WO2015043088A1 - 触控式有机发光二极管显示装置及其制作方法 - Google Patents

触控式有机发光二极管显示装置及其制作方法 Download PDF

Info

Publication number
WO2015043088A1
WO2015043088A1 PCT/CN2013/089684 CN2013089684W WO2015043088A1 WO 2015043088 A1 WO2015043088 A1 WO 2015043088A1 CN 2013089684 W CN2013089684 W CN 2013089684W WO 2015043088 A1 WO2015043088 A1 WO 2015043088A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
touch
organic light
emitting diode
display device
Prior art date
Application number
PCT/CN2013/089684
Other languages
English (en)
French (fr)
Inventor
张文林
曹占锋
孙双
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/368,653 priority Critical patent/US9640593B2/en
Publication of WO2015043088A1 publication Critical patent/WO2015043088A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • Embodiments of the present invention relate to a touch-sensitive organic light emitting diode (OLED) display device and a method of fabricating the same.
  • OLED organic light emitting diode
  • touch electronic products have undergone tremendous changes, and touch electronic products have been increasingly sought after by people. These touch electronic products not only save space, but also are easy to carry, and the user can directly operate by finger or stylus, and is comfortable and convenient.
  • PDA personal digital processing
  • touch-type mobile phones, portable notebook computers, etc. which are commonly used in the market
  • touch devices will have various fields in the future. A wider range of applications.
  • the OLED display is displayed in a different way than the conventional LCD (Liquid Crystal Display) display. It does not require a backlight and is formed by a very thin coating of organic material and a glass substrate. These organic materials illuminate when current is passed through. Therefore, the characteristics of the OLED are self-luminous, so that the visibility and the brightness are high, and the voltage demand is low and the power saving efficiency is high. Coupled with the advantages of fast response, light weight, thin thickness, simple construction, and low cost, OLED is regarded as one of the most promising products in the 21st century.
  • the touch structure of the organic light emitting diode display device is mostly prepared by separately separating the touch screen and the display portion of the organic light emitting diode display device. This increases the weight and thickness of the display itself, and is light and thin compared to the advantages of the OLED display device itself. Summary of the invention
  • the embodiment of the invention provides a touch-sensitive organic light-emitting diode display device and a manufacturing method thereof, so as to prevent the existing organic light-emitting diode display device from being prepared by separately separating the display portion of the touch screen and the organic light-emitting diode display device, thereby increasing the display The problem of its own weight and thickness.
  • An aspect of the invention provides a touch-sensitive organic light-emitting diode display device, including: a thin film transistor formed on one side of a substrate, and a touch signal feedback layer formed on the thin film transistor, A light-emitting substrate disposed on the touch signal feedback layer is formed with a touch signal receiving layer on the other side of the substrate. An anode layer of the light emitting substrate is connected to a drain of the thin film transistor.
  • a protective layer is formed on the thin film transistor; the touch signal feedback layer is formed on the protective layer; an interlayer insulating layer is formed on the touch signal feedback layer; and the interlayer insulating layer is formed on the interlayer insulating layer a first via hole is disposed, and a second via hole is disposed on the protective layer, the anode layer is formed on the interlayer insulating layer, and passes through the first via hole and the second via hole The drain of the thin film transistor is connected. Light layer and cathode layer.
  • the thickness of the anode layer is 40 ⁇ -70 ⁇ .
  • the touch signal receiving layer and the touch signal feedback layer are each made of at least one of indium gallium oxide, indium oxide, indium tin oxide, and indium gallium tin oxide.
  • the thickness of the touch signal receiving layer is 400A-700A; for example, the thickness of the touch signal feedback layer is 40 ⁇ -70 ⁇ .
  • the material of the protective layer is SiOx or SiNx.
  • Another aspect of the present invention provides a method for fabricating a touch-sensitive OLED display device, including: forming a pattern of a touch signal receiving layer on one side of a substrate; and forming a drain on the other side of the substrate a thin film transistor pattern; a pattern of a touch signal feedback layer formed on the thin film transistor; a pattern of a light emitting substrate including an anode layer formed on the touch signal feedback layer, the anode layer being connected to the drain .
  • a pattern of a protective layer having a second via hole is formed on a source and a drain of the thin film transistor; a pattern of the touch signal feedback layer is formed on the protective layer; and the touch signal is fed back Forming an interlayer insulating layer having a first via hole on the layer; forming a pattern of the anode layer on the interlayer insulating layer, and the anode layer passes through the first via hole and the second via hole and Drain connection.
  • a pattern of the light-emitting layer and a pattern of the cathode layer are sequentially formed on the anode layer by a patterning process.
  • FIG. 1 is a schematic structural view of a touch-type organic light emitting diode display device after the first photolithography process is completed in the first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a touch-type organic light emitting diode display device after the second photolithography process is completed in the first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a touch-type organic light emitting diode display device after the third photolithography process is completed in the first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a touch-type organic light-emitting diode display device after the fourth photolithography process is completed in the first embodiment of the present invention
  • FIG. 5 is a schematic structural view of a touch-type organic light emitting diode display device after the fifth photolithography process is completed in the first embodiment of the present invention
  • FIG. 6 is a schematic structural view of a touch-type organic light-emitting diode display device after the sixth photolithography process is completed in the first embodiment of the present invention
  • FIG. 7 is a schematic structural view of a touch-type organic light-emitting diode display device after the seventh photolithography process is completed in the first embodiment of the present invention
  • FIG. 8 is a schematic structural view of a touch-type organic light-emitting diode display device after the eighth photolithography process is completed in the first embodiment of the present invention
  • FIG. 9 is a schematic structural view of a touch-type organic light emitting diode display device after the ninth photolithography process is completed in the first embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a touch-type organic light emitting diode display device after the tenth photolithography process is completed in the first embodiment of the present invention
  • FIG. 11 is a schematic structural view of a touch-type organic light emitting diode display device after the eleventh photolithography process is completed in the first embodiment of the present invention
  • FIG. 12 is a schematic structural view of a touch-type organic light emitting diode display device after the twelfth photolithography process is completed in the first embodiment of the present invention
  • FIG. 13 is a cross-sectional view showing a tubular organic light emitting diode display device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a touch electrode orthogonal strip electrode according to an embodiment of the invention.
  • Figure 15 is a schematic view showing the structure of a touch type organic light emitting diode display device according to a second embodiment of the present invention.
  • a touch-type organic light-emitting diode display device is a bottom-gate structure.
  • the touch-sensitive organic light-emitting diode display device includes a thin film transistor A formed on one side of the substrate 2, and a touch signal feedback layer 9 is formed on the thin film transistor A, and the touch signal is fed back.
  • the light-emitting substrate B is provided on the layer 9, for example, the anode layer 11 of the light-emitting substrate B is connected to the drain 72 of the thin film transistor A, and the touch signal receiving layer 1 is formed on the other side of the substrate 2.
  • the touch type organic light emitting diode display device of the embodiment includes a pixel array defined by a gate line, a data line (and a power line), each pixel in the array having at least one thin film transistor as a switching element and a driving element, and as a light emitting element Organic light-emitting diodes.
  • the organic light emitting diode may emit red light, green light, blue light or white light, etc., as needed.
  • the touch-sensitive OLED display device of the present embodiment forms a touch signal receiving layer 1 on one side of the substrate 2, and forms a touch signal feedback layer 9 on the thin film transistor A.
  • the anode layer 11 and the thin film transistor of the light-emitting substrate B are formed.
  • the drain 72 of A is connected, and the touch signal feedback layer 11 is disposed inside the thin film transistor A, thereby realizing the integration of the touch screen and the display portion of the organic light emitting diode, thereby greatly reducing the weight and thickness of the display itself.
  • the thin film transistor includes: a gate electrode 3 formed on the substrate 2; a gate insulating layer 4 covering the gate electrode 3 and extending onto the substrate 2; An active layer 5 formed on the gate insulating layer 4 and above the gate electrode 2; overlying the active layer 5 and a barrier layer 6 extending on the gate insulating layer 4; a source electrode 71 and a drain electrode 72 are formed on the barrier layer 6, and the source electrode 71 and the drain electrode 72 are connected to the active layer 5; a protective layer 8 formed on the source 71 and the drain 72; the touch signal feedback layer 9 is formed on the protective layer 8; and an interlayer insulating layer 10 is formed on the touch signal feedback layer 9; a first via hole is disposed on the interlayer insulating layer 10, and a second via hole is disposed on the protective layer 8.
  • the anode layer 11 is formed on the interlayer insulating layer 10, and passes through the A via hole and a second via hole are connected to the drain electrode 72 of the thin film transistor A; a light emitting layer and a cathode layer are sequentially formed on the anode layer 11.
  • the anode layer 11, the light emitting layer, and the cathode layer constitute an organic light emitting diode.
  • FIG. 1-12 is a schematic diagram of a method for fabricating a touch-sensitive organic light-emitting diode display device according to the present invention, which may further illustrate the technical solution of the embodiment.
  • the patterning process referred to in the present invention includes a process of photoresist coating, masking, exposure, etching, and photoresist stripping, and the photoresist is exemplified by a positive photo-stretched strand.
  • the substrate 2 may be a transparent alkali-free glass substrate or a quartz substrate, or a transparent substrate having a certain hardness.
  • the touch-type organic light-emitting diode display device of the first embodiment is formed by using a plurality of patterning processes, and the process flow of the plurality of patterning processes is as follows.
  • Step 1 sputtering the touch signal receiving layer 1 on the side of the cleaned substrate 2, for example, it may be at least one of indium gallium zinc oxide, indium oxide, indium tin oxide, and indium gallium tin oxide.
  • a material is made, for example, made of Indium Tin Oxides (ITO), for example, its thickness can be controlled at 40 ⁇ -70 ⁇ .
  • Step 2 as shown in FIG. 2, the substrate 2 prepared in step 1 is turned over, and the gate 3 is formed on the other side of the cleaned substrate 2 by magnetron sputtering or thermal evaporation.
  • the material may be Mo or AlNd/Mo is selected, for example, its thickness can be controlled at 200 ⁇ -300 ⁇ .
  • Step 3 depositing a gate insulating layer 4 on the substrate 2 on which the step 2 is completed, the gate insulating layer 4 covering the gate 3 and extending onto the substrate 2, such as a gate
  • the pole insulating layer 4 is made of SiOx or SiNx and has a thickness of about 4000A.
  • Step 4 as shown in FIG. 4, an active layer 5 is formed by sputtering on the substrate 2 on which the step 3 is completed, for example, it is made of indium gallium zinc oxide (IGZO), and the sputtering thickness is 40nm-60nm.
  • IGZO indium gallium zinc oxide
  • the material of the active layer 5 is not limited to, for example, an oxide semiconductor material of IGZO, and may be, for example, amorphous silicon or the like.
  • Step 5 depositing a barrier layer 6 on the substrate 2 of step 4, the barrier layer 6 covering the active layer 5 and extending onto the gate insulating layer 4, for example, a material thereof It may be SiOx and the thickness is controlled to be around ⁇ . After annealing for one hour, it is then subjected to gluing, exposure, development, wet etching, and peeling to form contact vias.
  • Step 6 as shown in FIG. 6, sputtering a conductive layer for forming the source 71 and the drain 72 on the substrate 2 of the step 5, after being glued, exposed, developed, wet-etched, and stripped to complete the source 71 and the drain
  • the figure of the pole 72 the material of the conductive layers of the source 71 and the drain 72 may be selected from Mo or AlNd/Mo, and the thickness is controlled between 2000 A and 3000 A.
  • Step 7 as shown in FIG. 7, a photoresist is applied on the substrate 2 of the step 6 to form a protective layer 8, for example, the material of the protective layer may be SiOx or SiNx, and then exposed to develop a second via.
  • a photoresist is applied on the substrate 2 of the step 6 to form a protective layer 8, for example, the material of the protective layer may be SiOx or SiNx, and then exposed to develop a second via.
  • Step 8 as shown in FIG. 8, sputtering the touch signal feedback layer 9 on the substrate 2 of the step 7, for example, at least one of indium gallium oxide, indium oxide, indium tin oxide, and indium gallium tin oxide.
  • the thickness can be controlled at 40 ⁇ -70 ⁇ .
  • Step 9 as shown in Fig. 9, an interlayer insulating layer 10 is formed on the substrate 2 of the step 8, and is cured, developed, and exposed to form a first via hole.
  • Step 10 as shown in FIG. 10, sputtering the anode layer 11 on the substrate 2 of the step 9, for example,
  • the thickness is controlled at around 400A-700A.
  • the anode pattern is completed by gluing, exposing, developing, wet etching, and stripping.
  • the light-emitting layer 12 is evaporated on the substrate 2 of the step 10.
  • the light-emitting layer 12 is an organic light-emitting layer, and may further include a functional layer such as a hole transport layer (HTL) and an electron transport layer (ETL).
  • HTL hole transport layer
  • ETL electron transport layer
  • Step 12 as shown in Fig. 12, the cathode layer 13 is evaporated on the substrate 2 of the step 11.
  • the cathode layer 13 is evaporated on the substrate 2 of the step 11.
  • it is made of a metal such as Ag, Al, Ca, In, Li, and Mg having a low work function, or a composite metal having a low work function (e.g., Mg-Ag).
  • the choice of materials made by the organic light emitting diode display device has a wide range of flexibility, and embodiments of the present invention do not require it.
  • the touch signal receiving layer 1 is formed on one side of the substrate 2, the touch signal feedback layer 9 is formed on the thin film transistor A, and then the light emitting substrate B is further disposed on the thin film transistor A, and then the external total is
  • the control circuit connects the touch signal receiving layer 1 and the touch signal feedback layer 9 to achieve touch display.
  • Fig. 14 is a view showing the strip electrodes in the touch signal receiving layer 1 and the touch signal feedback layer 9.
  • the touch signal receiving layer 1 can receive the pulse signal in the X direction
  • the touch signal feedback layer 9 can receive the pulse signal in the Y direction.
  • a pulse signal of the Y direction is applied to the touch electrodes on one of the touch signal feedback layers 9, the other columns are grounded, and at the same time, the sensing electrodes on the touch signal receiving layer 1 are detected line by line.
  • the touch display is touched, the capacitance of the touched position is changed, and after the above scanning, the intersection of the position where the capacitance is changed can be determined, and the control circuit C can obtain the touch screen by algorithm calculation.
  • the control circuit C can send the result to, for example, a central processing unit (CPU) to display the display position on the touch screen or perform corresponding operations according to predetermined settings to achieve the touch purpose.
  • a finger touches it is equivalent to a change in capacitance, and a voltage or a charge can be detected.
  • the touch signal feedback layer can also be interchanged with the touch signal receiving layer, that is, the touch signal feedback layer can also receive the X-direction pulse signal, and the corresponding touch on the touch signal receiving layer.
  • the control electrode is added with a pulse signal in the Y direction, which can also achieve the purpose of touch.
  • the design signals commonly used for the touch signal receiving layer 1 and the touch signal feedback layer 9 may be a bar graph, a rhombic graph, and a triangle graph, and a rhombic pattern is commonly used.
  • the design generally requires that the connection between the patterns be too long. If the connection is too long, the line resistance will be too large, thus prolonging the scan time.
  • the diamond shape for each row and column should be complete, and if the space allows it, it can be expanded outward to increase the sensitivity of the edge. Semi-diamonds are used at the end of each row and column, but the semi-diamonds should not be too large, so as to avoid different sensing areas of rows and columns, resulting in inconsistent scanning detection.
  • the connection between the touch pattern and the external total control circuit can be made of metal such as nano silver, Al, Cu, etc., and the length can be controlled between 50um and 200um.
  • a touch-type organic light-emitting diode display device is a top-gate structure.
  • the touch-sensitive OLED display device of the second embodiment includes: a touch signal receiving layer 1 formed on the side of the substrate 2; and formed on the other side of the substrate 2 a buffer layer 14; an active layer 5 formed on the buffer layer 14; a gate insulating layer 4 covering the active layer 5 and extending over the buffer layer 14, and having a contact on the gate insulating layer 4 a hole 3; a gate electrode 3 formed on the gate insulating layer 4 and above the active layer 5; a flat layer 15 covering the gate electrode 3 and extending over the gate insulating layer 4, in the interlayer insulating layer 10 a contact via is formed thereon; a source 71 and a drain 72 are formed on the interlayer insulating layer 10, and the source 71 and the drain 72 are connected to the gate 5 through the contact via; covering the source 71 and the drain a protective layer 8 on the interlayer 72
  • the manufacturing method of this embodiment is similar to that of the first embodiment, and the process flow is as follows.
  • Step 1 sputtering a touch signal receiving layer 1 on one side of the cleaned substrate 2 , for example, it may be made of at least one of indium gallium oxide, indium oxide, indium tin oxide, and indium gallium tin oxide.
  • the thickness can be controlled at 40 ⁇ -70 ⁇ .
  • step 2 the substrate 2 prepared in the step 1 is turned over, and the buffer layer 14 is sputtered on the other side of the cleaned substrate 2.
  • the active layer 5 is partially sputter-deposited on the substrate 2 on which the step 2 is completed.
  • it may be made of IGZO and sputtered to a thickness of 40 nm to 60 nm. After being glued, exposed, developed, wet-etched, peeled, cured, the active layer is completed.
  • Step 4 depositing a gate insulating layer 4 on the substrate 2 on which the step 3 is completed, the gate insulating layer 4 covering the active layer 5 and extending onto the buffer layer 14, for example, the material adopts SiOx and SiNx, thickness can be controlled at about 4000A, cured, developed, and exposed to form contact vias.
  • Step 5 sputtering the gate 3 on the substrate 2 on which the step 4 is completed.
  • the material may be Mo or AlNd/Mo, and the thickness may be controlled at 200 ⁇ -300 ⁇ . After the glue is applied, exposed, developed, wet-etched, and peeled off, the first layer of the gate pattern is completed.
  • Step 6 forming a flat layer 15 on the substrate 2 on which the step 5 is completed, the interlayer insulating layer 10 It covers the gate electrode 3 and extends onto the gate insulating layer 4, which is cured, developed, and exposed to form an ITO contact via.
  • Step 7 On the substrate 2 on which the step 6 is completed, a conductive layer for forming the source 71 and the drain 72 is sputtered, and the source and drain patterns are completed by coating, exposing, developing, wet etching, and stripping.
  • the conductive layer may be selected from materials of Mo or AlNd/Mo, and the thickness is controlled between 2000 A and 3000 A.
  • Step 8 Applying a photoresist to the substrate 2 on which the step 7 is completed to form a protective layer 8, for example, the material of the protective layer may be SiOx or SiNx, and then exposed to develop a second via hole.
  • the material of the protective layer may be SiOx or SiNx
  • Step 9 Sputtering the touch signal feedback layer 9 on the substrate 2 on which the step 8 is completed.
  • it may be made of at least one of indium gallium oxide, indium oxide, indium tin oxide, and indium gallium tin oxide. It can be controlled at 400A-700A, and the touch signal feedback layer pattern is completed after being glued, exposed, developed, etched and peeled off.
  • step 10 a photoresist is coated on the substrate 2 on which the step 9 is completed to form an interlayer insulating layer 10, which is then exposed and developed to form a first via.
  • Step 11 Sputtering the anode layer 11 on the substrate 2 on which the step 10 is completed, for example, it is made of ITO, and the thickness is controlled to be about 400A-700A. After the glue is applied, exposed, developed, wet-etched, and peeled off to complete the anode pattern.
  • the light-emitting layer 12 is evaporated on the substrate 2 on which the step 11 is completed.
  • the light-emitting layer 12 is an organic light-emitting layer, and may further include a functional layer such as a hole transport layer (HTL) and an electron transport layer (ETL).
  • HTL hole transport layer
  • ETL electron transport layer
  • the cathode layer 13 is evaporated on the substrate 2 on which the step 12 is completed.
  • it is made of a metal such as Ag, Al, Ca, In, Li, and Mg having a low work function, or a composite metal having a low work function (for example, Mg-Ag).
  • the package can be packaged, and after the package is completed, the fabrication of the device is completed.
  • the touch display can be realized after subsequent circuit wiring.
  • the thin film transistor of the embodiment of the present invention may be a P-type field effect transistor or an N-type field effect transistor.
  • the touch-sensitive organic light-emitting diode display device of the embodiment of the present invention includes a thin film transistor formed on one side of the substrate, and a touch signal feedback layer is formed on the thin film transistor.
  • a light-emitting substrate is disposed on the feedback layer, an anode layer of the light-emitting substrate is connected to a drain of the thin film transistor, and a touch signal receiving layer is formed on the other side of the substrate.
  • the touch signal feedback layer is disposed inside the thin film transistor, and realizes the integration of the touch screen and the display portion of the organic light emitting diode, thereby solving the problem that the touch screen and the display portion of the organic light emitting diode need to be separated, thereby greatly reducing the display. Its own weight and thickness saves production costs.
  • the manufacturing method of the touch-sensitive organic light-emitting diode display device of the embodiment of the invention enables the touch signal feedback layer to be located in the thin film transistor, and the manufacturing step is completed, which saves the manufacturing cost and reduces the fabrication method by the method.
  • the thickness of the display device is not limited to the thickness of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种触控式有机发光二极管显示装置包括:形成在基板(2)一侧的薄膜晶体管(A),在薄膜晶体管(A)上形成的触控信号反馈层(9),在触控信号反馈层(9)上设置的发光基板(B),在基板(2)的另一侧形成的触控信号接收层(1)。发光基板(B)的阳极层(11)与薄膜晶体管(A)的漏极(72)连接。该触控式有机发光二极管显示装置将触控屏和有机发光二极管显示部分制作为一体,降低了显示器本身的重量和厚度,节约了制作成本。还公开了触控式有机发光二极管显示装置的制作方法。

Description

触控式有机发光二极管显示装置及其制作方法 技术领域
本发明的实施例涉及一种触控式有机发光二极管 (OLED)显示装置及其 制作方法。 背景技术
随着科技的高速发展, 电子类产品已发生了巨大的变化, 触控电子产品 已越来越多的受到人们的追捧。这些触控电子产品不但节省空间,方便携带, 而且用户通过手指或者触控笔等就可直接操作,使用舒适, 非常便捷。 例如, 对于目前市场常见的个人数字处理 (PDA)、 触控类手机、 手提式笔记型电脑 等等, 业界都已加大对触控技术的投入, 所以触控式装置将来必在各个领域 有更加广泛的应用。
OLED显示屏, 其显示方式与传统的 LCD (液晶显示器)显示方式不同, 无需背光源,采用非常薄的有机材料涂层和玻璃基板形成。 当有电流通过时, 这些有机材料就会发光。 因此, OLED的特性是自发光, 因此可视度和亮度 均高, 其次电压需求低且省电效率高。 再加上反应快、 重量轻、 厚度薄、 构 造筒单、 成本低等优点, OLED被视为二十一世纪最具前途的产品之一。
触控技术与 OLED技术的结合必定促进显示技术的发展, 也是未来显示 发展的一种趋势。 现阶段有机发光二极管显示装置触控结构大多是将触控屏 和有机发光二极管显示装置显示部分分开制备。 这增加了显示器本身的重量 和厚度, 与有机发光二极管显示装置本身的优势轻、 薄相悖。 发明内容
本发明的实施例提供一种触控式有机发光二极管显示装置及其制作方 法, 以避免现有有机发光二极管显示装置由于将触控屏和有机发光二极管显 示装置显示部分分开制备, 而增加了显示器本身的重量和厚度的问题。
本发明的一个方面提供了一种触控式有机发光二极管显示装置,其包括: 形成在基板一侧的薄膜晶体管,在所述薄膜晶体管上形成的触控信号反馈层, 在所述触控信号反馈层上设置的发光基板, 在所述基板的另一侧形成有触控 信号接收层。 所述发光基板的阳极层与所述薄膜晶体管的漏极连接。
例如, 所述薄膜晶体管上形成有保护层; 在所述保护层上形成所述触控 信号反馈层; 在所述触控信号反馈层上形成层间绝缘层; 在所述层间绝缘层 上设有第一过孔, 在所述保护层上设有第二过孔, 所述阳极层形成于所述层 间绝缘层上,并通过所述第一过孔及第二过孔与所述薄膜晶体管的漏极连接。 光层和阴极层。
例如, 所述阳极层的厚度为 40θΑ-70θΑ。
例如, 所述触控信号接收层和触控信号反馈层均由氧化铟镓辞、 氧化铟 辞、 氧化铟锡、 氧化铟镓锡中的至少一种材料制成。
例如, 所述触控信号接收层的厚度为 400A-700A; 例如, 所述触控信号 反馈层的厚度为 40θΑ-70θΑ。
例如, 所述保护层的材料为 SiOx或 SiNx。
本发明的另一个方面还提供了一种触控式有机发光二极管显示装置的制 作方法, 包括: 在基板的一侧形成触控信号接收层的图形; 在所述基板的另 一侧形成包括漏极的薄膜晶体管图形; 在所述薄膜晶体管上形成触控信号反 馈层的图形; 在所述触控信号反馈层上形成包括阳极层的发光基板的图形, 所述阳极层与所述漏极连接。
例如, 在所述薄膜晶体管的源极及漏极上形成具有第二过孔的保护层的 图形; 在所述保护层上形成所述触控信号反馈层的图形; 在所述触控信号反 馈层上形成具有第一过孔的层间绝缘层; 在所述层间绝缘层上形成所述阳极 层的图形, 且所述阳极层通过所述第一过孔及第二过孔与所述漏极连接。
例如, 在所述阳极层上依次通过构图工艺形成发光层的图形和阴极层的 图形。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。 图 1是本发明实施例一中第一次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 2是本发明实施例一中第二次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 3是本发明实施例一中第三次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 4是本发明实施例一中第四次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 5是本发明实施例一中第五次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 6是本发明实施例一中第六次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 7是本发明实施例一中第七次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 8是本发明实施例一中第八次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 9是本发明实施例一中第九次光刻工艺完成后的触控式有机发光二极 管显示装置的结构示意图;
图 10是本发明实施例一中第十次光刻工艺完成后的触控式有机发光二 极管显示装置的结构示意图;
图 11 是本发明实施例一中第十一次光刻工艺完成后的触控式有机发光 二极管显示装置的结构示意图;
图 12是本发明实施例一中第十二次光刻工艺完成后的触控式有机发光 二极管显示装置的结构示意图;
图 13 是本发明实施例的触控式有机发光二极管显示装置筒化的截面示 意图;
图 14是本发明实施例的触控电极正交条形电极的示意图;
图 15 是本发明实施例二的触控式有机发光二极管显示装置的结构示意 图。
附图标记: 1: 触控信号接收层; 2: 基板; 3: 栅极; 4: 栅极绝缘层; 5: 有源层; 6: 阻挡层; 71: 源极; 72: 漏极; 8: 保护层; 9: 触控信号反馈层; 10: 层 间绝缘层; 11: 阳极层; 12: 发光层; 13: 阴极层; 14: 緩沖层; 15: 平坦 层; A: 薄膜晶体管; B: 发光基板; C: 外部总控制电路。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一
如图 1-13所示,本发明实施例一提供的一种触控式有机发光二极管显示 装置, 其为底栅式结构。如图 13所示, 该触控式有机发光二极管显示装置包 括形成在基板 2一侧的薄膜晶体管 A,在所述薄膜晶体管 A上形成有触控信 号反馈层 9, 在所述触控信号反馈层 9上设置发光基板 B, 例如所述发光基 板 B的阳极层 11与所述薄膜晶体管 A的漏极 72连接,在所述基板 2的另一 侧形成有触控信号接收层 1。
本实施例的触控式有机发光二极管显示装置包括由栅线、数据线 (以及电 源线)界定的像素阵列,阵列中每个像素具有作为开关元件和驱动元件的至少 一个薄膜晶体管以及作为发光元件的有机发光二极管。 根据需要该有机发光 二极管例如可以发红光、 绿光、 蓝光或白光等。
本实施例的触控式有机发光二极管显示装置通过在基板 2的一侧形成触 控信号接受层 1 , 在薄膜晶体管 A上形成触控信号反馈层 9, 发光基板 B的 阳极层 11与薄膜晶体管 A的漏极 72连接, 实现了将触控信号反馈层 11设 置于薄膜晶体管 A的内部, 实现了将触控屏和有机发光二极管显示部分制作 为一体, 大大降低了显示器本身的重量和厚度。
如图 12所示, 所述薄膜晶体管包括: 形成在所述基板 2上的栅极 3; 覆 盖在所述栅极 3上并延伸至所述基板 2上的栅极绝缘层 4; 在所述栅极绝缘 层 4上形成的并位于所述栅极 2上方的有源层 5; 覆盖在所述有源层 5上并 延伸至所述栅极绝缘层 4上的阻挡层 6;在所述阻挡层 6上形成有源极 71及 漏极 72, 所述源极 71及漏极 72与有源层 5连接; 在所述源极 71及漏极 72 上形成的保护层 8;在所述保护层 8上形成所述触控信号反馈层 9;在所述触 控信号反馈层 9上形成层间绝缘层 10; 在所述层间绝缘层 10上设有第一过 孔,在所述保护层 8上设有第二过孔,所述阳极层 11形成于所述层间绝缘层 10上,并通过所述第一过孔及第二过孔与所述薄膜晶体管 A的漏极 72连接; 在阳极层 11上依次形成发光层和阴极层。 阳极层 11、 发光层和阴极层构成 有机发光二极管。
图 1-12为本发明的触控式有机发光二极管显示装置制作方法的示意图, 可进一步说明本实施例的技术方案。 在以下说明中, 本发明所称的构图工艺 包括光刻胶涂覆、 掩膜、 曝光、 刻蚀和光刻胶剥离等工艺, 光刻胶以正性光 刻股为例。
例如, 所述基板 2可采用透明的无碱玻璃基板或者石英基板, 或者采用 将其他具有一定硬度的透明基板。
本实施例一的触控式有机发光二极管显示装置采用多次构图工艺过程形 成, 所述多次构图工艺的工艺流程如下所述。
步骤 1 , 如图 1所示, 在清洗好的基板 2—侧溅射触控信号接收层 1 , 例 如其可以由氧化铟镓锌、 氧化铟辞、 氧化铟锡、 氧化铟镓锡中的至少一种材 料制成, 例如由纳米铟锡金属氧化物 (Indium Tin Oxides, ITO)制成, 例如其 厚度可控制在 40θΑ-70θΑ。 在经过涂胶, 曝光, 显影, 湿刻, 剥离完成触控 信号接收层 ΙΤΟ图形。
步骤 2, 如图 2所示, 将步骤 1制好的基板 2翻转过来, 在清洗好的基 板 2的另一侧上采用磁控溅射或热蒸发的方法形成栅极 3, 例如其材料可以 选择 Mo或 AlNd/Mo, 例如其厚度可控制在 200θΑ-300θΑ。 在经过涂胶, 曝 光, 显影, 湿刻, 剥离完成背板第一层栅极图形。
步骤 3, 如图 3所示, 在完成步骤 2的基板 2上沉积栅极绝缘层 4, 所述 栅极绝缘层 4覆盖在所述栅极 3上并延伸至所述基板 2上, 例如栅极绝缘层 4采用材料 SiOx或 SiNx , 厚度可控制在 4000A左右。
步骤 4, 如图 4所示, 在完成步骤 3的基板 2上溅射形成有源层 5, 例如 其由铟镓辞氧化物(indium gallium zinc oxide , IGZO)制成, 溅射厚度 40nm-60nm。 经过涂胶, 曝光, 显影, 湿刻, 剥离, 固化, 完成有源层 5的 制作。 有源层 5的材料不限于例如 IGZO的氧化物半导体材料, 例如也可以 为非晶硅等。
步骤 5, 如图 5所示, 在步骤 4的基板 2上沉积阻挡层 6, 所述阻挡层 6 覆盖在所述有源层 5 上并延伸至所述栅极绝缘层 4上, 例如其材料可以是 SiOx,厚度控制在 ΙΟΟθΑ左右。 经过退火一小时, 然后进行经过涂胶, 曝光, 显影, 湿刻, 剥离, 形成接触过孔。
步骤 6, 如图 6所示, 在步骤 5的基板 2上溅射用于形成源极 71和漏极 72的导电层, 经过涂胶, 曝光, 显影, 湿刻, 剥离完成源极 71和漏极 72的 图形。 例如, 源极 71和漏极 72的导电层的材料可以选择 Mo或 AlNd/Mo, 厚度控制在 2000 A-3000 A之间。
步骤 7, 如图 7所示, 在步骤 6 的基板 2上涂覆光刻胶制作保护层 8, 例如所述保护层的材料可以为 SiOx或 SiNx, 然后曝光,显影形成第二过孔。
步骤 8, 如图 8所示, 在步骤 7的基板 2上溅射触控信号反馈层 9, 例如 其由氧化铟镓辞、氧化铟辞、 氧化铟锡、 氧化铟镓锡中的至少一种材料制成, 厚度可控制在 40θΑ-70θΑ。 在经过涂胶, 曝光, 显影, 湿刻, 剥离完成触控 信号反馈层图形。
步骤 9, 如图 9所示, 在步骤 8的基板 2上制作层间绝缘层 10, 经过固 化, 显影, 曝光形成第一过孔。
步骤 10, 如图 10所示, 在步骤 9的基板 2上溅射阳极层 11 , 例如其由
ITO制成, 厚度控制在 400A-700A左右。 经过涂胶, 曝光, 显影, 湿刻, 剥 离完成阳极图形。
步骤 11 , 如图 11所示, 在步骤 10的基板 2上蒸镀发光层 12。该发光层 12 为有机发光层, 例如还可以进一步包括空穴传输层 (HTL)与电子传输层 (ETL)等功能层。
步骤 12, 如图 12所示, 在步骤 11的基板 2上蒸镀阴极层 13。例如其由 低功函数的 Ag、 Al、 Ca、 In、 Li与 Mg等金属, 或低功函数的复合金属 (例 如 Mg-Ag)来制作。
有机发光二极管显示装置制作的材料选择有广泛的灵活性, 本发明的实 施例不做要求。 在经过上述步骤后进行封装, 封装后, 器件的制作结束。 然后再经过后 续的电路接线, 即可实现触控显示。
如图 13所示,触控信号接收层 1形成于基板 2的一侧,触控信号反馈层 9形成在薄膜晶体管 A之上, 然后在薄膜晶体管 A上再设置发光基板 B, 再 通过外部总控制电路将触控信号接收层 1和触控信号反馈层 9连接, 可以达 到触控显示。
本实施例的触控显示器的工作原理如下所述。图 14给出了触控信号接收 层 1和触控信号反馈层 9中条形电极的示意图。 触控信号接收层 1可以接受 X向的脉沖信号, 触控信号反馈层 9可以接受 Y向的脉沖信号。 当给其中一 列触控信号反馈层 9上的触控电极加上 Y向的脉沖信号时, 其他列接地, 与 此同时, 对触控信号接收层 1上的感应电极逐行进行检测。 当该触控显示器 被触摸时, 被触摸位置的电容发生改变, 则经上述扫描检后, 位于电容改变 位置的交叉点便被可以确定,控制电路 C通过算法计算便可以得出在触控屏 上的哪个点被触摸, 然后通过控制电路 C可以将该结果发送给例如中央处理 器 (CPU)以将显示位置显示在触控屏上或者根据预定设置进行相应操作, 达 到触控目的。 当手指接触时, 等效为电容改变, 可以检测电压或者电荷。 当 然, 所述触控信号反馈层也可与所述触控信号接收层互换, 即所述触控信号 反馈层也可接受 X向的脉沖信号,相应的在触控信号接收层上的触控电极加 上 Y向的脉沖信号, 此也可达到触控目的。
触控信号接收层 1和触控信号反馈层 9通常用的设计图形可以是条形图 形、 菱形图形和三角形图形, 而菱形图形比较常用。 设计时一般要求避免图 形之间的连线过长, 如果连线过长会使的线电阻过大, 从而延长扫描时间。 每行和每列的菱形应该是完整的, 如果空间允许可以向外扩展些以增加边缘 的灵敏度。 在每行和每列的结束处使用半菱形, 但半菱形不能过多, 这样可 以避免行和列的感应面积不一样, 导致扫面检测不一致。 触控图形与外部总 控制电路的连接用到金属线可以是纳米银、 Al、 Cu等线电阻值小的金属, 长 度可以控制在 50um-200um之间。
实施例二
如图 15所示,本发明实施例二提供的一种触控式有机发光二极管显示装 置, 其为顶栅式结构。 本实施例的工作原理和实施例一相同, 本实施例二的触控式有机发光二 极管显示装置包括: 形成在基板 2—侧的触控信号接收层 1; 形成在基板 2 的另一侧的緩沖层 14; 形成在緩沖层 14上的有源层 5; 覆盖在所述有源层 5 上并延伸至緩沖层 14上的栅极绝缘层 4, 在栅极绝缘层 4上设有接触过孔; 形成在栅极绝缘层 4上且位于有源层 5上方的栅极 3; 覆盖在所述栅极 3上 并延伸至栅极绝缘层 4上的平坦层 15, 在层间绝缘层 10上设有接触过孔; 形成在层间绝缘层 10上的源极 71和漏极 72,所述源极 71和漏极 72通过接 触过孔与栅极 5连接; 覆盖在源极 71和漏极 72上并延伸至层间绝缘层 10 上的保护层 8;在保护层 8上形成所述触控信号反馈层 9;在所述触控信号反 馈层 9上形成层间绝缘层 10; 在所述层间绝缘层 10上设有第一过孔, 在所 述保护层 8上设有第二过孔, 所述阳极层 11形成于所述层间绝缘层 10上, 并通过所述第一过孔及第二过孔与漏极 72连接; 在阳极层 11上依次形成发 光层 12和阴极层 13。
本实施例的制作方法工艺和实施例一类似, 工艺流程如下所述。
步骤 1 ,在清洗好的基板 2的一侧溅射触控信号接收层 1 ,例如其可由氧 化铟镓辞、 氧化铟辞、 氧化铟锡、 氧化铟镓锡中的至少一种材料制成, 例如 由纳米 ITO制成, 厚度可控制在 40θΑ-70θΑ。 在经过涂胶, 曝光, 显影, 湿 刻, 剥离完成触控信号接收层 ITO图形。
步骤 2, 将步骤 1制好的基板 2翻转过来, 在清洗好的基板 2的另一侧 溅射緩沖层 14。
步骤 3,在完成步骤 2的基板 2上部分溅射形成有源层 5,例如其可以由 IGZO制成, 溅射厚度 40nm-60nm。 经过涂胶, 曝光, 显影, 湿刻, 剥离, 固化, 完成有源层的制作。
步骤 4, 在完成步骤 3的基板 2上沉积栅极绝缘层 4, 所述栅极绝缘层 4 覆盖在所述有源层 5上并延伸至所述緩沖层 14上, 例如其材料采用 SiOx和 SiNx, 厚度可控制在 4000A左右, 经过固化, 显影, 曝光形成接触过孔。
步骤 5, 在完成步骤 4的基板 2上溅射栅极 3, 例如其材料可以选择 Mo 或 AlNd/Mo, 厚度可控制在 200θΑ-300θΑ。 在经过涂胶, 曝光, 显影, 湿刻, 剥离完成背板第一层栅极图形。
步骤 6, 在完成步骤 5的基板 2上制作平坦层 15, 所述层间绝缘层 10 覆盖在栅极 3上并延伸至所述栅极绝缘层 4上, 其经过固化, 显影, 曝光形 成 ITO接触过孔。
步骤 7, 在完成步骤 6的基板 2上溅射用于形成源极 71和漏极 72的导 电层, 经过涂胶, 曝光, 显影, 湿刻, 剥离完成源极和漏极图形。 例如该导 电层可以选择 Mo或 AlNd/Mo的材料, 厚度控制在 2000 A-3000 A之间。
步骤 8, 在完成步骤 7 的基板 2上涂覆光刻胶制作保护层 8, 例如所述 保护层的材料可以为 SiOx或 SiNx, 然后曝光, 显影形成第二过孔。
步骤 9,在完成步骤 8的基板 2上溅射触控信号反馈层 9,例如其可由氧 化铟镓辞、 氧化铟辞、 氧化铟锡、 氧化铟镓锡中的至少一种材料制成, 厚度 可控制在 400A-700A, 在经过涂胶, 曝光, 显影, 刻蚀, 剥离完成触控信号 反馈层图形。
步骤 10, 在完成步骤 9 的基板 2上涂覆光刻胶制作层间绝缘层 10, 然 后曝光, 显影形成第一过孔。
步骤 11 ,在完成步骤 10的基板 2上溅射阳极层 11 ,例如其由 ITO制成, 厚度控制在 400A-700A左右。 经过涂胶, 曝光, 显影, 湿刻, 剥离完成阳极 图形。
步骤 12,在完成步骤 11的基板 2上蒸镀发光层 12。该发光层 12为有机 发光层, 例如还可以进一步包括空穴传输层 (HTL)与电子传输层 (ETL)等功能 层。
步骤 13, 在完成步骤 12的基板 2上蒸镀阴极层 13。 例如其由低功函数 的 Ag、 Al、 Ca、 In、 Li与 Mg等金属, 或低功函数的复合金属 (例如 Mg-Ag) 来制作。
在经过上述步骤后就可以进行封装,封装后, 器件的制作结束。 在经过 后续的电路接线, 可以实现触控显示。
另需要说明的是, 本发明实施例的薄膜晶体管可以是 P型场效应晶体管 或 N型场效应晶体管。
综上所述, 本发明实施例的触控式有机发光二极管显示装置, 其包括形 成在基板一侧的薄膜晶体管, 在所述薄膜晶体管上形成有触控信号反馈层, 在所述触控信号反馈层上设置发光基板, 所述发光基板的阳极层与所述薄膜 晶体管的漏极连接, 在所述基板的另一侧形成有触控信号接收层。 这样就将 触控信号反馈层设置于薄膜晶体管的内部, 实现了将触控屏和有机发光二极 管显示部分制作为一体, 解决了需要将触控屏和有机发光二极管显示部分分 开做的问题, 大大降低了显示器本身的重量和厚度, 节约了制作成本。
同样, 本发明实施例的触控式有机发光二极管显示装置的制造方法, 使 得触控信号反馈层位于薄膜晶体管内, 筒化了制作步骤, 节约了制作成本, 同时也减小了通过该方法制作的显示装置的厚度。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种触控式有机发光二极管显示装置, 包括:
形成在基板一侧的薄膜晶体管,
在所述薄膜晶体管上形成的触控信号反馈层,
在所述触控信号反馈层上设置的发光基板, 所述发光基板的阳极层与所 述薄膜晶体管的漏极连接,
在所述基板的另一侧形成的触控信号接收层。
2、 根据权利要求 1所述的触控式有机发光二极管显示装置, 还包括: 所述薄膜晶体管上形成的保护层, 在所述保护层上形成所述触控信号反 馈层;
在所述触控信号反馈层上形成的层间绝缘层,
其中, 在所述层间绝缘层中设有第一过孔, 在所述保护层中设有第二过 孔, 所述阳极层形成于所述层间绝缘层上, 并通过所述第一过孔及第二过孔 与所述薄膜晶体管的漏极连接。
3、 根据权利要求 1或 2所述的触控式有机发光二极管显示装置, 其中: 层。
4、根据权利要求 3所述的触控式有机发光二极管显示装置, 其中: 所述 阳极层的厚度为 40θΑ-70θΑ。
5、根据权利要求 1-4任一所述的触控式有机发光二极管显示装置,其中: 所述触控信号接收层和触控信号反馈层均由氧化铟镓辞、 氧化铟辞、 氧化铟 锡、 氧化铟镓锡中的至少一种材料制成。
6、根据权利要求 5所述的触控式有机发光二极管显示装置, 其中: 所述 触控信号接收层的厚度为 40θΑ-70θΑ。
7、 根据权利要求 5或 6所述的触控式有机发光二极管显示装置, 其中: 所述触控信号反馈层的厚度为 40θΑ-70θΑ。
8、根据权利要求 2所述的触控式有机发光二极管显示装置, 其中: 所述 保护层的材料为 SiOx或 SiNx。
9、 一种触控式有机发光二极管显示装置的制作方法, 包括: 在基板的一侧形成触控信号接收层的图形;
在所述基板的另一侧形成包括漏极的薄膜晶体管图形;
在所述薄膜晶体管上形成触控信号反馈层的图形;
在所述触控信号反馈层上形成包括阳极层的发光基板的图形, 所述阳极 层与所述漏极连接。
10、根据权利要求 9所述的触控式有机发光二极管显示装置的制作方法, 其中:
在所述薄膜晶体管的源极及漏极上形成具有第二过孔的保护层的图形; 在所述保护层上形成所述触控信号反馈层的图形;
在所述触控信号反馈层上形成具有第一过孔的层间绝缘层;
在所述层间绝缘层上形成所述阳极层的图形, 且所述阳极层通过所述第 一过孔及第二过孔与所述漏极连接。
11、 根据权利要求 10所述的触控式有机发光二极管显示装置的制作方 法, 其中: 在所述阳极层上依次通过构图工艺形成发光层的图形和阴极层的 图形。
PCT/CN2013/089684 2013-09-27 2013-12-17 触控式有机发光二极管显示装置及其制作方法 WO2015043088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/368,653 US9640593B2 (en) 2013-09-27 2013-12-17 Touch organic light emitting diode display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310452236.4 2013-09-27
CN201310452236.4A CN103531608A (zh) 2013-09-27 2013-09-27 触控式有机发光二极管显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2015043088A1 true WO2015043088A1 (zh) 2015-04-02

Family

ID=49933477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089684 WO2015043088A1 (zh) 2013-09-27 2013-12-17 触控式有机发光二极管显示装置及其制作方法

Country Status (3)

Country Link
US (1) US9640593B2 (zh)
CN (1) CN103531608A (zh)
WO (1) WO2015043088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575433B (zh) * 2015-07-24 2017-03-21 宸鴻光電科技股份有限公司 觸控顯示面板

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224117B (zh) * 2014-06-20 2019-01-04 上海和辉光电有限公司 触控显示屏及其制造方法
US9627463B2 (en) * 2014-11-28 2017-04-18 Lg Display Co., Ltd. Flexible display device with space reducing wire configuration
CN104393025B (zh) * 2014-12-09 2017-08-11 京东方科技集团股份有限公司 一种阵列基板、触控显示面板和触控显示装置
CN104810382A (zh) * 2015-05-07 2015-07-29 深圳市华星光电技术有限公司 Amoled背板的制作方法及其结构
CN104866153B (zh) * 2015-05-29 2018-01-16 武汉华星光电技术有限公司 自电容式内嵌触摸屏及其制备方法、液晶显示器
CN105353924B (zh) * 2015-12-28 2018-07-17 信利光电股份有限公司 一种amoled触摸显示屏及其制造方法
CN105373261B (zh) * 2015-12-28 2018-07-17 信利光电股份有限公司 一种触摸显示屏及其制造方法
CN105428373B (zh) * 2015-12-31 2018-12-28 京东方科技集团股份有限公司 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件
KR101998831B1 (ko) 2016-07-29 2019-07-11 삼성디스플레이 주식회사 표시 장치
CN106206666B (zh) * 2016-08-29 2019-10-01 上海天马微电子有限公司 有机发光显示面板和有机发光显示装置
CN106298859B (zh) * 2016-09-30 2018-09-04 京东方科技集团股份有限公司 触控面板及显示装置
KR20180043528A (ko) * 2016-10-20 2018-04-30 주식회사 실리콘웍스 인셀 터치 유기발광표시장치 및 그 구동회로
CN107657231B (zh) * 2017-09-27 2020-08-11 京东方科技集团股份有限公司 指纹识别传感器及其制作方法和显示装置
CN108091676B (zh) * 2017-12-14 2022-02-22 合肥鑫晟光电科技有限公司 一种触控显示基板、其制作方法及触控显示装置
CN111309175B (zh) * 2020-01-19 2022-07-29 业成科技(成都)有限公司 触控面板及其制备方法、触控显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054962A (ja) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
CN102738199A (zh) * 2011-03-31 2012-10-17 索尼公司 显示设备与电子装置
US20130222317A1 (en) * 2010-10-08 2013-08-29 Sharp Kabushiki Kaisha Display device, and process for manufacturing display device
CN203445126U (zh) * 2013-09-27 2014-02-19 京东方科技集团股份有限公司 触控式有机发光二极管显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097283A (ja) * 2006-10-11 2008-04-24 Hosiden Corp タッチパネル入力装置
CN101609647A (zh) * 2009-07-30 2009-12-23 友达光电股份有限公司 触控式有机发光二极管显示装置及影像单元
CN102629611B (zh) * 2012-03-29 2015-01-21 京东方科技集团股份有限公司 一种显示装置、阵列基板及其制作方法
CN104303240B (zh) * 2012-05-17 2017-03-01 株式会社钟化 带有透明电极的基板及其制造方法以及触摸面板
KR102047007B1 (ko) * 2013-08-02 2019-11-21 삼성디스플레이 주식회사 유기발광표시장치 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054962A (ja) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
US20130222317A1 (en) * 2010-10-08 2013-08-29 Sharp Kabushiki Kaisha Display device, and process for manufacturing display device
CN102738199A (zh) * 2011-03-31 2012-10-17 索尼公司 显示设备与电子装置
CN203445126U (zh) * 2013-09-27 2014-02-19 京东方科技集团股份有限公司 触控式有机发光二极管显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575433B (zh) * 2015-07-24 2017-03-21 宸鴻光電科技股份有限公司 觸控顯示面板

Also Published As

Publication number Publication date
CN103531608A (zh) 2014-01-22
US20150162389A1 (en) 2015-06-11
US9640593B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2015043088A1 (zh) 触控式有机发光二极管显示装置及其制作方法
TWI576749B (zh) 可撓性顯示裝置、感測其撓曲之方法及其操作方法
CN106684155B (zh) 双栅薄膜晶体管及其制备方法、阵列基板及显示装置
US11563061B2 (en) OLED array substrate, manufacturing method thereof and touch display device
KR101050460B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
US10446633B2 (en) Transparent OLED display with transparent storage capacitor and manufacturing method thereof
TWI540487B (zh) A touch display device and its preparation method
US9230951B2 (en) Antistatic device of display device and method of manufacturing the same
WO2015100898A1 (zh) 薄膜晶体管、tft阵列基板及其制造方法和显示装置
US20150144902A1 (en) Organic Light Emitting Diode Display Device
TW201526225A (zh) 一種觸控顯示裝置及其製備方法
US10656478B2 (en) Array substrate and manufacturing method thereof, and display panel
KR20190015002A (ko) 터치 센서 인-셀 타입 유기전계 발광소자
US20160343739A1 (en) Thin film transistor, method of manufacturing thin film transistor, array substrate and display device
US11374027B2 (en) Manufacturing method of thin film transistor substrate and thin film transistor substrate
WO2015192417A1 (zh) Tft背板的制造方法及tft背板结构
WO2016165238A1 (zh) Oled基板及其制备方法、显示装置
US20190157355A1 (en) Touch screen panel and manufacturing method thereof
WO2016173012A1 (zh) 薄膜晶体管阵列基板及其制作方法
KR101689886B1 (ko) 산화물 반도체를 이용한 박막트랜지스터 기판의 제조방법
WO2015106547A1 (zh) 显示面板及其制备方法和显示装置
CN111625145B (zh) 一种触控显示基板及其制备方法、触控显示装置
KR102132412B1 (ko) 표시장치용 박막 트랜지스터 어레이 기판 및 그 제조방법
WO2013174105A1 (zh) 阵列基板、其制造方法、显示面板及显示装置
CN104538433A (zh) 有源矩阵有机发光显示器基板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14368653

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13894253

Country of ref document: EP

Kind code of ref document: A1