WO2015030013A1 - 無アルカリガラス - Google Patents

無アルカリガラス Download PDF

Info

Publication number
WO2015030013A1
WO2015030013A1 PCT/JP2014/072337 JP2014072337W WO2015030013A1 WO 2015030013 A1 WO2015030013 A1 WO 2015030013A1 JP 2014072337 W JP2014072337 W JP 2014072337W WO 2015030013 A1 WO2015030013 A1 WO 2015030013A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
temperature
alkali
cao
Prior art date
Application number
PCT/JP2014/072337
Other languages
English (en)
French (fr)
Inventor
直和 真崎
和孝 小野
博文 ▲徳▼永
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020167004769A priority Critical patent/KR20160048081A/ko
Priority to CN201480047349.9A priority patent/CN105492402A/zh
Publication of WO2015030013A1 publication Critical patent/WO2015030013A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Definitions

  • the present invention relates to a non-alkali glass which is suitable for various display substrate glasses and photomask substrate glasses and which is substantially free of alkali metal oxides and can be float-molded.
  • the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
  • alkali metal oxide When an alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the alkali metal ions are not substantially contained.
  • the strain point When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
  • BHF buffered hydrofluoric acid
  • ITO various acids used for etching metal electrodes
  • ITO various acids used for etching metal electrodes
  • resistant to alkali of resist stripping solution Resistant to alkali of resist stripping solution.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • a glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
  • Patent Document 1 discloses a glass containing 0 to 3% by weight of B 2 O 3 , but the strain point of Examples is 690 ° C. or lower.
  • Patent Document 2 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 350 ° C. exceeds 50 ⁇ 10 ⁇ 7 / ° C.
  • an alkali-free glass described in Patent Document 3 has been proposed.
  • the alkali-free glass described in Patent Document 3 has a high strain point, can be molded by a float process, and is suitable for uses such as a display substrate and a photomask substrate.
  • the glass viscosity especially the temperature T 4 at which the glass viscosity becomes 10 4 dPa ⁇ s and the devitrification temperature should be lowered, and the strain point should not be raised excessively. Is required.
  • the object of the present invention is to solve the above-mentioned drawbacks, have a high strain point and a high Young's modulus, but have a low temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s and can be easily dissolved, and the glass viscosity is 10
  • An object of the present invention is to provide a non-alkali glass that has a low temperature T 4 of 4 dPa ⁇ s and is easy to float, and that can keep the thermal expansion coefficient and specific gravity relatively low.
  • the present invention has a strain point of 680 ° C. or higher, an average coefficient of thermal expansion at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 45 ⁇ 10 ⁇ 7 / ° C., and a glass viscosity of 10 2 dPa ⁇ s.
  • the temperature T 2 is 1730 ° C. or less
  • the temperature T 4 is 1350 ° C. or less
  • the glass viscosity is 10 4 dPa ⁇ s
  • the Young's modulus is 80 GPa or more, and is expressed in mass% based on oxide.
  • the present invention has a strain point of 690 ° C. or higher, an average coefficient of thermal expansion at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C., and a glass viscosity of 10 2.
  • the temperature T 2 at which dPa ⁇ s is reached is 1710 ° C.
  • the temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s is 1330 ° C. or lower, the Young's modulus is 80 GPa or higher, SiO 2 57-65 by mass% display, Al 2 O 3 18-23, B 2 O 3 0-5, MgO more than 1 and less than 8, CaO 6-12, SrO 0 or more and less than 2,
  • the alkali-free glass of the present invention is particularly suitable for display substrates for high strain points, photomask substrates, and the like, and is glass that is easy to float.
  • the alkali-free glass of the present invention can also be used as a glass substrate for a magnetic disk.
  • the composition range of each component (mass% based on oxides, hereinafter the same unless otherwise specified) will be described. If the SiO 2 content is less than 55%, the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. It is preferably 57% or more, more preferably 58% or more, more preferably 59% or more, and further preferably 60% or more. In 70%, solubility decreases, and increases the temperature T 4 which is a temperature T 2 and 10 4 dPa ⁇ s glass viscosity of 10 2 dPa ⁇ s, since the devitrification temperature increases, 70% or less It is. It is preferably 67% or less, more preferably 65% or less, further preferably 64% or less, and more preferably 63% or less.
  • Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient and raises the strain point. However, if it is less than 10%, this effect does not appear, and other components that increase the expansion increase. As a result, thermal expansion increases. For this reason, it is 10% or more. It is preferably 14% or more, more preferably 16% or more, further preferably 18% or more, further preferably 18.5% or more, and more preferably 19% or more. If it exceeds 25%, the solubility of the glass may be deteriorated or the devitrification temperature may be increased, so it is 25% or less. It is preferably 24% or less, more preferably 23% or less, further preferably 22% or less, and more preferably 21% or less.
  • B 2 O 3 can be contained to improve the melting reactivity of the glass, lower the devitrification temperature, and improve the BHF resistance.
  • 0.1% or more is preferable, 0.3% or more is more preferable, 0.5% or more is further more preferable, and 1% or more is especially preferable.
  • it exceeds 5% the strain point becomes low and the Young's modulus becomes small, so it is 5% or less. It is preferably 4% or less, more preferably 3.5% or less, more preferably 3% or less, and even more preferably 2.5% or less.
  • MgO has the characteristics of increasing the Young's modulus while keeping the density low and does not increase expansion in alkaline earths, and improves the solubility, but this effect does not appear sufficiently at 1% or less, Moreover, since the density becomes high because the ratio of other alkaline earths becomes high, it exceeds 1%. It is preferably 2% or more, more preferably 3% or more, further preferably 4% or more, still more preferably 4.5% or more, and particularly preferably 5% or more. Since devitrification temperature rises at 8% or more, it is preferably 7.5% or less, more preferably 7% or less, and even more preferably 6.5% or less, which is less than 8%.
  • CaO has the characteristics of increasing the Young's modulus while maintaining the low density without increasing the expansion in alkaline earth following MgO, and also improves the solubility. If it is less than 6%, the above-described effect due to the addition of CaO is not sufficiently exhibited, so it is 6% or more. It is preferably 7% or more, more preferably 7.5% or more, and further preferably 8% or more. However, if it exceeds 12%, the devitrification temperature rises or phosphorus, which is an impurity in limestone (CaCO 3 ) as a CaO raw material, may be mixed in a large amount, so the content is made 12% or less. 11% or less is preferable, 10.5% or less is more preferable, and 10% or less is more preferable.
  • SrO can be contained to improve the solubility without increasing the devitrification temperature of the glass. However, if it is 2% or more, the expansion coefficient may increase, so it is less than 2%. It is preferably 1.5% or less, more preferably 1% or less, still more preferably 0.7% or less, and particularly preferably less than 0.5%.
  • BaO can be included to improve solubility. 1% or more is preferable, 1.5% or more is more preferable, and 2% or more is more preferable. However, if it is too much, the expansion and density of the glass are excessively increased, so the content is made less than 5%. 4.5% or less is preferable and 4% or less is more preferable.
  • the glass of the present invention does not contain an alkali metal oxide in excess of the impurity level (ie substantially) in order not to cause deterioration of the characteristics of the metal or oxide thin film provided on the glass surface during panel production.
  • PbO, As 2 O 3 Sb 2 O 3 is preferably not substantially contained.
  • the P 2 O 5 content is not substantially contained.
  • the alkali-free glass of the present invention improves the solubility, clarity, and moldability (float moldability) of the glass, so ZrO 2 , ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2. In a total amount of 5% or less, preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.1% or less. More preferably, ZrO 2 and ZnO are not substantially contained.
  • the alkali-free glass of the present invention has a strain point of 680 ° C. or higher, preferably 690 ° C. or higher, thermal shrinkage during panel manufacture can be suppressed. Further, a laser annealing method can be applied as a method for manufacturing the p-Si TFT. 695 ° C or higher is more preferable, 700 ° C or higher is more preferable, and 705 ° C or higher is particularly preferable. Since the alkali-free glass of the present invention has a strain point of 680 ° C. or higher, preferably 690 ° C.
  • a high strain point for example, a plate thickness of 0.7 mm or less, preferably 0.5 mm or less, more preferably 0.8 mm or less.
  • the alkali-free glass of the present invention has a glass transition point of preferably 740 ° C. or higher, more preferably 750 ° C. or higher, and further preferably 760 ° C. or higher for the same reason as the strain point.
  • the alkali-free glass of the present invention has an average coefficient of thermal expansion at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 45 ⁇ 10 ⁇ 7 / ° C., preferably 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C. Yes, it has high thermal shock resistance and can increase productivity during panel manufacturing.
  • the average thermal expansion coefficient at 50 to 350 ° C. is preferably 35 ⁇ 10 ⁇ 7 or more.
  • the average thermal expansion coefficient at 50 to 350 ° C. is preferably 42.5 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 42 ⁇ 10 ⁇ 7 / ° C. or less, and further preferably 41.5 ⁇ 10 ⁇ 7 / ° C. or less. is there.
  • the alkali-free glass of the present invention has a specific gravity of preferably 2.7 or less, more preferably 2.65 or less, and even more preferably 2.6 or less.
  • the alkali-free glass of the present invention has a temperature T 2 at which the viscosity becomes 10 2 dPa ⁇ s is 1730 ° C. or less, preferably 1710 ° C. or less, preferably 1690 ° C. or less, more preferably 1670 ° C. or less, More preferably, it is 1650 ° C. or lower, particularly preferably 1640 ° C. or lower, so that dissolution is relatively easy.
  • the alkali-free glass of the present invention has a temperature T 4 at which the viscosity becomes 10 4 dPa ⁇ s is 1350 ° C. or less, preferably 1330 ° C. or less, preferably 1320 ° C. or less, more preferably 1310 ° C. or less, Preferably it is 1300 degrees C or less, Most preferably, it is 1290 degrees C or less, and it is preferable for float forming.
  • the alkali-free glass of the present invention preferably has a devitrification temperature of 1340 ° C. or lower, further 1330 ° C. or lower, and further 1320 ° C. or lower because molding by the float method becomes easy.
  • T 4 temperature at which the glass viscosity is 10 4 dPa ⁇ s, unit: ° C.
  • T 4 ⁇ devitrification temperature which is a standard for float moldability and fusion moldability, is It is preferably ⁇ 20 ° C. or higher, ⁇ 10 ° C. or higher, further 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
  • the alkali-free glass of the present invention preferably has a Young's modulus of 80 GPa or more, 81 GPa or more, 82 GPa or more, 84 GPa or more, more preferably 85 GPa or more, and more preferably 86 GPa or more.
  • the alkali-free glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less. Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small.
  • the alkali-free glass of the present invention has a photoelastic constant of preferably 23 nm / MPa / cm or more, more preferably 25 nm / MPa / cm or more, considering the ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method at a measurement wavelength of 546 nm.
  • the alkali-free glass of the present invention preferably has a small shrinkage during heat treatment.
  • the heat treatment process is different between the array side and the color filter side. Therefore, particularly in a high-definition panel, when the thermal shrinkage rate of glass is large, there is a problem in that dot displacement occurs during fitting.
  • the evaluation of the heat shrinkage rate can be measured by the following procedure. The sample is held at a temperature of glass transition point + 100 ° C. for 10 minutes and then cooled to room temperature at 40 ° C. per minute. Here, the total length of the sample is measured.
  • the sample is heated to 600 ° C at 100 ° C per minute, held at 600 ° C for 80 minutes, cooled to room temperature at 100 ° C per minute, and the total length of the sample is measured again.
  • the ratio between the amount of shrinkage of the sample before and after the heat treatment at 600 ° C. and the total length of the sample before the heat treatment at 600 ° C. is defined as the thermal shrinkage rate.
  • the heat shrinkage rate is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 60 ppm or less, further 55 ppm or less, and particularly preferably 50 ppm or less.
  • the alkali-free glass of the present invention can be produced, for example, by the following method.
  • the raw materials of the respective components that are normally used are blended so as to become target components, which are continuously charged into a melting furnace, heated to 1500-1800 ° C. and melted.
  • a plate glass can be obtained by forming this molten glass into a predetermined plate thickness by a float method (or a fusion method), and then cutting after slow cooling. Since the glass of the present invention has relatively low solubility, it is preferable to use the following as a raw material for each component.
  • the float method is preferable in view of stably producing a large plate glass (for example, one side of 2 m or more).
  • Examples 1 to 8 and 11 to 19 are Examples, and Examples 9 to 10 are Comparative Examples.
  • the raw materials of each component were prepared so as to have a target composition, and dissolved at a temperature of 1550 to 1650 ° C. using a platinum crucible. In melting, the mixture was stirred using a platinum stirrer to homogenize the glass. Next, the molten glass was poured out, formed into a plate shape, and then slowly cooled.
  • Tables 1 and 2 show that the glass composition (unit: mass%), the coefficient of thermal expansion at 50 to 350 ° C. (unit: ⁇ 10 ⁇ 7 / ° C.), strain point (unit: ° C.), glass transition point (unit: ° C.) ), Specific gravity, Young's modulus (GPa) (measured by ultrasonic method), high-temperature viscosity value, temperature T 2 (temperature at which glass viscosity becomes 10 2 dPa ⁇ s, unit: ° C.) Temperature T 4 (temperature at which the glass viscosity becomes 10 4 dPa ⁇ s, unit: ° C.), devitrification temperature (unit: ° C.), photoelastic constant (unit: nm / MPa), which is a standard for float moldability and fusion moldability / Cm) (measured by a disk compression method at a measurement wavelength of 546 nm).
  • GPa Young's modulus
  • the sample is held at a temperature of glass transition point + 100 ° C. for 10 minutes and then cooled to room temperature at 40 ° C. per minute. Here, the total length of the sample is measured. Then, it heats to 600 degreeC at 100 degreeC / min, hold
  • the ratio between the amount of shrinkage of the sample before and after heat treatment at 600 ° C. and the total length of the sample before heat treatment at 600 ° C. was defined as the heat shrinkage rate.
  • the values shown in parentheses are calculated values.
  • the thermal expansion coefficients of all the glasses of the examples are 30 ⁇ 10 ⁇ 7 to 45 ⁇ 10 ⁇ 7 / ° C., preferably 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s is 1730 ° C. or lower, preferably 1710 ° C. or lower
  • the temperature T 4 at which the glass viscosity becomes 10 4 dPa ⁇ s is 1350 ° C. or lower, preferably Since it is 1330 ° C.
  • the strain point is as high as 680 ° C. or higher, preferably 690 ° C. or higher, the Young's modulus is high as 80 GPa or higher, the specific gravity is as low as 2.7 or less, the heat shrinkage rate is as low as 100 ppm or less, and the photoelastic constant is 31 nm / MPa. / Cm or less.
  • the devitrification temperature is 1340 ° C. or lower, further 1330 ° C. or lower, and further 1320 ° C., and devitrification is not easily generated during float forming.
  • the alkali-free glass of the present invention has a high strain point and a high Young's modulus, and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a substrate for information recording media and a substrate for solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、歪点が680℃以上であって、50~350℃での平均熱膨張係数が30×10-7~45×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1730℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1350℃以下であって、ヤング率が80GPa以上であって、酸化物基準の質量%表示で、SiO 55~70、Al3 10~25、B0~5、MgO 1超8未満、CaO 6~12、SrO 0以上2未満、BaO 0以上5未満を含有し、MgO+CaO+SrO+BaOが12~23である無アルカリガラスに関する。

Description

無アルカリガラス
 本発明は、各種ディスプレイ用基板ガラスやフォトマスク用基板ガラスとして好適な、アルカリ金属酸化物を実質上含有せず、フロート成形が可能な、無アルカリガラスに関する。
 従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成するものでは、以下に示す特性が要求されてきた。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、実質的にアルカリ金属イオンを含まないこと。
(2)薄膜形成工程で高温にさらされる際に、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えうるように、歪点が高いこと。
(3)半導体形成に用いる各種薬品に対して充分な化学耐久性を有すること。特にSiOやSiNのエッチングのためのバッファードフッ酸(BHF:フッ酸とフッ化アンモニウムの混合液)、およびITOのエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、レジスト剥離液のアルカリに対して耐久性のあること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)がないこと。
 上記の要求に加えて、近年では、以下のような状況にある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれる。
(6)ディスプレイの軽量化が要求され、基板ガラスの薄板化が望まれる。
(7)これまでのアモルファスシリコン(a-Si)タイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコン(p-Si)タイプの液晶ディスプレイが作製されるようになってきた(a-Si:約350℃→p-Si:350~550℃)。
(8)液晶ディスプレイ作製熱処理の昇降温速度を速くして、生産性を上げたり耐熱衝撃性を上げるために、ガラスの平均熱膨張係数の小さいガラスが求められる。
 一方、エッチングのドライ化が進み、耐BHF性に対する要求が弱くなってきている。これまでのガラスは、耐BHF性を良くするために、Bを6~10モル%含有するガラスが多く用いられてきた。しかし、Bは歪点を下げる傾向がある。Bを含有しないまたは含有量の少ない無アルカリガラスの例としては以下のようなものがある。
 特許文献1にはBを0~3重量%含有するガラスが開示されているが、実施例の歪点が690℃以下である。
 特許文献2にはBを0~5モル%含有するガラスが開示されているが、50~350℃での平均熱膨張係数が50×10-7/℃を超える。
 特許文献1、2に記載のガラスにおける問題点を解決するため、特許文献3に記載の無アルカリガラスが提案されている。特許文献3に記載の無アルカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適であるとされている。
日本国特開平4-325435号公報 日本国特開平5-232458号公報 日本国特開平9-263421号公報
 近年、スマートフォンのような携帯用端末などの高精細小型ディスプレイでは、高品質のp-Si TFTの製造方法としてレーザーアニールによる方法が採用されているが、さらにコンパクションを小さくするために歪点の高いガラスが求められている。また、ガラス基板の大板化、薄板化に伴い、ヤング率が高く、比弾性率(ヤング率/密度)が高いガラスが求められている。
 一方、ガラス製造プロセス、特にフロート成形における要請から、ガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tと失透温度を低くすること、さらに歪点を過度に上げ過ぎないことが求められている。
 本発明の目的は、上記欠点を解決し、歪点が高く、ヤング率が高いながらも、ガラス粘度が10dPa・sとなる温度Tが低く溶解が容易であり、またガラス粘度が10dPa・sとなる温度Tが低くフロート成形が容易であり、さらに熱膨張係数や比重を比較的低く抑えることが可能な無アルカリガラスを提供することにある。
 本発明は、歪点が680℃以上であって、50~350℃での平均熱膨張係数が30×10-7~45×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1730℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1350℃以下であって、ヤング率が80GPa以上であって、酸化物基準の質量%表示で
SiO        55~70、
Al        10~25、
          0~5、
MgO         1超8未満、
CaO         6~12、
SrO         0以上2未満、
BaO         0以上5未満
を含有し、
MgO+CaO+SrO+BaO が12~23である無アルカリガラスを提供する。
 好ましくは、本発明は、歪点が690℃以上であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1330℃以下であって、ヤング率が80GPa以上であって、酸化物基準の質量%表示で
SiO        57~65、
Al        18~23、
          0~5、
MgO         1超8未満、
CaO         6~12、
SrO         0以上2未満、
BaO         0以上5未満
を含有し
MgO+CaO+SrO+BaOが12~23である無アルカリガラスを提供する。
 本発明の無アルカリガラスは、特に高歪点用途のディスプレイ用基板、フォトマスク用基板等に好適であり、また、フロート成形が容易なガラスである。本発明の無アルカリガラスは、磁気ディスク用ガラス基板としても使用できる。
 次に各成分の組成範囲(酸化物基準の質量%。以下特記しないかぎり同じ)について説明する。SiOは55%未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇するため、55%以上である。57%以上が好ましく、さらには58%以上が好ましく、59%以上がより好ましく、60%以上がさらに好ましい。70%超では、溶解性が低下し、ガラス粘度が10dPa・sとなる温度Tや10dPa・sとなる温度Tが上昇し、失透温度が上昇するため、70%以下である。67%以下が好ましく、さらには65%以下が好ましく、さらには64%以下が好ましく、63%以下がより好ましい。
 Alはガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げるが、10%未満ではこの効果があらわれず、また、ほかの膨張を上げる成分を増加させることになるため、結果的に熱膨張が大きくなる。このため10%以上である。14%以上が好ましく、さらには16%以上が好ましく、さらには18%以上が好ましく、さらには18.5%以上が好ましく、19%以上がより好ましい。25%超ではガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがあるため、25%以下である。24%以下が好ましく、さらには23%以下が好ましく、さらには22%以下が好ましく、21%以下がより好ましい。
 Bは、ガラスの溶解反応性をよくし、失透温度を低下させ、耐BHF性を改善するため含有できる。上記の効果を得るためには、0.1%以上が好ましく、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。しかし、5%超では歪点が低くなり、ヤング率が小さくなるため5%以下である。4%以下が好ましく、さらには3.5%以下が好ましく、3%以下がより好ましく、2.5%以下がさらに好ましい。
 MgOは、アルカリ土類の中では膨張を高くせず、かつ密度を低く維持したままヤング率を上げるという特徴を有し、溶解性も向上させるが、1%以下ではこの効果が十分あらわれず、また他のアルカリ土類の比率が高くなることから密度が高くなるため、1%超である。2%以上が好ましく、3%以上がよりに好ましく、4%以上がさらに好ましく、4.5%以上がよりさらに好ましく、5%以上が特に好ましい。8%以上では失透温度が上昇するため、8%未満である、7.5%以下が好ましく、7%以下がより好ましく、6.5%以下がさらに好ましい。
 CaOは、MgOに次いでアルカリ土類中では膨張を高くせず、かつ密度を低く維持したままヤング率を上げるという特徴を有し、溶解性も向上させる。6%未満では上述したCaO添加による効果が十分あらわれないため6%以上である。7%以上が好ましく、7.5%以上がより好ましく、8%以上がさらに好ましい。しかし、12%を超えると、失透温度が上昇したり、CaO原料である石灰石(CaCO)中の不純物であるリンが、多く混入するおそれがあるため12%以下とする。11%以下が好ましく、10.5%以下がより好ましく、10%以下がさらに好ましい。
 SrOは、ガラスの失透温度を上昇させず溶解性を向上させるため含有できる。しかし、2%以上では膨脹係数が増大するおそれがあるため2%未満である。1.5%以下が好ましく、1%以下がより好ましく、0.7%以下がさらに好ましく、0.5%未満が特に好ましい。
 BaOは溶解性向上のために含有できる。1%以上が好ましく、1.5%以上がより好ましく、2%以上がさらに好ましい。しかし、多すぎるとガラスの膨張と密度を過大に増加させるので5%未満とする。4.5%以下が好ましく、4%以下がより好ましい。
 MgO、CaO、SrO、BaOは合量で12%よりも少ないと、ガラス粘度が10dPa・sとなる温度Tが高くなり、フロート成形の際にフロートバスの筐体構造物やヒーターの寿命を極端に短くする恐れがあるため12%以上である。14%以上が好ましく、16%以上がより好ましい。23%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがあるため23%以下である。21%以下が好ましく、19%以下がより好ましい。
 なお、本発明のガラスは、パネル製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、アルカリ金属酸化物を不純物レベルを超えて(すなわち実質的に)含有しない。また、ガラスのリサイクルを容易にするため、PbO、As、Sbは実質的に含有しないことが好ましい。
 さらに同様の理由で、P含有量は実質的に含有しないことが好ましい。
 本発明の無アルカリガラスは上記成分以外にガラスの溶解性、清澄性、成形性(フロート成形性)を改善するため、ZrO、ZnO、Fe、SO、F、Cl、SnOを総量で5%以下、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下含有できる。ZrO、ZnOは、実質的に含有しないことがより好ましい。
 本発明の無アルカリガラスは、歪点が680℃以上、好ましくは690℃以上であるため、パネル製造時の熱収縮を抑えられる。また、p-Si TFTの製造方法としてレーザーアニールによる方法を適用することができる。695℃以上がより好ましく、700℃以上がさらに好ましく、705℃以上が特に好ましい。
 本発明の無アルカリガラスは、歪点が680℃以上、好ましくは690℃以上であるため、高歪点用途(例えば、板厚0.7mm以下、好ましくは0.5mm以下、より好ましくは0.3mm以下の有機EL用のディスプレイ用基板または照明用基板、あるいは板厚0.3mm以下、好ましくは0.1mm以下の薄板のディスプレイ用基板または照明用基板)に適している。
 板厚0.7mm以下、さらには0.5mm以下、さらには0.3mm以下、さらには0.1mm以下の板ガラスの成形では、成形時の引き出し速度が速くなる傾向があるため、ガラスの仮想温度が上昇し、ガラスのコンパクションが増大しやすい。この場合、高歪点ガラスであると、コンパクションを抑制することができる。
 また本発明の無アルカリガラスは、歪点と同様の理由で、ガラス転移点が好ましくは740℃以上であり、より好ましくは750℃以上であり、さらに好ましくは760℃以上である。
 また本発明の無アルカリガラスは、50~350℃での平均熱膨張係数が30×10-7~45×10-7/℃、好ましくは30×10-7~43×10-7/℃であり、耐熱衝撃性が大きく、パネル製造時の生産性を高くできる。本発明の無アルカリガラスにおいて、50~350℃での平均熱膨張係数は好ましくは35×10-7以上である。50~350℃での平均熱膨張係数は好ましくは42.5×10-7/℃以下、より好ましくは42×10-7/℃以下、さらに好ましくは41.5×10-7/℃以下である。
 さらに、本発明の無アルカリガラスは、比重が好ましくは2.7以下であり、より好ましくは2.65以下であり、さらに好ましくは2.6以下である。
 また、本発明の無アルカリガラスは、粘度が10dPa・sとなる温度Tが1730℃以下であり、好ましくは1710℃以下であり、好ましくは1690℃以下、より好ましくは1670℃以下、さらに好ましくは1650℃以下、特に好ましくは1640℃以下になっているため溶解が比較的容易である。
 さらに、本発明の無アルカリガラスは粘度が10dPa・sとなる温度Tが1350℃以下であり、好ましくは1330℃以下であり、好ましくは1320℃以下、より好ましくは1310℃以下、さらに好ましくは1300℃以下、特に好ましくは1290℃以下であり、フロート成形に好ましい。
 また、本発明の無アルカリガラスは失透温度が、1340℃以下、さらには1330℃以下、さらには1320℃以下であることがフロート法による成形が容易となることから好ましい。好ましくは1310℃以下、1300℃以下、1290℃以下である。また、フロート成形性やフュージョン成形性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)と失透温度との差(T-失透温度)は、好ましくは-20℃以上、-10℃以上、さらには0℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上である。
 本明細書における失透温度は、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面及び内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 また、本発明の無アルカリガラスは、ヤング率は80GPa以上が好ましく、81GPa以上、82GPa以上、84GPa以上、さらに85GPa以上がより好ましく、86GPa以上がさらに好ましい。
 また、本発明の無アルカリガラスは、光弾性定数が31nm/MPa/cm以下であることが好ましい。
 液晶ディスプレイパネル製造工程や液晶ディスプレイ装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーになり、液晶ディスプレイのコントラストが低下する現象が認められることがある。光弾性定数を31nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。好ましくは30nm/MPa/cm以下、より好ましくは29nm/MPa/cm以下、さらに好ましくは28.5nm/MPa/cm以下、特に好ましくは28nm/MPa/cm以下である。
 また、本発明の無アルカリガラスは、他の物性確保の容易性を考慮すると、光弾性定数が好ましくは23nm/MPa/cm以上、より好ましくは25nm/MPa/cm以上である。
 なお、光弾性定数は円盤圧縮法により測定波長546nmにて測定できる。
 また、本発明の無アルカリガラスは、熱処理時の収縮量が小さいことが好ましい。液晶パネル製造においては、アレイ側とカラーフィルター側では熱処理工程が異なる。そのため、特に高精細パネルにおいて、ガラスの熱収縮率が大きい場合、嵌合時にドットのずれが生じるという問題がある。なお、熱収縮率の評価は次の手順で測定できる。試料をガラス転移点+100゜Cの温度で10分間保持した後、毎分40゜Cで室温まで冷却する。ここで試料の全長を計測する。その後、毎分100゜Cで600゜Cまで加熱し、600゜Cで80分間保持し、毎分100゜Cで室温まで冷却し、再度試料の全長を計測する。600゜Cでの熱処理前後での試料の収縮量と、600゜Cでの熱処理前の試料全長との比を熱収縮率とする。上記評価方法において、熱収縮率は好ましくは100ppm以下、より好ましくは80ppm以下、さらに好ましくは60ppm以下さらには55ppm以下、特に好ましくは50ppm以下である。
 本発明の無アルカリガラスは、例えば次のような方法で製造できる。通常使用される各成分の原料を目標成分になるように調合し、これを溶解炉に連続的に投入し、1500~1800℃に加熱して溶融する。この溶融ガラスをフロート法(またはフュージョン法)により所定の板厚に成形し、徐冷後切断することによって板ガラスを得ることができる。
 本発明のガラスは、比較的溶解性が低いため、各成分の原料として下記を用いることが好ましい。ただし、大型の板ガラス(例えば一辺が2m以上)を安定して生産することを考慮するとフロート法が好ましい。
 以下において例1~8、11~19は実施例、例9~10は比較例である。各成分の原料を目標組成になるように調合し、白金坩堝を用いて1550~1650℃の温度で溶解した。溶解にあたっては、白金スターラを用い撹拌しガラスの均質化を行った。次いで溶解ガラスを流し出し、板状に成形後徐冷した。
 表1、2には、ガラス組成(単位:質量%)と50~350℃での熱膨脹係数(単位:×10-7/℃)、歪点(単位:℃)、ガラス転移点(単位:℃)、比重、ヤング率(GPa)(超音波法により測定)、高温粘性値として、溶解性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)、とフロート成形性およびフュージョン成形性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)、失透温度(単位:℃)、光弾性定数(単位:nm/MPa/cm)(円盤圧縮法により測定波長546nmにて測定)を示す。熱収縮率の評価は次の手順で行った。試料をガラス転移点+100℃の温度で10分間保持した後、毎分40℃で室温まで冷却する。ここで試料の全長を計測する。その後、毎分100℃で600℃まで加熱し、600℃で80分間保持し、毎分100℃で室温まで冷却し、再度試料の全長を計測する。600℃での熱処理前後での試料の収縮量と、600℃での熱処理前の試料全長との比を熱収縮率とした。
 なお、表中、括弧書で示した値は計算値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2から明らかなように、実施例のガラスはいずれも、熱膨脹係数は30×10-7~45×10-7/℃、好ましくは30×10-7~43×10-7/℃と低く、ガラス粘度が10dPa・sとなる温度Tが1730℃以下、好ましくは1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1350℃以下、好ましくは1330℃以下となっていることから、ガラス製造時において、溶解性に優れ、フロートバス内及びフロートバス下流側に位置する金属部材や、フロートバス出口から徐冷炉に入る部分で使用するヒータの寿命に影響を及ぼすことが少ない。また、歪点が680℃以上、好ましくは690℃以上と高く、ヤング率が80GPa以上と高く、比重が2.7以下と低く、熱収縮率が100ppm以下と小さく、光弾性定数も31nm/MPa/cm以下である。
 また、失透温度が1340℃以下、さらには1330℃以下、さらには1320℃であり、フロート成形時に失透が生成しにくい。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2013年8月30日出願の日本特許出願2013-179120に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の無アルカリガラスは、歪点が高く、ヤング率が高く、ディスプレイ用基板、フォトマスク用基板等の用途に好適である。また、情報記録媒体用基板、太陽電池用基板等の用途にも好適である。

Claims (6)

  1.  歪点が680℃以上であって、50~350℃での平均熱膨張係数が30×10-7~45×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1730℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1350℃以下であって、ヤング率が80GPa以上であって、酸化物基準の質量%表示で
    SiO        55~70、
    Al        10~25、
              0~5、
    MgO         1超8未満、
    CaO         6~12、
    SrO         0以上2未満、
    BaO         0以上5未満
    を含有し、
    MgO+CaO+SrO+BaO が12~23である無アルカリガラス。
  2.  歪点が690℃以上であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1330℃以下であって、ヤング率が80GPa以上であって、酸化物基準の質量%表示で
    SiO        57~65、
    Al        18~23、
              0~5、
    MgO         1超8未満、
    CaO         6~12、
    SrO         0以上2未満、
    BaO         0以上5未満
    を含有し、
    MgO+CaO+SrO+BaO が12~23である請求項1に記載の無アルカリガラス。
  3.  酸化物基準の質量%表示で
    SiO        58~64、
    Al        19~22、
              0.1~4、
    MgO         2~7.5、
    CaO         7~11、
    SrO         0~1.5、
    BaO         1~4.5
    を含有し、
    MgO+CaO+SrO+BaO が14~21である請求項1または2に記載の無アルカリガラス。
  4.  酸化物基準の質量%表示で
    SiO        59~64、
    Al        19~22、
              0.1~3、
    MgO         3~7、
    CaO         7.5~10.5、
    SrO         0~1、
    BaO         1~4
    を含有し、
    MgO+CaO+SrO+BaO が14~21である請求項1~3のいずれか一項に記載の無アルカリガラス。
  5.  比重が2.7以下である請求項1~4のいずれか一項に記載の無アルカリガラス。
  6.  失透温度が1320℃以下である請求項1~5のいずれか一項に記載の無アルカリガラス。
PCT/JP2014/072337 2013-08-30 2014-08-26 無アルカリガラス WO2015030013A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167004769A KR20160048081A (ko) 2013-08-30 2014-08-26 무알칼리 유리
CN201480047349.9A CN105492402A (zh) 2013-08-30 2014-08-26 无碱玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013179120A JP2016188148A (ja) 2013-08-30 2013-08-30 無アルカリガラスおよびその製造方法
JP2013-179120 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030013A1 true WO2015030013A1 (ja) 2015-03-05

Family

ID=52586567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072337 WO2015030013A1 (ja) 2013-08-30 2014-08-26 無アルカリガラス

Country Status (5)

Country Link
JP (1) JP2016188148A (ja)
KR (1) KR20160048081A (ja)
CN (1) CN105492402A (ja)
TW (1) TW201512142A (ja)
WO (1) WO2015030013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256747B2 (ja) 2017-10-25 2023-04-12 日本板硝子株式会社 ガラス組成物
JP7107361B2 (ja) * 2018-03-14 2022-07-27 Agc株式会社 無アルカリガラス
JP7136189B2 (ja) * 2018-03-14 2022-09-13 Agc株式会社 ガラス
JP7389400B2 (ja) * 2018-10-15 2023-11-30 日本電気硝子株式会社 無アルカリガラス板
JP7478340B2 (ja) * 2018-10-17 2024-05-07 日本電気硝子株式会社 無アルカリガラス板
CN109678341B (zh) * 2018-12-11 2022-03-25 东旭光电科技股份有限公司 无碱玻璃组合物和无碱玻璃及应用
TW202039390A (zh) * 2019-02-07 2020-11-01 日商Agc股份有限公司 無鹼玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191251A (en) * 1981-05-19 1982-11-25 Nippon Electric Glass Co Ltd Glass composition
JPS5864243A (ja) * 1981-10-13 1983-04-16 Asahi Glass Co Ltd 高弾性耐熱性のガラス組成物
JPH09208253A (ja) * 1996-02-02 1997-08-12 Carl Zeiss:Fa アルカリを含有しないアルミノホウケイ酸塩ガラスとその使用
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191251A (en) * 1981-05-19 1982-11-25 Nippon Electric Glass Co Ltd Glass composition
JPS5864243A (ja) * 1981-10-13 1983-04-16 Asahi Glass Co Ltd 高弾性耐熱性のガラス組成物
JPH09208253A (ja) * 1996-02-02 1997-08-12 Carl Zeiss:Fa アルカリを含有しないアルミノホウケイ酸塩ガラスとその使用
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition

Also Published As

Publication number Publication date
KR20160048081A (ko) 2016-05-03
JP2016188148A (ja) 2016-11-04
TW201512142A (zh) 2015-04-01
CN105492402A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
KR102371999B1 (ko) 무알칼리 유리
JP6107823B2 (ja) 無アルカリガラスおよびその製造方法
JP6187475B2 (ja) 無アルカリガラス基板
TWI613174B (zh) 無鹼玻璃及使用其之無鹼玻璃板
EP2842918B1 (en) Non-alkali glass and method for producing same
WO2015030013A1 (ja) 無アルカリガラス
WO2017188126A1 (ja) 無アルカリガラス
JP6344397B2 (ja) 無アルカリガラス
WO2014208521A1 (ja) 無アルカリガラス
WO2014208523A1 (ja) 無アルカリガラス
CN106458701B (zh) 无碱玻璃
WO2014208524A1 (ja) 無アルカリガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047349.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004769

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP