WO2015043295A1 - 一种交替切换蓄热式燃烧设备及其控制方法 - Google Patents

一种交替切换蓄热式燃烧设备及其控制方法 Download PDF

Info

Publication number
WO2015043295A1
WO2015043295A1 PCT/CN2014/082554 CN2014082554W WO2015043295A1 WO 2015043295 A1 WO2015043295 A1 WO 2015043295A1 CN 2014082554 W CN2014082554 W CN 2014082554W WO 2015043295 A1 WO2015043295 A1 WO 2015043295A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
regenerative
burner
burners
exhausting smoke
Prior art date
Application number
PCT/CN2014/082554
Other languages
English (en)
French (fr)
Inventor
周绍芳
Original Assignee
湖南巴陵炉窑节能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南巴陵炉窑节能股份有限公司 filed Critical 湖南巴陵炉窑节能股份有限公司
Priority to US15/023,743 priority Critical patent/US20160230991A1/en
Priority to BR112016006433A priority patent/BR112016006433A2/pt
Priority to MX2016003726A priority patent/MX2016003726A/es
Publication of WO2015043295A1 publication Critical patent/WO2015043295A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/15022Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using pre-purging regenerator beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a thermal equipment, and more particularly to an alternate switching regenerative combustion apparatus and a control method thereof, which are applicable to all industrial furnaces and boilers requiring a heat source. Background technique
  • This method can reduce the exhaust gas temperature to a certain extent, increase the temperature of the combustion air entering the furnace, and achieve a certain energy-saving effect, but there are many problems, such as short life, limited heat recovery rate, and furnace heat efficiency is generally 50. Below the %, the emitted flue gas still has a relatively high temperature.
  • British Gas and Hot Work developed a regenerative burner that produced the first generation of regenerative combustion technology under high temperature air conditions. ", see British Patent Document GB2214625A. Since then, such burners have been used in the steel and aluminum industries in the United States and the United Kingdom, but such burners have outstanding problems such as high emissions and poor system reliability.
  • the various types of regenerative condensing energy-saving boilers disclosed in the Chinese patent documents CN101338904A, CN101338906A, CN101338907A, and CN101338894A each include a plurality of regenerative burners arranged in pairs, each pair of burners being a pair, periodically changing each other. To the burning. In each pair of burners, when either burner is burned, the other burner is turned off.
  • this kind of boiler can solve the problem of low temperature and uneven temperature distribution in the combustion chamber to a certain extent, in the heating process of the furnace, because the furnace pressure is too high and unstable, it is easy to cause the burner to temper and affect the normal use. , poor security performance.
  • the duct space used for providing the combustion-supporting combustion gas is equal to the space of the flue gas duct used for the exhaust gas, and the combustion-supporting gas and the fuel are mixed and burned.
  • the volume of flue gas generated will increase, and the amount of flue gas in the standard condition is at least 1.1-1.3 times that of the amount of combustion gas.
  • the working volume of the flue gas is 1.6-1.8 times the volume of the combustion gas, which makes the furnace in a high pressure and unsafe state.
  • An auxiliary pipe (also called a pressure relief port) is directly arranged on the furnace body, so that 30-40% of the high-temperature flue gas is directly discharged from the auxiliary flue gas, thereby reducing the furnace pressure.
  • WO01/16527A1 adopts such a method, but this causes the total flue gas waste heat recovery rate to be only 50 to 60%, and the energy saving and environmental protection effect is not satisfactory. And the total exhaust temperature is too high, which will affect the safe operation of the equipment.
  • the regenerative combustion system of the existing burners installed in pairs has a large fluctuation in the furnace pressure in the reversing direction, and the impact on the furnace is severe in severe cases, which affects the safe operation of the equipment.
  • the HTAC technology generally adopts a lower-mounted regenerator, and the regenerative burner discharges smoke downwards, and dust easily accumulates in the upper portion of the regenerator, and the wind speed in the regenerator is lower than that in the regenerator, and the regenerator itself
  • the ability to purge and clean is insufficient, which makes the regenerator easy to collect dust and compact, which seriously shortens the cleaning cycle and service life of the regenerator.
  • the inventors of the present invention have found through a large number of tests and creative labor that a regenerative burner equipped with at least three regenerative burners at the regenerative combustion apparatus and used for exhausting smoke at any time is always better than There are many regenerative burners for combustion, and the flue gas in the furnace is discharged from the regenerative burner for exhausting smoke in time, especially when the controller alternately switches the regenerative burners simultaneously, sequentially and periodically. , not only a substantial increase in the flue gas waste heat recovery and to reduce emissions of NO x, reached double energy saving and environmental benefits, but also to achieve a smooth regenerative combustion device exhaust, greatly improving the stability of the work equipment, Ensure the safety of the equipment work. In addition, the device also has a good self-cleaning function, which greatly prolongs the cleaning cycle of the regenerator and the service life of the equipment, greatly reducing the maintenance workload and maintenance cost of the regenerator. The present invention has been completed on this basis.
  • the regenerative burners are used alternately for combustion or for exhausting smoke, so that the number of regenerative burners for exhausting smoke at any time is greater than the number of regenerative burners for combustion.
  • the invention overcomes the technical prejudice of the regenerative burners in the conventional regenerative combustion technology, and effectively solves the problem that the high temperature air combustion technology has poor smoke exhaustion, high furnace pressure and low recovery rate of flue gas waste heat. Series of technical issues.
  • Another object of the present invention is to provide a control method of a regenerative combustion apparatus.
  • the regenerative combustion apparatus adopts the control method of the invention, and can always ensure that the number of burners in the exhausting state is larger than the number of burners in the burning state, ensuring smooth discharge of the equipment and safety of production, and improving the regenerative type.
  • the reliability and safety of combustion equipment for combustion production are all the high-temperature flue gas generated by the combustion process is discharged in time through the regenerative burner, and the total flue gas waste heat recovery rate can be increased to more than 80%, which is better than the control method of the regenerative combustion system in the prior art.
  • Energy saving is at least 20% to 25%, and the energy saving potential is huge.
  • Fig. 1 is a schematic view showing a regenerative combustion system in which a burner is provided in pairs in the prior art.
  • Figure 2 is a schematic view showing the structure of the apparatus of the present invention with three regenerative burners in a preferred embodiment
  • Figure 3 is a schematic view showing the structure of the apparatus of the present invention with five regenerative burners in a preferred embodiment.
  • Figure 4 is a schematic view showing the structure of a regenerative burner of the present invention in a preferred embodiment
  • FIG. 5 is a flow chart showing a control method of a regenerative combustion apparatus of the present invention in a preferred embodiment.
  • the same components are denoted by the same reference numerals.
  • the drawings are not drawn to scale. The description of the reference numerals is as follows:
  • an alternately switched regenerative combustion apparatus comprising at least three regenerative burners coupled to a furnace and for controlling the regenerative burner Controller, the controller switches the regenerative burner for alternating combustion or for exhausting smoke, so that the number of regenerative burners for exhausting smoke at any time is higher than that of regenerative combustion for combustion The number of devices is large.
  • the apparatus of the present invention is provided with a plurality of regenerative burners, and the controller ensures that the number of regenerative burners for exhausting smoke at any time is greater than the number of regenerative burners for combustion, so that it can
  • the high-temperature flue gas generated by the combustion process is discharged in time to ensure smooth smoke evacuation and safe production.
  • the apparatus of the invention is tightly sealed and all of the flue gas in the furnace is discharged through a regenerative burner for exhausting smoke.
  • the device of the invention does not have an auxiliary pipe or a pressure relief port for exhausting smoke on the furnace body, and all the high-temperature flue gas generated by the combustion process is discharged through the regenerative burner for exhausting smoke, and the row of the regenerator
  • the smoke temperature is the actual exhaust gas temperature, and the total flue gas waste heat recovery rate can be increased to more than 80%.
  • the regenerative combustion system in which the burner is installed can save energy by at least 20% to 25%, which not only solves The problem of low recovery rate of total flue gas residual heat in the prior art is more energy efficient than the prior art.
  • the device of the invention also does not need to increase the opening of the burner of the regenerative burner or the airflow passage area of the regenerator in the regenerative furnace, thereby solving the problem of excessive combustion and combustion of the regenerative combustion system in the prior art. efficiency is low, the flame shape and problems such as poor rigidity, greatly reducing the amount of contaminants in flue gas generated CO, C0 2 and NO x and the like.
  • the controller switches at least one of the regenerative burners for combustion for exhausting while switching at least one of the regenerative burners for exhausting for combustion. Simultaneous switching can achieve ultimate recovery of flue gas waste heat and efficient preheating of the combustion-supporting gas.
  • the controller switches one of the regenerative burners for combustion for exhausting while switching one of the regenerative burners for exhausting for combustion. Therefore, the smoke exhausting effect is better, the flue gas waste heat recovery rate is higher, and the furnace pressure is more stable.
  • the controller sequentially switches the regenerative burners for combustion for exhausting smoke, and sequentially switches the regenerative burners for exhausting smoke for combustion.
  • the high temperature flue gas may be not higher than 200 ° C, not higher than 180 ° C, not higher than 150 ° C or not higher than
  • the temperature of 130 ° C is discharged through the reversing valve.
  • the temperature efficiency of the preheating combustion gas can be increased to more than 90%, and the preheating temperature of the combustion gas can be only about 100 ° C lower than the furnace temperature. , significantly reducing the variation of the pressure difference in the furnace to ensure the stability of combustion production Row.
  • the controller periodically switches the regenerative burner for combustion for exhaust, and periodically switches the regenerative burner for exhaust for combustion. This eliminates the local high temperature zone of the furnace and makes the temperature distribution more uniform.
  • the regenerative burner for combustion has a combustion operation time of 15,300 seconds, preferably 30,200 seconds.
  • the controller switches the regenerative burner for alternating combustion or for exhausting smoke.
  • the regenerative burner can preheat the combustion-supporting gas; when the regenerative burner is used for exhausting smoke, it can absorb the heat of the high-temperature flue gas generated by the combustion.
  • Accurate control of the time that the regenerative burner is used for combustion not only improves the flue gas recovery rate but also improves the combustion efficiency.
  • the regenerative burner includes at least one burner in communication with the furnace, and the total power of the burners included in the regenerative burners simultaneously switched at the same time is the same.
  • the mouth is in communication with a gas line for providing gas.
  • each of the regenerative burners includes a regenerator, one end of the regenerator is connected to the furnace through a burner, and the other end of the regenerator is provided with an air inlet and The exhaust port, wherein the air inlet is connected with a combustion gas pipeline for providing a combustion-supporting gas, and the exhaust port is connected with a flue gas pipeline for exhausting smoke.
  • a separate reversing valve is disposed on the gas pipe, the combustion-supporting gas pipe, and the flue gas pipe, and the reversing valve is connected to the controller.
  • the combustion gas pipeline and the flue gas pipeline are respectively connected with a blower and an induced draft fan, and the gas pipeline, the combustion gas pipeline port and the flue gas pipeline can also be connected with a flow meter, a pressure gauge, a differential pressure transmitter and a temperature sensor.
  • the heat storage chamber is provided with a heat storage body, and the shape of the heat storage body is a sheet shape, a strip shape, a honeycomb shape or a spherical shape, preferably a spherical shape; It is selected from the group consisting of clay, mullite, high alumina, corundum and silicon carbide, preferably corundum.
  • the exhaust resistance is small, and the heat storage bulk density is increased, and the heat storage capacity is increased to meet the long exhaust time of the single regenerator. Claim.
  • the material of the heat storage body when the material of the heat storage body is corundum, it can be used for a long time due to its anti-corrosion property, because of its high density and high heat storage, heat storage and heat release due to its high thermal conductivity. Fast, because of its anti-penetration performance, the ash accumulation is less, because of its high strength, it can be cleaned and reused.
  • the regenerator is located above the burner. Therefore, when the regenerative burner is used for exhausting smoke, the flue gas passes through the regenerator from bottom to top, and it is difficult for dust to accumulate on the regenerator; when the regenerative burner is used for combustion, combustion is assisted The gas passes through the regenerator from top to bottom.
  • the regenerator is not easy to accumulate dust and slab, which significantly prolongs the regenerator cleaning cycle and its use.
  • the regenerators are all disposed on the top of the furnace.
  • the regenerators are all disposed on the top of the furnace body, on the one hand, causing less interference with other configurations such as the furnace foundation, the operating platform, the inlet and outlet, the magnetic stirrer and the exhaust pipe. It is conducive to the installation of equipment, and on the other hand, it effectively improves the exhaust efficiency of the equipment.
  • the regenerator is divided into upper and lower portions by a scorpion brick provided with a through hole, wherein the regenerator is located at an upper portion of the scorpion brick, and a ash chamber is disposed at a lower portion of the raft brick.
  • the upper portion of the rafter brick comprises a high temperature section adjacent the rafter brick and a low temperature section adjacent the venting port.
  • the heat storage body includes a plurality of large diameter heat storage balls and a plurality of small diameter heat storage balls, wherein the large diameter heat storage balls are disposed at a high temperature section, and the small diameter heat storage balls are disposed at a low temperature. segment.
  • the high-temperature flue gas in the furnace enters the regenerator, and passes through the through-hole of the scorpion brick into the regenerator, and the flue gas rapidly enters the high-temperature section, and the large-diameter storage is stored in the high-temperature section.
  • the hot ball, the gap between the large diameter heat storage balls is large, the flow area of the smoke is large, and the heat is transferred to the large diameter heat storage balls when the smoke passes between the large diameter heat storage balls.
  • the heat carried by the flue gas passing through the high temperature section is reduced, the temperature is lowered, and then the lower temperature flue gas enters the low temperature section.
  • the small diameter heat storage ball Since a large number of small diameter heat storage balls are disposed in the low temperature section, the small diameter heat storage ball has a large specific surface area. This allows the lower temperature flue gas to be in full contact with the small diameter heat storage ball to facilitate sufficient heat exchange between the two. This reduces the pressure loss of the flue gas in the high temperature section, while ensuring sufficient heat storage in the low temperature section and reducing the operating cost of the production.
  • the heat of the high-temperature flue gas is fully absorbed by the regenerator, and finally it can be discharged from the exhaust port by the induced draft fan at a temperature lower than 150 °C.
  • each of said regenerative burners is identical to each other. This results in better combustion and smoke evacuation.
  • a plurality of regenerative burners may constitute a burner unit
  • the apparatus may comprise a plurality of burner units
  • the controller switching a plurality of burner units for alternating combustion or for Exhaust smoke, so that the number of burner units used for exhausting the device at any time is greater than the number of burner units used for combustion.
  • the high temperature flue gas in the furnace is completely discharged through the burner unit for exhausting smoke.
  • the furnace body includes a furnace, a furnace wall, a furnace bottom, a furnace roof, and a furnace door.
  • the furnace is a three-dimensional space surrounded by a furnace wall, a furnace roof and a furnace bottom for combustion, and the furnace door is opened on the furnace wall.
  • the furnace wall, the hearth and the roof are collectively referred to as the lining.
  • the lining not only maintains sufficient strength and stability under high temperature and load conditions, but also withstands the erosion of the gas in the furnace and the corrosion of the slag, and also has sufficient insulation and airtight performance.
  • the furnace has sufficient space and a sufficient heat receiving surface is disposed.
  • the furnace has a reasonable shape and size, which is convenient for the burner to cooperate with the burner to organize the aerodynamic field in the furnace, so that the flame is not attached to the wall, the wall is not flushed, the fullness is high, and the wall surface heat load is uniform.
  • the controller is a short-time, selected and switched according to a predetermined composition procedure Regenerative burners are used alternately for combustion and for control of exhaust.
  • the controller that performs sequential control or microcomputer control includes at least one central processing unit programmable controller, a ROM storage program, an interface, and others.
  • the controller is respectively connected to an ignition device and a plurality of control valves including a gas valve, a combustion gas reversing valve and a flue gas reversing valve, and is used for controlling ignition of the ignition device and Control valve reversing work.
  • the combustion-supporting gas may be air, oxygen-enriched or oxygen.
  • the fuel may be a gaseous fuel or a liquid fuel.
  • gaseous fuel usable as the present invention include, but are not limited to, natural gas, blast furnace gas, coke oven gas, converter gas, producer gas or mixed gas.
  • the tamper brick may be a metal material or a non-metal material, and examples of materials that can be used as the scorpion brick of the present invention include, but are not limited to: heat resistant cast iron, heat resistant steel, amorphous refractory or shaped Refractory material.
  • the burner refers to a means for supplying fuel and combustion-supporting gas to the furnace for combustion or combustion within itself in a certain ratio and a certain mixing condition.
  • a control method of a regenerative combustion apparatus comprising the steps of:
  • Start-up procedure Start m regenerative burners for combustion, and simultaneously start n regenerative burners for exhausting smoke, where n>m, and n+m 3, n and m are natural numbers;
  • Combustion step a combustion operation is performed using a regenerative burner for combustion, and the flue gas in the furnace is discharged through a regenerative burner for exhausting smoke;
  • Switching step switching at least one of the regenerative burners for combustion for exhausting smoke, switching at least one of the regenerative burners for exhausting smoke for combustion, so that the regenerative type for exhausting smoke
  • the number of burners is greater than the number of regenerative burners used for combustion
  • Cycle step Return to the execution of the combustion step and the switching step until the end of the combustion work.
  • the control method of the regenerative combustion apparatus of the present invention can ensure that the number of burners in the exhausting state is always greater than the number of burners in the burning state, ensuring smooth discharge of the equipment and safety of production, and improving storage. Thermal combustion equipment for the reliability and safety of combustion production.
  • the method of the invention enables the high-temperature flue gas generated by the combustion process to be discharged in time through the regenerative burner, and the total flue gas waste heat recovery rate can be increased to more than 80%, which is higher than that of the prior art regenerative combustion system.
  • the control method can save energy by at least 20% ⁇ 25%, and has great energy saving potential, which not only solves the problem of low recovery rate of total flue gas residual heat in the prior art, but also is more energy-saving and environmentally friendly than the prior art.
  • all of the flue gas in the furnace is discharged through a regenerative burner for exhausting smoke.
  • the method of the present invention discharges all the high-temperature flue gas generated by the combustion process through the regenerative burner for exhausting smoke, and the exhaust gas temperature of the regenerator is the actual exhaust gas temperature, which is more energy-saving than the prior art.
  • the method of the invention also solves the problem that the prior art regenerative combustion system has more excess combustion gas, lower combustion efficiency, and better flame shape and stiffness. The problem is that the amount of pollutants such as CO, C0 2 and NOx in the flue gas is greatly reduced.
  • switching at least one of the regenerative burners for combustion for exhausting smoke while switching at least one of the regenerative burners for exhausting smoke One for burning. Simultaneous switching can achieve ultimate recovery of flue gas waste heat and efficient preheating of the combustion-supporting gas.
  • one of the regenerative burners for combustion is switched for exhausting smoke while switching one of the regenerative burners for exhausting smoke Burning. Therefore, the smoke exhausting effect is better, and the furnace pressure is stable.
  • the regenerative burner for combustion is sequentially switched for exhausting smoke
  • the regenerative burner for exhausting is sequentially switched for combustion .
  • the waste heat of the total high-temperature flue gas is recovered to the maximum extent, the production and the surrounding environment are improved, the heat loss of the flue gas is greatly reduced, and the labor intensity of production is reduced.
  • the method of the present invention further reduces variations in the pressure difference in the furnace, ensuring stable combustion production.
  • the regenerative burner for combustion is periodically switched for exhausting smoke, and the regenerative burner for exhausting is periodically switched for combustion . This eliminates the local high temperature zone of the furnace and makes the temperature distribution more uniform.
  • the combustion operating time of each of the regenerative burners for combustion in one cycle is T X m / (m + n), where T is the duration of the cycle.
  • the m regenerative burners are simultaneously activated for combustion, wherein m 2 , in the starting step.
  • an alternately switching regenerative combustion apparatus includes a furnace body 1, a furnace 101 opened in the furnace body 1, three regenerative burners 2, a gas pipeline 401, a combustion gas pipeline 402, Flue gas line 403 and reversing valve 5.
  • the furnace body 1 is not provided with an auxiliary pipe for communicating the flue gas directly in the furnace chamber, which is in communication with the furnace 101, and has strict sealing property.
  • the furnace wall 101 has a hole in the wall of the furnace.
  • the first regenerative burner 21, the second regenerative burner 22, and the third regenerative burner 23 are disposed at an opening position of the furnace 101, and communicate with the furnace 101 through the hole. Thereby connected to the furnace body 1.
  • Each of the regenerative burners includes a burner 3 and a regenerator 208.
  • One end of the regenerator 208 communicates with the furnace 101 through the burner 3, and the other end of the regenerator 208 passes through the air inlet 201 and the exhaust port 202, respectively, with the combustion-supporting gas line 402 for providing a combustion-supporting gas and for exhausting smoke.
  • the flue gas line 403 is in communication.
  • the regenerator 208 is filled with a regenerator 203.
  • the combustion gas pipeline 402 communicates with the heat storage body 203 through the combustion gas reversing valve 52; the flue gas pipeline 403 communicates with the regenerator 203 through the flue gas reversing valve 53; one end of the gas pipeline 401 passes through the gas valve 51 and The burner 3 is connected, and the other end of the gas line 401 is connected to a gas source.
  • An ignition device is provided on the burner 3.
  • the gas valve 51, the combustion gas reversing valve 52, the flue gas reversing valve 53 and the ignition device are all connected to the controller.
  • the controller realizes that the regenerative burner 2 is alternately used for combustion or for exhausting smoke by controlling the gas valve 51, the combustion gas reversing valve 52, the flue gas reversing valve 53, and the ignition device.
  • the controller can control the closing and conducting of the gas line 401, the combustion gas line 402, and the flue gas line 403 of each of the regenerative burners 2.
  • the inlet end of the combustion gas line 402 may be connected to the blower 602, and the outlet end of the flue gas line 403 may be provided with an induced draft fan 601.
  • an operation principle of alternately switching the regenerative combustion apparatus is as follows:
  • the controller controls the first regenerative burner 21 to be used for combustion first, and the second regenerative burner 22 and the third regenerative burner 23 are used for exhausting smoke, at which time the first gas valve 511 and the first combustion-supporting gas
  • the reversing valve 521 is opened, the first flue gas reversing valve 531 is closed, and the second gas valve 512, the second combustion gas reversing valve 522, the third gas valve 513, and the third combustion gas reversing valve 523 are closed, and the second The flue gas reversing valve 532 and the third flue gas reversing valve 533 are opened.
  • the normal temperature air (combustible gas) from the blower 602 passes through the combustion-assisted gas line 402 and enters the first regenerative burner 21 from the first combustion-gas reversing valve 521, and passes through the regenerator in the regenerative burner 21.
  • the air is heated to a temperature close to the furnace 101 in a very short time. After the heated high temperature air enters the furnace 101, the flue gas in the surrounding furnace is formed to form an oxygen content of substantially less than 21%.
  • the thin oxygen-poor high-temperature airflow simultaneously injects fuel from the first gas valve 511 to the thin high-temperature air center through the gas pipeline 401, and the fuel is burned in an oxygen-poor (2% to 20%) state, and the flame is ejected from the burner.
  • all of the high-temperature flue gas generated after combustion in the furnace 101 is discharged through the flue gas line 403 through the second regenerative burner 22 and the third regenerative burner 23 in time.
  • the controller After the first regenerative burner 21 is operated for a period of time, for example, 30 seconds, the controller sequentially switches the first regenerative burner 21 for exhausting smoke, and simultaneously switches the second regenerative burner 22 for combustion. At this time, the third regenerative burner 23 continues to be used for exhausting smoke.
  • the controller sequentially switches the second regenerative burner 23 for exhausting smoke while switching the third regenerative burner 22 for combustion.
  • the first regenerative burner 21 continues to be used for exhausting smoke. In this way, sequential switching is achieved.
  • the controller again controls the first heat storage.
  • the burner 21 is used for combustion, and continues to be sequentially switched, thereby periodically switching the three regenerator burners to achieve combustion production, thereby eliminating the local high temperature zone of the furnace and making the temperature distribution more uniform.
  • a period of time is 90s.
  • each regenerative burner has a working time of 60 s for exhausting smoke and a working time of 30 s for combustion, compared to a regenerative combustion system in which burners are arranged in pairs.
  • the device of the invention prolongs the working time of the single regenerative burner for exhausting smoke, so that the heat absorption of the regenerator is more sufficient, and the waste heat of the total high-temperature flue gas is recovered to the utmost extent under the premise of safe production, which greatly reduces the heat.
  • the heat loss of the flue gas reduces the labor intensity of production.
  • the first regenerative burner 21, the second regenerative burner 22, and the third regenerative burner 23 are identical to each other.
  • Table 1 is an experimental parameter recorded during the production process of a preferred embodiment of an alternately switched regenerative combustion apparatus for molten aluminum of the present invention.
  • an alternately switching regenerative combustion apparatus in the present embodiment includes five regenerative burners 2, and the controller can control one of them.
  • the hot burner is used for combustion, the other four regenerative burners are used for exhausting smoke, and two of the regenerative burners can be controlled for combustion, and the other three regenerative burners are used for exhausting smoke.
  • the controller controls the first regenerative burner 21 and the second regenerative burner 22 to be used first for combustion, the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative burner
  • the burner 25 is used for exhausting smoke, and the regenerative burner for exhausting is one more than the regenerative burner for combustion.
  • the controller can simultaneously switch the first regenerative burner 21 and the second regenerative heat simultaneously.
  • the burner 22 is used for exhausting smoke, and at the same time, switching any two of the remaining three regenerative burners for exhausting smoke for combustion; and simultaneously switching the first regenerative burner 21 and the second storage at different times
  • the thermal burner 22 is used for exhausting smoke.
  • the controller first switches the first regenerative burner 21 for exhausting smoke, but does not simultaneously switch the third regenerative burner 23 and the fourth regenerative burner 24 And any one of the fifth regenerative burners 25 for combustion (in this state, only the second regenerative burner 22 is used for combustion and the other four regenerative burners are used for exhausting smoke), at intervals After the time, the controller switches the second regenerative burner 22 for combustion to exhaust smoke, while switching the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative combustion. Any of the devices 25 is used for combustion.
  • the controller switches the first regenerative burner 21 for exhausting smoke, and simultaneously switches the third The regenerative burner 23 is used for combustion.
  • the second regenerative burner 22 and the third regenerative burner 23 are used for combustion, and the first regenerative burner 21, the fourth regenerative burner 24, and the fifth regenerative burner 25 are used.
  • the controller sequentially switches the second regenerative burner 22 for exhausting smoke, At the same time, the fourth regenerative burner 23 is sequentially switched for combustion.
  • the third regenerative burner 23 and the fourth regenerative burner 24 are used for combustion, and the first regenerative burner 21, the second regenerative burner 22, and the fifth regenerative burner 25 Used for smoke exhaust.
  • the controller alternately switches the five regenerative burners in sequence for combustion or for exhausting smoke.
  • the apparatus is completed for one cycle.
  • the regenerative burner 2 includes at least one burner 3 in communication with the furnace 101, and the total power of the burners included in the regenerative burners simultaneously switched at the same time is the same.
  • each of the regenerative burners comprises a burner connected to the furnace, and each burner has the same power, and each time a regenerative burner for combustion is switched for exhausting smoke, and switching 1 A regenerative burner for exhausting smoke is used for combustion.
  • the heat accumulators 203 are all located above the burner 3. Taking the first regenerative burner 21 as an example, when it is used for exhausting smoke, high-temperature flue gas and dust pass through the heat accumulator 203 from bottom to top, and it is difficult for dust to accumulate on the regenerator 203 due to gravity. .
  • the controller switches the first regenerative burner 21 for combustion, the combustion-supporting gas passes through the heat accumulator 203 from top to bottom, and the dust is easily purged. Since the regenerative combustion device of the lower-mounted regenerator has a higher speed of passing through the regenerator 203 than the flue gas passes through the regenerator, the self-purging and cleaning ability of the device is remarkably enhanced.
  • the heat accumulator 203 is less likely to accumulate dust and slab, which can prolong the cleaning cycle of the regenerator 203 and its service life, and greatly reduces the maintenance workload and cost of the regenerator.
  • the apparatus of the present invention is used in an aluminum smelting furnace, and the regenerator 203 can have a cleaning cycle of 6 months, and when the underlying regenerator is used under the same conditions, the regenerator 203 The cleaning cycle and service life are only up to 3 months.
  • the regenerators 208 are all disposed on the top of the furnace body 1, which saves space and improves exhaust efficiency.
  • the heat storage body 203 has a spherical shape and is made of corundum.
  • the inner cavity of the regenerator 208 is divided into upper and lower portions by the dice brick 205 provided with the through hole, and the shape of the dice brick 205 is the same as the shape of the regenerator 208.
  • it may be cylindrical or cubic, but the height in the vertical direction is smaller than the height of the regenerator 205.
  • the regenerator 203 is located at an upper portion of the scorpion brick 205.
  • the top of the regenerator 208 is provided with an air inlet 201 connecting the combustion-supporting gas line 402 and a vent port 202 connecting the flue gas line 403.
  • a ash chamber 207 is disposed at a lower portion of the rafter brick 205, and a ball door 204 for accommodating the heat storage body is disposed on a side wall of the heat storage chamber 208 near the rafter brick 205, and is disposed on a side wall of the heat storage chamber 208 near the bottom of the heat storage chamber 208.
  • the upper portion of the rafter brick 205 includes a high temperature section adjacent the rafter brick and a low temperature section adjacent the venting port.
  • the high temperature section is a region where the heat storage temperature in the regenerator 208 is high during heat storage
  • the low temperature section is a region where the heat storage temperature in the regenerator 208 is low during heat storage.
  • the division of the high temperature section and the low temperature section can be set according to actual production needs.
  • the heat storage body 203 includes a plurality of large diameter heat storage balls and a plurality of small diameter heat storage balls, the large diameter heat storage balls are disposed in the high temperature section, and the small diameter heat storage balls are disposed in the low temperature section.
  • the large diameter and the small diameter are only relative, that is, the diameter of the large diameter heat storage ball placed in the high temperature section is larger than the diameter of the small diameter heat storage ball placed in the low temperature section.
  • the actual size of the two needs to be set according to actual production needs.
  • the present embodiment employs a spherical heat storage body, other shapes extending from the design point of the present invention are also encompassed within the scope of the present invention.
  • the high-temperature flue gas generated by the combustion enters the high temperature section under the suction of the induced draft fan 601. Since the high-temperature section stores the large-diameter heat storage ball, the gap between the large-diameter heat storage balls is large, and the flow area of the high-temperature flue gas is large. Larger, the resistance of the flue gas in the high temperature section is small, and part of the heat is transferred to the large diameter heat storage ball, thereby avoiding the resistance of the flue gas in the high temperature section when the uniform heat storage ball is used in the regenerator 208. Large, the induced draft fan 601 needs to increase the power to increase the suction of the flue gas.
  • the heat carried by the flue gas from the high temperature section is reduced, the temperature is lowered, and then the high temperature flue gas enters the low temperature section. Due to the large specific surface area of the small diameter heat storage bulb, the lower temperature flue gas and the small diameter heat storage are caused. The ball is in full contact, which facilitates sufficient heat exchange between the two to store heat as much as possible.
  • the heat accumulated in the heat storage body is transferred to the combustion-supporting gas passing therethrough to increase the temperature of the combustion-supporting gas. Reduces the amount of fuel used in combustion production. It can be seen that both the accumulation of heat and the heating of the combustion-supporting gas reduce the production and operation costs, which is conducive to energy conservation and environmental protection.
  • the control method of the switching regenerative combustion apparatus comprises a starting step, a burning step, a switching step and a circulating step, as shown in FIG.
  • the respective steps of the control method of a regenerative combustion apparatus of the present invention will be described in detail below.
  • the starting step includes starting m regenerative burners for combustion, and simultaneously starting n regenerative burners for exhausting smoke, wherein n>m, n+m 3, n and m are natural numbers, that is, used for exhausting smoke.
  • the number of regenerative burners is at least one more than the number of regenerative burners used for combustion.
  • the controller starts to activate the first regenerative burner 21 for combustion, and simultaneously activates the second regenerative burner 22 and the third storage. Thermal burner 23 In the smoke.
  • the controller performs combustion production in the first regenerative burner 21 for combustion in the starting step, while the second regenerative burner 22 and the third regenerative burner 23 timelyly discharge the flue gas in the furnace All discharged.
  • the first gas valve 511 and the first combustion gas reversing valve 521 are opened, the first flue gas reversing valve 531 is closed, and the second gas valve 512, the second combustion gas reversing valve 522, the third gas valve 513, and The third combustion gas reversing valve 523 is closed, and the second flue gas reversing valve 532 and the third flue gas reversing valve 533 are opened.
  • the normal temperature air (combustible gas) from the blower 602 enters the first regenerative burner 21 through the first combustion-assisting gas reversing valve 521 through the combustion-assisted gas line 402, and passes through the regenerator in the regenerative burner 21 At 203 pm, the air is heated to a temperature close to the furnace 101 in a very short time. After the heated high temperature air enters the furnace 101, the flue gas in the surrounding furnace is formed to form an oxygen content of substantially less than 21%.
  • the thin oxygen-poor high-temperature airflow simultaneously injects fuel from the first gas valve 511 to the thin high-temperature air center through the gas pipeline 401, and the fuel is burned in an oxygen-poor (2% to 20%) state, and the flame is ejected from the burner.
  • the switching step includes switching at least one of the regenerative burners for combustion for exhausting smoke, and switching at least one of the regenerative burners for exhausting the smoke for combustion, so that the exhaust for exhausting
  • the number of thermal burners is greater than the number of regenerative burners used for combustion.
  • the first regenerative burner 21 for combustion is switched to be used for exhausting smoke in the switching step, while the second regenerative burner 22 for exhausting smoke is switched to be used for combustion, Then, in the switched combustion apparatus, the first regenerative burner 21 and the third regenerative burner 23 are used for exhausting, and the second regenerative burner 22 is used for combustion.
  • the cycle step includes returning to perform the switching step and the burning step until the end of the combustion operation.
  • the second regenerative burner 21 for combustion is switched for exhausting smoke
  • the third regenerative burner 22 for exhausting is switched for combustion, then switching again
  • the first regenerative burner 21 and the second regenerative burner 22 are used for exhausting
  • the third regenerative burner 22 is used for combustion.
  • one of the regenerative burners for combustion is switched for exhausting smoke, and one of the regenerative burners for exhausting is switched for combustion.
  • the smoke exhausting effect is better and the furnace pressure is stable.
  • the first regenerative burner 21, the second regenerative burner 22, and the third regenerative burner 23 are alternately switched for combustion or for platooning.
  • the smoke thereby ensuring that the number of combustions in the exhaust state is one more than the number of burners in the combustion state, so that not only can the working time of the single regenerative burner for exhausting smoke be extended, so that the heat storage body absorbs heat.
  • the maximum recovery of total high temperature flue gas under the premise of safe production The waste heat improves the production and the surrounding environment, greatly reduces the heat loss of the flue gas and reduces the labor intensity of production.
  • the method of the present invention further reduces variations in the pressure difference in the furnace to ensure stable combustion production.
  • the switching step is periodically performed between the three regenerative burners. After the switching step is sequentially performed, the switching step is re-executed from the first regenerative burner 21 for combustion, and the combustion production is cycled until the end of production.
  • the apparatus includes three regenerative burners, and the set period duration is 60 s. Then, in one cycle, the working time of each regenerative burner for combustion is preferably 20 s, each of which is stored. The working time of the thermal burner for exhausting smoke is 40 s, and the interval between the controller switching between the two regenerative burners is equal to the working time of the regenerative burner for combustion for 20 s.
  • a regenerative combustion apparatus includes five regenerative burners 2.
  • the controller starts to activate the first regenerative burner 21 and the second regenerative burner 22 for combustion first, and simultaneously activates the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative burner.
  • the first regenerative burner 21 and the second regenerative burner 22 perform combustion work in the combustion step, while the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative burner 25 for smoke exhaust work.
  • the controller can simultaneously switch the first regenerative burner 21 and the second regenerative burner 22 for exhausting smoke, and simultaneously switch the remaining three regenerative burners for exhausting smoke. Any two are used for combustion; and the first regenerative burner 21 and the second regenerative burner 22 may be switched at the same time for exhausting smoke.
  • the controller first switches the first regenerative burner 21 for exhausting smoke, but does not simultaneously switch between the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative burner 25 Any one of them is used for combustion (in this state, only the second regenerative burner 22 is used for combustion and the other four regenerative burners are used for exhausting smoke), and after a period of time, the controller switches for combustion.
  • the second regenerative burner 22 is for exhausting smoke while switching any one of the third regenerative burner 23, the fourth regenerative burner 24, and the fifth regenerative burner 25 for combustion.
  • the controller simultaneously switches the first regenerative burner 21 and the second regenerative type.
  • the burner 22 is for exhausting smoke, and simultaneously switches the third regenerative burner 23 and the fourth regenerative burner 24 for combustion.
  • the third regenerative burner 23 and the fourth regenerative burner 24 perform a combustion operation
  • the first regenerative burner 21, the second regenerative burner 22, and the fifth regenerative burner 25 are arranged. Work with smoke, and exhaust all the fumes in the furnace in time.
  • the controller sequentially switches the third regenerative burner 23 and the fourth regenerative burner 24 for The smoke is exhausted while the first regenerative burner 21 and the fifth regenerative burner 25 are sequentially switched for combustion. Then, the first regenerative burner 21 and the fifth regenerative burner 25 perform combustion work, and the second regenerative burner 22, the third regenerative burner 23, and the fourth regenerative burner 24 are used for Smoke exhaust. And so on.
  • the switching step two of the regenerative burners for combustion are switched for exhausting smoke, and two of the regenerative burners for exhausting are switched for combustion. The smoke exhausting effect is better and the furnace pressure is stable.
  • the switching step is periodically performed between the five regenerative burners, and the first regenerative burner 21 and the second regenerative type for combustion are sequentially executed after the switching step is performed.
  • the burner 22 begins to re-execute the combustion step, cycling the combustion production until the end of production.
  • the switching regenerative combustion apparatus and method of the present invention have the following outstanding technical effects:
  • the smoke is smooth and the furnace pressure is stable.
  • the flue gas generated by the combustion can be dispatched in time by the regenerative burner to ensure the safety of the equipment.
  • the temperature difference is small and the heating quality is good.
  • the temperature distribution in the furnace is uniform, the temperature difference is ⁇ 5 °C, and the low oxygen content in the furnace is very beneficial for heating the workpiece.
  • the heating rate and the heating quality are improved, the oxidation loss rate of the workpiece is reduced, and the furnace output is greatly improved.
  • the energy saving effect is remarkable.
  • the total flue gas waste heat recovery rate has increased to more than 80%, which is at least 20% to 25% more energy efficient than the regenerative combustion equipment in the prior art.
  • the sufficiency of the combustion process greatly reduces the emission of CO, C0 2 and other greenhouse gases in the flue gas; the combustion environment of high temperature and low oxygen and the miscible effect of flue gas recirculation greatly inhibit the formation of NOx.
  • the high temperature environment suppresses the formation of dioxins, and the exhaust gas is rapidly cooled, effectively preventing the re-synthesis of dioxins, so the emission of dioxins is greatly reduced; the flame gradually spreads and burns throughout the furnace, and the combustion noise is low.
  • the apparatus or method of the present invention therefore belongs to an environmentally coordinated regenerative combustion technique. It should be noted that the above-described embodiments are only for explaining the present invention and do not constitute any limitation of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Air Supply (AREA)

Abstract

一种交替切换蓄热式燃烧设备,包括与炉体(1)内炉膛(101)相连的至少三个蓄热式燃烧器(2)、用于控制蓄热式燃烧器(2)的控制器、燃气管路(401)、助燃气体管路(402)、烟气管路(403)和换向阀(5),蓄热式燃烧器(2)包括烧嘴(3)和蓄热室(208),烧嘴(3)与燃气管路(401)连通,蓄热室(208)一端通过烧嘴(3)与炉膛(101)连通,另一端通过进风口(201)和排烟口(202)分别与助燃气体管路(402)和烟气管路(403)相连通,控制器切换蓄热式燃烧器(2)以交替用于燃烧或用于排烟,使得在任意时刻用于排烟的蓄热式燃烧器(2)的数量比用于燃烧的蓄热式燃烧器(2)的数量多。还提供了一种交替切换蓄热式燃烧设备的控制方法。该交替切换蓄热式燃烧设备不仅排烟顺畅、炉压稳定、总烟气余热回收率较高,而且炉内温度分布均匀,实现了高温低氮氧化物燃烧。

Description

一种交替切换蓄热式燃烧设备及其控制旅
相关串请的交叉引用
本申请要求享有于 2013年 09月 24日提交的名称为"一种蓄热式燃烧***及其控制方法" 的中国专利申请 CN201310437228.2的优先权, 该申请的全部内容通过引用并入本文中。 技术领域
本发明涉及一种热工设备, 特别是涉及一种交替切换蓄热式燃烧设备及其控制方法, 可 适用于所有需要热源的工业炉和锅炉。 背景技术
工业炉窑是工业生产的主要耗能设备, 能耗占到了工业总能耗的 60%, 因此其节能技术 的研究具有极其重要的意义。
国内外各种工业炉窑节能技术的发展大致经历了烟气余热不利用和烟气余热开始利用的 两个阶段。在最原始的年代,炉子余热不利用,烟气带走的热损失很大,炉子的热效率在 30% 以下。 从上世纪六七十年代开始, 国内外较普遍地采用了一种在烟气通道上回收烟气余热的 装置一空气预热器 (或称空气换热器)来回收排烟带走的热量。 采用这种办法可以在一定程度 上降低排烟温度, 增加进入炉膛的助燃空气的温度, 达到了一定的节能效果, 但存在诸多问 题, 例如寿命较短、 余热回收率有限、 炉子热效率一般在 50%以下、 排放的烟气仍有较高温 二十世纪八十年代初, British Gas公司与 Hot Work公司开发出一种蓄热式燃烧器,产生了 高温空气条件下的 "第一代再生燃烧技术", 可参见英国专利文献 GB2214625A。 其后, 这种 燃烧器被应用于美国和英国的钢铁和熔铝行业中, 但是这种燃烧器具有 ΝΟχ排放量大和*** 可靠性差等突出问题。
进入九十年代, 国内外学术界将蓄热式燃烧器的节能与环保相抵触的难题提到科技攻关 的地位, 对其进行了深入的基础性研究, 旨在同时达到节能和降低 C02 NOx排放的目的。 日本钢管株式会社 (NKK)和日本工业炉株式会社 (NFK)联合开发了一种新的燃烧技术一蓄 热式高温空气燃烧技术 HTAC(High Temperature Air Combustion), 被称为 "第二代再生燃烧技 术", 可参见日本专利文献 JP11/248081。 这是目前普遍使用的蓄热式燃烧技术。 HTAC技术 的关键是采用蓄热式燃烧***, 该***可以包括多个相同的蓄热式燃烧器, 每两个蓄热式燃 烧器为一对, 成对设置, 其中一个用于燃烧, 则另一个用于排烟, 一个周期后进行换向, 蓄 热体交替蓄热与放热, 如图 1所示。
例如, 中 国专利文献 CN101338904A、 CN101338906A、 CN101338907A 以及 CN101338894A 中公开的多种蓄热式冷凝节能锅炉均包括多个成对布置的蓄热式燃烧器, 每 两个燃烧器为一对, 相互周期性换向燃烧。 每对燃烧器中, 任一个燃烧器燃烧时, 另一个燃 烧器关闭。尽管这种锅炉能够在一定程度上解决燃烧室内温度较低且温度分布不均匀的问题, 但是在炉子加热过程中, 由于炉压过高与不稳定, 极易造成烧嘴回火而影响正常使用, 安全 性能较差。
一方面, 在现有成对设置燃烧器的蓄热式燃烧***中, 由于提供燃烧用的助燃气体所使 用的管道空间与排烟所使用的烟气管道空间相等, 而助燃气体与燃料混合燃烧后产生的烟气 体积会增多, 标况烟气量至少是助燃气体量的 1.1-1.3倍。 当排烟温度为 180°C时, 烟气的工 况体积是助燃气体体积的 1.6-1.8倍, 使炉膛处于一个高压、 不安全状态。 目前, 人们已经采 用了如下几种解决方案:
( 1 )加大引风机压力来降低炉压。 由于引风机热态压力下降, 其冷态压力需要加大到助 燃鼓风机的 3-5倍才能形成理论上的炉压平衡, 虽然这种方法可以在一定程度上解决炉压过 高的问题, 但是配置与运行成本过高。
(2)加大烧嘴开孔或者蓄热体的气流通道面积来降低炉压, 但会出现其他问题, 例如助 燃气体与燃料的混合效果较差, 导致助燃气体严重过剩, 燃烧效率下降, 严重影响火焰形状 与刚度, 还使得 NO^nC02的排放量增加。
(3 )在炉体上直接设置辅助管道(又称泄压口) , 让 30〜40%的高温烟气直接从辅助烟 道排走, 从而降低炉压。 例如专利文献 WO01/16527A1中公开的技术方案就是采用这样的方 法, 但是这会导致总的烟气余热回收率只有 50〜60%, 节能环保效果不理想。 且总排烟温度 过高又会影响设备的安全运行。
由此可见, 排烟不畅、 炉压过高、 总烟气余热回收率较低是目前 HTAC技术中尚未被解 决的技术问题之一。
另一方面, 现有成对设置的燃烧器的蓄热式燃烧***在换向时炉压波动较大, 严重时对 炉膛的冲击较大, 影响设备的安全运行。
再一方面, 目前 HTAC技术普遍采用下置式蓄热体, 蓄热式燃烧器朝下排烟, 灰尘易聚 积在蓄热体上部, 且蓄热体中风速比烟速低, 蓄热体的自吹扫清灰能力不够, 造成蓄热体易 积尘与板结, 严重缩短了蓄热体清灰周期与使用寿命, 这是目前 HTAC技术中又一个尚未被 解决的技术问题。
出于这种考虑, 本发明的发明人进行了深入研究, 目的是解决相关领域现有技术所暴露 出来的问题, 希望提供一种环保、 节能和安全的蓄热式燃烧设备及其控制方法。 发明内容
本发明的发明人通过大量试验和创造性劳动发现, 在蓄热式燃烧设备上设置有至少三个 蓄热式燃烧器, 并使其在任意时刻用于排烟的蓄热式燃烧器总是比用于燃烧的蓄热式燃烧器 多, 炉膛内的烟气被及时从用于排烟的蓄热式燃烧器中排出, 特别是当控制器同时、 顺次及 周期交替切换蓄热式燃烧器时, 不仅大幅提高了烟气余热回收率, 降低了 NOx的排放量, 达 到了节能与环保的双重效益, 而且实现了蓄热式燃烧设备通畅排烟, 大大提高了设备工作的 稳定性, 确保设备工作的安全性。 此外, 该设备还具有很好的自清灰功能, 大幅延长了蓄热 体的清灰周期和设备的使用寿命, 极大地减轻了蓄热体的维护工作量和维护费用。 在此基础 上完成了本发明。
因此, 本发明的一个目的是提供一种交替切换蓄热式燃烧设备, 其设置有至少三个蓄热 式燃烧器以及用于控制所述蓄热式燃烧器的控制器, 控制器切换所述蓄热式燃烧器以交替用 于燃烧或用于排烟, 使得在任意时刻用于排烟的蓄热式燃烧器的数量比用于燃烧的蓄热式燃 烧器的数量多。 本发明克服了传统蓄热式燃烧技术中成对设置蓄热式燃烧器的技术偏见, 有 效解决了高温空气燃烧技术中排烟不畅、炉压过高、烟气余热回收率较低等一系列技术问题。
本发明的另一个目的是提供一种蓄热式燃烧设备的控制方法。 蓄热式燃烧设备采用本发 明的控制方法, 能够始终保证处于排烟状态的燃烧器的数量比处于燃烧状态的燃烧器的数量 多, 确保设备的排烟顺畅和生产安全, 提高了蓄热式燃烧设备进行燃烧生产的可靠性和安全 性。 此外, 燃烧过程所产生的全部高温烟气均通过蓄热式燃烧器被及时排出, 总的烟气余热 回收率可以提高到 80%以上, 比现有技术中蓄热式燃烧***的控制方法可以节能至少 20%~25%, 节能潜力巨大。 國删
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的附 图做简单地介绍, 显而易见, 下面简述中的附图仅仅是本发明的一些实施例, 对于本领域普 通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1表示现有技术中成对设置燃烧器的蓄热式燃烧***的示意图。
图 2表示本发明的设备连接有三个蓄热式燃烧器在一个优选实施例中的结构示意图; 图 3表示本发明的设备连接有五个蓄热式燃烧器在一个优选实施例中的结构示意图; 图 4表示本发明的蓄热式燃烧器在一个优选实施例中的结构示意图;
图 5表示本发明的一种蓄热式燃烧设备的控制方法在一个优选实施例中的流程示意图 在图中, 相同的构件由相同的附图标记标示。 附图并未按照实际的比例绘制。 附图标记 的说明如下:
1 炉体
101 炉膛
2、 21、 22、 23、 24、 25蓄热室燃烧器
201 进风口
202 排烟口
203 蓄热体
204 球门
205 篦子砖
206 清灰门
207 积灰室
208 蓄热室
3 烧嘴
401 燃气管路
402 助燃气体管路
403 烟气管路
51 燃气阀
511 第一燃气阀
512 第二燃气阀
513 第三燃气阀
52 助燃气体换向阀
521 第一助燃气体换向阀
522 第二助燃气体换向阀
523 第三助燃气体换向阀
53 烟气换向阀
531 第一烟气换向阀
532 第二烟气换向阀
533 第三烟气换向阀
601 引风机
602 鼓风机 具体实》式 根据本发明的一个方面, 本发明提供了一种交替切换蓄热式燃烧设备, 其包括与炉膛相 连的至少三个蓄热式燃烧器以及用于控制所述蓄热式燃烧器的控制器, 控制器切换所述蓄热 式燃烧器以交替用于燃烧或用于排烟, 使得在任意时刻用于排烟的蓄热式燃烧器的数量比用 于燃烧的蓄热式燃烧器的数量多。
本发明的设备设置有多个蓄热式燃烧器, 控制器确保在任意时刻用于排烟的蓄热式燃烧 器的数量比用于燃烧的蓄热式燃烧器的数量多, 因此其能够将燃烧过程所产生的高温烟气及 时排出, 确保设备的排烟顺畅和生产安全。
根据本发明的一个具体实施例, 本发明的设备严格密封, 炉膛内的全部烟气通过用于排 烟的蓄热式燃烧器排出。
本发明的设备没有在炉体上设置用于排烟的辅助管道或泄压口, 燃烧过程所产生的全部 高温烟气均通过用于排烟的蓄热式燃烧器排出, 蓄热室的排烟温度即为实际排烟温度, 总的 烟气余热回收率可以提高到 80%以上, 比现有技术中成对设置燃烧器的蓄热式燃烧***可以 节能至少 20%~25%, 不仅解决了现有技术中总烟气余热回收率较低的问题, 而且相比于现有 技术更加节能。
本发明的设备也无需加大蓄热式燃烧器的烧嘴的开孔或者蓄热室内蓄热体的气流通道面 积, 解决了现有技术中蓄热式燃烧***的助燃气体过剩较多、 燃烧效率偏低、 火焰形状与刚 度较差等问题, 极大降低了烟气中 CO、 C02以及 NOx等污染物的生成量。
根据本发明的一个具体实施例, 控制器切换用于燃烧的蓄热式燃烧器中的至少一个用于 排烟, 同时切换用于排烟的蓄热式燃烧器中的至少一个用于燃烧。 同时切换可以实现烟气余 热的极限回收和助燃气体的高效预热。
根据本发明的一个具体实施例,控制器切换用于燃烧的蓄热式燃烧器中的一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的一个用于燃烧。 由此排烟效果更好, 烟气余热回收率 更高, 炉压更稳定。
根据本发明的一个具体实施例, 控制器顺次地切换用于燃烧的蓄热式燃烧器用于排烟, 并且顺次地切换用于排烟的蓄热式燃烧器用于燃烧。 由此延长了单个蓄热式燃烧器用于排烟 的工作时间, 使得蓄热体吸热更加充分, 在安全生产的前提下最大限度回收总的高温烟气的 余热, 改善了生产及周边环境, 极大降低了烟气的热量损失, 减少了生产劳动强度。 经本发 明的发明人的大量实验验证, 在本发明的设备中, 高温烟气可以以不高于 200°C、 以不高于 180°C、 以不高于 150°C或以不高于 130°C的温度经过换向阀排出。 当用于排烟的蓄热式燃烧 器经换向后用于燃烧时, 预热助燃气体的温度效率可以提高到 90%以上, 助燃气体的预热温 度可以比炉膛温度仅低 100°C左右, 明显减小了炉膛内压差的变化, 确保燃烧生产的稳定进 行。
根据本发明的一个具体实施例, 控制器周期性切换用于燃烧的蓄热式燃烧器用于排烟, 并且周期性地切换用于排烟的蓄热式燃烧器用于燃烧。 由此可消除炉膛局部高温区, 使温度 分布更均匀。
根据本发明的一个具体实施例, 用于燃烧的蓄热式燃烧器每次燃烧工作的时间为 15 300 秒, 优选 30 200秒。控制器切换所述蓄热式燃烧器以交替用于燃烧或用于排烟。 当所述蓄热 式燃烧器用于燃烧时, 其可对助燃气体进行预热; 当所述蓄热式燃烧器用于排烟时, 其又可 吸收燃烧所产生的高温烟气的热量。 准确控制蓄热式燃烧器用于燃烧的时间, 不仅可以提高 烟气余热回收率, 而且可以提高燃烧效率。
根据本发明的一个具体实施例, 所述蓄热式燃烧器包括至少一个与炉膛相连通的烧嘴, 每次同时切换的蓄热式燃烧器所包括的烧嘴的总功率相同, 所述烧嘴与用于提供燃气的燃气 管路连通。
根据本发明的一个具体实施例, 各所述蓄热式燃烧器均包括蓄热室, 所述蓄热室的一端 通过烧嘴与炉膛连通, 所述蓄热室的另一端设有进风口和排烟口, 其中进风口与用于提供助 燃气体的助燃气体管路连通, 排烟口与用于排烟的烟气管路连通。 所述燃气管道、 助燃气体 管道和烟气管道上分别设置有单独的换向阀, 所述换向阀与控制器连接。 助燃气体管道和烟 气管道分别连接有鼓风机和引风机, 燃气管道、 助燃气体管道口以及烟气管道上还可以连接 有流量计、 压力表、 差压变送器和温度传感器等设备。
根据本发明的一个具体实施例, 所述蓄热室内设有蓄热体, 所述蓄热体的形状为片状、 条状、 蜂窝状或球状, 优选为球状; 所述蓄热体的材质选自粘土、 莫来石、 高铝、 刚玉和碳 化硅, 优选为刚玉。
在本发明的设备中, 当所述蓄热体的形状为球状时, 排烟阻力较小, 而且提高了蓄热体 堆积密度, 增加蓄热能力, 以满足单个蓄热室排烟时间长的要求。
在本发明的设备中, 当所述蓄热体的材质为刚玉时, 因其抗侵蚀性能而能够长时间使用, 因其密度高而蓄热量大, 因其导热系数高而蓄热与放热快, 因其抗渗透性能而粘渣积灰少, 因其强度高而可清洗重复使用。
根据本发明的一个具体实施例, 所述蓄热***于烧嘴的上方。 由此, 当所述蓄热式燃烧 器用于排烟时, 烟气自下而上地通过蓄热体, 灰尘难以聚积在蓄热体上; 当所述蓄热式燃烧 器用于燃烧时, 助燃气体自上而下地通过蓄热体。 相对于传统成对设置燃烧器的蓄热式燃烧 设备而言, 由于助燃气体通过蓄热体的速度比烟气通过蓄热体的速度高, 因此本发明的设备 的自吹扫清灰能力显著增强, 蓄热体不易积尘与板结, 显著延长了蓄热体清灰周期及其使用 中.
口 P 根据本发明的一个具体实施例, 所述蓄热室全部设置于炉顶。
在本发明的设备中, 蓄热室被全部设置于炉体的顶部, 一方面使得其对于炉体基础、 操 作平台、 进出料口、 磁力搅拌器和排烟管路等其他配置的干扰较少, 有利于设备的安装, 另 一方面也有效提高了设备的排烟效率。
根据本发明的一个具体实施例,所述蓄热室通过设置有通孔的篦子砖被分为上下两部分, 其中蓄热***于篦子砖的上部, 篦子砖的下部设置有积灰室。
根据本发明的一个具体实施例, 所述篦子砖的上部包括靠近篦子砖的高温段以及靠近排 烟口的低温段。
根据本发明的一个具体实施例,所述蓄热体包括多个大直径蓄热球和多个小直径蓄热球, 其中大直径蓄热球设置于高温段, 小直径蓄热球设置于低温段。
当采用本发明的设备进行燃烧生产时, 炉膛内的高温烟气进入蓄热室后, 经篦子砖的通 孔通入蓄热体, 烟气迅速进入高温段, 由于高温段存放着大直径蓄热球, 各个大直径蓄热球 之间的间隙较大, 烟气的流通面积较大, 烟气在穿过各个大直径蓄热球之间时将热量传递给 这些大直径蓄热球, 从高温段穿出的烟气所携带的热量减少, 温度降低, 接着这些温度较低 的烟气进入低温段, 由于低温段中设置了大量小直径蓄热球, 小直径蓄热球比表面积大, 由 此使得温度较低的烟气与小直径蓄热球充分接触, 便于两者之间的充分热交换。 由此减少了 烟气在高温段的压力损失, 同时确保低温段实现充分的蓄热, 降低了生产的运行成本。 高温 烟气的热量被蓄热体充分吸热, 最后可以实现以低于 150°C的温度从排烟口由引风机排出。
根据本发明的一个具体实施例, 各个所述蓄热式燃烧器彼此相同。 由此燃烧与排烟效果 更好。
根据本发明的一个具体实施例, 多个蓄热式燃烧器可以构成一个燃烧器单元, 所述设备 可包括多个燃烧器单元, 控制器切换多个燃烧器单元以交替用于燃烧或用于排烟, 使得所述 设备在任意时刻用于排烟的燃烧器单元的数量比用于燃烧的燃烧器单元的数量多。 炉膛内的 高温烟气通过用于排烟的燃烧器单元被全部排出。
在本发明的设备中, 所述炉体包括炉膛、 炉墙、 炉底、 炉顶和炉门。 其中, 炉膛是由炉 墙、 炉顶和炉底包围起来供燃烧的立体空间, 炉门开设于炉墙上。 炉墙、 炉底和炉顶统称为 炉衬。 在炉子运行过程中, 炉衬不仅能够在高温和荷载条件下保持足够的强度和稳定性, 并 能够承受炉膛内气体的冲刷和炉渣的腐蚀, 而且还有足够的绝热保温和气密性能。
在本发明的设备中, 所述炉膛具有足够的空间, 并布置足够的受热面。 此外, 炉膛还有 合理的形状和尺寸, 便于其与燃烧器配合, 组织炉内空气动力场, 使得火焰不贴壁、 不冲墙、 充满度高, 壁面热负荷均匀。
在本发明的设备中, 所述控制器是一种在短时间内, 按照预定的组成程序, 选择和切换 蓄热式燃烧器以交替用于燃烧和用于排烟的控制方式。 执行顺序控制或微机控制的控制器包 括至少一个中央处理单元的可编程控制器, 一个 ROM存储程序, 接口和其它。 在本发明的 设备中, 所述控制器分别与点火装置以及包括燃气阀、 助燃气体换向阀和烟气换向阀等在内 的多个控制阀相连, 用于控制点火装置的点火工作以及控制阀的换向工作。
在本发明的设备中, 所述助燃气体可以是空气、 富氧或者氧气。
在本发明的设备中, 所述燃料可以是气体燃料或者液体燃料。 可用作本发明的气体燃料 的实例包括但不限于: 天然气、 高炉煤气、 焦炉煤气、 转炉煤气、 发生炉煤气或者混合煤气。
在本发明的设备中, 所述篦子砖可以是金属材料或者非金属材料, 可用作本发明的篦子 砖的材料实例包括但不限于: 耐热铸铁、 耐热钢、 不定形耐火材料或定形耐火材料。
在本发明的设备中, 所述烧嘴是指按一定的比例和一定混合条件将燃料和助燃气体供入 炉内燃烧或在自身内部实现燃烧的装置。 根据本发明的另一方面, 本发明提供了一种蓄热式燃烧设备的控制方法, 其包括如下步 骤:
启动步骤: 启动 m个蓄热式燃烧器用于燃烧, 同时启动 n个蓄热式燃烧器用于排烟, 其 中 n>m, 且 n+m 3, n和 m均为自然数;
燃烧步骤: 使用于燃烧的蓄热式燃烧器进行燃烧工作, 并且通过用于排烟的蓄热式燃烧 器将炉膛内的烟气排出;
切换步骤: 切换用于燃烧的蓄热式燃烧器中的至少一个用于排烟, 切换用于排烟的蓄热 式燃烧器中的至少一个用于燃烧, 使得用于排烟的蓄热式燃烧器的数量比用于燃烧的蓄热式 燃烧器的数量多;
循环步骤: 返回执行燃烧步骤和切换步骤, 直至燃烧工作结束。
本发明的一种蓄热式燃烧设备的控制方法, 能够始终保证处于排烟状态的燃烧器的数量 比处于燃烧状态的燃烧器的数量多, 确保设备的排烟顺畅和生产安全, 提高了蓄热式燃烧设 备进行燃烧生产的可靠性和安全性。 此外, 本发明的方法使得燃烧过程所产生的高温烟气通 过蓄热式燃烧器被及时排出, 总的烟气余热回收率可以提高到 80%以上, 比现有技术中蓄热 式燃烧***的控制方法可以节能至少 20%~25%, 节能潜力巨大, 不仅解决了现有技术中总烟 气余热回收率较低的问题, 而且相比于现有技术更加节能和环保。
根据本发明的一个具体实施例, 炉膛内的全部烟气通过用于排烟的蓄热式燃烧器排出。 本发明的方法将燃烧过程所产生的全部高温烟气通过用于排烟的蓄热式燃烧器排出, 蓄 热室的排烟温度即为实际排烟温度, 相比于现有技术更加节能。 此外, 本发明的方法还解决 了现有技术中蓄热式燃烧***中助燃气体过剩较多, 燃烧效率偏低、 火焰形状与刚度较等的 问题, 极大降低了烟气中 CO、 C02以及 NOx等污染物的生成量。
根据本发明的一个具体实施例, 在所述切换步骤中, 切换用于燃烧的蓄热式燃烧器中的 至少一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的至少一个用于燃烧。 同时切换可 以实现烟气余热的极限回收和助燃气体的高效预热。
根据本发明的一个具体实施例, 在所述切换步骤中, 切换用于燃烧的蓄热式燃烧器中的 一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的一个用于燃烧。 由此排烟效果更好, 炉压稳定
根据本发明的一个具体实施例, 在所述切换步骤中, 顺次地切换用于燃烧的蓄热式燃烧 器用于排烟, 并且顺次地切换用于排烟的蓄热式燃烧器用于燃烧。 由此确保用于排烟的蓄热 式燃烧器的数量比用于燃烧的蓄热式燃烧器的数量多, 延长了单个蓄热式燃烧器用于排烟的 工作时间, 使得蓄热体吸热更加充分, 在安全生产的前提下最大限度回收总的高温烟气的余 热, 改善了生产及周边环境, 极大降低了烟气的热量损失, 减少了生产劳动强度。 此外, 本 发明的方法还进一步减小了炉膛内压差的变化, 确保了燃烧生产的稳定进行。
根据本发明的一个具体实施例, 在所述切换步骤中, 周期性地切换用于燃烧的蓄热式燃 烧器用于排烟, 并且周期性地切换用于排烟的蓄热式燃烧器用于燃烧。 由此可消除炉膛局部 高温区, 使温度分布更均匀。
根据本发明的一个具体实施例, 在一个周期中, 每一个用于燃烧的蓄热式燃烧器的燃烧 工作时间为 T X m/(m+n), 其中 T为周期的时长。
根据本发明的一个具体实施例,在启动步骤中同时启动所述 m个蓄热式燃烧器用于燃烧, 其中 m 2。 下面将结合附图对本发明的实施方案作进一步的详细描述, 但是本领域技术人员将会理 解, 下列实施例仅用于说明本发明, 而不应视为限定本发明的范围。
作为本发明的一个优选实施例, 如图 2所示。 在本实施例中, 一种交替切换蓄热式燃烧 设备包括炉体 1、 开设于炉体 1内的炉膛 101、 三个蓄热式燃烧器 2、 燃气管路 401、 助燃气 体管路 402、 烟气管路 403和换向阀 5。
所述炉体 1上没有设置与炉膛 101相连通的用于将炉膛内的烟气直接排出的辅助管道, 具有严格的密封性。
所述炉膛 101 的炉膛壁上开孔。 第一蓄热式燃烧器 21、 第二蓄热式燃烧器 22和第三蓄 热式燃烧器 23均设置于该炉膛 101的开孔位置上, 并通过该孔与所述炉膛 101相连通, 从而 连接于炉体 1上。
每个蓄热式燃烧器均包括烧嘴 3以及蓄热室 208。烧嘴 3与用于提供燃气的燃气管路 401 连通。 蓄热室 208的一端通过烧嘴 3与炉膛 101连通, 蓄热室 208的另一端通过进风口 201 和排烟口 202分别与用于提供助燃气体的助燃气体管路 402和用于排烟的烟气管路 403相连 通。
蓄热室 208内填充有蓄热体 203。 助燃气体管路 402与蓄热体 203通过助燃气体换向阀 52连通; 烟气管路 403与蓄热体 203通过烟气换向阀 53连通; 燃气管路 401的一端通过燃 气阀 51与所述烧嘴 3连通,燃气管路 401的另一端与燃气源相连。烧嘴 3上设置有点火装置。
燃气阀 51、 助燃气体换向阀 52、 烟气换向阀 53以及点火装置均与控制器相连。 每次切 换时, 控制器通过控制燃气阀 51、 助燃气体换向阀 52、 烟气换向阀 53以及点火装置来实现 蓄热式燃烧器 2交替用于燃烧或用于排烟的, 即所述控制器可以控制每个蓄热式燃烧器 2的 燃气管路 401、 助燃气体管路 402以及烟气管路 403的关闭与导通。 优选地, 助燃气体管路 402的进口端可以连接有鼓风机 602, 烟气管路 403的出口端可以设置有引风机 601。
在本实施例中, 一种交替切换蓄热式燃烧设备的工作原理如下:
控制器控制第一蓄热式燃烧器 21首先用于燃烧, 第二蓄热式燃烧器 22和第三蓄热式燃 烧器 23用于排烟, 此时第一燃气阀 511和第一助燃气体换向阀 521打开, 第一烟气换向阀 531关闭, 同时第二燃气阀 512、 第二助燃气体换向阀 522、 第三燃气阀 513以及第三助燃气 体换向阀 523关闭, 第二烟气换向阀 532和第三烟气换向阀 533打开。 从鼓风机 602出来的 常温空气 (助燃气体) 通过助燃气体管路 402由第一助燃气体换向阀 521进入第一蓄热式燃 烧器 21后, 在经过蓄热式燃烧器 21中的蓄热体 203时被加热, 在极短时间内常温空气被加 热到接近炉膛 101的温度, 被加热的高温空气进入炉膛 101后, 卷吸周围炉膛内的烟气形成 一股含氧量大大低于 21%的稀薄贫氧高温气流, 同时通过燃气管路 401由第一燃气阀 511往 稀薄高温空气中心注入燃料, 燃料在贫氧 (2%~20%) 状态下实现燃烧, 火焰从烧嘴喷出。 与此同时, 炉膛 101内燃烧后产生的全部高温烟气通过烟气管路 403经第二蓄热式燃烧器 22 和第三蓄热式燃烧器 23被及时排出。 高温烟气在通过第二蓄热式燃烧器 22和第三蓄热式燃 烧器 23的蓄热室 208时, 将热量储存在蓄热体 203 内, 然后在引风机 601 的作用下以低于 130°C的低温烟气经过第二烟气换向阀 532和第三烟气换向阀 533而排出。
第一蓄热式燃烧器 21燃烧工作一段时间后, 例如 30s后, 控制器顺次切换第一蓄热式燃 烧器 21用于排烟, 同时切换第二蓄热式燃烧器 22用于燃烧, 此时第三蓄热式燃烧器 23继续 用于排烟。
第二蓄热式燃烧器 22燃烧工作一段时间后, 例如 30s后, 控制器顺次切换第二蓄热式燃 烧器 23用于排烟, 同时切换第三蓄热式燃烧器 22用于燃烧, 此时第一蓄热式燃烧器 21继续 用于排烟。 以此实现顺次切换。
当第三个蓄热式燃烧器 23燃烧工作一段时间后, 例如 30s后, 控制器再次控制第一蓄热 式燃烧器 21用于燃烧, 并继续进行顺次切换, 从而周期性地切换三个蓄热室燃烧器以实现燃 烧生产, 由此可消除炉膛局部高温区, 使温度分布更均匀。 例如, 一个周期的时长为 90s。
由此可见, 在一个周期中, 每个蓄热式燃烧器用于排烟的工作时间为 60s, 用于燃烧的工 作时间为 30s,相对于成对设置燃烧器的蓄热式燃烧***而言,本发明的设备延长了单个蓄热 式燃烧器用于排烟的工作时间, 使得蓄热体的吸热更加充分, 在安全生产的前提下最大限度 回收总的高温烟气的余热, 极大降低了烟气的热量损失, 减少了生产劳动强度。
优选地,第一蓄热式燃烧器 21、第二蓄热式燃烧器 22和第三蓄热式燃烧器 23彼此相同。 表 1是本发明的一种交替切换蓄热式燃烧设备用于熔铝的一个优选实施例在生产过程中 记录的实验参数。
表 1
Figure imgf000013_0001
从表 1可见, 一种交替切换蓄热式燃烧设备的排烟温度不高于 130°C, 余热助燃空气温 度比进烟温度仅低 100°C左右, 预热助燃空气的温度效率提高到了 92%, 炉压波动范围仅在 ± 60Pa以内, 因此相比于现有技术, 本发明的设备更加节能、 环保和安全。 作为本发明的另一个优选实施例, 如图 3所示, 本实施例中的一种交替切换蓄热式燃烧 设备包括五个蓄热式燃烧器 2, 此时控制器可以控制其中 1个蓄热式燃烧器用于燃烧, 其余 4 个蓄热式燃烧器用于排烟, 也可以控制其中 2个蓄热式燃烧器用于燃烧, 其余 3个蓄热式燃 烧器用于排烟。 优选地, 控制器控制第一蓄热式燃烧器 21和第二蓄热式燃烧器 22首先用于 燃烧, 第三蓄热式燃烧器 23、 第四蓄热式燃烧器 24以及第五蓄热式燃烧器 25用于排烟, 用 于排烟的蓄热式燃烧器比用于燃烧的蓄热式燃烧器多一个。第一蓄热式燃烧器 21和第二蓄热 式燃烧器 22同时燃烧工作 30s后, 控制器既可以同时切换第一蓄热式燃烧器 21和第二蓄热 式燃烧器 22用于排烟, 同时切换其余 3个用于排烟的蓄热式燃烧器中的任 2个用于燃烧; 又 可以不同时切换第一蓄热式燃烧器 21和第二蓄热式燃烧器 22用于排烟, 例如, 控制器首先 切换第一蓄热式燃烧器 21用于排烟, 但是不同时切换第三蓄热式燃烧器 23、 第四蓄热式燃 烧器 24和第五蓄热式燃烧器 25中的任一个用于燃烧(此状态下, 仅第二蓄热式燃烧器 22用 于燃烧烧, 其余 4个蓄热式燃烧器用于排烟) , 间隔一段时间后, 控制器再切换用于燃烧的 第二蓄热式燃烧器 22用于排烟, 同时切换第三蓄热式燃烧器 23、 第四蓄热式燃烧器 24和第 五蓄热式燃烧器 25中的任一个用于燃烧。
优选地, 第一蓄热式燃烧器 21和第二蓄热式燃烧器 22同时燃烧工作一段时间后, 例如 30s, 控制器切换第一蓄热式燃烧器 21用于排烟, 同时切换第三蓄热式燃烧器 23用于燃烧。 此时, 第二蓄热式燃烧器 22和第三蓄热式燃烧器 23用于燃烧, 第一蓄热式燃烧器 21、 第四 蓄热式燃烧器 24和第五蓄热式燃烧器 25用于排烟;第二蓄热式燃烧器 21和第三蓄热式燃烧 器 23继续燃烧工作一段时间后, 例如 30s, 控制器顺次切换第二蓄热式燃烧器 22用于排烟, 同时顺次切换第四蓄热式燃烧器 23用于燃烧。 此时, 第三蓄热式燃烧器 23和第四蓄热式燃 烧器 24用于燃烧, 第一蓄热式燃烧器 21、 第二蓄热式燃烧器 22和第五蓄热式燃烧器 25用 于排烟。 以此类推, 控制器顺次交替切换五个蓄热式燃烧器分别用于燃烧或用于排烟。 当第 一蓄热式燃烧器 21再次同时用于燃烧时, 所述设备完了一个周期。
作为本发明的另一个优选实施例, 蓄热式燃烧器 2包括与炉膛 101相连通的至少一个烧 嘴 3, 每次同时切换的蓄热式燃烧器所包括的烧嘴的总功率相同。 优选地, 每个蓄热式燃烧 器包括与炉膛相连通的一个烧嘴, 且每个烧嘴的功率相同, 每次切换 1个用于燃烧的蓄热式 燃烧器用于排烟, 同时切换 1个用于排烟的蓄热式燃烧器用于燃烧。
在另一个优选实施例中, 蓄热体 203全部位于烧嘴 3的上方。 以第一蓄热式燃烧器 21为 例, 当其用于排烟时, 高温烟气及灰尘自下而上地通过蓄热体 203, 由于重力原因, 灰尘难 以大量聚积在蓄热体 203上。 当控制器切换第一蓄热式燃烧器 21用于燃烧时, 助燃气体自上 而下地通过蓄热体 203, 又很容易将灰尘吹扫下来。 由于相对于下置式蓄热体的蓄热式燃烧 设备而言, 助燃气体通过蓄热体 203的速度比烟气通过蓄热体的速度要高, 因此设备的自吹 扫清灰能力显著增强, 蓄热体 203不易积尘与板结, 可延长蓄热体 203清灰周期及其使用寿 命, 极大地减少了蓄热体的维护工作量与费用。
在另一个优选实施例中, 将本发明的设备用于铝熔炼炉, 蓄热体 203的清灰周期可以达 到 6个月, 而相同条件下采用下置式蓄热体时, 蓄热体 203的清灰周期与使用寿命最多只有 3个月。
优选地, 所述蓄热室 208被全部设置于炉体 1的顶部, 这样既节省空间, 又提高了排烟 效率。 优选地, 蓄热体 203的形状为球状, 材质为刚玉。
在另一个优选实施例中, 如图 4所示, 蓄热室 208的内腔被设置有通孔的篦子砖 205分 为上下两部分, 篦子砖 205的形状与蓄热室 208的形状相同, 例如可以为圆柱状或立方体状, 但是在垂直方向上的高度小于蓄热室 205的高度。 蓄热体 203位于篦子砖 205的上部, 蓄热 室 208的顶部开设有连接助燃气体管路 402的进风口 201以及连接烟气管路 403的排烟口 202。 篦子砖 205的下部设置有积灰室 207, 在蓄热室 208上部靠近篦子砖 205的侧壁上设有取放 蓄热体的球门 204, 在蓄热室 208下部靠近底部的侧壁上设有清除灰尘的清灰门 206。
优选地, 篦子砖 205的上部包括靠近篦子砖的高温段以及靠近排烟口的低温段。 高温段 是蓄热时蓄热室 208内蓄热温度较高的区域, 低温段是蓄热时蓄热室 208内蓄热温度较低的 区域。 高温段和低温段的划分可以根据实际生产需要设定。
优选地, 蓄热体 203包括多个大直径蓄热球和多个小直径蓄热球, 大直径蓄热球设置于 所述高温段, 小直径蓄热球设置于所述低温段。 这里的大直径和小直径只是相对而言的, 即 放置于高温段的大直径蓄热球的直径大于放置于低温段的小直径蓄热球的直径。 这两者的实 际尺寸需要根据实际生产需要设定。 尽管本实施例采用的是球状蓄热体, 但是根据本发明的 设计点延伸出的其它形状也涵盖在本发明的范围之内。 燃烧生成的高温烟气在引风机 601 的 抽吸下, 首先进入高温段, 由于高温段存放着大直径蓄热球, 各个大直径蓄热球之间的间隙 较大, 高温烟气的流通面积较大, 烟气在高温段的阻力小, 将部分热量传递给了大直径蓄热 球后, 由此避免了在蓄热室 208内采用统一规格蓄热球时, 烟气在高温段的阻力大, 需要引 风机 601增大功率加大对烟气的抽吸。 从高温段穿出的烟气所携带的热量减少, 温度降低, 接着高温烟气进入低温段, 由于小直径蓄热球的比表面积大, 由此使得温度较低的烟气与小 直径蓄热球充分接触, 便于两者之间的充分热交换, 以此尽可能地蓄热, 进行下一个循环时, 蓄热体内所蓄积的热量传递给从中穿过的助燃气体, 提高助燃气体的温度, 减少了燃烧生产 时燃料的使用量。 由此可以看出, 从热量的蓄积以及助燃气体的加热两个环节中均降低了生 产运行成本, 利于节能环保。 本发明所提供的切换蓄热式燃烧设备的控制方法, 包括启动步骤、 燃烧步骤、 切换步骤 和循环步骤, 如图 5所示。 下面将详细地描述本发明的一种蓄热式燃烧设备的控制方法的各 个步骤。
启动步骤包括启动 m个蓄热式燃烧器用于燃烧, 同时启动 n个蓄热式燃烧器用于排烟, 其中 n>m, n+m 3, n和 m均为自然数, 即用于排烟的蓄热式燃烧器的数量比用于燃烧的 蓄热式燃烧器的数量至少多 1个。 在一个实施例中, 如图 1所示, m=l, n=2, 控制器开始启 动第一蓄热式燃烧器 21用于燃烧,同时启动第二蓄热式燃烧器 22和第三蓄热式燃烧器 23用 于排烟。
燃烧步骤中控制器将启动步骤中用于燃烧的第一蓄热式燃烧器 21进行燃烧生产,同时第 二蓄热式燃烧器 22和第三蓄热式燃烧器 23及时将炉膛内的烟气全部排出。 此时第一燃气阀 511和第一助燃气体换向阀 521打开, 第一烟气换向阀 531关闭, 同时第二燃气阀 512、 第二 助燃气体换向阀 522、 第三燃气阀 513以及第三助燃气体换向阀 523关闭, 第二烟气换向阀 532和第三烟气换向阀 533打开。 从鼓风机 602出来的常温空气 (助燃气体) 通过助燃气体 管路 402由第一助燃气体换向阀 521进入第一蓄热式燃烧器 21后, 在经过蓄热式燃烧器 21 中的蓄热体 203时被加热, 在极短时间内常温空气被加热到接近炉膛 101的温度, 被加热的 高温空气进入炉膛 101后, 卷吸周围炉膛内的烟气形成一股含氧量大大低于 21%的稀薄贫氧 高温气流, 同时通过燃气管路 401 由第一燃气阀 511往稀薄高温空气中心注入燃料, 燃料在 贫氧 (2%~20%) 状态下实现燃烧, 火焰从烧嘴喷出。 与此同时, 炉膛 101 内燃烧后产生的 全部高温烟气通过烟气管路 403经第二蓄热式燃烧器 22和第三蓄热式燃烧器 23被及时排出。 高温烟气在通过第二蓄热式燃烧器 22和第三蓄热式燃烧器 23的蓄热室 208时, 将热量储存 在蓄热体 203内, 然后在引风机的作用下以高于 130°C的低温烟气经过第二烟气换向阀 532 和第三烟气换向阀 533而排出。
切换步骤中包括切换用于燃烧的蓄热式燃烧器中的至少一个用于排烟,同时切换用于排 烟的蓄热式燃烧器中的至少一个用于燃烧, 使得用于排烟的蓄热式燃烧器的数量比用于燃烧 的蓄热式燃烧器的数量多。在本实施例中, 切换步骤中将用于燃烧的第一蓄热式燃烧器 21切 换为用于排烟, 同时将用于排烟的第二蓄热式燃烧器 22切换为用于燃烧, 那么切换后的燃烧 设备中, 第一蓄热式燃烧器 21和第三蓄热式燃烧器 23用于排烟, 第二蓄热式燃烧器 22用于 燃烧。
循环步骤包括返回执行切换步骤和燃烧步骤, 直至燃烧工作结束。在本实施例中, 将用 于燃烧的第二蓄热式燃烧器 21切换为用于排烟, 同时将用于排烟的第三蓄热式燃烧器 22切 换为用于燃烧, 那么再次切换后的燃烧设备中, 第一蓄热式燃烧器 21 和第二蓄热式燃烧器 22用于排烟, 第三蓄热式燃烧器 22用于燃烧。 当第三蓄热式燃烧器完成燃烧工作后, 本发 明的方法即完成了一个周期, 从此进入下一个周期进行循环工作, 直至燃烧工作结束。
在本实施例中, 在切换步骤中, 切换用于燃烧的蓄热式燃烧器中的一个用于排烟, 同时 切换用于排烟的蓄热式燃烧器中的一个用于燃烧。 由此排烟效果更好, 炉压稳定。
在本实施例中, 在所述切换步骤中, 顺次地切换第一蓄热燃烧器 21、 第二蓄热式燃烧 器 22和第三蓄热式燃烧器 23交替用于燃烧或用于排烟, 由此确保处于排烟状态的燃烧起的 数量比处于燃烧状态的燃烧器的数量多 1个, 这样不仅可以延长单个蓄热式燃烧器用于排烟 的工作时间, 使得蓄热体吸热更加充分, 在安全生产的前提下最大限度回收总的高温烟气的 余热, 改善了生产及周边环境, 极大降低了烟气的热量损失, 减少了生产劳动强度。 此外, 本发明的方法还进一步减小了炉膛内压差的变化, 确保燃烧生产的稳定进行。
在本实施例中, 切换步骤在三个蓄热式燃烧器之间周期性地执行。顺次执行完切换步骤 后再从用于燃烧的第一蓄热式燃烧器 21开始重新执行切换步骤, 循环进行燃烧生产, 直至生 产结束。
在本实施例中, 所述设备包含 3个蓄热式燃烧器, 设定周期时长为 60s, 那么在一个周期 中,每个蓄热式燃烧器用于燃烧的工作时间优选为 20s,每个蓄热式燃烧器用于排烟的工作时 间则为 40s,控制器在两个蓄热式燃烧器之间切换的间隔时间等于用于燃烧的蓄热式燃烧器燃 烧的工作时间 20s。
作为本发明的另一个优选实施例, 如图 3所示。在本实施例中, 一种蓄热式燃烧装置包 括五个蓄热式燃烧器 2。 控制器开始启动第一蓄热式燃烧器 21和第二蓄热式燃烧器 22首先 用于燃烧, 同时启动第三蓄热式燃烧器 23、 第四蓄热式燃烧器 24以及第五蓄热式燃烧器 25 用于排烟, 用于排烟的蓄热式燃烧器比用于燃烧的蓄热式燃烧器多一个, 即 m=2, n=3。
燃烧步骤中第一蓄热式燃烧器 21和第二蓄热式燃烧器 22进行燃烧工作,同时第三蓄热 式燃烧器 23、 第四蓄热式燃烧器 24以及第五蓄热式燃烧器 25用于排烟工作。
切换步骤中,控制器既可以同时切换第一蓄热式燃烧器 21和第二蓄热式燃烧器 22用于 排烟, 并且同时切换其余 3个用于排烟的蓄热式燃烧器中的任 2个用于燃烧; 又可以不同时 切换第一蓄热式燃烧器 21和第二蓄热式燃烧器 22用于排烟。 例如, 控制器首先切换第一蓄 热式燃烧器 21用于排烟, 但是不同时切换第三蓄热式燃烧器 23、 第四蓄热式燃烧器 24和第 五蓄热式燃烧器 25中的任一个用于燃烧 (此状态下, 仅第二蓄热式燃烧器 22用于燃烧烧, 其余 4个蓄热式燃烧器用于排烟) , 间隔一段时间后, 控制器再切换用于燃烧的第二蓄热式 燃烧器 22用于排烟, 同时切换第三蓄热式燃烧器 23、 第四蓄热式燃烧器 24和第五蓄热式燃 烧器 25中的任一个用于燃烧。
优选地, 第一蓄热式燃烧器 21和第二蓄热式燃烧器 22同时进行燃烧工作一段时间后, 例如 30s后, 控制器同时切换第一蓄热式燃烧器 21和第二蓄热式燃烧器 22用于排烟, 并且 同时切换第三蓄热式燃烧器 23和第四蓄热式燃烧器 24用于燃烧。 然后第三蓄热式燃烧器 23 和第四蓄热式燃烧器 24进行燃烧工作, 第一蓄热式燃烧器 21、 第二蓄热式燃烧器 22和第五 蓄热式燃烧器 25进行排烟工作, 及时将炉膛内的烟气全部排出。 第三蓄热式燃烧器 23和第 四蓄热式燃烧器 24燃烧工作一段时间后, 例如 30s, 控制器顺次切换第三蓄热式燃烧器 23 和第四蓄热式燃烧器 24用于排烟, 同时顺次切换第一蓄热式燃烧器 21和第五蓄热式燃烧器 25用于燃烧。 然后第一蓄热式燃烧器 21和第五蓄热式燃烧器 25进行燃烧工作, 第二蓄热式 燃烧器 22、 第三蓄热式燃烧器 23和第四蓄热式燃烧器 24用于排烟。 以此类推。 在本实施例 中, 在切换步骤中, 切换用于燃烧的蓄热式燃烧器中的 2个用于排烟, 同时切换用于排烟的 蓄热式燃烧器中的 2个用于燃烧。 由此排烟效果更好, 炉压稳定。 在本实施例中, 切换步骤 在五个蓄热式燃烧器之间周期性地执行, 顺次执行完切换步骤后再从用于燃烧的第一蓄热式 燃烧器 21和第二蓄热式燃烧器 22开始重新执行燃烧步骤, 循环进行燃烧生产, 直至生产结 束。
与现有技术相比, 本发明的切换蓄热式燃烧设备及方法具有如下突出技术效果:
( 1 ) 排烟顺畅、 炉压稳定。 燃烧产生的烟气能够及时地被蓄热式燃烧器全部派出, 确 保设备工作的安全性。
(2) 温差小, 加热质量好。 燃烧炉内温度分布均匀, 温差达 ±5°C, 加上炉内较低的含 氧环境, 对加热工件极为有利。 既提高了加热速度和加热质量, 又减少了工件氧化烧损率, 大大提高了炉子产量。
( 3 ) 节能效果显著。 总的烟气余热回收率提高到了 80%以上, 比现有技术中成对设置 燃烧器的蓄热式燃烧设备节能至少 20%~25%, 节能潜力巨大。
(4) 污染物排放少。燃烧过程的充分性大大减少了烟气中 CO、 C02和其他温室气体的 排放; 高温低氧的燃烧环境以及烟气回流的惨混作用, 大大抑制了 NOx的生成。 此外, 高温 环境抑制了二恶英的生成, 排放废气迅速冷却, 有效阻止了二恶英的再合成, 故二恶英的排 放大大减少; 火焰在整个炉膛内逐渐扩散燃烧, 燃烧噪音低。 因此本发明的设备或方法属于 环境协调型蓄热式燃烧技术。 应当注意的是, 以上所述的实施例仅用于解释本发明, 并不构成对本发明的任何限制。 通过参照典型实施例对本发明进行了描述, 但应当理解为其中所用的词语为描述性和解释性 词汇, 而不是限定性词汇。 可以按规定在本发明权利要求的范围内对本发明作出修改, 以及 在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、 材料和实施例, 但是并不意味着本发明限于其中公开的特定例, 相反, 本发明可扩展至其他 所有具有相同功能的方法和应用。

Claims

权利要求书
1. 一种交替切换蓄热式燃烧设备,其包括与炉膛相连的至少三个蓄热式燃烧器以及用于 控制所述蓄热式燃烧器的控制器,控制器切换所述蓄热式燃烧器以交替用于燃烧或用于排烟, 使得在任意时刻用于排烟的蓄热式燃烧器的数量比用于燃烧的蓄热式燃烧器的数量多。
2. 根据权利要求 1所述的设备,其特征在于, 炉膛内的全部烟气通过用于排烟的蓄热式 燃烧器排出。
3. 根据权利要求 1或 2所述的设备, 其特征在于,控制器切换用于燃烧的蓄热式燃烧器 中的至少一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的至少一个用于燃烧。
4. 根据权利要求 1或 2所述的设备, 其特征在于,控制器切换用于燃烧的蓄热式燃烧器 中的一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的一个用于燃烧。
5. 根据权利要求 1~4中任意一项所述的设备,其特征在于,控制器顺次地切换用于燃烧 的蓄热式燃烧器用于排烟, 并且顺次地切换用于排烟的蓄热式燃烧器用于燃烧。
6. 根据权利要求 1~5中任意一项所述的设备,其特征在于,控制器周期性切换用于燃烧 的蓄热式燃烧器用于排烟, 并且周期性地切换用于排烟的蓄热式燃烧器用于燃烧。
7. 根据权利要求 1~6中任意一项所述的设备,其特征在于,用于燃烧的蓄热式燃烧器每 次燃烧工作的时间为 15 300秒, 优选 30 200秒。
8. 根据权利要求 1~7中任意一项所述的设备,其特征在于,所述蓄热式燃烧器包括至少 一个与炉膛相连通的烧嘴, 每次同时切换的蓄热式燃烧器所包括的烧嘴的总功率相同。
9. 根据权利要求 1~8中任意一项所述的设备,其特征在于,各所述蓄热式燃烧器均包括 蓄热室, 所述蓄热室的一端通过烧嘴与炉膛连通, 所述蓄热室的另一端设有进风口和排烟口, 其中进风口与用于提供助燃气体的助燃气体管路连通, 排烟口与用于排烟的烟气管路连通。
10.根据权利要求 9所述的设备, 其特征在于, 所述蓄热室内设有蓄热体, 所述蓄热体的 形状为片状、 条状、 蜂窝状或球状, 优选为球状; 所述蓄热体的材质选自粘土、 莫来石、 高 铝、 刚玉和碳化硅, 优选为刚玉。
11.根据权利要求 10所述的设备, 其特征在于, 所述蓄热***于烧嘴的上方。
12.根据权利要求 9~11中任意一项所述的设备, 其特征在于, 所述蓄热室全部设置于炉 顶。
13.根据权利要求 9~12中任意一项所述的设备, 其特征在于, 所述蓄热室通过设置有通 孔的篦子砖被分为上下两部分, 其中蓄热***于篦子砖的上部, 篦子砖的下部设置有积灰室。
14.根据权利要求 13所述的设备, 其特征在于, 所述篦子砖的上部包括靠近篦子砖的高 温段以及靠近排烟口的低温段。
15.根据权利要求 14所述的设备, 其特征在于, 所述蓄热体包括多个大直径蓄热球和多 个小直径蓄热球, 其中大直径蓄热球设置于高温段, 小直径蓄热球设置于低温段。
16.根据权利要求 1~15中任意一项所述的设备, 其特征在于, 各个所述蓄热式燃烧器彼 此相同。
17.一种蓄热式燃烧设备的控制方法, 其包括如下步骤:
启动步骤: 启动 m个蓄热式燃烧器用于燃烧, 同时启动 n个蓄热式燃烧器用于排烟, 其 中 n>m, 且 n+m 3, n和 m均为自然数;
燃烧步骤: 使用于燃烧的蓄热式燃烧器进行燃烧工作, 用于排烟的蓄热式燃烧器将炉膛 内的烟气排出;
切换步骤: 切换用于燃烧的蓄热式燃烧器中的至少一个用于排烟, 切换用于排烟的蓄热 式燃烧器中的至少一个用于燃烧, 使得用于排烟的蓄热式燃烧器的数量比用于燃烧的蓄热式 燃烧器的数量多;
循环步骤: 返回执行燃烧步骤, 直至燃烧工作结束。
18.根据权利要求 17所述的方法, 其特征在于, 炉膛内的全部烟气通过用于排烟的蓄热 式燃烧器排出。
19.根据权利要求 17或 18所述的方法, 其特征在于, 在所述切换步骤中, 切换用于燃烧 的蓄热式燃烧器中的至少一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的至少一个用 于燃烧。
20.根据权利要求 17或 18所述的方法, 其特征在于, 在所述切换步骤中, 切换用于燃烧 的蓄热式燃烧器中的一个用于排烟, 同时切换用于排烟的蓄热式燃烧器中的一个用于燃烧。
21.根据权利要求 17 20中任意一项所述的方法, 其特征在于, 在所述切换步骤中, 顺次 地切换用于燃烧的蓄热式燃烧器用于排烟, 并且顺次地切换用于排烟的蓄热式燃烧器用于燃m。
22.根据权利要求 17 21中任意一项所述的方法, 其特征在于, 在所述切换步骤中, 周期 性地切换用于燃烧的蓄热式燃烧器用于排烟, 并且周期性地切换用于排烟的蓄热式燃烧器用 于燃烧。
23.根据权利要求 22所述的方法, 其特征在于, 在一个周期中, 每一个用于燃烧的蓄热 式燃烧器的燃烧工作时间为 T X m/(m+n), 其中 T为周期的时长。
24.根据权利要求 17 23中任意一项所述的方法,其特征在于,在启动步骤中同时启动所 述 m个蓄热式燃烧器用于燃烧, 其中 m 2。
PCT/CN2014/082554 2013-09-24 2014-07-18 一种交替切换蓄热式燃烧设备及其控制方法 WO2015043295A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/023,743 US20160230991A1 (en) 2013-09-24 2014-07-18 Alternate-switching regenerative combustion apparatus and control method therefor
BR112016006433A BR112016006433A2 (pt) 2013-09-24 2014-07-18 equipamento de combustão regenerativa de ligação alternada e método para controlar um equipamento de combustão regenerativa
MX2016003726A MX2016003726A (es) 2013-09-24 2014-07-18 Aparato de combustion regenerativa de conmutacion alterna y metodo de control para el mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310437228.2 2013-09-24
CN201310437228 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015043295A1 true WO2015043295A1 (zh) 2015-04-02

Family

ID=52741995

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/082554 WO2015043295A1 (zh) 2013-09-24 2014-07-18 一种交替切换蓄热式燃烧设备及其控制方法
PCT/CN2014/082557 WO2015043296A1 (zh) 2013-09-24 2014-07-18 一种递进切换蓄热式燃烧设备及其控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082557 WO2015043296A1 (zh) 2013-09-24 2014-07-18 一种递进切换蓄热式燃烧设备及其控制方法

Country Status (5)

Country Link
US (1) US20160230991A1 (zh)
CN (6) CN104456569A (zh)
BR (1) BR112016006433A2 (zh)
MX (1) MX2016003726A (zh)
WO (2) WO2015043295A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529856B2 (ja) * 2015-08-13 2019-06-12 中外炉工業株式会社 蓄熱式バーナーの蓄熱体メンテナンス時期報知装置、蓄熱式バーナーの蓄熱体メンテナンス時期報知方法、並びに蓄熱式バーナーを用いた燃焼炉の改造方法
CN105300099A (zh) * 2015-11-18 2016-02-03 北京神雾环境能源科技集团股份有限公司 熔炉
CN105737192B (zh) * 2016-02-18 2019-01-22 湖南巴陵炉窑节能股份有限公司 燃烧器的控制器及燃烧设备
DE102016110170B3 (de) * 2016-06-02 2017-11-23 Kopf Holding Gmbh Verzinkungsofen und Verfahren zum Betrieb eines Verzinkungsofens
CN106196071A (zh) * 2016-07-18 2016-12-07 湖南巴陵炉窑节能股份有限公司 一种蓄热式燃烧装置
CN106642086A (zh) * 2016-12-27 2017-05-10 珠海市威望节能科技有限公司 一种高效节能多蓄热式烟气余热回收燃烧***
CN106766890A (zh) * 2017-01-06 2017-05-31 黄石市福星铝业有限公司 一种铝熔炼炉新式燃烧及循环***
CN106765220A (zh) * 2017-01-20 2017-05-31 山西亚乐士环保技术股份有限公司 五室蓄热式热氧化器
JP6727729B2 (ja) * 2017-07-07 2020-07-22 中外炉工業株式会社 熱処理炉
CN107191946B (zh) * 2017-07-20 2018-12-21 中煤科工集团重庆研究院有限公司 一种五室结构瓦斯氧化装置及其运行方法
CN107606939A (zh) * 2017-09-22 2018-01-19 杭州金舟科技股份有限公司 一种蓄热式余热利用型锻造加热炉
US10495303B2 (en) * 2017-10-31 2019-12-03 Vitro Flat Glass Llc Nitrogen oxide (NOx) emission reduction in an oxy-combustion furnace
CN108120280A (zh) * 2017-12-21 2018-06-05 东北大学 一种蓄热式燃烧v2o5熔化炉
CN108050854A (zh) * 2018-01-18 2018-05-18 宁波东成群利机械有限公司 燃烧器气体供应装置及熔解保温炉
CN108518695A (zh) * 2018-04-10 2018-09-11 江苏大信环境科技有限公司 一种用于蓄热体的在线除焦装置及除焦方法
CN108916876A (zh) * 2018-07-05 2018-11-30 南京锐控机电制造有限公司 气源自动识别控制装置及气源自动识别方法
CN109682223A (zh) * 2019-01-02 2019-04-26 上海联赞工业炉有限公司 一种油烟回收燃烧装置
ES2903201T3 (es) 2019-04-11 2022-03-31 Hertwich Eng Gmbh Procedimiento para el encendido continuo de cámaras de combustión con al menos tres quemadores regenerativos
CN110879012A (zh) * 2019-09-30 2020-03-13 中冶华天工程技术有限公司 蓄热式两位三控分侧温度控制方法
CN110645798A (zh) * 2019-10-21 2020-01-03 山东万方窑炉工程科技有限责任公司 不对称换向单蓄热加热炉及其运行方法
CN110848724A (zh) * 2019-11-20 2020-02-28 景德镇陶瓷大学 三通道蓄热式换热装置
CN111780567A (zh) * 2020-06-19 2020-10-16 无锡寸长南方工程技术有限公司 蓄热式加热炉的不对称燃烧及排烟方法
CN112665407B (zh) * 2020-12-15 2022-11-11 青岛新力通热工科技有限公司 一种蓄热式加热炉炉膛压力控制方法
CN112833393B (zh) * 2021-01-08 2022-02-18 青岛新力通热工科技有限公司 一种蓄热式燃烧器的控制方法
CN113154381B (zh) * 2021-04-09 2022-04-22 山东一然环保科技有限公司 一种低蓄热式低氮直焰烧嘴
CN113310064B (zh) * 2021-06-11 2022-07-26 秦皇岛精佳易达环保科技有限公司 一种精巧型集成rto***
CN113465366A (zh) * 2021-06-28 2021-10-01 东北大学 一种回转窑低氮燃烧装置及生产方法
JP7484839B2 (ja) 2021-07-26 2024-05-16 株式会社村田製作所 加熱炉
CN113720169B (zh) * 2021-09-07 2023-08-25 上海呈彧智能科技有限公司 基于双目标反馈的蓄热式加热炉烟气反吹扫方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253047A (ja) * 1997-03-08 1998-09-25 Osaka Gas Co Ltd 交代燃焼式加熱炉
JP2001131633A (ja) * 1999-11-11 2001-05-15 Kawasaki Steel Corp 雰囲気ガスの加熱温度調整方法および加熱温度調整装置
CN102269518A (zh) * 2010-06-03 2011-12-07 中外炉工业株式会社 蓄热燃烧式热处理炉的燃烧控制方法
US20120000454A1 (en) * 2010-06-30 2012-01-05 Bryan Joseph Kraus Regenerative firing system
US20130196277A1 (en) * 2011-08-09 2013-08-01 John N. Newby Regenerative Air Heater And Method of Operation

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923391A (en) * 1984-08-17 1990-05-08 American Combustion, Inc. Regenerative burner
JP3159606B2 (ja) * 1994-07-27 2001-04-23 中外炉工業株式会社 蓄熱再生式燃焼システムの流量制御方法
JP3267140B2 (ja) * 1996-02-23 2002-03-18 日本鋼管株式会社 加熱炉、その燃焼制御方法及び燃焼制御装置
EP0797063A3 (de) * 1996-03-19 1999-04-21 Gautschi Electro-Fours SA Verfahren zum Beheizen eines Industrieofens und Regenerator-Brenner-Modulsystem hierfür
JP3959773B2 (ja) * 1997-02-28 2007-08-15 Jfeスチール株式会社 蓄熱式雰囲気ガス加熱方法及び蓄熱式雰囲気ガス加熱装置
JPH1194239A (ja) * 1997-09-26 1999-04-09 Nippon Furnace Kogyo Kaisha Ltd 交互切換蓄熱再生バーナシステム及びその燃焼制御方法
JPH11230543A (ja) * 1998-02-12 1999-08-27 Ngk Insulators Ltd 蓄熱再生式バーナの運転方法
US6113389A (en) * 1999-06-01 2000-09-05 American Air Liquide, Inc. Method and system for increasing the efficiency and productivity of a high temperature furnace
CN2424374Y (zh) * 2000-05-24 2001-03-21 冶金工业部北京冶金设备研究院 一种蓄热式烧嘴
CN2578686Y (zh) * 2002-06-03 2003-10-08 于杰 一种自身蓄热烧嘴
US6722294B2 (en) * 2002-08-06 2004-04-20 Vitro Global, S.A. Method and apparatus for feeding a pulverized material
JP2004150681A (ja) * 2002-10-30 2004-05-27 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置の運転制御方法およびその装置
FR2909994B1 (fr) * 2006-12-15 2009-11-06 Gaz De France Sa Four de fusion de verre
CN201034313Y (zh) * 2007-04-04 2008-03-12 长葛市天润有色金属研究所 一种空气、燃料双预热交换式燃烧炉
US20100081103A1 (en) * 2008-09-26 2010-04-01 Hisashi Kobayashi Furnace with multiple heat recovery systems
EP2210864A1 (en) * 2009-01-23 2010-07-28 Air Liquide Italia Service Alternating regenerative furnace and process of operating same
CN101514871A (zh) * 2009-04-10 2009-08-26 株洲火炬工业炉有限责任公司 蓄热式熔铅炉
JP4801185B2 (ja) * 2009-04-21 2011-10-26 中外炉工業株式会社 蓄熱式燃焼装置
CN201429085Y (zh) * 2009-05-18 2010-03-24 青岛华世洁环保科技有限公司 一种新型蓄热式焚烧炉
CN201547779U (zh) * 2009-12-09 2010-08-11 岳阳钟鼎热工电磁科技有限公司 旋转式连续蓄热燃烧器
CN201589540U (zh) * 2009-12-30 2010-09-22 首钢总公司 蓄热式加热炉炉压控制调节装置
CN101900332B (zh) * 2010-05-07 2011-12-28 大连海事大学 蓄热式超低热值燃气处理及能量利用装置
CN201688405U (zh) * 2010-05-07 2010-12-29 大连海事大学 蓄热式超低热值燃气处理及能量利用装置
CN201992643U (zh) * 2011-03-18 2011-09-28 苏州安科节能技术有限责任公司 新型蓄热式燃烧器
CN203615341U (zh) * 2013-09-24 2014-05-28 岳阳市巴陵节能炉窑工程有限公司 一种蓄热式燃烧***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253047A (ja) * 1997-03-08 1998-09-25 Osaka Gas Co Ltd 交代燃焼式加熱炉
JP2001131633A (ja) * 1999-11-11 2001-05-15 Kawasaki Steel Corp 雰囲気ガスの加熱温度調整方法および加熱温度調整装置
CN102269518A (zh) * 2010-06-03 2011-12-07 中外炉工业株式会社 蓄热燃烧式热处理炉的燃烧控制方法
US20120000454A1 (en) * 2010-06-30 2012-01-05 Bryan Joseph Kraus Regenerative firing system
US20130196277A1 (en) * 2011-08-09 2013-08-01 John N. Newby Regenerative Air Heater And Method of Operation

Also Published As

Publication number Publication date
CN109442410A (zh) 2019-03-08
US20160230991A1 (en) 2016-08-11
CN104456617A (zh) 2015-03-25
CN104457302A (zh) 2015-03-25
CN104456617B (zh) 2017-01-25
MX2016003726A (es) 2016-08-18
CN104456616A (zh) 2015-03-25
BR112016006433A2 (pt) 2017-08-01
CN104456616B (zh) 2017-01-25
WO2015043296A1 (zh) 2015-04-02
CN104456569A (zh) 2015-03-25
CN109442409A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2015043295A1 (zh) 一种交替切换蓄热式燃烧设备及其控制方法
CN102645116B (zh) 一种连续蓄热式热交换器
CN202066385U (zh) 一种新型余热回收利用装置
CN2697470Y (zh) 蓄热式燃气辐射管燃烧器
CN205026653U (zh) 一种复合的蓄热式燃烧装置
CN202501472U (zh) 一种扁平火焰低NOx燃气燃烧器
CN103615905B (zh) 连续蓄热式工业炉余热利用***
CN205026654U (zh) 一种混合的蓄热式燃烧装置
CN203489670U (zh) 蓄热式连续火焰管式加热炉
CN101915502A (zh) 一种用回收烟气调制燃油(气)反射炉氧气氛的方法
CN205026663U (zh) 一种蓄热式燃烧装置
CN100513871C (zh) 一种低氧高温空气燃烧方法及其装置
CN101846447A (zh) 一种倒焰窑
WO2012163274A1 (zh) 燃气电弧双热式高效炼硅炉及其加热方法
CN202328300U (zh) 窑炉的烟道结构
CN202175560U (zh) 燃气电弧双热式蓄热余热废气回燃环保节能高效炼硅炉
CN100462663C (zh) 一种高温低氧空气燃烧锅炉及使用方法
CN204901870U (zh) 一种保温炉用蓄热燃烧器
CN203550633U (zh) 自蓄热熔铝炉余热利用***
CN202747782U (zh) 填充球蓄热式节能熔铝炉
CN216745425U (zh) 节能型蓄热锑白挥发锅
CN210689200U (zh) 一种高温无氧裂解实验的加热装置
CN201425298Y (zh) 高效节能多功能循环加热炉
CN202216524U (zh) 一种高效环形加热炉
CN202039101U (zh) 节能洁净型无水冷滑轨加热炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023743

Country of ref document: US

Ref document number: MX/A/2016/003726

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016006433

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14847423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016006433

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160323

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016006433

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2430 DE 01/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016006433

Country of ref document: BR

Kind code of ref document: A2

Free format text: REAPRESENTE O RELATORIO DESCRITIVO COM A NUMERACAO DAS PAGINAS CORRIGIDA.