WO2015025417A1 - Negative electrode material and lithium ion secondary battery using same - Google Patents

Negative electrode material and lithium ion secondary battery using same Download PDF

Info

Publication number
WO2015025417A1
WO2015025417A1 PCT/JP2013/072494 JP2013072494W WO2015025417A1 WO 2015025417 A1 WO2015025417 A1 WO 2015025417A1 JP 2013072494 W JP2013072494 W JP 2013072494W WO 2015025417 A1 WO2015025417 A1 WO 2015025417A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
transition metal
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2013/072494
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 修一
博史 春名
登志雄 阿部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/072494 priority Critical patent/WO2015025417A1/en
Publication of WO2015025417A1 publication Critical patent/WO2015025417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous secondary battery, particularly a negative electrode used in a lithium ion secondary battery.
  • lithium ion secondary batteries have a higher energy density than nickel cadmium secondary batteries and nickel metal hydride secondary batteries, they are widely used as power sources for notebook computers and mobile phones.
  • lithium ion secondary batteries which are one of non-aqueous secondary batteries, are being considered for application to automobile power sources.
  • a lithium ion secondary battery is arranged at the center of a positive electrode in which a positive electrode active material is applied to a current collector using a binder, and in the same way, a negative electrode in which a negative electrode active material is applied to a current collector using a binder.
  • the electrolyte layer to be formed is housed in a battery case.
  • a negative electrode of such a lithium ion secondary battery a carbon material such as graphite as shown in Patent Document 1, iron oxide, silicon as shown in Patent Documents 2 and 3, and the like are used.
  • the irreversible capacity here means a capacity that is lost without contributing to the subsequent charge / discharge because the lithium that has moved to the negative electrode during the initial charge does not return to the positive electrode during the discharge.
  • a pre-dope As a method of pre-doping lithium in advance, for example, a technique of installing a metallic lithium layer in the negative electrode as disclosed in Patent Document 4 can be mentioned.
  • metallic lithium easily reacts with oxygen and moisture in the atmosphere, it is necessary to handle it in an argon atmosphere until the inside of the battery is sealed, and there is a problem that the manufacturing process becomes complicated.
  • An object of the present invention is to provide a negative electrode that can be handled in the atmosphere and has a reduced irreversible capacity, and a lithium ion secondary battery that is a nonaqueous secondary battery using the negative electrode.
  • the negative electrode material for a lithium ion secondary battery having a negative electrode active material capable of occluding and releasing lithium ions
  • the negative electrode material is a negative electrode material having a transition metal carbonate.
  • the transition metal contained in the transition metal carbonate is at least one selected from Cr, Mn, Fe, Co, Ni, and Cu, and is a negative electrode material characterized in that By adding lithium ions for irreversible capacity as transition metal carbonates, there is no need to consider oxygen and moisture in the atmosphere like metallic lithium, and it can function as an active material that occludes and releases lithium ions. it can.
  • the present invention it is possible to provide a negative electrode that can be handled in the air and has a reduced irreversible capacity, and a high-energy density lithium ion secondary battery using the negative electrode.
  • Cross-sectional schematic diagram of the negative electrode according to this example Cross-sectional schematic diagram of a pre-doped negative electrode according to this example
  • Cross-sectional schematic diagram of a lithium ion secondary battery according to this example Another cross-sectional schematic diagram of the lithium ion secondary battery according to the present embodiment
  • the lithium ion secondary battery is initialized by moving lithium ions contained in the positive electrode to the negative electrode by the initial charge. However, since the lithium that has moved to the negative electrode during this initial charge does not return to the positive electrode during discharge, there is a capacity that is lost without contributing to subsequent charge / discharge.
  • transition metal carbonates are effective as compounds that can reduce the irreversible capacity by being added to the negative electrode and that can be handled in the atmosphere.
  • the lithium occlusion / release reaction of transition metal carbonate (FeCO 3 ) can be expressed as shown in equation (1).
  • the reaction from the right side of the equation (1) to the left side is a charge reaction
  • the reaction from the left side to the right side is a discharge reaction.
  • transition metal carbonates such as Ti, Cr, Mn, Fe, Co, Ni, and Cu can be used.
  • a metal having an atomic number smaller than that of Fe, such as Ti or Cr is easily oxidized, the mixed state of the charged metal and lithium carbonate tends to be unstable.
  • a metal having a larger atomic number than Fe, such as Cu has a high negative electrode potential at the time of discharge, and thus the battery voltage becomes small. Therefore, carbonates of Mn, Fe, Co, and Ni are preferable, and Fe is particularly preferable.
  • the negative electrode active material for example, carbon materials such as amorphous carbon and graphite, silicon, tin, aluminum, lithium titanate, transition metal oxide, and the like can be used, but the charge / discharge potential is close to that of transition metal carbonate. It is preferable to use one. If the transition metal carbonate and the charge / discharge potential are different, the voltage changes abruptly when the battery is charged / discharged, making control difficult. From such a viewpoint, it is preferable to use a transition metal oxide for the negative electrode active material. In particular, in order to make the charge / discharge potentials of the transition metal carbonate and the transition metal oxide close, it is preferable to use the same type of transition metal for both.
  • oxides of Mn, Fe, Co, and Ni are preferable, and oxides of Fe are particularly preferable.
  • FeO, Fe 2 O 3 , and Fe 3 O 4 can be used as the oxide of Fe.
  • a carbon material is preferable as a negative electrode active material because it is less deteriorated with a charge / discharge cycle, but is preferable because amorphous carbon is closer to the charge / discharge potential of transition metal carbonate than graphite.
  • the upper limit of the amount of transition metal carbonate mixed with the negative electrode active material is generally 30% or less of the theoretical capacity of the negative electrode active material. Therefore, when the theoretical capacity of the transition metal carbonate is X (mAh / g), the theoretical capacity of the negative electrode active material is Y (mAh / g), and the amount of the negative electrode active material is N (g), the transition metal carbonate is added.
  • the amount M (g) is preferably mixed so that M ⁇ 0.3NY / X.
  • a calculation example of the addition amount will be shown by taking iron carbonate (FeCO 3 ) as the transition metal carbonate and iron oxide (FeO) as the negative electrode active material.
  • the charge / discharge reaction formula of FeCO3 is expressed by the above-described formula (1), and the theoretical capacity is 463 mAh / g.
  • the charge / discharge reaction formula of FeO is expressed by formula (2), and the theoretical capacity is 746 mAh / g.
  • FIG. 1 is a conceptual diagram showing a negative electrode of the present invention.
  • a material (negative electrode active material) 102 capable of occluding and releasing lithium and a transition metal carbonate 103 are bound on a current collector foil 101 by a binder 104.
  • the transition metal carbonate 103 By including the transition metal carbonate 103 in the negative electrode in a charged state, the irreversible capacity during the first charge / discharge can be reduced.
  • FIG. 2 is a conceptual diagram showing a pre-doped state of the negative electrode of the present invention.
  • the transition metal carbonate 103 becomes a mixture of the transition metal 201 and the lithium carbonate 202 by charging.
  • the mixture of the transition metal 201 and the lithium carbonate 202 hardly reacts with moisture in the atmosphere. For this reason, it is not necessary to handle in an argon atmosphere or the like unlike when metallic lithium is used for lithium pre-doping, and the manufacturing process can be simplified.
  • As the transition metal 201 Ti, Cr, Mn, Fe, Co, Ni, Cu, or the like can be used. However, since Ti, Cr, and the like are easily oxidized, it is preferable to use Mn, Fe, Co, Ni, and Cu. .
  • the transition metal 201 is preferably mixed with the lithium carbonate 202 with a diameter of several ⁇ m or less. By setting it as such a structure, the discharge reaction to transition metal carbonate becomes easy to advance.
  • the mixture of transition metal 201 and lithium carbonate 202 can be produced, for example, by ball milling.
  • a mixture of transition metal 201 and lithium carbonate 202 having a diameter of several ⁇ m or less by placing transition metal powder, lithium carbonate powder, and balls in a container, and setting the container to an argon atmosphere in order to suppress oxidation of the transition metal powder and rotating at high speed Can be obtained. Since the obtained mixture does not easily react with moisture in the atmosphere, it can be handled in the atmosphere.
  • the negative electrode may contain a conductive additive in addition to the negative electrode active material, transition metal carbonate, and binder.
  • a conductive additive in addition to the negative electrode active material, transition metal carbonate, and binder.
  • carbon black, carbon fiber, metal fiber, or conductive polymer can be used as the conductive aid.
  • the density of the negative electrode is preferably 50% or more and 90% or less of the average true density of the material constituting the negative electrode (excluding the negative electrode current collector foil) by pressing or the like. If it is 50% or less, the amount of the negative electrode active material contained per unit volume is reduced, so that the energy density is reduced. On the other hand, if it is 90% or more, the voids in the negative electrode are reduced, the amount of the electrolytic solution in the negative electrode is reduced, and Li ion conduction is impaired.
  • the negative electrode current collector foil is not particularly limited as long as it does not easily change in the battery and has electronic conductivity, but copper, nickel, stainless steel, and the like can be used. Of these, copper is preferably used.
  • the thickness of the negative electrode current collector foil is not particularly limited, but one having a thickness of 1 to 100 ⁇ m can be used. Further, if the strength and electronic conductivity of the negative electrode itself are sufficient, it is not necessary to use a current collector foil.
  • FIG. 3 is a schematic diagram illustrating negative electrode initial charge (a), initial discharge (b), second charge (c), and second discharge (d).
  • iron carbonate (FeCO 3 ) is shown as an example of the transition metal carbonate
  • iron oxide (FeO) is shown as an example of the negative electrode active material.
  • the first state is a mixture of Fe, Li 2 CO 3 and FeO, which is a charged state of FeCO 3 .
  • lithium is occluded in FeO and becomes a mixture of Fe and Li 2 O.
  • FeCO 3 is already in a charged state, and is a mixture of Fe and Li 2 CO 3 .
  • lithium is released from both the mixture of Fe and Li 2 CO 3 and the mixture of Fe and Li 2 O to become FeCO 3 and FeO, respectively.
  • the lithium ion more than the lithium ion supplied from the positive electrode at the time of initial charge (a) can be discharge
  • the lithium ion (irreversible capacity) that is inserted into the negative electrode active material during the first charge / discharge (a) and is not released as it is.
  • lithium is occluded and released by both FeCO 3 and FeO.
  • the method for producing a negative electrode for a lithium ion secondary battery described herein includes a step of including a negative electrode active material capable of occluding and releasing lithium ions in the negative electrode, and a mixture of a transition metal and lithium carbonate.
  • FIG. 4 shows a lithium ion secondary battery having the negative electrode material of the present invention.
  • a negative electrode 401 is provided on the negative electrode current collector foil 402
  • a positive electrode 403 is provided on the positive electrode current collector foil 404
  • a laminate of these and a separator 405 is housed in an insulating sealed case 407.
  • the negative electrode current collector foil 402 and the positive electrode current collector foil 404 are taken out from the sealed case 407 and can output the potential difference generated between the negative electrode 401 and the positive electrode 403 to the outside. Note that the inside of the sealed case 407 is filled with the electrolytic solution 406.
  • FIG. A positive electrode 501, a separator 502, and a negative electrode 503 are stacked and wound.
  • a negative electrode tab 505 is connected to the negative electrode 501, and a positive electrode tab 506 is connected to the positive electrode 503.
  • the negative electrode tab 506 is connected to the battery can 504, and the positive electrode tab 505 is connected to the battery lid 511.
  • the battery includes an inner lid 507, an internal pressure opening valve 508, a gasket 509, and a PTC element 510.
  • the battery can 504 is filled with an electrolytic solution that conducts lithium ions.
  • the positive electrode is not particularly limited as long as it can occlude and release lithium.
  • LiCoO 2 LiCo 0.33 Ni 0.33 Mn 0.33 O 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 LiFePO 4 , LiMnPO 4 , Li 2 FeSiO 4, or the like can be used.
  • the positive electrode current collector foil is not particularly limited as long as it does not easily change in the battery and has electronic conductivity, but aluminum, titanium, stainless steel, or the like can be used. Of these, aluminum is preferably used.
  • the thickness of the current collector foil of the positive electrode is not particularly limited, but one having a thickness of 1 to 100 ⁇ m can be used. Further, if the strength and electronic conductivity of the negative electrode itself are sufficient, it is not necessary to use a current collector foil.
  • an insulating porous material can be used for the separator.
  • the material is not particularly limited, and for example, polypropylene, polyethylene and the like can be used.
  • a non-aqueous electrolytic solution composed of a non-aqueous solvent and a lithium salt dissolved in the solvent
  • a non-aqueous solvent for example, a mixed solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, tetrahydrofuran, and methyl acetate can be used.
  • the lithium salt lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like can be used.
  • vinylene carbonate, ethylene sulfite, or the like may be added as an additive.
  • a polymer gel electrolyte can be used instead of the nonaqueous electrolytic solution.
  • polymer gel electrolyte for example, polyethylene oxide, polymethyl methacrylate, polyacrylonitrile and the like can be used.
  • the binder used for forming the negative electrode is not particularly limited, and for example, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, and the like can be used.
  • the negative electrode according to the present example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match
  • the negative electrode according to this example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match
  • the negative electrode according to this comparative example can be obtained by mixing FeO powder, a binder, and a solvent, applying the mixture onto a copper current collector foil, and pressing the mixture. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match
  • the negative electrode according to this comparative example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match
  • the lithium ion secondary battery thus obtained has a small amount of Fe and Li 2 CO 3 mixture, the irreversible capacity at the first charge / discharge is as large as about 20% of the total capacity, and the high energy density is It was not obtained.
  • the negative electrode according to this comparative example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match
  • the lithium ion secondary battery thus obtained has a large amount of the mixture of Fe and Li 2 CO 3 , so that irreversible capacity at the first charge and discharge is not seen, but pre-doping of the mixture of Fe and LiCO 3 Since about 50% of the amount could not be discharged, a high energy density could not be obtained.
  • Comparative Example 4 After putting Fe powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Thereafter, the mixture powder of Fe and Li 2 CO 3 according to this comparative example can be obtained by rotating the container with a planetary ball milling device.
  • the irreversible capacity at the first charge / discharge is as small as about 8% of the total negative electrode capacity, but the charge / discharge potential of the mixture of Fe and Li 2 CO 3 and the charge / discharge of graphite. Since the potential divergence is large, the charge / discharge potential of the battery changes rapidly, and stable charge / discharge characteristics cannot be obtained.

Abstract

Provided are: a negative electrode which can be handled in the atmosphere and has a reduced irreversible capacity; and a lithium ion secondary battery which uses this negative electrode and has a high energy density. A negative electrode for lithium ion secondary batteries, which is characterized by containing a transition metal carbonate and a negative electrode active material that is capable of absorbing and desorbing lithium ions.

Description

負極材料、およびこれを用いたリチウムイオン二次電池Negative electrode material and lithium ion secondary battery using the same
 本発明は、非水系二次電池、特にリチウムイオン二次電池に用いられる負極、に関する。 The present invention relates to a non-aqueous secondary battery, particularly a negative electrode used in a lithium ion secondary battery.
 リチウムイオン二次電池は、ニッケルカドミウム二次電池やニッケル水素二次電池に比べて高いエネルギー密度を有することから、ノートパソコン、携帯電話の電源として広く使用されている。また、環境に配慮した自動車として電気自動車およびハイブリッド自動車の開発が進む中、非水系二次電池のひとつであるリチウムイオン二次電池は自動車用の電源への適用が検討されている。 Since lithium ion secondary batteries have a higher energy density than nickel cadmium secondary batteries and nickel metal hydride secondary batteries, they are widely used as power sources for notebook computers and mobile phones. In addition, as electric vehicles and hybrid vehicles are being developed as environmentally friendly vehicles, lithium ion secondary batteries, which are one of non-aqueous secondary batteries, are being considered for application to automobile power sources.
 一般的に、リチウムイオン二次電池はバインダを用いて正極活物質を集電体に塗布した正極と、同様にバインダを用いて負極活物質を集電体に塗布した負極と、その中央に配置される電解質層が電池ケースに収納された構成となっている。こうしたリチウムイオン二次電池の負極には、特許文献1に示すように黒鉛などの炭素材料や、特許文献2、3に示すような酸化鉄、シリコンなどが用いられている。こうした負極活物質を用いたリチウムイオン二次電池では、初回充放電時の不可逆容量が大きく、電池のエネルギー密度が低下するという課題がある。なお、ここでいう不可逆容量とは、初回充電時に負極に移動したリチウムが放電時に正極に戻らないことにより、その後の充放電に寄与せず失われる容量を意味している。 Generally, a lithium ion secondary battery is arranged at the center of a positive electrode in which a positive electrode active material is applied to a current collector using a binder, and in the same way, a negative electrode in which a negative electrode active material is applied to a current collector using a binder. The electrolyte layer to be formed is housed in a battery case. As a negative electrode of such a lithium ion secondary battery, a carbon material such as graphite as shown in Patent Document 1, iron oxide, silicon as shown in Patent Documents 2 and 3, and the like are used. In the lithium ion secondary battery using such a negative electrode active material, there is a problem that the irreversible capacity at the first charge / discharge is large, and the energy density of the battery is lowered. The irreversible capacity here means a capacity that is lost without contributing to the subsequent charge / discharge because the lithium that has moved to the negative electrode during the initial charge does not return to the positive electrode during the discharge.
 こうした不可逆容量を低減するためには、負極にあらかじめ正極に戻らないリチウム量分のリチウムを含ませておく(プレドープしておく)ことが有効である。あらかじめリチウムをプレドープする方法としては、例えば特許文献4に開示されているように負極内に金属リチウム層を設置する技術が挙げられる。しかしながら、金属リチウムは大気中の酸素や水分と反応しやすいため、電池内を密閉するまでアルゴン雰囲気などで取り扱う必要があり、製造工程が複雑になる問題があった。 In order to reduce such irreversible capacity, it is effective to preliminarily include (a pre-dope) the lithium in an amount that does not return to the positive electrode in the negative electrode. As a method of pre-doping lithium in advance, for example, a technique of installing a metallic lithium layer in the negative electrode as disclosed in Patent Document 4 can be mentioned. However, since metallic lithium easily reacts with oxygen and moisture in the atmosphere, it is necessary to handle it in an argon atmosphere until the inside of the battery is sealed, and there is a problem that the manufacturing process becomes complicated.
特開2012-119214JP2012-119214 特開2013-1246JP2013-1246 特開2013-8487JP2013-8487 特開2012-9209JP2012-9209
 本発明の目的は、大気中で取り扱うことのでき、不可逆容量が低減された負極、およびこれを用いた非水系二次電池であるリチウムイオン二次電池を提供することである。 An object of the present invention is to provide a negative electrode that can be handled in the atmosphere and has a reduced irreversible capacity, and a lithium ion secondary battery that is a nonaqueous secondary battery using the negative electrode.
 リチウムイオンを吸蔵、放出可能な負極活物質を有するリチウムイオン二次電池用の負極材料において、負極材料は、遷移金属炭酸塩を有することを特徴とする負極材料である。遷移金属炭酸塩に含まれる遷移金属は、Cr、Mn、Fe、Co、Ni、Cuから選ばれる少なくとも一種であることを特徴とする負極材料である。不可逆容量分のリチウムイオンを遷移金属炭酸塩として添加することで、金属リチウムのように大気中の酸素や水分を考慮する必要がなく、また、リチウムイオンを吸蔵放出する活物質として機能させることができる。 In the negative electrode material for a lithium ion secondary battery having a negative electrode active material capable of occluding and releasing lithium ions, the negative electrode material is a negative electrode material having a transition metal carbonate. The transition metal contained in the transition metal carbonate is at least one selected from Cr, Mn, Fe, Co, Ni, and Cu, and is a negative electrode material characterized in that By adding lithium ions for irreversible capacity as transition metal carbonates, there is no need to consider oxygen and moisture in the atmosphere like metallic lithium, and it can function as an active material that occludes and releases lithium ions. it can.
 本発明によって、大気中で取り扱うことのでき、不可逆容量が低減された負極、およびこれを用いた高エネルギー密度なリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide a negative electrode that can be handled in the air and has a reduced irreversible capacity, and a high-energy density lithium ion secondary battery using the negative electrode.
本実施例に係る負極の断面模式図Cross-sectional schematic diagram of the negative electrode according to this example 本実施例に係るプレドープ状態の負極の断面模式図Cross-sectional schematic diagram of a pre-doped negative electrode according to this example 本実施例に係る負極の初回、2回目充放電時の変化の断面模式図Cross-sectional schematic diagram of changes during first charge and second charge / discharge of the negative electrode according to this example 本実施例に係るリチウムイオン二次電池の断面模式図Cross-sectional schematic diagram of a lithium ion secondary battery according to this example 本実施例に係るリチウムイオン二次電池の他の断面模式図Another cross-sectional schematic diagram of the lithium ion secondary battery according to the present embodiment
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 リチウムイオン二次電池は、初回充電により正極に含まれるリチウムイオンを負極に移動させることにより初期化する。しかし、この初回充電時に負極に移動したリチウムが放電時に正極に戻らないことにより、その後の充放電に寄与せず失われる容量が存在する。 The lithium ion secondary battery is initialized by moving lithium ions contained in the positive electrode to the negative electrode by the initial charge. However, since the lithium that has moved to the negative electrode during this initial charge does not return to the positive electrode during discharge, there is a capacity that is lost without contributing to subsequent charge / discharge.
 こうした不可逆容量を低減するためには、負極にあらかじめ正極に戻らないリチウム量分のリチウムを含ませておく(プレドープしておく)ことが有効である。しかし、金属リチウムは大気中の酸素や水分と反応しやすいため、電池内を密閉するまでアルゴン雰囲気などで取り扱う必要があり、製造工程が複雑になる問題があった。 In order to reduce such irreversible capacity, it is effective to preliminarily include (a pre-dope) the lithium in an amount that does not return to the positive electrode in the negative electrode. However, since metallic lithium easily reacts with oxygen and moisture in the air, it is necessary to handle it in an argon atmosphere until the inside of the battery is sealed, and there is a problem that the manufacturing process becomes complicated.
 このような課題に対して、リチウムを安定な化合物の状態で添加し且つ、充放電時にはリチウムイオンとなって容量に寄与させる方法が効果的であることを見出した。 It has been found that it is effective to add lithium in the state of a stable compound and to contribute to the capacity by forming lithium ions at the time of charge and discharge.
 負極に添加することで不可逆容量を低減可能な化合物であり、且つ大気中で取り扱うことが可能な化合物として、遷移金属炭酸塩が有効であることを見出した。遷移金属としてFeを例にすると遷移金属炭酸塩(FeCO3)のリチウム吸蔵、放出反応は(1)式のように表わすことができる。なお、(1)式の右辺から左辺への反応が充電反応であり、左辺から右辺への反応が放電反応である。

FeCO3 + 2Li+ + 2e- ⇔ Fe + Li2CO3 ・・・(1)

 ここで、FeCO3の充電状態(リチウムを吸蔵した状態)であるFe、炭酸リチウム(Li2CO3)の混合物は、大気中の水分に対して安定であるため、これを添加した負極はアルゴン雰囲気などで取り扱う必要がなく電池の製造工程が簡略化できる。また、充電状態で負極に含ませることで初回充放電時の不可逆容量(正極に戻らないリチウム)を補うことができる。なお、初回充放電でリチウムを放出した後も、(1)式に従い、充放電に寄与するため、その後の電池容量を減少させることはない。
It has been found that transition metal carbonates are effective as compounds that can reduce the irreversible capacity by being added to the negative electrode and that can be handled in the atmosphere. Taking Fe as an example of the transition metal, the lithium occlusion / release reaction of transition metal carbonate (FeCO 3 ) can be expressed as shown in equation (1). In addition, the reaction from the right side of the equation (1) to the left side is a charge reaction, and the reaction from the left side to the right side is a discharge reaction.

FeCO 3 + 2Li + + 2e ⇔ Fe + Li 2 CO 3 (1)

Here, since the mixture of Fe and lithium carbonate (Li 2 CO 3 ), which is the charged state of FeCO 3 (the state in which lithium is occluded), is stable against moisture in the atmosphere, the negative electrode to which this is added is argon The battery manufacturing process can be simplified without the need for handling in an atmosphere or the like. Moreover, the irreversible capacity | capacitance (lithium which does not return to a positive electrode) at the time of first time charge / discharge can be supplemented by including in a negative electrode in a charging state. In addition, even after releasing lithium by the first charge / discharge, it contributes to the charge / discharge according to the equation (1), so that the subsequent battery capacity is not reduced.
 遷移金属炭酸塩としては、例えばTi、Cr、Mn、Fe、Co、Ni、Cuなどの遷移金属の炭酸塩を用いることができる。ここで、Ti、CrなどのFeよりも原子番号が小さい金属は酸化されやすいため、充電状態である金属、炭酸リチウムの混合状態が不安定になりやすい。また、CuなどのFeよりも原子番号の大きい金属は放電時の負極電位が高いため、電池電圧が小さくなってしまう。そのため、Mn、Fe、Co、Niの炭酸塩が好ましく、Feが特に好ましい。 As the transition metal carbonate, for example, transition metal carbonates such as Ti, Cr, Mn, Fe, Co, Ni, and Cu can be used. Here, since a metal having an atomic number smaller than that of Fe, such as Ti or Cr, is easily oxidized, the mixed state of the charged metal and lithium carbonate tends to be unstable. In addition, a metal having a larger atomic number than Fe, such as Cu, has a high negative electrode potential at the time of discharge, and thus the battery voltage becomes small. Therefore, carbonates of Mn, Fe, Co, and Ni are preferable, and Fe is particularly preferable.
 負極活物質としては、例えば非晶質炭素、黒鉛といった炭素材料や、シリコン、スズ、アルミニウム、チタン酸リチウム、遷移金属酸化物などを用いることができるが、遷移金属炭酸塩と充放電電位が近いものを用いることが好ましい。遷移金属炭酸塩と充放電電位が乖離していると、電池の充放電時に電圧が急激に変化してしまい、制御が難しくなる。こうした観点から、負極活物質には遷移金属酸化物を用いることが好ましい。特に遷移金属炭酸塩と遷移金属酸化物の充放電電位を近くするために、両者で同じ種類の遷移金属を用いることが好ましい。すなわち、Mn、Fe、Co、Niの酸化物が好ましく、Feの酸化物が特に好ましい。ここで、Feの酸化物としてはFeO、Fe23、Fe34を用いることができる。また、炭素材料は充放電サイクルに伴う劣化が少ないことから負極活物質として好ましいが、黒鉛よりも非晶質炭素が遷移金属炭酸塩の充放電電位に近いため、好ましい。 As the negative electrode active material, for example, carbon materials such as amorphous carbon and graphite, silicon, tin, aluminum, lithium titanate, transition metal oxide, and the like can be used, but the charge / discharge potential is close to that of transition metal carbonate. It is preferable to use one. If the transition metal carbonate and the charge / discharge potential are different, the voltage changes abruptly when the battery is charged / discharged, making control difficult. From such a viewpoint, it is preferable to use a transition metal oxide for the negative electrode active material. In particular, in order to make the charge / discharge potentials of the transition metal carbonate and the transition metal oxide close, it is preferable to use the same type of transition metal for both. That is, oxides of Mn, Fe, Co, and Ni are preferable, and oxides of Fe are particularly preferable. Here, FeO, Fe 2 O 3 , and Fe 3 O 4 can be used as the oxide of Fe. A carbon material is preferable as a negative electrode active material because it is less deteriorated with a charge / discharge cycle, but is preferable because amorphous carbon is closer to the charge / discharge potential of transition metal carbonate than graphite.
 負極活物質への遷移金属炭酸塩の混合量は、初回充放電時に発生する不可逆容量から上限を決定することが好ましい。負極における初回充放電時の不可逆容量は、概ね負極活物質の理論容量の30%以下である。そのため、遷移金属炭酸塩の理論容量をX(mAh/g),負極活物質の理論容量をY(mAh/g)、負極活物質の量をN(g)とすると、遷移金属炭酸塩の添加量M(g)はM≦0.3NY/Xとなるように混合することが好ましい。遷移金属炭酸塩をこれ以上、添加しても電池の初回効率は100%を超えることはないため、エネルギー密度を向上させる効果は得られない。また、遷移金属塩の添加量はM≧0.05NY/Xとなるように混合することが好ましい。これよりも少ないと不可逆容量を低減する効果が得られにくい。ここで、遷移金属炭酸塩として炭酸鉄(FeCO3)、負極活物質として酸化鉄(FeO)を例として添加量の計算例を示す。FeCO3の充放電反応式は前述の(1)式で表わされ、理論容量は463mAh/gである。また、FeOの充放電反応式は(2)式で表わされ、理論容量は746mAh/gである。

FeO + 2Li+ + 2e- ⇔ Fe + Li2O ・・・(2)

したがって、FeO、1.0gに対するFeCO3の添加量は0.1g以上、0.5g以下とすることが好ましい。
It is preferable to determine the upper limit of the amount of transition metal carbonate mixed with the negative electrode active material from the irreversible capacity generated during the first charge / discharge. The irreversible capacity at the time of first charge / discharge in the negative electrode is generally 30% or less of the theoretical capacity of the negative electrode active material. Therefore, when the theoretical capacity of the transition metal carbonate is X (mAh / g), the theoretical capacity of the negative electrode active material is Y (mAh / g), and the amount of the negative electrode active material is N (g), the transition metal carbonate is added. The amount M (g) is preferably mixed so that M ≦ 0.3NY / X. Even if more transition metal carbonates are added, the initial efficiency of the battery does not exceed 100%, so the effect of improving the energy density cannot be obtained. Moreover, it is preferable to mix so that the addition amount of a transition metal salt may become M> = 0.05NY / X. If it is less than this, it is difficult to obtain the effect of reducing the irreversible capacity. Here, a calculation example of the addition amount will be shown by taking iron carbonate (FeCO 3 ) as the transition metal carbonate and iron oxide (FeO) as the negative electrode active material. The charge / discharge reaction formula of FeCO3 is expressed by the above-described formula (1), and the theoretical capacity is 463 mAh / g. Further, the charge / discharge reaction formula of FeO is expressed by formula (2), and the theoretical capacity is 746 mAh / g.

FeO + 2Li + + 2e ⇔ Fe + Li 2 O (2)

Therefore, the amount of FeCO 3 added to FeO, 1.0 g is preferably 0.1 g or more and 0.5 g or less.
 図1は本発明の負極を表す概念図である。 FIG. 1 is a conceptual diagram showing a negative electrode of the present invention.
 集電箔101の上にリチウムを吸蔵、放出可能な物質(負極活物質)102と遷移金属炭酸塩103が結着剤104によって結着されている。遷移金属炭酸塩103を充電状態で負極に含ませることで、初回充放電時の不可逆容量を減少させることができる。 A material (negative electrode active material) 102 capable of occluding and releasing lithium and a transition metal carbonate 103 are bound on a current collector foil 101 by a binder 104. By including the transition metal carbonate 103 in the negative electrode in a charged state, the irreversible capacity during the first charge / discharge can be reduced.
 図2は、本発明負極のプレドープ状態を示す概念図である。 FIG. 2 is a conceptual diagram showing a pre-doped state of the negative electrode of the present invention.
 遷移金属炭酸塩103は、充電により遷移金属201と炭酸リチウム202の混合物となる。遷移金属201と炭酸リチウム202の混合物は、大気中の水分と反応しにくい。このため、リチウムのプレドープに金属リチウムを用いた場合のようにアルゴン雰囲気などで取り扱う必要がなく、製造工程を簡素化することができる。遷移金属201にはTi、Cr、Mn、Fe、Co、Ni、Cuなどを用いることができるが、Ti、Cr等は酸化されやすいため、Mn、Fe、Co、Ni、Cuを用いることが好ましい。 The transition metal carbonate 103 becomes a mixture of the transition metal 201 and the lithium carbonate 202 by charging. The mixture of the transition metal 201 and the lithium carbonate 202 hardly reacts with moisture in the atmosphere. For this reason, it is not necessary to handle in an argon atmosphere or the like unlike when metallic lithium is used for lithium pre-doping, and the manufacturing process can be simplified. As the transition metal 201, Ti, Cr, Mn, Fe, Co, Ni, Cu, or the like can be used. However, since Ti, Cr, and the like are easily oxidized, it is preferable to use Mn, Fe, Co, Ni, and Cu. .
 また、遷移金属201は、直径数μm以下で炭酸リチウム202と混合されていることが好ましい。このような構成とすることで、遷移金属炭酸塩への放電反応が進みやすくなる。 The transition metal 201 is preferably mixed with the lithium carbonate 202 with a diameter of several μm or less. By setting it as such a structure, the discharge reaction to transition metal carbonate becomes easy to advance.
 遷移金属201と炭酸リチウム202の混合物は、例えば、ボールミリングで作製することができる。遷移金属粉末と炭酸リチウム粉末とボールを容器に入れ、遷移金属粉末の酸化を抑制するために容器内をアルゴン雰囲気とし、高速回転させることで直径数μm以下の遷移金属201と炭酸リチウム202の混合物を得ることができる。得られた混合物は大気中の水分と反応しにくいため、大気中で取り扱うことができる。 The mixture of transition metal 201 and lithium carbonate 202 can be produced, for example, by ball milling. A mixture of transition metal 201 and lithium carbonate 202 having a diameter of several μm or less by placing transition metal powder, lithium carbonate powder, and balls in a container, and setting the container to an argon atmosphere in order to suppress oxidation of the transition metal powder and rotating at high speed Can be obtained. Since the obtained mixture does not easily react with moisture in the atmosphere, it can be handled in the atmosphere.
 負極には負極活物質、遷移金属炭酸塩、結着剤の他に導電助材が含まれていても良い。導電助材は、例えば、カーボンブラック、炭素繊維、金属繊維、あるいは導電性ポリマーを用いることができる。 The negative electrode may contain a conductive additive in addition to the negative electrode active material, transition metal carbonate, and binder. For example, carbon black, carbon fiber, metal fiber, or conductive polymer can be used as the conductive aid.
 負極の密度は、プレスなどによって、負極を構成する材料(負極集電箔は除く)の平均真密度の50%以上、90%以下とすることが好ましい。50%以下であると、単位体積あたりに含まれる負極活物質の量が少なくなるため、エネルギー密度が小さくなってしまう。また、90%以上であると、負極内の空隙が少なくなることにより、負極中の電解液量が減少し、Liイオン伝導が損なわれるため好ましくない。 The density of the negative electrode is preferably 50% or more and 90% or less of the average true density of the material constituting the negative electrode (excluding the negative electrode current collector foil) by pressing or the like. If it is 50% or less, the amount of the negative electrode active material contained per unit volume is reduced, so that the energy density is reduced. On the other hand, if it is 90% or more, the voids in the negative electrode are reduced, the amount of the electrolytic solution in the negative electrode is reduced, and Li ion conduction is impaired.
 負極の集電箔は、電池内で変質しにくく、電子伝導性を有するものであれば特に限定されるものではないが、銅、ニッケル、ステンレスなどを用いることができる。なかでも、銅を用いることが好ましい。負極の集電箔の厚さは、特に限定されるものではないが1~100μmのものを用いることができる。また、負極自体の強度と電子伝導性が十分であれば、必ずしも集電箔を用いる必要はない。 The negative electrode current collector foil is not particularly limited as long as it does not easily change in the battery and has electronic conductivity, but copper, nickel, stainless steel, and the like can be used. Of these, copper is preferably used. The thickness of the negative electrode current collector foil is not particularly limited, but one having a thickness of 1 to 100 μm can be used. Further, if the strength and electronic conductivity of the negative electrode itself are sufficient, it is not necessary to use a current collector foil.
 図3は、負極の初回充電(a)、初回放電(b)、2回目充電(c)、2回目放電(d)を示す模式図である。
ここでは、遷移金属炭酸塩として炭酸鉄(FeCO3)、負極活物質として酸化鉄(FeO)を例として示す。最初の状態は、FeCO3の充電状態であるFe、Li2CO3の混合物とFeOである。初回充電(a)によって、FeOにリチウムが吸蔵され、Fe、Li2Oの混合物となる。一方、FeCO3は既に充電状態であり、Fe、Li2CO3の混合物の状態のである。次に初回放電(b)によって、Fe、Li2CO3の混合物とFe、Li2Oの混合物の双方からリチウムが放出されてそれぞれFeCO3とFeOとなる。このため、初回充電(a)時に正極から供給されたリチウムイオン以上のリチウムイオンが初回放電(b)で放出することができる。こうして、初回充放電(a)時に負極活物質に挿入され、そのまま放出されないリチウムイオンの分(不可逆容量分)を補うことができる。その後の2回目以降の充放電(c)(d)では、FeCO3、FeOの両方でリチウムの吸蔵、放出が行われる。
FIG. 3 is a schematic diagram illustrating negative electrode initial charge (a), initial discharge (b), second charge (c), and second discharge (d).
Here, iron carbonate (FeCO 3 ) is shown as an example of the transition metal carbonate, and iron oxide (FeO) is shown as an example of the negative electrode active material. The first state is a mixture of Fe, Li 2 CO 3 and FeO, which is a charged state of FeCO 3 . By the first charge (a), lithium is occluded in FeO and becomes a mixture of Fe and Li 2 O. On the other hand, FeCO 3 is already in a charged state, and is a mixture of Fe and Li 2 CO 3 . Next, by the first discharge (b), lithium is released from both the mixture of Fe and Li 2 CO 3 and the mixture of Fe and Li 2 O to become FeCO 3 and FeO, respectively. For this reason, the lithium ion more than the lithium ion supplied from the positive electrode at the time of initial charge (a) can be discharge | released by initial discharge (b). In this way, it is possible to compensate for the lithium ion (irreversible capacity) that is inserted into the negative electrode active material during the first charge / discharge (a) and is not released as it is. In the subsequent charge and discharge (c) and (d) for the second and subsequent times, lithium is occluded and released by both FeCO 3 and FeO.
 さらに、ここで説明するリチウムイオン二次電池用の負極の製造方法は、負極にリチウムイオンを吸蔵、放出可能な負極活物質と、遷移金属、炭酸リチウムの混合物を含ませる工程を有することを特徴とする。 Furthermore, the method for producing a negative electrode for a lithium ion secondary battery described herein includes a step of including a negative electrode active material capable of occluding and releasing lithium ions in the negative electrode, and a mixture of a transition metal and lithium carbonate. And
 本発明の負極材料有するリチウムイオン二次電池を図4に示す。負極集電箔402上に負極401が設けられ、正極集電箔404上に正極403が設けられ、これらとセパレータ405とを積層したものが、絶縁性の密閉ケース407に収納されている。負極集電箔402、正極集電箔404は、密閉ケース407から外部に取り出されており、負極401と正極403で発生した電位差を外部に出力することができる。なお、密閉ケース407の内部は、電解液406で満たされている。 FIG. 4 shows a lithium ion secondary battery having the negative electrode material of the present invention. A negative electrode 401 is provided on the negative electrode current collector foil 402, a positive electrode 403 is provided on the positive electrode current collector foil 404, and a laminate of these and a separator 405 is housed in an insulating sealed case 407. The negative electrode current collector foil 402 and the positive electrode current collector foil 404 are taken out from the sealed case 407 and can output the potential difference generated between the negative electrode 401 and the positive electrode 403 to the outside. Note that the inside of the sealed case 407 is filled with the electrolytic solution 406.
 他のリチウムイオン二次電池を図5に示す。正極501、セパレータ502、負極503が積層され、捲回された構成となっている。負極501には負極タブ505が接続され、正極503には正極タブ506が接続される。更に、負極タブ506は電池缶504に接続され、正極タブ505は電池蓋511に接続される。このような構造とすることで、負極501と正極503との間に発生した電位差を外部に出力することができる。なお、電池にはその他に内蓋507、内圧開封弁508、ガスケット509、PTC素子510が含まれる。また、電池缶504内はリチウムイオンを伝導する電解液で満たされる。 Another lithium ion secondary battery is shown in FIG. A positive electrode 501, a separator 502, and a negative electrode 503 are stacked and wound. A negative electrode tab 505 is connected to the negative electrode 501, and a positive electrode tab 506 is connected to the positive electrode 503. Further, the negative electrode tab 506 is connected to the battery can 504, and the positive electrode tab 505 is connected to the battery lid 511. With such a structure, a potential difference generated between the negative electrode 501 and the positive electrode 503 can be output to the outside. In addition, the battery includes an inner lid 507, an internal pressure opening valve 508, a gasket 509, and a PTC element 510. Further, the battery can 504 is filled with an electrolytic solution that conducts lithium ions.
 正極は、リチウムを吸蔵、放出できるものであれば特に限定されるものではないが、例えば、LiCoO2,LiCo0.33Ni0.33Mn0.332,LiNiO2,LiMn24,LiNi0.5Mn1.54,LiFePO4,LiMnPO4,Li2FeSiO4などを用いることができる。 The positive electrode is not particularly limited as long as it can occlude and release lithium. For example, LiCoO 2 , LiCo 0.33 Ni 0.33 Mn 0.33 O 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 LiFePO 4 , LiMnPO 4 , Li 2 FeSiO 4, or the like can be used.
 正極の集電箔は、電池内で変質しにくく、電子伝導性を有するものであれば特に限定されるものではないが、アルミニウム、チタン、ステンレスなどを用いることができる。なかでも、アルミニウムを用いることが好ましい。正極の集電箔の厚さは、特に限定されるものではないが1~100μmのものを用いることができる。また、負極自体の強度と電子伝導性が十分であれば、必ずしも集電箔を用いる必要はない。 The positive electrode current collector foil is not particularly limited as long as it does not easily change in the battery and has electronic conductivity, but aluminum, titanium, stainless steel, or the like can be used. Of these, aluminum is preferably used. The thickness of the current collector foil of the positive electrode is not particularly limited, but one having a thickness of 1 to 100 μm can be used. Further, if the strength and electronic conductivity of the negative electrode itself are sufficient, it is not necessary to use a current collector foil.
 また、セパレータには絶縁性の多孔質材料を用いることができる。材料は、特に限定されるものではないが、例えば、ポリプロピレン、ポリエチレンなどを用いることができる。 Also, an insulating porous material can be used for the separator. The material is not particularly limited, and for example, polypropylene, polyethylene and the like can be used.
 電解液は、非水系溶媒と、その溶媒に溶解するリチウム塩とから構成される非水系電解液を用いることができる。非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、テトラヒドロフラン、メチルアセテートなどの混合溶媒を用いることができる。また、リチウム塩としては、過塩素酸リチウム、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、三フッ化メタンスルホン酸リチウムなどを用いることができる。また、ビニレンカーボネート、エチレンサルファイトなどを添加材として加えても良い。その他に、非水系電解液の代わりにポリマーゲル電解質を用いることもできる。ポリマーゲル電解質としては、例えば、ポリエチレンオキシド、ポリメタクリル酸メチル、ポリアクリルニトリルなどを用いることができる。 As the electrolytic solution, a non-aqueous electrolytic solution composed of a non-aqueous solvent and a lithium salt dissolved in the solvent can be used. As the non-aqueous solvent, for example, a mixed solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, tetrahydrofuran, and methyl acetate can be used. As the lithium salt, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like can be used. In addition, vinylene carbonate, ethylene sulfite, or the like may be added as an additive. In addition, a polymer gel electrolyte can be used instead of the nonaqueous electrolytic solution. As the polymer gel electrolyte, for example, polyethylene oxide, polymethyl methacrylate, polyacrylonitrile and the like can be used.
 負極を形成するために用いられる結着剤は、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴムなどを用いることができる。 The binder used for forming the negative electrode is not particularly limited, and for example, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, and the like can be used.
 以下、本実施例に係るリチウムイオン二次電池に用いられる負極の実施態様を具体的に説明する。
(実施例1)
 Fe粉末とLiCO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本実施例に係るFeとLi2CO3の混合物粉末を得ることができる。次に、FeとLiCO3の混合物:FeO=0.3:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本実施例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
Hereinafter, embodiments of the negative electrode used in the lithium ion secondary battery according to this example will be specifically described.
Example 1
After putting Fe powder, LiCO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Then, it is possible to obtain a mixed powder of Fe and Li 2 CO 3 according to the present embodiment by rotating the container with a planetary ball milling device. Next, a mixture of Fe and LiCO 3 : FeO = 0.3: 1.0 (weight ratio), a binder, and a solvent are mixed, applied onto a copper current collector foil, and then pressed. Thus, the negative electrode according to this example can be obtained. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 この結果、リチウムイオン二次電池は、初回充放電時の不可逆容量が総負極容量の10%程度と小さいものを作製することができ、高いエネルギー密度を得ることができた。
(実施例2)
 Ni粉末とLi2CO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本実施例に係るNiとLi2CO3の混合物粉末を得ることができる。次に、NiとLi2CO3の混合物:NiO=0.3:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本実施例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
As a result, it was possible to produce a lithium ion secondary battery having an irreversible capacity as small as about 10% of the total negative electrode capacity at the first charge / discharge, and a high energy density could be obtained.
(Example 2)
After putting Ni powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Thereafter, the mixture powder of Ni and Li 2 CO 3 according to the present embodiment can be obtained by rotating the container with a planetary ball milling device. Next, a mixture of Ni and Li 2 CO 3 : NiO = 0.3: 1.0 (weight ratio), a binder, and a solvent were mixed and applied on a copper current collector foil. The negative electrode according to the present example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 この結果、リチウムイオン二次電池は、初回充放電時の不可逆容量が総負極容量の9%程度と小さいものを作製することができ、高いエネルギー密度を得ることができた。
(実施例3)
 Fe粉末とLi2CO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本実施例に係るFeとLi2CO3の混合物粉末を得ることができる。次に、FeとLi2CO3の混合物:非晶質炭素(易黒鉛化性炭素)=0.1:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本実施例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
As a result, a lithium ion secondary battery having a small irreversible capacity at the time of first charge / discharge of about 9% of the total negative electrode capacity could be produced, and a high energy density could be obtained.
Example 3
After putting Fe powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Then, it is possible to obtain a mixed powder of Fe and Li 2 CO 3 according to the present embodiment by rotating the container with a planetary ball milling device. Next, a mixture of Fe and Li 2 CO 3 : amorphous carbon (graphitizable carbon) = 0.1: 1.0 (weight ratio), a binder and a solvent are mixed, and copper is mixed. After applying on the current collector foil, the negative electrode according to this example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 この結果、リチウムイオン二次電池は、初回充放電時の不可逆容量が総負極容量の10%程度と小さいものを作製することができ、高いエネルギー密度を得ることができるた。
(比較例1)
 FeOの粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本比較例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
As a result, it was possible to produce a lithium ion secondary battery having an irreversible capacity as small as about 10% of the total negative electrode capacity at the first charge / discharge, and a high energy density could be obtained.
(Comparative Example 1)
The negative electrode according to this comparative example can be obtained by mixing FeO powder, a binder, and a solvent, applying the mixture onto a copper current collector foil, and pressing the mixture. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 このようにして得られたリチウムイオン二次電池は、プレドープされていないため、初回充放電時の不可逆容量が総容量の30%程度と大きく、高いエネルギー密度は得られなかった。
(比較例2)
 Fe粉末とLi2CO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本比較例に係るFeとLi2CO3の混合物粉末を得ることができる。次に、FeとLi2CO3の混合物:FeO=0.05:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本比較例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
Since the lithium ion secondary battery thus obtained was not pre-doped, the irreversible capacity at the first charge / discharge was as large as about 30% of the total capacity, and a high energy density was not obtained.
(Comparative Example 2)
After putting Fe powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Thereafter, the mixture powder of Fe and Li 2 CO 3 according to this comparative example can be obtained by rotating the container with a planetary ball milling device. Next, a mixture of Fe and Li 2 CO 3 : FeO = 0.05: 1.0 (weight ratio) powder, a binder, and a solvent were mixed and coated on a copper current collector foil. The negative electrode according to this comparative example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 このようにして得られたリチウムイオン二次電池は、FeとLi2CO3の混合物の添加量が少ないため、初回充放電時の不可逆容量が総容量の20%程度と大きく、高いエネルギー密度は得られなかった。
(比較例3)
 Fe粉末とLi2CO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本比較例に係るFeとLi2CO3の混合物粉末を得ることができる。次に、FeとLi2CO3の混合物:FeO=1.0:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本比較例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができる。
Since the lithium ion secondary battery thus obtained has a small amount of Fe and Li 2 CO 3 mixture, the irreversible capacity at the first charge / discharge is as large as about 20% of the total capacity, and the high energy density is It was not obtained.
(Comparative Example 3)
After putting Fe powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Thereafter, the mixture powder of Fe and Li 2 CO 3 according to this comparative example can be obtained by rotating the container with a planetary ball milling device. Next, a mixture of Fe and Li 2 CO 3 : FeO = 1.0: 1.0 (weight ratio) powder, a binder, and a solvent were mixed and applied onto a copper current collector foil. The negative electrode according to this comparative example can be obtained by pressing. Then, the lithium ion secondary battery which concerns on a present Example can be obtained by match | combining the obtained negative electrode, a separator, and a positive electrode in a sealed case, and inject | pouring electrolyte solution.
 このようにして得られたリチウムイオン二次電池は、FeとLi2CO3の混合物の添加量が多いため、初回充放電時の不可逆容量は見られなくなるが、FeとLiCO3の混合物のプレドープ量の50%程度を放電することができないため、高いエネルギー密度は得られなかった。
(比較例4)
 Fe粉末とLi2CO3とステンレス製のボールをステンレス製の容器に入れてフタをした後、容器内部をアルゴン雰囲気とする。その後、遊星ボールミリング装置にて容器を回転させることで本比較例に係るFeとLi2CO3の混合物粉末を得ることができる。次に、FeとLi2CO3の混合物:黒鉛=0.16:1.0(重量比)の粉末と、結着剤と、溶媒を混合し、銅の集電箔上に塗布した後、プレスすることで本比較例に係る負極を得ることができる。その後、得られた負極と、セパレータと、正極とを合わせて密閉ケースに組み込み、電解液を注入することで本実施例に係るリチウムイオン二次電池を得ることができなかった。
The lithium ion secondary battery thus obtained has a large amount of the mixture of Fe and Li 2 CO 3 , so that irreversible capacity at the first charge and discharge is not seen, but pre-doping of the mixture of Fe and LiCO 3 Since about 50% of the amount could not be discharged, a high energy density could not be obtained.
(Comparative Example 4)
After putting Fe powder, Li 2 CO 3 and stainless steel balls in a stainless steel container and capping, the inside of the container is made an argon atmosphere. Thereafter, the mixture powder of Fe and Li 2 CO 3 according to this comparative example can be obtained by rotating the container with a planetary ball milling device. Next, a mixture of Fe and Li 2 CO 3 : graphite = 0.16: 1.0 (weight ratio) powder, a binder and a solvent were mixed and applied on a copper current collector foil, The negative electrode according to this comparative example can be obtained by pressing. Thereafter, the obtained negative electrode, separator, and positive electrode were combined and assembled in a sealed case, and the electrolyte solution was injected, whereby the lithium ion secondary battery according to this example could not be obtained.
 このようにして得られたリチウムイオン二次電池は、初回充放電時の不可逆容量が総負極容量の8%程度と小さいが、FeとLi2CO3の混合物の充放電電位と黒鉛の充放電電位の乖離が大きいため、電池の充放電電位が急激に変化し、安定した充放電特性が得られない。 In the lithium ion secondary battery thus obtained, the irreversible capacity at the first charge / discharge is as small as about 8% of the total negative electrode capacity, but the charge / discharge potential of the mixture of Fe and Li 2 CO 3 and the charge / discharge of graphite. Since the potential divergence is large, the charge / discharge potential of the battery changes rapidly, and stable charge / discharge characteristics cannot be obtained.
101…集電箔
102…負極活物質
103…遷移金属炭酸塩
104…結着剤
201…遷移金属
202…炭酸リチウム
401…負極
402…負極集電箔
403…正極
404…正極集電箔
405…セパレータ
406…電解液
407…密閉ケース
501…正極
502…セパレータ
503…負極
504…電池缶
505…負極タブ
506…正極タブ
507…内蓋
508…内圧開封弁
509…ガスケット
510…PTC素子
511…電池蓋
DESCRIPTION OF SYMBOLS 101 ... Current collector foil 102 ... Negative electrode active material 103 ... Transition metal carbonate 104 ... Binder 201 ... Transition metal 202 ... Lithium carbonate 401 ... Negative electrode 402 ... Negative electrode current collector foil 403 ... Positive electrode 404 ... Positive electrode current collector foil 405 ... Separator 406 ... Electrolytic solution 407 ... Sealing case 501 ... Positive electrode 502 ... Separator 503 ... Negative electrode 504 ... Battery can 505 ... Negative electrode tab 506 ... Positive electrode tab 507 ... Inner cover 508 ... Internal pressure opening valve 509 ... Gasket 510 ... PTC element 511 ... Battery cover

Claims (10)

  1.  リチウムイオンを吸蔵、放出可能な負極活物質を有するリチウムイオン二次電池用の負極材料において、
     前記負極材料は、遷移金属炭酸塩を有することを特徴とする負極材料。
    In a negative electrode material for a lithium ion secondary battery having a negative electrode active material capable of occluding and releasing lithium ions,
    The negative electrode material has a transition metal carbonate.
  2.  請求項1において、
     前記遷移金属炭酸塩に含まれる遷移金属は、Cr、Mn、Fe、Co、Ni、Cuから選ばれる少なくとも一種であることを特徴とする負極材料。
    In claim 1,
    The negative electrode material, wherein the transition metal contained in the transition metal carbonate is at least one selected from Cr, Mn, Fe, Co, Ni, and Cu.
  3.  請求項2において、
     前記負極活物質がCr、Mn、Fe、Co、Ni、Cuから選ばれる少なくとも一種の酸化物であることを特徴とする負極材料。
    In claim 2,
    The negative electrode material, wherein the negative electrode active material is at least one oxide selected from Cr, Mn, Fe, Co, Ni, and Cu.
  4.  請求項3において、
     前記遷移金属炭酸塩の重量当たりの理論容量をX(mAh/g)、前記負極活物質の重量当たりの理論容量をY(mAh/g)、前記負極活物質の重量をN(g)とした場合に、前記遷移金属炭酸塩の添加量M(g)は0.05≦M≦0.3NY/Xを満たすことを特徴とする負極材料。
    In claim 3,
    The theoretical capacity per weight of the transition metal carbonate is X (mAh / g), the theoretical capacity per weight of the negative electrode active material is Y (mAh / g), and the weight of the negative electrode active material is N (g). In this case, the amount M (g) of the transition metal carbonate satisfies 0.05 ≦ M ≦ 0.3NY / X.
  5.  請求項4において、前記負極活物質が遷移金属酸化物であり、遷移金属酸化物と前記遷移金属炭酸塩の遷移金属の種類が同じであることを特徴とする負極材料。 5. The negative electrode material according to claim 4, wherein the negative electrode active material is a transition metal oxide, and the type of transition metal of the transition metal oxide and the transition metal carbonate is the same.
  6.  請求項5において、
     前記遷移金属炭酸塩は、FeCO3であり、前記負極活物質は、FeO、Fe2O3、Fe3O4であることを特徴とする負極材料。
    In claim 5,
    The negative electrode material, wherein the transition metal carbonate is FeCO 3 and the negative electrode active material is FeO, Fe 2 O 3 , or Fe 3 O 4 .
  7.  請求項1ないし請求項6のいずれかに記載の負極材料と、リチウムイオンを吸蔵、放出可能な正極活物質を有するリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode material according to any one of claims 1 to 6 and a positive electrode active material capable of inserting and extracting lithium ions.
  8.  請求項7において、
     前記負極材料は、前記リチウムイオン二次電池の充電時に、前記遷移金属と、Li2CO3と、Li2Oを有するリチウムイオン二次電池。
    In claim 7,
    The negative electrode material is a lithium ion secondary battery including the transition metal, Li 2 CO 3 , and Li 2 O when the lithium ion secondary battery is charged.
  9.  請求項8において、
     前記負極材料は、前記リチウムイオン二次電池の初回充電前に、前記遷移金属と、Li2CO3と、前記遷移金属の酸化物を有することを特徴とするリチウムイオン二次電池。
    In claim 8,
    The lithium ion secondary battery, wherein the negative electrode material includes the transition metal, Li 2 CO 3, and an oxide of the transition metal before the first charge of the lithium ion secondary battery.
  10.  請求項1ないし請求項9のいずれかに記載のリチウムイオン二次電池用の負極材料の製造方法において、前記負極にリチウムイオンを吸蔵、放出可能な負極活物質と、遷移金属、炭酸リチウムの混合物を含ませる工程を有することを特徴とする負極の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 9, wherein the negative electrode active material capable of occluding and releasing lithium ions in the negative electrode, a mixture of transition metal and lithium carbonate The manufacturing method of the negative electrode characterized by including the process of including.
PCT/JP2013/072494 2013-08-23 2013-08-23 Negative electrode material and lithium ion secondary battery using same WO2015025417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072494 WO2015025417A1 (en) 2013-08-23 2013-08-23 Negative electrode material and lithium ion secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072494 WO2015025417A1 (en) 2013-08-23 2013-08-23 Negative electrode material and lithium ion secondary battery using same

Publications (1)

Publication Number Publication Date
WO2015025417A1 true WO2015025417A1 (en) 2015-02-26

Family

ID=52483221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072494 WO2015025417A1 (en) 2013-08-23 2013-08-23 Negative electrode material and lithium ion secondary battery using same

Country Status (1)

Country Link
WO (1) WO2015025417A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138743A (en) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqeuous electrolyte secondary battery
JPH11233150A (en) * 1998-02-16 1999-08-27 Fujitsu Ltd Lithium secondary battery and positive electrode mix used in it
JP2001273927A (en) * 2000-03-28 2001-10-05 Ngk Insulators Ltd Lithium secondary battery
JP2003308843A (en) * 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2004014472A (en) * 2002-06-11 2004-01-15 Sony Corp Nonaqueous secondary battery
WO2012008422A1 (en) * 2010-07-12 2012-01-19 株式会社 村田製作所 All-solid-state battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138743A (en) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqeuous electrolyte secondary battery
JPH11233150A (en) * 1998-02-16 1999-08-27 Fujitsu Ltd Lithium secondary battery and positive electrode mix used in it
JP2001273927A (en) * 2000-03-28 2001-10-05 Ngk Insulators Ltd Lithium secondary battery
JP2003308843A (en) * 2002-04-17 2003-10-31 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2004014472A (en) * 2002-06-11 2004-01-15 Sony Corp Nonaqueous secondary battery
WO2012008422A1 (en) * 2010-07-12 2012-01-19 株式会社 村田製作所 All-solid-state battery

Similar Documents

Publication Publication Date Title
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
JP2019016483A (en) Nonaqueous electrolyte secondary battery
CN112825352A (en) Method for prelithiating lithium ion batteries
CN113087856A (en) Gelling agents for forming gel electrolytes and methods relating thereto
JP6163613B2 (en) Lithium secondary battery
JP2013197012A (en) Anode for lithium ion secondary battery, lithium ion secondary battery, and vehicle
JP2014120404A (en) Secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
JPWO2018056107A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
JPWO2015177830A1 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP6210329B2 (en) Method for producing lithium ion secondary battery
JP2013197052A (en) Lithium ion power storage device
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
WO2015025417A1 (en) Negative electrode material and lithium ion secondary battery using same
WO2020090591A1 (en) Secondary battery
JP2013073823A (en) Secondary battery
JP2011124125A (en) Nonaqueous electrolyte secondary battery
JP2017152189A (en) Method for charging/discharging lithium secondary battery
CN112447941A (en) Nonaqueous electrolyte secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
CN114447438B (en) Method for producing nonaqueous electrolyte for lithium ion secondary battery and method for producing lithium ion secondary battery using same
KR20190110345A (en) Anode, Preparation Method Thereof and Lithium Secandary Battery Comprising Same
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP