WO2015040779A1 - 蓄電装置および蓄電装置の制御方法 - Google Patents

蓄電装置および蓄電装置の制御方法 Download PDF

Info

Publication number
WO2015040779A1
WO2015040779A1 PCT/JP2014/003411 JP2014003411W WO2015040779A1 WO 2015040779 A1 WO2015040779 A1 WO 2015040779A1 JP 2014003411 W JP2014003411 W JP 2014003411W WO 2015040779 A1 WO2015040779 A1 WO 2015040779A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
voltage
charging
unit
cell
Prior art date
Application number
PCT/JP2014/003411
Other languages
English (en)
French (fr)
Inventor
直之 菅野
晃己 渡部
真澄 寺内
滝澤 秀一
典俊 今村
浩二 梅津
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/917,495 priority Critical patent/US10069311B2/en
Priority to CN201480049788.3A priority patent/CN105531903B/zh
Priority to EP14846197.3A priority patent/EP3048697B1/en
Priority to CA2923375A priority patent/CA2923375C/en
Priority to AU2014322623A priority patent/AU2014322623B2/en
Publication of WO2015040779A1 publication Critical patent/WO2015040779A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present disclosure relates to a power storage device and a method for controlling the power storage device.
  • an electric power storage device in which a plurality of power storage modules are connected and a common control device (referred to as a main controller as appropriate) is provided for the plurality of power storage modules.
  • a main controller a common control device
  • Each power storage module has a module controller and communicates between the module controller and the main controller via a communication path.
  • the module controller includes a monitoring circuit and a microcomputer (referred to as a sub-microcontroller unit as appropriate) in order to monitor the state of the power storage unit and detect an abnormality.
  • the power storage unit is configured, for example, by connecting a plurality of submodules in series.
  • the monitoring circuit monitors the voltage of each submodule, compares a predetermined threshold value with the voltage of each submodule by a comparator, and outputs a detection signal (for example, a 1-bit detection signal) indicating normality / abnormality.
  • the voltage of each submodule is compared with a predetermined value, and a detection signal indicating whether or not it is an excessive voltage (referred to as OV as appropriate) is generated.
  • the voltage of each submodule is compared with a predetermined value, and a detection signal indicating whether or not the voltage is an undervoltage (referred to as UV as appropriate) is generated.
  • the value of the current flowing through the submodule is compared with a predetermined value, and a detection signal indicating whether or not an excessive current (referred to as OC as appropriate) is generated.
  • each temperature of the submodule is compared with a predetermined value, and a detection signal indicating whether or not it is in an overheated state (referred to as OT as appropriate) is generated.
  • the voltage and current of each sub-module are supplied to the sub-microcontroller unit of each module, and balance adjustment is performed to equalize the voltages of the plurality of sub-modules. If balance adjustment is not performed, sub-modules that are not sufficiently charged are generated due to variations between the sub-modules.
  • the detection signal of the monitoring circuit described above is supplied to the sub microcontroller unit for balance adjustment. Further, the detection signal is transmitted from the module controller to the microcomputer of the main controller (referred to as a main microcontroller unit as appropriate) through the communication path.
  • the main controller receives the detection signal from each power storage module and controls the charge / discharge operation.
  • Patent Document 1 when there is a submodule whose voltage width with a maximum voltage detected from a plurality of submodules (cell blocks) is within the discharge target voltage width, charging is temporarily stopped, The submodule is discharged together with the submodule having the maximum voltage, and the maximum voltage after the discharge is updated. It is described that the time required for cell balance control is shortened by repeating the cell balance adjustment until the voltage width between the maximum voltage and the minimum voltage falls within the specified voltage range.
  • Cited Document 1 charging is repeatedly turned on / off. If there is a variation in characteristics between sub-modules, it takes a long time to reach full charge, or noise associated with charging on / off occurs. There was a problem to do.
  • an object of the present disclosure is to provide a power storage device and a method for controlling the power storage device that can complete charging in a short time and can prevent noise.
  • the present disclosure includes a plurality of power storage units connected in series and having at least one battery, A cell balance unit connected in parallel to each of the power storage units via a switch; When a plurality of power storage units are charged with a first constant current value and the highest voltage power storage unit reaches the first potential among the plurality of power storage units, the highest voltage power storage unit and the highest voltage are supported. And a control unit that controls the charging current to be switched to a second constant current value smaller than the first constant current value while connecting to the cell balance unit.
  • This disclosure can shorten the time required to complete charging, and can prevent the occurrence of noise. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • 6 is a flowchart illustrating a flow of control processing according to the first embodiment of the present disclosure. 6 is a flowchart illustrating a flow of control processing according to the first embodiment of the present disclosure. 6 is a graph for explaining a first example of control in the first embodiment of the present disclosure.
  • 6 is a graph for explaining a second example of control in the first embodiment of the present disclosure. 6 is a graph for explaining a second example of control in the first embodiment of the present disclosure. It is a graph for demonstrating the modification of the control in 1st Embodiment of this indication. It is a connection diagram of the cell balance discharge circuit in a 2nd embodiment of this indication. 12 is a flowchart illustrating a flow of control processing according to the second embodiment of the present disclosure. 12 is a flowchart illustrating a flow of control processing according to the second embodiment of the present disclosure. 14 is a graph for explaining an example of control according to the second embodiment of the present disclosure. 14 is a graph for explaining an example of control according to the second embodiment of the present disclosure. 14 is a graph for explaining an example of control according to the second embodiment of the present disclosure. It is a block diagram of the 1st example of an application example of this indication. It is a block diagram of the 2nd example of an application example of this indication.
  • Power storage device When a large number of power storage elements such as battery cells are used to generate a large output, a plurality of power storage units (hereinafter referred to as power storage modules) are connected, and a control device is provided in common for the plurality of power storage modules. Configuration is adopted. Such a configuration is referred to as a power storage device. Furthermore, a power storage system that connects a plurality of power storage devices is also possible. As the power storage element, a capacitor or the like may be used in addition to the battery.
  • a power storage module includes a power storage unit including a series connection of a plurality of battery cells, for example, a series connection of lithium ion secondary batteries, or a parallel connection (submodule) of a plurality of battery cells, and a module controller provided for each module. It is a unit that combines.
  • the sub-microcontroller unit of each module controller is connected to the main microcontroller unit of the main controller, which is the overall control device, via a data transmission path (bus), and the main microcontroller unit performs charge management, discharge management, deterioration suppression, etc. To manage.
  • a serial interface is used as the bus.
  • an I2C (Inter-Integrated Circuit) system SM bus (System Management Bus), CAN (Controller Area Network), SPI (Serial Peripheral Interface), or the like is used as the serial interface.
  • SM bus System Management Bus
  • CAN Controller Area Network
  • SPI Serial Peripheral Interface
  • I2C communication is used. This method performs serial communication with a device directly connected at a relatively short distance.
  • One master and one or a plurality of slaves are connected by two lines. Data signals are transferred on the other line with reference to crosstalk transmitted through one line.
  • Each slave has an address, the address is included in the data, and an acknowledge is returned from the receiving side for each byte, and the data is transferred while confirming each other.
  • the main microcontroller unit is the master and the sub microcontroller unit is the slave.
  • Data is transmitted from the sub-microcontroller unit of each module controller to the main microcontroller unit.
  • information on the internal state of each power storage module that is, battery information such as voltage of each battery cell, voltage information of the entire module, current information, temperature information, etc. is transmitted from the sub-microcontroller unit to the main microcontroller unit.
  • the charging process and discharging process of each power storage module are managed.
  • FIG. 1 shows an example of a specific connection configuration of the power storage device.
  • four power storage modules MOD1 to MOD4 are connected in series.
  • the entire output voltage of the power storage device for example, about 200 V is taken out to the positive terminal 1 (VB +) and the negative terminal 2 (VB ⁇ ).
  • Each of the power storage modules MOD1 to MOD4 includes module controllers CNT1 to CNT4 and power storage units BB1 to BB4 to which a plurality of parallel connections of a plurality of battery cells or a plurality of submodules are connected.
  • Power storage units BB1 to BB4 are connected through a power supply line.
  • Each module controller includes a monitoring circuit, a sub-control unit, etc., as will be described later.
  • the main controller ICNT and the module controllers CNT1 to CNT4 are connected via a common serial communication bus 3. Battery information such as voltage for each module from each module controller is transmitted to the main controller ICNT.
  • the main controller ICNT further includes a communication terminal 4 so that communication with an external device such as an electronic control unit is possible.
  • each of the two power storage modules MOD1 and MOD2 and the main controller ICNT has a box-like case, and is used by being stacked.
  • An UPS (Uninterruptable Power Supply: Uninterruptible Power Supply) 5 may be used as an option.
  • the main controller ICNT and the module controller CNT of each power storage module are connected by a bus 3.
  • a sub-control unit (indicated as SUB MCU in the figure) of each power storage module is a main microcontroller. Connected to the unit (indicated as MAIN MCU in the figure). Further, a plurality of main microcontroller units are connected to the uppermost electronic control unit (denoted as ECU in the figure).
  • the electronic control unit is a general term for units that control analog devices in general.
  • the power storage unit BB includes n, for example, 16 battery cells (hereinafter simply referred to as cells as appropriate) C1 to C16 connected in series.
  • the power storage unit BB may have a configuration in which a plurality of cells connected in parallel (submodules) are connected in series. The voltage of each cell is supplied to the cell voltage multiplexer 11, and the voltages of the cells C1 to C16 are sequentially selected and supplied to the A / D converter and the comparator 12. Further, a cell balance discharge circuit 23 for discharging each of the cells C1 to C16 by cell balance control is provided.
  • the voltage of 16 cells is time-division multiplexed by the cell voltage multiplexer 11, converted into a digital signal by the A / D converter and the comparator 12, and further compared with a voltage threshold value.
  • the A / D converter and comparator 12 outputs 14 to 18-bit digital voltage data of each cell and a comparison result (eg, 1-bit signal) between the voltage of each cell and the voltage threshold value.
  • An output signal from the A / D converter and the comparator 12 is supplied to the monitoring circuit 13.
  • a temperature measuring unit 14 for measuring the temperature of each cell and a temperature measuring unit 15 for measuring the temperature inside the IC are provided. Temperature information from the temperature measuring units 14 and 15 is supplied to the temperature multiplexer 16. The temperature data multiplexed by the temperature multiplexer 16 is supplied to the A / D converter and comparator 12. The A / D converter and comparator 12 generates digital temperature data and outputs a comparison result (for example, a 1-bit signal) between the digital temperature data and the temperature threshold value. As described above, the A / D converter and the comparator 12 also output a comparison result regarding the cell voltage data. A separate A / D converter and comparator may be provided for temperature.
  • a resistor 17 that detects current flowing through the power storage units is connected in series with the power storage unit BB.
  • the voltage across the resistor 17 is supplied to the A / D converter and the comparator 19 via the amplifier 18.
  • the A / D converter and the comparator 19 output digital current data and a comparison result (for example, a 1-bit signal) between the current value and the current threshold value.
  • the output signal of the A / D converter and comparator 19 is supplied to the monitoring circuit 13.
  • the 1-bit signal output from the A / D converter and the comparator 12 is a detection signal indicating normality / abnormality of the voltage of each cell.
  • the voltage of each cell is compared with a predetermined value, and a detection signal indicating whether or not it is an excessive voltage OV is generated.
  • the voltage of each cell is compared with a predetermined value, and a detection signal indicating whether the voltage is an undervoltage UV is generated.
  • the other 1-bit signal output from the A / D converter and the comparator 12 is a detection signal indicating the overheating OT of the temperature.
  • the 1-bit signal output from the A / D converter and the comparator 19 is a detection signal indicating an excessive current OC.
  • the detection signal, voltage value data, current value data, and temperature data are supplied from the monitoring circuit 13 to the sub-microcontroller unit 20.
  • the monitoring circuit 13 and the sub-microcontroller unit 20 are connected by serial communication, for example.
  • the sub-microcontroller unit 20 uses the received detection signal to perform diagnostic processing for the module controller CNT as necessary.
  • a detection signal output from the sub-microcontroller unit 20 and data indicating the result of the diagnostic process are supplied to the communication unit 21.
  • the communication unit 21 is an interface for performing serial communication, for example, I2C communication via the bus 3 with the main microcontroller unit of the main controller ICNT. Note that a wired or wireless communication path can be used as the communication method. Although omitted in FIG. 4, a sub-microcontroller unit of a module controller of another power storage module is connected to the bus 3.
  • the positive terminal 22a and the negative terminal 22b of the power storage module MOD are connected to the positive terminal 32a and the negative terminal 32b of the main controller ICNT via the power line, respectively.
  • the communication unit 31 of the main controller ICNT is connected to the bus 3.
  • the main microcontroller unit 30 is connected to the communication unit 31, and communication performed through the communication unit 31 is controlled by the main microcontroller unit 30. Further, the main microcontroller unit 30 is connected to the upper electronic control unit ECU via a communication path.
  • the power supply voltage generated by the regulator 33 is supplied to the main microcontroller unit 30.
  • the main controller ICNT has a positive electrode terminal 1 and a negative electrode terminal 2.
  • Switching units 34 and 35 are inserted in series in the output path of the power supply. These switching units 34 and 35 are controlled by the main microcontroller unit 30.
  • the switching units 34 and 35 each include a switching element (FET (Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor): insulated gate bipolar transistor) and the like, and a diode in parallel.
  • FET Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the switching unit 34 When the charging is prohibited, the switching unit 34 is turned off. When discharging is prohibited, the switching unit 35 is turned off when discharging is prohibited. Further, when charging and discharging are not performed, the switching elements of the switching units 34 and 35 are turned off.
  • the main microcontroller unit 30 transmits the data received from the power storage module MOD to the host electronic control unit ECU. Further, a control signal related to charging / discharging is received from the electronic control unit ECU.
  • Cell balance discharge circuit 23 An example of the cell balance discharge circuit 23 is shown in FIG. A resistor r1 and a switch s1 are connected in parallel with the cell C1. Similarly, resistors r2 to r16 and switches s2 to s16 are connected in parallel with each of the cells C2 to C16.
  • the switches s1 to s16 are constituted by semiconductor switch elements such as FETs.
  • the switches s1 to s16 are controlled to be turned on / off by a switching control signal generated in the sub-microcontroller unit 20, for example.
  • the switches s1 to s16 are turned on, the positive and negative electrodes of the cells C1 to C16 are connected via the resistors r1 to r16, and the charges accumulated in the cells C1 to C16 are discharged.
  • the switches s1 to s16 are turned on, so that the charging current is shunted and the charging current is substantially reduced. For example, the switch that is turned on during the charging period continues to be in the on state.
  • a charging circuit is connected to the positive terminal 1 and the negative terminal 2 to charge the cells C1 to C16. Charging is performed with a constant current.
  • the charging current is gradually reduced. That is, the voltage of each cell is monitored by the monitoring circuit 13 at the time of charging, and when one of the cells reaches the set current switching voltage V1, the current is reduced by one step and reaches the current switching voltage V1.
  • the switch (cell balance discharge circuit 23) corresponding to the selected cell is turned on, and the voltage rise is suppressed. Such an operation is repeated, and when the predetermined total voltage or almost the whole cell reaches the charging completion voltage Vf, the charging is stopped.
  • Control action A control process at the time of charging performed by the sub-microcontroller unit 20 will be described with reference to the flowcharts of FIGS. 6 and 7.
  • 6 and 7 originally represent a flow of a series of processing, but are divided into two drawings due to the drawing space.
  • the definition of the symbol used in the following description is shown below.
  • Vcell n nth cell
  • Vcellmin minimum voltage among n cells
  • Vov charging suspension voltage
  • Vf charging completion voltage
  • Vcellov voltage VL of a cell that has reached the charging suspension voltage among n cells: discharge Voltage
  • V1 to Vn Current switching voltage (discharge resistance ON voltage) (V1 ⁇ V2 ⁇ V3... ⁇ Vn) cellVn: Cell that has reached Vn
  • Vf 4.10V
  • a voltage higher than Vov for example, 4.2 V or more is regarded as an overcharge voltage, and charging is prohibited.
  • the discharge voltage VL is set to 3.0V.
  • a voltage lower than VL, for example, 2.3 V is set as an overdischarge voltage, and discharge is prohibited.
  • each voltage has a certain width.
  • an example of a secondary battery used is a lithium ion secondary battery including a positive electrode active material and a carbon material such as graphite as a negative electrode active material.
  • positive electrode material what contains the positive electrode active material which has an olivine structure can also be used.
  • Vov is set to 3.55V and VL is set to 2.0V.
  • Step S1 Charging is started.
  • Step S2 It is determined whether Vcell n> VL. It is determined whether the voltage of all cells is greater than VL.
  • Step S3 When it is determined that the condition of Step S2 is not satisfied, preliminary charging is performed. The charging current in the preliminary charging is set to 1 A, for example. The preliminary charging is performed until the result of the determination in step S2 becomes affirmative.
  • Step S4 If the result of determination in step S2 is affirmative, it is determined whether Vcellmin ⁇ Vf.
  • Step S5 If the result of step S4 is affirmative, charging is completed.
  • Step S6 If the result of step S4 is negative, it is determined whether Vcell n ⁇ Vov. If the determination result of step S6 is affirmative, the process proceeds to step S16 (FIG. 7).
  • Step S7 Normal charging is performed.
  • 1C charging is performed.
  • Step S8: It is determined whether Vcell n ⁇ V1 is satisfied. For example, the first current switching voltage is set to V1 4.05V. If this condition is not satisfied, the process returns to step S7.
  • Step S9 The cell balance is turned on only for the cells that have reached the current switching voltage V1. That is, in the cell balance discharge circuit 23, the switch of the corresponding cell is turned on. The cell for which the cell balance is turned on does not perform any special processing even when it reaches the current switching voltage Vn after the next time.
  • Step S10 The charging current is switched to a smaller value. For example, it starts from 1C and is sequentially switched to 0.7C. Furthermore, every time the minimum voltage of the cell subsequently reaches the current switching voltage, the charging current is sequentially switched between 0.4 C and 0.1 C. Step S11: The charging at 0.7C is continued.
  • Step S12 The same determination process as in steps S4 and S6 described above is performed. That is, it is determined whether Vcellmin ⁇ Vf. If the result is affirmative, charging is completed (step S5). It is determined whether VcellVn ⁇ Vov, and if the result is affirmative, the process proceeds to step S15 (FIG. 7). Step S15 is a process of temporarily stopping charging. If none of these conditions is satisfied, the process proceeds to step S13.
  • Step S13 It is determined whether or not a voltage other than Vcell V1 ⁇ V ⁇ SUB> n + 1 ⁇ / SUB> (for example, V2). If this condition is not satisfied, the process returns to step S11 (continuation of charging).
  • Step S14 Cell balancing is turned on only for cells that have reached V ⁇ SUB> n + 1 ⁇ / SUB>. That is, in the cell balance discharge circuit 23, the switch of the corresponding cell is turned on. A cell for which the cell balance is turned on does not perform any special processing even if the current switching voltage is reached after the next time.
  • step S10 the charging current is further reduced. For example, it is reduced from 0.7C to 0.4C.
  • Step S16 If the determination result of step S6 described above is affirmative, that is, if Vcell n ⁇ Vov is established, the cell balance is turned on only for the cellov whose voltage has reached Vov.
  • Step S17 It is determined whether Vcellov ⁇ Vn. If this condition is not satisfied, the process returns to step S16 (cell balance is turned on only for cellov).
  • Step S18 When the condition of step S18 is satisfied, only the cell balance that has been turned on before the charging suspension process is turned on. Then, the process returns to step S11 (continuation of charging) in FIG.
  • the power storage unit BB is composed of four cells C1 to C4. Due to the characteristic variation between the cells, the graphs of the time change are different. First, the voltage of the cells C1 to C4 gradually increases by 1C charging.
  • the switch s2 of the cell balance discharge circuit 23 is turned on and the charging current is reduced to 0.7C (FIG. 6 steps S8, S9 and S10). Then, charging is continued (step S11). Since the charging current is reduced, the voltage rise curve after timing t1 becomes gentle. Until the timing t1, the voltage increase curves are parallel between the cells. Since the switch s2 is turned on at the timing t1, the slope of the voltage rise curve of the cell C2 becomes gentler than that of other cells.
  • V1 for example, 4.05V
  • step S12 and S5 in FIG. 6 it is possible to charge the voltages of a plurality of cells until the voltage reaches the charge completion voltage Vf.
  • the charging current can be reduced by reducing the charging current for a cell having a high voltage.
  • the switch s2 of the cell balance discharge circuit 23 is turned on and the charging current is reduced to 0.7C (FIG. 6 steps S8, S9 and S10). Then, charging is continued (step S11). Since the charging current is reduced, the voltage rise curve after timing t1 becomes gentle. Until the timing t1, the voltage increase curves are parallel between the cells. Since the switch s2 is turned on at the timing t1, the slope of the voltage rise curve of the cell C2 becomes gentler than that of other cells.
  • V1 for example, 4.05V
  • step S12 of FIG. 6 the process proceeds to step S15 (FIG. 7), and charging is temporarily stopped. Since the cell balance is turned on only in the cell C2, the voltage of the cell C2 decreases. At time t5, charging is resumed. Then, at timing t6 in FIG. 10, charging is stopped.
  • the switching is performed from 1C ⁇ 0.7C ⁇ 0.4C ⁇ 0.1C.
  • the charging current is switched from 1C ⁇ 0.8C ⁇ 0.6C ⁇ 0.3C, as shown in FIG. 11, the time until the charging is completed can be shortened.
  • a module balance discharge circuit is added to the cell balance discharge circuit 23.
  • the module balance discharge circuit connects a series circuit of a resistor rM and a switch sM between the positive side and the negative side of the series circuit of cells C1 to C16. Therefore, when the switch sM is turned on, the resistor rM is inserted in parallel with the cells C1 to C16. Therefore, when the switch sM is turned on during charging, the charging current is made smaller.
  • the switch sM is turned on when the voltage of the cells C1 to C16 becomes higher than a preset module balance on voltage Vmb (> Vov).
  • FIG. 13 and FIG. 14 originally represent a series of processing flow, but are divided into two drawings due to the drawing space. Note that the process is the same as the control operation of the first embodiment, and FIG. 13 is the same as the process in FIG. However, in step S12 ′, it is determined whether Vcell n ⁇ Vmb.
  • step S12 ′ If the above-described determination result in step S12 ′ is positive, the process proceeds to step S19 in FIG. Step S19: The switch sM is turned on and the inter-module balance is turned on.
  • Step S20 It is determined whether Vcellmin ⁇ Vf. If the determination result is affirmative, charging is completed (step S5). It is also determined whether Vcell n ⁇ Vov. If this determination result is negative, the process proceeds to step S13 (FIG. 13).
  • step S20 If the determination result in step S20 is affirmative, the process proceeds to step S15 (charge is temporarily stopped). Then, the process proceeds to step S16.
  • Step S16 If the determination result of step S6 described above is affirmative, that is, if Vcell n ⁇ Vov is established, the cell balance is turned on only in the cell ov whose voltage has reached Vov.
  • Step S17 It is determined whether Vcellov ⁇ Vn. If this condition is not satisfied, the process returns to step S16 (cell balance is turned on only in cell ov).
  • Step S18 When the condition of step S18 is satisfied, only the cell balance that has been turned on before the charging suspension process is turned on. Then, the process returns to step S11 (continuation of charging) in FIG.
  • FIG. 15 and FIG. 16 are obtained by dividing one graph showing a continuous change in time into two due to the restriction of the drawing space. Similar to the example in the first embodiment described above, the case where the power storage unit BB is connected in series with four cells C1 to C4 is taken as an example. First, the voltage of the cells C1 to C4 increases by 1C charging.
  • the voltage of the cell C2 becomes larger than the module balance on voltage Vmb. Therefore, the module balance is turned on. Since the module balance is turned on, the slope of the voltage rise during charging becomes gradual, and the voltage reaches Vov, so that charging does not stop once. Charging with a low charging current continues, and at timing t4 in FIG. 16, Vcellmin ⁇ Vf is satisfied, and charging is completed.
  • this indication can also take the following structures.
  • a plurality of power storage units connected in series and having at least one battery; and A cell balance unit connected in parallel to each of the power storage units via a switch;
  • the plurality of power storage units are charged with a first constant current value, and when the highest voltage power storage unit reaches the first potential among the plurality of power storage units, the highest voltage power storage unit and the highest voltage storage unit And a control unit that controls the charging current to be switched to a second constant current value smaller than the first constant current value while connecting to a cell balance unit corresponding to the voltage.
  • the control unit reaches the second potential when at least one power storage unit different from the power storage unit having the highest voltage among the plurality of power storage units reaches a second potential higher than the first potential.
  • the power storage device (3) is a charging device in any one of (1) (2) comprised so that the threshold value which switches the said charging current may be set 3 or more.
  • the maximum voltage of the power storage unit reaches a charge stop voltage that is higher than the predetermined voltage and smaller than the overcharge voltage, the charging is stopped and only the power storage unit is discharged, and the voltage of the power storage unit is discharged to a set voltage.
  • the power storage device according to any one of (1), (2), (3), and (4), which completes charging when a minimum voltage among the plurality of power storage units is equal to or higher than a charging completion voltage.
  • the balance unit connected in parallel to the whole of the plurality of power storage units is turned on, and a constant current value
  • the charging device according to any one of (1), (2), (3), (4), and (5).
  • the power storage device according to any one of (1), (2), (3), (4), (5), and (6), wherein the cell balance unit is a switch and a resistor connected in parallel with the power storage unit.
  • the power storage device according to any one of (1), (2), (3), (4), (5), (6), and (7), wherein the battery included in the power storage unit includes a positive electrode active material having an olivine structure.
  • a plurality of power storage units connected in series and having at least one battery; and A cell balance unit connected in parallel to each of the power storage units via a switch; A control unit for controlling the cell balance unit, The control unit charges the plurality of power storage units with a first constant current value, and when the highest voltage power storage unit reaches a predetermined potential among the plurality of power storage units, the highest voltage power storage unit And a cell balance unit corresponding to the highest voltage, and controlling the charging current to be switched to a second constant current value smaller than the first constant current value.
  • Electric power storage device in houses An example in which the present disclosure is applied to a residential power storage device will be described with reference to FIG.
  • the power storage device 100 for the house 101 electric power is supplied from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c through the power network 109, the information network 112, the smart meter 107, the power hub 108, and the like. It is supplied to the power storage device 103.
  • power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104.
  • the electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103.
  • the same power storage device can be used not only for the house 101 but also for buildings.
  • the house 101 is provided with a power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, and a sensor 111 that acquires various types of information.
  • Each device is connected by a power network 109 and an information network 112.
  • As the power generation device 104 a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
  • the power consuming device 105 is a refrigerator 105a, an air conditioner 105b, a television receiver 105c, a bath 105d, and the like.
  • the electric power consumption device 105 includes an electric vehicle 106.
  • the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
  • the power storage device of the present disclosure described above is applied to the power storage device 103.
  • the power storage device 103 includes a secondary battery or a capacitor.
  • a lithium ion battery is used.
  • the lithium ion battery may be a stationary type or used in the electric vehicle 106.
  • the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather condition, the human condition, etc. can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
  • the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
  • the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 110 is connected to an external server 113.
  • the server 113 may be managed by any one of the house 101, the power company, and the service provider.
  • the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • the control device 110 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 103 in this example.
  • the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, various sensors 111, the server 113 and the information network 112, for example, a function of adjusting the amount of commercial power used and the amount of power generation have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • electric power is generated not only from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c but also from the home power generation device 104 (solar power generation, wind power generation) to the power storage device 103.
  • the home power generation device 104 solar power generation, wind power generation
  • the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
  • control device 110 is stored in the power storage device 103 .
  • control device 110 may be stored in the smart meter 107 or may be configured independently.
  • the power storage device 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • FIG. 18 schematically illustrates an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied.
  • the series hybrid system is a vehicle that runs on a power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 200 includes an engine 201, a generator 202, a power driving force conversion device 203, driving wheels 204a, driving wheels 204b, wheels 205a, wheels 205b, a battery 208, a vehicle control device 209, various sensors 210, and a charging port 211. Is installed.
  • the above-described power storage device of the present disclosure is applied to the battery 208.
  • Hybrid vehicle 200 travels using electric power / driving force conversion device 203 as a power source.
  • An example of the power driving force conversion device 203 is a motor.
  • the electric power / driving force converter 203 is operated by the electric power of the battery 208, and the rotational force of the electric power / driving force converter 203 is transmitted to the driving wheels 204a and 204b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force converter 203 can be applied to either an AC motor or a DC motor.
  • the various sensors 210 control the engine speed via the vehicle control device 209 and control the opening (throttle opening) of a throttle valve (not shown).
  • the various sensors 210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 201 is transmitted to the generator 202, and the electric power generated by the generator 202 by the rotational force can be stored in the battery 208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 203, and the regenerative power generated by the power driving force conversion device 203 by this rotational force is applied to the battery 208. Accumulated.
  • the battery 208 is connected to a power source outside the hybrid vehicle, so that it can receive power from the external power source using the charging port 211 as an input port and store the received power.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery capacity based on information on the remaining battery capacity.
  • the series hybrid vehicle that runs on the motor using the power generated by the generator that is driven by the engine or the power that is temporarily stored in the battery has been described as an example.
  • the present disclosure is also effective for a parallel hybrid vehicle in which the output of the engine and the motor are both driving sources, and the three methods of driving with only the engine, driving with only the motor, and engine and motor driving are appropriately switched. Applicable.
  • the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • MOD, MOD1 to MODN power storage module ICNT ... main controller CNT ... module controllers C1 to Cn ... cells BB1 to BBn ... power storage unit 3 ... bus 11 ... cell voltage multiplexer 12 19 ... A / D converter and comparator 13 ... monitoring circuit 16 ... temperature multiplexer 20 ... sub-microcontroller unit 21 ... communication unit 23 ... cell balance discharge circuit 30 ... main Microcontroller units r1 to r16, rM ... resistors s1 to s16, sM ... switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、複数の蓄電部を第1の定電流値で充電し、複数の蓄電部の内で、最高電圧の蓄電部が第1の電位に達した際に、最高電圧の蓄電部と最高電圧に対応するセルバランス部とを接続すると共に、充電電流を第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する制御部とを備える蓄電装置である。

Description

蓄電装置および蓄電装置の制御方法
 本開示は、蓄電装置および蓄電装置の制御方法に関する。
 複数の蓄電モジュールを接続し、複数の蓄電モジュールに対して共通の制御装置(メインコントローラと適宜称する)を設ける電力貯蔵装置が知られている。各蓄電モジュールがモジュールコントローラを有し、モジュールコントローラとメインコントローラとの間で通信路を介して通信する構成とされている。
 モジュールコントローラは、蓄電部の状態を監視し、異常を検出するために、監視回路およびマイクロコンピュータ(サブマイクロコントローラユニットと適宜称する)からなる。蓄電部は、例えば、複数のサブモジュールを直列接続した構成とされる。監視回路は、各サブモジュールの電圧を監視し、所定の域値と各サブモジュールの電圧とをコンパレータによって比較し、正常/異常を示す検出信号(例えば1ビットの検出信号)を出力する。
 充電時には、各サブモジュールの電圧が所定値と比較され、過大電圧(OVと適宜称する)か否かを示す検出信号が生成される。放電時には、各サブモジュールの電圧が所定値と比較され、過小電圧(UVと適宜称する)か否かを示す検出信号が生成される。充放電時には、サブモジュールを流れる電流値が所定値と比較され、過大電流(OCと適宜称する)か否かを示す検出信号が生成される。さらに、充放電時には、サブモジュールのそれぞれの温度が所定値と比較され、過熱状態(OTと適宜称する)か否かを示す検出信号が生成される。
 さらに、蓄電モジュールを充電する際には、各サブモジュールの電圧および電流が各モジュールのサブマイクロコントローラユニットに供給され、複数のサブモジュールの電圧を均等化させるバランス調整がなされる。バランス調整を行わないと、サブモジュール間のバラツキによって、充電が不十分なサブモジュールが生じる。
 バランス調整のために、上述した監視回路の検出信号がサブマイクロコントローラユニットに供給される。さらに、検出信号がモジュールコントローラから通信路を介してメインコントローラのマイクロコンピュータ(メインマイクロコントローラユニットと適宜称する)に伝送される。メインコントローラは、各蓄電モジュールからの検出信号を受け取って、充放電動作を制御する。
 例えば、下記の特許文献1には、複数のサブモジュール(セルブロック)から検出された最大電圧との電圧幅が、放電対象電圧幅以内となるサブモジュールが存在する場合、一旦充電を停止し、そのサブモジュールを、最大電圧となるサブモジュールとともに放電させ、放電後の最大電圧を更新する。最大電圧と最小電圧との電圧幅が、規定電圧幅内に収まるまで、セルバランス調整を繰り返すことにより、セルバランス制御に要する時間を短縮することが記載されている。
特開2012-60691号公報
 引用文献1では、充電のオン/オフを繰り返すもので、サブモジュール間の特性のバラツキがあると、満充電に到達するまでの時間がかなり長くなったり、充電のオン/オフに伴うノイズが発生する問題があった。
 したがって、本開示は、短時間で充電を完了することができ、且つノイズの発生を防止することができる蓄電装置および蓄電装置の制御方法の提供を目的とする。
 本開示は、直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、
 蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、
 複数の蓄電部を第1の定電流値で充電し、複数の蓄電部の内で、最高電圧の蓄電部が第1の電位に達した際に、最高電圧の蓄電部と最高電圧に対応するセルバランス部とを接続すると共に、充電電流を第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する制御部と
 を備える蓄電装置。
 本開示は、充電完了までの所要時間を短縮化することができ、また、ノイズの発生を防止することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であっても良い。
電力貯蔵装置の一例のブロック図である。 電力貯蔵装置の使用時の外観の一例の略線図である。 電力貯蔵装置におけるコントローラの関係を示すブロック図である。 本開示による蓄電モジュールの制御部の第1の実施の形態のブロック図である。 本開示の第1の実施の形態におけるセルバランス放電回路の接続図である。 本開示の第1の実施の形態における制御処理の流れを示すフローチャートである。 本開示の第1の実施の形態における制御処理の流れを示すフローチャートである。 本開示の第1の実施の形態における制御の第1の例を説明するためのグラフである。 本開示の第1の実施の形態における制御の第2の例を説明するためのグラフである。 本開示の第1の実施の形態における制御の第2の例を説明するためのグラフである。 本開示の第1の実施の形態における制御の変形例を説明するためのグラフである。 本開示の第2の実施の形態におけるセルバランス放電回路の接続図である。 本開示の第2の実施の形態における制御処理の流れを示すフローチャートである。 本開示の第2の実施の形態における制御処理の流れを示すフローチャートである。 本開示の第2の実施の形態における制御の例を説明するためのグラフである。 本開示の第2の実施の形態における制御の例を説明するためのグラフである。 本開示の応用例の第1の例のブロック図である。 本開示の応用例の第2の例のブロック図である。
 以下に説明する実施の形態は、本開示の好適な具体例であり、技術的に好ましい種々の限定が付されている。しかしながら、本開示の範囲は、以下の説明において、特に本開示を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 なお、本開示の説明は、下記の順序にしたがってなされる。
<1.本開示の第1の実施の形態>
<2.本開示の第2の実施の形態>
<3.応用例>
<4.変形例>
<1.本開示の第1の実施の形態>
「電力貯蔵装置」
 大出力を発生するために多数の蓄電素子、例えば、電池セルを使用する場合、複数の蓄電ユニット(以下、蓄電モジュールと称する)を接続し、複数の蓄電モジュールに対して共通に制御装置を設ける構成が採用される。かかる構成を電力貯蔵装置と称する。さらに、複数の電力貯蔵装置を接続する電力貯蔵システムも可能である。蓄電素子としては、電池以外にキャパシタ等を使用しても良い。
 蓄電モジュールは、複数の電池セル、例えば、リチウムイオン二次電池の直列接続、または複数の電池セルの並列接続(サブモジュール)の直列接続を含む蓄電部と、モジュール毎に設けられているモジュールコントローラとを組み合わせた単位である。各モジュールコントローラのサブマイクロコントローラユニットが全体の制御装置であるメインコントローラのメインマイクロコントローラユニットとデータ伝送路(バス)を介して接続され、メインマイクロコントローラユニットが充電管理、放電管理、劣化抑制等のための管理を行う。
 バスとしては、シリアルインターフェースが使用される。シリアルインターフェースとしては、具体的には、I2C(Inter-Integrated Circuit)方式、SMバス(System Management Bus)、CAN(Controller Area Network)、SPI(Serial Peripheral Interface)等が使用される。
 一例として、I2C方式の通信が使用される。この方式は、比較的近距離で直結したデバイスとの間で、シリアル通信を行うものである。1台のマスタと1台または複数台のスレーブとの間が2本の線で接続される。一方の線を通じて伝送されるクロストークを基準としてデータ信号が他方の線上で転送される。個々のスレーブがアドレスを持っていてデータの中にアドレスが含まれ、1バイト毎に受信側からアクノリッジを返送して互いに確認をとりながらデータの転送がなされる。電力貯蔵装置の場合には、メインマイクロコントローラユニットかマスタとなり、サブマイクロコントローラユニットがスレーブとなる。
 各モジュールコントローラのサブマイクロコントローラユニットからメインマイクロコントローラユニットに対してデータが送信される。例えば、各蓄電モジュールの内部状態の情報、すなわち、各電池セルの電圧、モジュール全体の電圧の情報、電流の情報、温度の情報等の電池情報がサブマイクロコントローラユニットからメインマイクロコントローラユニットに伝送され、各蓄電モジュールの充電処理および放電処理が管理される。
 図1に、電力貯蔵装置の具体的な接続構成の一例を示す。例えば4個の蓄電モジュールMOD1~MOD4が直列に接続される。この場合では、正極端子1(VB+)および負極端子2(VB-)に例えば電力貯蔵装置の全体の出力電圧例えば約200Vが取り出される。蓄電モジュールMOD1~MOD4のそれぞれには、モジュールコントローラCNT1~CNT4と複数の電池セルまたは複数のサブモジュールの並列接続が複数接続された蓄電部BB1~BB4とが含まれている。蓄電部BB1~BB4が電源ラインを介して接続される。
 各モジュールコントローラには、後述するように、監視回路、サブコントロールユニット等が含まれている。メインコントローラICNTとモジュールコントローラCNT1~CNT4が共通のシリアル通信のバス3を介して接続されている。メインコントローラICNTに対して、各モジュールコントローラからのモジュール毎の電圧等の電池情報が伝送される。メインコントローラICNTは、さらに、外部例えばエレクトロニックコントロールユニットとの通信が可能なように通信端子4を有する。
 図2に示すように、例えば、2台の蓄電モジュールMOD1およびMOD2とメインコントローラICNTとのそれぞれが箱状のケースを有する構成とされ、積み重ねられて使用される。オプションとしてUPS(Uninterruptable Power Supply:無停電電源装置)5が使用される場合もある。図2において破線で示すように、メインコントローラICNTおよび各蓄電モジュールのモジュールコントローラCNTがバス3によって接続されている。
 さらに、本開示の一実施の形態においては、図3に示すように、複数の蓄電モジュールを制御するために、各蓄電モジュールのサブコントロールユニット(図では、SUB MCUと表記する)がメインマイクロコントローラユニット(図では、MAIN MCUと表記する)と接続される。さらに、複数のメインマイクロコントローラユニットが最上位のエレクトロニックコントロールユニット(図では、ECUと表記する)と接続される。エレクトロニックコントロールユニットは、一般的にアナログ機器を制御するユニットを総称するものである。
「モジュールコントローラおよびメインコントローラの一例」
 図4を参照してモジュールコントローラCNTおよびメインコントローラICNTの構成の一例について説明する。蓄電部BBは、n個例えば16個の電池セル(以下、単にセルと適宜称する)C1~C16の直列接続からなる。蓄電部BBとしては、複数のセルの並列接続(サブモジュール)を直列接続した構成でも良い。各セルの電圧がセル電圧マルチプレクサ11に供給され、セルC1~C16のそれぞれの電圧が順次選択されてA/Dコンバータおよびコンパレータ12に対して供給される。さらに、セルバランス制御でセルC1~C16のそれぞれを放電するためのセルバランス放電回路23が設けられている。
 セル電圧マルチプレクサ11によって、16個のセルの電圧が時分割多重され、A/Dコンバータおよびコンパレータ12において、デジタル信号に変換され、さらに、電圧しきい値と比較される。A/Dコンバータおよびコンパレータ12は、各セルの14~18ビットのデジタル電圧データと、各セルの電圧と電圧しきい値との比較結果(例えば1ビットの信号)とを出力する。A/Dコンバータおよびコンパレータ12の出力信号が監視回路13に供給される。
 さらに、各セルの温度を測定する温度測定部14およびIC内部の温度を測定する温度測定部15が設けられている。温度測定部14および15からの温度情報が温度マルチプレクサ16に供給される。温度マルチプレクサ16によって多重化された温度データがA/Dコンバータおよびコンパレータ12に供給される。A/Dコンバータおよびコンパレータ12は、デジタル温度データを生成し、デジタル温度データと温度しきい値との比較結果(例えば1ビットの信号)とを出力する。A/Dコンバータおよびコンパレータ12は、上述したように、セル電圧データに関する比較結果も出力する。温度用に別個にA/Dコンバータおよびコンパレータを設けても良い。
 蓄電部(セルC1~C16)を流れる電流を検出する抵抗17が蓄電部BBと直列に接続されている。抵抗17の両端の電圧がアンプ18を介してA/Dコンバータおよびコンパレータ19に供給される。A/Dコンバータおよびコンパレータ19からは、デジタル電流データと、電流値と電流しきい値との比較結果(例えば1ビットの信号)とが出力される。A/Dコンバータおよびコンパレータ19の出力信号が監視回路13に供給される。
 A/Dコンバータおよびコンパレータ12が出力する1ビットの信号は、各セルの電圧の正常/異常を示す検出信号である。充電時には、各セルの電圧が所定値と比較され、過大電圧OVか否かを示す検出信号が生成される。放電時には、各セルの電圧が所定値と比較され、過小電圧UVか否かを示す検出信号が生成される。さらに、A/Dコンバータおよびコンパレータ12が出力する他の1ビットの信号は、温度の過熱OTを示す検出信号である。A/Dコンバータおよびコンパレータ19が出力する1ビットの信号は、電流の過大OCを示す検出信号である。
 監視回路13から上述した検出信号と電圧値のデータと電流値のデータと温度のデータとがサブマイクロコントローラユニット20に供給される。監視回路13およびサブマイクロコントローラユニット20間は、例えばシリアル通信で接続されている。サブマイクロコントローラユニット20は、受け取った検出信号を使用して、必要に応じてモジュールコントローラCNTの診断処理を行う。サブマイクロコントローラユニット20が出力する検出信号と診断処理の結果を示すデータとが通信部21に供給される。
 通信部21は、メインコントローラICNTのメインマイクロコントローラユニットとバス3を介してシリアル通信例えばI2C通信を行うためのインターフェースである。なお、通信方式としては、有線または無線の通信路を使用できる。図4では省略されているが、バス3には、他の蓄電モジュールのモジュールコントローラのサブマイクロコントローラユニットが接続されている。
 蓄電モジュールMODの正極端子22aおよび負極端子22bが電源ラインを介してメインコントローラICNTの正極端子32aおよび負極端子32bとそれぞれ電源ラインを介して接続される。
 バス3に対してメインコントローラICNTの通信部31が接続される。通信部31に対してメインマイクロコントローラユニット30が接続されており、通信部31を通じてなされる通信がメインマイクロコントローラユニット30によって制御される。さらに、メインマイクロコントローラユニット30が通信路を介して上位のエレクトロニックコントロールユニットECUに接続されている。
 メインマイクロコントローラユニット30に対してレギュレータ33によって生成された電源電圧が供給される。メインコントローラICNTは、正極端子1および負極端子2を有する。電源の出力経路中に、スイッチング部34および35が直列に挿入されている。これらのスイッチング部34および35は、メインマイクロコントローラユニット30によって制御される。スイッチング部34および35は、スイッチ素子(FET(Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor):絶縁ゲートバイポーラトランジスタ)等と、並列のダイオードとをそれぞれ有する。
 充電禁止時には、スイッチング部34がオフとなる。放電禁止時には、放電禁止時には、スイッチング部35がオフとなる。さらに、充電および放電を行わない場合は、スイッチング部34および35のそれぞれのスイッチ素子がオフとされる。メインマイクロコントローラユニット30は、上位のエレクトロニックコントロールユニットECUに対して蓄電モジュールMODから受け取ったデータを伝送する。さらに、エレクトロニックコントロールユニットECUから充電/放電に関する制御信号を受け取る。
「セルバランス放電回路」
 セルバランス放電回路23の一例を図5に示す。セルC1と並列に抵抗r1とスイッチs1とが接続される。同様に、セルC2~C16のそれぞれと並列に抵抗r2~r16とスイッチs2~s16とが接続される。スイッチs1~s16は、半導体スイッチ素子例えばFET によって構成されている。
 スイッチs1~s16は、例えばサブマイクロコントローラユニット20において生成されるスイッチング制御信号によってそのオン/オフが制御される。スイッチs1~s16がオンすることによって、セルC1~C16の正極および負極が抵抗r1~r16を介して接続され、セルC1~C16に蓄積されている電荷が放電される。充電電流がセルC1~C16に供給されている期間では、スイッチs1~s16がオンすることによって、充電電流が分流されて実質的に充電電流が減少する。例えば充電期間中で、オンとされたスイッチは、オン状態を継続する。
 正極端子1および負極端子2に対して充電回路が接続されてセルC1~C16が充電される。充電は、定電流によってなされる。本開示では、充電電流を段階的に減少させる。すなわち、充電時に各セルの電圧が監視回路13によって監視されており、何れかのセルが設定されている電流切替電圧V1に達すると、電流が1段階低下されると共に、電流切替電圧V1に到達したセルに対応するスイッチ(セルバランス放電回路23)がオンとされ、電圧上昇が抑制される。このような動作が繰り返され、所定総電圧またはほぼ全体のセルが充電完了電圧Vfに到達すると、充電が停止される。
「制御動作」
 図6および図7のフローチャートを参照してサブマイクロコントローラユニット20によりなされる充電時の制御処理について説明する。図6および図7は、本来一連の処理の流れを表すものであるが、作図スペースの関係で2枚の図面へ分割したものである。なお、以下の説明において使用する記号の定義を下記に示す。
Vcell n:n番目のセル
Vcellmin:n個のセルの中で最小の電圧
Vov:充電休止電圧
Vf :充電完了電圧
Vcellov:n個のセルの中で充電休止電圧に到達したセルの電圧
VL :放電電圧
V1~Vn:電流切替電圧(放電抵抗オン電圧) (V1<V2<V3・・・<Vn)
cellVn:Vnに到達したセル
 一例として、(Vov>Vf)とされ、Vov=4.15Vに設定され、Vf =4.10Vに設定される。Vovより高い電圧例えば4.2V以上は、過充電電圧とされ、充電禁止とされる。さらに、放電電圧VLが3.0Vに設定される。VLより低い電圧例えば2.3Vが過放電電圧とされ、放電が禁止される。実際には、各電圧が多少の幅を持つようにされる。本開示において、使用される2次電池の一例は、正極活物質と、黒鉛等の炭素材料を負極活物質として含むリチウムイオン2次電池である。正極材料として特に限定はないが、オリビン構造を有する正極活物質を含有するものも使用できる。この種の電池では、例えば、Vovが3.55Vに設定され、VLが2.0Vに設定される。
 ステップS1:充電が開始される。
 ステップS2:Vcell n>VLかどうかが判定される。全てのセルの電圧がVLより大かどうかが判定される。
 ステップS3:ステップS2の条件が成立しないと判定されると、予備充電がなされる。予備充電における充電電流が例えば1Aとされる。予備充電は、ステップS2の判定の結果が肯定となるまでなされる。
 ステップS4:ステップS2の判定の結果が肯定となると、Vcellmin≧Vfかどうかが判定される。
 ステップS5:ステップS4の結果が肯定の場合、充電が完了する。
 ステップS6:ステップS4の結果が否定の場合、Vcell n≧Vovかどうかが判定される。ステップS6の判定結果が肯定の場合、処理がステップS16(図7)に移行する。
 ステップS7:通常充電がなされる。例えば1C充電がなされる。1C充電とは、公称容量の電池を定格充電して1時間(1h)で充電終了となる電流値のことである。例えば、2.0Ahの公称容量のリチウムイオン2次電池の場合、(1C=2.0Ah/1h=2.0A)となる。
 ステップS8:Vcell n≧V1が成立するかどうかが判定される。例えば、最初の電流切替電圧がV1=4.05Vに設定される。この条件が成立しない場合は、処理がステップS7に戻る。
 ステップS9:電流切替電圧V1に到達したセルのみ、セルバランスがオンとされる。すなわち、セルバランス放電回路23において、対応するセルのスイッチがオンとされる。セルバランスがオンとされたセルは、次回以降の電流切替電圧Vnに到達しても特別な処理を行わない。
 ステップS10:充電電流がより小さい値に切り替えられる。例えば1Cから開始して0.7Cと順次切り替えられる。さらに、以降にセルの最小の電圧が電流切替電圧に到達する度に、0.4C、0.1Cと充電電流が順次切り替えられる。
 ステップS11:0.7Cによる充電が継続される。
 ステップS12:上述したステップS4およびステップS6と同様の判定処理が行われる。すなわち、Vcellmin≧Vfかどうかが判定され、結果が肯定の場合、充電が完了する(ステップS5)。Vcell n≧Vovかどうかが判定され、結果が肯定の場合、処理がステップS15(図7)に移行する。ステップS15は、充電を一旦停止する処理である。これらの条件の何れもが成立しない場合に、処理がステップS13に移行する。
 ステップS13:Vcell V1以外の電圧≧V<SUB>n+1</SUB>(例えばV2)が成立するかどうかが判定される。この条件が成立しない場合は、処理がステップS11(充電継続)に戻る。
 ステップS14:V<SUB>n+1</SUB>に到達したセルのみ、セルバランスがオンとされる。すなわち、セルバランス放電回路23において、対応するセルのスイッチがオンとされる。セルバランスがオンとされたセルは、次回以降に電流切替電圧に到達しても特別な処理を行わない。ステップS14の後に、処理がステップS10に移行する。ステップS10では、充電電流がさらに減少される。例えば0.7Cから0.4Cに減少される。
 ステップS16:上述したステップS6の判定結果が肯定の場合、すなわち、Vcell n≧Vovが成立する場合、電圧がVovに達したcellovのみセルバランスがオンとされる。
 ステップS17:Vcellov≦Vnかどうかが判定される。この条件が成立しない場合には、ステップS16(cellovのみセルバランスがオン)に処理が戻る。
 ステップS18:ステップS18の条件が成立する場合、充電一旦停止処理前にオンしていたセルバランスのみオンとする。そして、処理が図6のステップS11(充電継続)に戻る。
「第1の実施の形態による制御の第1の例」
 図8のセルの電圧の時間変化のグラフを参照して制御の第1の例について説明する。蓄電部BBが4個のセルC1~C4から構成されている。各セルの間の特性のバラツキのために、時間変化のグラフが相違している。最初に、1C充電によって、セルC1~C4の電圧が徐々に増加する。
 タイミングt1において、セルC2の電圧が電流切替電圧V1(例えば4.05V)に到達すると、セルバランス放電回路23のスイッチs2がオンとされると共に、充電電流が0.7Cに減少される(図6中のステップS8、S9およびS10)。そして、充電が継続される(ステップS11)。充電電流が減少されるので、タイミングt1以降の電圧上昇カーブが緩やかになる。タイミングt1までは、電圧上昇のカーブがセル間で平行している。タイミングt1においてスイッチs2がオンされるために、セルC2の電圧上昇カーブの傾きが他のセルのものに比して緩やかとなる。
 次に、タイミングt2において、セルC2以外のセル例えばセルC1が電流切替電圧V2に達する。したがって、セルバランス放電回路23のスイッチs1がオンとされると共に、充電電流が0.4Cに減少される。充電電流が減少されるので、タイミングt2以降の電圧上昇カーブが緩やかになる。タイミングt2以降では、セルC1の電圧上昇カーブも他のセルC3およびC4のものに比して緩やかとなる。
 さらに、充電が継続され、タイミングt3において、セルC3の電圧が電圧Vfに達する。したがって、セルバランス放電回路23のスイッチs3がオンとされると共に、充電電流が0.1Cに減少される。タイミングt3以降では、セルC3の電圧上昇カーブも他のセルC4のものに比して緩やかとなる。
 さらに、充電が継続され、タイミングt4において、セルC4の電圧が電圧Vfに達する。最小の電圧が電圧Vfに達したために、充電が完了する(図6のステップS12およびS5)。このようにして、複数のセルの電圧を充電完了電圧Vfとなるまで充電することができる。
 上述した本開示の第1の実施の形態では、充電電流をオン/オフするのに伴い発生するスパイク(ヒゲ)状の電圧の発生を防止することができる。さらに、本開示の第1の実施の形態では、電圧が高いセルに対する充電電流を小さくすることによって充電電流を減少させることができる。
「第1の実施の形態による制御の第2の例」
 図9および図10のセルの電圧の時間変化のグラフを参照して制御の第2の例について説明する。図9および図10は、時間的に連続する変化を示す1つのグラフを、作図スペースの制約上、2分割したものである。上述した第1の例と同様に、蓄電部BBが4個のセルC1~C4の直列接続の場合を例にしている。第2の例は、各セルの間のバラツキが第1の例に比して非常に大きい例である。最初に、1C充電によって、セルC1~C4の電圧が増加する。
 タイミングt1において、セルC2の電圧が電流切替電圧V1(例えば4.05V)に到達すると、セルバランス放電回路23のスイッチs2がオンとされると共に、充電電流が0.7Cに減少される(図6中のステップS8、S9およびS10)。そして、充電が継続される(ステップS11)。充電電流が減少されるので、タイミングt1以降の電圧上昇カーブが緩やかになる。タイミングt1までは、電圧上昇のカーブがセル間で平行している。タイミングt1においてスイッチs2がオンされるために、セルC2の電圧上昇カーブの傾きが他のセルのものに比して緩やかとなる。
 次に、タイミングt2において、セルC2以外のセル例えばセルC1が電流切替電圧V2に達する。したがって、セルバランス放電回路23のスイッチs1がオンとされると共に、充電電流が0.4Cに減少される。充電電流が減少されるので、タイミングt2以降の電圧上昇カーブが一段と緩やかになる。タイミングt2以降では、セルC1の電圧上昇カーブも他のセルC3およびC4のものに比して緩やかとなる。
 次に、タイミングt3において、セルC1およびC2以外のセル例えばセルC3が電流切替電圧Vnに達する。したがって、セルバランス放電回路23のスイッチs3がオンとされると共に、充電電流が0.1Cに減少される。充電電流が減少されるので、タイミングt3以降の電圧上昇カーブが一段と緩やかになる。タイミングt3以降では、セルC3の電圧上昇カーブも他のセルC4のものに比して緩やかとなる。
 タイミングt3以降では、セルC1~C3の電圧上昇カーブの傾きが同一であるのに対してセルC4の傾きがセルC1~C3のものに比してより急なものとなる。そして、タイミングt4において、セルC2の電圧が充電休止電圧Vovに到達する。図6のステップS12における判定の結果、処理がステップS15に進み(図7)、充電が一旦停止する。セルC2のみセルバランスがオンするので、セルC2の電圧が低下する。そして、タイミングt5になると、再び充電が再開される。そして、図10におけるタイミングt6になると、充電が停止する。
 上述した例では、充電電流を段階的に切り替える場合、1C→0.7C→0.4C→0.1Cと切り替えている。充電電流を1C→0.8C→0.6C→0.3Cと切り替える場合には、図11に示すように、充電完了までの時間を短くすることができる。
 上述した本開示の第1の実施の形態は、充電電流をオン/オフさせるものではなく、スイッチングに伴うヒゲ状ノイズが発生することを防止することができる。さらに、電圧が高いセルに対する充電電流が減少するので、充電電流を減少させることができる。なお、オリビン構造を有するものでも同様に実施可能である。その際、V=3.55Vとするのが望ましい。詳細な説明は、同様のため省略する。
<2.本開示の第2の実施の形態><BR>
 図12に示すように、本開示の第2の実施の形態は、セルバランス放電回路23に対してモジュールバランス放電回路を付加するものである。モジュールバランス放電回路は、抵抗rMとスイッチsMとの直列回路をセルC1~C16の直列回路の正側および負側の間に接続するものである。したがって、スイッチsMがオンとされると、セルC1~C16と並列に抵抗rMが挿入されることになる。したがって、充電時に、スイッチsMがオンした場合には、充電電流がより小さいものとされる。スイッチsMは、セルC1~C16の電圧が予め設定したモジュールバランスオン電圧Vmb(>Vov)より大となるとオンされる。
「制御動作」
 図13および図14のフローチャートを参照して充電時の制御処理について説明する。図13および図14は、本来一連の処理の流れを表すものであるが、作図スペースの関係で2枚の図面へ分割したものである。なお、第1の実施の形態の制御動作と同様の処理であり、図13は、図6と処理と同様である。但し、ステップS12’においては、Vcell n≧Vmbかどうかが判定される。
 ステップS12’における上述した判定結果が肯定の場合では、処理が図14のステップS19に移行する。
 ステップS19:スイッチsMがオンとされ、モジュール間バランスがオンとされる。
 ステップS20:Vcellmin≧Vfかどうかが判定される。この判定結果が肯定の場合では、充電が完了する(ステップS5)。また、Vcell n≧Vovかどうかが判定される。この判定結果が否定の場合では、処理がステップS13(図13)に移行する。
 ステップS20の判定結果が肯定の場合には、ステップS15(充電一旦停止)に処理が移行する。そして、ステップS16に処理が移る。
 ステップS16:上述したステップS6の判定結果が肯定の場合、すなわち、Vcell n≧Vovが成立する場合、電圧がVovに達したcell ovのみセルバランスがオンとされる。
 ステップS17:Vcellov≦Vnかどうかが判定される。この条件が成立しない場合には、ステップS16(cell ovのみセルバランスがオン)に処理が戻る。
 ステップS18:ステップS18の条件が成立する場合、充電一旦停止処理前にオンしていたセルバランスのみオンとする。そして、処理が図13のステップS11(充電継続)に戻る。
「第2の実施の形態による制御の例」
 図15および図16のセルの電圧の時間変化のグラフを参照して第2の実施の形態による制御の例について説明する。図15および図16は、時間的に連続する変化を示す1つのグラフを、作図スペースの制約上、2分割したものである。上述した第1の実施の形態における例と同様に、蓄電部BBが4個のセルC1~C4の直列接続の場合を例にしている。最初に、1C充電によって、セルC1~C4の電圧が増加する。
 タイミングt1において、セルC2の電圧が電流切替電圧V1(例えば4.05V)に到達すると、セルバランス放電回路23のスイッチs2がオンとされると共に、充電電流が0.7Cに減少される。そして、充電が継続される。タイミングt1までは、電圧上昇のカーブがセル間で平行している。タイミングt1においてスイッチs2がオンされるために、セルC2の電圧上昇カーブの傾きが他のセルのものに比して緩やかとなる。充電電流が減少されるので、タイミングt1以降の電圧上昇カーブが緩やかになる。
 次に、タイミングt2において、セルC2以外のセル、例えば、セルC1が電流切替電圧V2に達する。したがって、セルバランス放電回路23のスイッチs1がオンとされると共に、充電電流が0.4Cに減少される。タイミングt2以降では、セルC1の電圧上昇カーブも他のセルC3およびC4のものに比して緩やかとなる。充電電流が減少されるので、タイミングt2以降の電圧上昇カーブが一段と緩やかになる。
 次に、タイミングt3において、セルC2の電圧がモジュールバランスオン電圧Vmbより大となる。したがって、モジュールバランスがオンとなる。モジュールバランスがオンするために、充電時の電圧上昇の傾きが緩やかとなり、電圧がVovに達するために、一旦充電が停止することがない。低い充電電流による充電が継続し、図16のタイミングt4において、Vcellmin≧Vfとなり、充電が完了する。
 なお、本開示は、以下のような構成も取ることができる。
(1)
 直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、
 前記蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、
 前記複数の蓄電部を第1の定電流値で充電し、前記複数の蓄電部の内で、最高電圧の蓄電部が第1の電位に達した際に、前記最高電圧の蓄電部と前記最高電圧に対応するセルバランス部とを接続すると共に、充電電流を前記第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する制御部と
 を備える蓄電装置。
(2)
 前記制御部は複数の蓄電部の内、前記最高電圧の蓄電部と異なる少なくとも一つの蓄電部が前記第1の電位よりも高い第2の電位に達した際に、前記第2の電位に達した蓄電部と前記第2の電位に達した蓄電部に対応するセルバランス部とを接続する共に、充電電流を前記第2の定電流値よりも小さい第3の定電流値に切り替えるように制御する(1)に記載の蓄電装置
(3)
 前記制御部は、前記充電電流の切替を行う閾値を3以上、設定するように構成される(1)(2)の何れかに記載の充電装置。
(4)
 前記蓄電部の最高電圧が前記所定電圧より高く、過充電電圧より小さい充電停止電圧に達した場合に、充電を停止して当該蓄電部のみ放電し、当該蓄電部の電圧が設定電圧まで放電すると、充電を再開する(1)(2)(3)の何れかに記載の蓄電装置。
(5)
 前記複数の蓄電部の中で最小の電圧が充電完了電圧以上となると、充電を完了する(1)(2)(3)(4)の何れかに記載の蓄電装置。
(6)
 前記蓄電部の最高電圧が前記所定電圧より高い第2の所定電圧に達した際に、前記複数の蓄電部の全体に対して並列接続されたバランス部のスイッチをオンとすると共に、定電流値を低下させる(1)(2)(3)(4)(5)の何れかに記載の充電装置。
(7)
 前記セルバランス部が前記蓄電部とそれぞれ並列接続されるスイッチおよび抵抗である(1)(2)(3)(4)(5)(6)の何れかに記載の蓄電装置。
(8)
 前記蓄電部に含まれる電池がオリビン構造を有する正極活物質を有するものである(1)(2)(3)(4)(5)(6)(7)の何れかに記載の蓄電装置。
(9)
 直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、
 前記蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、
 前記セルバランス部を制御する制御部とを有し、
 前記制御部によって、前記複数の蓄電部を第1の定電流値で充電し、前記複数の蓄電部の内で、最高電圧の蓄電部が所定の電位に達した際に、前記最高電圧の蓄電部と前記最高電圧と対応するセルバランス部とを接続すると共に、充電電流を前記第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する
 蓄電装置の制御方法。
<3.応用例>
「住宅における電力貯蔵装置」
 本開示を住宅用の電力貯蔵装置に適用した例について、図17を参照して説明する。例えば住宅101用の電力貯蔵装置100においては、火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108等を介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104等の独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の電力貯蔵装置を使用できる。
 住宅101には、発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、各種情報を取得するセンサー111が設けられている。各装置は、電力網109および情報網112によって接続されている。発電装置104として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置105および/または蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置105b、テレビジョン受信機105c、風呂105d等である。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cである。
 蓄電装置103に対して、上述した本開示の電力貯蔵装置が適用される。蓄電装置103は、二次電池、またはキャパシタから構成されている。例えば、リチウムイオン電池によって構成されている。リチウムイオン電池は、定置型であっても、電動車両106で使用されるものでも良い。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。
 各種のセンサー111は、例えば人感センサー、照度センサー、物体検知センサー、消費電力センサー、振動センサー、接触センサー、温度センサー、赤外線センサー等である。各種センサー111により取得された情報は、制御装置110に送信される。センサー111からの情報によって、気象の状態、人の状態等が把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報をインターネットを介して外部の電力会社等に送信することができる。
 パワーハブ108によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置110と接続される情報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
 各部を制御する制御装置110は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置103に格納されている。制御装置110は、蓄電装置103、家庭内発電装置104、電力消費装置105、各種センサー111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
 以上のように、電力が火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102のみならず、家庭内発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されても良いし、単独で構成されていても良い。さらに、電力貯蔵装置100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
「車両における電力貯蔵装置」
 本開示を車両用の電力貯蔵装置に適用した例について、図18を参照して説明する。図18に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれを電池に一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両200には、エンジン201、発電機202、電力駆動力変換装置203、駆動輪204a、駆動輪204b、車輪205a、車輪205b、電池208、車両制御装置209、各種センサ210、充電口211が搭載されている。電池208に対して、上述した本開示の電力貯蔵装置が適用される。
 ハイブリッド車両200は、電力駆動力変換装置203を動力源として走行する。電力駆動力変換装置203の一例は、モータである。電池208の電力によって電力駆動力変換装置203が作動し、この電力駆動力変換装置203の回転力が駆動輪204a、204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置203が交流モータでも直流モータでも適用可能である。各種センサ210は、車両制御装置209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン201の回転力は発電機202に伝えられ、その回転力によって発電機202により生成された電力を電池208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置203に回転力として加わり、この回転力によって電力駆動力変換装置203により生成された回生電力が電池208に蓄積される。
 電池208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、二次電池に関する情報に基いて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残容量に関する情報に基づき、電池残容量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれを電池に一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力が何れも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。
<4.変形例>
 以上、本開示の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。例えば本開示は、電力貯蔵装置以外のシステムに対しても適用することができる。
MOD,MOD1~MODN・・・蓄電モジュール
ICNT・・・メインコントローラ
CNT・・・モジュールコントローラ
C1~Cn・・・セル
BB1~BBn・・・蓄電部
3・・・バス
11・・・セル電圧マルチプレクサ
12,19・・・A/Dコンバータおよびコンパレータ
13・・・監視回路
16・・・温度マルチプレクサ
20・・・サブマイクロコントローラユニット
21・・・通信部
23・・・セルバランス放電回路
30・・・メインマイクロコントローラユニット
r1~r16、rM・・・抵抗
s1~s16、sM・・・スイッチ

Claims (9)

  1.  直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、
     前記蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、
     前記複数の蓄電部を第1の定電流値で充電し、前記複数の蓄電部の内で、最高電圧の蓄電部が第1の電位に達した際に、前記最高電圧の蓄電部と前記最高電圧に対応するセルバランス部とを接続すると共に、充電電流を前記第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する制御部と
     を備える蓄電装置。
  2.  前記制御部は複数の蓄電部の内、前記最高電圧の蓄電部と異なる少なくとも一つの蓄電部が前記第1の電位よりも高い第2の電位に達した際に、前記第2の電位に達した蓄電部と前記第2の電位に達した蓄電部に対応するセルバランス部とを接続する共に、充電電流を前記第2の定電流値よりも小さい第3の定電流値に切り替えるように制御する請求項1記載の蓄電装置
  3.  前記制御部は、前記充電電流の切替を行う閾値を3以上、設定するように構成される請求項2に記載の充電装置。
  4.  前記制御部は、前記蓄電部の最高電圧が前記第1の電圧より高く、過充電電圧より小さい充電停止電圧に達した場合に、充電を停止して当該蓄電部のみ放電し、当該蓄電部の電圧が設定電圧まで放電すると、充電を再開する請求項1に記載の蓄電装置。
  5.  前記複数の蓄電部の中で最小の電圧が充電完了電圧以上となると、充電を完了する請求項1に記載の蓄電装置。
  6.  前記蓄電部の最高電圧が前記所定電圧より高い第2の所定電圧に達した際に、前記複数の蓄電部の全体に対して並列接続されたバランス部のスイッチをオンとすると共に、定電流値を低下させる請求項1に記載の蓄電装置。
  7.  前記セルバランス部が前記蓄電部とそれぞれ並列接続されるスイッチおよび抵抗である請求項1に記載の蓄電装置。
  8.  前記蓄電部に含まれる電池がオリビン構造を有する正極活物質を有するものである請求項1に記載の蓄電装置。
  9.  直列接続され、少なくとも1以上の電池を有する複数の蓄電部と、
     前記蓄電部のそれぞれにスイッチを介して並列接続されたセルバランス部と、
     前記セルバランス部を制御する制御部とを有し、
     前記制御部によって、前記複数の蓄電部を第1の定電流値で充電し、前記複数の蓄電部の内で、最高電圧の蓄電部が第1の電位に達した際に、前記最高電圧の蓄電部と前記最高電圧に対応するセルバランス部とを接続すると共に、充電電流を前記第1の定電流値よりも小さい第2の定電流値に切り替えるように制御する
     蓄電装置の制御方法。
PCT/JP2014/003411 2013-09-17 2014-06-26 蓄電装置および蓄電装置の制御方法 WO2015040779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/917,495 US10069311B2 (en) 2013-09-17 2014-06-26 Power storage device and method of controlling power storage device
CN201480049788.3A CN105531903B (zh) 2013-09-17 2014-06-26 蓄电装置及控制蓄电装置的方法
EP14846197.3A EP3048697B1 (en) 2013-09-17 2014-06-26 Power storage device and method for controlling power storage device
CA2923375A CA2923375C (en) 2013-09-17 2014-06-26 Power storage device and method of controlling power storage device
AU2014322623A AU2014322623B2 (en) 2013-09-17 2014-06-26 Power storage device and method for controlling power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013191811A JP6225588B2 (ja) 2013-09-17 2013-09-17 蓄電装置および蓄電装置の制御方法
JP2013-191811 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015040779A1 true WO2015040779A1 (ja) 2015-03-26

Family

ID=52688453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003411 WO2015040779A1 (ja) 2013-09-17 2014-06-26 蓄電装置および蓄電装置の制御方法

Country Status (7)

Country Link
US (1) US10069311B2 (ja)
EP (1) EP3048697B1 (ja)
JP (1) JP6225588B2 (ja)
CN (1) CN105531903B (ja)
AU (1) AU2014322623B2 (ja)
CA (1) CA2923375C (ja)
WO (1) WO2015040779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110857037A (zh) * 2018-08-22 2020-03-03 光阳工业股份有限公司 具有灯号显示功能的抽取电池装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162206B (zh) * 2015-09-30 2018-03-23 环旭电子股份有限公司 充电电池的充电控制方法
CN107005077B (zh) * 2015-11-26 2020-05-05 株式会社东芝 电力控制装置以及电力控制***
TWI619330B (zh) * 2016-04-22 2018-03-21 立錡科技股份有限公司 充電裝置及其充電控制電路與充電控制方法
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
DE102016012228A1 (de) * 2016-10-13 2018-04-19 Man Truck & Bus Ag Traktionsenergiespeichersystem für ein Fahrzeug
US10985576B2 (en) 2017-01-09 2021-04-20 Milwaukee Electric Tool Corporation Battery pack
GB2561361A (en) * 2017-04-10 2018-10-17 Detroit Electric Ev Ltd Electrical vehicle battery management sytem and method of operation thereof
DE102017207055A1 (de) 2017-04-26 2018-10-31 Volkswagen Aktiengesellschaft Elektrochemischer Energiespeicher, Zellcontroller, Energiespeichersystem, Fortbewegungsmittel und Kontaktierungseinrichtung für ein elektrisches Energiespeichersystem
CN108494024B (zh) * 2018-01-22 2020-07-07 许继电源有限公司 一种充电机暂停功率输出控制方法及充电机
CN108275026A (zh) * 2018-02-28 2018-07-13 深圳奥特迅电力设备股份有限公司 用于车对车充电的充电装置及方法
CN111788735A (zh) * 2018-02-28 2020-10-16 松下知识产权经营株式会社 非水电解质二次电池的充电方法和非水电解质二次电池的充电***
JP6888733B2 (ja) * 2018-03-01 2021-06-16 株式会社村田製作所 組電池
CN109591653A (zh) * 2018-11-26 2019-04-09 河南英开电气股份有限公司 电动汽车的充电设备及控制方法
JP7137484B2 (ja) * 2019-01-17 2022-09-14 本田技研工業株式会社 燃料電池車両
JP7435332B2 (ja) 2020-02-06 2024-02-21 株式会社デンソー 車両の充電システム
TWI823405B (zh) * 2022-05-26 2023-11-21 光陽工業股份有限公司 電動車的充電控制系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507378A (ja) * 1994-10-18 1997-07-22 サフト 蓄電池アセンブリの充電を制御する方法ならびにその方法を使用する装置
JP2000014030A (ja) * 1998-06-18 2000-01-14 Honda Motor Co Ltd 車両用充電制御装置
JP2007330003A (ja) * 2006-06-06 2007-12-20 Daiwa House Ind Co Ltd 直列接続二次電池の充電方法
WO2011118484A1 (ja) * 2010-03-24 2011-09-29 株式会社Gsユアサ 二次電池システム
JP2012060691A (ja) 2010-09-03 2012-03-22 Sony Corp 制御装置及び方法、並びに電源装置
JP2012135154A (ja) * 2010-12-22 2012-07-12 Denso Corp リチウムイオン二次電池の充電制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767422B2 (ja) 2001-06-01 2006-04-19 日産自動車株式会社 充電方法および充電装置
JP2009201336A (ja) * 2008-02-25 2009-09-03 Iwasaki Electric Co Ltd 充電装置及び充電方法
JP2011118484A (ja) * 2009-11-30 2011-06-16 Fujitsu Ten Ltd ナビゲーションシステムおよび車載装置
JP5205424B2 (ja) * 2010-08-06 2013-06-05 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
US8816639B2 (en) * 2011-06-02 2014-08-26 Aerojet Rocketdyne Of De, Inc. Charge balancing topology
JP2013055719A (ja) * 2011-09-01 2013-03-21 Omron Automotive Electronics Co Ltd 組電池の充電制御装置および充電制御方法
CN103765721B (zh) * 2011-09-08 2016-04-06 日立汽车***株式会社 电池***监视装置
US20150295430A1 (en) * 2012-10-09 2015-10-15 J.B. Wright Smart distributed battery system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507378A (ja) * 1994-10-18 1997-07-22 サフト 蓄電池アセンブリの充電を制御する方法ならびにその方法を使用する装置
JP2000014030A (ja) * 1998-06-18 2000-01-14 Honda Motor Co Ltd 車両用充電制御装置
JP2007330003A (ja) * 2006-06-06 2007-12-20 Daiwa House Ind Co Ltd 直列接続二次電池の充電方法
WO2011118484A1 (ja) * 2010-03-24 2011-09-29 株式会社Gsユアサ 二次電池システム
JP2012060691A (ja) 2010-09-03 2012-03-22 Sony Corp 制御装置及び方法、並びに電源装置
JP2012135154A (ja) * 2010-12-22 2012-07-12 Denso Corp リチウムイオン二次電池の充電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3048697A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110857037A (zh) * 2018-08-22 2020-03-03 光阳工业股份有限公司 具有灯号显示功能的抽取电池装置

Also Published As

Publication number Publication date
US20160218528A1 (en) 2016-07-28
CN105531903A (zh) 2016-04-27
AU2014322623B2 (en) 2017-02-02
EP3048697A1 (en) 2016-07-27
EP3048697B1 (en) 2021-07-28
CA2923375C (en) 2020-08-25
US10069311B2 (en) 2018-09-04
EP3048697A4 (en) 2017-05-24
CA2923375A1 (en) 2015-03-26
JP2015061335A (ja) 2015-03-30
CN105531903B (zh) 2018-12-04
AU2014322623A1 (en) 2016-03-10
JP6225588B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6225588B2 (ja) 蓄電装置および蓄電装置の制御方法
JP6264162B2 (ja) 充電装置および充電制御方法、並びに、蓄電装置、電力貯蔵装置、電力システムおよび電動車両
JP5794104B2 (ja) 電池パック、蓄電システム、電子機器、電動車両および電力システム
JP5830971B2 (ja) 電池モニタ回路、蓄電装置、電動車両および電力システム
JP5929526B2 (ja) 電源供給装置および電源切り換え方法
JP5904050B2 (ja) 電力貯蔵装置
JP5821619B2 (ja) 電力貯蔵装置、電力システムおよび電動車両
CA2915580C (en) Power storage apparatus and control method for a power storage apparatus
WO2012077412A1 (ja) 蓄電システム、電子機器、電動車両および電力システム
JP2013162635A (ja) 電力貯蔵装置、電力システムおよび電動車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049788.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2923375

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14917495

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014322623

Country of ref document: AU

Date of ref document: 20140626

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014846197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014846197

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE