WO2015043047A1 - 一种互电容式的触摸屏 - Google Patents

一种互电容式的触摸屏 Download PDF

Info

Publication number
WO2015043047A1
WO2015043047A1 PCT/CN2013/087497 CN2013087497W WO2015043047A1 WO 2015043047 A1 WO2015043047 A1 WO 2015043047A1 CN 2013087497 W CN2013087497 W CN 2013087497W WO 2015043047 A1 WO2015043047 A1 WO 2015043047A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
longitudinal
transverse
bracket
Prior art date
Application number
PCT/CN2013/087497
Other languages
English (en)
French (fr)
Inventor
叶成亮
张君恺
邱杰
林永伦
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/131,305 priority Critical patent/US20160246397A1/en
Publication of WO2015043047A1 publication Critical patent/WO2015043047A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a touch screen, and more particularly to a mutual capacitive touch screen that can be applied to a large-sized screen. Background technique
  • the working principle of the capacitive touch screen is to use the current sensing work of the human body.
  • the capacitance is a direct conductor, and the conductor is sucked from the contact point.
  • the controller calculates the ratio of the four currents. Touch the location of the point.
  • the traditional capacitive touch screen uses a conductive film layer as the electrode conductive layer, which is limited by the hardness of the film layer. It is difficult to prepare a large-sized capacitive touch screen. When the whole body is bent and deformed, the interface is easily separated, resulting in electrode disconnection and touch failure. The touch-sensitive component is damaged; and the use of metal as the electrode conductive layer brings about a defect of a decrease in light transmittance.
  • the main object of the present invention is to provide a mutual capacitance type touch screen which can improve touch sensitivity, reduce internal resistance, and improve light transmittance.
  • the invention provides a mutual capacitance type touch screen, which comprises:
  • a metal support layer disposed under the touch substrate, including lateral brackets and longitudinal brackets that are perpendicular to each other and not in the same horizontal plane;
  • An insulating layer disposed between the lateral bracket and the longitudinal bracket;
  • At least two transparent conductive film layers including a transverse transparent conductive film layer and a longitudinal transparent conductive film layer, the lateral support and the lateral transparent conductive film layer are electrically connected to each other to form a lateral electrode, and the longitudinal support and the longitudinal transparent conductive film layer are electrically connected to each other to form a longitudinal electrode
  • the lateral transparent conductive film is disposed along the lateral bracket, and a width of the lateral transparent conductive film in a direction perpendicular to the lateral bracket is larger than a width of the lateral bracket to widen a contact area of the lateral electrode .
  • the transparent conductive film layer is made of indium tin oxide; the insulating layer is made of silicon nitride or silicon dioxide.
  • the longitudinal transparent conductive film layer is disposed along the longitudinal support, and the longitudinal transparent conductive film layer is vertical
  • the width in the direction of the longitudinal support is greater than the width of the longitudinal support to similarly widen the contact area of the longitudinal electrodes.
  • the insulating layer can have two different arrangements, one of which is to arrange the insulating layer over the entire surface of the lateral bracket and the touch substrate, and at this time, the lateral bracket is located
  • the insulating layer is provided with a through hole through which the lateral transparent conductive film layer is connected to the lateral support, and the longitudinal transparent conductive film layer is directly connected to the longitudinal support; another setting The method is to arrange an insulating layer at a position where the lateral bracket and the longitudinal bracket are staggered to ensure insulation at the intersection of the two.
  • the transparent conductive film layer is provided with four blocks, including two transverse transparent conductive film layers and two longitudinal transparent conductive film layers, and the four transparent conductive films are arranged around the intersection of the lateral support and the longitudinal support.
  • the film layers are placed on the same level.
  • the lateral bracket or the longitudinal bracket is a plurality of strips, and the plurality of touch strip regions are formed by the lateral brackets and the longitudinal brackets which are vertically interlaced, and the transparent conductive film layers on the touch panel regions are insulated from each other.
  • the lateral bracket or the longitudinal bracket is a plurality of strips, and the plurality of touch strip regions are formed by the lateral brackets and the longitudinal brackets which are vertically interlaced, and the transparent conductive film layers on the touch panel regions are insulated from each other.
  • VI is the input voltage value of the touch screen
  • C1 is the mutual capacitance between the lateral electrode and the longitudinal electrode
  • C2 is the conductor capacitance between the conductor and the lateral electrode and the longitudinal electrode
  • C3 is the lateral electrode or the longitudinal electrode and the carrier substrate Parasitic capacitance.
  • the mutual capacitance type touch screen adopts a structure in which a metal bracket layer and a transparent conductive film layer are combined, and a metal bracket layer is used as a transmitting end and a receiving end of the electrode, and the metal bracket layer has a small resistance value.
  • RC loading is small.
  • a transparent conductive film layer is plated on the metal support layer to widen the touch area of the conductor, and the transmittance of the touch screen is ensured.
  • the metal support layer performs signal transmission, which reduces RC loading, and can make the lateral transparent conductive film layer and the longitudinal transparent conductive film layer larger, and is suitable for a large-sized mutual capacitance type touch screen.
  • FIG. 1 is a longitudinal side view of a novel mutual capacitive touch screen of the present invention
  • FIG. 2 is a lateral side view of a first embodiment of a novel mutual capacitance type touch screen according to the present invention
  • FIG. 3 is a lateral side view of a second embodiment of a novel mutual capacitance type touch screen according to the present invention.
  • FIG. 4 is a plan view showing a first embodiment of an insulating layer of a novel mutual capacitance type touch screen according to the present invention
  • 5 is a top plan view of a second embodiment of an insulating layer of a novel mutual capacitance type touch screen according to the present invention
  • 6 is a top plan view of a first embodiment of a mutual mutual capacitance type touch screen according to the present invention
  • FIG. 7 is a top plan view of a second embodiment of a novel mutual capacitance type touch screen according to the present invention.
  • FIG. 8 is a partial enlarged view of a first embodiment of a novel mutual capacitance type touch screen according to the present invention.
  • FIG. 9 is a partial enlarged view of a second embodiment of a novel mutual capacitance type touch screen according to the present invention.
  • FIG. 10 is a diagram showing a capacitance distribution state of a novel mutual capacitance type touch screen according to the present invention.
  • the present invention provides a novel mutual capacitance type touch screen including
  • the touch substrate 1 is disposed on the surface of the touch screen;
  • the metal support layer 2 is disposed under the touch substrate 1 to support the touch substrate 1 and conducts electric current, and includes horizontal supports that are perpendicular to each other and not in the same horizontal plane.
  • the transverse support 20 and the longitudinal support 22 are alternately formed into a mesh metal support structure, at least two transparent conductive film layers 3, including a transverse transparent conductive film layer 30 and a longitudinal transparent conductive film layer 32, which are coated Or the adhesive layer covers the metal support layer 2, the two are electrically connected to each other, the lateral support 20 and the transverse transparent conductive film layer 30 are electrically connected to each other to form a lateral electrode, and the longitudinal support 22 and the longitudinal transparent conductive film layer 32 are electrically connected to each other to form a longitudinal direction.
  • a mutual capacitance is formed between the electrode, the lateral electrode and the longitudinal electrode; the transparent conductive film layer 3 Made of indium tin oxide (ITO).
  • the insulating layer 4 is disposed between the lateral bracket 20 and the longitudinal bracket 22 for blocking the lateral bracket 20 and the longitudinal bracket 22 to prevent mutual conduction.
  • a conductor capacitance is generated between the conductor and the lateral electrode and the vertical electrode.
  • the voltage generated by the capacitance of the conductor changes, and the voltage across the mutual capacitance changes. The change in voltage is used to determine the location of the conductor touch.
  • the lateral transparent conductive film 30 is disposed along the lateral bracket 20, and a width of the lateral transparent conductive film 30 in a direction perpendicular to the lateral bracket 20 is greater than a width of the lateral bracket 20 to widen The contact area of the lateral electrodes.
  • the longitudinal transparent conductive film layer 32 is disposed along the longitudinal support 22, and a width of the longitudinal transparent conductive film layer 32 in a direction perpendicular to the longitudinal support 22 is greater than a width of the longitudinal support 22, to be similarly
  • the contact area of the longitudinal electrode is widened to widen the contact area of the longitudinal electrode.
  • the metal bracket layer 2 includes a plurality of mutually perpendicular brackets: a transverse bracket 20 and a longitudinal bracket 22.
  • the transverse bracket 20 is two
  • the longitudinal brackets 22 are four
  • the transverse brackets 20 are parallel to each other
  • the longitudinal brackets 22 are also parallel to each other
  • the insulating layer 4 is disposed at a position where the transverse brackets 20 and the longitudinal brackets 22 are staggered, Be sure to insulate at the junction of the two.
  • the lateral support 20 is electrically connected to the lateral transparent conductive film layer 30, and the longitudinal support 22 and the longitudinal conductive film layer 32 are electrically connected to the outer periphery of the insulating layer 4, and the lateral support 20 and the longitudinal support 22 are electrically insulated from each other.
  • the transverse bracket 20 is symmetrically extended in the lateral direction
  • the longitudinal bracket 22 is symmetrical with the center point of the lateral bracket 20 and extends symmetrically in the longitudinal direction to form a square or rectangular solid bracket, which increases the conductive area and is suitable for preparing a larger size touch screen.
  • the insulating layer 4 is disposed between the lateral support 20 and the longitudinal transparent conductive film layer 32, and the insulating layer 4 is disposed on the entire surface of the lateral support. 20 and the touch substrate 1, at this time, in the lateral direction, the lateral support 20 and the lateral transparent conductive film layer 30 are directly electrically connected to each other to form a lateral electrode; in the longitudinal direction, the longitudinal support 22 passes through the insulating layer 4 It is blocked from the longitudinal transparent conductive film layer 32.
  • the insulating layer 4 on the longitudinal support 22 is provided with a through hole 6, and the longitudinal transparent conductive film layer 32 is connected to the longitudinal support 22 through the through hole 6, and the lateral transparent conductive film layer 30 Directly connected to the lateral support 20, the longitudinal transparent conductive film layer 32 and the longitudinal support 22 are electrically connected to each other by a lead or a lead penetrating through the conductive via 6 to form a longitudinal electrode.
  • the transparent conductive film layer is provided with four blocks including two transverse transparent conductive film layers 30 and two longitudinal transparent conductive film layers 32.
  • the four transparent conductive film layers 3 are disposed on the same horizontal surface.
  • the horizontal bracket 20 or the longitudinal bracket 22 are a plurality of strips, and the plurality of touch strip regions are formed by the lateral brackets 20 and the longitudinal brackets 22 which are vertically interlaced, and the transparent conductive film layers 3 on the touch panel regions are insulated from each other.
  • the conductor may be a human finger, and a change in capacitance generated by a finger touch is used to calculate a voltage change to know the position touched by the finger;
  • the transparent conductive film layer is made of indium tin oxide (ITO);
  • the material of the insulating layer is silicon nitride or silicon dioxide.
  • FIG. 10 a capacitance distribution diagram of a mutual capacitance type touch panel is shown.
  • V2 VlxCl/(C1 +C3)
  • V2 V1*C1/ (C1+C2+C3)
  • SNR signal to noise ratio
  • VI is the input voltage value of the touch screen
  • C1 is the mutual capacitance between the lateral electrode and the longitudinal electrode
  • C2 is the conductor capacitance between the conductor and the lateral electrode and the longitudinal electrode
  • C3 is the lateral electrode or the longitudinal electrode and the carrier substrate
  • the carrier substrate is disposed under the transparent conductive film layer 3.
  • the transparent conductive film is replaced by metal as the emitting end and the receiving end of the electrode, and the metal bracket layer has a small resistance value and a small RC loading, in order to solve the defect that the metal is opaque and reflects external light.
  • the transparent conductive film layer 3 is plated on the metal support layer 2 to widen the touch area of the conductor, and the transmittance of the touch screen is ensured.
  • the signal transmission through the metal support layer 2 reduces the RC loading, which makes the horizontal direction
  • the transparent conductive film layer and the longitudinal transparent conductive film layer can be made larger, and are suitable for a large-sized mutual capacitance type touch screen.
  • the following shows the structure of the original touch screen and the changes of C1 and C2 of the structure of the touch screen of the present invention: Structure of the original touch screen: CI: 1.77 6 - 12 ; C2: 1.3 6 - 14 ; Touch screen structure of the present invention: CI: 1.97 e — 12 ; C2: 1.5 e - 12 .
  • the conductor capacitance C2 between the conductor and the transparent conductive film layer is increased to enhance the sensitivity of the touch.
  • the lateral bracket and the longitudinal bracket are separated from each other by an insulating layer, which are isolated from each other at the junction of the two, and may be isolated from the entire surface, and the metal bracket layer 2 and the transparent conductive film layer 3 are electrically connected to each other only in the The junctions are isolated from each other, or are isolated on the entire surface, and are electrically connected by pins or leads that pass through the conductive vias to form a capacitor structure.
  • the metal support layer 2 is used instead of the transparent conductive film layer 3 as a lateral electrode and a longitudinal electrode. The transmittance of the capacitive touch screen is improved, so that it is better suited to a large-sized touch screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明提供了一种互电容式的触摸屏包括:触摸式基板;金属支架层,其设于触摸式基板的下方,包括横向支架和纵向支架;绝缘层,其设于横向支架与纵向支架的之间;至少两块透明导电薄膜层,包括横向透明导电薄膜层和纵向透明导电薄膜层,横向支架与横向透明导电薄膜层相互电连接形成横向电极,纵向支架与纵向透明导电薄膜层相互电连接形成纵向电极;所述横向透明导电膜沿所述横向支架设置,且所述横向透明导电膜在垂直于所述横向支架的方向上的宽度大于所述横向支架的宽度。通过金属支架层进行信号传递,减小了RC加载,可使得横向透明导电薄膜层和纵向透明导电薄膜层可做得更大,适用于大尺寸的互电容式的触摸屏。

Description

说 明 书
一种互电容式的触摸屏
技术领域
本发明涉及一种触摸屏, 尤其是特指一种可适用于大尺寸屏幕的互电容式触摸屏。 背景技术
随着科技的发展, 目前电脑、 手机、 数码相机、 MP3 等各种电子装置的显示屏已逐渐 被触摸屏所替代。
在触摸屏领域, 分为电阻式、 电容感应式、 红外线式以及表面声波式。 电容式触摸屏的 工作原理是利用人体的电流感应工作, 当导体触摸屏幕上时, 由于人体电场, 用户与触摸屏 表面形成耦合电容, 对于高频电流而言, 电容是直接导体, 导体从接触点吸走一个很小的电 流,这个电流从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与导体到四角的 距离成正比, 控制器通过对这四个电流比例的计算, 获得触摸点的位置。
传统的电容式触摸屏采用导电薄膜层作为电极传导层,受限于薄膜层的硬度,难于制备 大尺寸的电容式触摸屏, 整体受力弯曲变形时, 容易出现界面的分离, 导致电极断路, 触摸 失效, 触摸感应部件损坏; 而采用金属作为电极传导层, 又带来透光率下降的缺陷。
因此, 亟待于提供一种既可以提高触控灵敏度、触摸屏支撑度、又可以提高透光率的互 电容式的触摸屏。
发明内容
基于现有技术的不足, 本发明的主要目的在于提供一种既可以提高触控灵敏度,又可以 减小内部电阻, 提高透光率的互电容式的触摸屏。
本发明提供了一种互电容式的触摸屏, 其包括:
触摸式基板;
金属支架层, 其设于触摸式基板的下方, 包括相互垂直且不在同一水平面的横向支架和 纵向支架;
绝缘层, 其设于横向支架与纵向支架的之间;
至少两块透明导电薄膜层, 包括横向透明导电薄膜层和纵向透明导电薄膜层, 横向支架 与横向透明导电薄膜层相互电连接形成横向电极,纵向支架与纵向透明导电薄膜层相互电连 接形成纵向电极; 且所述横向透明导电膜沿所述横向支架设置,且所述横向透明导电膜在垂 直于所述横向支架的方向上的宽度大于所述横向支架的宽度, 以加宽横向电极的接触面积。 所述透明导电薄膜层由氧化铟锡制成; 所述绝缘层的材料为氮化硅或二氧化硅。
优选地, 所述纵向透明导电膜层沿所述纵向支架设置, 且所述纵向透明导电膜层在垂直 于所述纵向支架的方向上的宽度大于所述纵向支架的宽度,以同样地加宽纵向电极的接触面 积。
优选地, 所述绝缘层可有两种不同的设置方式, 其中一种设置方式是将绝缘层整面地设 置于所述横向支架和所述触摸式基板上,这时,位于所述横向支架上的所述绝缘层设置有通 孔,所述横向透明导电膜层通过所述通孔与所述横向支架连接,而所述纵向透明导电膜层直 接与所述纵向支架连接;另一种设置方式是将绝缘层设置于所述横向支架和所述纵向支架交 错的位置, 以保证在两者交接处相绝缘。
优选地, 在所述横向支架和纵向支架交错处的四周, 所述透明导电薄膜层设有四块, 包 括两块横向透明导电薄膜层和两块纵向透明导电薄膜层,所述四块透明导电薄膜层设于同一 水平面上。
优选地, 所述横向支架或纵向支架为若干条, 通过相互垂直交错的横向支架和纵向支架 形成若干块触控片区, 各触控片区上的透明导电薄膜层相互绝缘。 通过设置多块触控区域, 提高触摸屏的灵敏度。
当导体未触摸于触摸式基板上时, 互电容两端的电压为 V2=VlxCl/ (C1 +C3 );
当导体触摸于触摸式基板上时, 互电容两端的电压为 V2'= V1*C1/ (C1+C2+C3 ); 抗噪比为 V2-V2';
其中, VI为触摸屏的输入电压值, C1为横向电极与纵向电极之间的互电容, C2为导体 与横向电极和纵向电极之间的导体电容, C3为横向电极或纵向电极与承载基板之间的寄生 电容。
与现有技术相比, 本发明一种互电容式的触摸屏采用金属支架层与透明导电薄膜层相结 合的结构, 采用金属支架层作为电极的发射端和接收端, 金属支架层的电阻值小, RC加载 较小, 为了解决金属不透光且会反射外来光的缺陷,在金属支架层的上方电鍍透明导电薄膜 层, 以加宽导体触控面积, 又保证了触摸屏的透光度, 通过金属支架层进行信号传递, 减小 了 RC加载, 可使得横向透明导电薄膜层和纵向透明导电薄膜层可做得更大, 适用于大尺寸 的互电容式的触摸屏。
附图说明
图 1为本发明一种新型的互电容式的触摸屏的纵向侧视图;
图 2为本发明一种新型的互电容式的触摸屏的实施例一的横向侧视图;
图 3为本发明一种新型的互电容式的触摸屏的实施例二的横向侧视图;
图 4为本发明一种新型的互电容式的触摸屏的绝缘层的实施例一的俯视图;
图 5为本发明一种新型的互电容式的触摸屏的绝缘层的实施例二的俯视图; 图 6为本发明一种新型的互电容式的触摸屏的实施例一的俯视图;
图 7为本发明一种新型的互电容式的触摸屏的实施例二的俯视图;
图 8为本发明一种新型的互电容式的触摸屏的实施例一的局部放大图;
图 9为本发明一种新型的互电容式的触摸屏的实施例二的局部放大图;
图 10为本发明一种新型的互电容式的触摸屏的电容分布状况图;
具体实施方式
参照图 1至图 3以及图 6所示, 在触摸屏的纵向侧视图和横向侧视图中, 为了提高触摸 屏的灵敏度和透光率,本发明提供了一种新型的互电容式的触摸屏,其包括:触摸式基板 1, 设于触摸屏的表面; 金属支架层 2, 其设于触摸式基板 1的下方, 起支撑触摸式基板 1, 并 传导电流的作用, 包括相互垂直且不在同一水平面的横向支架 20和纵向支架 22, 通过横向 支架 20和纵向支架 22交错组成网状的金属支架结构, 至少两块透明导电薄膜层 3, 包括横 向透明导电薄膜层 30和纵向透明导电薄膜层 32, 其通过鍍膜或粘贴的方式覆盖于金属支架 层 2上,两者相互电导通,横向支架 20与横向透明导电薄膜层 30相互电连接形成横向电极, 纵向支架 22与纵向透明导电薄膜层 32相互电连接形成纵向电极,横向电极与纵向电极之间 形成互电容; 所述透明导电膜层 3由氧化铟锡 (ITO) 制成。 绝缘层 4, 其设于横向支架 20 与纵向支架 22的之间, 用于阻隔横向支架 20与纵向支架 22, 避免其相互导通。 当导体靠 近于触摸式基板时,在导体与横向电极和纵向电极之间产生导体电容, 当导体触摸于基板上 时, 通过导体电容所产生的变化, 致使互电容两端的电压发生变化, 通过计算所述电压的变 化来测定导体触摸的位置。
其中, 所述横向透明导电膜 30沿所述横向支架 20设置, 且所述横向透明导电膜 30在 垂直于所述横向支架 20的方向上的宽度大于所述横向支架 20的宽度,以加宽横向电极的接 触面积。 所述纵向透明导电膜层 32沿所述纵向支架 22设置, 且所述纵向透明导电膜层 32 在垂直于所述纵向支架 22的方向上的宽度大于所述纵向支架 22的宽度,以同样地加宽纵向 电极的接触面积, 以加宽纵向电极的接触面积。从而增加整个横向电极和纵向电极的触摸面 积, 以适用于大尺寸触摸屏制备的需要。
结合参照图 4、 图 6和图 8所示, 金属支架层 2包括若干条相互垂直的支架: 横向支架 20和纵向支架 22, 在实施例一中, 结合参照图 3所示, 所述横向支架 20为两根, 所述纵向 支架 22为四根, 横向支架 20相互平行, 纵向支架 22亦相互平行, 所述绝缘层 4设置于所 述横向支架 20和所述纵向支架 22交错的位置, 以保证在两者交接处相绝缘。这时, 横向支 架 20与横向透明导电薄膜层 30相导通,纵向支架 22与纵向导电薄膜层 32在绝缘层 4的外 周相导通, 而横向支架 20与纵向支架 22之间相互电绝缘。 横向支架 20沿横向方向对称延 伸, 纵向支架 22以横向支架 20的中心点为支点, 沿纵向方向对称延伸, 组成方形或长方形 的立体支架, 增大了导电的面积, 可适用于制备更大尺寸的触摸屏。
在实施例二中, 参照图 3、 图 7和图 9所示, 所述绝缘层 4设于横向支架 20与纵向透明 导电薄膜层 32之间,绝缘层 4整面地设置于所述横向支架 20和所述触摸式基板 1上,这时, 在横向方向上, 横向支架 20与横向透明导电薄膜层 30直接相互导通, 以形成横向电极; 在 纵向方向上,纵向支架 22通过绝缘层 4与纵向透明导电薄膜层 32相阻隔。位于所述纵向支 架 22上的所述绝缘层 4设置有通孔 6, 所述纵向透明导电薄膜层 32通过所述通孔 6与所述 纵向支架 22连接, 而所述横向透明导电薄膜层 30直接与所述横向支架 20连接, 通过贯穿 所述导电通孔 6的引线或引脚将纵向透明导电薄膜层 32与纵向支架 22相互导通,以形成纵 向电极。
在本实施例中, 参照图 6和图 7所示, 所述透明导电薄膜层设有四块, 包括两块横向透 明导电薄膜层 30和两块纵向透明导电薄膜层 32。所述四块透明导电薄膜层 3设于同一水平 面上。 所述横向支架 20或纵向支架 22为若干条, 通过相互垂直交错的横向支架 20和纵向 支架 22形成若干块触控片区, 各触控片区上的透明导电薄膜层 3相互绝缘。 当手指触碰于 某一触控片区时,该触控片区的横向电极和纵向电极分别导通,通过电容的变化获得电压的 变化, 以得知手指触摸的位置。 通过划分多个触控片区, 提高触摸屏的灵敏度。
在本发明中, 所述导体可为人的手指, 通过手指触摸所产生的电容变化, 计算出电压变 化, 以获知手指触摸的位置; 所述透明导电薄膜层由氧化铟锡 (ITO) 制成; 所述绝缘层的 材料为氮化硅或二氧化硅。
在图 10中, 示出互电容式的触摸屏的电容分布状况图。 当导体未触摸于触摸式基板上 时, 互电容两端的电压为 V2=VlxCl/ (C1 +C3 ); 当导体触摸于触摸式基板上时, 互电容两 端的电压为 V2,= V1*C1/ (C1+C2+C3 ); 抗噪比 ( SNR, signal to noise ratio)为 V2-V2'。 其 中, VI为触摸屏的输入电压值, C1为横向电极与纵向电极之间的互电容, C2为导体与横 向电极和纵向电极之间的导体电容, C3为横向电极或纵向电极与承载基板之间的寄生电容, 所述承载基板设置于透明导电薄膜层 3的下方。当 V2和 V2'之间的差异越大,触控 IC越容 易感知导体触控的位置。 这样, 若导体电容 C2较大, 抗噪比较好。 采用金属支架层 2后, 由金属代替透明导电薄膜来做为电极的发射端和接收端, 金属支架层的电阻值小, RC加载 较小, 为了解决金属不透光且会反射外来光的缺陷,在金属支架层 2的上方电鍍透明导电薄 膜层 3, 以加宽导体触控面积,又保证了触摸屏的透光度,通过金属支架层 2进行信号传递, 减小了 RC加载, 可使得横向透明导电薄膜层和纵向透明导电薄膜层可做得更大, 适用于大 尺寸的互电容式的触摸屏。 以下列出原有触摸屏的结构与本发明的触摸屏的结构的 C1和 C2的变化值: 原触摸屏的结构: CI : 1.776-12; C2: 1.36-14;本发明触摸屏结构: CI : 1.97e12 ; C2: 1.5e-12。 导体与透明导电薄膜层之间的导体电容 C2增大, 增强了触控的灵敏度。
参照图 11所示, 横向支架和纵向支架通过绝缘层相互隔离, 其在两者交界处相互隔离, 也可以整面隔离, 金属支架层 2与透明导电薄膜层 3之间相互导通, 仅在交界处相互隔离, 或整面隔离, 通过穿过导电通孔的引脚或引线将两者导通, 形成电容结构。 当有导体触摸于 基板时, 引起导体电容 C2的大小发生变化, 增大了导体电容 C2, 使得触控的灵敏度增强, 采用金属支架层 2代替透明导电薄膜层 3作为横向的电极和纵向的电极,提高了电容式触摸 屏的透光率, 从而更好地适用于大尺寸的触摸屏。

Claims

权 利 要 求 书
1、 一种互电容式的触摸屏, 其中包括:
触摸式基板;
金属支架层,其设于触摸式基板的下方,包括相互垂直且不在同一水平面的横向支架和纵向 支架;
绝缘层, 其设于横向支架与纵向支架的之间;
至少两块透明导电薄膜层,包括横向透明导电薄膜层和纵向透明导电薄膜层,横向支架与横 向透明导电薄膜层相互电连接形成横向电极, 纵向支架与纵向透明导电薄膜层相互电连接形成 纵向电极; 所述横向透明导电膜沿所述横向支架设置, 且所述横向透明导电膜在垂直于所述横 向支架的方向上的宽度大于所述横向支架的宽度; 所述纵向透明导电膜层沿所述纵向支架设置, 且所述纵向透明导电膜层在垂直于所述纵向支架的方向上的宽度大于所述纵向支架的宽度。
2、 根据权利要求 1所述的互电容式的触摸屏, 其中: 所述绝缘层整面设置于所述横向支架和所 述触摸式基板上。
3、 根据权利要求 1所述的互电容式的触摸屏, 其中: 所述绝缘层设置于所述横向支架和所述纵 向支架交错的位置。
4、 根据权利要求 2所述的互电容式的触摸屏, 其中: 位于所述横向支架上的所述绝缘层设置有 通孔, 所述横向透明导电膜层通过所述通孔与所述横向支架连接。
5、 根据权利要求 3所述的互电容式的触摸屏, 其中: 所述纵向透明导电膜层直接与所述纵向支 架连接。
6、根据权利要求 1所述的互电容式的触摸屏,其中:在所述横向支架和纵向支架交错处的四周, 所述透明导电薄膜层设有四块, 包括两块横向透明导电薄膜层和两块纵向透明导电薄膜层。
7、 根据权利要求 6所述的互电容式的触摸屏, 其中: 所述四块透明导电薄膜层设于同一水平面 上。
8、 根据权利要求 7所述的互电容式的触摸屏, 其中: 所述横向支架或纵向支架为若干条, 通过 相互垂直交错的横向支架和纵向支架形成若干块触控片区, 各触控片区上的透明导电薄膜层相 互绝缘。
9、 根据权利要求 8中所述的互电容式的触摸屏, 其中:
当导体未触摸于触摸式基板上时, 互电容两端的电压为 V2=VlxCl/ (C1 +C3 );
当导体触摸于触摸式基板上时, 互电容两端的电压为 V2'= V1*C1/ (C1+C2+C3 );
抗噪比为 V2-V2';
其中, VI为触摸屏的输入电压值, C1为横向电极与纵向电极之间的互电容, C2为导体与 横向电极和纵向电极之间的导体电容, C3为横向电极或纵向电极与承载基板之间的寄生电容。
10、 一种互电容式的触摸屏, 其中包括:
触摸式基板;
金属支架层,其设于触摸式基板的下方,包括相互垂直且不在同一水平面的横向支架和纵向 支架;
绝缘层, 其设于横向支架与纵向支架的之间;
至少两块透明导电薄膜层,包括横向透明导电薄膜层和纵向透明导电薄膜层,横向支架与横 向透明导电薄膜层相互电连接形成横向电极, 纵向支架与纵向透明导电薄膜层相互电连接形成 纵向电极; 所述横向透明导电膜沿所述横向支架设置, 且所述横向透明导电膜在垂直于所述横 向支架的方向上的宽度大于所述横向支架的宽度。
11、 根据权利要求 10所述的互电容式的触摸屏, 其中: 所述纵向透明导电膜层沿所述纵向支架 设置, 且所述纵向透明导电膜层在垂直于所述纵向支架的方向上的宽度大于所述纵向支架 的宽度。
12、 根据权利要求 11所述的互电容式的触摸屏, 其中: 所述绝缘层整面设置于所述横向支架和 所述触摸式基板上。
13、 根据权利要求 11所述的互电容式的触摸屏, 其中: 所述绝缘层设置于所述横向支架和所述 纵向支架交错的位置。
14、 根据权利要求 12所述的互电容式的触摸屏, 其中: 位于所述横向支架上的所述绝缘层设置 有通孔, 所述横向透明导电膜层通过所述通孔与所述横向支架连接。
15、 根据权利要求 13所述的互电容式的触摸屏, 其中: 所述纵向透明导电膜层直接与所述纵向 支架连接。
16、 根据权利要求 10所述的互电容式的触摸屏, 其中: 在所述横向支架和纵向支架交错处的四 周, 所述透明导电薄膜层设有四块, 包括两块横向透明导电薄膜层和两块纵向透明导电薄 膜层。
17、 根据权利要求 16所述的互电容式的触摸屏, 其中: 所述四块透明导电薄膜层设于同一水平 面上。
18、 根据权利要求 17所述的互电容式的触摸屏, 其中: 所述横向支架或纵向支架为若干条, 通 过相互垂直交错的横向支架和纵向支架形成若干块触控片区, 各触控片区上的透明导电薄 膜层相互绝缘。
19、 根据权利要求 18中任一项所述的互电容式的触摸屏, 其中:
当导体未触摸于触摸式基板上时, 互电容两端的电压为 V2=VlxCl/ (C1 +C3 ); 当导体触摸于触摸式基板上时, 互电容两端的电压为 V2'= V1*C1/ (C1+C2+C3 );
抗噪比为 V2-V2';
其中, VI为触摸屏的输入电压值, C1为横向电极与纵向电极之间的互电容, C2为导体与 横向电极和纵向电极之间的导体电容, C3为横向电极或纵向电极与承载基板之间的寄生电容。
20、 根据权利要求 19所述的互电容式的触摸屏, 其中: 所述透明导电薄膜层由氧化铟锡制成; 所述绝缘层的材料为氮化硅或二氧化硅。
PCT/CN2013/087497 2013-09-27 2013-11-20 一种互电容式的触摸屏 WO2015043047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/131,305 US20160246397A1 (en) 2013-09-27 2013-11-20 A touch screen with mutual capacitance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310452576.7 2013-09-27
CN201310452576.7A CN103530010A (zh) 2013-09-27 2013-09-27 一种互电容式的触摸屏

Publications (1)

Publication Number Publication Date
WO2015043047A1 true WO2015043047A1 (zh) 2015-04-02

Family

ID=49932070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087497 WO2015043047A1 (zh) 2013-09-27 2013-11-20 一种互电容式的触摸屏

Country Status (3)

Country Link
US (1) US20160246397A1 (zh)
CN (1) CN103530010A (zh)
WO (1) WO2015043047A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411078B2 (en) 2014-04-14 2019-09-10 Industrial Technology Research Institute Sensing display apparatus
TWM505004U (zh) 2014-04-14 2015-07-11 Ind Tech Res Inst 觸控面板
CN104317470B (zh) * 2014-11-14 2017-06-13 深圳市华星光电技术有限公司 互电容式ogs触摸面板及其制造方法
CN107765910B (zh) * 2016-08-17 2020-11-24 财团法人工业技术研究院 触控面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893976A (zh) * 2010-07-08 2010-11-24 汕头超声显示器(二厂)有限公司 投射式电容触摸屏的制造方法
CN202735995U (zh) * 2012-05-29 2013-02-13 北京京东方光电科技有限公司 一种触摸感应器、触摸屏以及显示器
CN103268174A (zh) * 2012-09-20 2013-08-28 厦门天马微电子有限公司 电容式触控模组和电容式触控屏

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261379A (zh) * 2008-02-01 2008-09-10 信利半导体有限公司 电容式触摸屏及包含该触摸屏的触摸显示器件
CN101840292B (zh) * 2009-03-20 2011-12-21 宸鸿科技(厦门)有限公司 电容式触控电路图形及其制法
TW201040818A (en) * 2009-05-08 2010-11-16 Sintek Photronic Corp Capacitive touch panel structure with high optical uniformity
CN201429834Y (zh) * 2009-06-29 2010-03-24 深圳莱宝高科技股份有限公司 一种电容式触摸屏
CN201489506U (zh) * 2009-07-30 2010-05-26 胜华科技股份有限公司 电容式触控面板
KR101204121B1 (ko) * 2010-03-29 2012-11-22 삼성전기주식회사 상호 정전용량방식 터치패널
CN102375627A (zh) * 2010-08-13 2012-03-14 信利光电(汕尾)有限公司 电容式触摸屏的触控结构及其制造方法
CN201757892U (zh) * 2010-08-13 2011-03-09 信利半导体有限公司 电容式触摸屏的触控结构
CN102221950B (zh) * 2011-06-22 2012-12-26 深圳市骏达光电有限公司 触摸屏
KR20140055097A (ko) * 2012-10-30 2014-05-09 삼성디스플레이 주식회사 터치 스크린 패널의 제조방법
CN103913869B (zh) * 2012-12-31 2017-06-23 上海天马微电子有限公司 一种内嵌触控装置的液晶显示器及其形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893976A (zh) * 2010-07-08 2010-11-24 汕头超声显示器(二厂)有限公司 投射式电容触摸屏的制造方法
CN202735995U (zh) * 2012-05-29 2013-02-13 北京京东方光电科技有限公司 一种触摸感应器、触摸屏以及显示器
CN103268174A (zh) * 2012-09-20 2013-08-28 厦门天马微电子有限公司 电容式触控模组和电容式触控屏

Also Published As

Publication number Publication date
CN103530010A (zh) 2014-01-22
US20160246397A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
CN106354294B (zh) 触控显示设备
US8988383B2 (en) Electrostatic capacitive type touch screen panel
TWI426427B (zh) 觸控面板
WO2017004975A1 (zh) 电容触摸屏及其制备方法、触控装置
WO2016029558A1 (zh) 触摸基板及其制作方法、触摸显示装置
TW201124766A (en) Display device with touch panel
TW201523364A (zh) 具網格狀合金觸控電極的觸控面板
WO2016004719A1 (zh) 阵列基板及制备方法、触控显示装置
US20150220175A1 (en) Capacitive touch panel and display device
TWM410926U (en) Projected capacitive touch control panel
KR20150077133A (ko) 터치 패널 및 이를 포함하는 표시 장치
WO2016155594A1 (zh) 触控面板及制作方法、显示装置
WO2015043047A1 (zh) 一种互电容式的触摸屏
WO2015196606A1 (zh) 触摸屏及其制作方法、显示装置
CN105630238A (zh) 带触感反馈功能的触控显示装置及其驱动方法
US20150070606A1 (en) Projected Capacitive Touchscreen and Manufacturing Method Thereof
CN104345997B (zh) 触控面板
WO2014183393A1 (zh) 触摸定位结构及其制造方法、触摸屏和显示装置
TW201401146A (zh) 無邊框單層感測器面板
WO2014139215A1 (zh) 电容式触摸屏的电极板、触摸屏及触控显示装置
KR20150014106A (ko) 터치 스크린 패널 및 그 제조 방법
CN111596789B (zh) 触控面板、触控显示面板及触控显示装置
TW201448154A (zh) 電容性感測電極
KR20140042133A (ko) 터치 패널
TWI469008B (zh) 觸摸屏及觸控顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14131305

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894889

Country of ref document: EP

Kind code of ref document: A1