WO2015039368A1 - 一种天线装置及接收*** - Google Patents

一种天线装置及接收*** Download PDF

Info

Publication number
WO2015039368A1
WO2015039368A1 PCT/CN2013/085360 CN2013085360W WO2015039368A1 WO 2015039368 A1 WO2015039368 A1 WO 2015039368A1 CN 2013085360 W CN2013085360 W CN 2013085360W WO 2015039368 A1 WO2015039368 A1 WO 2015039368A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
network
phase
stage
feed
Prior art date
Application number
PCT/CN2013/085360
Other languages
English (en)
French (fr)
Inventor
王春华
王海波
吴文平
邓文雄
Original Assignee
深圳市华信天线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华信天线技术有限公司 filed Critical 深圳市华信天线技术有限公司
Publication of WO2015039368A1 publication Critical patent/WO2015039368A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present invention relates to the field of satellite antennas, and more particularly to a novel feeder antenna apparatus and receiving system.
  • Chinese Patent Publication No. CN202503105U discloses a measurement type GNSS receiving antenna, comprising: an upper layer microstrip antenna provided with an upper layer patch, a lower layer microstrip antenna provided with a lower layer patch, and a floor and a suppression board placed on the bottom layer,
  • the geometric center of the upper layer patch coincides with the geometric center of the lower layer patch;
  • the upper layer patch is provided with four upper layer feed points distributed in a square matrix, and the geometric center of the four upper layer feed points and the upper layer
  • the geometric center of the patch coincides;
  • the lower patch is provided with four lower layer feed points distributed in a square matrix, and the geometric centers of the four lower layer feed points coincide with the geometric center of the lower layer patch;
  • the diagonal of the upper feed point intersects the diagonal of the four lower feed points to 45.
  • the scheme can effectively improve the beam bandwidth, the axial ratio bandwidth and the impedance bandwidth, stabilize the phase center position of the antenna, improve the low elevation signal receiving capability and the multipath interference resistance, and is
  • Cida Patent Publication No. CN101789538A discloses a high-precision, high-stability, high-gain multi-frequency patch antenna device including a patch antenna, a PCB board, a shield cover and a low noise amplifying circuit, and the patch antenna device further includes a sticker a slice antenna, a multi-band feed network, a multi-band feed probe, and at least four feed points, the at least four feed points forming at least two sets of feed points, the at least two sets of feed points One end is connected to the patch antenna, and the other end is respectively passed through the multi-band feed probe
  • a PCB board is coupled to the multi-band feed network; the shield is coupled to the PCB board.
  • An object of the present invention is to provide an antenna device and a receiving system to solve mutual interference between frequency points, improve phase stability of the antenna, and improve measurement accuracy.
  • an embodiment of the present invention provides an antenna device, including: a reflector, a first frequency band feeding network, a substrate, and a first frequency band, which are sequentially arranged from the top to the bottom of the reflector.
  • a radiating surface a first frequency band dielectric layer, a second frequency band radiating surface, a second frequency band dielectric layer, a second frequency band feeding network located under the reflecting plate, and a low noise amplifying circuit; wherein the first frequency band radiating surface passes The first frequency band feeding probe is connected to the first frequency band feeding network; the second frequency band radiating surface is larger than the first frequency band radiating surface, and the second frequency band radiating surface is located on the second frequency band dielectric layer, and is connected to the first through the second frequency band feeding probe a two-band feeding network; the first frequency band feeding network and the second frequency band feeding network are connected to the low noise amplifying circuit.
  • the first frequency band radiating surface is provided with a symmetrical structure of fine tuning resonant sections, the number of which is an integral multiple of the first frequency band feeding probe, and is horizontally distributed with the first frequency band feeding probe.
  • the first frequency band radiating surface is below the substrate or on the upper surface of the substrate.
  • the second frequency band radiating surface is provided with a symmetrical structure of fine tuning resonant sections, the number of which is an integral multiple of the second frequency band feeding probe, and is horizontally distributed with the second frequency band feeding probe.
  • the first frequency band feeding probe and the second frequency band feeding probe are uniformly distributed in a symmetrical manner with the geometric central axis of the reflecting plate, and each probe is distributed at 90 degrees.
  • the first frequency band feeding probe is on the radiation surface of the second frequency band.
  • the first frequency band dielectric layer, the first frequency band radiating surface, and the substrate are connected to the first frequency band feeding network, and the first frequency band feeding probe is physically not directly connected to the first frequency band radiating surface, but is coupled through The way to achieve electrical performance connections.
  • the device further includes a plurality of locking probes of the first frequency band feeding probe and the second frequency band feeding probe, wherein the locking probes are uniformly distributed in a positive symmetric manner, and each probe The needles are distributed at a 45 degree angle.
  • the top shielding cover is fixedly disposed on the substrate, the bottom shielding cover is disposed under the reflective plate, and the first frequency band feeding network is located between the substrate and the top shielding cover.
  • the second frequency band feed network is located between the reflector and the bottom shield cover.
  • the first frequency band feeding network includes a phase shifting network, a phase shifting network, a phase shifting network C, and a short microstrip line and a long microstrip line, wherein the long microstrip line is longer than the short microstrip line One quarter of the wavelength, the two input ends of the phase shifting network A and the two input ends of the phase shifting network B are respectively connected to the first frequency band feeding probe, and the output end of the phase shifting network A passes the short microstrip line
  • the input ports of the phase shifting network C are connected, and the output of the phase shifting network B is connected to the input port of the phase shifting network C through a long microstrip line.
  • the second frequency band feeding network includes a phase shifting network 0, a phase shifting network, a phase shifting network F, and a short microstrip line and a long microstrip line, wherein the long microstrip line is shorter than the short microstrip line
  • the two input ends of the phase shifting network D and the two input ends of the phase shifting network E are respectively connected to the second frequency band feeding probe, and the output end of the phase shifting network D passes through the short microstrip line.
  • the output of the phase shifting network E is connected to the input port of the phase shifting network F through a long microstrip line.
  • the low noise amplifying circuit includes a first frequency band first stage band pass filter, a first frequency band low noise amplifier, a first frequency band second stage band pass filter, and a second frequency band first stage band pass filter.
  • the signal of the first frequency band outputted by the output port of the network C passes through the first frequency band first-stage band pass filter, the first frequency band low noise amplifier, and the first frequency band second-stage band pass filter to reach the combined network;
  • the signal of the second frequency band outputted by the output port of the phase shifting network F in the frequency band feeding network passes through the second frequency band first stage filter, the second frequency band low noise amplifier, and the second frequency band second stage band pass filter.
  • the low noise amplifying circuit further includes a second stage combined low noise amplifier connected between the first stage combined low noise amplifier and the combined output port, and the combined signal passing through the combined network The first-stage combined low-noise amplifier and the second-stage combined low-noise amplifier are amplified and then output from the combined output port.
  • the apparatus further includes a plurality of integrated mounting holes, the integrated mounting holes being evenly distributed on the reflecting plate.
  • the apparatus further includes a plurality of radio frequency connectors distributed under the reflector.
  • the present invention also provides a receiving system comprising a receiver and an antenna device, wherein the antenna device is coupled to the receiver.
  • the antenna device provided by the present invention adopts a special feeding mode of feeding from the first frequency band and a reasonable layout structure of the whole device, thereby reducing the influence between the frequency points, which is extremely
  • the phase stability of the antenna is improved, and the antenna bandwidth is expanded, and the requirement of high precision is truly realized.
  • FIG. 1 is a top plan view of an antenna device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an antenna device according to an embodiment of the present invention.
  • FIG. 3 is a bottom view of an antenna device according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a first frequency band feed network according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a second frequency band feeding network according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of an amplifying circuit according to an embodiment of the present invention.
  • Figure ⁇ is a structural diagram of a receiving system according to an embodiment of the present invention.
  • An embodiment of the present invention provides an antenna device, where the antenna device includes:
  • a reflector 1 a top shield cover 11 arranged in order from top to bottom on the reflector 1 , a first frequency band feed network, a substrate 4 , a first frequency band radiating surface 8 , a first frequency band dielectric layer 3 , and a second frequency band
  • the top shield cover 11 is fixedly disposed on the substrate 4, and the size thereof is smaller than the size of the radiating surface 8 of the first frequency band; the radiating surface 9 of the second frequency band is larger than the radiating surface 8 of the first frequency band; 8 is connected to the first frequency band feeding network through the first frequency band feeding probe 2; the second frequency band radiating surface 9 is connected to the second frequency band feeding network through the second frequency band feeding probe 7; the first frequency band
  • the feed network and the second frequency band feed network are connected to a low noise amplifying circuit.
  • the first frequency band feeding network is located between the substrate 4 and the top shielding cover 11; the second frequency band The feed network is located between the reflector 1 and the bottom shield cover 48. It can be seen that the second frequency band feed network and the first frequency band feed network are respectively distributed on both sides of the reflector.
  • the first frequency band feeding probe 2 is passed through the first frequency band dielectric layer 3, the first frequency band radiating surface 8, the substrate 4, and then connected to the first frequency band feeding network.
  • the first frequency band feed probe 2 is physically not in direct contact with the first frequency band radiating surface 8, but is electrically coupled by coupling.
  • the number of the first frequency band feed probe 2 and the second frequency band feed probe 7 is at least one. In the embodiment of the present invention, four are taken as an example for description.
  • the first frequency band radiating surface 8 may be on the lower surface of the substrate 4, and the first frequency band radiating surface 8 may be between the first frequency band dielectric layer 3 and the substrate 4, or may be on the upper surface of the substrate 4, and the size thereof is larger than Top shield cover 11.
  • the first frequency band radiating surface 8 has a circular or square shape, the first frequency band radiating surface 8 has a fine tuning resonance node, and the fine tuning resonant node is composed of a symmetric structure, and the number thereof may be a first frequency band feeding probe. An integer multiple of the needle 2, and which is horizontally distributed with the first frequency band feed probe 2.
  • the second frequency band radiating surface 9 is below the first frequency band dielectric layer 3, and above the second frequency band dielectric layer 6, the shape is circular or square; the second frequency band radiating surface 9 has a fine tuning resonance node, a resonance section It is composed of a symmetrical structure, and the number thereof may be an integral multiple of four feeding probes 7 in the second frequency band, and is horizontally distributed with the second frequency band feeding probe 7.
  • the signal output from the output port 13 of the phase shifting network C12 of the first frequency band feeding network is directly connected to the first frequency band first stage band pass filter 36 of the low frequency amplifying circuit through the connector 5.
  • the signal output from the output port 25 of the phase shifting network F27 of the second frequency band feeding network is directly connected to the second frequency band first stage band pass filter 42 in the amplifying circuit.
  • the first frequency band feed probe 2 and the second frequency band feed probe 7 are both conductive metal probes. As shown in FIG. 1, the first frequency band feeding probe 2 and the second frequency band feeding probe 7 are uniformly distributed in a symmetrical manner with the geometric central axis of the reflecting plate 1, and each probe is distributed at 90 degrees. Its connector 5 is in the center of the entire antenna.
  • the plurality of locks of the first frequency band feeding probe 2 and the second frequency band feeding probe 7 The tight probes 10 are uniformly distributed in a symmetrical manner, and each probe is distributed at a 45 degree relationship, wherein the four locking probes 10 may be metal or non-metal.
  • FIG. 1 and 3 there are integrated mounting holes 46 around the reflector 1 which are evenly distributed on the reflector to facilitate integration of the antenna with the receiver. As shown in Fig. 2 and Fig. 3, there is an RF connector 47 under the reflector 1 to facilitate the interference-free connection between the antenna and the receiver.
  • the reflecting plate 1 is circular, and may also be other regular geometric figures such as a square.
  • the first frequency band feeding network includes a phase shifting network A22, a phase shifting network B17, a phase shifting network C12, and a short microstrip line 14 and a long microstrip line 15, wherein the long microstrip line 15 is
  • the short microstrip line 14 has a long quarter wavelength (relative to the first frequency band), and the two input ends 16 of the phase shifting network A22 and the two input terminals 18 of the phase shifting network B17 respectively feed the first frequency band
  • the pin 2 is connected, the output end of the phase shifting network A22 is connected to the input port 23 of the phase shifting network C12 through the short microstrip line 14, and the output end of the phase shifting network B17 is passed through the long strip line 15 and the input port 23 of the phase shifting network C12. Connected.
  • the first frequency band feeding probe 2 is respectively connected to the two input ports 16 of the phase shifting network A22 and the two input ports 18 of the phase shifting network B17, and then the feeding signals are respectively input to the phase shifting network.
  • A22 and phase shifting network B 17 the output end of the phase shifting network A22 and the output end of the phase shifting network B17 are respectively connected to the input port 23 of the phase shifting network C12 through the short microstrip line 14 and the long microstrip line 15, respectively.
  • the output signals of the phase shifting network B17 and the phase shifting network A22 are input to the phase shifting network C12, and then outputted through the phase shifting network C12 output port 13.
  • the matching port 20 of the phase shifting network A22, the matching port 19 of the phase shifting network B17, and the matching port 21 of the phase shifting network C12 are respectively connected to the matching load.
  • the first frequency band feeding network not only makes the antenna realize right-hand circular polarization in the first frequency band, but also makes the power feeding tube single, and the structure is single.
  • the second frequency band feeding network comprises a phase shifting network D30, a phase shifting network E34, a phase shifting network F27 and a short microstrip line 28 and a long microstrip line 29, wherein the second frequency band feeding probes 7 are respectively from the phase shifting network D30.
  • phase shifting network E34 Input port 32 and input port 33 of phase shifting network E34 are input, phase shifting The signals output by the network D30 and the phase shifting network E34 are respectively connected to the short microstrip line 28 and the long microstrip line 29, and the long microstrip line 29 is longer than the short microstrip line 28 by a quarter wavelength (relative to the second frequency band), and then They are respectively connected to the two input ports 24 of the phase shifting network F27, and finally outputted by the output port 25 of the phase shifting network F27.
  • the phase shifting network D30 matching port 31, the phase shifting network E34 matching port 35, and the phase shifting network F27 matching port 26 are respectively matched. load. Through the second frequency band feeding network, the antenna realizes right circular polarization in the second frequency band.
  • the low noise amplifying circuit includes a first frequency band first stage band pass filter 36, a first frequency band low noise amplifier 37, a first frequency band second stage band pass filter 38, and a second frequency band first stage band.
  • This low noise amplifier may or may not be required according to the requirements of the amplification factor.
  • the signal of the first frequency band outputted by the output port 13 of the phase shifting network C12 passes through the first frequency band first stage band pass filter 36, the first frequency band low noise amplifier 37, the first frequency band second stage band pass filter 38, and then The combined network 39 is reached.
  • the signal output by the second frequency band feeding network passes through the second frequency band first stage filter 42, the second frequency band low noise amplifier 43, and the second frequency band second stage filter 44 in the combined network 39.
  • the signals from the first frequency band are combined, they are amplified by the first-stage combined low-noise amplifier 40 and the second-stage combined low-noise amplifier 41, and then output from the combined output port 45, and then connected to the receiver through the RF connector 47.
  • the overall connection process of the present invention is: the signal of the first frequency band is passed through the first frequency band radiating surface 8 by the four first frequency band feeding probes 2 and the input port 16 of the phase shifting network A22 of the first frequency band feeding network and The input port 18 of the phase shifting network B17 is connected, then passes through the two input ports 23 of the phase shifting network C12, and then reaches the output port 13 of the phase shifting network C12.
  • phase shifting from the phase The signal from the output port 13 of the network C12 reaches the combining network 39 via the first frequency band first stage band pass filter 36, the first frequency band low noise amplifier 37, and the first frequency band second stage band pass filter 38.
  • the present invention also provides a receiving system including a receiver 200 and the antenna device 100 described above, wherein the antenna device 100 is connected to the receiver 200 via a radio frequency connector 47.
  • the antenna device provided by the invention adopts a special feeding mode of feeding from the first frequency band and a reasonable layout structure of the whole device, reduces the influence between the frequency points, and greatly improves the phase stability of the antenna. Degrees, while expanding the antenna bandwidth, truly achieve high precision requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线装置,包括:反射板,位于反射板上从上至下依次排布的第一频段馈电网络、基板、第一频段辐射面、第一频段介质层、第二频段辐射面、第二频段介质层,位于反射板另一侧的第二频段馈电网络、低噪声放大电路;其中,第一频段辐射面通过第一频段馈电探针连接至第一频段馈电网络;第二频段辐射面大于第一频段辐射面,位于第二频段介质层上,通过第二频段馈电探针连接至第二频段馈电网络;第一频段馈电网络和第二频段馈电网络连接低噪声放大电路。本发明还提供一种接收***。通过本发明可以解决各频点之间互相干扰,提高天线的相位稳定度,提高测量精度。

Description

一种天线装置及接收***
技术领域 本发明涉及卫星天线领域, 特别地涉及一种新型馈电天线装置及接收系 统。
背景技术 随着卫星导航以及测量技术的不断发展, 卫星定位***也得到了日益广 泛的应用。 目前, 全球已有多个国家建立了自己的卫星定位***, 如中国的 北斗*** BDS、美国的 GPS***、俄罗斯的格洛纳斯 GLONASS***以及欧 洲的伽利略 GALILEO***。
天线作为卫星信号接收的关键设备已慢慢成熟, 随着这些卫星***的不 断成熟及民用化进程的深化, 高性能已成为了消费者追求的对象。
中国专利公开号 CN202503105U公开了一种测量型 GNSS接收天线,包 括: 设有上层贴片的上层微带天线、 设有下层贴片的下层微带天线及置于底 层的地板及抑径板, 所述上层贴片的几何中心与所述下层贴片的几何中心重 合; 所述上层贴片设有四个呈方阵分布的上层馈点, 所述四个上层馈点的几 何中心与所述上层贴片的几何中心重合; 所述下层贴片设有四个呈方阵分布 的下层馈点,所述四个下层馈点的几何中心与所述下层贴片的几何中心重合; 所述四个上层馈点的对角线与所述四个下层馈点的对角线相交成 45。。该方案 可有效地提高波束带宽、 轴比带宽及阻抗带宽, 使天线的相位中心位稳定, 提高低仰角信号接收能力和抗多路径干扰能力, 有利于卫星型号的接收, 实 现高精度测量。
中国专利公开号 CN101789538A公开了一种高精度、 高稳定性、 高增益 多频贴片天线装置, 包括贴片天线、 PCB板、 屏蔽罩及低噪声放大电路, 所 述贴片天线装置进一步包含贴片天线、 多频段馈电网络、 多频段馈电探针以 及至少四个馈点, 该至少四个馈点构成至少两组馈电点, 该至少两组馈电点 一端与所述贴片天线连接, 另一端通过所述多频段馈电探针分别穿过所述
PCB板与所述多频段馈电网络相连接; 所述屏蔽罩与所述 PCB板连接。 但是在以上方案中, 均存在着各频点互相干扰的现象, 并由此造成天线 精度不高的问题。 所以, 如何解决各频点之间互相干扰的现象造成高精度不高的问题, 已 经成为一个卫星接收天线领域必须要解决的技术问题。
发明内容 本发明的目的在于提供一种天线装置及接收***, 以解决各频点之间互 相干扰, 提高了天线的相位稳定度, 提高测量精度。 为了解决以上技术问题, 本发明实施例提供了一种天线装置, 该装置包 括: 反射板, 位于所述反射板上从上至下依次排布的第一频段馈电网络、 基 板、 第一频段辐射面、 第一频段介质层、 第二频段辐射面、 第二频段介质层, 位于所述反射板下的第二频段馈电网络, 低噪声放大电路; 其中, 所述第一频段辐射面通过第一频段馈电探针连接至第一频段馈电网络; 所述第二频段辐射面大于第一频段辐射面, 其位于第二频段介质层上, 通过第二频段馈电探针连接至第二频段馈电网络; 所述第一频段馈电网络和第二频段馈电网络连接所述低噪声放大电路。 作为一个示例, 所述第一频段辐射面设有对称结构组成的微调谐振节, 其数量是第一频段馈电探针的整数倍,且其与第一频段馈电探针呈水平分布。 作为一个示例, 所述第一频段辐射面在基板的下面, 或者在基板的上表 面。
作为一个示例, 所述第二频段辐射面设有对称结构组成的微调谐振节, 其数量是第二频段馈电探针的整数倍,且其与第二频段馈电探针呈水平分布。
作为一个示例, 所述第一频段馈电探针和第二频段馈电探针以所述反射 板的几何中心轴成对称方式均勾分布, 且各个探针之间成 90度分布。 作为一个示例, 所述第一频段馈电探针在所述第二频段辐射面上, 先后 经过第一频段介质层、 第一频段辐射面以及基板与第一频段馈电网络相连, 且所述第一频段馈电探针在物理上与第一频段辐射面不直接相连, 而是通过 耦合方式实现电气性能的连接。
作为一个示例, 所述装置还包括所述第一频段馈电探针和第二频段馈电 探针的多个锁紧探针, 所述锁紧探针成正对称方式均勾分布, 且各个探针之 间成 45度分布。
作为一个示例, 所述顶部屏蔽盖固定设置在基板上, 所述底部屏蔽盖设 置在所述反射板的下面, 所述第一频段馈电网络位于所述基板和所述顶部屏 蔽盖之间, 所述第二频段馈电网络位于所述反射板和底部屏蔽盖之间。
作为一个示例, 所述第一频段馈电网络包括移相网络 、 移相网络^ 移相网络 C及短微带线和长微带线, 其中, 所述长微带线比短微带线长四分 之一波长, 所述移相网络 A的两输入端和移相网络 B的两输入端分别与第一 频段馈电探针相连接, 移相网络 A的输出端通过短微带线与移相网络 C的输 入端口相连, 移相网络 B的输出端通过长微带线与移相网络 C的输入端口相 连。
作为一个示例, 所述第二频段馈电网络包括移相网络0、 移相网络 、 移相网络 F及短微带线和长微带线, 其中, 所述长微带线比短微带线长四分 之一波长, 所述移相网络 D的两输入端和移相网络 E的两输入端分别与第二 频段馈电探针相连接, 移相网络 D的输出端通过短微带线与移相网络 F的输 入端口相连, 移相网络 E的输出端通过长微带线与移相网络 F的输入端口相 连。
作为一个示例, 所述低噪声放大电路包括第一频段第一级带通滤波器、 第一频段低噪声放大器、 第一频段第二级带通滤波器、 第二频段第一级带通 滤波器、 第二频段低噪声放大器、 第二频段第二级带通滤波器、 合路网络、 第一级合路低噪声放大器、 合路输出端口, 其中, 由第一频段馈电网络中的 移相网络 C输出端口输出的第一频段的信号先后经过第一频段第一级带通滤 波器、 第一频段低噪声放大器、 第一频段第二级带通滤波器后达到合路网络; 由第二频段馈电网络中的移相网络 F输出端口输出的第二频段的信号先后经 过第二频段第一级滤波器, 第二频段低噪声放大器, 第二频段第二级带通滤 波器后达到合路网络; 合路网络分别将经过处理后的第一频段信号和第二频 段信号合并后,经过第一级合路低噪声放大器放大后再从合路输出端口输出。 作为一个示例, 所述低噪声放大电路还包括第二级合路低噪声放大器, 连接在所述第一级合路低噪声放大器和合路输出端口之间, 合路网络中合并 后的信号经过所述第一级合路低噪声放大器和第二级合路低噪声放大器放大 后再从合路输出端口输出。
作为一个示例, 所述装置还包括多个集成安装孔, 所述集成安装孔在所 述反射板上均匀分布。
作为一个示例, 所述装置还包括多个射频接头, 所述射频接头分布在所 述反射板的下面。
本发明还提供一种接收***, 包括接收机和天线装置, 其中, 所述天线 装置与所述接收机连接。
与现有技术相比, 本发明提供的一种天线装置采用第一频段从上馈电的 特殊馈电方式, 以及整个装置合理的布局结构, 减小了各频点之间的影响, 极大的提高了天线的相位稳定度, 在拓展了天线带宽的同时, 真正实现了高 精度的要求。
附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是本发明实施例提供的一种天线装置的俯视图;
图 2是本发明实施例提供的一种天线装置的剖面图;
图 3是本发明实施例提供的一种天线装置的仰视图;
图 4是本发明实施例提供的一种第一频段馈电网络的结构图;
图 5是本发明实施例提供的一种第二频段馈电网络的结构图;
图 6是本发明实施例提供的一种放大电路的结构图; 图 Ί是本发明实施例提供的一种接收***的结构图。
具体实施方式 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明 白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此 处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
在本发明的实施例中, 除非另作定义, 此处使用的技术术语或者科学术 语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。 本发明 专利申请说明书以及权利要求书中使用 "一个" 、 "一" 、 "该" 等类似词 语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包含" 等类 似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排除其他元 件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理的或者机 械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 表示的是相对位置关系, 并不表示绝对位置关系, 当被描述对象的绝 对位置改变后, 则该相对位置关系也可能相应地改变。
请参考图 1、 图 2、 图 3、 图 4所示。 本发明实施例提供了一种天线装置, 该天线装置包括:
反射板 1 , 位于反射板 1之上从上到下依次排布的顶部屏蔽盖 11、 第一 频段馈电网络、 基板 4、 第一频段辐射面 8、 第一频段介质层 3、 第二频段辐 射面 9、 第二频段介质层 6; 位于反射板 1下从上到下排布的第二频段馈电网 络、 低噪声放大电路、 底部屏蔽盖 48。 其中, 所述顶部屏蔽盖 11固定设置 在基板 4上, 其尺寸小于第一频段辐射面 8的尺寸; 所述第二频段辐射面 9 大于第一频段辐射面 8; 所述第一频段辐射面 8通过第一频段馈电探针 2连 接至第一频段馈电网络; 所述第二频段辐射面 9通过第二频段馈电探针 7连 接至第二频段馈电网络; 所述第一频段馈电网络和第二频段馈电网络连接低 噪声放大电路。
所述第一频段馈电网络位于基板 4和顶部屏蔽盖 11之间;所述第二频段 馈电网络位于反射板 1和底部屏蔽盖 48之间; 可见, 所述第二频段馈电网络 与所述第一频段馈电网络分别分布在所述反射板的两面上。
所述第一频段馈电探针 2在所述第二频段辐射面 9上, 先后经过第一频 段介质层 3、 第一频段辐射面 8、 基板 4, 然后与第一频段馈电网络相连。 第 一频段馈电探针 2在物理上与第一频段辐射面 8不直接接触, 而是通过耦合 方式实现电气性能的连接。
所述第一频段馈电探针 2和第二频段馈电探针 7的数量为至少一根, 在 本发明实施例中, 以四根为例进行说明。
所述第一频段辐射面 8可以在基板 4的下表面, 此时所述第一频段辐射 面 8在第一频段介质层 3和基板 4之间, 也可以在基板 4上表面, 其尺寸大 于顶部屏蔽盖 11。
所述第一频段辐射面 8的形状为圓形或正方形, 所述第一频段辐射面 8 上有微调谐振节, 所述微调谐振节由对称结构组成, 其数量可以是第一频段 馈电探针 2的整数倍数, 且其与第一频段馈电探针 2呈水平分布。
所述第二频段辐射面 9在第一频段介质层 3下方, 在第二频段介质层 6 上方, 其形状为圓形或正方形; 所述第二频段辐射面 9上有微调谐振节, 谐 振节由对称结构组成, 其数量可以是第二频段四颗馈电探针 7的整数倍数, 且其与第二频段馈电探针 7呈水平分布。
如图 4所示,所述第一频段馈电网络的移相网络 C12的输出端口 13输出 的信号通过连接器 5直接与低噪声放大电路中第一频段第一级带通滤波器 36 相连。
所述第二频段馈电网络的移相网络 F27的输出端口 25输出的信号直接与 放大电路中第二频段第一级带通滤波器 42相连。
所述的第一频段馈电探针 2和第二频段馈电探针 7均为导电良好的金属 探针。 如图 1所示, 第一频段馈电探针 2和第二频段馈电探针 7以反射板 1 的几何中心轴成对称方式均勾分布, 且各个探针之间成 90度分布。 其连接器 5在整个天线的正中央。
如图 1所示, 所述第一频段馈电探针 2和第二频段馈电探针 7的多个锁 紧探针 10成正对称方式均勾分布, 且各个探针之间成 45度分布, 其中四颗 锁紧探针 10可为金属或非金属。
如图 1和图 3所示, 在反射板 1的周围有集成安装孔 46, 其在反射板上 均匀分布, 便于天线与接收机的集成。 如图 2和图 3所示, 在反射板 1的下面有射频接头 47, 便于天线与接收 机的无干扰连接。
如图 1所示, 所述反射板 1为圓形, 也可以为其他规则的几何图形, 如 正方形。
如图 4所示, 第一频段馈电网络包括移相网络 A22、 移相网络 B17、 移 相网络 C12及短微带线 14和长微带线 15, 其中, 所述长微带线 15比短微带 线 14长四分之一波长(相对于第一频段), 所述移相网络 A22的两输入端 16 和移相网络 B17的两输入端 18分别与所述第一频段馈电探针 2相连接,移相 网络 A22的输出端通过短微带线 14与移相网络 C12的输入端口 23相连, 移 相网络 B17的输出端通过长 带线 15与移相网络 C12的输入端口 23相连。
在实际工作中, 所述第一频段馈电探针 2分别与移相网络 A22的两输入 端口 16及移相网络 B17的两输入端口 18相连接后, 将馈电信号分别输入到 移相网络 A22和移相网络 B 17中, 所述移相网络 A22的输出端和移相网络 B17的输出端分别通过短微带线 14和长微带线 15连接至移相网络 C12的输 入端口 23 ,将移相网络 B17和移相网络 A22的输出信号输入到移相网络 C12 中, 然后通过移相网络 C12输出端口 13输出。
此外, 移相网络 A22的匹配端口 20、 移相网络 B17的匹配端口 19、 移 相网络 C12的匹配端口 21分别接匹配负载。
通过第一频段馈电网络不仅轻易的使天线在第一频段实现右旋圓极化, 而且使馈电筒单化, 并且结构筒单。
如图 5所示,第二频段馈电网络的结构与第一频段馈电网格的结构相同, 在此不再详细描述。 第二频段馈电网络包括移相网络 D30、 移相网络 E34、 移相网络 F27及短微带线 28和长微带线 29, 所述第二频段馈电探针 7分别 从移相网络 D30的输入端口 32及移相网络 E34的输入端口 33输入, 从移相 网络 D30和移相网络 E34输出的信号分别接短微带线 28与长微带线 29, 长 微带线 29比短微带线 28长四分之一波长(相对于第二频段), 然后分别与移 相网络 F27的两输入端口 24相连, 最后由移相网络 F27输出端口 25输出, 移相网络 D30匹配端口 31、 移相网络 E34匹配端口 35、 移相网络 F27匹配 端口 26分别接匹配负载。 通过第二频段馈电网络, 使天线在第二频段实现右 旋圓极化。
如图 6所示, 低噪声放大电路包括第一频段第一级带通滤波器 36、 第一 频段低噪声放大器 37、 第一频段第二级带通滤波器 38、 第二频段第一级带通 滤波器 42、 第二频段低噪声放大器 43、 第二频段第二级带通滤波器 44、 合 路网络 39、 第一级合路低噪声放大器 40、 第二级合路低噪声放大器 41 (此 低噪声放大器可要, 也可以不要, 要根据放大倍数的要求而定)、 合路输出端 口 45。 通过合路匹配网络 19, 减少了低噪声放大器的个数, 降低了功耗。 由 移相网络 C12输出端口 13输出的第一频段的信号先后经过第一频段第一级带 通滤波器 36、 第一频段低噪声放大器 37、 第一频段第二级带通滤波器 38、 然后达到合路网络 39。 与此类似, 第二频段馈电网络输出的信号先后经过第 二频段第一级滤波器 42, 第二频段低噪声放大器 43 , 第二频段第二级滤波器 44, 在合路网络 39中与第一频段来的信号合并后, 经过第一级合路低噪声放 大器 40、 第二级合路低噪声放大器 41放大后再从合路输出端口 45输出, 再 通过射频接头 47和接收机相连。
本发明的整体连接流程为: 第一频段的信号经第一频段辐射面 8由四根 所述第一频段馈电探针 2与第一频段馈电网络中移相网络 A22的输入端口 16 和移相网络 B17的输入端口 18相连, 然后经过所述移相网络 C12的两输入 端口 23 , 再到达所述移相网络 C12输出端口 13 , 在所述低噪声放大电路中, 从所述移相网络 C12输出端口 13来的信号经由所述第一频段第一级带通滤波 器 36、 第一频段低噪声放大器 37、 第一频段第二级带通滤波器 38后达到合 路网络 39。 同理, 第二频段的信号经第二频段辐射面 9由四根所述第二频段 馈电探针 7与所述第二频段馈电网络相连后, 信号由所述移相网络 F27的输 出端口 25输出, 然后先后通过第二频段第一级滤波器 42, 第二频段低噪声 放大器 43 , 第二频段第二级带通滤波器 44, 在合路网络 39中与第一频段来 的信号合并后, 经过第一级合路低噪声放大器 40、 第二级合路低噪声放大器 41放大后再从合路输出端口 45输出。 其中第二级合路低噪声放大器 41可根 据产品的实际要求可要, 也可以不要。 如图 7所示, 本发明还提供一种接收***, 包括接收机 200和以上所述 的天线装置 100, 其中, 所述天线装置 100通过射频接头 47和接收机 200相 连。
本发明提供的天线装置, 由于采用第一频段从上馈电的特殊馈电方式, 及整个装置合理的布局结构, 减小了各频点之间的影响, 极大的提高了天线 的相位稳定度, 在拓展了天线带宽的同时, 真正实现了高精度的要求。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当理 解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所进行的改 动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利要求的保护 范围内。

Claims

权 利 要 求 书
1、 一种天线装置, 包括: 反射板, 位于所述反射板上从上至下依次排 布的第一频段馈电网络、 基板、 第一频段辐射面、 第一频段介质层、 第二频 段辐射面、 第二频段介质层, 位于所述反射板下的第二频段馈电网络、 低噪 声放大电路; 其中, 所述第一频段辐射面通过第一频段馈电探针连接至第一频段馈电网络; 所述第二频段辐射面大于第一频段辐射面, 其位于第二频段介质层上, 通过第二频段馈电探针连接至第二频段馈电网络; 所述第一频段馈电网络和第二频段馈电网络连接所述低噪声放大电路。
2、 如权利要求 1所述的装置, 其中, 所述第一频段辐射面设有对称结 构组成的微调谐振节, 其数量是第一频段馈电探针的整数倍, 且其与第一频 段馈电探针呈水平分布。
3、 如权利要求 1所述的装置, 其中, 所述第一频段辐射面在基板的下 面, 或者在基板的上表面。
4、 如权利要求 1所述的装置, 其中, 所述第二频段辐射面设有对称结 构组成的微调谐振节, 其数量是第二频段馈电探针的整数倍, 且其与第二频 段馈电探针呈水平分布。
5、 如权利要求 1所述的装置, 其中, 所述第一频段馈电探针和第二频 段馈电探针以所述反射板的几何中心轴成对称方式均勾分布, 且各个探针之 间成 90度分布。
6、 如权利要求 1所述的装置, 其中, 所述第一频段馈电探针在所述第 二频段辐射面上, 经过第一频段介质层、 第一频段辐射面以及基板与第一频 段馈电网络相连, 且所述第一频段馈电探针通过耦合方式实现电气性能的连 接。
7、 如权利要求 1所述的装置, 其中, 包括所述第一频段馈电探针和第 二频段馈电探的多个锁紧探针, 所述锁紧探针成正对称方式均勾分布, 且各 个探针之间成 45度分布。
8、 如权利要求 1所述的装置, 其中, 所述顶部屏蔽盖固定设置在基板 上, 所述底部屏蔽盖设置在所述反射板的下面, 所述第一频段馈电网络位于 所述基板和所述顶部屏蔽盖之间, 所述第二频段馈电网络位于所述反射板和 底部屏蔽盖之间。
9、 如权利要求 1至 8任一所述的装置, 其中, 所述第一频段馈电网络 包括移相网络 A、 移相网络^ 移相网络 C及短微带线和长微带线, 所述移 相网络 A的两输入端和移相网络 B的两输入端分别与所述第一频段馈电探针 相连接, 移相网络 A的输出端通过短微带线与移相网络 C的输入端口相连, 移相网络 B的输出端通过长微带线与移相网络 C的输入端口相连。
10、 如权利要求 9所述的装置, 其中, 所述第二频段馈电网络包括移相 网络 D、 移相网络 、 移相网络 F及短微带线和长微带线, 其中, 所述长微 带线比短微带线长四分之一波长, 所述移相网络 D的两输入端和移相网络 E 的两输入端分别与所述第二频段馈电探针相连接, 移相网络 D的输出端通过 短微带线与移相网络 F的输入端口相连, 移相网络 E的输出端通过长微带线 与移相网络 F的输入端口相连。
11、 如权利要求 10所述的装置, 其中, 所述低噪声放大电路包括第一 频段第一级带通滤波器、 第一频段低噪声放大器、 第一频段第二级带通滤波 器、 第二频段第一级带通滤波器、 第二频段低噪声放大器、 第二频段第二级 带通滤波器、 合路网络、 第一级合路低噪声放大器、 合路输出端口, 其中, 由第一频段馈电网络中的移相网络 C输出端口输出的第一频段的信号先后经 过第一频段第一级带通滤波器、 第一频段低噪声放大器、 第一频段第二级带 通滤波器后达到合路网络; 由第二频段馈电网络中的移相网络 F输出端口输 出的第二频段的信号先后经过第二频段第一级滤波器, 第二频段低噪声放大 器, 第二频段第二级带通滤波器后达到合路网络; 合路网络分别将经过处理 后的第一频段信号和第二频段信号合并后, 经过第一级合路低噪声放大器放 大后再从合路输出端口输出。
12、 如权利要求 11所述的装置, 其中, 所述低噪声放大电路还包括第 二级合路低噪声放大器, 连接在所述第一级合路低噪声放大器和合路输出端 口之间, 合路网络中合并后的信号经过所述第一级合路低噪声放大器和第二 级合路低噪声放大器放大后再从合路输出端口输出。
13、 如权利要求 1所述的装置, 其中, 包括多个集成安装孔, 所述集成 安装孔在所述反射板上均匀分布。
14、 如权利要求 1所述的装置, 其中, 所述装置还包括多个射频接头, 所述射频接头分布在所述反射板的下面。
15、 一种接收***, 其特征在于, 包括接收机和如权利要求 1至 14所 述的天线装置, 其中, 所述天线装置与所述接收机连接。
PCT/CN2013/085360 2013-09-23 2013-10-17 一种天线装置及接收*** WO2015039368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310443264.X 2013-09-23
CN201310443264.XA CN103474766B (zh) 2013-09-23 2013-09-23 一种天线装置及接收***

Publications (1)

Publication Number Publication Date
WO2015039368A1 true WO2015039368A1 (zh) 2015-03-26

Family

ID=49799516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085360 WO2015039368A1 (zh) 2013-09-23 2013-10-17 一种天线装置及接收***

Country Status (2)

Country Link
CN (1) CN103474766B (zh)
WO (1) WO2015039368A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990668A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
WO2016119728A1 (zh) * 2015-01-30 2016-08-04 深圳光启高等理工研究院 天线、天线***和通信设备
CN105990642A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
CN105990666A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990657A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
WO2016119730A1 (zh) * 2015-01-30 2016-08-04 深圳光启高等理工研究院 天线、天线***和通信设备
CN105990659A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990643A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
WO2016119727A1 (zh) * 2015-01-30 2016-08-04 深圳光启高等理工研究院 天线、天线***和通信设备
CN105990640B (zh) * 2015-01-30 2024-03-15 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990658A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990644B (zh) * 2015-01-30 2024-03-08 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990669A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
CN105990641B (zh) * 2015-01-30 2024-03-15 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990647B (zh) * 2015-01-30 2024-03-08 深圳光启尖端技术有限责任公司 通信天线、天线***和通信设备
CN105990656A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
CN105990671A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 天线、天线***和通信设备
CN106450762B (zh) * 2016-10-19 2023-10-10 厦门致联科技有限公司 一种紧凑的对称馈电网络
CN106571520B (zh) * 2016-11-09 2019-05-03 宁波大学 一种具有滤波功能的天线
CN107959126B (zh) * 2017-12-13 2024-02-27 华诺星空技术股份有限公司 一种用于反无人机被动探测及定位的天线装置
CN109742525B (zh) * 2018-12-31 2021-02-23 瑞声科技(南京)有限公司 一种滤波天线
CN110376612A (zh) * 2019-05-07 2019-10-25 北京国科导通科技有限公司 一种卫星接收机
WO2021022484A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种天线及基站
CN112768917B (zh) * 2020-12-30 2021-10-08 上海海积信息科技股份有限公司 一种定位通信天线
CN114824766B (zh) * 2021-01-19 2023-05-26 大唐移动通信设备有限公司 一种多模式导航天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789538A (zh) * 2009-01-22 2010-07-28 深圳市华信天线技术有限公司 一种多频贴片天线装置
CN201797041U (zh) * 2010-08-05 2011-04-13 广州中海达卫星导航技术股份有限公司 测量型双频微带天线
CN202695718U (zh) * 2012-07-30 2013-01-23 扬州宝军苏北电子有限公司 多馈源多波段宽波束高稳定圆极化微带天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392600B1 (en) * 2001-02-16 2002-05-21 Ems Technologies, Inc. Method and system for increasing RF bandwidth and beamwidth in a compact volume
US7432855B2 (en) * 2004-06-03 2008-10-07 Farrokh Mohamadi RFID reader and active tag
CN1841848B (zh) * 2005-11-14 2011-07-27 广东通宇通讯股份有限公司 一种双频双极化天线
CN2919563Y (zh) * 2006-02-20 2007-07-04 西安海天天线科技股份有限公司 三频宽波束圆极化天线
CN201364958Y (zh) * 2009-01-22 2009-12-16 深圳市华信天线技术有限公司 多频贴片天线装置
CN201364956Y (zh) * 2009-01-22 2009-12-16 深圳市华信天线技术有限公司 多频贴片天线装置
CN201518352U (zh) * 2009-08-26 2010-06-30 国基电子(上海)有限公司 双频天线组合
CN102299409B (zh) * 2011-05-16 2014-04-16 电子科技大学 一种用于IMT-Advanced***的宽带双极化基站天线
CN102709689B (zh) * 2012-06-15 2014-10-22 山东国威卫星通信有限公司 一种ku/ka双频平板天线及其在便携式即时卫星通讯***中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789538A (zh) * 2009-01-22 2010-07-28 深圳市华信天线技术有限公司 一种多频贴片天线装置
CN201797041U (zh) * 2010-08-05 2011-04-13 广州中海达卫星导航技术股份有限公司 测量型双频微带天线
CN202695718U (zh) * 2012-07-30 2013-01-23 扬州宝军苏北电子有限公司 多馈源多波段宽波束高稳定圆极化微带天线

Also Published As

Publication number Publication date
CN103474766B (zh) 2015-11-25
CN103474766A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015039368A1 (zh) 一种天线装置及接收***
Zhong et al. A compact dual-band circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application
CN101789538B (zh) 一种多频贴片天线装置
Liu et al. Compact ultrawideband circularly polarized weakly coupled patch array antenna
US9716312B2 (en) Multiple-input multiple-output ultra-wideband antennas
US9692141B2 (en) Antenna array of inverted-L elements optionally for use as a base station antenna
US9065176B2 (en) Ultra-wideband conformal low-profile four-arm unidirectional traveling-wave antenna with a simple feed
CA2615539C (en) Leaky wave antenna with radiating structure including fractal loops
Son et al. Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver
Ding et al. Achieving wider bandwidth with full-wavelength dipoles for 5G base stations
US11196175B2 (en) Antenna device
JPH1056322A (ja) マイクロストリップ給電円筒形スロット・アンテナ
Li et al. Compact dual-band circularly polarized antenna design for navigation terminals
CN109728429A (zh) 一种具有二倍频谐波抑制的差分馈电双极化滤波天线
WO2019027502A1 (en) TRIPOLAR CURRENT LOOP RADIATION ELEMENT WITH INTEGRATED CIRCULAR POLARIZATION FEEDING
RU2480870C1 (ru) Многодиапазонная антенна круговой поляризации с метаматериалом
CN106486753B (zh) 一种支持多***低剖面高增益的导航天线
US11581649B2 (en) Substrate-type antenna for global navigation satellite system
Oh et al. Compact dual-band printed quadrifilar antennas for UHF RFID/GPS operations
Jeong et al. Compact circularly polarized antenna with a capacitive feed for GPS/GLONASS applications
US20180233809A1 (en) Gnss signal receiving antenna
CN109546304A (zh) 紧凑高增益双极化差分滤波天线
Gafarov et al. Multiband three-layer GNSS microstrip antenna
US11799203B2 (en) Modified-material-based high-precision combined antenna for satellite navigation and communications
CN107230832B (zh) 一种用于双频精确导航天线的新型馈电网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894044

Country of ref document: EP

Kind code of ref document: A1