 Hz,1H),7.14-7.11(m,2H),6.95(s,1H),4.09(s,3H),4.08(s,3H),3.91-3.88(m,2H),2.87(dt,J=13.6,6.7 Hz,3H),2.07-2.02(m,2H),1.20(s,3H),1.19(s,3H).HRMS[M+H]499.60。
实施例3(ZLZ-KZL-02的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取叔辛基异氰酸酯0.47g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应30小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸去大部分氯仿加入适量正已烷,澄清,放置过夜,缓慢析出固体,过滤,得固体。固体再以氯仿-正己烷精制得纯品0.18g。产率:24.3%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),7.54(s,1H),7.38(s,1H),7.27(s,1H),7.09–7.06(m,2H),5.18(t,J=5.5 Hz,1H),4.08(s,3H),4.07(s,3H),3.80-3.77(m,2H),2.81(t,J=6.7 Hz,2H),1.98-1.93(m,2H),1.34-1.26(m,17H).HRMS[M+H]493.80。
实施例4(ZLZ-KZL-04的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-甲氧基苯异氰酸酯0.45g(3.0mmol)于氯仿2ml中至 溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,二氯甲烷-石油醚精制得纯品0.16g。产率:21.9%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),7.54(s,1H),7.47(d,J=8.5 Hz,1H),7.37(s,1H),7.32-7.29(m,2H),7.13(dt,J=8.5,2.6 Hz,2H),6.94(s,1H),6.87-6.85(m,2H),4.08(s,3H),4.07(s,3H),3.87-3.84(m,2H),3.79(s,3H),2.85(t,J=6.6 Hz,2H),2.04-2.00(m,2H).
HRMS[M+H]487.91。
实施例5(ZLZ-KZL-05的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取3-甲氧基苯异氰酸酯0.45g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷20ml加热搅拌,有少许固体不溶,过滤,滤液加入适量石油醚精制得纯品0.3g。产率:41.1%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),7.54(s,1H),7.44(d,J=8.5 Hz,1H),7.37(s,1H),7.21-7.13(m,4H),7.06(s,1H),6.87-6.85(m,1H),6.62-6.61(m,1H),,4.08(s,3H),4.07(s,3H),3.88-3.85(m,2H),3.81(s,3H),2.86(t,J=6.7 Hz,2H),2.06-2.01(m,2H).
HRMS[M+H]487.70。
实施例6(ZLZ-KZL-06的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-甲氧基苯异氰酸酯0.45g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷3ml溶解后,加入乙酸乙酯-石油醚(1:1)6ml,很快析出固体,固体以甲醇3ml洗涤,固体再以二氯甲烷溶解后,加入乙酸乙酯-石油醚至微混浊,加热澄清,析出固体,过滤,干燥得纯品0.29g。产率:39.7%。
1H NMR(600 MHz,DMSO)δ8.58(s,1H),8.01(s,1H),7.96(d,J=7.8 Hz,1H),7.57-7.53(m,2H),7.39(s,1H),7.18(dd,J=7.1,2.6 Hz,2H),7.02-7.00(m,2H),6.94-6.90(m,1H),4.00(s,3H),3.98(s,3H),3.79(s,3H),3.78-3.75(m,2H),2.80(t,J=6.6 Hz,2H),1.95-1.90(m,2H).
HRMS[M+H]487.49。
取ZLZ-KZL-06纯品0.2g,加入甲醇4ml,加热溶解后,置于室温下冷却析晶约7d,得到无色结晶。
ZLZ-KZL-06的晶体结构在Bruker APEX DUO(双光源微焦斑结构分析仪)上测定,晶体结构数据如下:
经验式  C27H26N4O5
分子量  486.52
晶系/空间群   三斜晶系,P-1空间群
晶胞参数    a=9.703(5)   alpha=106.711(7)deg.
            b=10.886(6)  beta=108.880(7)deg.
            c=13.615(7)  gamma=92.537(7)deg.
体积   1288.2(11)
温度   293(2)K
晶体大小   0.15x0.12x0.106mm
波长   0.71073A
参加精修的衍射数目   5247
强度大于2σ的衍射数目   2702
Theta角的范围   1.67~27.49
全部衍射点的R1值0.1342,全部衍射点的wR2值0.2838;
可观察衍射点的R1值0.0871,可观察衍射点的wR2值0.2507;
晶体典型的键长数据:
C1 C9 1.380(5)
C1 C2 1.379(5)
C1 O1 1.401(4)
C2 C3 1.380(5)
C3 C7 1.390(5)
C3 C4 1.504(5)
C4 C5 1.509(6)
C5 C6 1.490(6)
C6 N1 1.472(5)
C7 C8 1.382(5)
C7 N1 1.431(4)
C8 C9 1.384(5)
C10 N3 1.301(5)
C10 O1 1.363(4)
C10 C11 1.413(5)
C11 C16 1.399(5)
C11 C12 1.410(5)
C12 C13 1.357(5)
C13 O2 1.350(4)
C13 C14 1.438(5)
C14 O3 1.364(4)
C14 C15 1.366(5)
C15 C16 1.410(5)
C16 N2 1.372(5)
C17 N2 1.300(5)
C17 N3 1.345(5)
C18 O2 1.428(5)
C19 O3 1.419(4)
C20 O4 1.225(4)
C20 N4 1.373(5)
C20 N1 1.378(5)
C21 C22 1.389(5)
C21 C26 1.383(5)
C21 N4 1.413(5)
C22 C23 1.378(6)
C23 C24 1.382(7)
C24 C25 1.366(6)
C25 C26 1.378(6)
C26 O5 1.377(5)
C27 O5 1.429(10)
晶体典型的键角数据
C9 C1 C2 121.3(3)
C9 C1 O1 124.2(3)
C2 C1 O1 114.1(3)
C3 C2 C1 120.3(3)
C2 C3 C7 119.0(3)
C2 C3 C4 124.3(3)
C7 C3 C4 116.5(3)
C5 C4 C3 108.0(3)
C4 C5 C6 113.3(4)
N1 C6 C5 112.5(3)
C8 C7 C3 120.2(3)
C8 C7 N1 123.0(3)
C3 C7 N1 116.8(3)
C7 C8 C9 120.9(3)
C1 C9 C8 118.3(3)
N3 C10 O1 121.2(3)
N3 C10 C11 124.0(3)
O1 C10 C11 114.7(3)
C10 C11 C16 115.2(3)
C10 C11 C12 124.8(3)
C16 C11 C12 120.0(3)
C13 C12 C11 120.6(3)
O2 C13 C12 125.9(3)
O2 C13 C14 114.7(3)
C12 C13 C14 119.4(3)
O3 C14 C15 125.4(3)
O3 C14 C13 114.1(3)
C15 C14 C13 120.5(3)
C14 C15 C16 120.0(3)
N2 C16 C11 121.6(3)
N2 C16 C15 118.9(3)
C11 C16 C15 119.4(3)
N2 C17 N3 129.8(4)
O4 C20 N4 123.7(3)
O4 C20 N1 121.1(3)
N4 C20 N1 115.1(3)
C22 C21 C26 119.4(4)
C22 C21 N4 125.1(4)
C26 C21 N4 115.5(3)
C23 C22 C21 119.3(4)
C24 C23 C22 121.1(4)
C23 C24 C25 119.4(4)
C26 C25 C24 120.4(4)
O5 C26 C25 122.8(4)
O5 C26 C21 116.7(4)
C25 C26 C21 120.4(4)
C20 N1 C7 124.0(3)
C20 N1 C6 116.8(3)
C7 N1 C6 118.1(3)
C17 N2 C16 114.8(3)
C10 N3 C17 114.5(3)
C20 N4 C21 126.8(3)
C10 O1 C1 122.7(3)
C13 O2 C18 115.7(3)
C14 O3 C19 116.8(3)
C26 O5 C27 114.6(4)
C26 O5 C27' 120.4(6)
C27 O5 C27' 51.1(6)
ZLZ-KZL-06的晶体结构如图1所示。
实施例7(ZLZ-KZL-07的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-氟苯基异氰酸酯0.41g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=3:4),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色粘状固体,少许甲醇搅拌,静置,得无色固体,粗品以二氯甲烷4ml溶解后,加入乙酸乙酯2ml、石油醚5ml澄清,静置,析出白色固体,过滤,干燥得纯品0.35g。产率:49.2%。
1H NMR(600 MHz,DMSO)δ8.95(s,1H),8.57(s,1H),7.54(s,1H),7.52-7.50(m,2H),7.48(d,J =9.0 Hz,1H),7.39(s,1H),7.13-7.09(m,3H),7.06(dd,J=8.8,2.6 Hz,1H),3.99(s,3H),3.97(s,3H),3.77-3.74(m,2H),2.78(t,J=6.5 Hz,2H),1.95-1.90(m,2H).
HRMS[M+H]475.47。
实施例8(ZLZ-KZL-08的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取3-氟苯基异氰酸酯0.41g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=3:4),共室温反应60小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠 溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色粘状固体,加入甲醇10ml搅拌,静置,得固体,粗品柱层析,流动相:二氯甲烷:石油醚=1:5得白色固体,干燥得纯品0.15g。产率:21.1%。
1H NMR(600 MHz,CDCl3)δ8.66(s,J=7.1 Hz,1H),7.54(d,J=2.7 Hz,1H),7.43-7.37(m,2H),7.34(s,1H),7.23(td,J=8.2,6.6 Hz,1H),7.18-7.13(m,3H),7.03(dd,J=8.1,1.3 Hz,1H),6.76-6.72(m,1H),4.08(s,3H),4.07(s,3H),3.88-3.85(m,2H),2.86(t,J=6.7 Hz,2H),2.06-2.01(m,2H).
HRMS[M+H]475.39。
实施例9(ZLZ-KZL-09的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-氟苯基苯异氰酸酯0.41g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应72小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色粘状固体,加入甲醇10ml搅拌,静置,得固体,粗品加入二氯甲烷2ml溶解,再加入石油醚6ml,乙酸乙酯4ml,澄清,静置,慢慢析出结晶,得白色固体,干燥得纯品0.18g。产率:25.4%。
1H NMR(600 MHz,CDCl3)δ8.57(s,1H),8.56(s,1H),7.60-7.54(m,3H),7.39(s,1H),7.24-7.20(m,1H),7.16-7.11(m,3H),7.08(dd,J=8.8,2.8 Hz,1H),3.99(s,3H),3.97(s,3H),3.79-3.75(m,2H),2.79(t,J=6.5 Hz,2H),1.97-1.92(m,2H).
HRMS[M+H]475.44。
实施例10(ZLZ-KZL-10的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-氯苯基异氰酸酯0.46g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品柱层析得纯品0.22g。产率:30%。
1H NMR(600 MHz,CDCl3)δ8.70(s,1H),7.55(s,1H),7.44(d,J=8.5 Hz,1H),7.37-7.35(m,2H),7.29-7.26(m,2H),7.15(dt,J=8.5,2.5 Hz,3H),7.03(s,1H),4.10(s,3H),4.08(s,3H),3.88-3.85(m,2H),2.86(t,J=6.6 Hz,2H),2.08-2.01(m,2H).HRMS[M+H]491.62。
实施例11(ZLZ-KZL-11的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取3-氯苯基异氰酸酯0.46g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应60小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品柱层析得纯品0.15g。产率:20.3%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),7.54(s,1H),7.53(t,J=2.0 Hz,1H),7.42(d,J=8.3 Hz,1H),7.38(s,1H),7.25(s,1H),7.21(t,J=8.0 Hz,1H),7.17-7.14(m,2H),7.11(s,1H),7.02(d,J=7.8 Hz,1H),4.08(s,3H),4.08(s,3H),3.87(t,J=6.3 Hz,2H),2.85(t,J=6.7 Hz,2H),2.03(p,J=6.6 Hz,2H).HRMS[M+H]491.40。
实施例12(ZLZ-KZL-12的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-氯苯基异氰酸酯0.46g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应55小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品柱层析得纯品0.19g,产率:25.7%。
1H NMR(600 MHz,CDCl3)δ8.68(s,1H),8.37(dd,J=8.4,1.5 Hz,1H),7.77(s,1H),7.59-7.56(m,2H),7.32(dd,J=8.0,1.4 Hz,1H),7.30-7.26(m,2H),7.17-7.15(m,2H),6.98(td,J=7.7,1.5 Hz,1H),4.10(s,3H),4.09(s,3H),3.92-3.89(m,2H),2.88(t,J=6.7 Hz,2H),2.09-2.05(m,2H).HRMS[M+H]491.52。
实施例13(ZLZ-KZL-14的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-氯-4-异氰酸硝基苯0.6g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以氯仿4ml溶解后,加热回流下,加入5ml正已烷,澄清,静置,慢慢析出结晶,过滤,干燥,得纯品0.23g,产率:28.8%。
1H NMR(600 MHz,CDCl3)δ8.69(d,J=9.3 Hz,1H),8.66(s,1H),8.25(d,J=2.6 Hz,1H),8.19-8.16(m,2H),7.56(s,1H),7.53-7.50(m,1H),7.42(s,1H),7.22-7.19(m,2H),4.09(s,3H),4.09(s,3H),3.92(t,J=6.4 Hz,2H),2.89(t,J=6.6 Hz,2H),2.09(p,J=6.6 Hz,2H).
HRMS[M+H]536.38。
实施例14(ZLZ-KZL-15的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-氯-3-异氰酸硝基苯0.6g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应72小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.19g,产率:24.8%。
1H NMR(600 MHz,CDCl3)δ8.70(s,1H),8.04(d,J=2.2 Hz,1H),7.63-7.41(m,5H),7.18(d,J=6.3 Hz,2H),5.30(s,1H),4.11(s,3H),4.09(s,3H),3.88(t,J=6.3 Hz,2H),2.87(t,J=6.6 Hz,2H),2.06(p,J=6.5 Hz,2H).HRMS[M+H]536.58。
实施例15(ZLZ-KZL-16的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-三氟甲基苯异氰酸酯0.56g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.28g,产率:35.4%。
1H NMR(600 MHz,DMSO)δ8.68(s,1H),7.57-7.53(m,5H),7.43(d,J=8.5 Hz,1H),7.39(s,1H),7.23(s,1H),7.17(dt,J=8.5,2.6 Hz,2H),4.09(s,3H),4.08(s,3H),3.89(t,J=6.3 Hz,2H),2.87(t,J=6.7 Hz,2H),2.08-2.03(m,2H).HRMS[M+H]525.18。
实施例16(ZLZ-KZL-17的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取3-三氟甲基苯异氰酸酯0.56g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应72小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.34g,产率:43%。
1H NMR(600 MHz,DMSO)δ8.68(s,1H),7.57-7.53(m,5H),7.43(d,J=8.5 Hz,1H),7.39(s,1H),7.23(s,1H),7.17(dt,J=8.5,2.6 Hz,2H),4.09(s,3H),4.08(s,3H),3.89(t,J=6.3Hz,2H),2.87(t,J=6.7 Hz,2H),2.08-2.03(m,2H).HRMS[M+H]525.22。
实施例17(ZLZ-KZL-18的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取3,4-(亚甲基二氧基)苯基异氰酸酯0.49g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为乙酸乙酯:二氯甲烷=4:1),共室温反应72小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.4g,产率:53.3%。
1H NMR(600 MHz,DMSO)δ8.80(s,1H),8.56(s,1H),7.53(s,1H),7.46(d,J=8.8 Hz,1H),7.38(s,1H),7.18(t,J=2.9 Hz,1H),7.09(d,J=2.8 Hz,1H),7.05(dd,J=8.8,2.8 Hz,1H),6.91-6.88(m,1H),6.82(d,J=8.4 Hz,1H),5.96(s,2H),3.99(s,3H),3.97(s,3H),3.74-3.72(m,2H),2.77(t,J=6.5 Hz,2H),1.94-1.90(m,2H).HRMS[M+H]501.56。
实施例18(ZLZ-KZL-19的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2,4-二甲基异氰酸苯酯0.44g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.31g,产率:42.5%。
1H NMR(600 MHz,DMSO)δ8.65(s,1H),7.63(d,J=8.1 Hz,1H),7.54(t,J=4.3 Hz,2H),7.36(s,1H),7.15(d,J=2.6 Hz,1H),7.12(dd,J=8.7,2.7 Hz,1H),7.01(d,J=8.0 Hz,1H),6.97(s,1H),6.84(s,1H),4.08(s,3H),4.07(s,3H),3.89-3.86(m,2H),2.87(t,J=6.7 Hz,2H),2.28(s,3H),2.15(s,3H),2.06-2.01(m,2H).HRMS[M+H]485.23。
实施例19(ZLZ-KZL-20的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2,4-二氟苯基异氰酸酯0.47g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应72小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.13g,产率:17.6%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),8.12(td,J=9.2,5.7 Hz,1H),7.55(s,1H),7.50(d,J=9.5 Hz,1H),7.38(s,1H),7.20(s,1H),7.16(d,J=6.7 Hz,2H),6.88(t,J=8.8 Hz,1H),6.85-6.81(m,1H),4.08(s,3H),4.08(s,3H),3.88(t,J=6.3 Hz,2H),2.87(t,J=6.6 Hz,2H),2.05(p,J=6.6 Hz,2H).HRMS[M+H]493.21。
实施例20(ZLZ-KZL-21的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-乙基苯基异氰酸酯0.44g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应65小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.21g,产率:28.8%。
1H NMR(600 MHz,CDCl3)δ8.64(s,1H),7.85(d,J=8.1 Hz,1H),7.56-7.52(m,2H),7.36(s,1H),7.22(t,J=7.7 Hz,1H),7.14(dt,J=8.5,5.2 Hz,3H),7.07(t,J=7.5 Hz,1H),6.99(s,1H),4.08(s,6H),3.89(t,J=6.2 Hz,2H),2.88(t,J=6.7 Hz,2H),2.49(q,J=7.5 Hz,2H),2.04(p,J=6.4 Hz,2H),1.16(t,J=7.6 Hz,3H).HRMS[M+H]485.26。
实施例21(ZLZ-KZL-22的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-正丁基苯基异氰酸酯0.53g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=1.5:3.0),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.18g, 产率:23.4%。
1H NMR(600 MHz,CDCl3)δ8.68(s,1H),7.55(s,1H),7.46(d,J=8.6 Hz,1H),7.41(s,1H),7.31-7.29(m,2H),7.14(d,J=2.6 Hz,1H),7.12(dd,J=8.7,2.4 Hz,3H),6.99(s,1H),4.09(s,3H),4.08(s,3H),3.88-3.85(m,2H),2.86(t,J=6.7 Hz,2H),2.58-2.55(m,2H),2.05-2.00(m,2H),1.58(dt,J=4.2,1.8 Hz,2H),1.33(dd,J=9.3,5.6 Hz,2H),0.91(t,J=7.4 Hz,3H).
HRMS[M+H]513.22。
实施例22(ZLZ-KZL-24的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取环己基异氰酸酯0.38g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应55小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.22g,产率:31.9%。
1H NMR(600 MHz,DMSO)δ8.55(s,1H),7.53(s,1H),7.50(d,J=8.8 Hz,1H),7.38(s,1H),7.03(d,J=2.8 Hz,1H),7.00(dd,J=8.7,2.9 Hz,1H),6.42(d,J=7.6 Hz,1H),3.99(s,3H),3.97(s,3H),3.61-3.58(m,2H),2.71(t,J=6.4 Hz,2H),1.85(dd,J=12.5,6.3 Hz,4H),1.57-1.59(m,1H),1.30-1.22(m,6H),1.15-1.02(m,2H).HRMS[M+H]463.67。
实施例23(ZLZ-KZL-25的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-氯-2-甲基苯基异氰酸酯0.5g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以TLC薄层分离,展开剂为石油醚:乙酸乙酯=5:1,得纯品0.19g,产率:25%。
1H NMR(600 MHz,CDCl3)δ8.66(s,1H),7.82(d,J=8.6 Hz,1H),7.55(s,1H),7.52(d,J=8.7 Hz,1H),7.43(s,1H),7.1-7.16(m,2H),7.14(dd,J=6.3,2.3 Hz,2H),6.91(s,1H),4.09(s,3H),4.08(s,3H),3.88(t,J=6.2 Hz,2H),2.87(t,J=6.7 Hz,2H),2.14(s,3H),2.07-2.02(m,2H).HRMS[M+H]505.39。
实施例24(ZLZ-KZL-26的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-甲氧基-5-甲基苯基异氰酸酯0.49g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.35g,产率:46.7%。
1H NMR(600 MHz,CDCl3)δ8.67(s,1H),8.12(s,1H),7.84(s,1H),7.56(s,1H),7.54(d,J=8.3 Hz,1H),7.41(s,1H),7.14-7.10(m,2H),6.77(d,J=9.0 Hz,1H),6.72(d,J=8.2 Hz,1H),4.09(s,3H),4.08(s,3H),3.88(t,J=6.2 Hz,2H),3.77(s,3H),2.86(t,J=6.6 Hz,2H),2.32(s,3H),2.04(p,J=6.4 Hz,2H).HRMS[M+H]501.33。
实施例25(ZLZ-KZL-27的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取4-乙酰苯基异氰酸酯0.48g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:3.0),共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品加入甲醇8ml加热回流10分钟,过滤,滤饼以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.47g,产率:62.7%。
1H NMR(600 MHz,CDCl3)δ8.68(s,1H),7.94-7.93(m,1H),7.93-7.92(m,1H),7.54(s,1H),7.52-7.50(m,2H),7.43(d,J=8.4 Hz,1H),7.40(s,1H),7.29(s,1H),7.18-7.15(m,2H),4.09(s,3H),4.08(s,3H),3.89(t,J=6.3 Hz,2H),2.86(t,J=6.6 Hz,2H),2.57(s,3H),2.05(p,J=6.6 Hz,2H).HRMS[M+H]499.49。
实施例26(ZLZ-KZL-28的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取2-甲基-4-硝基苯基异氰酸酯0.53g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应48小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以二氯甲烷溶解后,加入正巳烷适量精制得纯品0.15g,产率:19.5%。
1H NMR(600 MHz,CDCl3)δ8.64(s,1H),8.40(d,J=9.2 Hz,1H),8.12(dd,J=9.1,2.6Hz,1H),8.03(d,J=2.4 Hz,1H),7.54(s,1H),7.49(d,J=8.6 Hz,1H),7.38(d,J=8.8 Hz,2H),7.21(d,J=2.4 Hz,1H),7.18(dd,J=8.5,2.6 Hz,1H),4.09(s,3H),4.08(s,3H),3.92(t,J=6.3Hz,2H),2.89(t,J=6.7 Hz,2H),2.18(s,3H),2.08(p,J=6.6 Hz,2H).HRMS[M+H]516.43。
实施例27(ZLZ-KZL-34的合成)
100ml圆底瓶中加入6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉0.5g(1.5mmol),氯仿10ml,溶解,室温搅拌,另取环戊基异氰酸酯0.33g(3.0mmol)于氯仿2ml中至溶解,溶解后慢慢加至圆底瓶中,室温反应1小时后,TLC跟踪反应(展开剂为石油醚:乙酸乙酯=2.5:2.5),共室温反应50小时,后处理。
反应液移至分液漏斗中,氯仿层加入水10ml振荡洗涤2次,氯仿层再以饱和碳酸氢钠溶液5ml洗涤1次,再加入水10ml振荡洗涤2次,氯仿层以无水硫酸镁1.5g干燥1小时,过滤,蒸干氯仿得黄色固体,粗品以TLC薄层分离,展开剂为石油醚:乙酸乙酯=5:1,得纯品0.15g,产率:22.4%。
1H NMR(600 MHz,CDCl3)δ8.69(s,1H),7.54(s,1H),7.47(s,1H),7.39(d,J=8.3 Hz,1H),7.09-7.05(m,2H),5.09(d,J=7.0 Hz,1H),4.10(s,3H),4.07(s,3H),3.79-3.76(m,2H),3.49(s,1H),2.81(t,J=6.6 Hz,2H),2.04-1.99(m,2H),1.97-1.95(m,2H),1.67-1.59(m,4H), 1.40-1.36(m,2H).HRMS[M+H]449.60。
试验例1:体外抑制酪氨酸激酶活性测试
(1)实验方法
(a)缓冲液的配制
用50 mM HEPES、pH 7.5、0.0015%Brij-35、10 mM MgCl2、2 mM DTT激酶配制缓冲液,100 mM HEPES(pH 7.5)、0.015%Brij-35、0.2%Coating Reagent#3、50 mM EDTA配制终止缓冲液。
(b)样品溶液的配制
测活前将受试样品配成10mM的存储液,在保证DMSO浓度为10%的前提下用缓冲液稀释至所需浓度;如只需测定某一浓度下的抑制率,则采用一个浓度即可;若需测定IC50值,则起始浓度为10mM,稀释倍数为3,设置10个浓度,每个浓度设复孔。
(c)激酶反应
在基础缓冲液中加入激酶以配制激酶缓冲液;在基础缓冲液中加入FAM-labeled peptide及ATP以配制缩氨酸缓冲液。384孔板的测试孔中加入10μl不同浓度的样品溶液,所有孔中加入10μl激酶缓冲液,在室温下培养10min后,在所有孔中加入10μl缩氨酸缓冲液,并继续在28℃下培养60min。随后加入25μl终止缓冲液以停止反应,用仪器采集数据并做出曲线,求出IC50值。
我们测试了全部化合物100nM浓度下对VEGFR-1(FLT1)、VEGFR-2(KDR)、VEGFR-3(FLT4)的抑制率,进行初步筛选:
Figure PCTCN2014087440-appb-000008
(2)实验结果
Figure PCTCN2014087440-appb-000009
Figure PCTCN2014087440-appb-000010
我们选择在100nm下对VEGFR-1(FLT1)、VEGFR-2(KDR)、VEGFR-3(FLT4)抑制率较高的化合物进行了IC50的测定:
Figure PCTCN2014087440-appb-000011
VEGFR抑制实验显示在受试的化合物均对VEGFR-1(FLT1)、VEGFR-2(KDR)或VEGFR-3(FLT4)有一定的抑制作用,其中部分化合物对三种受体均有较强的抑制作用。
此外,我们还对结构接近的化合物进行了对照试验,其中化合物标号同申请文件,对照为6,7-二甲氧基-4-[5-(1-(4-氟苯基氨基甲酰基)-二氢吲哚基)氧]喹啉,为参考文献方法自行合成,经氢谱检测纯度为99.1%,氢谱数据与文献报道吻合。试验结果如下表所示:
Figure PCTCN2014087440-appb-000012
以上的激酶活性测试均在上海睿智化学研究有限公司进行,由蔡龙英研究员完成,以上数据均摘自由睿智化学提供的项目报告。
试验例2部分优选化合物的肝微粒体代谢速率研究
1.对照品的配制:
称量:精密称取ZLZ-KZL-05、ZLZ-KZL-11和ZLZ-KZL-27各3mg于EP管中;
溶解:加入1mL甲醇,4mL DMSO溶解,终浓度为0.6mg/mL。
2.实验准备
1.1配制ZLZ-KZL-05、ZLZ-KZL-11和ZLZ-KZL-27的乙腈溶液约100μmol/L作为储备液,另配制100μmol/L的A5(化学名:N-(5-(4-(4-((二甲基氨基)甲基)苯基)喹啉-6-基)-2-甲基吡啶-3-基)-2,4-二氟代苯磺酰胺)溶液做对照;
1.2PBS溶液;
1.3β-NADPH 16.7mg/mL;
1.4大鼠肝微粒体;
1.5内标溶液的配制
ZLZ-KZL-05、ZLZ-KZL-11、A5以100ng/mL的ZLZ-KZL-27溶液为内标,ZLZ-KZL-27以100ng/mL的N-(3-氯苯基)-6-(6,7-二甲氧基喹啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺为内标。
3.化合物的分析条件
ZLZ-KZL-05:
色谱条件:色谱柱资生堂3.0×100,3μm流速:0.4mL/min进样量:5μL
流动相:5mmol乙酸铵+0.1%甲酸水:乙腈=35:65;分析时间:10min。
质谱条件:正离子模式,SIM监测[M+H]+487.0
干燥气体积:10L;
雾化器压力:40psig;干燥气温度:350℃
裂解电压:70V。
ZLZ-KZL-11:
色谱条件:色谱柱资生堂3.0×100,3μm流速:0.4mL/min进样量:5μL
流动相:5mmol乙酸铵+0.1%甲酸水:乙腈=35:65;分析时间:10min。
质谱条件:正离子模式,SIM监测[M+H]+490.9
干燥气体积:10L;
雾化器压力:40psig;干燥气温度:350℃
裂解电压:70V。
ZLZ-KZL-27:
色谱条件:色谱柱资生堂3.0×100,3μm流速:0.4mL/min进样量:5μL
流动相:5mmol乙酸铵+0.1%甲酸水:乙腈=35:65;分析时间:10min
质谱条件:正离子模式,SIM监测[M+H]+499
干燥气体积:10L;
雾化器压力:40psig;干燥气温度:350℃
裂解电压:70V。
4.样品测定结果:
ZLZ-KZL-05:
Figure PCTCN2014087440-appb-000013
ZLZ-KZL-11:
Figure PCTCN2014087440-appb-000014
ZLZ-KZL-27:
Figure PCTCN2014087440-appb-000015
试验例3部分优选化合物在Caco-2模型中的吸收特性研究
1.供试品溶液的配制
配制ZLZ-KZL-05、ZLZ-KZL-11和ZLZ-KZL-27的一系列浓度:20μmol/L、10μmol/L、5μmol/L、2μmol/L、1μmol/L、0.5μmol/L、0.2μmol/L、0.1μmol/L。
2.细胞培养和毒性实验
接种细胞:用含10%胎牛血清的MEM培养基配制成单个Caco-2细胞(来源于ATCC)悬液,以每孔5000个细胞接种到96孔板中。
置于孵箱中培养,待细胞全部贴壁后给药(至少贴壁达到80%)。
继培养24-36h后,各孔加入20μL MTT(5mg/mL用PBS配制,pH=7.4)培养4h后吸出上清液并加入150μL DMSO,振摇10min,选择492nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,以时间为横坐标,吸光值为纵坐标绘制细胞生长曲线。
取相对Caco-2细胞的抑制率<2%的浓度给药Caco-2细胞吸收模型,测定其表观渗透系数。结果,三个化合物20μmol/L、10μmol/L、5μmol/L对Caco-2细胞都表现出明显的细胞抑制作用,最终选取浓度为0.5μM的ZLZ-KZL-27的安全给药浓度进行Caco-2细胞的透过率实验。
3.转运实验
3.1Caco-2细胞模型建立
Caco-2细胞在MEM培养基(含10%FBS、1%NEAA、100U·mL-1青霉素-链霉素、10mmol·L-1 HEPES)、37℃的5%CO2恒温培养箱中培养。细胞培养21天后,对细胞模型进行验证,选取细胞跨膜电阻大于600Ω·cm2及荧光素钠透过率低于0.6%·h-1·cm-2的细胞进行药物转运实验。
3.2化合物ZLZ-KZL-27转运及摄取实验
细胞用HBSS液小心清洗三次,最后一次在培养箱中孵育30min,吸干HBSS液。空白对照组在AP和BL两侧均加HBSS液,给药组在给药侧加入0.5μM 2N-27的HBSS液(AP侧0.5ml,BL侧1.5ml),接收侧加入空白的HBSS液。然后把培养板放入培养箱中孵育,分别收集BL侧和AP侧在0,30,60,90和120min的溶液100μL,取样后加入空白HBSS液100μL,样品置于-20℃冰箱冻存。用HPLC法定量分析转运液中的化学成分。
3.3线性溶液的配制
取ZLZ-KZL-27用HBSS溶液配制得浓度为1μmol/mL、0.5μmol/mL、0.25μmol/mL、0.125μmol/mL、0.0625μmol/mL、0.3125μmol/mL的HBSS液;取100μL HBSS液+300μL(含内标)乙腈。涡旋20S离心5min取上清即得线性样品;内标溶液用乙腈配制:100ng/mL ZLZ-KZL-27。
浓度测定采用高效液相色谱法。色谱柱:资生堂C183.0×100mm3μm;流速:0.4mL/min进样量:5μL,流动相:5mmol乙酸铵+0.1%甲酸水:乙腈=55:45;分析时间:10min。
Figure PCTCN2014087440-appb-000016
Figure PCTCN2014087440-appb-000017
y=0.1692x-0.0399
R2=0.9698
从以上数据可看出,测定的化合物表观渗透系数Papp大于10-5,一般认为,表观渗透系数Papp大于10-6表明化合物的口服吸收良好。这说明,ZLZ-KZL-27的吸收特性非常好,由于本申请提供的化合物均有相同的母核,彼此间化学结构差异较小,因此本领域技术人员应当能够预计,本申请提供的化合物应该均具有良好的吸收,有望开发出生物利用度高的口服制剂。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (15)

  1. 一种式(Ⅰ)所示的化合物,或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药:
    Figure PCTCN2014087440-appb-100001
    其中R选自H、C1-10烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、C1-6烷硫基、C1-6羰基、C1-6烷氧羰基、羰基氨基、取代的羰基氨基、磺酰基氨基、苯基、取代苯基、环烷基、取代环烷基、杂环烷基、取代杂环烷基、杂芳基或取代杂芳基。
  2. 如权利要求1所述的化合物,其中所述取代是指一个或多个氢原子被选自下组的取代基所取代:C1-10烷基、卤代的C1-10烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、卤代的C1-6烷氧基、卤素、硝基、C1-6烷基羰基。
  3. 如权利要求2所述的化合物,其中所述卤代的C1-10烷基包括三氟甲基、所述卤代的C1-6烷氧基包括三氟甲氧基。
  4. 如权利要求1所述的化合物,其中R选自H、C1-10烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、C1-6烷硫基、C1-6羰基、C1-6烷氧羰基、羰基氨基、磺酰基氨基、可以具有选自取代基组A的取代基的苯基、可以具有选自取代基组A的取代基的3-8个碳原子的饱和或者部分不饱和的环烷基、可以具有选自取代基组A的取代基的含5-14个原子且含有1个或多个杂原子的杂芳烃或可以具有选自取代基组A的取代基的含3-14个原子且含有1个或多个杂原子的杂环烷基;
    其中,所述的取代基组A是由下列取代基组成的组:(1)C1-10烷基、(2)C1-6烯基、(3)C1-6炔基、(4)C1-6烷氧基、(5)卤素、(6)硝基、(7)三氟甲基、(8)三氟甲氧基或(9)C1-6烷基羰基。
  5. 如权利要求1所述的化合物,其特征在于,R选自H、C1-10烷基、C1-6烷氧基,或选自下列结构单元:
    Figure PCTCN2014087440-appb-100002
    其中,R1、R2各自独立的选自H、卤素、C1-6烷基、C1-6烯基、C1-6炔基、C1-6烷氧基、硝基、三氟甲基、三氟甲氧基或C1-6烷基羰基。
  6. 如权利要求5所述的化合物,其中所述R为
    Figure PCTCN2014087440-appb-100003
  7. 根据权利要求1所述的化合物,其特征在于,所述化合物选自以下化合物:
    N-(2-异丙基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2,4,4-三甲基正戊烷-2-基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(3-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-2-甲氧基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(3-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(3-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-硝基-2-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(3-硝基-4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-三氟甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(3-三氟甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(苯并间二氧杂环戊烯-5-基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2,4-二甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2,4-二氟苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-乙基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-正丁基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(环己基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-甲基-4-氯苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-甲氧基-5-甲基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(4-乙酰苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(2-甲基-4-硝基苯基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺;
    N-(环戊基)-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺。
  8. 一种制备如权利要求1所述化合物的方法,其特征在于,含有如下步 骤:
    Figure PCTCN2014087440-appb-100004
    (1)4-氯-6,7-二甲氧基喹唑啉与6-羟基-1,2,3,4-四氢喹啉在碱、催化剂的存在下反应生成6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉(Ⅱ);
    (2)6,7-二甲氧基-4-(1,2,3,4-四氢喹啉-6氧基)喹唑啉(Ⅱ)与各种取代的异氰酸酯化合物反应生成相应的N-取代-6-(6,7-二甲氧基喹唑啉-4-氧基)-3,4-二氢喹啉-1(2H)-甲酰胺类化合物(Ⅰ);
    (3)按照常规方法制备为药学上可接受的盐的形式。
  9. 一种药物组合物,其特征在于,其含有药学上可接受的赋形剂或载体,以及权利要求1所述的化合物或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药。
  10. 一种权利要求1所述的化合物或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,其特征在于,用于制备酪氨酸激酶抑制剂。
  11. 一种权利要求1所述的化合物或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,其特征在于,用于制备抑制酪氨酸激酶活性的药物或用于制备治疗、预防以及缓解与酪氨酸激酶活性过高相关疾病的药物。
  12. 如权利要求11所述的用途,其特征在于,所述与酪氨酸激酶活性过高相关疾病选自肿瘤。
  13. 一种权利要求1所述的化合物或其各光学异构体、各晶型、药学上可 接受的无机或有机盐、水合物、溶剂合物或前药的用途,其特征在于,用于制备血管生成抑制剂。
  14. 一种权利要求1所述的化合物或其各光学异构体、各晶型、药学上可接受的无机或有机盐、水合物、溶剂合物或前药的用途,其特征在于,用于制备预防或***的药物。
  15. 一种治疗或预防肿瘤的方法,其特征在于,给患者施用权利要求1所述的化合物或者权利要求9所述的组合物。
PCT/CN2014/087440 2013-09-26 2014-09-25 喹唑啉类化合物及其制备方法与应用 WO2015043487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310446339.XA CN103509005B (zh) 2013-09-26 2013-09-26 喹唑啉类化合物及其制备方法与应用
CN201310446339.X 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015043487A1 true WO2015043487A1 (zh) 2015-04-02

Family

ID=49892485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087440 WO2015043487A1 (zh) 2013-09-26 2014-09-25 喹唑啉类化合物及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN103509005B (zh)
WO (1) WO2015043487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509005B (zh) * 2013-09-26 2015-04-08 苏州海特比奥生物技术有限公司 喹唑啉类化合物及其制备方法与应用
CN106892898B (zh) * 2015-12-18 2021-02-05 陕西师范大学 氮杂糖衍生化的喹唑啉类化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032872A1 (en) * 2000-10-20 2002-04-25 Eisai Co., Ltd. Nitrogenous aromatic ring compounds
CN103509005A (zh) * 2013-09-26 2014-01-15 苏州海特比奥生物技术有限公司 喹唑啉类化合物及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080015482A (ko) * 1999-02-10 2008-02-19 아스트라제네카 아베 혈관형성 억제제로서의 퀴나졸린 유도체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032872A1 (en) * 2000-10-20 2002-04-25 Eisai Co., Ltd. Nitrogenous aromatic ring compounds
CN103509005A (zh) * 2013-09-26 2014-01-15 苏州海特比奥生物技术有限公司 喹唑啉类化合物及其制备方法与应用

Also Published As

Publication number Publication date
CN103509005A (zh) 2014-01-15
CN103509005B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
TWI450720B (zh) 作為akt蛋白質激酶抑制劑之嘧啶環戊烷
JP5302884B2 (ja) Vr1のベンゾイミダゾール系モジュレーター
WO2016184434A1 (zh) 一种吡啶并氮杂环化合物及其制备方法和用途
WO2018050052A1 (zh) 一种含嘧啶环的化合物、egfr抑制剂及其应用
WO2017219500A1 (zh) 用作egfr抑制剂的嘧啶类化合物及其应用
TW201332994A (zh) 作為akt蛋白質激酶抑制劑之羥基化及甲氧基化嘧啶環戊烷
JP2004502687A (ja) キナゾリンジトシル酸塩化合物
JP2005529954A (ja) 化学プロセス
CA2718538A1 (en) Quinoline derivatives as axl kinase inhibitors
CN102933574A (zh) (e)-n-[4-[[3-氯-4-(2-吡啶基甲氧基)苯基]氨基]-3-氰基-7-乙氧基-6-喹啉基]-3-[(2r)-1-甲基吡咯烷-2-基]丙-2-烯酰胺的可药用的盐、其制备方法及其在医药上的应用
JP2010532387A (ja) Aktプロテインキナーゼ阻害剤としてのピリミジルシクロペンタン
WO2013017073A1 (zh) 喹唑啉衍生物、含该衍生物的组合物及所述衍生物的制药用途
TW200410695A (en) Quinazolinone derivatives useful as anti-hyperalgesic agents
WO2021239133A1 (zh) 作为axl抑制剂的嘧啶类化合物
WO2023016540A1 (zh) 脲类多靶点酪氨酸激酶抑制剂及其医药应用
CA2958741C (en) Quinazoline derivatives
WO2012155339A1 (zh) 4-苯胺-6-丁烯酰胺-7-烷醚喹唑啉衍生物及其制备方法和用途
Zhang et al. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents
JP2022509076A (ja) 芳香環結合ジオキシノ-キナゾリンまたはジオキシノ-キノリン系化合物、組成物およびその使用
WO2015043487A1 (zh) 喹唑啉类化合物及其制备方法与应用
WO2015021894A1 (zh) 新型羟肟酸衍生物及其医疗应用
CN110467616B (zh) 含杂芳基取代哒嗪酮结构的***并吡嗪类化合物的制备及应用
CN109988110B (zh) 4-苯氧基喹啉并磺酰脲类化合物、合成该化合物的中间体及其制备方法和用途
WO2019029554A1 (zh) 磺酰胺类衍生物、其制备方法及其在医药上的用途
JP2020526593A (ja) N−フェニル−2−アミノピリミジン類化合物の結晶形、塩形態及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850073

Country of ref document: EP

Kind code of ref document: A1