WO2015041238A1 - 水分解用光触媒およびその製造方法、水分解用光電極 - Google Patents

水分解用光触媒およびその製造方法、水分解用光電極 Download PDF

Info

Publication number
WO2015041238A1
WO2015041238A1 PCT/JP2014/074534 JP2014074534W WO2015041238A1 WO 2015041238 A1 WO2015041238 A1 WO 2015041238A1 JP 2014074534 W JP2014074534 W JP 2014074534W WO 2015041238 A1 WO2015041238 A1 WO 2015041238A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium
niobium
photocatalyst
water splitting
atom
Prior art date
Application number
PCT/JP2014/074534
Other languages
English (en)
French (fr)
Inventor
隆史 久富
一成 堂免
知里 片山
Original Assignee
富士フイルム株式会社
人工光合成化学プロセス技術研究組合
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 人工光合成化学プロセス技術研究組合, 国立大学法人東京大学 filed Critical 富士フイルム株式会社
Publication of WO2015041238A1 publication Critical patent/WO2015041238A1/ja
Priority to US15/072,923 priority Critical patent/US10022713B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a photocatalyst for water splitting, a method for producing the same, and a photoelectrode for water splitting.
  • Non-Patent Document 1 discloses a photocatalyst for water splitting containing niobium atoms. Note that Non-Patent Document 1 clearly shows that when barium niobium oxynitride is used, it does not exhibit catalytic activity for water splitting reaction.
  • barium niobium oxynitride has an absorption edge in the vicinity of about 740 nm, so it can absorb long-wavelength light efficiently and can develop a catalyst having higher catalytic activity than conventional water splitting photocatalysts. There is sex.
  • an object of the present invention is to provide a water-splitting photocatalyst containing barium niobium oxynitride and exhibiting excellent water-splitting performance and a method for producing the same.
  • Another object of the present invention is to provide a water splitting photoelectrode having the above water splitting photocatalyst.
  • the present inventors have found that the above problem can be solved by loading a predetermined promoter on barium niobium oxynitride. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a photocatalyst for water splitting comprising an optical semiconductor and a promoter supported on the optical semiconductor,
  • the optical semiconductor contains barium niobium oxynitride
  • a photocatalyst for water splitting wherein the promoter comprises at least one selected from the group consisting of cobalt oxide and metallic cobalt.
  • a method for producing a photocatalyst for water splitting according to (1) or (2) A method for producing a photocatalyst for water splitting, comprising a step A in which barium niobium oxynitride and a cobalt compound are mixed and heat-treated in an atmosphere in which barium niobium oxynitride is not oxidized.
  • an oxide containing a barium atom and a niobium atom and a compound containing a barium atom which may be different from an oxide, and may contain a niobium atom, Ratio (Ba molar amount / Nb molar amount) of the total molar amount (Ba molar amount) of the barium atom derived from the above compound and the total molar amount (Nb molar amount) of the niobium atom derived from the oxide and the niobium atom derived from the above compound.
  • the photocatalyst for water splitting according to (3) further comprising a step B of mixing in the range of 1.3 to 4.0, nitriding the resultant mixture to obtain barium niobium oxynitride Manufacturing method.
  • Step C of forming an oxide containing a barium atom and a niobium atom by a complex polymerization method using a compound containing a barium atom, a compound containing a niobium atom, and a raw material containing a complexing agent before Step A
  • the method for producing a photocatalyst for water splitting according to (3) further comprising a step D of nitriding the oxide to obtain barium niobium oxynitride.
  • Step C forms an oxide containing barium atoms and niobium atoms by subjecting a mixture containing a compound containing barium atoms, a compound containing niobium atoms, and a complexing agent to heat treatment.
  • the photocatalyst for water splitting which contains barium niobium oxynitride and shows the outstanding water splitting performance, and its manufacturing method can be provided.
  • the photoelectrode for water splitting which has the said photocatalyst for water splitting can also be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photocatalyst for water splitting of the present invention is a catalyst comprising an optical semiconductor and a promoter supported on the optical semiconductor, the optical semiconductor comprising barium niobium oxynitride, and the promoter comprising cobalt oxide and metallic cobalt. It includes at least one selected from the group.
  • the photocatalyst for water splitting of the present invention exhibits an excellent oxygen generating ability and hydrogen generating ability. Below, the component contained in the photocatalyst for water splitting is explained in full detail first.
  • the photocatalyst for water splitting of the present invention contains barium niobium oxynitride as a photo semiconductor.
  • barium niobium oxynitride has an absorption edge in the long wavelength region (740 nm), it can efficiently absorb from short wavelength light to long wavelength light.
  • Barium niobium oxynitride is an oxynitride containing barium atoms (Ba) and niobium atoms (Nb). More specifically, it is a compound represented by BaNbO 2 N.
  • barium niobium oxynitride is not limited to the composition ratio of the above chemical formula, such as those having a defect structure in which some of the barium atoms are missing, those in which some of the niobium atoms are reduced, An aspect deviating from the stoichiometric ratio is also included.
  • the barium niobium oxynitride includes an embodiment in which the atomic ratio of oxygen atoms and nitrogen atoms deviates from the stoichiometric ratio, more specifically, oxygen atoms in barium niobium oxynitride.
  • the ratio of the atomic% to the atomic% of nitrogen atoms is preferably 1.5 to 8.5, more preferably 1.8 to 3.0.
  • the ratio is measured with an oxygen / nitrogen analyzer (EMGA-620W) (Horiba Seisakusho).
  • the size (average particle diameter) of barium niobium oxynitride is not particularly limited, but is preferably from 0.1 to 5.0 ⁇ m, more preferably from 0.5 to 2.0 ⁇ m, from the viewpoint of better water splitting performance of the water splitting photocatalyst. Is more preferable. If the thickness is 0.1 ⁇ m or more, the crystallinity is improved, and a depletion layer having a sufficient thickness is generated, thereby increasing the efficiency as a catalyst. If the thickness is 5.0 ⁇ m or less, electrons and holes generated by excitation move. The distance to be used is relatively short, and the efficiency as a catalyst is unlikely to decrease.
  • the said average particle diameter is the value which measured the particle diameter (diameter) of at least 300 barium niobium oxynitride with the electron microscope (for example, scanning electron microscope), and arithmetically averaged them.
  • the SEM image is binarized, and is obtained by spherical approximation using image software (Mitani Corporation image analysis software WinRoof).
  • image software Mitsubishi Corporation image analysis software WinRoof
  • Hitachi High-Technologies Corporation SU-8020 SEM is used.
  • An acceleration voltage is 3 kV, a magnification of 25000 times, and an image of 1195 ⁇ 896 pixels is used.
  • an equivalent circle diameter is used.
  • the “equivalent circle diameter” is the diameter of a circle assuming a circle having the same projected area as the projected area of barium niobium oxynitride at the time of observation.
  • barium niobium oxynitride comprises a main component as an optical semiconductor.
  • the main component here means that the content of barium niobium oxynitride is 60% by mass or more with respect to the total mass of the optical semiconductor, and the water splitting performance of the water splitting photocatalyst is more excellent. 80 mass% or more is preferable.
  • the upper limit is not particularly limited, but is 100% by mass.
  • the optical semiconductor may contain other optical semiconductors other than barium niobium oxynitride as long as the effects of the present invention are not impaired.
  • the photocatalyst for water splitting of the present invention includes at least one selected from the group consisting of cobalt oxide and metallic cobalt as a cocatalyst.
  • cobalt component is an oxide of cobalt, for example, cobalt oxide represented by CoOx (x is preferably 0.5 to 1.5, more preferably 1.0 to 1.4). More specific examples include CoO and Co 3 O 4 .
  • Metal cobalt is a metal represented by Co. As the promoter, only one of cobalt oxide and metallic cobalt may be used, or both may be used in combination.
  • the promoter may have a core-shell structure of metallic cobalt and cobalt oxide. More specifically, it may have a core-shell structure in which metallic cobalt constitutes a core portion and cobalt oxide constitutes a shell portion.
  • the shape of the cobalt component as the promoter is not particularly limited, but is preferably granular from the viewpoint of a larger surface area.
  • the size (average particle diameter) of the cobalt component (metal cobalt and cobalt oxide) is not particularly limited, but is preferably 1 to 50 nm and more preferably 2 to 20 nm in terms of more excellent water splitting performance of the water splitting photocatalyst.
  • the average particle diameter is determined by confirming the shape of the promoter with an electron microscope (transmission electron microscope), and then with an electron microscope (scanning electron microscope). ) Measured and arithmetically averaged.
  • an equivalent circle diameter is used.
  • the SEM image is binarized, and is obtained by spherical approximation using image software (Mitani Corporation image analysis software WinRoof).
  • image software Mitsubishi Corporation image analysis software WinRoof
  • Hitachi High-Technologies Corporation Hitachi ultra-high resolution field emission scanning electron microscope SU8020 is used.
  • An acceleration voltage is 15 kV, a magnification of 2,000,000 times, and an image of 1195 ⁇ 896 pixels is used.
  • the amount of the cocatalyst supported on the optical semiconductor is not particularly limited, but is preferably 0.001 to 20 parts by mass with respect to 100 parts by mass of the optical semiconductor from the viewpoint that the water splitting performance of the photocatalyst for water splitting is more excellent. 001 to 10 parts by mass is more preferable.
  • the said cobalt component comprises a main component as a promoter.
  • the main component means that the content of the cobalt component (total amount of cobalt oxide and metallic cobalt) is 70% by mass or more with respect to the total mass of the cocatalyst, and the water of the photocatalyst for water splitting 80 mass% or more is preferable at the point which decomposition
  • the upper limit is not particularly limited, but is 100% by mass.
  • the co-catalyst the co-catalyst other than the cobalt component may be included as long as the effects of the present invention are not impaired.
  • the manufacturing method of the photocatalyst for water splitting described above is not particularly limited, and a known method can be adopted.
  • a solution containing a cobalt compound (compound containing a cobalt atom) as a cocatalyst and barium niobium oxynitride are contacted, followed by heat treatment as necessary, or a cobalt compound is sublimated to barium niobium oxynite. Examples thereof include a method of supporting on a ride.
  • barium niobium oxynitride and a cobalt compound are mixed, and the mixture is subjected to heat treatment in an atmosphere in which barium niobium oxynitride is not oxidized. Is preferred.
  • step A will be described in detail.
  • a cobalt compound is a compound containing a cobalt atom and is a precursor of the promoter.
  • the cobalt compound is not particularly limited as long as it is a compound that contains a cobalt atom and can be cobalt oxide or metallic cobalt.
  • a salt containing a cobalt atom eg, nitrate, carbonate, carboxylate, sulfate, phosphate, sulfonate, borate, etc.
  • a complex containing a cobalt atom eg, acetylacetonate, thiolate, Thiocarboxylate complex, ammine complex, various amine complexes, porphyrin complex, various nitrile complexes, etc.
  • cobalt hydroxide halogenated cobalt
  • cobalt oxide metallic cobalt and the like.
  • cobalt nitrate or a cobalt ammine complex is preferable from the viewpoint of thermal decomposability.
  • the mixing method of barium niobium oxynitride and a cobalt compound is not particularly limited.
  • a method in which a solution in which barium niobium oxynitride is dispersed and a solution containing a cobalt compound are mixed, or barium niobium oxynitride and cobalt are mixed. Examples of the method include adding a compound to a solvent and mixing them.
  • a photocatalyst method for example, barium niobium oxynitride is suspended in an aqueous solution containing cobalt ions and irradiated with light from the ultraviolet region to the visible region, whereby the promoter containing the cobalt component is changed to barium.
  • electrodeposition method for example, an electrode having barium niobium oxynitride disposed on the surface is immersed in an aqueous solution containing cobalt ions, a predetermined potential is applied, and a cobalt component is contained.
  • Cocatalyst is supported on barium oxynitride
  • dipping method for example, a support or powder having barium niobium oxynitride arranged on the surface is immersed in an aqueous solution containing cobalt ions for a predetermined time, and if necessary And a co-catalyst containing a cobalt component is supported on barium oxynitride). It is.
  • the obtained mixture of barium niobium oxynitride and cobalt compound is subjected to heat treatment in an atmosphere in which barium niobium oxynitride is not oxidized.
  • an atmosphere in which barium niobium oxynitride is not oxidized include so-called reducing atmosphere, inert atmosphere (N 2 , Ar, He), and under vacuum.
  • the reducing atmosphere intends an atmosphere containing a reducing gas, and examples of the reducing gas include ammonia.
  • the atmosphere in which barium niobium oxynitride is not oxidized may be in the presence of oxygen under the condition that the temperature of the heat treatment is low (200 ° C. or lower).
  • the conditions for the heat treatment are not particularly limited, and optimum conditions are appropriately selected depending on the type of cobalt compound used.
  • the heating temperature is preferably 200 to 700 ° C., more preferably 400 to 600 ° C.
  • the heating time is preferably 0.5 to 10 hours in terms of more excellent water splitting performance of the water splitting photocatalyst. 0.5 to 1 hour is more preferable.
  • step B As one of the preferred embodiments of the method for producing a photocatalyst for water splitting, a step of obtaining barium niobium oxynitride by a predetermined step (step B, step C and step D described later, or step before step A) It is preferred to carry out E). Below, the procedure of the process B and the process C is explained in full detail.
  • One preferred embodiment of the method for producing a photocatalyst for water splitting includes, before step A, an oxide containing a barium atom and a niobium atom, and, unlike the oxide, containing a barium atom and containing a niobium atom.
  • the aspect which further includes the process B which mixes with the compound which may come out, performs a nitriding process, and obtains barium niobium oxynitride is mentioned.
  • Step B the total molar amount of the barium atom derived from the oxide and the barium atom derived from the compound (Ba molar amount) and the total molar amount of the niobium atom derived from the oxide and the niobium atom derived from the compound (Nb molar amount)
  • the ratio (Ba molar amount / Nb molar amount) is adjusted to a range of 1.3 to 4.0.
  • niobium atoms are relatively easily reduced, and the reduced species of niobium atoms trap (capture) the carrier of the water splitting reaction, leading to deterioration of water splitting performance.
  • barium atoms are easily removed during the heat treatment, which also leads to deterioration of water splitting performance.
  • the molar ratio of barium atoms and niobium atoms in the reaction system is within a predetermined range, Barium niobium oxynitride in which the occurrence of defects as described above is suppressed can be obtained, and as a result, the water splitting performance of the resulting water splitting photocatalyst is more excellent.
  • the materials used in step B and the procedure thereof will be described in detail.
  • oxide A An oxide containing barium atoms and niobium atoms (hereinafter also referred to as oxide A) is a precursor of the barium niobium oxynitride described above.
  • the oxide only needs to contain a barium atom, a niobium atom, and an oxygen atom, and examples thereof include BaNb 2 O 6 , Ba 5 Nb 4 O 15 , and Ba 4 Nb 6 O 19 .
  • the structure of the oxide may be crystalline or amorphous.
  • the method for producing the oxide is not particularly limited, and a known method (for example, a flux method, a solid phase method, a complex polymerization method, a sol-gel method) can be employed.
  • the compound containing a barium atom and optionally containing a niobium atom is a compound different from the above oxide and containing a predetermined atom.
  • the compound X may contain an oxygen atom. That is, it may be an oxide.
  • a compound containing a barium atom for example, a compound containing a barium atom (however, a niobium atom is not included) (hereinafter also referred to as a compound Y), or containing a barium atom and a niobium atom, the molar amount of the barium atom and the niobium atom
  • the ratio B (molar amount of barium atom / molar amount of niobium atom) to molar amount is the ratio A (molar amount of barium atom / niobium atom) of the molar amount of barium atom and niobium atom in oxide A.
  • Oxide hereinafter referred to as oxide B).
  • the compound (compound Y) containing a barium atom is a compound used in combination with the above oxide, and may contain a barium atom.
  • This compound preferably contains no niobium atoms and only contains barium atoms as metal atoms.
  • Examples of this compound include oxo acid salts containing barium atoms (eg, nitrates, carbonates, carboxylates, sulfates, phosphates, etc.), complexes containing barium atoms (eg, acetylacetonate, thiolate, etc.) , Barium hydroxide, barium oxide and the like.
  • the compound is not limited to the above compound as long as it is a pyrolytic compound.
  • the oxide B contains a barium atom and a niobium atom, but the ratio B (molar amount of barium atom / molar amount of niobium atom) B (molar amount of barium atom / molar amount of niobium atom) is determined in the oxide A. It is larger than the ratio A (molar amount of barium atoms / molar amount of niobium atoms) between the molar amount of barium atoms and the molar amount of niobium atoms. That is, the oxide B contains more barium atoms than the oxide A. Examples of the combination of the oxide A and the oxide B include an embodiment in which the oxide A is BaNb 2 O 6 and the oxide B is Ba 5 Nb 4 O 15 .
  • the oxide A containing the barium atom and niobium atom and the compound X are preferably mixed so as to have a predetermined mixing ratio.
  • the total molar amount (Ba molar amount) of barium atoms derived from the oxide and barium atoms derived from the compound (compound X) and niobium derived from the oxide Preferably, the ratio (Ba molar amount / Nb molar amount) to the total molar amount (Nb molar amount) of the niobium atoms derived from the atoms and the compound (Compound X) is adjusted to a range of 1.3 to 4.0.
  • the compound X does not contain a niobium atom, the molar amount of the niobium atom derived from the compound X is calculated as 0.
  • the mixing method of the oxide A and the compound X is not particularly limited, and a method of mixing a solution containing the oxide A and a solution containing the compound X, or adding the oxide A and the compound X to a predetermined solvent. The method etc. are mentioned.
  • the method of nitriding treatment is not particularly limited, and usually, a method of performing a heat treatment in an atmosphere of a gas containing nitrogen atoms can be mentioned.
  • the gas containing nitrogen atoms include ammonia, nitrogen, hydrazine, and the like.
  • the supply amount of the gas containing nitrogen atoms is not particularly limited, but the ratio of the supply amount of gas containing nitrogen atoms to the mass (g) of the mixture (gas supply amount (ml / min) / mass of mixture (g)) ( Hereinafter, the ratio Z) is preferably 10 to 1500, more preferably 100 to 350, from the viewpoint of better water splitting performance of the water splitting photocatalyst.
  • the conditions for the heat treatment are not particularly limited, and optimal conditions are appropriately selected depending on the type of compound X used.
  • the heating temperature is preferably 800 to 1050 ° C., more preferably 850 to 1000 ° C.
  • the heating time is preferably 5 to 80 hours, more preferably 10 to 70 hours is more preferred, and 40 to 60 hours is even more preferred.
  • the solvent used for washing include aqua regia, nitric acid, and hydrochloric acid.
  • Step B barium niobium oxynitride is produced using a mixture obtained by mixing oxide A and compound X.
  • the barium niobium oxynitride may be produced by subjecting the oxide A to the nitriding treatment.
  • the ratio of the supply amount of the gas containing nitrogen atoms to the mass (g) of the oxide A is within the above range Z Preferably there is.
  • Step A As one preferred embodiment of the method for producing a photocatalyst for water splitting, a complex polymerization method using a compound containing a barium atom, a compound containing a niobium atom, and a raw material containing a complexing agent is used before Step A. Examples include a step C of forming an oxide containing barium atoms and niobium atoms, and a step D of performing nitriding treatment on the oxide to obtain barium niobium oxynitride.
  • barium atoms and niobium atoms can be arranged close to each other in the complex formed, so that the supply amount of barium atoms and niobium atoms can be easily controlled, resulting in The water splitting performance of the water splitting photocatalyst is superior.
  • the materials used in step C will be described in detail below.
  • a compound containing a barium atom what is necessary is just to contain the barium atom,
  • the compound illustrated by the compound Y mentioned above is mentioned.
  • the compound containing a barium atom is a compound which can be melt
  • the compound containing a niobium atom is sufficient if it contains a niobium atom, and examples thereof include compounds containing a pentavalent niobium atom (for example, niobium halide, niobium alkoxide).
  • the compound containing a niobium atom is a compound which can be melt
  • a compound containing a barium atom and a compound containing a niobium atom are used in combination as the raw material A.
  • the mixing amount of the compound containing a barium atom and the compound containing a niobium atom in the raw material A is not particularly limited, but is derived from a compound containing a barium atom in that the water splitting performance of the resulting water splitting photocatalyst is more excellent.
  • the molar amount (molar amount X) of barium atoms is preferably larger than the molar amount (molar amount Y) of niobium atoms derived from a compound containing niobium atoms, and the ratio between them (molar amount X / molar amount Y) is 1. .10 to 4.00 is preferable, 1.25 to 3.00 is more preferable, and 1.75 to 2.50 is more preferable.
  • the complexing agent is not particularly limited as long as it is a compound capable of forming a complex with the niobium atom and the like.
  • a compound having a carboxyl group is preferably mentioned. Includes at least one selected from the group consisting of oxalic acid, malic acid, tartaric acid, citric acid, succinic acid, maleic acid, acetic acid and malonic acid.
  • a compound having a functional group capable of forming an ester bond with the carboxyl group of the compound having a carboxyl group is preferably mentioned. More preferred are compounds having two or more hydroxyl groups (OH groups).
  • ethylene glycol, propylene glycol, diethylene glycol, catechin, glycerin, polyvinyl alcohol and the like can be used, and it is more preferable to use ethylene glycol.
  • the complexing agent an embodiment in which the compound having a carboxyl group and the compound having a hydroxyl group are used in combination is preferable.
  • the content of the complexing agent in the raw material A is not particularly limited, but the molar amount of the complexing agent and the amount of barium atoms derived from the compound containing barium atoms are more excellent in the water splitting performance of the resulting water splitting photocatalyst.
  • the amount /) is preferably 5 to 100, more preferably 20 to 50.
  • the raw material may contain components other than the above components (compounds containing barium atoms, compounds containing niobium atoms, and complexing agents).
  • a compound containing both a barium atom and a niobium atom may be further included in the raw material.
  • the above compound may further contain an oxygen atom, and more specifically Ba 4 Nb 6 O 19 and the like.
  • the solvent may be contained in the raw material.
  • the kind in particular of solvent is not restrict
  • the complex polymerization method is to produce a metal complex using a predetermined raw material, subject the metal complex to heat treatment, polymerize it to produce a precursor, and further heat treatment to obtain a desired oxide (barium atom). And an oxide containing niobium atoms).
  • a compound containing a barium atom, a compound containing a niobium atom, and a complexing agent such as citric acid and ethylene glycol are mixed to obtain a metal citrate complex.
  • the temperature is raised to the polymerization temperature to obtain a gel by polymerizing with an ester bond, and the resulting gel is thermally decomposed by heating at a thermal decomposition temperature (for example, 300 to 500 ° C.) to obtain a precursor.
  • a thermal decomposition temperature for example, 300 to 500 ° C.
  • the oxide can be obtained by calcining the precursor in the presence of oxygen such as in an air atmosphere at 600 to 1000 ° C., preferably 700 to 900 ° C. for 3 hours or more, preferably 5 hours or more.
  • the heating conditions of the complex polymerization method are not particularly limited, and optimal conditions are appropriately selected depending on the materials used. Usually, the first heating step of heating at 300 to 500 ° C. as described above, and 600 to 1000 is performed.
  • a mode provided with the 2nd heating process heated at ° C is preferred.
  • the treatment time of the first heating step is not particularly limited, but usually 0.5 to 2 hours is preferable.
  • the treatment time for the second heating step is not particularly limited, but is usually preferably 5 to 10 hours.
  • the apparatus used in the case of heat processing is not specifically limited, However, It is preferable to implement heat processing using a rotary kiln at the point which the water decomposition performance of the photocatalyst for water decomposition obtained is more excellent. By performing the heating in the rotary kiln, the metal complex is uniformly heat-treated, and unevenness is hardly generated.
  • the oxide obtained a barium atom
  • the structure of the oxide may be crystalline or amorphous.
  • the oxide obtained above can be nitrided to obtain barium niobium oxynitride (step D).
  • the procedure and conditions of the nitriding treatment are not particularly limited, and examples include the nitriding treatment performed in the above-described (preferred embodiment (part 1)).
  • the nitriding conditions in this case the ratio of the supply amount of the gas containing nitrogen atoms to the mass (g) of the oxide (the supply amount of gas (ml / min) / the mass of oxide (g)) is the above ratio.
  • the range of Z is preferable.
  • a compound containing a barium atom is further used together with the oxide, and the mixture of the oxide and the compound containing a barium atom is subjected to nitriding treatment. Also good. By separately adding a compound containing a barium atom, the amount of barium atom in the barium niobium oxynitride can be appropriately adjusted.
  • the compound illustrated by the compound Y mentioned above is mentioned.
  • a compound containing a barium atom and a compound containing a niobium atom are mixed before the step A, and the mixture is subjected to nitriding treatment, whereby barium
  • the aspect further provided with the process E which obtains niobium oxynitride is mentioned.
  • Step E is an embodiment in which barium niobium oxynitride is obtained by directly nitriding a mixture containing a compound containing a barium atom and a compound containing a niobium atom.
  • the compound (compound Y) containing the barium atom used by the said process B is mentioned, for example.
  • the compound containing niobium atoms to be used may contain niobium atoms, and examples thereof include compounds containing pentavalent niobium atoms (for example, niobium oxide, niobium halide, niobium alkoxide).
  • pentavalent niobium atoms for example, niobium oxide, niobium halide, niobium alkoxide.
  • the conditions for the nitriding treatment are the same as those for the process B described above.
  • the ratio of the supply amount of the gas containing nitrogen atoms to the mass (g) of the mixture is the ratio Z It is preferable that it is the range of these.
  • Step F As another preferred embodiment of the method for producing a photocatalyst for water splitting, there may be mentioned an embodiment further comprising a step F of performing a heat treatment in an oxidizing atmosphere after the step A.
  • the oxidizing atmosphere means an atmosphere containing oxygen and may be in the air.
  • the conditions for the heat treatment are not particularly limited, and optimum conditions are appropriately selected depending on the type of cobalt compound used.
  • the heating temperature is preferably 50 to 300 ° C., more preferably 60 to 200 ° C., and the heating time from the viewpoint that the water splitting performance of the photocatalyst for water splitting is superior and does not affect the composition of oxynitride. Is preferably 0.5 to 3 hours, more preferably 0.5 to 1.5 hours.
  • the water splitting reaction using the photocatalyst for water splitting of the present invention can be carried out by any method known to those skilled in the art.
  • the photocatalyst for water splitting of the present invention is used in the form of powder, dispersed in a solvent (for example, water), and irradiated with light from a light source (for example, Xe lamp) while stirring as necessary. By doing so, water can be decomposed to generate hydrogen.
  • a solvent for example, water
  • a light source for example, Xe lamp
  • the water-decomposing photocatalyst of the present invention is formed into a thin film and immobilized on a support to produce a water-decomposing photoelectrode, and these are disposed in a solvent (for example, water) together with a platinum electrode as a counter electrode, Hydrogen may be generated by decomposing water by irradiating the water-decomposing photoelectrode with light using a light source (for example, Xe lamp).
  • a light source for example, Xe lamp
  • the water-decomposing photoelectrode of the present invention has a support and a photocatalyst layer containing the water-decomposing photocatalyst disposed on the support.
  • the kind of support used is not particularly limited, and a known support can be used.
  • the support it is preferable to use a conductive support formed of a metal, a non-metal such as carbon (graphite), or a conductive material such as a conductive oxide.
  • a metal support a simple substance of an atom exhibiting good electrical conductivity or an alloy can be used.
  • the atomic simple substance include Au, Ti, Zr, Nb, and Ta.
  • Specific examples of the alloy include carbon steel and titanium alloy. However, the alloy is not limited to the exemplified materials as long as it is electrochemically stable.
  • the shape of the support is not particularly limited, and may be, for example, a punching metal shape, a mesh shape, a lattice shape, or a porous body having penetrating pores.
  • the support may be a laminate in which a plurality of layers are laminated (for example, a laminate of a glass substrate and a metal layer).
  • a photocatalyst layer is a layer containing the photocatalyst for water splitting mentioned above.
  • the thickness of the photocatalyst layer is not particularly limited, but is preferably from 0.1 to 3.0 ⁇ m, more preferably from 0.5 to 2.0 ⁇ m, from the viewpoint of more excellent water splitting efficiency of the water splitting photoelectrode.
  • the formation method in particular of the said photocatalyst layer is not restrict
  • the water-decomposing photocatalyst or the water-decomposing photoelectrode When the water-decomposing photocatalyst or the water-decomposing photoelectrode is in contact with water and irradiated with light from a light source, hydrogen and / or oxygen can be produced.
  • the conditions for the photohydrolysis reaction can be appropriately selected depending on the photocatalyst used, and are not particularly limited.
  • the light source used for the photohydrolysis reaction is not particularly limited, but artificial light sources such as xenon lamps, mercury lamps, metal halide lamps, LED lamps, and solar simulators can be used in addition to sunlight.
  • Ba / Nb (molar ratio) means the total molar amount of barium atoms derived from Ba 5 Nb 4 O 15 and the barium atoms derived from BaCO 3 and the molar amount of niobium atoms derived from Ba 5 Nb 4 O 15 .
  • the molar ratio (Ba / Nb) is intended (hereinafter the same in Examples 3, 5, 6, 8, and 9).
  • the amount of Ba 5 Nb 4 O 15 used was 1.7 g (hereinafter the same in Examples 3, 5, 6, 8, and 9).
  • Example 4 A photocatalyst for water splitting was produced according to the same procedure as in Example 1 except that the firing temperature in the preparation of Ba 5 Nb 4 O 15 (flux method) was changed from 900 ° C. to 1000 ° C.
  • Example 7 The same procedure as in Example 1 except that the firing conditions in (Preparation of barium niobium oxynitride (BaNbO 2 N)) were changed to “nitriding treatment at 1000 ° C. for 20 hours under an ammonia stream (500 ml / min)”. Thus, a photocatalyst for water splitting was produced.
  • the photohydrolysis reaction was measured using a closed-circulation reaction system for photocatalyst manufactured by Makuhari Chemical Glass Co., Ltd. More specifically, as shown in FIG. 1, evaluation is performed with a closed reactor equipped with a vacuum pump, a circulation pump, a cell containing a photocatalyst suspension, a gas sampling valve, and a gas chromatograph analyzer (GC). did. In order to avoid a temperature rise, a water filter was provided between the lamp and the cell, and the cell was cooled from the outside using cooling water.
  • a closed-circulation reaction system for photocatalyst manufactured by Makuhari Chemical Glass Co., Ltd. More specifically, as shown in FIG. 1, evaluation is performed with a closed reactor equipped with a vacuum pump, a circulation pump, a cell containing a photocatalyst suspension, a gas sampling valve, and a gas chromatograph analyzer (GC). did. In order to avoid a temperature rise, a water filter was provided between the lamp and the cell, and the cell was
  • a 300 W xenon lamp was used as a light source, and a combination of a filter with ⁇ > 420 nm and a cold mirror (irradiation wavelength: 400 nm to 800 nm) was used.
  • a cut-off filter was not used, and a cold mirror (irradiation wavelength: 200 nm to 500 nm) was used.
  • Each photocatalyst for water splitting (0.2 g) prepared in the above Examples and Comparative Examples was suspended in pure water (200 ml) in a Pyrex (registered trademark) reaction vessel.
  • “1” means firing at 900 ° C.
  • “2” means firing at 1000 ° C. in the “firing condition” column.
  • “nitriding conditions” column “1” indicates “nitriding treatment at 929 ° C. for 15 hours under an ammonia stream (200 ml / min)”, and “2” indicates “1000 ° C. under an ammonia stream (500 ml / min)”. And 20 hours of nitriding treatment ”.
  • the performance of the water splitting photoelectrode was measured by current-potential measurement in a three-electrode system using a potentiostat (Hokuto Denko HSV-110).
  • a Pyrex (registered trademark) glass electrochemical cell with a flat window was used, an Ag / AgCl electrode was used for the reference electrode, and a Pt wire was used for the counter electrode.
  • oxygen and carbon dioxide dissolved in the electrolyte were removed by filling the inside of the electrochemical cell with argon gas and further bubbling with argon gas for 20 minutes or more.
  • a photocurrent density (mA / cm 2 ) was measured using a solar simulator (Minaga Electric Co., Ltd. XES-40S1).
  • Ba / Nb (molar ratio) is a molar ratio (Ba) between the total molar amount of barium atoms derived from BaNb 2 O 6 and barium atoms derived from BaCO 3 and the molar amount of niobium atoms derived from BaNb 2 O 6. / Nb) (hereinafter the same in Examples 11 to 14).
  • a photocatalyst for water splitting was produced according to the same procedure as in Example 1 (supporting promoter).
  • SEM-EDX device name: Hitachi High-Technologies SU-8020
  • TEM device name: Hitachi High-Technologies Corporation H-8100
  • barium niobium oxynitride was obtained. It was confirmed that the cocatalyst (cobalt oxide) was supported on the catalyst.
  • the obtained solid was fired at 700 ° C. for 10 hours.
  • the production of the obtained Ba 5 Nb 4 O 15 was confirmed by XRD (X-ray diffraction).
  • the Ba / Nb (molar ratio) is intended to be the ratio between the molar amount of barium atoms derived from BaCO 3 and the molar amount of niobium atoms derived from NbCl 5 (hereinafter the same in Examples 16 to 21).
  • barium niobium oxynitride on which a cocatalyst (cobalt oxide) was supported was obtained according to the same procedure as that carried out in Example 1 (cocatalyst support).
  • Example 19 In Example 18 (Preparation of oxide precursor (main component Ba 5 Nb 4 O 15 ) (complex polymerization method)), instead of “calcining at 700 ° C. for 10 hours”, “calcining at 700 ° C. for 2 hours, , Baked at 800 ° C. for 2.5 hours ”, and the nitriding conditions in (preparation of barium niobium oxynitride (BaNbO 2 N)) were“ nitriding at 850 ° C. for 15 hours under an ammonia stream (500 ml / min) ”
  • a photocatalyst for water splitting was produced according to the same procedure as in Example 18 except that the above was changed.
  • Example 19 except that the nitriding conditions in (preparation of barium niobium oxynitride (BaNbO 2 N)) in Example 19 were changed to “nitriding treatment at 850 ° C. for 50 hours under an ammonia stream (500 ml / min)”.
  • a photocatalyst for water splitting was produced according to the same procedure as described above.
  • Example 21 Firing in Example 19 (Preparation of oxide precursor (main component Ba 5 Nb 4 O 15 ) (complex polymerization method)) was performed using a rotary kiln to prepare (barium niobium oxynitride (BaNbO 2 N)).
  • the photocatalyst for water splitting was produced according to the same procedure as in Example 19 except that the nitriding conditions in) were changed to “nitriding treatment at 850 ° C. for 60 hours under an ammonia stream (500 ml / min)”.
  • the Ba / Nb (molar ratio) is intended to be the ratio between the molar amount of barium atoms derived from BaCO 3 and the molar amount of niobium atoms derived from Nb 2 O 5 (hereinafter the same in Examples 23 to 24). ).
  • barium niobium oxynitride on which a cocatalyst (cobalt oxide) was supported was obtained according to the same procedure as that carried out in Example 1 (cocatalyst support).
  • a photocatalyst for water splitting was produced according to the same procedure as in Example 22.
  • BaNbO 2 N barium niobium oxynitride
  • Example 21 using a rotary kiln showed an excellent effect. Further, as shown in Example 17, a superior effect was exhibited when the Ba / Nb ratio was in the range of 1.75 to 2.50. Further, as can be seen from the comparison between Examples 19 and 20, when the nitriding condition was 40 hours or longer, a more excellent effect was shown.
  • the ratio of atomic% of oxygen atoms to atomic% of nitrogen atoms in the barium oxynitride obtained in Examples 2, 19 and 20 above (atomic% of oxygen atoms / atomic% of nitrogen atoms) (O / N ratio) is shown in Table 4 below.
  • the method for measuring the O / N ratio is as described above.
  • Example 25 (Preparation of oxide precursor (main component Ba 4 Nb 6 O 19 ) (isopolyacid method)) K 4 Nb 6 O 19 ⁇ nH 2 O (4.0 g) was dissolved in 400 ml of water to prepare a K 4 Nb 6 O 19 aqueous solution.
  • an aqueous Ba (OH) 2 solution was added dropwise at 10 ml / min. After all was added dropwise, the mixture was stirred for 30 minutes.
  • the precipitated white precipitate was collected using a centrifuge and washed three times with 400 ml of water to obtain Ba 4 Nb 6 O 19 .
  • the production of Ba 4 Nb 6 O 19 was confirmed by XRD to have a similar structure to K 4 Nb 6 O 19, and the composition was confirmed by EDX and ICP. Thereafter, the obtained Ba 4 Nb 6 O 19 was fired at 700 ° C. for 2 hours and further at 800 ° C. for 3 hours.
  • Ba / Nb (molar ratio) means the total molar amount of barium atoms derived from Ba 4 Nb 6 O 19 and the barium atoms derived from BaCO 3 and the molar amount of niobium atoms derived from Ba 4 Nb 6 O 19 .
  • a molar ratio (Ba / Nb) is contemplated (hereinafter the same in Example 27).
  • Example 27 In Example 26 (Preparation of barium niobium oxynitride (BaNbO 2 N)), at 850 ° C. at "stream of ammonia under the nitride condition in (barium niobium oxynitride (BaNbO 2 N) Preparation of) (500 sccm) A photocatalyst for water splitting was produced according to the same procedure as in Example 26, except that “50 hours nitriding treatment” was changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 本発明は、バリウムニオブオキシナイトライドを含み、優れた水分解性能を示す水分解用光触媒およびその製造方法、水分解用光電極を提供する。本発明の水分解用光触媒は、光半導体と光半導体に担持された助触媒とを含む水分解用光触媒であって、光半導体がバリウムニオブオキシナイトライドを含み、助触媒が酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含む。

Description

水分解用光触媒およびその製造方法、水分解用光電極
 本発明は、水分解用光触媒およびその製造方法、並びに、水分解用光電極に関する。
 炭酸ガス排出削減、エネルギーのクリーン化の観点から、太陽エネルギーを利用して、光触媒により水を分解して、水素や酸素を製造する技術に注目が集まっている。
 光触媒による水分解反応に関する研究は数多くなされており、例えば、非特許文献1においてニオブ原子を含む水分解用光触媒が開示されている。なお、非特許文献1においては、バリウムニオブオキシナイトライドを用いた場合、水分解反応に対して触媒活性を示さないことが明示されている。
ChemSusChem,2011,4,74-78
 一方、バリウムニオブオキシナイトライドは740nm程度付近に吸収端を有するため、長波長の光を効率よく吸収することができ、従来の水分解用光触媒よりもより高い触媒活性を示す触媒を開発できる可能性がある。
 本発明は、上記実情に鑑みて、バリウムニオブオキシナイトライドを含み、優れた水分解性能を示す水分解用光触媒およびその製造方法を提供することを目的とする。
 また、本発明は、上記水分解用光触媒を有する水分解用光電極を提供することも目的とする。
 本発明者らは、従来技術の問題点について鋭意検討を行ったところ、バリウムニオブオキシナイトライドに対して所定の助触媒を担持させることにより、上記課題を解決できることを見出した。
 つまり、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 光半導体と光半導体に担持された助触媒とを含む水分解用光触媒であって、
 光半導体がバリウムニオブオキシナイトライドを含み、
 助触媒が酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含む、水分解用光触媒。
(2) 助触媒の担持量が、光半導体100質量部に対して、0.001~20質量部である、(1)に記載の水分解用光触媒。
(3) (1)または(2)に記載の水分解用光触媒の製造方法であって、
 バリウムニオブオキシナイトライドとコバルト化合物とを混合して、得られた混合物に対してバリウムニオブオキシナイトライドが酸化されない雰囲気下で、加熱処理を施す工程Aを備える、水分解用光触媒の製造方法。
(4) 工程Aの前に、バリウム原子およびニオブ原子を含む酸化物と、酸化物とは異なり、バリウム原子を含み、ニオブ原子を含んでいてもよい化合物とを、酸化物由来のバリウム原子および上記化合物由来のバリウム原子の合計モル量(Baモル量)と酸化物由来のニオブ原子および上記化合物由来のニオブ原子の合計モル量(Nbモル量)との比(Baモル量/Nbモル量)が1.3~4.0となる範囲で混合し、得られた混合物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Bをさらに備える、(3)に記載の水分解用光触媒の製造方法。
(5) バリウム原子を含み、ニオブ原子を含んでいてもよい化合物が、炭酸バリウムおよび硝酸バリウムからなる群から選択される少なくとも1つを含む、(4)に記載の水分解用光触媒の製造方法。
(6) 工程Aの前に、バリウム原子を含む化合物、ニオブ原子を含む化合物、および、錯化剤を含む原料を用いて錯体重合法によりバリウム原子およびニオブ原子を含む酸化物を形成する工程Cと、酸化物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Dをさらに備える、(3)に記載の水分解用光触媒の製造方法。
(7) 工程Cが、バリウム原子を含む化合物と、ニオブ原子を含む化合物と、錯化剤とを含む混合物に対して、加熱処理を施すことにより、バリウム原子およびニオブ原子を含む酸化物を形成する工程であり、バリウム原子を含む化合物由来のバリウム原子のモル量が、ニオブ原子を含む化合物由来のニオブ原子のモル量よりも多い、(6)に記載の水分解用光触媒の製造方法。
(8) コバルト化合物が、硝酸コバルトおよびコバルトアンミン錯体からなる群から選択される少なくとも1つを含む、(3)~(7)のいずれか1項に記載の水分解用光触媒の製造方法。
(9) 支持体と、支持体上に配置された(1)または(2)に記載の水分解用光触媒を含む光触媒層とを有する水分解用光電極。
 本発明によれば、バリウムニオブオキシナイトライドを含み、優れた水分解性能を示す水分解用光触媒およびその製造方法を提供することができる。
 また、本発明によれば、上記水分解用光触媒を有する水分解用光電極を提供することもできる。
実施例にて用いた光水分解反応の評価装置を概略的に示す図である。
 以下に、本発明の水分解用光触媒およびその製造方法、並びに、水分解用光電極の好適態様について説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 本発明の特徴点の一つとしては、バリウムニオブオキシナイトライドに対して、酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含む助触媒を担持させている点が挙げられる。このような特定の助触媒を担持させることにより、優れた水分解性能(特に、酸素生成能)を示すことが確認された。
 以下では、まず、水分解用光触媒の構成について詳述し、その後、水分解用光触媒の製造方法、並びに、水分解用光触媒を用いて得られる水分解用光電極について詳述する。
<水分解用光触媒>
 本発明の水分解用光触媒は、光半導体と、光半導体に担持された助触媒とを含む触媒であって、光半導体がバリウムニオブオキシナイトライドを含み、助触媒が酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含む。本発明の水分解用光触媒は、優れた酸素生成能および水素生成能を示す。
 以下では、まず、水分解用光触媒に含まれる成分について詳述する。
(光半導体)
 本発明の水分解用光触媒には、光半導体としてバリウムニオブオキシナイトライドが含まれる。上述したように、バリウムニオブオキシナイトライドは長波長領域(740nm)に吸収端を有するため、短波長光から長波長光までを効率的に吸収することができる。
 バリウムニオブオキシナイトライドとは、バリウム原子(Ba)およびニオブ原子(Nb)を含む酸窒化物である。より具体的には、BaNbONで表される化合物である。
 なお、本発明において、バリウムニオブオキシナイトライドとは上記化学式の組成比には限定されず、バリウム原子が一部抜けた欠陥構造を有するものや、ニオブ原子の一部が還元されたものなど、量論比からずれた態様も含まれる。
 また、本発明において、バリウムニオブオキシナイトライドには、酸素原子と窒素原子との原子割合が量論比からずれた態様も含まれ、より具体的には、バリウムニオブオキシナイトライド中における酸素原子の原子%と窒素原子の原子%との比率(酸素原子の原子%/窒素原子の原子%)は1.5~8.5が好ましく、1.8~3.0がより好ましい。なお、上記比率の測定は、酸素窒素分析装置(EMGA-620W)(堀場製作所)によって行う。
 バリウムニオブオキシナイトライドの大きさ(平均粒子径)は特に制限されないが、水分解用光触媒の水分解性能がより優れる点で、0.1~5.0μmが好ましく、0.5~2.0μmがより好ましい。0.1μm以上であれば、結晶性が向上し、さらに十分な厚みの空乏層が発生するため触媒としての効率が上昇し、5.0μm以下であれば、励起により生成した電子やホールが移動する距離が比較的短く、触媒としての効率が低下につながりにくい。
 なお、上記平均粒子径は、電子顕微鏡(例えば、走査型電子顕微鏡)にて、少なくとも300個のバリウムニオブオキシナイトライドの粒子径(直径)を測定し、それらを算術平均した値である。具体的には、SEM画像を2値化し、画像ソフト(三谷商事株式会社製画像解析ソフトWinRoof)を使用して、球形近似して求める。SEM測定は株式会社 日立ハイテクノロジーズ SU-8020型SEMを用いる。加速電圧は3kV、倍率25000倍、1195×896ピクセルの画像を用いる。なお、バリウムニオブオキシナイトライドの形状が真円状でない場合は、円相当径を用いる。「円相当径」とは、観察時のバリウムニオブオキシナイトライドの投影面積と同じ投影面積をもつ円を想定したときの当該円の直径である。
 なお、光半導体としてはバリウムニオブオキシナイトライドが主成分を構成することが好ましい。なお、ここで主成分とは、光半導体全質量に対して、バリウムニオブオキシナイトライドの含有量が60質量%以上であることを意図し、水分解用光触媒の水分解性能がより優れる点で、80質量%以上が好ましい。上限は特に制限されないが、100質量%である。
 光半導体としては、本発明の効果を損なわない範囲で、バリウムニオブオキシナイトライド以外の他の光半導体を含んでいてもよい。
(助触媒)
 本発明の水分解用光触媒には、助触媒として、酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含まれる。なお、以後、両者を総称して、「コバルト成分」とも称する。
 酸化コバルトとは、コバルトの酸化物であり、例えば、CoOx(xとしては、0.5~1.5が好ましく、1.0~1.4がより好ましい)で表される酸化コバルトが挙げられ、より具体的にはCoOおよびCoなどが挙げられる。金属コバルトとは、Coで表される金属である。
 助触媒としては、酸化コバルトおよび金属コバルトのいずれか1種のみを用いてもよいし、両者を併用してもよい。
 なお、助触媒としては、金属コバルトと酸化コバルトとのコアシェル型構造となっていてもよい。より具体的には、金属コバルトがコア部、酸化コバルトがシェル部を構成するコアシェル構造を有していてもよい。
 助触媒であるコバルト成分の形状は特に制限されないが、表面積がより大きい点より、粒状であることが好ましい。
 コバルト成分(金属コバルトおよび酸化コバルト)の大きさ(平均粒子径)は特に制限されないが、水分解用光触媒の水分解性能がより優れる点で、1~50nmが好ましく、2~20nmがより好ましい。
 なお、上記平均粒子径は、電子顕微鏡(透過型電子顕微鏡)にて、助触媒の形状を確認した後、電子顕微鏡(走査型電子顕微鏡)にて、少なくとも500個のコバルト成分の粒子径(直径)を測定し、それらを算術平均した値である。なお、コバルト成分の形状が真円状でない場合は、円相当径を用いる。具体的には、SEM画像を2値化し、画像ソフト(三谷商事株式会社製画像解析ソフトWinRoof)を使用して、球形近似して求める。SEM測定は株式会社 日立ハイテクノロジーズ 日立超高分解能電界放出形走査電子顕微鏡SU8020を用いる。加速電圧は15kV、倍率2,000,000倍、1195×896ピクセルの画像を用いる。
 光半導体に対する上記助触媒の担持量は特に制限されないが、水分解用光触媒の水分解性能がより優れる点で、光半導体100質量部に対して、0.001~20質量部が好ましく、0.001~10質量部がより好ましい。
 なお、助触媒としては上記コバルト成分が主成分を構成することが好ましい。なお、ここで主成分とは、助触媒全質量に対して、コバルト成分の含有量(酸化コバルトおよび金属コバルトの合計量)が70質量%以上であることを意図し、水分解用光触媒の水分解性能がより優れる点で、80質量%以上が好ましい。上限は特に制限されないが、100質量%である。
 助触媒としては、本発明の効果を損なわない範囲で、コバルト成分以外の他の助触媒を含んでいてもよい。
<水分解用光触媒の製造方法>
 上述した水分解用光触媒の製造方法は特に制限されず、公知の方法を採用できる。例えば、助触媒となるコバルト化合物(コバルト原子を含む化合物)を含む溶液とバリウムニオブオキシナイトライドとを接触させ、その後必要に応じて加熱処理を施す方法や、コバルト化合物を昇華させバリウムニオブオキシナイトライド上に担持させる方法などが挙げられる。
 なかでも、担持量の制御がより容易である点から、バリウムニオブオキシナイトライドとコバルト化合物とを混合し、混合物に対してバリウムニオブオキシナイトライドが酸化されない雰囲気下にて加熱処理を施す工程Aが好ましい。
 以下、工程Aについて詳述する。
 工程Aで使用されるバリウムニオブオキシナイトライドは、上述の通りである。
 コバルト化合物とは、コバルト原子を含む化合物であり、上記助触媒の前駆体である。コバルト化合物としては、コバルト原子が含まれ、酸化コバルトまたは金属コバルトとなりえる化合物であればその種類は特に制限されない。例えば、コバルト原子を含む塩(例えば、硝酸塩、炭酸塩、カルボン酸塩、硫酸塩、リン酸塩、スルホン酸塩、ホウ酸塩など)、コバルト原子を含む錯体(例えば、アセチルアセトナート、チオラート、チオカルボキシラート錯体、アンミン錯体、各種アミン錯体、ポルフィリン錯体、各種ニトリル錯体など)、水酸化コバルト、ハロゲン化コバルト、酸化コバルト、金属コバルトなどが挙げられる。なかでも、硝酸コバルトまたはコバルトアンミン錯体が熱分解性の観点から好ましい。
 バリウムニオブオキシナイトライドとコバルト化合物との混合方法は特に制限されず、例えば、バリウムニオブオキシナイトライドが分散した溶液と、コバルト化合物を含む溶液とを混合する方法や、バリウムニオブオキシナイトライドとコバルト化合物とを溶媒中に添加して、混合する方法などが挙げられる。他の方法としては、光電着法(例えば、コバルトイオンを含む水溶液に、バリウムニオブオキシナイトライドを懸濁させ、紫外領域から可視領域の光を照射することで、コバルト成分を含む助触媒をバリウムオキシナイトライド上に担持させる)、電析法(例えば、表面にバリウムニオブオキシナイトライドが配置された電極を、コバルトイオンを含む水溶液に浸漬し、所定の電位を印加して、コバルト成分を含む助触媒をバリウムオキシナイトライド上に担持させる)、浸漬法(例えば、表面にバリウムニオブオキシナイトライドが配置された支持体または粉末を、コバルトイオンを含む水溶液に所定時間浸漬して、必要に応じて焼成処理を実施して、コバルト成分を含む助触媒をバリウムオキシナイトライド上に担持させる)なども挙げられる。
 なお、混合した後、必要に応じて、乾燥処理を実施してもよい。乾燥処理を実施することにより、バリウムニオブオキシナイトライドとコバルト化合物との混合物から溶媒などの揮発成分を除去することができる。
 次に、得られたバリウムニオブオキシナイトライドとコバルト化合物との混合物に対して、バリウムニオブオキシナイトライドが酸化されない雰囲気下にて加熱処理を施す。本処理を実施することにより、所定の水分解用光触媒が得られる。
 バリウムニオブオキシナイトライドが酸化されない雰囲気としては、例えば、いわゆる還元雰囲気、不活性雰囲気(N2、Ar、He)、真空下が挙げられる。還元雰囲気とは、還元性気体を含む雰囲気を意図し、還元性気体としては、例えば、アンモニアが挙げられる。なお、バリウムニオブオキシナイトライドが酸化されない雰囲気としては、加熱処理の温度が低温(200℃以下)である条件では、酸素存在下であってもよい。
 加熱処理の条件は特に制限されず、使用されるコバルト化合物の種類などにより適宜最適な条件が選択される。なかでも、水分解用光触媒の水分解性能がより優れる点で、加熱温度としては200~700℃が好ましく、400~600℃がより好ましく、加熱時間としては、0.5~10時間が好ましく、0.5~1時間がより好ましい。
 水分解用光触媒の製造方法の好適態様の一つとしては、上記工程Aの前に、所定の工程によりバリウムニオブオキシナイトライドを得る工程(後述する工程B、工程Cおよび工程D、または、工程E)を実施することが好ましい。
 以下では、工程Bおよび工程Cの手順について詳述する。
(好適態様(その1))
 水分解用光触媒の製造方法の好適態様の一つとしては、上記工程Aの前に、バリウム原子およびニオブ原子を含む酸化物と、上記酸化物とは異なり、バリウム原子を含み、ニオブ原子を含んでいてもよい化合物とを混合し、窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Bをさらに備える態様が挙げられる。なお、工程Bにおいては、酸化物由来のバリウム原子および化合物由来のバリウム原子の合計モル量(Baモル量)と酸化物由来のニオブ原子および化合物由来のニオブ原子の合計モル量(Nbモル量)との比(Baモル量/Nbモル量)が1.3~4.0となる範囲に調整される。
 バリウムニオブオキシナイトライドを調製する際に、通常、所定の成分を混合して、加熱処理が実施される場合が多い。一方、ニオブ原子は比較的還元されやすく、ニオブ原子の還元種は水分解反応のキャリアをトラップ(捕捉)してしまい、水分解性能の劣化につながる。また、加熱処理の際に、バリウム原子が抜けやすく、この点も水分解性能の劣化につながる。そこで、上記のように、バリウム原子およびニオブ原子を含む酸化物に対して、所定の化合物を追添して、反応系中のバリウム原子とニオブ原子のモル比を所定の範囲にすることにより、上記のような欠陥の発生が抑制されたバリウムニオブオキシナイトライドを得ることができ、結果として、得られる水分解用光触媒の水分解性能がより優れる。
 以後、工程Bで使用される材料、および、その手順について詳述する。
 バリウム原子およびニオブ原子を含む酸化物(以後、酸化物Aとも称する)は、上述したバリウムニオブオキシナイトライドの前駆体である。該酸化物には、バリウム原子、ニオブ原子および酸素原子が含まれていればよく、例えば、BaNb、BaNb15、BaNb19などが挙げられる。
 なお、酸化物の構造は、結晶であっても、アモルファスであってもよい。
 また、上記酸化物の製造方法は特に制限されず、公知の方法(例えば、フラックス法、固相法、錯体重合法、ゾル・ゲル法)を採用できる。
 上記酸化物とは異なり、バリウム原子を含み、ニオブ原子を含んでいてもよい化合物(以後、化合物Xとも称する)としては、上記酸化物と異なる種類であり、所定の原子を含む化合物である。なお、化合物Xには酸素原子が含まれていてもよい。つまり、酸化物であってもよい。化合物Xとしては、例えば、バリウム原子を含む化合物(ただし、ニオブ原子は含まれない)(以後、化合物Yとも称する)、または、バリウム原子およびニオブ原子を含み、バリウム原子のモル量とニオブ原子のモル量との比B(バリウム原子のモル量/ニオブ原子のモル量)が上記酸化物A中のバリウム原子のモル量とニオブ原子のモル量との比A(バリウム原子のモル量/ニオブ原子のモル量)よりも大きい酸化物(以後、酸化物B)が挙げられる。
 バリウム原子を含む化合物(化合物Y)は、上記酸化物と併用される化合物であり、バリウム原子が含まれていればよい。この化合物には、ニオブ原子は含まれず、金属原子としてバリウム原子のみが含まれることが好ましい。この化合物としては、例えば、バリウム原子を含むオキソ酸塩(例えば、硝酸塩、炭酸塩、カルボン酸塩、硫酸塩、リン酸塩など)、バリウム原子を含む錯体(例えば、アセチルアセトナート、チオラートなど)、水酸化バリウム、酸化バリウムなどが挙げられる。熱分解する化合物であれば、上記化合物に限定されない。なかでも、取扱い性に優れ、熱分解後の残渣が残りにくい点で、炭酸バリウムまたは硝酸バリウムが好ましい。
 酸化物Bは、バリウム原子およびニオブ原子を含むが、バリウム原子のモル量とニオブ原子のモル量との比B(バリウム原子のモル量/ニオブ原子のモル量)は、上記酸化物A中のバリウム原子のモル量とニオブ原子のモル量との比A(バリウム原子のモル量/ニオブ原子のモル量)よりも大きい。つまり、酸化物Bは、酸化物Aと比較して、より多くのバリウム原子が含まれる。
 酸化物Aと酸化物Bとの組み合わせとしては、例えば、酸化物AがBaNbで、酸化物BがBaNb15である態様が挙げられる。
 上記バリウム原子およびニオブ原子を含む酸化物Aと、化合物Xとは、所定の混合比となるように混合されることが好ましい。具体的には、水分解用光触媒の水分解性能がより優れる点で、酸化物由来のバリウム原子および化合物(化合物X)由来のバリウム原子の合計モル量(Baモル量)と酸化物由来のニオブ原子および化合物(化合物X)由来のニオブ原子の合計モル量(Nbモル量)との比(Baモル量/Nbモル量)が1.3~4.0となる範囲に調整されることが好ましく、1.35~3.5となる範囲に調整されることがより好ましく、1.5~2.0となる範囲に調整されることがさらに好ましい。なお、化合物Xにニオブ原子を含まれない場合は、化合物X由来のニオブ原子のモル量は0として計算する。
 上記酸化物Aと上記化合物Xとの混合方法は特に制限されず、酸化物Aを含む溶液と化合物Xを含む溶液とを混合する方法や、所定の溶媒に酸化物Aおよび化合物Xを添加する方法などが挙げられる。
 なお、混合した後、必要に応じて、乾燥処理を実施してもよい。乾燥処理を実施することにより、酸化物Aと化合物Xとの混合物から溶媒などの揮発成分を除去することができる。
 次に、得られた混合物に対して、窒化処理を施し、バリウムニオブオキシナイトライドを得る。
 窒化処理の方法は特に制限されず、通常は、窒素原子を含むガスの雰囲気下にて加熱処理を施す方法が挙げられる。窒素原子を含むガスとしては、例えば、アンモニア、窒素、ヒドラジンなどが挙げられる。
 窒素原子を含むガスの供給量は特に制限されないが、混合物の質量(g)に対する窒素原子を含むガスの供給量の比率(ガスの供給量(ml/min)/混合物の質量(g))(以後、比率Zとも称する)としては、水分解用光触媒の水分解性能がより優れる点で、10~1500が好ましく、100~350がより好ましい。
 加熱処理の条件は特に制限されず、使用される化合物Xの種類などにより適宜最適な条件が選択される。なかでも、水分解用光触媒の水分解性能がより優れる点で、加熱温度としては800~1050℃が好ましく、850~1000℃がより好ましく、加熱時間としては、5~80時間が好ましく、10~70時間がより好ましく、40~60時間がさらに好ましい。
 なお、窒化処理の後、必要に応じて、バリウムニオブオキシナイトライドを洗浄する処理を実施してもよい。洗浄に使用される溶媒としては、例えば、王水、硝酸、塩酸が挙げられる。
 なお、上記工程Bでは、酸化物Aと化合物Xとを混合して得られる混合物を用いて、バリウムニオブオキシナイトライドを製造しているが、バリウムニオブオキシナイトライドを製造する他の方法としては、酸化物Aに対して、上記窒化処理を施すことによりバリウムニオブオキシナイトライドを製造してもよい。その場合、酸化物Aの質量(g)に対する窒素原子を含むガスの供給量の比率(ガスの供給量(ml/min)/酸化物Aの質量(g))が、上記比率Zの範囲であることが好ましい。
(好適態様(その2))
 水分解用光触媒の製造方法の好適態様の一つとしては、上記工程Aの前に、バリウム原子を含む化合物、ニオブ原子を含む化合物、および、錯化剤を含む原料を用いて錯体重合法によりバリウム原子およびニオブ原子を含む酸化物を形成する工程Cと、酸化物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Dをさらに備える態様が挙げられる。
 錯体重合法を実施する場合、形成される錯体中においてバリウム原子とニオブ原子とを所定量近接して配置することができるため、バリウム原子およびニオブ原子の供給量の制御がしやすく、結果として得られる水分解用光触媒の水分解性能がより優れる。
 まず、以下では、工程Cで使用される材料について詳述する。
 バリウム原子を含む化合物としては、バリウム原子が含まれていればよく、例えば、上述した化合物Yで例示した化合物が挙げられる。なお、バリウム原子を含む化合物は、後述する溶媒に溶解できる化合物であることが好ましい。
 また、ニオブ原子を含む化合物としては、ニオブ原子が含まれていればよく、例えば、5価ニオブ原子を含む化合物(例えば、ハロゲン化ニオブ、ニオブアルコキシド)が挙げられる。なお、ニオブ原子を含む化合物は、後述する溶媒に溶解できる化合物であることが好ましい。
 バリウム原子を含む化合物とニオブ原子を含む化合物は併用して原料Aとして使用される。原料A中における、バリウム原子を含む化合物と、ニオブ原子を含む化合物との混合量は特に制限されないが、得られる水分解用光触媒の水分解性能がより優れる点で、バリウム原子を含む化合物由来のバリウム原子のモル量(モル量X)が、ニオブ原子を含む化合物由来のニオブ原子のモル量(モル量Y)よりも多いことが好ましく、両者の比(モル量X/モル量Y)は1.10~4.00が好ましく、1.25~3.00がより好ましく、1.75~2.50がさらに好ましい。
 錯化剤としては、上記ニオブ原子などと錯体を形成できる化合物であれば特に制限されないが、錯化剤の好適態様の一つとして、例えば、カルボキシル基を有する化合物が好ましく挙げられ、より具体的には、シュウ酸、リンゴ酸、酒石酸、クエン酸、コハク酸、マレイン酸、酢酸およびマロン酸からなる群より選ばれる少なくとも1種が挙げられる。また、錯化剤の他の好適態様の一つとして、上記カルボキシル基を有する化合物のカルボキシル基との間でエステル結合を形成できる官能基を有する化合物が好ましく挙げられ、この化合物としては、分子内に2つ以上の水酸基(OH基)を有する化合物がより好ましい。例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、カテキン、グリセリン、ポリビニルアルコールなどを用いることができ、エチレングリコールを用いることがより好ましい。つまり、錯化剤としては、上記カルボキシル基を有する化合物と、水酸基を有する化合物とを併用する態様が好ましい。
 原料A中における錯化剤の含有量は特に制限されないが、得られる水分解用光触媒の水分解性能がより優れる点で、錯化剤のモル量と、バリウム原子を含む化合物由来のバリウム原子のモル量(モル量X)およびニオブ原子を含む化合物由来のニオブ原子のモル量(モル量Y)の合計モル量との比(錯化剤のモル量/モル量Xおよびモル量Yの合計モル量/)は5~100が好ましく、20~50がより好ましい。
 なお、上記原料には、上記成分(バリウム原子を含む化合物、ニオブ原子を含む化合物、および、錯化剤)以外の成分が含まれていてもよい。
 例えば、バリウム原子およびニオブ原子の両方を含む化合物がさらに原料に含まれていてもよい。上記化合物には、さらに酸素原子が含まれていてよく、より具体的には、BaNb19などが挙げられる。
 また、原料中には、溶媒が含まれていてもよい。溶媒の種類は特に制限されず、水または有機溶媒(例えば、アルコール系溶媒)が挙げられる。
 錯体重合法とは、所定の原料を用いて金属錯体を製造し、この金属錯体に加熱処理を施し、重合させて前駆体を製造し、さらに加熱処理を実施して所望の酸化物(バリウム原子およびニオブ原子を含む酸化物)を得る方法である。例えば、バリウム原子を含む化合物と、ニオブ原子を含む化合物と、クエン酸およびエチレングリコールなどの錯化剤とを混合し、金属クエン酸錯体を得る。
 その後温度を重合温度まで上昇させてエステル結合により重合させることでゲルを得て、得られたゲルを熱分解温度(例えば300~500℃)にて加熱することで熱分解させて前駆体を得る。さらに、前駆体を空気雰囲気下等の酸素存在下、600~1000℃、好ましくは700~900℃で、3時間以上、好ましくは5時間以上焼成することにより、酸化物を得ることができる。
 錯体重合法の加熱条件は特に制限されず、使用される材料により適宜最適な条件が選択されるが、通常、上記のように300~500℃にて加熱する第1加熱工程と、600~1000℃にて加熱する第2加熱工程を備える態様が好ましい。第1加熱工程の処理時間は特に制限されないが、通常、0.5~2時間が好ましい。第2加熱工程の処理時間は特に制限されないが、通常、5~10時間が好ましい。
 また、加熱処理の際に使用される装置は特に制限されないが、得られる水分解用光触媒の水分解性能がより優れる点で、ロータリーキルンを用いて加熱処理を実施することが好ましい。ロータリーキルン中で加熱を実施することにより、金属錯体に対して加熱処理が万遍なく施され、ムラが生じにくい。
 なお、得られる酸化物には、バリウム原子、ニオブ原子および酸素原子が含まれていればよく、例えば、BaNb、BaNb15などが挙げられる。なお、酸化物の構造は、結晶であっても、アモルファスであってもよい。
 次に、上記で得られた酸化物に窒化処理を施し、バリウムニオブオキシナイトライドを得ることができる(工程D)。窒化処理の手順・条件は特に制限されず、上述した(好適態様(その1))で実施される窒化処理が挙げられる。この場合の窒化処理の条件として、酸化物の質量(g)に対する窒素原子を含むガスの供給量の比率(ガスの供給量(ml/min)/酸化物の質量(g))が、上記比率Zの範囲であることが好ましい。
 なお、窒化処理の際には、必要に応じて、上記酸化物と共に、バリウム原子を含む化合物をさらに使用して、酸化物とバリウム原子を含む化合物との混合物に対して窒化処理を実施してもよい。バリウム原子を含む化合物を別途追加することにより、バリウムニオブオキシナイトライド中のバリウム原子の量を適宜調整できる。なお、バリウム原子を含む化合物としては、上述した化合物Yで例示した化合物が挙げられる。
(好適態様(その3))
 水分解用光触媒の製造方法の好適態様の一つとしては、上記工程Aの前に、バリウム原子を含む化合物と、ニオブ原子を含む化合物とを混合し、混合物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Eをさらに備える態様が挙げられる。
 上記工程Eは、バリウム原子を含む化合物と、ニオブ原子を含む化合物とを含む混合物に対して、直接窒化処理を施し、バリウムニオブオキシナイトライドを得る態様である。
 使用されるバリウム原子を含む化合物としては、例えば、上記工程Bで使用されるバリウム原子を含む化合物(化合物Y)が挙げられる。
 また、使用されるニオブ原子を含む化合物としては、ニオブ原子を含んでいればよく、例えば、5価ニオブ原子を含む化合物(例えば、酸化ニオブ、ハロゲン化ニオブ、ニオブアルコキシド)などが挙げられる。
 窒化処理の条件は、上述した工程Bの条件と同じである。この場合の窒化処理の条件として、上記混合物の質量(g)に対する窒素原子を含むガスの供給量の比率(ガスの供給量(ml/min)/混合物の質量(g))が、上記比率Zの範囲であることが好ましい。
(好適態様(その4))
 水分解用光触媒の製造方法の他の好適態様としては、上記工程Aの後に、酸化雰囲気下にて加熱処理を施す工程Fをさらに有する態様が挙げられる。工程Fを実施することにより、工程Aにより生成した金属コバルトの酸化がより効率的に進行し、結果として水分解用光触媒の水分解性能がより優れる。
 酸化雰囲気とは、酸素を含む雰囲気を意図し、空気下であってもよい。
 加熱処理の条件は特に制限されず、使用されるコバルト化合物の種類などにより適宜最適な条件が選択される。なかでも、水分解用光触媒の水分解性能がより優れ、オキシナイトライドの組成に影響を与えない点で、加熱温度としては50~300℃が好ましく、60~200℃がより好ましく、加熱時間としては、0.5~3時間が好ましく、0.5~1.5時間がより好ましい。
 本発明の水分解用光触媒を用いた水分解反応は、当業者に公知の任意の方法によって実施することができる。
 例えば、本発明の水分解用光触媒を粉末状にして使用しそれを溶媒(例えば、水)中に分散させ、必要に応じて攪拌等を行いながら、光源(例えば、Xeランプ)から光を照射することにより水を分解して水素を発生させることができる。また、本発明の水分解用光触媒を薄膜状にして支持体上に固定化して水分解用光電極を製造し、対極としての白金電極等とともにこれらを溶媒(例えば、水)中に配置し、光源(例えば、Xeランプ)を用いて当該水分解用光電極に光を照射することにより水を分解して水素を発生させてもよい。
 以下では、水分解用光電極の態様について詳述する。
<水分解用光電極およびその製造方法>
 本発明の水分解用光電極は、支持体と、支持体上に配置された上記水分解用光触媒を含む光触媒層とを有する。
 使用される支持体の種類は特に制限されず、公知の支持体を使用できる。また、支持体としては、金属、あるいは、カーボン(グラファイト)等の非金属、または導電性酸化物等の導電材料により形成された導電性支持体を用いることが好ましい。なかでも、良好な加工性を有することから、金属支持体を用いることが特に好ましい。金属支持体としては、良好な電気伝導性を示す原子の単体、または合金を用いることができる。原子の単体とは、具体的には、Au、Ti、Zr、Nb、Taなどを挙げることができる。合金とは、具体的には、炭素鋼、チタン合金などを挙げることができるが、電気化学的に安定なものであれば、例示した材料に限定されるものではない。
 支持体の形状は特に制限されず、例えば、パンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体であってもよい。
 また、支持体は、複数の層が積層した積層体(例えば、ガラス基板と金属層との積層体)であってもよい。
 光触媒層は、上述した水分解用光触媒を含む層である。
 光触媒層の厚みは特に制限されないが、水分解用光電極の水分解効率がより優れる点で、0.1~3.0μmが好ましく、0.5~2.0μmがより好ましい。
 上記光触媒層の形成方法は特に制限されず、公知の方法を採用できる。例えば、Chem. Sci., 2013, 4, 1120-1124に記載の転写法が挙げられる。
 上述した水分解用光触媒または水分解用光電極を水に接触させた状態にして、光源から光を照射すると、水素および/または酸素を製造することができる。
 光水分解反応の条件は、使用する光触媒によって適宜選択することができ、特に限定されるものではない。
 なお、光水分解反応に用いる光源としては、特に限定されるものではないが、太陽光の他、キセノンランプ、水銀ランプ、メタルハライドランプ、LEDランプやソーラーシミュレーター等の人工光源を用いることができる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(BaNb15の調製(フラックス法))
 Nb(2.66g)、BaCO(4.93g)、およびNaCl(2.34g)を混合し(Ba原子/Nb原子(モル比)=1.25、Na原子/Nb原子(モル比)=4)、900℃で5時間焼成し、洗浄した。得られたBaNb15の生成はXRD(X-ray diffraction)にて確認した。
(バリウムニオブオキシナイトライド(BaNbON)の調製)
 得られたBaNb15に対して、アンモニア気流下(200ml/min)にて929℃で15時間窒化処理を施した。その後、生成物の表面を王水で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRD(X-ray diffraction)にて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は740nmであることが確認された。なお、BaNb15の使用量は1.7gであった。
(助触媒担持)
 磁性蒸発皿で得られたバリウムニオブオキシナイトライドの懸濁液(溶媒:HO)を作製し、硝酸コバルト水溶液をCo/BaNbONが質量比で2質量%となるように添加した。その後、沸騰した水の入ったビーカー上から上がってくる水蒸気で磁性蒸発皿を加熱しつつ、ガラス棒で攪拌した。
 得られた粉末をアンモニア気流下(200ml/min)、500℃で1時間加熱処理し、さらに酸素雰囲気下で、200℃で1時間加熱処理を行い、水分解用光触媒を製造した。得られた水分解用光触媒をSEM-EDX(装置名:株式会社 日立ハイテクノロジーズ SU-8020)およびTEM(装置名:株式会社 日立ハイテクノロジーズ H-8100)にて観察したところ、バリウムニオブオキシナイトライドに助触媒(酸化コバルト)が担持されていることが確認された。
<実施例2>
 実施例1の(バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=1.5となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
 なお、Ba/Nb(モル比)とは、BaNb15由来のバリウム原子およびBaCO由来のバリウム原子の合計モル量と、BaNb15由来のニオブ原子のモル量とのモル比(Ba/Nb)を意図する(以後、実施例3、5、6、8、9において同様)。また、BaNb15の使用量は1.7gであった(以後、実施例3、5、6、8、9において同様)。
<実施例3>
 実施例1の(バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=1.75となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
<実施例4>
 (BaNb15の調製(フラックス法))における焼成温度を900℃から1000℃に変更した以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
<実施例5>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=1.5となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例4と同様の手順に従って、水分解用光触媒を製造した。
<実施例6>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=2となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例4と同様の手順に従って、水分解用光触媒を製造した。
<実施例7>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)における焼成条件を「アンモニア気流下(500ml/min)にて1000℃で20時間窒化処理」に変更した以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
<実施例8>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=1.5となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例7と同様の手順に従って、水分解用光触媒を製造した。
<実施例9>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb15にBa/Nb(モル比)=2となるようにBaCOを添加した後、窒化処理を実施した以外は、実施例7と同様の手順に従って、水分解用光触媒を製造した。
<比較例1>
 (助触媒担持)を実施しなかった以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
 比較例1で得られた水分解用光触媒には、コバルト成分は含まれていない。
<比較例2>
 (助触媒担持)においてバリウムニオブオキシナイトライドの代わりに、BaNb15を用いた以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
<比較例3>
 硝酸コバルト水溶液の代わりに、テトラアンミンジクロロ白金Pt(NH24Cl2水溶液を用いた以外は、実施例1と同様の手順に従って、水分解用光触媒を製造した。
<評価:光水分解反応>
 光水分解反応(光触媒反応)は、有限会社幕張理化学硝子製作所製の光触媒用閉鎖循環反応システムを用いて測定を行った。より具体的には、図1に示すように、真空ポンプ、循環ポンプ、光触媒懸濁液を入れるセル、気体採取バルブ、および、ガスクロマトグラフ分析装置(GC)を備えた閉鎖系の反応装置で評価した。なお、温度上昇を避けるためランプとセルとの間にはウォーターフィルタを設け、さらにセルは冷却水を用いて外側から冷却した。また、300Wのキセノンランプを光源とし、λ>420nmのフィルター、およびコールドミラー(照射波長400nm-800nm)と組み合わせて使用した。比較例2では、カットオフフィルタは使用せず、コールドミラー(照射波長200nm-500nm)を用いた。
 上記実施例および比較例で調製したそれぞれの水分解用光触媒(0.2g)を純水(200ml)にパイレックス(登録商標)製反応容器内で懸濁させた。さらに犠牲試薬とpH調整剤として、それぞれ硝酸銀(1.7g)とLa23(0.21g)を添加した。上記、反応容器を閉鎖循環系に接続した状態で、数回の脱気処理を施し、酸素、および窒素の残存量が検出下限以下になったことを確認した。その後に初期圧力が50torrとなるように、アルゴンガスを充填した後、光照射を開始し、ガス(酸素)の生成量を測定した。測定温度は室温になるように、冷却水を用いて冷却した。生成ガスの定量はガスクロマトグラフィーを使用した。使用カラムはモレキュラーシーブ5A、カラム温度は50℃とした。結果を表1にまとめて示す。
 表1中、「焼成条件」欄において、「1」は900℃での焼成を、「2」は1000℃での焼成をそれぞれ意図する。
 「窒化条件」欄において、「1」は「アンモニア気流下(200ml/min)にて929℃で15時間の窒化処理」を、「2」は「アンモニア気流下(500ml/min)にて1000℃で20時間の窒化処理」をそれぞれ意図する。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の水分解用光触媒は、優れた酸素生成能(言い換えると、水分解性能)を示すことが確認された。特に、実施例4~6の比較から分かるように、バリウム原子を含む化合物を所定のBa/Nb比となるように添加した場合は、より生成速度が優れることが確認された。
 一方、コバルト成分を使用していない比較例1、バリウムニオブオキシナイトライドの代わりにBaNb15を使用した比較例2、Pt(白金)成分を使用した比較例3では、水分解性能は示されなかった。
<水分解用光電極の作製>
 上記実施例2で調製した水分解用光触媒を低沸点有機溶剤(溶媒:イソプロピルアルコール)に懸濁させ、支持体(FLガラス)上に塗布し、チタン導電層をスパッタし、粒子転写法(Chem. Sci., 2013, 4, 1120-1124に記載)にて、チタン導電層と、接着剤層と、水分解用光触媒を含む光触媒層とがこの順で積層された水分解用光電極を作製した。
 水分解用光電極の性能は、ポテンショスタット(北斗電工株式会社 HSV-110)を用いた3電極系での電流-電位測定にて測定した。平面窓付きのパイレックス(登録商標)ガラス製電気化学セルを用い、参照極にAg/AgCl電極、対極にPtワイヤーを用いた。電解液は0.1MNaOH水溶液(pH=13)を用いた。測定の前に、電気化学セルの内部をアルゴンガスで満たし、さらにアルゴンガスで20分以上のバブリング処理することにより、電解液中に溶存する酸素、二酸化炭素を除去した。
 光電気化学測定には、ソーラーシュミレーター(株式会社 三永電機製作所 XES-40S1)を用いて、光電流密度(mA/cm)を測定した。
 上記水分解用光電極について、光電流値は、1.2V(vs.RHE)で最大約0.25mA/cm(AM=1.5D)となった。
<実施例10>
(BaNbの調製(固相法))
 Nb(5.32g)とBaCO(3.95g)とを混合し(Ba原子/Nb原子(モル比)=0.5)、1150℃で5時間焼成した。BaNbの生成はXRD(X-ray diffraction)にて確認した。
(BaNbONの調製)
 得られたBaNbに対して、Ba/Nb(モル比)=1.0となるようにBaCOを添加して混合物を得た後、混合物に対して、アンモニア気流下(500ml/min)、1000℃で20時間窒化処理を施した。その後、生成物の表面を王水で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRD(X-ray diffraction)にて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は730nmであることが確認された。なお、BaNbの使用量は1.7gであった。
 なお、Ba/Nb(モル比)とは、BaNb由来のバリウム原子およびBaCO由来のバリウム原子の合計モル量と、BaNb由来のニオブ原子のモル量とのモル比(Ba/Nb)を意図する(以後、実施例11~14において同様)。
 得られたバリウムニオブオキシナイトライドを用いて、実施例1の(助触媒担持)と同様の手順に従って、水分解用光触媒を製造した。得られた水分解用光触媒をSEM-EDX(装置名:株式会社 日立ハイテクノロジーズ SU-8020)およびTEM(装置名:株式会社 日立ハイテクノロジーズ H-8100)にて観察したところ、バリウムニオブオキシナイトライドに助触媒(酸化コバルト)が担持されていることが確認された。
<実施例11>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、Ba/Nb(モル比)=1.25となるようにBaCOを添加した以外は、実施例10と同様の手順に従って、水分解用光触媒を製造した。
<実施例12>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、Ba/Nb(モル比)=1.5となるようにBaCOを添加した以外は、実施例10と同様の手順に従って、水分解用光触媒を製造した。
<実施例13>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、Ba/Nb(モル比)=2.0となるようにBaCOを添加した以外は、実施例10と同様の手順に従って、水分解用光触媒を製造した。
<実施例14>
 (バリウムニオブオキシナイトライド(BaNbON)の調製)において、Ba/Nb(モル比)=2.5となるようにBaCOを添加した以外は、実施例10と同様の手順に従って、水分解用光触媒を製造した。
 上記実施例10~14で得られた水分解用光触媒を用いて、上述した<評価:光水分解反応>を実施した。結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、固相法にて調製されたBaNbを原料として用いた場合も、所望の効果が得られることが確認された。特に、実施例12および13に示すように、Ba/Nb比が1.5~2.0の場合、より効果が優れることが確認された。
<実施例15>
(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))
 NbCl(2.93g)、BaCO(2.68g)、クエン酸(23.5g)、エチレングリコール(30.3g)およびメタノール(39.1g)を混合し(Ba/Nb(モル比)=1.25)、ホットスターラー上で均一に撹拌を行い、錯化を行った。続いて350℃のマントルヒーターで、得られた混合物を350℃で3時間加熱し、炭化させた。次に、アルミナボート上でさらに500℃で5時間加熱し、白色の固体を得た。さらに、得られた固体を700℃で10時間焼成した。得られたBaNb15の生成はXRD(X-ray diffraction)にて確認した。
 なお、上記Ba/Nb(モル比)は、BaCO由来のバリウム原子のモル量と、NbCl由来のニオブ原子のモル量との比を意図する(以後、実施例16~21において同様)。
(バリウムニオブオキシナイトライド(BaNbON)の調製)
 得られたBaNb15に対して、アンモニア気流下(500ml/min)にて850℃で30時間窒化処理を施した。その後、生成物の表面を1M硝酸で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRD(X-ray diffraction)にて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は740nmであることが確認された。なお、BaNb15の使用量は1.7gであった。
 得られたバリウムニオブオキシナイトライドを用いて、実施例1で実施した(助触媒担持)と同様の手順に従って、助触媒(酸化コバルト)が担持されたバリウムニオブオキシナイトライドを得た。
<実施例16>
 実施例15の(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))において、Ba/Nb(モル比)=1.5となるようにBaCOを添加し、BaCO由来のバリウム原子のモル量およびNbCl由来のニオブ原子のモル量の合計モル量と、クエン酸のモル量と、エチレングリコールのモル量と、メタノールのモル量との比(Baモル量+Nbモル量:クエン酸:エチレングリコール:メタノール)が1:5:20:50の比率になるようにクエン酸、エチレングリコール、メタノールの添加量を調整した以外は、実施例15と同様の手順に従って、水分解用光触媒を製造した。なお、BaNb19の使用量は1.7gであった。
<実施例17>
 実施例15の(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))において、Ba/Nb(モル比)=2.0となるようにBaCOを添加し、BaCO由来のバリウム原子のモル量およびNbCl由来のニオブ原子のモル量の合計モル量と、クエン酸のモル量と、エチレングリコールのモル量と、メタノールのモル量との比(Baモル量+Nbモル量:クエン酸:エチレングリコール:メタノール)が1:5:20:50の比率になるようにクエン酸、エチレングリコール、メタノールの添加量を調整し、「700℃で10時間焼成」の代わりに「900℃で5時間焼成」を実施し、(バリウムニオブオキシナイトライド(BaNbON)の調製)における窒化条件を「アンモニア気流下(500ml/min)にて850℃で20時間窒化処理」に変更した以外は、実施例15と同様の手順に従って、水分解用光触媒を製造した。
<実施例18>
 実施例15の(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))において、Ba/Nb(モル比)=3.0となるようにBaCOを添加し、BaCO由来のバリウム原子のモル量およびNbCl由来のニオブ原子のモル量の合計モル量と、クエン酸のモル量と、エチレングリコールのモル量と、メタノールのモル量との比(Baモル量+Nbモル量:クエン酸:エチレングリコール:メタノール)が1:5:20:50の比率になるようにクエン酸、エチレングリコール、メタノールの添加量を調整した以外は、実施例15と同様の手順に従って、水分解用光触媒を製造した。
<実施例19>
 実施例18の(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))において、「700℃で10時間焼成」の代わりに「700℃で2時間焼成し、さらに、800℃で2.5時間焼成」を実施し、(バリウムニオブオキシナイトライド(BaNbON)の調製)における窒化条件を「アンモニア気流下(500ml/min)にて850℃で15時間窒化処理」に変更した以外は、実施例18と同様の手順に従って、水分解用光触媒を製造した。
<実施例20>
 実施例19の(バリウムニオブオキシナイトライド(BaNbON)の調製)における窒化条件を「アンモニア気流下(500ml/min)にて850℃で50時間窒化処理」に変更した以外は、実施例19と同様の手順に従って、水分解用光触媒を製造した。
<実施例21>
 実施例19の(酸化物前駆体(主成分BaNb15)の調製(錯体重合法))における焼成をロータリーキルンを用いて実施し、(バリウムニオブオキシナイトライド(BaNbON)の調製)における窒化条件を「アンモニア気流下(500ml/min)にて850℃で60時間窒化処理」に変更した以外は、実施例19と同様の手順に従って、水分解用光触媒を製造した。
<実施例22>
(バリウムニオブオキシナイトライド(BaNbON)の調製(物理的混合))
 Nb(0.67g)およびBaCO(1.29g)を混合し(Ba/Nb(モル比)=1.5)、アンモニア気流下(200ml/min)にて929℃で15時間窒化処理を施した。その後、生成物の表面を王水で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRD(X-ray diffraction)にて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は740nmであることが確認された。
 なお、上記Ba/Nb(モル比)は、BaCO由来のバリウム原子のモル量と、Nb由来のニオブ原子のモル量との比を意図する(以後、実施例23~24において同様)。
 得られたバリウムニオブオキシナイトライドを用いて、実施例1で実施した(助触媒担持)と同様の手順に従って、助触媒(酸化コバルト)が担持されたバリウムニオブオキシナイトライドを得た。
<実施例23>
 実施例22の(バリウムニオブオキシナイトライド(BaNbON)の調製(物理的混合))において、Ba/Nb(モル比)=2.0となるように混合し、「アンモニア気流下(200ml/min)にて929℃で15時間窒化処理」を「アンモニア気流下(500ml/min)にて950℃で20時間窒化処理」に変更し、王水の代わりに1M硝酸を用いた以外は、実施例22と同様の手順に従って、水分解用光触媒を製造した。
<実施例24>
 実施例23の(バリウムニオブオキシナイトライド(BaNbON)の調製(物理的混合))において、Ba/Nb(モル比)=3.0となるように混合した以外は、実施例23と同様の手順に従って、水分解用光触媒を製造した。
 上記実施例15~24で得られた水分解用光触媒を用いて、上述した<評価:光水分解反応>を実施した。結果を表3にまとめて示す。
 表3中、「焼成条件」欄において、「3」は「700℃で10時間焼成」を、「4」は「900℃で5時間焼成」を、「5」は「700℃で2時間焼成し、さらに、800℃で2.5時間焼成」をそれぞれ意図する。
 「窒化条件」欄において、「3」は「アンモニア気流下(500ml/min)にて850℃で30時間窒化処理」を、「4」は「アンモニア気流下(500ml/min)にて850℃で20時間窒化処理」を、「5」は「アンモニア気流下(500ml/min)にて850℃で15時間窒化処理」を、「6」は「アンモニア気流下(500ml/min)にて850℃で50時間窒化処理」を、「7」は「アンモニア気流下(500ml/min)にて850℃で60時間窒化処理」を、「8」は「アンモニア気流下(200ml/min)にて929℃で15時間窒化処理」を、「9」は「アンモニア気流下(500ml/min)にて950℃で20時間窒化処理」をそれぞれ意図する。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、他の調製方法で作製したバリウムニオブオキシナイトライドを用いた場合も、所望の効果が得られることが確認された。特に、ロータリーキルンを用いた実施例21は優れた効果を示した。また、実施例17に示すように、Ba/Nb比が1.75~2.50の範囲においてより優れた効果を示した。また、実施例19と20との比較から分かるように、窒化処理の条件が40時間以上の場合、より優れた効果を示した。
 なお、上記実施例2、19、および20で得られたバリウムオキシナイトライド中の酸素原子の原子%と窒素原子の原子%との比(酸素原子の原子%/窒素原子の原子%)(O/N比)を以下の表4に示す。なお、O/N比の測定方法は、上述の通りである。
Figure JPOXMLDOC01-appb-T000004
<実施例25>
(酸化物前駆体(主成分BaNb19)の調製(イソポリ酸法))
 KNb19・nHO(4.0g)を400mlの水に溶解させ、KNb19水溶液を調製した。Ba(OH)・8HO(9.67g)を400mlの水に溶解させ、Ba(OH)水溶液を調製した。KNb19水溶液を撹拌しながら、Ba(OH)水溶液を10ml/minで滴下した。全て滴下した後、30分撹拌した。遠心分離機を用いて、析出した白色沈殿を回収し、400mlの水で3回洗浄し、BaNb19を得た。BaNb19の生成はXRDにて、KNb19と類似の構造であることを確認した他、EDXやICPで組成を確認した。その後、得られたBaNb19を700℃にて2時間、さらに800℃にて3時間焼成した。
 なお、後述する表5中のBa/Nb(モル比)とは、BaNb19由来のバリウム原子のモル量とBaNb19由来のニオブ原子のモル量とのモル比(Ba/Nb)を意図する。
(バリウムニオブオキシナイトライド(BaNbON)の調製)
 得られたBaNb19に対して、アンモニア気流下(500sccm)にて850℃で30時間窒化処理を施した。その後、生成物の表面を王水で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRD(X-ray diffraction)にて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は740nmであることが確認された。なお、BaNb19の使用量は1.7gであった。
 得られたバリウムニオブオキシナイトライドを用いて、実施例1で実施した(助触媒担持)と同様の手順に従って、水分解用光触媒(助触媒(酸化コバルト)が担持されたバリウムニオブオキシナイトライド)を得た。
<実施例26>
 実施例25の(バリウムニオブオキシナイトライド(BaNbON)の調製)において、BaNb19にBa/Nb(モル比)=2.0となるようにBaCOを添加した後、窒化処理を実施し、実施例25と同様の手順に従って、水分解用光触媒を製造した。
 なお、Ba/Nb(モル比)とは、BaNb19由来のバリウム原子およびBaCO由来のバリウム原子の合計モル量と、BaNb19由来のニオブ原子のモル量とのモル比(Ba/Nb)を意図する(以後、実施例27において同様)。
<実施例27>
 実施例26の(バリウムニオブオキシナイトライド(BaNbON)の調製)において、(バリウムニオブオキシナイトライド(BaNbON)の調製)における窒化条件を「アンモニア気流下(500sccm)にて850℃で50時間窒化処理」に変更した以外は、実施例26と同様の手順に従って、水分解用光触媒を製造した。
 上記実施例25~27で得られた水分解用光触媒を用いて、上述した<評価:光水分解反応>を実施した。結果を表5にまとめて示す。
 表5中、「焼成条件」欄において、「6」は「700℃で2時間焼成し、さらに、800℃で3時間焼成」を意図する。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示すように、他の調製方法で作製したバリウムニオブオキシナイトライドを用いた場合も、所望の効果が得られることが確認された。

Claims (9)

  1.  光半導体と前記光半導体に担持された助触媒とを含む水分解用光触媒であって、
     前記光半導体がバリウムニオブオキシナイトライドを含み、
     前記助触媒が酸化コバルトおよび金属コバルトからなる群から選択される少なくとも1種を含む、水分解用光触媒。
  2.  前記助触媒の担持量が、前記光半導体100質量部に対して、0.001~20質量部である、請求項1に記載の水分解用光触媒。
  3.  請求項1または2に記載の水分解用光触媒の製造方法であって、
     バリウムニオブオキシナイトライドとコバルト化合物とを混合して、得られた混合物に対して前記バリウムニオブオキシナイトライドが酸化されない雰囲気下で、加熱処理を施す工程Aを備える、水分解用光触媒の製造方法。
  4.  前記工程Aの前に、バリウム原子およびニオブ原子を含む酸化物と、前記酸化物とは異なり、バリウム原子を含み、ニオブ原子を含んでいてもよい化合物とを、前記酸化物由来のバリウム原子および前記化合物由来のバリウム原子の合計モル量(Baモル量)と前記酸化物由来のニオブ原子および前記化合物由来のニオブ原子の合計モル量(Nbモル量)との比(Baモル量/Nbモル量)が1.3~4.0となる範囲で混合し、得られた混合物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Bをさらに備える、請求項3に記載の水分解用光触媒の製造方法。
  5.  前記バリウム原子を含み、ニオブ原子を含んでいてもよい化合物が、炭酸バリウムおよび硝酸バリウムからなる群から選択される少なくとも1つを含む、請求項4に記載の水分解用光触媒の製造方法。
  6.  前記工程Aの前に、バリウム原子を含む化合物、ニオブ原子を含む化合物、および、錯化剤を含む原料を用いて錯体重合法によりバリウム原子およびニオブ原子を含む酸化物を形成する工程Cと、前記酸化物に対して窒化処理を施し、バリウムニオブオキシナイトライドを得る工程Dをさらに備える、請求項3に記載の水分解用光触媒の製造方法。
  7.  前記工程Cが、バリウム原子を含む化合物と、ニオブ原子を含む化合物と、錯化剤とを含む混合物に対して、加熱処理を施すことにより、前記バリウム原子およびニオブ原子を含む酸化物を形成する工程であり、前記バリウム原子を含む化合物由来のバリウム原子のモル量が、前記ニオブ原子を含む化合物由来のニオブ原子のモル量よりも多い、請求項6に記載の水分解用光触媒の製造方法。
  8.  前記コバルト化合物が、硝酸コバルトおよびコバルトアンミン錯体からなる群から選択される少なくとも1つを含む、請求項3~7のいずれか1項に記載の水分解用光触媒の製造方法。
  9.  支持体と、前記支持体上に配置された請求項1または2に記載の水分解用光触媒を含む光触媒層とを有する水分解用光電極。
PCT/JP2014/074534 2013-09-18 2014-09-17 水分解用光触媒およびその製造方法、水分解用光電極 WO2015041238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/072,923 US10022713B2 (en) 2013-09-18 2016-03-17 Photocatalyst for water splitting, production method for same, and photoelectrode for water splitting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013192905 2013-09-18
JP2013-192905 2013-09-18
JP2014-029819 2014-02-19
JP2014029819 2014-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/072,923 Continuation US10022713B2 (en) 2013-09-18 2016-03-17 Photocatalyst for water splitting, production method for same, and photoelectrode for water splitting

Publications (1)

Publication Number Publication Date
WO2015041238A1 true WO2015041238A1 (ja) 2015-03-26

Family

ID=52688886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074534 WO2015041238A1 (ja) 2013-09-18 2014-09-17 水分解用光触媒およびその製造方法、水分解用光電極

Country Status (3)

Country Link
US (1) US10022713B2 (ja)
JP (1) JP6077505B2 (ja)
WO (1) WO2015041238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479158A (zh) * 2020-11-30 2021-03-12 江南大学 一种甲醇产氢气的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025285A (zh) * 2015-08-28 2018-05-11 沙特基础工业全球技术公司 使用混杂光电子材料制备氢气
JP6989762B2 (ja) * 2017-08-25 2022-02-03 富士通株式会社 光化学電極、及びその製造方法、並びに光電気化学反応装置
JP7255128B2 (ja) * 2018-10-11 2023-04-11 富士通株式会社 光励起材料、及びその製造方法、光化学電極、並びに光電気化学反応装置
JP7230595B2 (ja) * 2019-03-07 2023-03-01 富士通株式会社 光化学電極の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230306A (ja) * 2003-01-31 2004-08-19 Japan Science & Technology Agency 可視光応答性を有する金属ナイトライド、金属オキシナイトライドからなる光触媒活性の改善方法
JP2004275946A (ja) * 2003-03-18 2004-10-07 National Institute For Materials Science ペロブスカイト型複合酸化物可視光応答性光触媒とそれを用いた水素の製造方法及び有害化学物質分解方法
CN1542998A (zh) * 2003-11-05 2004-11-03 �Ϻ���ͨ��ѧ 具有可见光响应的多孔薄膜半导体光电极及光电化学反应装置及制备
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法
JP2013230427A (ja) * 2012-04-27 2013-11-14 Univ Of Tokyo 光触媒およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107792B2 (ja) * 2000-08-28 2008-06-25 独立行政法人科学技術振興機構 可視光応答性を有する金属オキシナイトライドからなる光触媒
US6706660B2 (en) * 2001-12-18 2004-03-16 Caterpillar Inc Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems
JP4406689B2 (ja) * 2004-09-24 2010-02-03 独立行政法人産業技術総合研究所 水の光分解反応により水素および酸素を製造する装置
JP4982736B2 (ja) * 2005-11-04 2012-07-25 国立大学法人長岡技術科学大学 光による水分解触媒及びその製造方法。
JP2009208070A (ja) * 2008-02-05 2009-09-17 Univ Of Tokyo 燃料電池用電極触媒及びその製造方法並びに燃料電池用電極
JP5787347B2 (ja) * 2011-03-10 2015-09-30 株式会社三菱ケミカルホールディングス 水分解用光触媒固定化物、並びに、水素及び/又は酸素の製造方法
WO2012157193A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
US20120329644A1 (en) * 2011-06-21 2012-12-27 General Electric Company Catalyst composition and catalytic reduction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230306A (ja) * 2003-01-31 2004-08-19 Japan Science & Technology Agency 可視光応答性を有する金属ナイトライド、金属オキシナイトライドからなる光触媒活性の改善方法
JP2004275946A (ja) * 2003-03-18 2004-10-07 National Institute For Materials Science ペロブスカイト型複合酸化物可視光応答性光触媒とそれを用いた水素の製造方法及び有害化学物質分解方法
CN1542998A (zh) * 2003-11-05 2004-11-03 �Ϻ���ͨ��ѧ 具有可见光响应的多孔薄膜半导体光电极及光电化学反应装置及制备
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法
JP2013230427A (ja) * 2012-04-27 2013-11-14 Univ Of Tokyo 光触媒およびその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
B. SIRITANARATKUL ET AL.: "Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands", CHEMSUSCHEM, vol. 4, 2011, pages 7 4 - 78 *
F. ZHANG ET AL.: "Cobalt-Modified Porous Single- Crystalline LaTiO2N for Highly Efficient Water Oxidation under Visible Light", J. AM. CHEM. SOC., vol. 134, 2012, pages 8348 - 8351 *
J. YIN ET AL.: "A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M = Ca, Sr, and Ba) with Special Electronic Structures", J. PHYS. CHEM. B, vol. 107, 2003, pages 4936 - 4941 *
T. HISATOMI ET AL.: "Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm", ENERGY ENVIRON. SCI., vol. 6, 2013, pages 3 595 - 3599 *
T. HISATOMI ET AL.: "The Effects of Preparation Conditions for a BaNbO2N Photocatalyst on Its Physical Properties", CHEMSUSCHEM, vol. 7, 2014, pages 2016 - 2021 *
TAKASHI HISATOMI ET AL.: "Study on Alkaline- earth metal niobium based oxynitride photocatalyst", 85TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU I, 11 March 2005 (2005-03-11), pages 42 *
YOSHIHIKO OGINO ET AL.: "Synthesis and Photocatalytic activity of MNb02N", 83RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU I, 3 March 2003 (2003-03-03), pages 161 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479158A (zh) * 2020-11-30 2021-03-12 江南大学 一种甲醇产氢气的方法
CN112479158B (zh) * 2020-11-30 2022-08-02 江南大学 一种甲醇产氢气的方法

Also Published As

Publication number Publication date
US10022713B2 (en) 2018-07-17
US20160193596A1 (en) 2016-07-07
JP2015171704A (ja) 2015-10-01
JP6077505B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6004528B2 (ja) 多孔質シリカ内包粒子の製造方法および多孔質シリカ
Nguyen et al. Noble metals on anodic TiO2 nanotubes mouths: Thermal dewetting of minimal Pt co-catalyst loading leads to significantly enhanced photocatalytic H2 generation
JP6077505B2 (ja) 水分解用光触媒およびその製造方法、水分解用光電極
JP7045662B2 (ja) 光触媒の製造方法、及び水素生成方法
JP6875009B2 (ja) 触媒及びその使用
Nashim et al. Gd2Ti2O7/In2O3: Efficient Visible‐Light‐Driven Heterojunction‐Based Composite Photocatalysts for Hydrogen Production
JP5999548B2 (ja) 光触媒およびその製造方法
WO2015151775A1 (ja) 水分解用光電極、水分解装置
US20190314805A1 (en) A process for producing a catalyst comprising an intermetallic compound and a catalyst produced by the process
WO2016005855A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
Yang et al. In situ growth of porous TiO 2 with controllable oxygen vacancies on an atomic scale for highly efficient photocatalytic water splitting
JP5219137B2 (ja) 樹状物質およびそれを含む構造体
TW201341053A (zh) 高表面積光觸媒材料及其製造方法
Cihlar et al. Influence of substituted acetic acids on “bridge” synthesis of highly photocatalytic active heterophase TiO2 in hydrogen production
Pawar et al. Boosting photocatalytic CO 2 conversion using strongly bonded Cu/reduced Nb 2 O 5 nanosheets
JP2016182596A (ja) 光触媒用二酸化チタン膜およびその製造方法
JP6165937B2 (ja) 多孔質シリカ内包粒子の製造方法
Kuo et al. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals
JP2017128458A (ja) 酸窒化物微粒子、水分解用光触媒、水素・酸素生成用光触媒電極、水素・酸素生成用光触媒モジュールおよび酸窒化物微粒子の製造方法
JP2015167882A (ja) 光触媒の製造方法、光触媒及び水素生成方法
JP2015020936A (ja) 酸化タンタルナノワイヤーの製造方法
CN111204799B (zh) 一种双面神型金属氧或氮化物空心壳层结构的制备方法
CN112958120A (zh) 一种银负载氯氧铋纳米材料及其制备方法和应用
US10668462B2 (en) Multiphasic titanium dioxide photocatalyst for the reduction of carbon dioxide
Hejazi Utilization of noble metal co-catalysts on TiO2 for photocatalytic H2 production: from nanoparticle positioning to single-atom catalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846558

Country of ref document: EP

Kind code of ref document: A1