WO2015037362A1 - ワイヤレス受電装置、その制御回路および制御方法 - Google Patents

ワイヤレス受電装置、その制御回路および制御方法 Download PDF

Info

Publication number
WO2015037362A1
WO2015037362A1 PCT/JP2014/070352 JP2014070352W WO2015037362A1 WO 2015037362 A1 WO2015037362 A1 WO 2015037362A1 JP 2014070352 W JP2014070352 W JP 2014070352W WO 2015037362 A1 WO2015037362 A1 WO 2015037362A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
control
charging
wireless power
error
Prior art date
Application number
PCT/JP2014/070352
Other languages
English (en)
French (fr)
Inventor
大介 内本
竜也 岩崎
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to KR1020167009257A priority Critical patent/KR101976909B1/ko
Priority to CN201480042410.0A priority patent/CN105409086B/zh
Publication of WO2015037362A1 publication Critical patent/WO2015037362A1/ja
Priority to US15/067,594 priority patent/US10199866B2/en
Priority to US16/223,856 priority patent/US20190123582A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to wireless power feeding technology.
  • contactless power transmission also referred to as non-contact power feeding or wireless power feeding
  • WPC Wireless Power Consortium
  • Qi international standard
  • FIG. 1 is a diagram showing a configuration of a wireless power feeding system 100 compliant with the Qi standard.
  • the power feeding system 100 includes a power transmission device 200 (TX, Power Transmitter) and a power receiving device 300 (RX, Power Receiver).
  • the power receiving device 300 is mounted on an electronic device such as a mobile phone terminal, a smart phone, an audio player, a game device, or a tablet terminal.
  • the power transmission device 200 includes a transmission coil (primary coil) 202, a driver 204, a controller 206, and a demodulator 208.
  • the driver 204 includes an H-bridge circuit (full-bridge circuit) or a half-bridge circuit, and applies a drive signal S 1, specifically a pulse signal, to the transmission coil 202.
  • An electromagnetic field power signal S2 is generated.
  • the controller 206 controls the power transmission apparatus 200 as a whole. Specifically, the controller 206 changes the transmission power by controlling the switching frequency of the driver 204 or the switching duty ratio.
  • a communication protocol is defined between the power transmission device 200 and the power reception device 300, and information can be transmitted from the power reception device 300 to the power transmission device 200 using the control signal S3.
  • This control signal S3 is transmitted from the reception coil 302 (secondary coil) to the transmission coil 202 in the form of AM (Amplitude Modulation) modulation using backscatter modulation.
  • the control signal S3 includes, for example, power control data (also referred to as a packet) for instructing the amount of power supplied to the power receiving apparatus 300, data indicating unique information of the power receiving apparatus 300, and the like.
  • the demodulator 208 demodulates the control signal S3 included in the current or voltage of the transmission coil 202.
  • the controller 206 controls the driver 204 based on the power control data included in the demodulated control signal S3.
  • the power receiving apparatus 300 includes a receiving coil 302, a rectifier circuit 304, a capacitor 306, a modulator 308, a secondary battery 310, a controller 312, and a charging circuit 314.
  • the reception coil 302 receives the power signal S ⁇ b> 2 from the transmission coil 202 and transmits a control signal S ⁇ b> 3 to the transmission coil 202.
  • the rectifier circuit 304 and the capacitor 306 rectify and smooth the current S4 induced in the receiving coil 302 in accordance with the power signal S2, and convert it into a DC voltage.
  • the charging circuit 314 charges the secondary battery 310 using the power supplied from the power transmission device 200.
  • the controller 312 monitors the power supply amount received by the power receiving apparatus 300, and generates power control data (control error value) instructing the power supply amount accordingly.
  • the modulator 308 modulates the control signal S3 including the power control data and modulates the coil current of the reception coil 302, thereby modulating the coil current and the coil voltage of the transmission coil 202.
  • FIG. 2 is a flowchart showing an operation sequence of the power feeding system 100.
  • the state of the power transmission device 200 is large, and is divided into a selection phase (Selection Phase) ⁇ 1, a power transmission (Power Phase) ⁇ 2, and an authentication / setting phase (Identification & Configuration phase) ⁇ 3.
  • the power transmission device 200 starts power transmission to the power reception device 300 (RX) (S100).
  • a control signal S3 indicating the current power transmission state from the power receiving device RX is fed back to the power transmitting device TX (S102).
  • the power transmission device TX adjusts the amount of power transmission based on the control signal S3 (S104).
  • the power transmission device TX transmits a control signal S3 indicating the completion of charging from the power reception device RX (S106), or that the power reception device RX has been removed from the power supply range of the power transmission device TX based on a communication timeout error.
  • the power transmission device TX stops power transmission and enters the selection phase ⁇ 1.
  • the power transmission device TX transmits a power signal S2 at predetermined time intervals (Object detection detection interval, for example, 500 msec), and confirms the presence or absence of the power reception device RX (S200). This is called an analog pin phase (Analog Ping Phase).
  • the process proceeds to the authentication / setting phase ⁇ 3, and the digital pin phase (Digital Ping Phase) is executed (S204).
  • the power transmitting apparatus TX receives the individual information of the power receiving apparatus RX (S206).
  • information on power transmission conditions is transmitted from the power receiving device RX to the power transmitting device TX (S208), and the process proceeds to the power transmission phase ⁇ 2.
  • the operation sequence of the power transmission device 200 has been described above.
  • the charging circuit 314 can be switched between constant current (CC) charging and constant voltage (CV: constant voltage) charging according to the state of the secondary battery 310, and according to the remaining battery level during CC charging. Thus, the amount of charging current supplied to the secondary battery 310 is changed.
  • CC constant current
  • CV constant voltage
  • FIG. 3 is an operation waveform diagram of the power receiving device 300 of FIG. In the steady state, the current supplied from the rectifier circuit 304 to the capacitor 306 and the current supplied from the capacitor 306 to the charging circuit 314, that is, the charging current Ibat are balanced, and the rectified voltage Vrect generated in the capacitor 306 is a target level. Has been stabilized.
  • the current supplied from the rectifier circuit 304 to the capacitor 306 depends on the power supplied from the power transmission device 200 to the power reception device 300, that is, is controlled based on the control signal S3.
  • the charging circuit 314 increases the charging current Ibat, a large current is drawn from the capacitor 306.
  • the control error value included in the control signal S3 increases, and feedback is applied so that the power supplied from the power transmitting apparatus 200 to the power receiving apparatus 300 increases. Since the feedback speed is limited by the communication speed of the control signal S3 and the time until the power transmission apparatus 200 is stabilized at a new operating point, if the charging current Ibat fluctuates rapidly, the feedback cannot follow.
  • the rectified voltage Vrect may deviate significantly from its target value.
  • the power transmission apparatus 200 cannot correctly receive the control error value. That is, a sharp change in the charging current Ibat may cause the feedback loop to be interrupted.
  • the power transmission device TX stops power transmission and returns to the selection phase ⁇ 1.
  • the present invention has been made in view of such a problem, and one of exemplary purposes of an aspect thereof is to provide a power receiving device capable of stabilizing communication with the power transmitting device.
  • the wireless power receiving apparatus includes a receiving coil, a rectifying circuit that is connected to the receiving coil and generates a rectified voltage, a charging circuit that receives the rectified voltage and charges a battery, and is connected to the receiving coil and receives the rectifying coil based on a control value. And a modulator for transmitting a control packet including a control value to the wireless power transmission device.
  • the control circuit includes a charge control unit that controls a charging current supplied to the battery from the charging circuit, and a control error value that indicates a transmission power amount from the wireless power transmitting apparatus based on an error between a current rectified voltage and a target value thereof.
  • a power control unit that generates and outputs a control value to the modulator.
  • the charging control unit changes the charging current when the absolute value of the error is smaller than a predetermined threshold value.
  • the rectified voltage deviates significantly from the target value or the rectified voltage changes with a steep waveform.
  • communication between the power transmission device and the power reception device can be stabilized.
  • the charging control unit When changing the charging current from the initial value to the final value, the charging control unit changes the charging current stepwise from the initial value toward the final value through a plurality of intermediate values provided between them, and Each time the charging current is changed by one step, the charging current may be changed to the value of the next step by waiting until the absolute value of the error becomes smaller than the threshold value.
  • the charging control unit may change the charging current in units of a predetermined minimum step.
  • the control circuit may conform to the Qi standard.
  • the control circuit may be integrated on a single semiconductor substrate. “Integrated integration” includes the case where all of the circuit components are formed on a semiconductor substrate and the case where the main components of the circuit are integrated. A resistor, a capacitor, or the like may be provided outside the semiconductor substrate. By integrating the circuit as one IC, the circuit area can be reduced and the characteristics of the circuit elements can be kept uniform.
  • the wireless power receiving apparatus includes a receiving coil, a rectifying circuit that is connected to the receiving coil and generates a rectified voltage, a charging circuit that receives the rectified voltage and charges a battery, and is connected to the receiving coil and receives the rectifying coil based on a control value. And a modulator that transmits a control packet including a control value to the wireless power transmitting apparatus, and a control circuit described in any of the above.
  • the wireless device includes a receiving coil, a rectifying circuit that is connected to the receiving coil and generates a rectified voltage, a charging circuit that receives the rectified voltage and charges a battery, and is connected to the receiving coil and is configured to receive the rectified voltage based on a control value.
  • a modulator that modulates voltage or current and transmits a control packet including a control value to the wireless power transmission device, a charge control unit that controls a charging current supplied from the charging circuit to the battery, a current rectified voltage, and a target value thereof
  • a power control unit that outputs a control error value indicating a transmission power amount from the wireless power transmission apparatus based on the error to the modulator as a control value.
  • the charging control unit changes the charging current so that the absolute value of the error does not exceed a predetermined allowable value.
  • the charging control unit repeats the step of changing the charging current by a predetermined amount and the step of waiting until the absolute value of the error becomes smaller than a predetermined threshold value. Also good.
  • the charging control unit may change the charging current in units of a predetermined minimum step.
  • the wireless power receiving apparatus may conform to the Qi standard.
  • communication with the power transmission device can be stabilized.
  • FIG. 5 is a waveform diagram illustrating an operation of the power receiving device of FIG. 4.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • FIG. 4 is a circuit diagram showing a configuration of a wireless power receiving apparatus (hereinafter simply referred to as a power receiving apparatus) 300 according to the embodiment.
  • the power receiving apparatus 300 is used in the power supply system 100 that conforms to the Qi standard of FIG.
  • the power receiving apparatus 300 includes a receiving coil 302, a rectifier circuit 304, a capacitor 306, a modulator 308, a charging circuit 314, a secondary battery 310, and a control circuit 320.
  • the reception coil 302 is provided to receive the power signal S2 transmitted from the power transmission device 200 and to transmit a control signal (control packet) S3.
  • the rectifier circuit 304 is connected to the receiving coil 302 and generates a rectified voltage Vrect.
  • a smoothing capacitor 306 is connected to the output of the rectifier circuit 304.
  • the charging circuit 314 receives the rectified voltage Vrect and charges the secondary battery 310.
  • the charging circuit 314 can operate in a mode instructed by the control circuit 320 described later, and the charging current Ibat can also be adjusted based on a command value from the control circuit 320.
  • the modulator 308 is connected to the receiving coil 302, modulates the voltage or current of the receiving coil 302 based on the control value S5, and transmits a control signal S3 including the control value S5 to a wireless power transmitting apparatus (not shown).
  • the control circuit 320 includes a charge control unit 322 and a power control unit 324, and is integrated on a single semiconductor substrate.
  • the charging circuit 314 controls the charging circuit 314 and adjusts the charging current Ibat supplied to the secondary battery 310. Specifically, the optimum charging current Ibat is determined based on the state of the secondary battery 310, for example, the battery voltage Vbat, the remaining amount of the secondary battery 310, etc., and the current control data S6 indicating the charging current Ibat is charged. Output to circuit 314.
  • the control error value CE is, for example, a value obtained by quantizing the error dV with 256 gradations (8 bits) from ⁇ 128 to +128.
  • the charging control unit 322 changes the charging current Ibat when the absolute value
  • the charging control unit 322 changes the charging current Ibat from the initial value (current location) Istart to the final value Iend, a plurality of n intermediate values Im1, Im2, between the initial value Istart and the final value Iend. ... Imn is set. Then, the charging control unit 322 changes the charging current Ibat from the initial value Istart to the final value Iend in a step shape through a plurality of intermediate values Im1, Im2,... Imn provided therebetween. Each time the charging control unit 322 changes the charging current Ibat by one step, the charging control unit 322 waits until the absolute value
  • the charging control unit 322 changes the charging current Ibat in a pattern determined so that the absolute value
  • FIG. 5 is a waveform diagram (solid line) showing the operation of the power receiving device 300 of FIG.
  • the waveform corresponding to FIG. 3 is indicated by a one-dot chain line.
  • the target value of the charging current Ibat changes from the current value (initial value) Istart to the next target value (final value) Iend.
  • the charging current Ibat is switched from the initial value Istart to the final value Iend, so that the rectified voltage Vrect is steeply and greatly increased from the target value Vref. As a result, there is a problem that communication between the power transmission device 200 and the power reception device 300 is interrupted.
  • the operation of the power receiving device 300 will be described with reference to a solid line.
  • the rectified voltage Vrect slightly decreases.
  • the control error value CE increases.
  • the power transmission apparatus 200 increases transmission power.
  • the rectified voltage Vrect rises and approaches the target value Vref, and the control error value CE, which is an error dV thereof, decreases.
  • the power receiving device 300 when the absolute value
  • the rectified voltage Vrect slightly increases.
  • the control error value CE decreases (its absolute value increases). Thereby, the power transmission apparatus 200 reduces transmission power.
  • the rectified voltage Vrect decreases and approaches the target value Vref, and the absolute value of the control error value CE, which is their error dV, decreases.
  • the control circuit 320 repeats this operation and changes the charging current Ibat to the final value Iend.
  • the charging current Ibat is gently changed both when the charging current Ibat is increased and when it is decreased.
  • the present invention is not limited to this.
  • the charging current Ibat may be changed gently only when it is increased, and may be changed abruptly when it is decreased.
  • the wireless power transmission device conforming to the Qi standard has been described.
  • the present invention is not limited to this, and the wireless power transmission device used in a system similar to the Qi standard or a standard that will be developed in the future.
  • the present invention can also be applied to a compliant power transmission device 200.
  • SYMBOLS 100 Power feeding system, 200, TX ... Power transmission apparatus, 202 ... Transmission coil, 204 ... Driver, 206 ... Controller, 208 ... Demodulator, 300, RX ... Power reception apparatus, 302 ... Reception coil, 304 ... Rectifier circuit, 306 ... Capacitor 308, modulator, 310, secondary battery, 312, controller, 314, charging circuit, 320, control circuit, 322, charge control unit, 324, power control unit, S1, drive signal, S2, power signal, S3,. Control signal.
  • the present invention can be used for wireless power feeding technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 整流回路304は、受信コイル302に接続され、整流電圧Vrectを生成する。充電回路314は、整流電圧Vrectを受け、2次電池310を充電する。変調器308は、受信コイル302に接続され、制御値S5にもとづいて受信コイル302の電圧または電流を変調し、ワイヤレス送電装置に制御値S5を含む制御パケットS3を送信する。充電制御部322は、充電回路314から2次電池310に供給される充電電流Ibatを制御する。電力制御部324は、現在の整流電圧Vrectとその目標値Vrefの誤差dVにもとづいて、ワイヤレス送電装置からの送信電力量を指示する制御エラー値CEを生成し、制御値S5として変調器308に出力する。充電制御部322は、誤差dVの絶対値が所定のしきい値より小さいときに、充電電流Ibatを変化させる。

Description

ワイヤレス受電装置、その制御回路および制御方法
 本発明は、ワイヤレス給電技術に関する。
 近年、電子機器に電力を供給するために、無接点電力伝送(非接触給電、ワイヤレス給電ともいう)が普及し始めている。異なるメーカーの製品間の相互利用を促進するために、WPC(Wireless Power Consortium)が組織され、WPCにより国際標準規格であるQi(チー)規格が策定された。
 図1は、Qi規格に準拠したワイヤレス給電システム100の構成を示す図である。給電システム100は、送電装置200(TX、Power Transmitter)と受電装置300(RX、Power Receiver)と、を備える。受電装置300は、携帯電話端末、スマートホン、オーディオプレイヤ、ゲーム機器、タブレット端末などの電子機器に搭載される。
 送電装置200は、送信コイル(1次コイル)202、ドライバ204、コントローラ206、復調器208を備える。ドライバ204は、Hブリッジ回路(フルブリッジ回路)あるいはハーフブリッジ回路を含み、送信コイル202に駆動信号S1、具体的にはパルス信号を印加し、送信コイル202に流れる駆動電流により、送信コイル202に電磁界の電力信号S2を発生させる。コントローラ206は、送電装置200全体を統括的に制御するものであり、具体的には、ドライバ204のスイッチング周波数、あるいはスイッチングのデューティ比を制御することにより、送信電力を変化させる。
 Qi規格では、送電装置200と受電装置300の間で通信プロトコルが定められており、受電装置300から送電装置200に対して、制御信号S3による情報の伝達が可能となっている。この制御信号S3は、後方散乱変調(Backscatter modulation)を利用して、AM(Amplitude Modulation)変調された形で、受信コイル302(2次コイル)から送信コイル202に送信される。この制御信号S3には、たとえば、受電装置300に対する電力供給量を指示する電力制御データ(パケットともいう)、受電装置300の固有の情報を示すデータなどが含まれる。復調器208は、送信コイル202の電流あるいは電圧に含まれる制御信号S3を復調する。コントローラ206は、復調された制御信号S3に含まれる電力制御データにもとづいて、ドライバ204を制御する。
 受電装置300は、受信コイル302、整流回路304、コンデンサ306、変調器308、2次電池310、コントローラ312、充電回路314を備える。受信コイル302は、送信コイル202からの電力信号S2を受信するとともに、制御信号S3を送信コイル202に対して送信する。整流回路304およびコンデンサ306は、電力信号S2に応じて受信コイル302に誘起される電流S4を整流・平滑化し、直流電圧に変換する。
 充電回路314は、送電装置200から供給された電力を利用して2次電池310を充電する。
 コントローラ312は、受電装置300が受けている電力供給量をモニタし、それに応じて、電力供給量を指示する電力制御データ(コントロールエラー値)を生成する。変調器308は、電力制御データを含む制御信号S3を変調し、受信コイル302のコイル電流を変調することにより、送信コイル202のコイル電流およびコイル電圧を変調する。
 以上が給電システム100の構成である。図2は、給電システム100の動作シーケンスを示すフローチャートである。送電装置200の状態は大きく、選択フェーズ(Selection Phase)φ1と送電(Power Transfer)フェーズφ2と、認証・設定フェーズ(Identification&Configuration Phase)φ3、に分けられる。
 はじめに送電フェーズφ2を説明する。送電装置200(TX)が受電装置300(RX)への送電を開始する(S100)。送電装置TXには、受電装置RXからの現在の送電状態を示す制御信号S3がフィードバックされる(S102)。送電装置TXは、制御信号S3にもとづいて、送電量を調節する(S104)。
 送電装置TXは、受電装置RXから充電完了を示す制御信号S3を送信する(S106)か、あるいは、通信のタイムアウトエラーにもとづいて、送電装置TXの給電範囲から受電装置RXが取り外されたことを検知すると(S108)、送電装置TXは送電を停止し選択フェーズφ1となる。
 続いて選択フェーズφ1について説明する。送電装置TXは、所定の時間間隔(Object detection interval、たとえば500msec)ごとに、電力信号S2を送信し、受電装置RXの有無を確認する(S200)。これをアナログピンフェーズ(Analog Ping Phase)と称する。
 受電装置RXが検出されると(S202)、認証・設定フェーズφ3に移行し、デジタルピンフェーズ(Digital Ping Phase)が実行される(S204)。続く認証・設定フェーズ(Identification&Configuration Phase)において、送電装置TXは、受電装置RXの個体情報を受信する(S206)。続いて送電条件に関する情報が受電装置RXから送電装置TXに送信され(S208)、送電フェーズφ2に移行する。以上が送電装置200の動作シーケンスである。
特開2013-38854号公報
 本発明者らは、このような給電システム100について検討した結果、以下の課題を認識するに至った。
 充電回路314は、2次電池310の状態に応じて、定電流(CC:Constant Current)充電、定電圧(CV:Constant Voltage)充電が切りかえ可能であり、またCC充電時には、電池残量に応じて、2次電池310に供給する充電電流の量を変化させる。
 図3は、図1の受電装置300の動作波形図である。定常状態では、整流回路304からコンデンサ306に供給される電流と、コンデンサ306から充電回路314に供給される電流つまり充電電流Ibatとがバランスしており、コンデンサ306に生ずる整流電圧Vrectは、目標レベルに安定化されている。
 ここで、整流回路304からコンデンサ306に供給される電流は、送電装置200から受電装置300に供給される電力に応じており、つまり制御信号S3にもとづいて制御される。充電回路314が充電電流Ibatを増大させると、コンデンサ306から大電流が引き抜かれる。これにより整流電圧Vrectが低下すると、制御信号S3に含まれるコントロールエラー値が増大し、送電装置200から受電装置300への供給電力が増大するようにフィードバックがかかる。このフィードバックの速度は、制御信号S3の通信速度や送電装置200が新たな動作点に安定化するまでの時間の制約を受けるため、充電電流Ibatが急峻に変動すると、フィードバックが追従できずに、整流電圧Vrectがその目標値から著しく逸脱するおそれがある。整流電圧Vrectの変動量が大きかったり、あるいは変動波形が急峻であると、後方散乱変調を利用した制御信号S3のAM変調に支障をきたし、送電装置200がコントロールエラー値を正しく受信できなくなる。つまり充電電流Ibatの急峻な変化は、フィードバックループの遮断を引き起こすおそれがある。送電装置200と受電装置300の通信の遮断が所定のタイムアウト時間、持続すると、送電装置TXは送電を停止し、選択フェーズφ1に戻ってしまう。
 なお、かかる課題を当業者の共通の技術認識ととらえてはならない。
 本発明はかかる課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、送電装置との通信を安定化可能な受電装置の提供にある。
 本発明のある態様は、ワイヤレス受電装置に使用される制御回路に関する。ワイヤレス受電装置は、受信コイルと、受信コイルに接続され、整流電圧を生成する整流回路と、整流電圧を受け、電池を充電する充電回路と、受信コイルに接続され、制御値にもとづいて受信コイルの電圧または電流を変調し、ワイヤレス送電装置に制御値を含む制御パケットを送信する変調器と、を備える。制御回路は、充電回路から電池に供給される充電電流を制御する充電制御部と、現在の整流電圧とその目標値の誤差にもとづいてワイヤレス送電装置からの送信電力量を指示する制御エラー値を生成し、制御値として変調器に出力する電力制御部と、を備える。充電制御部は、誤差の絶対値が所定のしきい値より小さいときに、充電電流を変化させる。
 この態様によると、誤差の絶対値がしきい値より大きいときには、充電電流の設定値を維持することにより、整流電圧が目標値から著しく逸脱したり、整流電圧が急峻な波形で変化するのを防止でき、これにより送電装置と受電装置の間の通信を安定化できる。
 充電制御部は、充電電流を初期値から最終値まで変化させるとき、初期値から最終値に向かって、それらの間に設けられた複数の中間値を経てステップ状に充電電流を変化させ、かつ、充電電流を1ステップ分、変化させるたびに、誤差の絶対値がしきい値より小さくなるまで待機し、充電電流を次のステップの値に変化させてもよい。
 充電制御部は、所定の最小ステップを単位として、充電電流を変化させてもよい。
 制御回路は、Qi規格に準拠してもよい。
 制御回路は、ひとつの半導体基板に一体集積化されてもよい。
 「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。回路を1つのICとして集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。
 本発明の別の態様は、ワイヤレス受電装置に関する。ワイヤレス受電装置は、受信コイルと、受信コイルに接続され、整流電圧を生成する整流回路と、整流電圧を受け、電池を充電する充電回路と、受信コイルに接続され、制御値にもとづいて受信コイルの電圧または電流を変調し、ワイヤレス送電装置に制御値を含む制御パケットを送信する変調器と、上述のいずれかに記載の制御回路と、を備えてもよい。
 本発明の別の態様もまた、ワイヤレス受電装置である。ワイヤレス装置は、受信コイルと、受信コイルに接続され、整流電圧を生成する整流回路と、整流電圧を受け、電池を充電する充電回路と、受信コイルに接続され、制御値にもとづいて受信コイルの電圧または電流を変調し、ワイヤレス送電装置に制御値を含む制御パケットを送信する変調器と、充電回路から電池に供給される充電電流を制御する充電制御部と、現在の整流電圧とその目標値の誤差にもとづいてワイヤレス送電装置からの送信電力量を指示する制御エラー値を、制御値として変調器に出力する電力制御部と、を備える。充電制御部は、誤差の絶対値が所定の許容値を超えないように、充電電流を変化させる。
 この態様によると、整流電圧の誤差を監視しながら充電電流を変化させることにより、整流電圧が目標値から著しく逸脱したり、整流電圧が急峻な波形で変化するのを防止でき、これにより送電装置と受電装置の間の通信を安定化できる。
 充電制御部は、充電電流を初期値から最終値まで変化させるとき、充電電流を所定量変化させるステップと、誤差の絶対値が所定のしきい値より小さくなるまで待機するステップと、を繰り返してもよい。
 充電制御部は、所定の最小ステップを単位として、充電電流を変化させてもよい。
 ワイヤレス受電装置は、Qi規格に準拠してもよい。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、送電装置との通信を安定化できる。
Qi規格に準拠したワイヤレス給電システムの構成を示す図である。 図1の給電システムの動作シーケンスを示すフローチャートである。 図1の受電装置の動作波形図である。 実施の形態に係るワイヤレス受電装置の構成を示す回路図である。 図4の受電装置の動作を示す波形図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 図4は、実施の形態に係るワイヤレス受電装置(以下、単に受電装置と称する)300の構成を示す回路図である。受電装置300は、図1のQi規格に準拠した給電システム100に使用される。
 受電装置300は、受信コイル302、整流回路304、コンデンサ306、変調器308、充電回路314、2次電池310、制御回路320、を備える。
 受信コイル302は、送電装置200から送信された電力信号S2を受信するとともに、制御信号(制御パケット)S3を送信するために設けられる。整流回路304は、受信コイル302に接続され、整流電圧Vrectを生成する。整流回路304の出力には、平滑用のコンデンサ306が接続される。
 充電回路314は、整流電圧Vrectを受け、2次電池310を充電する。充電回路314は、後述する制御回路320により指示されたモードで動作可能であり、また充電電流Ibatも制御回路320からの指令値にもとづいて調節可能となっている。
 変調器308は、受信コイル302に接続され、制御値S5にもとづいて受信コイル302の電圧または電流を変調し、ワイヤレス送電装置(不図示)に制御値S5を含む制御信号S3を送信する。
 制御回路320は、充電制御部322および電力制御部324を備え、ひとつの半導体基板に一体集積化される。充電回路314は、充電回路314を制御し、2次電池310に供給される充電電流Ibatを調節する。具体的には、2次電池310の状態、たとえば電池電圧Vbat、2次電池310の残量等にもとづいて、最適な充電電流Ibatを決定し、充電電流Ibatを指示する電流制御データS6を充電回路314に出力する。
 電力制御部324は、現在の整流電圧Vrectとその目標値Vrefの誤差dV=Vref-Vrectにもとづいて、ワイヤレス送電装置からの送信電力量を指示する制御エラー値CEを生成し、制御値S5として変調器308に出力する。制御エラー値CEは、たとえば誤差dVを、-128~+128の256階調(8ビット)で量子化した値である。
 充電制御部322は、誤差dVの絶対値|dV|が所定のしきい値Vthより小さいときに、充電電流Ibatを変化させる。誤差dVの絶対値|dV|がしきい値Vthより大きいときには、充電電流Ibatを維持する。
 より好ましくは、充電制御部322は、充電電流Ibatを初期値(現在地)Istartから最終値Iendまで変化させるとき、初期値Istartから最終値Iendの間に、複数n個の中間値Im1,Im2,…Imnを設定する。そして充電制御部322は、充電電流Ibatを、初期値Istartから最終値Iendに向かって、それらの間に設けられた複数の中間値Im1,Im2,…,Imnを経てステップ状に変化させる。充電制御部322は、充電電流Ibatを1ステップ分、変化させるたびに、誤差dVの絶対値|dV|がしきい値Vthより小さくなるまで待機し、その後、充電電流Ibatを次のステップの値に変化させる。
 複数の中間値Im1~Imnの間隔は、充電回路314に設定可能な充電電流Ibatの最小ステップ(分解能)と等しくてもよい。たとえば、充電電流Ibatが、最小値0Aと最大値2Aの間でdI=100mA刻みで選択可能である場合、中間値Imの間隔は、100mAとなる。
 別の観点から見ると、充電制御部322は、誤差dVの絶対値|dV|が所定の許容値を超えないよう定められたパターンで充電電流Ibatを変化させる。
 以上が受電装置300の構成である。続いてその動作を説明する。図5は、図4の受電装置300の動作を示す波形図(実線)である。図5には、図3に対応する波形が一点鎖線で示される。
 実施の形態に係る受電装置300の効果を明確とするため、一点鎖線を参照して、従来の受電装置300の動作を再度説明する。時刻t0に、充電電流Ibatの目標値が、現在の値(初期値)Istartから、次の目標値(最終値)Iendに変化する。従来では、一点鎖線で示すように、時刻t0に、充電電流Ibatが初期値Istartから最終値Iendに切りかえられており、これにより、整流電圧Vrectは、その目標値Vrefから急峻に、また大幅に低下することとなり、送電装置200と受電装置300の間の通信が遮断されるなどの問題が生ずることとなっていた。
 翻って実施の形態に係る受電装置300の動作を、実線を参照して説明する。充電電流Ibatを、初期値Istartから最終値Iendに変化させるとき、複数の中間値Im1,Im2,Im3,…が決定される。たとえばIstart=500mA、Iend=1100mAであるとき、充電電流Ibatは、100mA刻みで6ステップにて段階的に切りかえられる。
 はじめに充電電流Ibatは、第1中間値Im1(=600mA)に設定される。これにより、整流電圧Vrectはわずかに低下する。整流電圧Vrectの低下によって、誤差dVが増大すると、制御エラー値CEが増大する。これにより送電装置200は送信電力を増大させる。この動作が繰り返されると、整流電圧Vrectが上昇して目標値Vrefに近づき、それらの誤差dVである制御エラー値CEは小さくなる。
 そして時刻t1に、制御エラー値CEがしきい値電圧Vthに対応するしきい値THまで小さくなると、つまり誤差dVの絶対値|dV|がしきい値電圧Vthより小さくなると、充電電流Ibatが次の中間値Im2(=700mA)に切りかえられる。制御回路320は、この動作を繰り返し、充電電流Ibatを最終値Iendまで変化させる。
 この受電装置300によれば、誤差dVの絶対値|dV|がしきい値Vthより大きいときには、充電電流Ibatの設定値を維持し、誤差dVの絶対値|dV|が小さくなるまで待機することにより、整流電圧Vrectが目標値Vrefから著しく逸脱したり、整流電圧Vrectが急峻な波形で変化するのを防止でき、これにより送電装置200と受電装置300の間の通信を安定化できる。
 時刻t3以降には、充電電流Ibatを小さくするときの動作が示される。たとえばIstart=1100mA、Iend=700mAであり、充電電流Ibatは、100mA刻みで4ステップで段階的に切りかえられる。
 はじめに充電電流Ibatは、第1中間値Im1(=1000mA)に設定される。これにより、整流電圧Vrectはわずかに上昇する。整流電圧Vrectの上昇によって、制御エラー値CEが小さくなる(その絶対値は増大する)。これにより送電装置200は送信電力を減少させる。この動作が繰り返されると、整流電圧Vrectが低下して目標値Vrefに近づき、それらの誤差dVである制御エラー値CEの絶対値は小さくなる。
 そして時刻t4に、制御エラー値CEがしきい値-THまで上昇すると、つまり誤差dVの絶対値|dV|がしきい値電圧Vthより小さくなると、充電電流Ibatが次の中間値Im2(=900mA)に切りかえられる。制御回路320は、この動作を繰り返し、充電電流Ibatを最終値Iendまで変化させる。
 これにより、充電電流Ibatを減少させるときにも、送電装置200と受電装置300の間の通信を安定化できる。
 以上、本発明について、実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
(第1の変形例)
 実施の形態では、充電電流Ibatを増大させるとき、減少させるときの両方において、充電電流Ibatを緩やかに変化させるものとしたが本発明はそれには限定されない。たとえば、充電電流Ibatを増大させるときのみ緩やかに変化させ、減少させるときには、急峻に変化させてもよい。
(第2の変形例)
 実施の形態では、Qi規格に準拠するワイヤレス送電装置について説明したが、本発明はそれに限定されず、Qi規格と類似するシステムに使用されるワイヤレス送電装置や、将来策定されるであろう規格に準拠する送電装置200にも適用しうる。
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
100…給電システム、200,TX…送電装置、202…送信コイル、204…ドライバ、206…コントローラ、208…復調器、300,RX…受電装置、302…受信コイル、304…整流回路、306…コンデンサ、308…変調器、310…2次電池、312…コントローラ、314…充電回路、320…制御回路、322…充電制御部、324…電力制御部、S1…駆動信号、S2…電力信号、S3…制御信号。
 本発明は、ワイヤレス給電技術に利用できる。

Claims (14)

  1.  受信コイル、前記受信コイルに接続され、整流電圧を生成する整流回路、前記整流電圧を受け、電池を充電する充電回路、前記受信コイルに接続され、制御値にもとづいて前記受信コイルの電圧または電流を変調し、ワイヤレス送電装置に前記制御値を含む制御パケットを送信する変調器、を備えるワイヤレス受電装置に使用される制御回路であって、
     前記制御回路は、
     前記充電回路から前記電池に供給される充電電流を制御する充電制御部と、
     現在の前記整流電圧とその目標値の誤差にもとづいて前記ワイヤレス送電装置からの送信電力量を指示する制御エラー値を生成し、前記制御値として前記変調器に出力する電力制御部と、
     を備え、
     前記充電制御部は、前記誤差の絶対値が所定のしきい値より小さいときに、前記充電電流を変化させることを特徴とする制御回路。
  2.  前記充電制御部は、前記充電電流を初期値から最終値まで変化させるとき、
     前記初期値から前記最終値に向かって、それらの間に設けられた複数の中間値を経てステップ状に前記充電電流を変化させ、
     かつ、前記充電電流を1ステップ分、変化させるたびに、前記誤差の絶対値が前記しきい値より小さくなるまで待機し、前記充電電流を次のステップの値に変化させることを特徴とする請求項1に記載の制御回路。
  3.  前記複数の中間値の間隔は、前記充電回路に設定可能な充電電流の最小ステップと等しいことを特徴とする請求項2に記載の制御回路。
  4.  Qi規格に準拠したことを特徴とする請求項1から3のいずれかに記載の制御回路。
  5.  ひとつの半導体基板に一体集積化されることを特徴とする請求項1から4のいずれかに記載の制御回路。
  6.  受信コイルと、
     前記受信コイルに接続され、整流電圧を生成する整流回路と、
     前記整流電圧を受け、電池を充電する充電回路と、
     前記受信コイルに接続され、制御値にもとづいて前記受信コイルの電圧または電流を変調し、ワイヤレス送電装置に前記制御値を含む制御パケットを送信する変調器と、
     請求項1から5のいずれかに記載の制御回路と、
     を備えることを特徴とするワイヤレス受電装置。
  7.  受信コイルと、
     前記受信コイルに接続され、整流電圧を生成する整流回路と、
     前記整流電圧を受け、電池を充電する充電回路と、
     前記受信コイルに接続され、制御値にもとづいて前記受信コイルの電圧または電流を変調し、ワイヤレス送電装置に前記制御値を含む制御パケットを送信する変調器と、
     前記充電回路から前記電池に供給される充電電流を制御する充電制御部と、
     現在の前記整流電圧とその目標値の誤差にもとづいて前記ワイヤレス送電装置からの送信電力量を指示する制御エラー値を生成し、前記制御値として前記変調器に出力する電力制御部と、
     を備え、
     前記充電制御部は、前記誤差の絶対値が所定の許容値を超えないよう前記充電電流を変化させるよう構成されることを特徴とするワイヤレス受電装置。
  8.  前記充電制御部は、前記充電電流を初期値から最終値まで変化させるとき、
     前記充電電流を所定量変化させるステップと、
     前記誤差の絶対値が所定のしきい値より小さくなるまで待機するステップと、
     を繰り返すことを特徴とする請求項7に記載のワイヤレス受電装置。
  9.  前記所定量は、前記充電回路に設定可能な前記充電電流の最小ステップと等しいことを特徴とする請求項8に記載のワイヤレス受電装置。
  10.  Qi規格に準拠したことを特徴とする請求項7から9のいずれかに記載のワイヤレス受電装置。
  11.  ワイヤレス受電装置の制御方法であって、
     前記ワイヤレス受電装置は、受信コイル、前記受信コイルに接続され、整流電圧を生成する整流回路、前記整流電圧を受け、電池を充電する充電回路、前記受信コイルに接続され、前記受信コイルの電圧または電流を変調し、ワイヤレス送電装置にパケットを送信する変調器、を備え、
     前記制御方法は、
     前記充電回路から前記電池に供給される充電電流を制御するステップと、
     現在の前記整流電圧とその目標値の誤差にもとづいて、前記ワイヤレス送電装置からの送信電力量を指示する制御エラー値を生成するステップと、
     前記制御エラー値にもとづいて前記変調器を制御し、前記制御エラー値を含む制御パケットを前記受信コイルから前記ワイヤレス送電装置に送信せしめるステップと、
     を備え、
     前記充電電流は、前記誤差の絶対値が所定のしきい値より小さいときに変化することを特徴とする制御方法。
  12.  ワイヤレス受電装置の制御方法であって、
     前記ワイヤレス受電装置は、受信コイル、前記受信コイルに接続され、整流電圧を生成する整流回路、前記整流電圧を受け、電池を充電する充電回路、前記受信コイルに接続され、前記受信コイルの電圧または電流を変調し、ワイヤレス送電装置にパケットを送信する変調器、を備え、
     前記制御方法は、
     現在の前記整流電圧とその目標値の誤差にもとづいて、前記ワイヤレス送電装置からの送信電力量を指示する制御エラー値を生成するステップと、
     前記制御エラー値にもとづいて前記変調器を制御し、前記制御エラー値を含む制御パケットを前記受信コイルから前記ワイヤレス送電装置に送信せしめるステップと、
     前記誤差が所定の許容値を超えないように、前記充電回路から前記電池に供給される充電電流を制御するステップと、
     を備えることを特徴とする制御方法。
  13.  前記充電電流を制御するステップは、前記充電電流を初期値から最終値まで変化させるとき、
     前記充電電流を所定量変化させるステップと、
     前記誤差の絶対値が前記しきい値より小さくなるまで待機するステップと、
     を繰り返すことを特徴とする請求項11または12に記載の制御方法。
  14.  前記所定量は、前記充電回路に設定可能な前記充電電流の最小ステップと等しいことを特徴とする請求項13に記載の制御方法。
PCT/JP2014/070352 2013-09-11 2014-08-01 ワイヤレス受電装置、その制御回路および制御方法 WO2015037362A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167009257A KR101976909B1 (ko) 2013-09-11 2014-08-01 와이어리스 수전 장치, 그 제어 회로 및 제어 방법
CN201480042410.0A CN105409086B (zh) 2013-09-11 2014-08-01 无线受电装置、其控制电路及控制方法
US15/067,594 US10199866B2 (en) 2013-09-11 2016-03-11 Control circuit for wireless power receiver and control method
US16/223,856 US20190123582A1 (en) 2013-09-11 2018-12-18 Control circuit for wireless power receiver and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-188721 2013-09-11
JP2013188721A JP6208503B2 (ja) 2013-09-11 2013-09-11 ワイヤレス受電装置、その制御回路および制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/067,594 Continuation US10199866B2 (en) 2013-09-11 2016-03-11 Control circuit for wireless power receiver and control method

Publications (1)

Publication Number Publication Date
WO2015037362A1 true WO2015037362A1 (ja) 2015-03-19

Family

ID=52665481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070352 WO2015037362A1 (ja) 2013-09-11 2014-08-01 ワイヤレス受電装置、その制御回路および制御方法

Country Status (6)

Country Link
US (2) US10199866B2 (ja)
JP (1) JP6208503B2 (ja)
KR (1) KR101976909B1 (ja)
CN (1) CN105409086B (ja)
TW (1) TWI629845B (ja)
WO (1) WO2015037362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261052A1 (ja) * 2020-06-26 2021-12-30 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256978A1 (en) * 2016-03-04 2017-09-07 Logitech Europe S.A. Wireless charging for an input device
DE102017002146A1 (de) 2016-03-04 2017-09-07 Logitech Europe S.A. Drahtloses Laden für eine Eingabeeinrichtung
CN113937901A (zh) * 2016-08-26 2022-01-14 纽卡润特有限公司 无线连接器***
KR101897646B1 (ko) * 2017-01-09 2018-09-12 엘지이노텍 주식회사 무선 충전 장치 및 그 방법
AU2018247552A1 (en) * 2017-04-07 2019-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging apparatus and method, and device to be charged
CN111684680A (zh) 2018-06-22 2020-09-18 Oppo广东移动通信有限公司 充电装置、移动终端和充电控制方法
WO2020085614A1 (ko) * 2018-10-23 2020-04-30 엘지전자 주식회사 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치
KR102659965B1 (ko) 2019-07-31 2024-04-24 삼성전자 주식회사 전자 장치 및 그의 주파수 간섭 제어 방법
US11368038B2 (en) * 2019-08-06 2022-06-21 Microsoft Technology Licensing, Llc Adaptive wireless charging receiver loading
JP2021129410A (ja) 2020-02-13 2021-09-02 キヤノン株式会社 受電装置および送電装置、ならびにそれらの制御方法
JP2021129456A (ja) * 2020-02-14 2021-09-02 キヤノン株式会社 送電装置、受電装置、それらの制御方法、およびプログラム
JP2021197768A (ja) 2020-06-10 2021-12-27 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム
WO2022130778A1 (ja) 2020-12-17 2022-06-23 キヤノン株式会社 送電装置、受電装置、それらの制御方法、およびプログラム
JP2022183924A (ja) 2021-05-31 2022-12-13 キヤノン株式会社 送電装置および受電装置
JP2023181742A (ja) 2022-06-13 2023-12-25 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028934A (ja) * 2008-07-16 2010-02-04 Seiko Epson Corp 受電制御装置、受電装置および無接点電力伝送システム
WO2011132507A1 (ja) * 2010-04-19 2011-10-27 パナソニック電工 株式会社 非接触電力伝送装置
WO2013015416A1 (ja) * 2011-07-28 2013-01-31 本田技研工業株式会社 ワイヤレス送電方法
JP2013038854A (ja) * 2011-08-04 2013-02-21 Canon Inc 給電装置及び給電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172311A (ja) 2010-02-16 2011-09-01 Fujitsu Toshiba Mobile Communications Ltd 充電制御装置および電子機器
US8791601B2 (en) * 2010-04-02 2014-07-29 Advantest Corporation Wireless power receiving apparatus and wireless power supply system
US20120068548A1 (en) * 2010-09-16 2012-03-22 Advantest Corporation Wireless power supply apparatus
CN104508935A (zh) * 2012-07-30 2015-04-08 皇家飞利浦有限公司 无线感应式电力传输

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028934A (ja) * 2008-07-16 2010-02-04 Seiko Epson Corp 受電制御装置、受電装置および無接点電力伝送システム
WO2011132507A1 (ja) * 2010-04-19 2011-10-27 パナソニック電工 株式会社 非接触電力伝送装置
WO2013015416A1 (ja) * 2011-07-28 2013-01-31 本田技研工業株式会社 ワイヤレス送電方法
JP2013038854A (ja) * 2011-08-04 2013-02-21 Canon Inc 給電装置及び給電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261052A1 (ja) * 2020-06-26 2021-12-30 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム

Also Published As

Publication number Publication date
KR20160053994A (ko) 2016-05-13
CN105409086A (zh) 2016-03-16
JP6208503B2 (ja) 2017-10-04
TWI629845B (zh) 2018-07-11
JP2015056959A (ja) 2015-03-23
US10199866B2 (en) 2019-02-05
TW201513525A (zh) 2015-04-01
US20190123582A1 (en) 2019-04-25
KR101976909B1 (ko) 2019-05-09
US20160197513A1 (en) 2016-07-07
CN105409086B (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
JP6208503B2 (ja) ワイヤレス受電装置、その制御回路および制御方法
US9853486B2 (en) Resonant wireless power receiver circuit and control method thereof
US9667084B2 (en) Wireless charging systems, devices, and methods
US10224763B2 (en) Wireless power receiving device, receiver circuit thereof, and control method of wireless power receiving device
JP6185228B2 (ja) 受電制御回路、ワイヤレス受電装置の制御方法、電子機器
US9973039B2 (en) Power receiver, wireless power system and related method of transmitting information with a power receiver
EP2827469A1 (en) Electric power receiving device and non-contact power supply system
JP6632308B2 (ja) ワイヤレス送電装置、その制御回路および制御方法、充電器
US10298064B2 (en) Power receiving unit, power feeding control method, and feed system
WO2015033719A1 (ja) 位置ずれ検出装置および電子機器
JP6438773B2 (ja) ワイヤレス受電装置、電子機器、ワイヤレス送電装置からの最大送信電力の検出方法
JP6663764B2 (ja) ワイヤレス受電制御回路、ワイヤレス受電装置の制御方法、電子機器
JP2019216592A (ja) 無線電力受信機を動作させる方法とそれを用いた無線電力受信機
US10069338B2 (en) Power receiver control circuit for wireless power receiver apparatus
JP7144192B2 (ja) ワイヤレス送電装置、その制御回路
US10923950B2 (en) Power generating method and wireless power transmission device therefor
JP6609445B2 (ja) ワイヤレス送電装置、その制御回路および制御方法、充電器
JP7256677B2 (ja) ワイヤレス受電装置のコントロール回路、電子機器
CN117178456A (zh) 用于无线充电的方法和装置
JP2021019449A (ja) ワイヤレス受電装置のコントロールic、電子機器、ワイヤレス受電装置における変調方法
CN114583844A (zh) 用于无线充电发射器中的逆变器模式切换的装置和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042410.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009257

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14843993

Country of ref document: EP

Kind code of ref document: A1