WO2015037557A1 - 有機性排水の処理装置及び処理方法 - Google Patents

有機性排水の処理装置及び処理方法 Download PDF

Info

Publication number
WO2015037557A1
WO2015037557A1 PCT/JP2014/073649 JP2014073649W WO2015037557A1 WO 2015037557 A1 WO2015037557 A1 WO 2015037557A1 JP 2014073649 W JP2014073649 W JP 2014073649W WO 2015037557 A1 WO2015037557 A1 WO 2015037557A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane separation
membrane
condensed water
organic wastewater
Prior art date
Application number
PCT/JP2014/073649
Other languages
English (en)
French (fr)
Inventor
和也 三木
朋樹 川岸
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201480050088.6A priority Critical patent/CN105555717B/zh
Priority to JP2014546219A priority patent/JP6264296B2/ja
Publication of WO2015037557A1 publication Critical patent/WO2015037557A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2673Evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an organic wastewater treatment apparatus and treatment method.
  • the wastewater to be treated is supplied to the NF membrane module and separated into permeate and non-permeate water, the permeate is supplied to the RO membrane module, and separated into permeate and non-permeate water,
  • a wastewater treatment method is known in which the non-permeate water is supplied to an evaporative concentration apparatus and concentrated.
  • the present invention has been made in view of the above problems, and its object is to effectively remove organic substances, reduce the processing amount of the evaporating and concentrating device, and greatly increase the pure water recovery rate of the entire system.
  • An object of the present invention is to provide an organic wastewater treatment apparatus and treatment method that can be improved.
  • Embodiment 1 of the present invention includes an aerobic tank for aerobically treating organic wastewater under aerobic conditions, a microfiltration or ultrafiltration membrane separation apparatus for solid-liquid separation of treated water in the aerobic tank, A reverse osmosis membrane or nanomembrane separation device for desalting the filtrate of the microfiltration or ultrafiltration membrane separation device, and an evaporation concentration device for further concentrating the concentrated water of the reverse osmosis membrane or nanomembrane separation device.
  • Organic wastewater treatment equipment for aerobically treating organic wastewater under aerobic conditions
  • a microfiltration or ultrafiltration membrane separation apparatus for solid-liquid separation of treated water in the aerobic tank
  • a reverse osmosis membrane or nanomembrane separation device for desalting the filtrate of the microfiltration or ultrafiltration membrane separation device
  • an evaporation concentration device for further concentrating the concentrated water of the reverse osmosis membrane or nanomembrane separation device.
  • Embodiment 2 of the present invention is an organic material according to Embodiment 1, further comprising an ion exchange device for ion exchange of the filtrate before the reverse osmosis membrane or nanomembrane separation device desalinates the filtrate. Wastewater treatment equipment.
  • Embodiment 3 of the present invention is the organic wastewater treatment apparatus according to Embodiment 2, further comprising an alkali addition device that adds alkali to the concentrated water before the evaporative concentration device further concentrates the concentrated water. is there.
  • Embodiment 4 of the present invention is the organic wastewater treatment apparatus according to Embodiment 2, further comprising a condensed water transport member that transports condensed water obtained by condensing the water evaporated from the evaporative concentration apparatus to the aerobic tank. .
  • Embodiment 5 of the present invention before the evaporative concentration apparatus further concentrates the concentrated water, an alkali addition apparatus that adds alkali to the concentrated water, and condensed water obtained by condensing water evaporated from the evaporative concentration apparatus are provided. It is the processing apparatus of the organic waste_water
  • Embodiment 6 of the present invention is the organic wastewater treatment apparatus according to Embodiment 1, further comprising an alkali addition device that adds alkali to the concentrated water before the evaporative concentration device further concentrates the concentrated water. is there.
  • Embodiment 7 of the present invention is the organic wastewater treatment apparatus according to Embodiment 6, further comprising a condensed water transport member that transports condensed water obtained by condensing the water evaporated from the evaporative concentration apparatus to the aerobic tank. .
  • Embodiment 8 of the present invention is the organic wastewater treatment apparatus according to Embodiment 1, further comprising a condensed water transport member that transports condensed water obtained by condensing the water evaporated from the evaporative concentration apparatus to the aerobic tank. is there.
  • an aerobic treatment step in which an organic wastewater is aerobically treated under an aerobic condition in an aerobic tank, and treated water in the aerobic tank is solidified by a microfiltration or ultrafiltration membrane separator.
  • Embodiment 10 of the present invention is the organic wastewater treatment method according to Embodiment 9, further comprising an ion exchange step of ion exchange of the filtrate by an ion exchange device before the desalting treatment step.
  • Embodiment 11 of the present invention is the organic wastewater treatment method according to Embodiment 10, further comprising an alkali addition step of adding alkali to the concentrated water by an alkali addition device before the evaporation and concentration step.
  • Embodiment 12 of the present invention is the organic waste water according to embodiment 10, further comprising a condensed water conveyance step of conveying condensed water obtained by condensing moisture evaporated from the evaporating and concentrating device by the condensed water conveyance member to the aerobic tank. It is a processing method.
  • an alkali addition step of adding alkali to the concentrated water by an alkali addition device, and condensation condensed water evaporated from the evaporation concentration device by a condensed water transport member It is the processing method of the organic waste_water
  • Embodiment 14 of the present invention is the organic wastewater treatment method according to Embodiment 9, further comprising an alkali addition step of adding alkali to the concentrated water by an alkali addition device before the evaporation and concentration step.
  • Embodiment 15 of the present invention is an organic wastewater according to embodiment 14, further comprising a condensed water transporting step of transporting condensed water obtained by condensing water evaporated from the evaporating and concentrating device by a condensed water transporting member to the aerobic tank. It is a processing method.
  • Embodiment 16 of the present invention is an organic wastewater according to embodiment 9, further comprising a condensed water conveyance step of conveying condensed water obtained by condensing moisture evaporated from the evaporating and concentrating device by a condensed water conveying member to the aerobic tank. It is a processing method.
  • Embodiment 17 of the present invention further comprises a chemical washing step for washing the filtration membrane of the membrane separation unit of the microfiltration or ultrafiltration membrane separation device in a state where the solid-liquid separation step is stopped, the chemical washing step A chemical solution injection step of injecting a chemical solution into the membrane separation unit of the microfiltration or ultrafiltration membrane separation device to wash the filtration membrane, and a state in which the chemical solution is injected into the membrane separation unit,
  • a water washing step of injecting into the membrane separation unit of the ultrafiltration membrane separator and washing the filtration membrane with water, and the microfiltration or ultrafiltration membrane separator from the membrane separation unit through the aeration pipe with water after washing Discharged into the membrane separation tank Process and a method of treating organic waste water according to technical solution 9 comprising a.
  • Embodiment 18 of the present invention is the organic wastewater treatment method according to Embodiment 17, wherein the chemical solution is a hypochlorite chemical solution.
  • Embodiment 19 of the present invention is the organic wastewater treatment method according to embodiment 18, wherein the chemical washing step is performed once again, and in the second chemical washing step, the chemical solution is an acidic chemical solution.
  • organic substances can be effectively removed, the processing amount of the evaporative concentration apparatus is reduced, and the pure water recovery rate of the entire system is greatly improved.
  • divalent ion components in the filtrate can be removed, and scaling can be prevented from occurring in the reverse osmosis membrane or nano membrane separation device and the evaporation concentration device.
  • the alkali concentrator and the process can prevent the evaporative concentrator from being corroded by chlorine.
  • the condensed water transport member and the process the heat generated from the evaporative concentration device is supplied to the aerobic tank, the activated sludge in the aerobic tank is activated, and the processing efficiency and the filtration efficiency are improved.
  • Reverse osmosis membrane or nano membrane separation device avoids high concentrations of hypochlorite, acid, active surfactant, etc. from being mixed in the filtrate filtered by the filtration membrane separation device by the water washing process and discharge process Can be adversely affected.
  • coke dry fire extinguishing equipment Coke Dry Quenching / CDQ
  • the coke wastewater contains a lot of refractory organic substances such as humin and toxic substances such as cyan and phenol, so that the biological treatment tank becomes unstable, which is one of the reasons why the RO recovery rate cannot be improved.
  • the biological reaction tank is heated by the high-temperature condensed water generated from the evaporation concentrator, stable biological treatment is possible, and the RO / NF recovery rate can be improved and the subsequent evaporator concentrator can be downsized. .
  • FIG. 1 is a schematic diagram of an organic wastewater treatment apparatus of the present invention.
  • FIG. 2 is a schematic diagram of the aerobic tank and the microfiltration or ultrafiltration membrane separation device of the present invention, and illustrates the hypochlorite chemical solution injection step.
  • FIG. 3 is a schematic diagram of the aerobic tank and the microfiltration or ultrafiltration membrane separation device portion of the present invention, illustrating the stationary process.
  • FIG. 4 is a schematic view of the aerobic tank and the microfiltration or ultrafiltration membrane separation apparatus part of the present invention, illustrating the air diffusion step.
  • FIG. 5 is a schematic view of the aerobic tank and the microfiltration or ultrafiltration membrane separation device of the present invention, illustrating the water washing step.
  • FIG. 1 is a schematic diagram of an organic wastewater treatment apparatus of the present invention.
  • FIG. 2 is a schematic diagram of the aerobic tank and the microfiltration or ultrafiltration membrane separation device of the present invention, and illustrates the hypochlorite chemical solution injection step.
  • FIG. 3 is a schematic diagram of the aerobic tank and the microfiltration or
  • FIG. 6 is a schematic diagram of the aerobic tank and the microfiltration or ultrafiltration membrane separation apparatus portion of the present invention, illustrating the discharge process.
  • FIG. 7 is a schematic diagram of the aerobic tank and the microfiltration or ultrafiltration membrane separation device portion of the present invention, illustrating an acidic chemical solution injection step.
  • the organic wastewater treatment apparatus mainly includes an aerobic tank 4, a microfiltration or ultrafiltration membrane separation device 5, a water softener 6 serving as an ion exchange device, and a reverse osmosis membrane or A nanomembrane separation device 7, an alkali addition device 8, and an evaporation concentration device 9 are provided.
  • Raw water used as organic wastewater is first introduced into the aerobic tank 4.
  • the raw water is subjected to aerobic treatment under aerobic conditions. That is, the aeration tube 41 is provided in the aerobic tank 4, and after introducing air into the aeration tube 41 by the floor B1, the air is diffused in the aeration tube 41, and the aerobic microorganisms in the aerobic tank 4 Decompose organic matter.
  • the microfiltration or ultrafiltration membrane separation device 5 performs solid-liquid separation of the treated water treated in the aerobic tank 4.
  • the microfiltration or ultrafiltration membrane separation device 5 includes a membrane separation tank 51, a diffuser tube 52, and a membrane separation unit 53.
  • the membrane separation unit 53 is provided in the membrane separation tank 51 using a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane).
  • the air diffuser 52 is provided below the membrane separation unit 53.
  • the treated water treated in the aerobic tank 4 is introduced into the membrane separation tank 51.
  • the treated water is separated into solid and liquid by the membrane separation unit 53.
  • air is introduced into the diffuser pipe 52 by the floor B1, diffused in the membrane separation tank 51, and the filtration membrane of the membrane separation unit 53 is vibrated by the flow of the aeration, thereby preventing clogging of the pores of the filtration membrane.
  • the microfiltration membrane (MF membrane) or ultrafiltration membrane (UF membrane) of the membrane separation unit 53 may be any of a flat membrane, a tubular membrane, a hollow fiber membrane, and the like.
  • the filtrate after solid-liquid separation passes through the water softener 6, and the filtrate is ion-exchanged with the water softener 6 to remove divalent ion components such as Ca ions and Mg ions in the filtrate, and reverse osmosis membrane or nano membrane separation. Scaling is prevented from occurring in the apparatus and the evaporative concentration apparatus.
  • the reverse osmosis membrane or nanomembrane separation device 7 desalinates the filtrate, filtrate water tank 71, first-stage reverse osmosis membrane or nanomembrane separation module 72, and second-stage reverse osmosis membrane or nanomembrane.
  • a separation module 73 is provided.
  • the reverse osmosis membrane or nanomembrane separation device 7 may be one-stage processing or two-stage processing.
  • the reverse osmosis membrane or the reverse osmosis membrane (RO membrane) or nanomembrane (NF membrane) of the nanomembrane separation device 7 may be any one of a flat membrane, a tubular membrane, a hollow fiber membrane, a spiral membrane and the like.
  • the ion-exchanged filtrate is introduced into the filtrate water tank 71, it is supplied to the first-stage reverse osmosis membrane or nanomembrane separation module 72 and filtered through the first-stage reverse osmosis membrane or nanomembrane separation module 72.
  • the first-stage treated water is introduced into the second-stage reverse osmosis membrane or nanomembrane separation module 73, and the first-stage concentrated water discharged from the first-stage reverse osmosis membrane or nanomembrane separation module 72 is A part is introduced into the concentrated raw water tank 10, and the other part is mixed into the filtrate and introduced again into the first-stage reverse osmosis membrane or nanomembrane separation module 72.
  • the second-stage treated water filtered by the second-stage reverse osmosis membrane or nano-membrane separation module 73 is recovered and used, and the second-stage concentration from the second-stage reverse osmosis membrane or nano-membrane separation module 73 is recovered.
  • a part of the water is returned to the filtrate water tank 71, and the other part is mixed into the first-stage treated water and introduced again into the second-stage reverse osmosis membrane or nano-membrane separation module 73.
  • the first stage concentrated water in the concentrated raw water tank 10 is introduced into the evaporative concentration apparatus 9.
  • the first stage concentrated water is heated, evaporated under reduced pressure, and further concentrated. Further, the concentrated water is introduced into the concentrated water tank 11 and discarded as industrial waste.
  • Condensed water obtained by condensing water evaporated by the evaporating and concentrating device 9 is conveyed to the aerobic tank 4 by the conveying pipe 12 serving as a condensed water conveying member. Therefore, the heat generated from the evaporating and concentrating device 9 is also supplied to the aerobic tank 4 and the activated sludge in the aerobic tank 4 is activated to improve the processing efficiency and the filtration efficiency.
  • a chemical washing process for washing the filtration membrane of the microfiltration or ultrafiltration membrane separation apparatus of the present invention will be described with reference to FIGS.
  • the chemical washing step is to wash the filtration membrane of the membrane separation unit 53 in a state where the solid-liquid separation with respect to the treated water of the microfiltration or ultrafiltration membrane separation device 5 is stopped.
  • a process, a stationary process, an air diffusion process, a water washing process, a discharge process, an acidic chemical solution injection process, a stationary process, an air diffusion process, a water washing process, and a discharge process are performed.
  • the hypochlorite chemical injection step the hypochlorite chemical is injected into the membrane separation unit 53 of the microfiltration or ultrafiltration membrane separation device 5 to wash the filtration membrane. That is, as shown in FIG. 2, the pump P1 is operated, the filtrate filtered by the membrane separation unit 53 and stored in the water storage tank 12 is introduced into the membrane separation unit 53, and the pump P2 is operated to perform hypochlorite.
  • the hypochlorite chemical stored in the chemical tank 13 is introduced into the membrane separation unit 53, and the filtrate and the hypochlorite chemical are mixed together at location A and introduced together into the membrane separation unit 53. 53 filtration membranes are washed.
  • the hypochlorite chemical may be made by adding NaClO, Ca (ClO) 2 , ClKO or the like to industrial water.
  • the operation of the pump P3 is stopped, and the introduction of the acidic chemical solution stored in the acidic chemical solution tank 14 to the membrane separation unit 53 is stopped.
  • the operation of the floor B1 is stopped, and the introduction of the air into the diffuser pipe 41 in the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51 is stopped. Therefore, the air diffuser of the air diffuser 41, the air diffuser 54, and the air diffuser 52 is stopped.
  • the operation of the pump P4 is stopped, and the derivation of the filtrate from the membrane separation unit 53 is stopped.
  • the microfiltration or ultrafiltration membrane separation device 5 enters a state where the aeration operation is stopped in a state where the hypochlorite chemical solution is injected into the membrane separation unit 53. That is, as shown in FIG. 3, the operations of the pump P1, the pump P2, and the pump P3 are stopped, and the introduction of the filtrate, hypochlorite chemical, and acidic chemical into the membrane separation unit 53 is stopped. At the same time, the operation of the floor B1 is stopped, and the introduction of the air into the diffuser pipe 41 of the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51 is stopped. Therefore, the air diffuser of the air diffuser 41, the air diffuser 54, and the air diffuser 52 is stopped. At the same time, the operation of the pump P4 is stopped, and the derivation of the filtrate from the membrane separation unit 53 is stopped.
  • air diffusion step air is diffused into the microfiltration or ultrafiltration membrane separation device 5. That is, as shown in FIG. 4, the floor B ⁇ b> 1 is operated, and air is introduced into the diffuser pipe 41 in the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51. Therefore, the diffuser 41, the diffuser 54, and the diffuser 52 are diffused.
  • the operations of the pump P1, the pump P2, and the pump P3 are stopped, and the introduction of the filtrate, hypochlorite chemical solution, and acidic chemical solution into the membrane separation unit 53 is stopped.
  • the operation of the pump P4 is stopped, and the derivation of the filtrate from the membrane separation unit 53 is stopped.
  • water is injected into the membrane separation unit 53 of the microfiltration or ultrafiltration membrane separation device 5 to wash the filtration membrane. That is, as shown in FIG. 5, the pump P1 is operated, the filtrate filtered by the membrane separation unit 53 and stored in the water storage tank 12 is introduced into the membrane separation unit 53, and the filtration membrane is washed with water.
  • the floor B1 is operated, and air is introduced into the diffuser pipe 41 in the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51, respectively. Therefore, the diffuser 41, the diffuser 54, and the diffuser 52 are diffused.
  • the operation of the pump P2 and the pump P3 is stopped, and the introduction of the hypochlorite chemical solution and the acidic chemical solution into the membrane separation unit 53 is stopped.
  • the operation of the pump P4 is stopped, and the derivation of the filtrate from the membrane separation unit 53 is stopped.
  • the water after washing returns to the aeration pipe 52 and is discharged to the membrane separation tank 51 of the microfiltration or ultrafiltration membrane separation device 5. That is, as shown in FIG. 6, the pump P ⁇ b> 4 is operated and the water after washing is led out from the membrane separation unit 53.
  • the floor B1 is operated, and air is introduced into the diffuser pipe 41 in the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51, respectively. Therefore, the diffuser 41, the diffuser 54, and the diffuser 52 are diffused.
  • the water and air after the water washing are mixed at the point C, and both are introduced into the diffuser tube 52, and thus the water after the water washing enters the membrane separation tank 51.
  • the operations of the pump P1, the pump P2, and the pump P3 are stopped, and the introduction of the filtrate, hypochlorite chemical solution, and acidic chemical solution into the membrane separation unit 53 is stopped.
  • the acidic chemical solution injection step the acidic chemical solution is injected into the membrane separation unit 53 of the microfiltration or ultrafiltration membrane separation device 5 to wash the filtration membrane.
  • the pump P1 is operated, the filtrate filtered by the membrane separation unit 53 and stored in the water storage tank 12 is introduced into the membrane separation unit 53, and the pump P3 is operated and stored in the acidic chemical liquid tank 14.
  • the acidic chemical solution is introduced into the membrane separation unit 53, the filtrate and the acidic chemical solution are mixed at the B location, and introduced together into the membrane separation unit 53, and the filtration membrane of the membrane separation unit 53 is washed.
  • the acidic chemical solution may be made by adding H 2 SO 4 or the like to industrial water.
  • the operation of the pump P2 is stopped and the introduction of the hypochlorite chemical stored in the hypochlorite chemical tank 13 to the membrane separation unit 53 is stopped.
  • the operation of the floor B1 is stopped, and the introduction of the air into the diffuser pipe 41 in the treatment tank 4 and the diffuser pipe 54 and the diffuser pipe 52 in the membrane separation tank 51 is stopped. Therefore, the air diffuser of the air diffuser 41, the air diffuser 54, and the air diffuser 52 is stopped.
  • the operation of the pump P4 is stopped, and the derivation of the filtrate from the membrane separation unit 53 is stopped. Thereafter, the stationary step, the air diffusion step, the water washing step, and the discharging step are performed once more.
  • the organic wastewater treatment apparatus further includes an oil / water separation tank, a flow rate adjustment tank, and a pressurized flotation device.
  • the raw water is first introduced into the oil / water separation tank. Oil is separated from raw water in an oil-water separation tank. And the raw
  • a flow rate adjustment tank controls the flow rate introduced into the pressurized levitation device of the raw water.
  • the pressurized levitation device floats and removes floating substances containing SiO 2 and Ca in the raw water.
  • the pressure levitation device includes a reaction tank, a pressure levitation tank, and a neutralization tank.
  • raw water is introduced into a reaction tank, and polyaluminum chloride (PAC) and polyacrylamide (PAM) as flocculants are placed in order in the two reaction tanks, and stirred with a stirrer to obtain polyaluminum chloride (PAC), Polyacrylamide (PAM) is sufficiently solubilized in the raw water, and suspended substances aggregate.
  • PAC polyaluminum chloride
  • PAM polyacrylamide
  • air is injected into the raw water by an air injecting device, a large amount of fine bubbles are generated, and the aggregated suspended solids in the raw water are captured by the fine bubbles. Lift using buoyancy. After the suspended matter floats up to the surface of the raw water, the suspended matter is removed from the surface by a scraping device.
  • SiO 2 has a gel shape and a negative charge.
  • PAC polyaluminum chloride
  • SiO 2 aggregates and floats and is removed from the raw water as described above.
  • Ca it elutes in raw
  • Na 2 CO 3 is previously placed in the flow rate adjusting tank, Ca is not dissolved in the raw water, and is agglomerated by the aggregating agent, floated, and removed from the raw water as described above.
  • Raw water from which suspended solids have been removed is introduced into the neutralization tank.
  • H 2 SO 4 is put into the neutralization tank to neutralize the raw water.
  • the raw water whose pH value is adjusted is put into the aerobic tank 4, and the aerobic treatment step, the solid-liquid separation step, the ion exchange step, the desalting treatment step, the alkali addition step, the evaporation concentration step, and the condensed water conveyance are sequentially performed. Perform the process.
  • the raw water amount for treatment is 8 to 10 m 3 / d during operation and 16 m 3 / d at design time.
  • the amount of raw water for treatment is 1 m 3 / d
  • the water area load is 24 m 3 / m 2 / d
  • the residence time is 2.8 h.
  • the injection rate of polyaluminum chloride (PAC) is 500 mg PAC pure fraction / L
  • the polyacrylamide (PAM) injection rate is 3 mg PAM pure fraction / L.
  • the pH value of the reaction tank is 8.5
  • the pH value of the neutralization tank is 7.5.
  • the volumetric load of biochemical oxygen demand is 0.045 kg BOD / m 3 / d.
  • the biochemical oxygen demand (BOD) sludge load is 0.015 kg BOD / kg MLSS / d.
  • the flux of the filtration membrane is 0.18 m 3 / m 2 / d.
  • the amount of raw water for treatment is 1 m 3 / h
  • the amount of treated water is 0.8 m 3 / h
  • the recovery rate is 80% or more.
  • the reverse osmosis membrane or nanomembrane separation module 72 in the first stage of the reverse osmosis membrane or nanomembrane separation device 7 is a contamination-resistant low-pressure spiral RO membrane element (manufactured by Nitto Denko: LFC3-LD-4040).
  • the flux is 0.33 m 3 / m 2 / d.
  • the first-stage reverse osmosis membrane or nanomembrane separation module 72 is 80%
  • the second-stage reverse osmosis membrane or nanomembrane separation module 73 is 88%.
  • the amount of raw water for the treatment is 1.6 to 3.2 m 3 / d, which can be concentrated 8 to 16 times, and the concentrated water that has come out is 0.2 m 3 / d.
  • the evaporating and concentrating device 9 is a vacuum evaporating steam heating type (treatment water amount: 3.2 m 3 / d device structure: open frame type).
  • the organic wastewater treatment apparatus includes the aerobic tank 4, the microfiltration or ultrafiltration membrane separation device 5, the water softener 6 serving as an ion exchange device, the reverse osmosis membrane or the nano-scale.
  • a membrane separation device 7, an alkali addition device 8, an evaporation concentration device 9, and a condensed water transport member are provided.
  • the present invention is not limited to this, and the organic wastewater treatment device is an aerobic tank 4, a microfiltration or ultrafiltration membrane separation device 5, a reverse osmosis membrane or nanomembrane separation device 7, and evaporation concentration.
  • drain may also contain any one or more among these apparatuses, the water softener 6, the alkali addition apparatus 8, and a condensed water conveyance member.
  • the chemical washing process includes the hypochlorite chemical injection process, the stationary process, the air diffusion process, the water washing process, the discharge process, the acidic chemical liquid injection process, the static process, and the air diffusion process.
  • a process, a water washing process, and a discharge process are provided.
  • the present invention is not limited to this, and the chemical washing process may include only a hypochlorite chemical liquid injection process, a stationary process, an air diffusion process, a water washing process, and a discharge process.
  • organic substances can be effectively removed, the processing amount of the evaporative concentration apparatus is reduced, and the pure water recovery rate of the entire system is greatly improved.
  • divalent ion components in the filtrate can be removed, and scaling can be prevented from occurring in the reverse osmosis membrane or nano membrane separation device and the evaporation concentration device.
  • the alkali concentrator and the process can prevent the evaporative concentrator from being corroded by chlorine.
  • the condensed water transport member and the process the heat generated from the evaporative concentration device is supplied to the aerobic tank, the activated sludge in the aerobic tank is activated, and the processing efficiency and the filtration efficiency are improved.
  • Reverse osmosis membrane or nano membrane separation device avoids high concentrations of hypochlorite, acid, active surfactant, etc. from being mixed in the filtrate filtered by the filtration membrane separation device by the water washing process and discharge process Can be adversely affected. Furthermore, in the present invention, the biological reaction tank is heated by the high-temperature condensate generated from the evaporation concentrator, so that stable biological treatment is possible, and the RO / NF recovery rate can be improved and the subsequent evaporator concentrator can be downsized. It becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Activated Sludge Processes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

 本発明は、有機性排水の処理装置及び処理方法を提供し、その処理装置は、有機性排水を好気性条件化で好気処理する好気槽と、前記好気槽における処理水を固液分離する精密ろ過又は限外ろ過膜分離装置と、前記精密ろ過又は限外ろ過膜分離装置のろ液を脱塩処理する逆浸透膜又はナノ膜分離装置と、前記逆浸透膜又はナノ膜分離装置の濃縮水をさらに濃縮する蒸発濃縮装置と、を備える。有効的に有機物を除去でき、蒸発濃縮装置の処理量を低減し、全システムの純水回収率を大幅に向上させる。

Description

有機性排水の処理装置及び処理方法
 本発明は、有機性排水の処理装置及び処理方法に関する。
 本願は、2013年9月11日に、中国に出願された201310413803.5号に基づき優先権を主張し、その内容をここに援用する。
 従来技術では、被処理廃水をNF膜モジュールに供給して、透過水と非透過水とに分離し、その透過水をRO膜モジュールに供給して、透過水と非透過水とに分離し、その非透過水を蒸発濃縮装置に供給して濃縮する廃水処理方法が知られる。
日本特開2007-000789号
 しかしながら、上記の処理方法において、廃水に有機物があると、有効的に有機物を除去できず、NF膜モジュールとRO膜モジュールの純水回収率が低くなり、蒸発濃縮装置の処理量が多くなる。
 本発明は、上記問題点に鑑みてなされるもので、その目的とするところは、有効的に有機物を除去でき、蒸発濃縮装置の処理量を低減し、全システムの純水回収率を大幅に向上させる有機性排水の処理装置及び処理方法を提供することにある。
 本発明の実施形態1は、有機性排水を好気性条件化で好気処理する好気槽と、前記好気槽における処理水を固液分離する精密ろ過又は限外ろ過膜分離装置と、前記精密ろ過又は限外ろ過膜分離装置のろ液を脱塩処理する逆浸透膜又はナノ膜分離装置と、前記逆浸透膜又はナノ膜分離装置の濃縮水をさらに濃縮する蒸発濃縮装置と、を備える有機性排水の処理装置である。
 本発明の実施形態2は、前記逆浸透膜又はナノ膜分離装置が前記ろ液を脱塩処理する前に、前記ろ液をイオン交換するイオン交換装置を更に備える実施形態1に記載の有機性排水の処理装置である。
 本発明の実施形態3は、前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置を更に備える実施形態2に記載の有機性排水の処理装置である。
 本発明の実施形態4は、前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材を更に備える実施形態2に記載の有機性排水の処理装置である。
 本発明の実施形態5は、前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置と、前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材と、を更に備える実施形態2に記載の有機性排水の処理装置である。
 本発明の実施形態6は、前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置を更に備える実施形態1に記載の有機性排水の処理装置である。
 本発明の実施形態7は、前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材を更に備える実施形態6に記載の有機性排水の処理装置である。
 本発明の実施形態8は、前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材とを更に備える実施形態1に記載の有機性排水の処理装置である。
 本発明の実施形態9は、好気槽によって有機性排水を好気性条件化で好気処理する好気処理工程と、精密ろ過又は限外ろ過膜分離装置によって前記好気槽における処理水を固液分離する固液分離工程と、逆浸透膜又はナノ膜分離装置によって前記精密ろ過又は限外ろ過膜分離装置のろ液を脱塩処理する脱塩処理工程と、蒸発濃縮装置によって前記逆浸透膜又はナノ膜分離装置の濃縮液をさらに濃縮する蒸発濃縮工程と、を備える有機性排水の処理方法である。
 本発明の実施形態10は、前記脱塩処理工程の前に、イオン交換装置によって前記ろ液をイオン交換するイオン交換工程を更に備える実施形態9に記載の有機性排水の処理方法である。
 本発明の実施形態11は、前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程を更に備える実施形態10に記載の有機性排水の処理方法である。
 本発明の実施形態12は、凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備える実施形態10に記載の有機性排水の処理方法である。
 本発明の実施形態13は、前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程と、凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程と、を更に備える実施形態10に記載の有機性排水の処理方法である。
 本発明の実施形態14は、前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程を更に備える実施形態9に記載の有機性排水の処理方法である。
 本発明の実施形態15は、凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備える実施形態14に記載の有機性排水の処理方法である。
 本発明の実施形態16は、凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備える実施形態9に記載の有機性排水の処理方法である。
 本発明の実施形態17は、前記固液分離工程が停止する状態で、前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットのろ過膜を洗浄する薬洗工程を更に備え、該薬洗工程は、薬液を前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットに注入して前記ろ過膜を洗浄する薬液注入工程と、前記膜分離ユニットに薬液を注入した状況で、前記精密ろ過又は限外ろ過膜分離装置を散気パイプによる散気が停止する状態となる静置工程と、前記精密ろ過又は限外ろ過膜分離装置に前記散気を行う空散気工程と、水を前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットに注入して前記ろ過膜を水洗する水洗工程と、水洗後の水を前記膜分離ユニットから前記散気パイプを通して前記精密ろ過又は限外ろ過膜分離装置の膜分離槽に排出する排出工程と、を備える技術方案9に記載の有機性排水の処理方法である。
 本発明の実施形態18は、前記薬液は、次亜塩素酸塩薬液である実施形態17に記載の有機性排水の処理方法である。
 本発明の実施形態19は、前記薬洗工程をもう一回行い、第二回の薬洗工程において、前記薬液は、酸性薬液である実施形態18に記載の有機性排水の処理方法である。
 本発明の上記実施形態によって、有効的に有機物を除去でき、蒸発濃縮装置の処理量を低減し、全システムの純水回収率を大幅に向上させる。
 イオン交換装置及び工程によって、ろ液内の二価イオン成分を除去し、逆浸透膜又はナノ膜分離装置及び蒸発濃縮装置内でスケーリングが発生することを防止できる。
 アルカリ添加装置及び工程によって、蒸発濃縮器が塩素腐食することを防止できる。
 凝縮水搬送部材及び工程によって、蒸発濃縮装置から出た熱を好気槽に供給し、好気槽内の活性汚泥を活性化させ、処理効率、濾過効率を向上させる。
 水洗工程及び排出工程によって、次亜塩素酸塩、酸、活性界面剤等のものが高濃度でろ過膜分離装置で濾過したろ液に混入することを回避し、逆浸透膜又はナノ膜分離装置に悪影響を与えることを防止できる。
 特にコークス産業では、コークス乾式消火設備(Coke Dry Quenching/CDQ)の導入促進に伴い、排水処理水質の高度化および排水量ゼロ化の技術が求められている。
 コークス排水中には、フミン等の難分解性有機物やシアン・フェノールといった毒性物質が多く含まれるため生物処理槽が不安定となり、RO回収率を向上できない原因の一つとなっていた。
 本発明では蒸発濃縮装置から発生する高温の凝縮水により生物反応槽を加熱するため、安定した生物処理が可能となり、RO/NF回収率の向上および後段の蒸発濃縮装置の小型化が可能となる。
図1は本発明の有機性排水の処理装置の概要図である。 図2は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、次亜塩素酸塩薬液注入工程を説明する。 図3は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、静置工程を説明する。 図4は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、空散気工程を説明する。 図5は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、水洗工程を説明する。 図6は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、排出工程を説明する。 図7は本発明の好気槽及び精密ろ過又は限外ろ過膜分離装置部分の概要図であり、酸性薬液注入工程を説明する。
 図1~7を参照し、本発明の具体的な実施形態を詳細に説明する。
 図1の示すように、有機性排水の処理装置は、主に、好気槽4と、精密ろ過又は限外ろ過膜分離装置5と、イオン交換装置とする軟水器6と、逆浸透膜又はナノ膜分離装置7と、アルカリ添加装置8と、蒸発濃縮装置9とを備える。
 有機性排水とする原水は、まず好気槽4に導入される。好気槽4では、原水を好気性条件化で好気処理する。つまり、好気槽4で散気管41が設けられ、フロアーB1により、空気を散気管41に導入した後に、散気管41で散気し、好気槽4内の好気性微生物により、原水中の有機物を分解する。
 精密ろ過又は限外ろ過膜分離装置5は、好気槽4で処理した処理水を固液分離する。その精密ろ過又は限外ろ過膜分離装置5は、膜分離槽51、散気管52及び膜分離ユニット53を備える。膜分離ユニット53は、精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)を用い、膜分離槽51に設けられる。散気管52は、膜分離ユニット53の下方に設けられる。
 好気槽4で処理した処理水が膜分離槽51に導入される。膜分離ユニット53により処理水を固液分離する。また、フロアーB1により、空気を散気管52に導入し、膜分離槽51で散気し、散気の流れにより膜分離ユニット53のろ過膜を振動させ、ろ過膜の孔の詰まりを防止する。膜分離ユニット53の精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)は、平膜、管状膜、中空繊維膜等のいずれかでも良い。
 固液分離したろ液は、軟水器6を通り、軟水器6でろ液をイオン交換し、ろ液中のCaイオン、Mgイオン等の二価イオン成分を除去し、逆浸透膜又はナノ膜分離装置及び蒸発濃縮装置内でスケーリングが発生することを防止する。
 逆浸透膜又はナノ膜分離装置7は、ろ液を脱塩処理し、ろ液水槽71と、1段目の逆浸透膜又はナノ膜分離モジュール72と、2段目の逆浸透膜又はナノ膜分離モジュール73を備える。
 逆浸透膜又はナノ膜分離装置7では、1段処理でもいい、2段処理でもいい。逆浸透膜又はナノ膜分離装置7の逆浸透膜(RO膜)又はナノ膜(NF膜)は、平膜、管状膜、中空繊維膜、螺旋状膜等のいずれかでも良い。
 イオン交換したろ液は、ろ液水槽71に導入された後に、1段目の逆浸透膜又はナノ膜分離モジュール72に供給され、1段目の逆浸透膜又はナノ膜分離モジュール72で濾過した1段目の処理水は、2段目の逆浸透膜又はナノ膜分離モジュール73に導入され、1段目の逆浸透膜又はナノ膜分離モジュール72から出た1段目の濃縮水は、その一部が濃縮原水水槽10に導入され、他部がろ液に混入してあらためて1段目の逆浸透膜又はナノ膜分離モジュール72に導入される。2段目の逆浸透膜又はナノ膜分離モジュール73で濾過した2段目の処理水を回収して利用し、2段目の逆浸透膜又はナノ膜分離モジュール73から出た2段目の濃縮水は、その一部がろ液水槽71に戻し、他部が1段目の処理水に混入してあらためて2段目の逆浸透膜又はナノ膜分離モジュール73に導入される。
 1段目の濃縮水は、濃縮原水水槽10に導入される前に、アルカリ添加装置8で1段目の濃縮水にNaOH等のアルカリを添加し、蒸発濃縮装置9が塩素腐食することを防止できる。
 濃縮原水水槽10内の1段目の濃縮水は、蒸発濃縮装置9に導入される。蒸発濃縮装置9では、1段目の濃縮水を加熱し、減圧の状態でそれを蒸発し、さらに濃縮する。さらに濃縮した濃縮水は、濃縮水槽11に導入され、産業廃棄物として廃棄する。
 凝縮水搬送部材とする搬送管12により、蒸発濃縮装置9で蒸発した水分を凝縮した凝縮水を好気槽4へ搬送する。よって、蒸発濃縮装置9から出た熱もそれに連れて好気槽4に供給され、好気槽4内の活性汚泥を活性化させ、処理効率、濾過効率を向上させる。
 そして、図2~7を参考し、本発明の精密ろ過又は限外ろ過膜分離装置のろ過膜を洗浄する薬洗工程を説明する。
 薬洗工程は、精密ろ過又は限外ろ過膜分離装置5の処理水に対する固液分離が停止する状態で、膜分離ユニット53のろ過膜を洗浄するものであり、順に次亜塩素酸塩薬液注入工程、静置工程、空散気工程、水洗工程、排出工程、酸性薬液注入工程、静置工程、空散気工程、水洗工程、排出工程を行う。
 次亜塩素酸塩薬液注入工程では、次亜塩素酸塩薬液を精密ろ過又は限外ろ過膜分離装置5の膜分離ユニット53に注入してろ過膜を洗浄する。
 つまり、図2の示すように、ポンプP1が運転し、膜分離ユニット53で濾過し貯水槽12に貯蔵したろ液を膜分離ユニット53へ導入し、ポンプP2が運転し、次亜塩素酸塩薬液槽13に貯蔵した次亜塩素酸塩薬液を膜分離ユニット53へ導入し、ろ液と次亜塩素酸塩薬液がA箇所で混合して一緒に膜分離ユニット53に導入され、膜分離ユニット53の濾過膜を洗浄する。次亜塩素酸塩薬液は、工業用水にNaClO、Ca(ClO)やClKO等を添加することで作られてもよい。
 同時に、ポンプP3の運転が停止し、酸性薬液槽14に貯蔵した酸性薬液の膜分離ユニット53への導入が停止する。
 同時に、フロアーB1の運転が停止し、空気の処理槽4内の散気管41、膜分離槽51内の散気管54や散気管52への導入が停止する。よって、散気管41、散気管54、散気管52の散気が停止する。
 同時に、ポンプP4の運転が停止し、ろ液の膜分離ユニット53からの導出が停止する。
 静置工程では、膜分離ユニット53に次亜塩素酸塩薬液を注入した状況で、精密ろ過又は限外ろ過膜分離装置5が散気運転が停止する状態となる。
 つまり、図3の示すように、ポンプP1、ポンプP2及びポンプP3の運転が停止し、ろ液、次亜塩素酸塩薬液及び酸性薬液の膜分離ユニット53への導入が停止する。同時に、フロアーB1の運転が停止し、空気の処理槽4の散気管41、膜分離槽51内の散気管54や散気管52への導入が停止する。よって、散気管41、散気管54、散気管52の散気が停止する。同時に、ポンプP4の運転が停止し、ろ液の膜分離ユニット53からの導出が停止する。
 空散気工程では、精密ろ過又は限外ろ過膜分離装置5に散気を行う。
 つまり、図4の示すように、フロアーB1が運転し、空気が処理槽4内の散気管41、膜分離槽51内の散気管54や散気管52へそれぞれ導入される。よって、散気管41、散気管54及び散気管52が散気する。
 同時に、ポンプP1、ポンプP2及びポンプP3の運転が停止し、ろ液、次亜塩素酸塩薬液及び酸性薬液の膜分離ユニット53への導入が停止する。同時に、ポンプP4の運転が停止し、ろ液の膜分離ユニット53からの導出が停止する。
 水洗工程では、水を精密ろ過又は限外ろ過膜分離装置5の膜分離ユニット53に注入してろ過膜を水洗する。
 つまり、図5の示すように、ポンプP1が運転し、膜分離ユニット53で濾過し貯水槽12に貯蔵したろ液が膜分離ユニット53に導入され、濾過膜を水洗する。フロアーB1が運転し、空気が処理槽4内の散気管41、膜分離槽51内の散気管54や散気管52へそれぞれ導入される。よって、散気管41、散気管54及び散気管52が散気する。
 同時に、ポンプP2及びポンプP3の運転が停止し、次亜塩素酸塩薬液及び酸性薬液の膜分離ユニット53への導入が停止する。
 同時に、ポンプP4の運転が停止し、ろ液の膜分離ユニット53からの導出が停止する。
 排出工程では、水洗後の水が散気パイプ52に戻して精密ろ過又は限外ろ過膜分離装置5の膜分離槽51に排出される。
 つまり、図6の示すように、ポンプP4が運転し、水洗後の水が膜分離ユニット53から導出される。フロアーB1が運転し、空気が処理槽4内の散気管41、膜分離槽51内の散気管54や散気管52へそれぞれ導入される。よって、散気管41、散気管54及び散気管52が散気する。また、水洗後の水と空気がC箇所で混合し、共に散気管52に導入され、よって、水洗後の水が膜分離槽51に入る。
 同時に、ポンプP1、ポンプP2及びポンプP3の運転が停止し、ろ液、次亜塩素酸塩薬液及び酸性薬液の膜分離ユニット53への導入が停止する。
 酸性薬液注入工程では、酸性薬液を精密ろ過又は限外ろ過膜分離装置5の膜分離ユニット53に注入してろ過膜を洗浄する。
 図7の示すように、ポンプP1が運転し、膜分離ユニット53で濾過し貯水槽12に貯蔵したろ液を膜分離ユニット53へ導入し、ポンプP3が運転し、酸性薬液槽14に貯蔵した酸性薬液を膜分離ユニット53へ導入し、ろ液と酸性薬液がB箇所で混合して共に膜分離ユニット53に導入され、膜分離ユニット53の濾過膜を洗浄する。酸性薬液は、工業用水にHSO等を添加することで作られても良い。
 同時に、ポンプP2の運転が停止し、次亜塩素酸塩薬液槽13に貯蔵した次亜塩素酸塩薬液の膜分離ユニット53への導入が停止する。
 同時に、フロアーB1の運転が停止し、空気の処理槽4内の散気管41、膜分離槽51内の散気管54や散気管52への導入が停止する。よって、散気管41、散気管54、散気管52の散気が停止する。
 同時に、ポンプP4の運転が停止し、ろ液の膜分離ユニット53からの導出が停止する。
 その後、前記の静置工程、空散気工程、水洗工程及び排出工程をもう一回に行う。
 前記の薬洗工程によって、濾過膜の表面の有機物を除去でき、且つ次亜塩素酸塩、酸等のものが高濃度でろ過膜分離装置で濾過したろ液に混入することを回避し、逆浸透膜又はナノ膜分離装置に悪影響を与えることを防止できる。
 有機性排水の処理装置が油水分離槽、流量調整槽及び加圧浮上装置をさらに含むのが好ましい。
 原水は、まず油水分離槽に導入される。油水分離槽で、油を原水から分離する。
 そして、油を分離した原水を流量調整槽に導入する。流量調整槽により、原水の加圧浮上装置へ導入する流量を制御する。
 加圧浮上装置は、原水内のSiO及びCaを含む浮遊物質を浮上させて除去する。加圧浮上装置は、反応槽、加圧浮上槽及び中和槽を含む。
 まず、原水は、反応槽に導入され、二つの反応槽に凝集剤とするポリ塩化アルミニウム(PAC)、ポリアクリルアミド(PAM)を順に入れ、攪拌器により攪拌して、ポリ塩化アルミニウム(PAC)、ポリアクリルアミド(PAM)が充分に原水に溶化して、浮遊物質が凝集する。
 そして、加圧浮上槽において、空気注入装置により、空気を原水に注入し、微細な気泡を大量に発生させ、微細な気泡により原水中の凝集した浮遊物質を捕えさせた後、微細な気泡の浮力を利用して浮上させる。浮遊物質が原水の水面に浮上した後、掻き取り装置により、浮遊物質を水面から取り除く。
 また、SiOについては、ゲル状をなし、負電荷を持つ。ポリ塩化アルミニウム(PAC)を入れた際に、SiOが凝集し、浮上し、前記のように原水から取り除かれる。
 Caについては、反応槽とするコンクリート水槽から原水に溶出する。Caを除去するために、予めに流量調整槽にNaCOを入れ、Caを原水に溶化させず、そして前記の凝集剤により凝集させ、浮上させ、前記のように原水から取り除かれる。
 浮遊物質を取り除いた原水が中和槽に導入される。中和槽にHSOを入れ、原水を中和させる。
 その後、pH値が調整された原水を好気槽4に入れ、順に前記の好気処理工程、固液分離工程、イオン交換工程、脱塩処理工程、アルカリ添加工程、蒸発濃縮工程及び凝縮水搬送工程を行う。
 実施例によって具体的に本発明をさらに説明する。
 有機性排水の処理装置の稼働状況については、処理の原水量が運転時8~10m/dであり、設計時16m/dである。
 加圧浮上装置の運転条件については、処理の原水量が1m/dであり、水面積負荷が24m/m/dであり、滞留時間が2.8hである。ポリ塩化アルミニウム(PAC)の注入率が500mgPAC純分/Lであり、ポリアクリルアミド(PAM)の注入率が3mgPAM純分/Lである。反応槽のpH値が8.5であり、中和槽のpH値が7.5である。
 精密ろ過又は限外ろ過膜分離装置5の運転条件については、生物化学的酸素要求量(BOD)の容積負荷が0.045kgBOD/m/dである。生物化学的酸素要求量(BOD)の汚泥負荷が0.015kgBOD/kgMLSS/dである。濾過膜の膜面積が10m/e×5e=50mである。濾過膜のフラックスが0.18m/m/dである。
 逆浸透膜又はナノ膜分離装置7の運転条件については、処理の原水量が1m/hであり、処理した処理水量が0.8m/hであり、その回収率が80%以上である。逆浸透膜又はナノ膜分離装置7の1段目の逆浸透膜又はナノ膜分離モジュール72は、耐汚染低圧スパイラル型RO膜エレメント(日東電工製:LFC3-LD-4040)であり、濾過膜の膜面積が7.43m/本×9本=67mであり、フラックスが0.33m/m/dである。
 逆浸透膜又はナノ膜分離装置7の2段目の逆浸透膜又はナノ膜分離モジュール73は、超低圧RO膜エレメント(日東電工製:ESPA2-4040)であり、濾過膜の膜面積が7.9m/本×6本=47mであり、フラックスが0.41m/m/dである。
 回収率については、1段目の逆浸透膜又はナノ膜分離モジュール72が80%であり、2段目の逆浸透膜又はナノ膜分離モジュール73が88%である。
 蒸発濃縮装置9の運転条件については、処理の原水量が1.6~3.2m/dであり、8~16倍濃縮でき、出た濃縮水が0.2m/dである。蒸発濃縮装置9が真空蒸発蒸気加熱型(処理水量:3.2m/d 装置構造:オープンフレーム型)である。
 以上によって、本発明の最良の実施形態を説明したが、本発明が上記実施の形態に限定されない。具体的な構造について、本発明の趣旨に逸しない範囲に、適当に変えてもいい、上記の実施形態を任意に組み合わせてもいい。
 例えば、前記の実施形態においては、有機性排水の処理装置は、好気槽4と、精密ろ過又は限外ろ過膜分離装置5と、イオン交換装置とする軟水器6と、逆浸透膜又はナノ膜分離装置7と、アルカリ添加装置8と、蒸発濃縮装置9と、凝縮水搬送部材とを備える。但し、本発明は、これに限定されず、有機性排水の処理装置が好気槽4と、精密ろ過又は限外ろ過膜分離装置5と、逆浸透膜又はナノ膜分離装置7と、蒸発濃縮装置9とを備えれば、本発明の主な目的を実現できる。
 また、有機性排水の処理装置がこれらの装置と、軟水器6、アルカリ添加装置8及び凝縮水搬送部材うちのいずれか一つ以上を含んでも良い。
 例えば、前記の実施形態においては、薬洗工程は、次亜塩素酸塩薬液注入工程、静置工程、空散気工程、水洗工程、排出工程、酸性薬液注入工程、静置工程、空散気工程、水洗工程及び排出工程を備える。但し、本発明は、これに限定されず、薬洗工程が次亜塩素酸塩薬液注入工程、静置工程、空散気工程、水洗工程及び排出工程だけを備えることも良い。
 本発明の上記実施形態によって、有効的に有機物を除去でき、蒸発濃縮装置の処理量を低減し、全システムの純水回収率を大幅に向上させる。イオン交換装置及び工程によって、ろ液内の二価イオン成分を除去し、逆浸透膜又はナノ膜分離装置及び蒸発濃縮装置内でスケーリングが発生することを防止できる。アルカリ添加装置及び工程によって、蒸発濃縮器が塩素腐食することを防止できる。凝縮水搬送部材及び工程によって、蒸発濃縮装置から出た熱を好気槽に供給し、好気槽内の活性汚泥を活性化させ、処理効率、濾過効率を向上させる。水洗工程及び排出工程によって、次亜塩素酸塩、酸、活性界面剤等のものが高濃度でろ過膜分離装置で濾過したろ液に混入することを回避し、逆浸透膜又はナノ膜分離装置に悪影響を与えることを防止できる。
 さらに、本発明では蒸発濃縮装置から発生する高温の凝縮水により生物反応槽を加熱するため、安定した生物処理が可能となり、RO/NF回収率の向上および後段の蒸発濃縮装置の小型化が可能となる。
 4 好気槽
 5 精密ろ過又は限外ろ過膜分離装置
 6 軟水器
 7 逆浸透膜又はナノ膜分離装置
 8 アルカリ添加装置
 9 蒸発濃縮装置
 10 濃縮原水水槽
 11 濃縮水槽
 12 搬送管

Claims (19)

  1.  有機性排水を好気性条件化で好気処理する好気槽と、
     前記好気槽における処理水を固液分離する精密ろ過又は限外ろ過膜分離装置と、
     前記精密ろ過又は限外ろ過膜分離装置のろ液を脱塩処理する逆浸透膜又はナノ膜分離装置と、
     前記逆浸透膜又はナノ膜分離装置の濃縮水をさらに濃縮する蒸発濃縮装置と、を備えることを特徴とする有機性排水の処理装置。
  2.  前記逆浸透膜又はナノ膜分離装置が前記ろ液を脱塩処理する前に、前記ろ液をイオン交換するイオン交換装置を更に備えることを特徴とする請求項1に記載の有機性排水の処理装置。
  3.  前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置を更に備えることを特徴とする請求項2に記載の有機性排水の処理装置。
  4.  前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材を更に備えることを特徴とする請求項2に記載の有機性排水の処理装置。
  5.  前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置と、前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材と、を更に備えることを特徴とする請求項2に記載の有機性排水の処理装置。
  6.  前記蒸発濃縮装置が前記濃縮水を更に濃縮する前に、前記濃縮水にアルカリを添加するアルカリ添加装置を更に備えることを特徴とする請求項1に記載の有機性排水の処理装置。
  7.  前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材を更に備えることを特徴とする請求項6に記載の有機性排水の処理装置。
  8.  前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送部材とを更に備えることを特徴とする請求項1に記載の有機性排水の処理装置。
  9.  好気槽によって有機性排水を好気性条件化で好気処理する好気処理工程と、
     精密ろ過又は限外ろ過膜分離装置によって前記好気槽における処理水を固液分離する固液分離工程と、
     逆浸透膜又はナノ膜分離装置によって前記精密ろ過又は限外ろ過膜分離装置のろ液を脱塩処理する脱塩処理工程と、
     蒸発濃縮装置によって前記逆浸透膜又はナノ膜分離装置の濃縮液をさらに濃縮する蒸発濃縮工程と、を備えることを特徴とする有機性排水の処理方法。
  10.  前記脱塩処理工程の前に、イオン交換装置によって前記ろ液をイオン交換するイオン交換工程を更に備えることを特徴とする請求項9に記載の有機性排水の処理方法。 
  11.  前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程を更に備えることを特徴とする請求項10に記載の有機性排水の処理方法。 
  12.  凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備えることを特徴とする請求項10に記載の有機性排水の処理方法。 
  13.  前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程と、凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程と、を更に備えることを特徴とする請求項10に記載の有機性排水の処理方法。 
  14.  前記蒸発濃縮工程の前に、アルカリ添加装置によって前記濃縮水にアルカリを添加するアルカリ添加工程を更に備えることを特徴とする請求項9に記載の有機性排水の処理方法。 
  15.  凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備えることを特徴とする請求項14に記載の有機性排水の処理方法。 
  16.  凝縮水搬送部材によって前記蒸発濃縮装置より蒸発した水分を凝縮した凝縮水を前記好気槽へ搬送する凝縮水搬送工程を更に備えることを特徴とする請求項9に記載の有機性排水の処理方法。 
  17.  前記固液分離工程が停止する状態で、前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットのろ過膜を洗浄する薬洗工程を更に備え、該薬洗工程は、薬液を前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットに注入して前記ろ過膜を洗浄する薬液注入工程と、
     前記膜分離ユニットに薬液を注入した状況で、前記精密ろ過又は限外ろ過膜分離装置を散気パイプによる散気が停止する状態となる静置工程と、
     前記精密ろ過又は限外ろ過膜分離装置に前記散気を行う空散気工程と、
     水を前記精密ろ過又は限外ろ過膜分離装置の膜分離ユニットに注入して前記ろ過膜を水洗する水洗工程と、
     水洗後の水を前記膜分離ユニットから前記散気パイプを通して前記精密ろ過又は限外ろ過膜分離装置の膜分離槽に排出する排出工程と、を備えることを特徴とする請求項9に記載の有機性排水の処理方法。
  18.  前記薬液は、次亜塩素酸塩薬液であることを特徴とする請求項17に記載の有機性排水の処理方法。 
  19.  前記薬洗工程をもう一回行い、第二回の薬洗工程において、前記薬液は、酸性薬液であることを特徴とする請求項18に記載の有機性排水の処理方法。
PCT/JP2014/073649 2013-09-11 2014-09-08 有機性排水の処理装置及び処理方法 WO2015037557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480050088.6A CN105555717B (zh) 2013-09-11 2014-09-08 有机污水的处理装置以及处理方法
JP2014546219A JP6264296B2 (ja) 2013-09-11 2014-09-08 有機性排水の処理装置及び処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310413803.5 2013-09-11
CN201310413803.5A CN104418472A (zh) 2013-09-11 2013-09-11 含有机物污水的处理装置以及处理方法

Publications (1)

Publication Number Publication Date
WO2015037557A1 true WO2015037557A1 (ja) 2015-03-19

Family

ID=52665662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073649 WO2015037557A1 (ja) 2013-09-11 2014-09-08 有機性排水の処理装置及び処理方法

Country Status (3)

Country Link
JP (1) JP6264296B2 (ja)
CN (2) CN104418472A (ja)
WO (1) WO2015037557A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675500A (zh) * 2018-05-31 2018-10-19 芜湖裕优机械科技有限公司 一种可以具备清洗过滤膜功能的污水处理罐及其清洗方法
CN110028201A (zh) * 2019-05-08 2019-07-19 杭州齐创环境工程有限公司 一种废乳化液资源化利用处理***及工艺
CN111807394A (zh) * 2020-07-24 2020-10-23 沈阳工业大学 一种拜耳法母液脱除有机物的方法
WO2021117309A1 (ja) * 2019-12-13 2021-06-17 株式会社 東芝 水処理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106565044A (zh) * 2015-10-08 2017-04-19 新世膜科技股份有限公司 制革浓缩废水的回收处理***
CN105293805A (zh) * 2015-11-11 2016-02-03 光大环保技术研究院(深圳)有限公司 一种高盐分高硬度废水零排放的处理装置及方法
CN107344800A (zh) * 2017-08-22 2017-11-14 贵阳台农种养殖有限公司 一种养殖污水处理***
KR101948185B1 (ko) * 2018-10-08 2019-02-14 (주)이앤씨 Ed 시스템 및 진공감압증발건조 무방류 시스템을 이용한 역삼투막 농축수 처리 방법
CN113800557A (zh) * 2021-09-27 2021-12-17 上海安赐环保科技股份有限公司 一种硫酸法钛白粉煅烧晶种制备的水回用***及方法
CN113880339B (zh) * 2021-10-09 2024-01-16 福建省环境保护设计院有限公司 一种高盐度工业废水深度处理回用工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966398A (ja) * 1982-10-04 1984-04-14 Ebara Infilco Co Ltd 有機性廃液の処理方法
JPS61204081A (ja) * 1985-03-07 1986-09-10 Kurita Water Ind Ltd し尿系汚水の処理方法
JPS6397298A (ja) * 1986-10-13 1988-04-27 Kubota Ltd し尿処理方法
JPH03123698A (ja) * 1989-10-06 1991-05-27 Ebara Infilco Co Ltd し尿系汚水の処理方法
JPH03131394A (ja) * 1989-10-18 1991-06-04 Ebara Infilco Co Ltd ごみとし尿系汚水の併合処理方法
JPH10323664A (ja) * 1997-05-27 1998-12-08 Hitachi Zosen Corp 排水回収処理装置
JP2001070989A (ja) * 1999-09-07 2001-03-21 Ebara Corp 高濃度の塩類を含有する有機性廃水の処理方法及びその装置
JP2006204977A (ja) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法及び処理装置
JP2007000789A (ja) * 2005-06-24 2007-01-11 Sasakura Engineering Co Ltd 廃水の濃縮処理方法及びその装置
JP2012170894A (ja) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd 膜分離処理装置および該装置の運転方法
JP2012192367A (ja) * 2011-03-17 2012-10-11 Kurita Water Ind Ltd 窒素を含有する有機物性排水の処理装置
JP2013075269A (ja) * 2011-09-30 2013-04-25 Nippon Rensui Co Ltd 有機物含有廃水処理システムおよび有機物含有廃水の処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757089B2 (ja) * 2011-01-05 2015-07-29 栗田工業株式会社 有機物含有水の処理方法及び処理装置
AU2012248472A1 (en) * 2011-04-25 2013-11-14 Toray Industries, Inc. Method for cleaning membrane module
JP5879901B2 (ja) * 2011-10-13 2016-03-08 栗田工業株式会社 有機排水の回収処理装置及び回収処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966398A (ja) * 1982-10-04 1984-04-14 Ebara Infilco Co Ltd 有機性廃液の処理方法
JPS61204081A (ja) * 1985-03-07 1986-09-10 Kurita Water Ind Ltd し尿系汚水の処理方法
JPS6397298A (ja) * 1986-10-13 1988-04-27 Kubota Ltd し尿処理方法
JPH03123698A (ja) * 1989-10-06 1991-05-27 Ebara Infilco Co Ltd し尿系汚水の処理方法
JPH03131394A (ja) * 1989-10-18 1991-06-04 Ebara Infilco Co Ltd ごみとし尿系汚水の併合処理方法
JPH10323664A (ja) * 1997-05-27 1998-12-08 Hitachi Zosen Corp 排水回収処理装置
JP2001070989A (ja) * 1999-09-07 2001-03-21 Ebara Corp 高濃度の塩類を含有する有機性廃水の処理方法及びその装置
JP2006204977A (ja) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法及び処理装置
JP2007000789A (ja) * 2005-06-24 2007-01-11 Sasakura Engineering Co Ltd 廃水の濃縮処理方法及びその装置
JP2012170894A (ja) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd 膜分離処理装置および該装置の運転方法
JP2012192367A (ja) * 2011-03-17 2012-10-11 Kurita Water Ind Ltd 窒素を含有する有機物性排水の処理装置
JP2013075269A (ja) * 2011-09-30 2013-04-25 Nippon Rensui Co Ltd 有機物含有廃水処理システムおよび有機物含有廃水の処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675500A (zh) * 2018-05-31 2018-10-19 芜湖裕优机械科技有限公司 一种可以具备清洗过滤膜功能的污水处理罐及其清洗方法
CN110028201A (zh) * 2019-05-08 2019-07-19 杭州齐创环境工程有限公司 一种废乳化液资源化利用处理***及工艺
WO2021117309A1 (ja) * 2019-12-13 2021-06-17 株式会社 東芝 水処理装置
JPWO2021117309A1 (ja) * 2019-12-13 2021-06-17
JP7350886B2 (ja) 2019-12-13 2023-09-26 株式会社東芝 水処理装置
CN111807394A (zh) * 2020-07-24 2020-10-23 沈阳工业大学 一种拜耳法母液脱除有机物的方法
CN111807394B (zh) * 2020-07-24 2022-10-28 沈阳工业大学 一种拜耳法母液脱除有机物的方法

Also Published As

Publication number Publication date
CN104418472A (zh) 2015-03-18
JP6264296B2 (ja) 2018-01-24
JPWO2015037557A1 (ja) 2017-03-02
CN105555717A (zh) 2016-05-04
CN105555717B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
JP6264296B2 (ja) 有機性排水の処理装置及び処理方法
JP5497962B1 (ja) 廃水処理装置
US20070068871A1 (en) Low water recovery rate desalination system and method
US10703660B2 (en) Method and system for treatment of organic contaminants by coupling Fenton reaction with membrane filtration
CN106132518B (zh) 使用膜的水处理方法以及水处理装置
KR101916557B1 (ko) 순수 제조 장치 및 순수 제조 방법
CN104058550A (zh) 水处理方法及水处理***
CN111362283A (zh) 一种黏胶废水资源化处理方法
WO2019038847A1 (ja) 水処理膜の洗浄装置及び洗浄方法
CN109437455B (zh) 二沉池出水中水回用的处理设备和方法
CN112679020B (zh) 一种低成本页岩气压裂返排液处理***及处理方法
WO2011136043A1 (ja) 廃水処理装置および廃水処理方法
JPS6359389A (ja) 染色排水の処理方法
JP5105608B2 (ja) 廃水処理システムおよびその運転方法
WO2016136957A1 (ja) 有機物含有水の処理方法および有機物含有水処理装置
JP2010046562A (ja) 資源回収型水処理方法及び資源回収型水処理システム
JP5106182B2 (ja) 水処理方法および水処理装置
JP3552580B2 (ja) し尿系汚水の処理方法および処理装置
KR20230088599A (ko) 반도체 폐수의 재이용 처리수 생산 시스템 및 그 방법
WO2014087991A1 (ja) 有機性汚水の処理方法および処理装置
KR20200087397A (ko) 산화전처리를 이용한 폐수처리시스템
JP3266915B2 (ja) 排水処理方法
CN111847742A (zh) 工业废水处理***及其应用
CN212713109U (zh) 一种精细化工废水的处理***
JP7120095B2 (ja) 水処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050088.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014546219

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844596

Country of ref document: EP

Kind code of ref document: A1