WO2015033859A1 - 手押し車 - Google Patents

手押し車 Download PDF

Info

Publication number
WO2015033859A1
WO2015033859A1 PCT/JP2014/072674 JP2014072674W WO2015033859A1 WO 2015033859 A1 WO2015033859 A1 WO 2015033859A1 JP 2014072674 W JP2014072674 W JP 2014072674W WO 2015033859 A1 WO2015033859 A1 WO 2015033859A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
unit
handcart
sensor
control
Prior art date
Application number
PCT/JP2014/072674
Other languages
English (en)
French (fr)
Inventor
白土賢一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015535447A priority Critical patent/JP6156504B2/ja
Publication of WO2015033859A1 publication Critical patent/WO2015033859A1/ja
Priority to US15/058,749 priority patent/US9751551B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0026Propulsion aids
    • B62B5/0069Control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for patients or disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B1/00Hand carts having only one axis carrying one or more transport wheels; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0026Propulsion aids
    • B62B5/0033Electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/02Accessories or details specially adapted for hand carts providing for travelling up or down a flight of stairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for patients or disabled persons
    • A61H2003/043Wheeled walking aids for patients or disabled persons with a drive mechanism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for patients or disabled persons
    • A61H2003/046Wheeled walking aids for patients or disabled persons with braking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5025Activation means
    • A61H2201/5028Contact activation, i.e. activated at contact with a surface of the user to be treated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5084Acceleration sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5092Optical sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B1/00Hand carts having only one axis carrying one or more transport wheels; Equipment therefor
    • B62B1/10Hand carts having only one axis carrying one or more transport wheels; Equipment therefor in which the load is intended to be transferred totally to the wheels

Definitions

  • This invention relates to a wheelbarrow provided with wheels, and more particularly to a wheelbarrow that drives and controls wheels.
  • Patent Document 1 a moving body that drives and controls wheels to perform inverted pendulum control is known (see, for example, Patent Document 1).
  • Patent Document 2 describes a four-wheel walking auxiliary vehicle having auxiliary wheels connected to the front wheels of casters via a spring.
  • the spring is extended, and the auxiliary wheel rides first, thereby easily overcoming the step.
  • JP 2011-168236 A Japanese Patent No. 4344655
  • a moving body that performs inverted pendulum control has a problem that it is difficult to get over a step because a large load is applied to a driving wheel.
  • an object of the present invention is to make it easier to get over a step in a wheelbarrow that performs inverted pendulum control.
  • the handcart of the present invention includes a wheel, a drive unit that drives the wheel, a control unit that controls the operation of the drive unit, a main body unit that rotatably supports the wheel, and a gripping unit on the main body unit. And a first sensor unit that detects a change in the inclination angle or an angular velocity change in the pitch direction of the main body unit, and a step detection input unit that receives the presence or absence of a step detection.
  • the said control part controls the operation
  • a second control mode in which the torque applied to the drive unit is larger than that in the first control mode, and the first control is based on the output of the step detection input unit. The mode is switched between the second control mode and the second control mode.
  • the posture of the main body is maintained in the vertical direction or a direction close to vertical by the inverted pendulum control.
  • the handcart In the first control mode, the handcart is in a self-supporting state.
  • the second control mode In the first control mode, for example, if a switch indicates that there is a step, the second control mode is changed to increase the torque applied to the drive unit. In this case, since it moves faster than usual, it is easy to get over even if there is a step that is difficult to get over in the state of normal inverted pendulum control.
  • the posture of the main body part forward by resetting the target value of the inclination angle in the pitch direction of the main body part in the forward direction with respect to the traveling direction of the wheelbarrow.
  • a torque that moves the wheel forward by the inverted pendulum control works. Therefore, this torque makes it easy to get over the step.
  • the inverted pendulum control when shifting from the first control mode to the second control mode, it is also possible to stop the inverted pendulum control for a certain period of time to move the wheelbarrow backward and then shift to the second control mode.
  • the user always holds the grip portion by hand during walking. Therefore, when the inverted pendulum control is stopped for a certain period of time and the handcart is moved backward, the position of the gripping portion in the traveling direction does not change, and only the wheel moves backward, so that the main body can be tilted forward.
  • the step detection input unit accepts an input indicating that there is a step, for example, from a switch or the like.
  • the switch may be a plurality of push button switches provided in the gripping part, or may be a rotary switch using a potentiometer or an encoder provided in the gripping part. It is preferable that these switches return to the initial state after accepting the step detection input.
  • the method of returning the switch to the initial state can be realized by incorporating an elastic body such as a spring, for example.
  • the step detection input unit is a second sensor unit that detects a step.
  • a distance measuring sensor such as an ultrasonic sensor or an infrared sensor, or a shock sensor, an acceleration sensor, an angular velocity sensor, an inclination angle sensor, or the like that detects an impact when a wheel collides with the step is used.
  • the second sensor unit can also include a wheel stop detection unit that detects that the wheel has stopped. In order to detect the stop of the wheel, for example, the rotation of the wheel is detected by a rotary encoder. The wheel stop detection unit determines that the wheel has stopped when the output value of the rotary encoder detects 0 or a steep change.
  • the control unit preferably determines whether or not the step can be overcome based on the distance to the step detected by the distance measuring sensor.
  • the second sensor unit is preferably a step height detection sensor that detects the height of a step in the traveling direction.
  • the control unit determines that there is a step when the step height detection sensor detects a step having a height equal to or higher than a predetermined threshold, and switches from the first control mode to the second control mode.
  • control unit determines whether or not the step can be climbed based on the information on the height of the step detected by the step detection sensor. It is preferable to switch from the control mode to the second control mode.
  • control unit switches from the first control mode to the second control mode when the distance to the step detected by the distance measuring sensor is within a predetermined range.
  • FIG. 10 is a schematic explanatory diagram showing the operation of Modification 1.
  • 10 is a flowchart showing the operation of Modification 1.
  • FIG. 10 is a schematic explanatory diagram showing the operation of Modification 2.
  • 10 is a flowchart showing the operation of Modification 2.
  • FIG. 3 is a block diagram showing a functional configuration of a control unit 21.
  • FIG. It is a figure which shows the relationship between a ground inclination angle, a main body inclination angle, and a crossing angle.
  • FIG. It is a figure which shows the example of application of height detection.
  • FIG. 1 is an external view of a handcart 1 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the handcart 1.
  • the wheelbarrow 1 includes, for example, a rectangular parallelepiped main body 10.
  • the main body 10 has a shape that is long in the vertical direction (Z and ⁇ Z directions in the drawing) and short in the depth direction (Y and ⁇ Y directions in the drawing).
  • the main body 10 incorporates a control board, a battery, and the like inside.
  • Two wheels 11 are attached to the left and right (X, ⁇ X direction) ends of the lower part of the main body 10 in the vertically downward direction ( ⁇ Z direction).
  • the two wheels 11 are attached to the same shaft and rotate synchronously.
  • the two wheels 11 can be individually driven and rotated.
  • the wheel 11 has shown the example which is 2 wheels, 1 wheel or 3 wheels or more may be sufficient.
  • a cylindrical column 15 is attached to the upper portion of the main body 10 in the vertical direction, and a T-shaped grip portion 16 is attached to the other end of the column 15.
  • a user interface such as a power switch (user I / F 27 shown in FIG. 2) is provided on the upper surface of the grip portion 16. The user uses the handcart 1 by gripping the grip portion 16 or placing a forearm or the like on the grip portion 16 and friction between the grip portion and the forearm or the like.
  • the main body 10 is actually provided with a cover so that the internal substrate and the like cannot be seen in appearance.
  • the handcart 1 includes an inclination angle sensor 20, a control unit 21, a ROM 22, a RAM 23, a gyro sensor 24, a step detection sensor 25, a wheel drive unit 26, a user I / F 27, and a rotary encoder 28. ing.
  • the control unit 21 is a functional unit that comprehensively controls the handcart 1 and reads out a program stored in the ROM 22 and develops the program in the RAM 23 to realize various operations.
  • the tilt angle sensor 20 detects the tilt angle with respect to the vertical direction in the pitch direction of the main body 10 (the rotation direction about the axis of the wheel 11 in FIG. 1), and outputs it to the control unit 21.
  • the gyro sensor 24 detects the angular velocity in the pitch direction of the main body unit 10 and outputs it to the control unit 21.
  • the rotary encoder 28 outputs an output value corresponding to the rotation angle of the wheel 11 to the control unit 21.
  • the level difference detection sensor 25 is a sensor that detects a level difference existing in the traveling direction of the handcart 1, and includes, for example, an ultrasonic sensor, an infrared sensor, a shock sensor, an acceleration sensor, an angular velocity sensor, an inclination angle sensor, and the like.
  • FIG. 3 is a block diagram showing a functional configuration of the control unit 21.
  • the control unit 21 functionally includes a main body tilt angle controller 212, a main body tilt angular velocity controller 213, and a step detection input unit 214.
  • the main body tilt angle controller 212 inputs a difference value between a target tilt angle (for example, 0 degrees) and the current tilt angle of the main body 10 input from the tilt angle sensor 20, and the difference value is 0.
  • the inclination angular velocity of the main body 10 is calculated as follows.
  • the main body tilt angular velocity controller 213 inputs a difference value between the tilt angular velocity calculated by the main body tilt angle controller 212 and the current tilt angular velocity of the main body 10 input from the gyro sensor 24.
  • the applied torque is calculated such that the difference value becomes zero.
  • the torque calculated in this way is input to the wheel drive unit 26.
  • the wheel drive unit 26 is a functional unit that drives a motor that rotates a shaft attached to the wheel 11, and applies the torque calculated by the main body inclination angular velocity controller 213 to the motor of the wheel 11. , The wheel 11 is rotated.
  • the handcart 1 performs the inverted pendulum control as the first control mode, and controls the posture of the main body 10 to be kept constant. If the user performs an operation of pushing the handcart 1 in the forward direction with respect to the traveling direction, the inclination angle of the main body 10 is inclined in the forward direction with respect to the target inclination angle. In order to maintain the target inclination angle, a torque that rotates the wheel 11 in the forward direction works. Thereby, the handcart 1 also moves following the user's movement.
  • an acceleration sensor can also be used, Any sensor may be used.
  • the control part 21 switches between a 1st control mode and a 2nd control mode according to the presence or absence of a level
  • FIG. 4 is a schematic explanatory view showing the operation of the handcart 1 when overcoming a step
  • FIG. 5 is a flowchart showing the operation of the handcart 1 when overcoming a step.
  • the control unit 21 normally performs the inverted pendulum control by executing the first control mode. Then, when the level difference detection sensor 25 detects a level difference (s11), the control unit 21 determines whether or not the level difference is a height that can be overcome (s12). However, the process of s12 is not essential and may be omitted.
  • FIG. 6 is a diagram illustrating an example of height detection.
  • FIG. 6 shows an example in which the level difference detection sensor 25 is an ultrasonic sensor.
  • the level difference detection sensor 25 measures the distance L2 from the ground in the traveling direction based on the time difference from when the ultrasonic wave is transmitted to when the reflected wave is received.
  • the control unit 21 obtains the height h of the step using the measured distance L2.
  • the control unit 21 determines that the level difference can be overcome, and when the height h is equal to or greater than the radius, the control unit 21 determines that the level difference cannot be overcome.
  • the threshold value for determining the step height that can be overcome is not limited to the radius of the tire, but also affects the maximum torque of the motor to be used. Therefore, a value obtained by experiments in advance may be used.
  • control unit 21 determines that the step cannot be overcome, the control unit 21 notifies the user that it cannot be overcome by LED, LCD, or voice (s 13), and ends the operation.
  • the control unit 21 determines that the level difference can be overcome, the control unit 21 switches to the second control mode.
  • the offset torque is added, and as shown in FIG. 4 (B), it moves faster than the normal inverted pendulum control immediately before the step, making it easier to get over the step.
  • the inclination angle of the main body 10 temporarily deviates from the target inclination angle and inclines in the opposite direction to the traveling direction of the handcart 1. It will be.
  • the control unit 21 determines whether or not a predetermined time has elapsed since switching to the second control mode (s15), and returns to the first control mode after the predetermined time has elapsed (s16). In addition, in the process of s15, the control unit 21 determines that the step is exceeded when a state where the step detection sensor 25 does not detect the step (for example, when the height h is less than the threshold value) has elapsed for a predetermined time or more. It may be determined to return to the first control mode. Even when the level difference detection sensor 25 detects a level difference after a predetermined time has elapsed, the mode returns to the first control mode, but the mode is not switched to the second control mode until the level difference is no longer detected.
  • the step is overcome, and the normal first control mode is executed again to perform the inverted pendulum control.
  • the offset torque is preferably adjusted according to a change in the inclination angle or angular velocity of the main body 10.
  • the control unit 21 may perform an operation of switching to the second control mode when the user inputs that there is a step through the switch of the user I / F 27 or the like.
  • FIG. 7 is a schematic explanatory view showing the operation of the handcart 1 when overcoming a step according to the first modification.
  • the handcart 1 is tilted forward as shown in FIG. To.
  • the offset torque is added by setting the forward leaning posture before shifting to the second control mode, the inclination angle of the main body 10 in the pitch direction as shown in FIG. Is prevented from tilting in the opposite direction to the direction of travel.
  • the torque that moves the wheel forward by the inverted pendulum control works even without applying the offset torque, so that the wheel moves faster than usual, and the step can be easily overcome.
  • FIG. 8 is a flowchart showing the operation of the handcart 1 when overcoming a step according to the first modification.
  • the control unit 21 normally performs the inverted pendulum control by executing the first control mode. Then, when the level difference detection sensor 25 detects a level difference (s21), the control unit 21 determines whether or not the level difference is a height that can be overcome (s22). For example, the method shown in FIG. 6 is used as a method for determining whether or not the vehicle can be overcome. If the height difference cannot be overcome, the user is notified that the ride cannot be overcome (s23), and the operation is terminated. However, the process of s22 is not essential and may be omitted.
  • the control unit 21 determines whether the distance from the step is equal to or less than the first threshold value ⁇ (s24). When it is determined that the distance from the step is equal to or smaller than the predetermined threshold value ⁇ , the target inclination angle of the main body 10 is reset in the forward direction with respect to the traveling direction of the handcart 1, so that FIG. ), The handcart 1 is placed in a forward leaning posture (s25).
  • the control unit 21 determines whether or not the distance from the step is equal to or less than the second threshold value ⁇ ( ⁇ ⁇ ) (s26).
  • the mode is switched to the second control mode (s27).
  • the offset torque is added, and as shown in FIG. 7C, the offset torque is moved at a higher speed than the normal inverted pendulum control immediately before the step, and the step is easily overcome. In this case, the inclination angle of the main body 10 is prevented from being inclined in the opposite direction to the traveling direction.
  • the control unit 21 determines whether or not a predetermined time has elapsed since switching to the second control mode (s28), and returns to the first control mode after the predetermined time has elapsed (s29). Also in this example, when the state where the step detection sensor 25 does not detect a step (for example, when the height h is less than the threshold) has passed for a predetermined time or more, it is determined that the step has been exceeded and the first step is detected. You may make it return to control mode. Even when the level difference detection sensor 25 detects a level difference after a predetermined time has elapsed, the mode returns to the first control mode, but the mode is not switched to the second control mode until the level difference is no longer detected.
  • a predetermined time for example, when the height h is less than the threshold
  • FIG. 9 is a schematic explanatory view showing the operation of the handcart 1 when overcoming a step according to the second modification.
  • the first control mode is stopped for a certain period of time, and the wheel 11 is moved backward with respect to the traveling direction of the handcart 1. This is a technique for overcoming the step by shifting to the control mode 2.
  • the transition to the second control mode is triggered by the detection of a collision with a step.
  • the step detection sensor 25 is preferably a shock sensor or an acceleration sensor that detects an impact of contact between the step and the handcart 1.
  • the control unit 21 can also detect a collision with a step using the inclination angle sensor 20 or the rotary encoder 28.
  • the control unit 21 calculates the angular velocity of the wheel 11 based on the rotation angle of the wheel 11 input from the rotary encoder 28, and determines that the vehicle has collided with a step when the angular velocity of the wheel 11 changes abruptly.
  • the wheel 11 temporarily stops. Therefore, when the output change value of the rotary encoder 28 becomes 0, it may be determined that the vehicle collides with the step.
  • the rotary encoder 28 functions as a wheel stop detection unit that detects that the wheel has stopped.
  • the tilt angle in the pitch direction of the main body 10 temporarily changes greatly, so that the control unit 21 rapidly changes the tilt angle in the pitch direction input from the tilt angle sensor 20.
  • control unit 21 may determine that the main unit 10 has collided with a step when the acceleration in the traveling direction of the main body unit 10 or the angular velocity in the pitch direction changes suddenly.
  • FIG. 10 is a flowchart showing the operation of the handcart 1 when overcoming a step according to the second modification.
  • the control unit 21 normally performs the inverted pendulum control by executing the first control mode.
  • the control unit 21 determines whether the step has a height that can be overcome (s32).
  • the method shown in FIG. 6 is used as a method for determining whether or not the vehicle can be overcome.
  • the process of s32 is not essential and may be omitted.
  • control unit 21 notifies the user that it is impossible to get over (s33) and ends the operation.
  • control unit 21 determines that the level difference can be overcome, the control unit 21 stops the first control mode and moves the wheel 11 backward with respect to the traveling direction of the handcart 1 as shown in FIG. (S34). Thereafter, the control unit 21 switches to the second control mode (s35). Thereby, it will move at high speed just before a level
  • control unit 21 determines whether or not a predetermined time has elapsed since switching to the second control mode (s36), and returns to the first control mode after the predetermined time has elapsed (s37). As described above, as shown in FIG. 9C, the step is overcome, and the normal first control mode is executed again to perform the inverted pendulum control.
  • FIG. 11 is an external view of a handcart 1A according to an application example.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • one end of a rod-shaped support portion 12 is attached to the back surface ( ⁇ Y direction) of the main body portion 10.
  • One end of the support portion 12 is rotatably connected to the main body portion 10.
  • An auxiliary wheel 13 is attached to the other end of the support portion 12.
  • the support portion 12 is grounded and supports the main body portion 10 when the main body portion 10 is largely inclined from the vertical direction, and is intended to prevent the main body portion 10 from toppling over (see FIG. 3 (B)).
  • the auxiliary wheel 13 is not an essential component in the present invention, but the provision of the auxiliary wheel 13 enables the wheel 11 and the auxiliary wheel even when the main body 10 is largely inclined from the vertical direction when the power is turned off.
  • the handcart 1A can be used as a handcart.
  • the support part 12 and the auxiliary wheel 13 may be two or more. Further, the attachment position of the back surface of the main body 10 and the support portion 12 may be on the rotation axis of the wheel 11.
  • FIG. 12 is a block diagram showing a configuration of the handcart 1A according to the application example. Components that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
  • the handcart 1A according to the application example includes a rotary encoder 29 for the support portion.
  • the support unit rotary encoder 29 detects a crossing angle that is an angle formed by the main body unit 10 and the support unit 12, and outputs the detection result to the control unit 21.
  • the handcart 1A according to the application example performs the inverted pendulum control in consideration of the inclination angle of the ground by using the support portion rotary encoder 29.
  • FIG. 13 is a block diagram illustrating a functional configuration of the control unit 21 according to the application example. Components that are the same as those in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
  • the control unit 21 includes an inclination estimation unit 215.
  • the inclination estimation unit 215 has a value of the support rotary encoder 29 (that is, an intersection angle between the main body 10 and the support 12) and a value of the inclination angle sensor 20 (that is, the inclination angle of the main body 10 with respect to the vertical direction). To estimate the ground inclination angle.
  • the intersection angle between the main body 10 and the support 12 is ⁇ 1
  • the inclination angle of the main body 10 with respect to the direction perpendicular to the ground is ⁇ 2
  • the length of the main body 10 (the main body 10 and the support 12 L 1 and length) from the intersection point to the wheel 11 of the length of the support portion 12 (length from the intersection of the main body portion 10 and the support portion 12 to the auxiliary wheels 13) and L 2
  • the inclination angle ⁇ 2 of the main body 10 with respect to the direction perpendicular to the ground is
  • the handcart 1A when the handcart 1A is moving uphill, it is possible to obtain a force for pulling the user by correcting the target angle so that the main body portion 10 is inclined forward from the vertical direction. You can climb the slope comfortably.
  • a force that pushes the user backward can be obtained by correcting the target angle so that the main body 10 tilts backward from the vertical direction. And the user can go down the hill more safely.
  • FIG. 15 is a diagram showing an application example of height detection.
  • the handcart 1 can change the irradiation angle of infrared rays (or ultrasonic waves, etc.) to obtain two-dimensional obstacle shape information (step height and distance to the step).
  • the resulting scanner 25A is provided. Thereby, the height h of the step can be detected in more detail.
  • FIG. 15 shows an example of irradiating infrared rays by changing the angle in the vertical direction. However, by providing a scanner that irradiates infrared rays by changing the angle in the horizontal direction, the shape of the three-dimensional obstacle is shown. You can also get information.
  • the scanner When the scanner is installed in the main body unit 10, the scanner also swings in the pitch direction according to the swing of the main body unit 10 in the pitch direction. Infrared angle may be off. However, since the oscillation is about several degrees at the maximum, the deviation may be regarded as an error and ignored.
  • the tilt angle in the pitch direction of the main body 10 may be detected using the gyro sensor 24 or the like, and the irradiation angle of the step detection sensor 25 may be corrected with the detected tilt angle.
  • an actuator that swings the scanner in the pitch direction may be provided, and the actuator may be driven according to the detected inclination angle to cancel the swing of the main body 10 in the pitch direction.
  • FIG. 16 is a diagram illustrating an example in which the user inputs that there is a step using the user I / F 27 provided in the grip unit.
  • the step detection input unit 214 may be configured such that the user receives an input indicating that there is a step from the user I / F 27 provided in the grip unit 16.
  • the user I / F 27 may be configured by one switch, as illustrated in FIG. 16B, the user I / F 27 is configured by a plurality of switches (switch 27A, switch 27B, switch 27C, and switch 27D). Also good.
  • the switch 27A is an off switch.
  • the control unit 21 performs the inverted pendulum control by executing the first control mode.
  • the control unit 21 executes the second control mode and adds the offset torque.
  • the switch 27B is a Low switch, and when the switch 27B is pressed, a relatively weak offset torque is added.
  • the switch 27D is a high switch, and when the switch 27D is pressed, a relatively strong offset torque is added.
  • the switch 27C is a Mid switch, and an offset torque that is stronger than the offset torque when the switch 27B is pressed and weaker than the offset torque when the switch 27D is pressed is added.
  • the user I / F 27 may be configured by one rotary switch 27E.
  • the rotary switch 27E includes a potentiometer or an encoder.
  • the control unit 21 detects the rotational position of the rotary switch 27E using a potentiometer or an encoder.
  • the control unit 21 performs the inverted pendulum control by executing the first control mode.
  • the control unit 21 executes the second control mode and adds the offset torque.
  • the control unit 21 adds a relatively strong offset torque, and the rotational position of the rotary switch 27E.
  • a relatively strong offset torque is added, and when the rotational position of the rotary switch 27E corresponds to the Mid position, it is stronger than Low and weaker than High. Add the offset torque.
  • the rotation position returns to the position corresponding to the Off position.
  • the method of returning the switch to the initial state can be realized by incorporating an elastic body such as a spring, for example.
  • FIG. 17 is a flowchart showing the operation of the control unit 21 when detecting the height of the step and the distance from the step in detail.
  • the control unit 21 determines whether or not the height of the level difference is equal to or higher than the first threshold (s52).
  • the first threshold is set to a height that can be regarded as a flat ground.
  • the control unit 21 further determines whether or not the wheel 11 is stopped (s59). When the wheel is not stopped, it is determined that the vehicle is traveling on a flat ground, and the current state is maintained. That is, the first control mode is maintained (s58).
  • the control unit 21 determines that the vehicle cannot move forward by colliding with the step even if the step is low, stops the first control mode, and moves the wheel 11.
  • the vehicle is moved backward by a predetermined time or a predetermined distance with respect to the traveling direction of the handcart 1 (s60), and then is switched to the second control mode (s56).
  • the control unit 21 determines that the height of the step is equal to or higher than the first threshold, the control unit 21 determines that there is a step, and further determines whether the height of the step is equal to or lower than the second threshold (s53). ).
  • the second threshold value is set corresponding to the height at which the wheel 11 can get over.
  • the control unit 21 maintains the current state when the height difference cannot be overcome (s58). Note that the control unit 21 may notify the user that it is impossible to get over and end the operation.
  • the control unit 21 determines that the height of the step is equal to or less than the second threshold, the control unit 21 determines that the step is a step that can be overcome, and further determines whether the distance from the step is equal to or less than the third threshold ( s54).
  • the third threshold value is set in correspondence with a distance that can be regarded as approaching the step so that it cannot move forward.
  • the control unit 21 determines that the distance from the step is equal to or smaller than the third threshold value, the control unit 21 stops the first control mode and moves the wheel 11 backward by a predetermined time or a predetermined distance with respect to the traveling direction of the handcart 1. (S60), and then switch to the second control mode (s56).
  • the control unit 21 determines whether it is equal to or less than the fourth threshold value (s55).
  • the fourth threshold value is set corresponding to a distance at which the wheel 11 can be regarded as not reaching the step even when the distance to the step is too far and the second control mode is entered.
  • the control unit 21 maintains the current state when the distance to the step exceeds the fourth threshold (s58), and enters the second control mode when the distance to the step is equal to or less than the fourth threshold.
  • Switch (s56) That is, the control unit 21 switches from the first control mode to the second control mode only when the distance from the step is within a predetermined range.
  • control unit 21 determines whether or not a predetermined time has elapsed since switching to the second control mode (s57), and returns to the first control mode after the predetermined time has elapsed (s58). As described above, the control unit 21 performs detailed detection of the height of the step and the distance from the step, and switches between the first control mode and the second control mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Handcart (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Rehabilitation Tools (AREA)

Abstract

 倒立振子制御を行う手押し車において、段差を乗り越えやすくする。 第1の制御モード時には、倒立振子制御を常に行うことにより、本体部(10)の姿勢を一定に保つ。例えば、ユーザが切替スイッチを操作した場合、オフセットトルクが加算され、車輪駆動部(26)に印加されるトルクが大きくなる第2の制御モードに変化する。この場合、通常よりも高速に移動することになるため、通常の倒立振子制御の状態では乗り越えることが難しい段差が存在する場合あっても乗り越えやすくなる。

Description

手押し車
 この発明は、車輪を備えた手押し車に関し、特に車輪を駆動、制御する手押し車に関するものである。
 従来、車輪を駆動、制御して倒立振子制御を行う移動体が知られている(例えば、特許文献1を参照)。
 また、特許文献2には、キャスタの前輪にバネを介して接続された補助輪を有する4輪歩行補助車が記載されている。特許文献2の4輪歩行補助車は、段差が存在した場合にバネが伸び、補助輪が先に乗り上げることで段差を乗り越えやすくしたものである。
特開2011-168236号公報 特許第4344655号公報
 倒立振子制御を行う移動体では、駆動する車輪に大きな荷重がかかるため、段差を乗り越えることが難しいという課題がある。
 一方で、特許文献2のような装置では、左右の車輪にかかる荷重が異なると片側のキャスタだけ高さが変わる可能性があり、転倒する可能性がある。
 そこで、この発明は、倒立振子制御を行う手押し車において、段差を乗り越えやすくすることを目的とする。
 本発明の手押し車は、車輪と、前記車輪を駆動する駆動部と、前記駆動部の動作を制御する制御部と、前記車輪を回転可能に支持する本体部と、前記本体部に把持部と、前記本体部のピッチ方向の傾斜角の角度変化または角速度変化を検出する第1センサ部と、段差検知の有無を受け付ける段差検知入力部と、を備えている。
 そして、前記制御部は前記第1センサ部の出力に基づいて、前記本体部のピッチ方向の傾斜角の目標値に対する角度変化が0になるように前記駆動部の動作を制御する第1の制御モードと、前記第1の制御モードに比べて、前記駆動部に印加されるトルクが大きい第2の制御モードと、を有し、前記段差検知入力部の出力に基づいて、前記第1の制御モードと前記第2の制御モードとを切り替えることを特徴とする。
 第1の制御モードでは、倒立振子制御により、本体部の姿勢を鉛直方向あるいは鉛直に近い方向に維持する。この第1の制御モードでは、当該手押し車が自立した状態となる。この第1の制御モードにおいて、例えばスイッチにより段差が有る旨を入力すると、駆動部に印加されるトルクが大きくなる第2の制御モードに変化する。この場合、通常よりも高速に移動することになるため、通常の倒立振子制御の状態では乗り越えることが難しい段差が存在する場合あっても乗り越えやすくなる。
 なお、第2の制御モードでは、本体部のピッチ方向の傾斜角の目標値を手押し車の進行方向に対して順方向に再設定することで、本体部の姿勢を前傾にすることが望ましい。前傾姿勢にすると、倒立振子制御により車輪を前方に移動させるトルクが働く。したがって、このトルクにより段差を乗り越えやすくする。また、通常よりも高速で移動する場合、段差乗り越え時に後傾姿勢になる可能性があるため、前傾姿勢にすることで、段差を乗り越えた後に本体部の姿勢を鉛直方向あるいは鉛直に近い方向になる効果もある。また、この場合、本体部のピッチ方向の傾斜角の目標値の再設定して前傾姿勢に変更した後にオフセットトルクを加えることが好ましい。
 また、第1の制御モードから第2の制御モードへの移行時に、一定時間、倒立振子制御を停止して手押し車を後進させ、その後、第2の制御モードに移行する態様も可能である。ユーザーは、歩行時に把持部を常に手で保持している。したがって、一定時間、倒立振子制御を停止して手押し車を後進させると、把持部の進行方向の位置は変わらず、車輪のみ後進するため、本体部を前傾姿勢にすることが可能となる。
 なお、段差検知入力部は、例えばスイッチ等から段差が有る旨の入力を受け付ける。スイッチは、把持部に設けられた複数の押しボタン型のスイッチであってもよいし、把持部に設けられたポテンショメータまたはエンコーダを用いた回転型スイッチであってもよい。なお、これらのスイッチは、段差検知入力を受け付けた後に、初期状態に戻ることが好ましい。スイッチの初期状態への復帰方法は、例えばバネのような弾性体を内蔵することで実現が可能である。
 また、段差検知入力部は、段差を検知する第2センサ部である態様も可能である。段差を検知するには、例えば超音波センサや赤外線センサ等の測距センサ、あるいは段差に車輪が衝突した際の衝撃を検知するショックセンサ、加速度センサ、角速度センサ、傾斜角センサ等を用いる。
 また、第2センサ部は、車輪が停止したことを検知する車輪停止検知部を含むことも可能である。車輪の停止を検知するには、例えばロータリエンコーダで車輪の回転を検出する。車輪停止検知部は、ロータリエンコーダの出力値が0あるいは急峻な変化を検出した場合に、車輪が停止したと判断する。また、前記第2センサ部が測距センサである場合、制御部は、測距センサによって検知された段差までの距離に基づいて、段差乗り越えが可能か否かを判別することが好ましい。
 さらに、第2センサ部は、進行方向にある段差の高さを検知する段差高さ検知センサであることが好ましい。この場合、制御部は、段差高さ検知センサが所定の閾値以上の高さの段差を検知した際に段差ありと判断し、第1の制御モードから第2の制御モードに切り替える。
 また、制御部は、段差ありと判断した際に、段差検知センサが検知した段差の高さの情報に基づいて、段差乗り越え可能か否かを判断し、段差乗り越え可能と判断したときのみ第1の制御モードから第2の制御モードに切り替えることが好ましい。
 また、制御部は、測距センサが検知された段差までの距離が所定範囲内である場合に、第1の制御モードから第2の制御モードに切り替えることが好ましい。
 この発明によれば、倒立振子制御を行う手押し車において、段差を乗り越えやすくすることができる。
手押し車の外観図である。 手押し車の構成を示す制御構成図である。 制御部21の機能的構成を示すブロック図である。 段差乗り越え時の手押し車の動作を示した概略説明図である。 段差乗り越え時の手押し車の動作を示したフローチャートである。 高さ検出の一例を示す図である。 変形例1の動作を示した概略説明図である。 変形例1の動作を示したフローチャートである。 変形例2の動作を示した概略説明図である。 変形例2の動作を示したフローチャートである。 応用例に係る手押し車の外観図である。 応用例に係る手押し車の構成を示す制御構成図である。 制御部21の機能的構成を示すブロック図である。 地面傾斜角、本体傾斜角度、および交差角度の関係を示す図である。 高さ検出の応用例を示す図である。 利用者が、把持部に設けられたユーザI/F27を用いて段差が有る旨を入力する場合の例を示す図である。 段差の高さおよび段差との距離の検出を詳細に行う場合の制御部21の動作を示すフローチャートである。
 図1は、本発明の実施形態に係る手押し車1の外観図である。図2は、手押し車1の構成を示すブロック図である。
 手押し車1は、例えば、直方体形状の本体部10を備えている。本体部10は、鉛直方向(図中Z,-Z方向)に長く、奥行き方向(図中Y,-Y方向)に短い形状である。本体部10は、内部に制御用の基板や電池等を内蔵している。
 本体部10の鉛直下方向(-Z方向)の下部のうち、左右(図中X,-X方向)の端部には、2つの車輪11が取り付けられている。2つの車輪11は、同じ軸に取り付けられ、同期して回転する。ただし、2つの車輪11は、それぞれ個別に駆動させ、回転させることも可能である。また、この実施形態においては、車輪11は2輪である例を示しているが、1輪あるいは3輪以上であってもよい。
 また、本体部10の鉛直方向上部には、例えば、円筒形状の支柱15の一端が取り付けられ、支柱15の他端には、T字型のグリップ部16が取り付けられている。グリップ部16の上面には、電源スイッチ等のユーザインタフェース(図2に示すユーザI/F27)が設けられている。ユーザは、グリップ部16を握る、あるいは前腕等をグリップ部16に載せ、グリップ部と前腕等の摩擦により、手押し車1を使用する。
 なお、本体部10は、実際にはカバーが取り付けられ、内部の基板等が外観上見えないようになっている。
 次に、手押し車1の構成および基本動作について説明する。図2に示すように、手押し車1は、傾斜角センサ20、制御部21、ROM22、RAM23、ジャイロセンサ24、段差検知センサ25、車輪駆動部26、ユーザI/F27、およびロータリエンコーダ28を備えている。
 制御部21は、手押し車1を統括的に制御する機能部であり、ROM22に記憶されているプログラムを読み出し、当該プログラムをRAM23に展開することで種々の動作を実現する。傾斜角センサ20は、本体部10のピッチ方向(図1における車輪11の軸を中心とする回転方向)の鉛直方向に対する傾斜角を検知し、制御部21に出力する。ジャイロセンサ24は、本体部10のピッチ方向の角速度を検知し、制御部21に出力する。 ロータリエンコーダ28は、車輪11の回転角度に応じた出力値を制御部21に出力する。段差検知センサ25は、手押し車1の進行方向に存在する段差を検知するセンサであり、例えば超音波センサ、赤外線センサ、ショックセンサ、加速度センサ、角速度センサ、傾斜角センサ等からなる。
 図3は、制御部21の機能的構成を示したブロック図である。制御部21は、機能的に本体部傾斜角度制御器212、本体部傾斜角速度制御器213、および段差検知入力部214を備えている。本体部傾斜角度制御器212は、目標の傾斜角度(例えば0度)と、傾斜角センサ20から入力された現時点の本体部10の傾斜角度と、の差分値を入力し、この差分値が0となるような本体部10の傾斜角速度を算出する。そして、本体部傾斜角速度制御器213は、本体部傾斜角度制御器212で算出された傾斜角速度と、ジャイロセンサ24から入力された現時点の本体部10の傾斜角速度と、の差分値を入力し、この差分値が0となるような印加トルクを算出する。このようにして算出されたトルクが車輪駆動部26に入力される。
 図2において、車輪駆動部26は、車輪11に取り付けられた軸を回転させるモータを駆動する機能部であり、上記本体部傾斜角速度制御器213で算出されたトルクを車輪11のモータに印加し、車輪11を回転させる。
 このようにして、手押し車1は、第1の制御モードとして、倒立振子制御を行い、本体部10の姿勢を一定に保つように制御する。仮に、ユーザが手押し車1を進行方向に対して順方向に押す動作を行うと、本体部10の傾斜角度が目標傾斜角度に対して順方向に傾くことになるため、本体部10の傾斜角度を目標傾斜角度に維持するために、車輪11を順方向に回転させるトルクが働く。これにより、ユーザの移動に追従して手押し車1も移動する。
 なお、ここでは、本体部10のピッチ方向の傾斜角の角度変化を検知する手段として、ジャイロセンサ24および傾斜角センサ20を用いる例を示したが、加速度センサを用いることも可能であるし、どのようなセンサを用いてもよい。
 そして、制御部21は、段差の有無に応じて、第1の制御モードと第2の制御モードとを切り替える。すなわち、図3において、段差検知入力部214は、段差検知センサ25(またはユーザI/F27)から段差検知の入力を受け付けた場合に、上記印加トルクにオフセットトルクを加算する。制御部21は、オフセットトルクを加算する第2の制御モードを実行することで、手押し車1が通常の倒立振子制御よりも高速に移動することになるため、通常の倒立振子制御の状態では乗り越えることが難しい段差が存在する場合あっても乗り越えやすくなる。
 図4は、段差乗り越え時の手押し車1の動作を示した概略説明図であり、図5は、段差乗り越え時の手押し車1の動作を示したフローチャートである。制御部21は、図4(A)に示すように、通常は第1の制御モードを実行して倒立振子制御を行う。そして、制御部21は、段差検知センサ25が段差を検知した場合(s11)、乗り越え可能な高さの段差であるか否かを判断する(s12)。ただし、s12の処理は必須ではなく、省略してもよい。
 図6は、高さ検出の一例を示す図である。この図6は、段差検知センサ25が超音波センサである場合の例を示している。段差検知センサ25は、超音波を送信してから反射波を受信するまでの時間差に基づいて、進行方向の地面との距離L2を測定する。制御部21は、この測定した距離L2を用いて段差の高さhを求める。高さhは、h=L1-L2cosθ1の式に基づいて算出することができる。制御部21は、この高さhが車輪11の半径未満である場合、乗り越えられる段差であると判断し、半径以上である場合は乗り越えられない段差であると判断する。なお、乗り越えられる段差高さの判定閾値は、タイヤの半径以外にも、使用するモータの最大トルクの制約なども影響するため、事前に実験をして求めた値を用いてもよい。
 図5に戻り、制御部21は、乗り越えられない段差であると判断した場合、LEDやLCD、あるいは音声により、ユーザに乗り越え不可である旨を通知し(s13)、動作を終える。
 一方、制御部21は、乗り越えられる段差であると判断した場合、第2の制御モードに切り替える。これにより、オフセットトルクが加算され、図4(B)に示すように段差の直前で通常の倒立振子制御よりも高速に移動することになり、段差を乗り越えやすくなる。ただし、図4(B)に示すように、オフセットトルクが加算されると、本体部10の傾斜角度が一時的に目標傾斜角からずれて、手押し車1の進行方向に対して逆方向に傾くことになる。
 そして、制御部21は、第2の制御モードに切り替えてから所定時間が経過したか否かを判断し(s15)、所定時間経過後に第1の制御モードに復帰する(s16)。なお、制御部21は、このs15の処理において、段差検知センサ25が段差を検知しない状態(例えば高さhがしきい値未満である場合)が所定時間以上経過した場合に、段差を超えたと判断して第1の制御モードに復帰するようにしてもよい。所定時間経過後に段差検知センサ25が段差を検知している場合も第1の制御モードに復帰するが、当該段差を検知しなくなるまでは、第2の制御モードに切り替えることがないようにする。
 以上のようにして、図4(C)に示すように段差を乗り越え、再び通常の第1の制御モードを実行して倒立振子制御を行う。なお、第2の制御モードから第1の制御モードに切り替える場合、オフセットトルクを徐々に小さくすることで第1の制御モードに復帰することが好ましい。また、オフセットトルクは、本体部10の傾斜角度または角速度の変化に応じて調整されることが好ましい。
 なお、制御部21は、ユーザがユーザI/F27のスイッチ等を介して段差が有る旨を入力すると、第2の制御モードに切り替える動作を行ってもよい。
 次に、図7は、変形例1に係る段差乗り越え時の手押し車1の動作を示した概略説明図である。
 この例では、本体部10のピッチ方向の目標傾斜角度を、手押し車1の進行方向に対して順方向に再設定することで、図7(B)に示すように手押し車1を前傾姿勢にする。このように第2の制御モードに移行するよりも前に前傾姿勢にすることで、オフセットトルクが加算されたときに、図7(C)に示すように本体部10のピッチ方向の傾斜角度が進行方向に対して逆方向に傾くことを防止する。
 なお、この場合、オフセットトルクを加えなくとも、倒立振子制御により車輪を前方に移動させるトルクが働くため、通常よりも高速に移動することになり、段差を乗り越えやすくすることができる。
 図8は、変形例1に係る段差乗り越え時の手押し車1の動作を示したフローチャートである。制御部21は、図7(A)に示したように、通常は第1の制御モードを実行して倒立振子制御を行う。そして、制御部21は、段差検知センサ25が段差を検知した場合(s21)、乗り越え可能な高さの段差であるか否かを判断する(s22)。乗り越え可能であるか否かの判断手法は、例えば図6に示した手法を用いる。乗り越え不可能な高さの段差であった場合は、乗り越え不可能である旨をユーザに通知し(s23)、動作を終了する。ただし、s22の処理は必須ではなく、省略してもよい。
 一方、制御部21は、乗り越えられる段差であると判断した場合、段差との距離が第1のしきい値α以下であるか否かを判断する(s24)。段差との距離が所定のしきい値α以下であると判断した場合、本体部10の目標傾斜角度を、手押し車1の進行方向に対して順方向に再設定することで、図7(B)に示すように手押し車1を前傾姿勢にする(s25)。
 そして、制御部21は、段差との距離が第2のしきい値β(β<α)以下であるか否かを判断する(s26)。段差との距離が所定のしきい値β以下であると判断した場合、第2の制御モードに切り替える(s27)。これにより、オフセットトルクが加算され、図7(C)に示すように段差の直前で通常の倒立振子制御よりも高速に移動することになり、段差を乗り越えやすくなる。この場合、本体部10の傾斜角度が進行方向に対して逆方向に傾くことを防止する。
 そして、制御部21は、第2の制御モードに切り替えてから所定時間が経過したか否かを判断し(s28)、所定時間経過後に第1の制御モードに復帰する(s29)。なお、この例においても、段差検知センサ25が段差を検知しない状態(例えば高さhがしきい値未満である場合)が所定時間以上経過した場合に、段差を超えたと判断して第1の制御モードに復帰するようにしてもよい。所定時間経過後に段差検知センサ25が段差を検知している場合も第1の制御モードに復帰するが、当該段差を検知しなくなるまでは、第2の制御モードに切り替えることがないようにする。
 次に、図9は、変形例2に係る段差乗り越え時の手押し車1の動作を示した概略説明図である。
 この例では、第1の制御モードから第2の制御モードへの移行時に、一定時間、第1の制御モードを停止して車輪11を手押し車1の進行方向に対して後進させ、その後、第2の制御モードに移行することで、段差を乗り越える手法である。
 また、この例では、段差との衝突を検知したことをトリガとして第2の制御モードに移行する。この場合、段差検知センサ25は、段差と手押し車1が接触した衝撃を検出するショックセンサや加速度センサを用いることが好ましい。なお、制御部21は、傾斜角センサ20、またはロータリエンコーダ28を用いて段差との衝突を検知することも可能である。手押し車1は、平地を走行する場合、車輪11の角速度はほぼ一定であり、急激な変動はない。一方、手押し車1が段差に衝突すると、車輪11の角速度が大きく変化(低下)する。したがって、制御部21は、ロータリエンコーダ28から入力される車輪11の回転角度に基づいて車輪11の角速度を算出し、当該車輪11の角速度が急激に変化した場合に段差に衝突したと判断する。また、段差に衝突した場合には、一時的に車輪11が停止するため、ロータリエンコーダ28の出力変化値が0になった場合に段差に衝突したと判断してもよい。この場合、ロータリエンコーダ28は、車輪が停止したことを検知する車輪停止検知部として機能する。また、段差に衝突した場合には、一時的に本体部10のピッチ方向の傾斜角度も大きく変化するため、制御部21は、傾斜角センサ20から入力されるピッチ方向の傾斜角度が急激に変化した場合に段差に衝突したと判断してもよい。また、制御部21は、一時的に本体部10の進行方向の加速度、あるいはピッチ方向の角速度が急激に変化した場合に段差に衝突したと判断してもよい。
 図10は、変形例2に係る段差乗り越え時の手押し車1の動作を示したフローチャートである。制御部21は、図9(A)に示したように、通常は第1の制御モードを実行して倒立振子制御を行う。そして、制御部21は、段差との接触を検知した場合(s31)、乗り越え可能な高さの段差であるか否かを判断する(s32)。乗り越え可能であるか否かの判断手法は、例えば図6に示した手法を用いる。ただし、s32の処理は必須ではなく、省略してもよい。
 制御部21は、乗り越え不可能な高さの段差であった場合は、乗り越え不可能である旨をユーザに通知し(s33)、動作を終了する。
 一方、制御部21は、乗り越えられる段差であると判断した場合、図9(B)に示すように、第1の制御モードを停止して車輪11を手押し車1の進行方向に対して後進させる(s34)。その後、制御部21は、第2の制御モードに切り替える(s35)。これにより、段差の直前から高速に移動することになり、段差を乗り越えやすくなる。
 そして、制御部21は、第2の制御モードに切り替えてから所定時間が経過したか否かを判断し(s36)、所定時間経過後に第1の制御モードに復帰する(s37)。以上のようにして、図9(C)に示すように段差を乗り越え、再び通常の第1の制御モードを実行して倒立振子制御を行う。
 なお、変形例2においても、ユーザがユーザI/F27のスイッチ等を介して段差が有る旨を入力すると、一定時間、第1の制御モードを停止して車輪11を手押し車1の進行方向に対して後進させ、その後、第2の制御モードに移行することで、段差を乗り越える態様としてもよい。
 次に、図11は、応用例に係る手押し車1Aの外観図である。図1と共通する構成については同一の符号を付し、説明を省略する。この応用例に係る手押し車1Aは、本体部10の背面(-Y方向)に、棒状の支持部12の一端が取り付けられている。支持部12の一端は、本体部10に回転可能に接続されている。支持部12の他端には、補助輪13が取り付けられている。支持部12は、本体部10が鉛直方向から大きく傾いた状態となった場合に、接地され、本体部10を支持するものであり、本体部10の転倒を防止するためのものである(図3(B)を参照)。なお、補助輪13は、本発明において必須の構成ではないが、補助輪13を設けることで、電源オフ時に本体部10が鉛直方向から大きく傾いた状態となった場合においても、車輪11および補助輪13が接地されることにより、当該手押し車1Aを手押し車として使用することができる。また、支持部12および補助輪13は、二つ以上であってもよい。また、本体部10の背面と支持部12の取り付け位置は、車輪11の回転軸上であってもよい。
 図12は、応用例に係る手押し車1Aの構成を示すブロック図である。図2と共通する構成については同一の符号を付し、説明を省略する。応用例に係る手押し車1Aは、支持部用ロータリエンコーダ29を備えている。支持部用ロータリエンコーダ29は、本体部10と支持部12とのなす角度である交差角度を検知し、検知結果を制御部21に出力する。応用例に係る手押し車1Aは、支持部用ロータリエンコーダ29を用いて地面の傾斜角度を考慮した倒立振子制御を行うものである。
 図13は、応用例に係る制御部21の機能的構成を示したブロック図である。図3と共通する構成については同一の符号を付し、説明を省略する。制御部21は、斜度推定部215を備えている。斜度推定部215は、支持部用ロータリエンコーダ29の値(すなわち、本体部10と支持部12の交差角度)と、傾斜角センサ20の値(すなわち、鉛直方向に対する本体部10の傾斜角度)を入力し、地面傾斜角を推定する。
 図14に示すように、本体部10と支持部12の交差角度をθ、地面と垂直方向に対する本体部10の傾斜角度をθ、本体部10の長さ(本体部10と支持部12の交差位置から車輪11までの長さ)をL、支持部12の長さ(本体部10と支持部12の交差位置から補助輪13までの長さ)をLとすると、Lcosθ=Lcos(θ-θ)の関係から、地面と垂直方向に対する本体部10の傾斜角度θは、
Figure JPOXMLDOC01-appb-M000001
 の計算式により算出することができる。地面傾斜角θは、鉛直方向に対する本体部10の傾斜角度θから、θ=θ+θにより求められる。
 斜度推定部215は、上記手法で算出した地面傾斜角θに基づいて、適切な補正角度を算出する。これにより、例えば手押し車1Aが上り坂を前進している場合、鉛直方向よりも前方に本体部10が傾斜するように目標角度を補正することでユーザを牽引する力を得ることができ、より快適に坂道を上ることができる。また別の例では、下り坂を前進している場合、鉛直方向よりも後方に本体部10が傾斜するように目標角度を補正することでユーザを後方に押し返す力を得ることができ、ブレーキ効果として働き、ユーザはより安全に坂道を下ることができる。
 図15は、高さ検出の応用例を示す図である。図15の例では、手押し車1は、赤外線(または超音波等でもよい。)の照射角度を変えることで、2次元的な障害物の形状情報(段差の高さおよび段差までの距離)が得られるスキャナ25Aを備えている。これにより、段差の高さhをより詳細に検出することができる。また、図15は、上下方向に角度を変えて赤外線を照射する例を示しているが、さらに左右方向に角度を変えて赤外線を照射するスキャナを備えることで、3次元的な障害物の形状情報を得ることもできる。
 なお、本体部10にスキャナを設置する場合、本体部10のピッチ方向の揺動に応じてスキャナもピッチ方向に揺動することになるため、目的とする照射角度に対して実際に照射される赤外線の角度がずれる可能性がある。ただし、揺動は、最大でも数度程度のため、当該ずれは誤差とみなして無視してもよい。また、ジャイロセンサ24等を用いて本体部10のピッチ方向の傾斜角を検出し、段差検知センサ25の照射角度を検出した傾斜角で補正してもよい。また、スキャナをピッチ方向に揺動させるアクチュエータを備え、検出した傾斜角に応じてアクチュエータを駆動させ、本体部10のピッチ方向の揺動を相殺するようにしてもよい。
 図16は、利用者が、把持部に設けられたユーザI/F27を用いて段差が有る旨を入力する場合の例を示す図である。段差検知入力部214は、図3に示したように、利用者が把持部16に設けられたユーザI/F27から段差が有る旨の入力を受け付ける態様とすることができる。ユーザI/F27は、1つのスイッチからなる態様であってもよいが、図16(B)に示すように、複数のスイッチ(スイッチ27A、スイッチ27B、スイッチ27C、およびスイッチ27D)からなる態様としてもよい。
 この場合、スイッチ27Aは、オフスイッチである。利用者が当該スイッチ27Aを押すと、制御部21は、第1の制御モードを実行して倒立振子制御を行う。利用者がスイッチ27B、スイッチ27C、またはスイッチ27Dを押すと、制御部21は、第2の制御モードを実行してオフセットトルクを加算する。スイッチ27BはLowスイッチであり、スイッチ27Bが押下された場合には、相対的に弱いオフセットトルクが加算される。スイッチ27DはHighスイッチであり、スイッチ27Dが押下された場合には、相対的に強いオフセットトルクが加算される。スイッチ27CはMidスイッチであり、スイッチ27Bが押下された場合のオフセットトルクより強く、スイッチ27Dが押下された場合のオフセットトルクよりも弱いオフセットトルクが加算される。
 また、ユーザI/F27は、図16(C)に示すように、1つの回転型スイッチ27Eからなる態様であってもよい。回転型スイッチ27Eは、ポテンショメータまたはエンコーダを備えている。制御部21は、ポテンショメータまたはエンコーダにより回転型スイッチ27Eの回転位置を検出する。制御部21は、回転型スイッチ27Eの回転位置が、Offに対応する位置である場合には、第1の制御モードを実行して倒立振子制御を行う。制御部21は、回転型スイッチ27Eの回転位置が、High、Mid、またはLowに対応する場合には、第2の制御モードを実行してオフセットトルクを加算する。図16(B)と同様に、制御部21は、回転型スイッチ27Eの回転位置が、Highの位置に対応する場合には、相対的に強いオフセットトルクが加算し、回転型スイッチ27Eの回転位置が、Lowの位置に対応する場合には、相対的に強いオフセットトルクが加算し、回転型スイッチ27Eの回転位置が、Midの位置に対応する場合には、Lowより強く、かつHighよりも弱いオフセットトルクを加算する。
 なお、図16(B)に示した複数のスイッチのうちスイッチ27B、スイッチ27C、およびスイッチ27Dが押下された後、初期状態に戻る。図16(C)のように回転型スイッチ(ポテンショメータもしくはエンコーダ)である場合は、Offの位置に対応する回転位置に戻る。スイッチの初期状態への復帰方法は、例えばバネのような弾性体を内蔵することで実現が可能である。
 次に、図17は、段差の高さおよび段差との距離の検出を詳細に行う場合の制御部21の動作を示すフローチャートである。制御部21は、段差検知センサ25(またはスキャナ25A)で段差を検知した場合(s51)、段差の高さが第1閾値以上であるか否かを判断する(s52)。第1閾値は、平地であるとみなせる程度の高さに設定されている。制御部21は、段差の高さが第1閾値未満である場合、さらに車輪11が停止しているか否かを判断する(s59)。車輪が停止していない場合には平地を走行していると判断し、現在の状態を維持する。すなわち、第1の制御モードを維持する(s58)。
 一方で、制御部21は、車輪11が停止している場合には、低い段差であっても当該段差に衝突して前進できない状態と判断し、第1の制御モードを停止して車輪11を手押し車1の進行方向に対して所定時間または所定の距離だけ後進させ(s60)、その後、第2の制御モードに切り替える(s56)。
 s52において、制御部21は、段差の高さが第1閾値以上であると判断した場合、段差ありと判断し、さらに段差の高さが第2閾値以下であるか否かを判断する(s53)。第2閾値は、車輪11が乗り越え可能である高さに対応して設定されている。制御部21は、乗り越え不可能な高さの段差であった場合は、現在の状態を維持する(s58)。なお、制御部21は、乗り越え不可能である旨をユーザに通知し、動作を終了してもよい。
 制御部21は、段差の高さが第2閾値以下であると判断した場合、乗り越えられる段差であると判断し、さらに、段差との距離が第3閾値以下であるか否かを判断する(s54)。第3閾値は、前進することができないほど段差に近づいているとみなせる距離に対応して設定されている。制御部21は、段差との距離が第3閾値以下であると判断した場合、第1の制御モードを停止して車輪11を手押し車1の進行方向に対して所定時間または所定の距離だけ後進させ(s60)、その後、第2の制御モードに切り替える(s56)。
 一方で、制御部21は、段差との距離が第3閾値を超えていると判断した場合、さらに第4閾値以下であるか否かを判断する(s55)。第4閾値は、段差までの距離が遠過ぎて、第2の制御モードに移行しても、車輪11が段差まで達しないとみなせる距離に対応して設定されている。制御部21は、段差との距離が第4閾値を超えている場合には現在の状態を維持し(s58)、段差との距離が第4閾値以下である場合には第2の制御モードに切り替える(s56)。すなわち、制御部21は、段差との距離が所定範囲内である場合にのみ、第1の制御モードから第2の制御モードに切り替える。
 そして、制御部21は、第2の制御モードに切り替えてから所定時間が経過したか否かを判断し(s57)、所定時間経過後に第1の制御モードに復帰する(s58)。以上のようにして、制御部21は、段差の高さおよび段差との距離の検出を詳細に行い、第1の制御モードと第2の制御モードとを切り替える。
1…手押し車
1A…手押し車
10…本体部
11…車輪
12…支持部
13…補助輪
15…支柱
16…グリップ部
20…傾斜角センサ
21…制御部
22…ROM
23…RAM
24…ジャイロセンサ
25…段差検知センサ
26…車輪駆動部
27…ユーザI/F
28…ロータリエンコーダ
212…本体部傾斜角度制御器
213…本体部傾斜角速度制御器
214…段差検知入力部

Claims (16)

  1.  車輪と、
     前記車輪を駆動する駆動部と、
     前記駆動部の動作を制御する制御部と、
     前記車輪を回転可能に支持する本体部と、
     前記本体部に把持部と、
     前記本体部のピッチ方向の傾斜角の角度変化または角速度変化を検出する第1センサ部と、
     段差検知の有無を受け付ける段差検知入力部と、
     を備えた手押し車であって、
     前記制御部は、前記第1センサ部の出力に基づいて、前記本体部のピッチ方向の傾斜角の目標値に対する角度変化が0になるように前記駆動部の動作を制御する第1の制御モードと、
     前記第1の制御モードに比べて、前記駆動部に印加されるトルクが大きい第2の制御モードと、を有し、
     前記段差検知入力部の出力に基づいて、前記第1の制御モードと前記第2の制御モードとを切り替えることを特徴とする手押し車。
  2.  前記第2の制御モードは、前記本体部のピッチ方向の傾斜角の目標値を、前記手押し車の進行方向に対して順方向に再設定することを特徴とする請求項1に記載の手押し車。
  3.  前記第2の制御モードは、前記本体部のピッチ方向の傾斜角の目標値の再設定後、前記第1の制御モードにおいて前記制御部が前記駆動部に印加するトルクに加えて、前記第1センサ部の出力変化量に応じて所定のトルク値を加算することを特徴とする請求項2に記載の手押し車。
  4.  前記第2の制御モードは、前記第1の制御モードにおいて、前記制御部が前記駆動部に印加するトルクに加えて、前記第1センサ部の出力変化量に応じて所定のトルク値を加算することを特徴とする請求項1に記載の手押し車。
  5.  前記第1の制御モードから前記第2の制御モードへの移行時に、一定時間、前記第1の制御モードを停止して、前記車輪を前記手押し車の進行方向に対して後進させ、その後、前記第2の制御モードに移行することを特徴とする請求項1乃至請求項4のいずれかに記載の手押し車。
  6.  前記段差検知入力部は、前記把持部に設けられたスイッチを含むことを特徴とする請求項1乃至請求項5のいずれかに記載の手押し車。
  7.  前記段差検知入力部は、前記把持部に設けられたポテンショメータ、エンコーダ、または複数のスイッチを含むことを特徴とする請求項1乃至請求項6のいずれかに記載の手押し車。
  8.  前記ポテンショメータ、前記エンコーダ、または前記複数のスイッチは、段差検知入力を受け付けた後は初期状態に戻ることを特徴とする請求項7に記載の手押し車。
  9.  前記段差検知入力部は、段差を検知する第2センサ部を含むことを特徴とする請求項1乃至請求項8のいずれかに記載の手押し車。
  10.  前記第2センサ部は、段差の高さを検知する段差高さ検知センサであって、
     前記制御部は、前記段差高さ検知センサが所定の閾値以上の高さの段差を検知した際に段差ありと判断し、前記第1の制御モードから前記第2の制御モードに切り替えることを特徴とする請求項9に記載の手押し車。
  11.  前記制御部は、段差ありと判断した際に、前記段差検知センサが検知した段差の高さの情報に基づいて、段差乗り越え可能か否かを判断し、段差乗り越え可能と判断したときのみ前記第1の制御モードから前記第2の制御モードに切り替えることを特徴とする請求項10に記載の手押し車。
  12.  前記第2センサ部は、前記車輪が停止したことを検知する車輪停止検知部を含む請求項7乃至請求項11のいずれかに記載の手押し車。
  13.  前記車輪停止検知部は、前記車輪の回転数を検出するロータリエンコーダであって、前記ロータリエンコーダの出力値に応じて前記車輪が停止したことを検知することを特徴とする請求項12に記載の手押し車。
  14.  前記第2センサ部は、ショックセンサを含むことを特徴とする請求項8乃至請求項13のいずれかに記載の手押し車。
  15.  前記第2センサ部は、測距センサを含み、
     前記制御部は、前記測距センサによって検知された段差までの距離に基づいて、段差乗り越えが可能か否かを判別することを特徴とする請求項8乃至請求項14のいずれかに記載の手押し車。
  16.  前記制御部は、前記測距センサが検知された段差までの距離が所定範囲内である場合に、前記第1の制御モードから前記第2の制御モードに切り替えることを特徴とする請求項15に記載の手押し車。
PCT/JP2014/072674 2013-09-04 2014-08-29 手押し車 WO2015033859A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015535447A JP6156504B2 (ja) 2013-09-04 2014-08-29 手押し車
US15/058,749 US9751551B2 (en) 2013-09-04 2016-03-02 Pushcart

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-183389 2013-09-04
JP2013183389 2013-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/058,749 Continuation US9751551B2 (en) 2013-09-04 2016-03-02 Pushcart

Publications (1)

Publication Number Publication Date
WO2015033859A1 true WO2015033859A1 (ja) 2015-03-12

Family

ID=52628333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072674 WO2015033859A1 (ja) 2013-09-04 2014-08-29 手押し車

Country Status (3)

Country Link
US (1) US9751551B2 (ja)
JP (1) JP6156504B2 (ja)
WO (1) WO2015033859A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160059860A1 (en) * 2013-04-18 2016-03-03 Toyota Jidosha Kabushiki Kaisha Moving body control device, moving body control method, and control program
WO2018078733A1 (ja) * 2016-10-26 2018-05-03 三菱電機株式会社 歩行補助車
JP2018187050A (ja) * 2017-05-02 2018-11-29 学校法人 名城大学 歩行補助具
JP2020066330A (ja) * 2018-10-24 2020-04-30 マツダ株式会社 駐車支援装置および該方法
JP2022107619A (ja) * 2020-06-02 2022-07-22 パイオニア株式会社 段差検出装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035727A1 (ja) * 2014-09-03 2016-03-10 株式会社村田製作所 手押し車
US10065667B2 (en) * 2016-07-26 2018-09-04 Soken, Inc. Carrier apparatus
JP6943573B2 (ja) * 2017-01-31 2021-10-06 株式会社マキタ 手押し式運搬車
JP7172794B2 (ja) * 2019-03-27 2022-11-16 トヨタ自動車株式会社 自動運転システム
JP7390817B2 (ja) * 2019-08-02 2023-12-04 清水建設株式会社 進行方向状態検出装置及びそれを用いた台車

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183407A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 歩行補助装置
JP4344655B2 (ja) * 2004-06-23 2009-10-14 コンビウェルネス株式会社 キャスター
JP2011168236A (ja) * 2010-02-22 2011-09-01 Toyota Motor Corp 移動体
WO2012114597A1 (ja) * 2011-02-23 2012-08-30 株式会社村田製作所 歩行補助車

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2782505Y (zh) * 2005-01-28 2006-05-24 明门实业股份有限公司 刹车装置
JP5208906B2 (ja) * 2009-11-13 2013-06-12 本田技研工業株式会社 倒立振子型車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344655B2 (ja) * 2004-06-23 2009-10-14 コンビウェルネス株式会社 キャスター
JP2009183407A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 歩行補助装置
JP2011168236A (ja) * 2010-02-22 2011-09-01 Toyota Motor Corp 移動体
WO2012114597A1 (ja) * 2011-02-23 2012-08-30 株式会社村田製作所 歩行補助車

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160059860A1 (en) * 2013-04-18 2016-03-03 Toyota Jidosha Kabushiki Kaisha Moving body control device, moving body control method, and control program
US10005465B2 (en) * 2013-04-18 2018-06-26 Toyota Jidosha Kabushiki Kaisha Moving body control device, moving body control method, and control program
WO2018078733A1 (ja) * 2016-10-26 2018-05-03 三菱電機株式会社 歩行補助車
JPWO2018078733A1 (ja) * 2016-10-26 2019-06-27 三菱電機株式会社 歩行補助車
JP2018187050A (ja) * 2017-05-02 2018-11-29 学校法人 名城大学 歩行補助具
JP2020066330A (ja) * 2018-10-24 2020-04-30 マツダ株式会社 駐車支援装置および該方法
JP7077912B2 (ja) 2018-10-24 2022-05-31 マツダ株式会社 駐車支援装置および該方法
JP2022107619A (ja) * 2020-06-02 2022-07-22 パイオニア株式会社 段差検出装置

Also Published As

Publication number Publication date
US20160176429A1 (en) 2016-06-23
JPWO2015033859A1 (ja) 2017-03-02
JP6156504B2 (ja) 2017-07-05
US9751551B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP6156504B2 (ja) 手押し車
TWI656902B (zh) 自行翻正的模型車
JP5716873B2 (ja) 移動体
JP5943154B2 (ja) 手押し車
JP6232873B2 (ja) 手押し車およびプログラム
JP5884930B2 (ja) 手押し車
JP5958581B2 (ja) 手押し車
JP5854181B1 (ja) 移動体
JP6252683B2 (ja) 手押し車
WO2015019982A1 (ja) 手押し車
JP5565487B1 (ja) 手押し車
JP4888451B2 (ja) 同軸二輪車及びその制御方法
JP5704285B2 (ja) 手押し車
JP5958546B2 (ja) 手押し車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841629

Country of ref document: EP

Kind code of ref document: A1