WO2015024381A1 - 一种具有多级孔道结构的Beta分子筛及其制备方法 - Google Patents

一种具有多级孔道结构的Beta分子筛及其制备方法 Download PDF

Info

Publication number
WO2015024381A1
WO2015024381A1 PCT/CN2014/073885 CN2014073885W WO2015024381A1 WO 2015024381 A1 WO2015024381 A1 WO 2015024381A1 CN 2014073885 W CN2014073885 W CN 2014073885W WO 2015024381 A1 WO2015024381 A1 WO 2015024381A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesopores
polyquaternium
molecular sieve
class
beta molecular
Prior art date
Application number
PCT/CN2014/073885
Other languages
English (en)
French (fr)
Inventor
袁扬扬
田鹏
刘中民
杨淼
王德花
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2015024381A1 publication Critical patent/WO2015024381A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the invention relates to a method for synthesizing a beta molecular sieve. Background technique
  • Beta molecular sieve is the only zeolite with a three-dimensional 12-membered ring straight channel system. Its unique pore structure and acidity make Beta zeolite have high hydrocracking, hydroisomerization catalytic activity and adsorption capacity for linear terpene hydrocarbons. And have good resistance to sulfur and nitrogen poisoning.
  • Beta molecular sieves with USY will increase the yield of gasoline. In terms of fine chemicals, Beta molecular sieves have good activity and selectivity in dehydration and deamination.
  • Xiao Feng received the use of tetraethylammonium hydroxide TEAOH as a microporous templating agent, and the cationic polymer was a mesoporous stencil to synthesize a multi-stage channel.
  • Beta (Angew. Chem. 2006, 118, 3162-3165).
  • DR Serrano will first prepare the gel Pre-crystallizing at a certain temperature for a certain period of time, after cooling to room temperature, adding a silicon germanium coupling agent to the seed crystal, and finally crystallization at a high temperature to form a multi-stage channel of the Beta molecular sieve (Microporous and Mesoporous Materials 115 (2008) 504-513)
  • Their common feature is the use of the expensive microporous templating agent TEAOH during the synthesis process.
  • Liu Baoyu et al. used a hexammonium quaternary ammonium salt surfactant as a template to synthesize a multi-stage channel of the Beta molecular sieve.
  • CN102826564A discloses a preparation method of a Beta zeolite molecular sieve having a multi-stage pore structure, using tetraethyl orthosilicate as a silicon source, sodium metaaluminate as an aluminum source, and a hexammonium-based cationic quaternary ammonium salt surfactant as a silicon source.
  • the templating agent although not using TEAOH, is expensive and unsuitable for use, and does not utilize large-scale industrial production. Summary of the invention
  • the object of the present invention is to provide a Beta molecular sieve comprising a class I mesopores having a pore diameter of 2 to 4.8 nm and a class II mesopores having a pore diameter of 4.9 to 13 nm; a preferred class I mesoporous pore diameter is 2 to 4 nm, The class II mesopores have a pore diameter of 5 to 10 nm; further preferably, the class I mesopores have a pore diameter of 3 to 4 nm, and the class II mesopores have a pore diameter of 7 to 10 nm.
  • the pore volume ratio of the class I mesopores to the II mesopores is 1: 1-20.
  • the pore volume ratio can be adjusted according to the reaction requirements, and the pore size ratio of the mesoporous to the II mesoporous is 1. It is a Beta molecular sieve of 1:11 -20, or a Beta molecular sieve with a pore ratio of the first-order mesopores to the II mesopores of 1:2-7.
  • the total pore volume of the class I mesopores and the II mesopores is not less than 0.5 cm 3 /g.
  • Still another object of the present invention is to provide a method for synthesizing the above-described Beta molecular sieve having a multi-stage pore structure, which is characterized in that it is composed of a silicon source, an aluminum source, and a polyquaternary ammonium salt. , an initial gel mixture made of water and an alkali source, crystallized at 120-179 ° C under hydrothermal conditions to prepare a Beta molecular sieve; wherein, the polyquaternium Salt P acts as a directing agent for micropores and mesopores.
  • the polyquaternium P is selected from the group consisting of polyquaternium-6, polyquaternium-7, polyquaternium-10, polyquaternium-22, polyquaternium- 32. Any one or more of polyquaternium-37, polyquaternium-39, and polyquaternium-44.
  • the aluminum source is selected from an organoaluminum source and/or an inorganic aluminum source;
  • the silicon source is selected from a silicone source and/or an inorganic silicon source; and
  • the alkali source is selected from the group consisting of an organic base and/or Inorganic base.
  • the organoaluminum source is aluminum isopropoxide.
  • the inorganic aluminum source is selected from any one or any of alumina, aluminum hydroxide, aluminum chloride, aluminum sulfate, aluminum nitrate, and sodium aluminate.
  • the silicone source is selected from the group consisting of methyl orthosilicate and/or ethyl orthosilicate.
  • the inorganic silicon source is selected from any one or any of silica sol, silica gel, silica, and water glass.
  • the organic base is selected from the group consisting of organic amines and/or alkali metal salts of alcohols.
  • the inorganic base is selected from any one or any of alkali metal or alkaline earth metal hydroxides, oxides, and carbonates.
  • the source of alkali is sodium hydroxide and/or potassium hydroxide.
  • the specific synthesis steps are as follows:
  • step b) mixing the initial gel obtained in the step a) into a stainless steel reaction vessel, sealing, and then heating to 120-179 ° C, crystallization for not less than 12 hours;
  • the aluminum source in the step a) is any one or any of aluminum isopropoxide, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum sulfate, aluminum nitrate, and sodium aluminate.
  • the silicon source is any one or a mixture of any one of silica sol, silicone gel, methyl orthosilicate, tetraethyl orthosilicate, white carbon, and water glass.
  • the crystallization temperature in the step b) is preferably 130 to 179 ° C, and the crystallization time is preferably 12 to 216 hours.
  • the crystallization mode in the step b) may be static crystallization or dynamic crystallization.
  • the structure directing agent also called a templating agent, functions to provide a template for the formation of molecular sieves or materials in molecular sieve or material synthesis.
  • the most common molecular sieve templating agents are organic amine compounds and a compound of a quaternary ammonium ion.
  • Beta molecular sieve has three 12-membered ring channels which intersect each other with a pore diameter ranging from 0.6 to 0.7 nm and a silica to alumina ratio of 20 to 100.
  • the silica-alumina ratio of the molecular sieve can be between 20 and 100 by adjusting the ratio of the raw materials in the initial gel. Intentional change.
  • the polyquaternium P of the present invention is a polymer having a polymerization degree of 10 to 100,000, and the polymerization degree is an average degree of polymerization, that is, an average value of the number of repeating units contained in the polymer macromolecular chain.
  • polyquaternium-6 is a copolymer of dimethyldiallylammonium chloride, the molecular formula (C 8 H 16 ClN) n , n is a positive integer; the structural formula is:
  • the polyquaternium-7 is a dimethyl diallyl ammonium chloride-acrylamide copolymer having the formula (C 8 H 16 ClN) n ⁇ (C 3 3 ⁇ 4NO) m , m and n being positive integers; for: Acetyl cellulose ether, knot: , m and n are positive integers.
  • the polyquaternium-11 is a diethyl sulfate complex of 2-methyl-2-acrylic acid-2-(dimethylamino)ethyl ester and 1-vinyl-pyrrolidone polymer; molecular formula (C 6 H 9 NO) x -(C 10 H 20 NO 2 -C 2 H 5 O 4 S , wherein x and y are both positive integers; the structural formula is:
  • the polyquaternium-22 is a dimethyl diallyl ammonium chloride-acrylic acid copolymer having the formula (C 8 H 16 ClN) n ⁇ (C 3 3 ⁇ 4NO) m ; m and n are positive integers; :
  • the quaternary ammonium salt-32 is a ruthenium, osmium, iridium-trimethyl-2-(2-methyl-1-oxo-2-propenyloxy:)ethyl ammonium chloride-acrylamide copolymer,
  • the molecular formula is (C 9 H 18 ClN0 2 ) n ⁇ (C 3 H 5 NO) m , m and n are positive integers; the structural formula is:
  • the quaternary ammonium salt-37 is a homopolymer of hydrazine, hydrazine, hydrazine-trimethyl-2-[(2-methyl-1-oxo-2-propenyl)oxy]ethylamine hydrochloride;
  • the molecular formula is (C 9 H 18 C1N0 2 :) ⁇ , ⁇ is a positive integer; the structural formula is:
  • the quaternary ammonium salt-39 is a dimethyl diallyl ammonium chloride-acrylamide-acrylic acid copolymer; the V subform is (C 3 H 4 0 2 ) p ⁇ (C 8 H 16 ClN) n ⁇ (C 3 3 ⁇ 4NO) m; p, m, n are all positive integers; the structural formula is: The formula is (C 6 H 9 N 2 ⁇ C 6 H 9 NO ⁇ CH 3 0 4 S) n , n is a positive integer; the structural formula is:
  • the present invention has the following advantages and benefits:
  • the invention utilizes a high molecular polymer as a template agent, and the raw material is cheap and easy to obtain, and it is not required to be
  • the expensive TEAOH reduces the production cost of Beta molecular sieve by at least 90%, laying the foundation for large-scale industrial applications.
  • Beta molecular sieve prepared by the invention has micropores and mesopores at the same time, avoids defects of single pores, and has broad application prospects in macromolecular adsorption and catalysis.
  • Figure 1 is a scanning electron micrograph of Sample 1.
  • the polyquaternium-6 used was purchased from Zhejiang Xinhaitian Biotechnology Co., Ltd.; the polyquaternium-7 and polyquaternium-10 used were purchased from Guangzhou Feirui Chemical Co., Ltd.; the polyquaternium-11 was purchased from Shandong Hong Source Chemical Co., Ltd.; Polyquaternium-22 was purchased from Haining Huangshan Chemical Co., Ltd.; Polyquaternium-32 was purchased from Jiangsu Feixiang Chemical Co., Ltd.; Polyquaternium-37 was purchased from Guangzhou Huicong Trading Co., Ltd.; Quaternary ammonium salt-39 was purchased from Guangzhou Shiyi Chemical Co., Ltd.; Polyquaternium-44 was purchased from Xiamen Jiayulai Chemical Co., Ltd.
  • Beta molecular sieve having a multistage pore structure.
  • the raw material type and ratio, crystallization mode, crystallization temperature, crystallization time and yield of the obtained product in the initial gel of the prepared samples 1 to 40 were calculated as follows:
  • the weight of the molecular sieve product is 100 100% of the total dry weight of the initial gel.
  • the dry base in the initial gel is silica, alumina, sodium oxide and/or potassium oxide.
  • the silicon source a silica sol; Silica B; E orthosilicate; D n-methyl silicate; silica gel E; F water glass.
  • Aluminum source 1 sodium aluminate; 11 aluminum chloride; 111 aluminum hydroxide; IV aluminum sulfate; V alumina; w aluminum isopropoxide; W aluminum nitrate.
  • the samples 1-40 prepared in Example 1 were subjected to XRD characterization to confirm that they were Beta zeolite molecular sieves.
  • the XRD pattern of the obtained sample 1-40 was consistent with the characteristic spectrum of the standard Beta zeolite molecular sieve.
  • the typical XRD pattern is represented by sample 1, and the main diffraction peak position and peak intensity of 2 ⁇ at 5° ⁇ 50° are shown in Table 2.
  • the results of other sample data are the same as those of Table 1.
  • the positions and shapes of the diffraction peaks are the same, and the relative peak intensity fluctuates within ⁇ 5% depending on the synthesis conditions, indicating that the synthesized product has the characteristics of Beta structure.
  • Table 2 XRD diffraction data of typical samples
  • Example 3 Chemical composition of samples 1 to 40 prepared in Example 1
  • the chemical composition was measured by an elemental analyzer.
  • the instrument used was a Magix (PHILIPS) type X fluorescence analyzer, and the fluorescence intensity of the standard sample was measured by an IQ + non-standard quantitative analysis program. Corresponding to its standard composition, the influence of the interference line is deducted.
  • the result measured by the elemental analyzer is the percentage of oxide of each element.
  • the chemical composition of the sample and the ratio of silicon to aluminum are obtained by inversely pushing the percentage of the oxide of the element, as shown in Table 3.
  • Example 4 Characterization of micropore and mesoporous pore size distribution of samples 1-40
  • the samples 1-40 prepared in Example 1 were subjected to nitrogen physical adsorption characterization.
  • the instrument used was a Micromeritics Tristar 3000 nitrogen physics adsorber.
  • the obtained samples 1-40 were pretreated before the nitrogen physical adsorption characterization.
  • the pretreatment steps were as follows: the molecular sieve samples were vacuumed at normal temperature; after the vacuum conditions were reached, they were treated at 130 ° C for 2 h; Treated at 350 ° C for 2 h.
  • the results of physical adsorption of nitrogen showed that the pore size of the sample 1-40 was 0.6-0.7 nm, and both of them contained mesoporous structure.
  • the mesoporous pore size distribution, average pore diameter and mesoporous pore volume are shown in Table 4.
  • Example 5 Characterization of the macroporous structure of samples 1 to 40 prepared in Example 1
  • the macroporous structure was characterized for the samples 1-40 prepared in Example 1.
  • the instrument used was a Micromeritics AutoPore IV 9500 mercury intrusion meter.
  • the obtained samples 1-40 are pretreated, and the pretreatment steps are as follows: The molecular sieve sample is pumped at normal temperature. Vacuum treatment; After reaching vacuum conditions, treatment at 130 ° C for 2 h.
  • the experimental results show that samples 1-33 have no peaks in the macroporous range of 50-2000 nm, and samples 34-40 contain large pores with pore sizes distributed in the range of 50-200 nm, as shown in Table 5.
  • Table 5 Sample 34-40 macropore pore size distribution
  • Example 6 Scanning electron microscopy characterization of samples
  • Example 7 The 1 ⁇ 40 samples prepared in Example 1 were characterized by scanning electron microscopy.
  • the instrument used was a Hitachi SU8020 field emission scanning electron microscope with an accelerating voltage of 25 kV. Scanning electron micrographs show that the morphology of samples 1-40 appears as a spherical aggregation of nanoparticles. A typical SEM image is represented by sample 1, as shown in Figure 1.
  • Example 7
  • Example 1 Samples 1, 2, 4, 7, 11, 12, 14, 15, 17, and 19 of Example 1 were respectively calcined at 550 ° C for 8 h without molecular sieve powder, and 1.0 g of the original molecular sieve powder was placed in a Teflon container. Add 5 ml of hydrofluoric acid aqueous solution (20%), shake and shake for 1 h. After the solid is fully dissolved, collect the liquid Line 13 C liquid nuclear magnetic characterization. 13C liquid nuclear magnetic resonance was performed on a Bruker DRX-400 NMR Pop. The results show that the following structural units are included:
  • Example 1 The sample 1, 2, 4, 7, 11, 12, 14, 15, 17 and 19 of Example 1 were calcined at 550 ° C for 8 h in a muffle furnace, and the physical adsorption was carried out according to the method of Example 4. In the test, the pretreatment process was vacuumed at 160 ° C for 10 h, and the others were unchanged. The obtained result is that the microporous pore volume of the above uncalcined molecular sieve raw powder is 0 cm 3 g_ compared with the calcined sample, and the total pore volume of the mesopores is reduced to 30-50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

一种具有多级孔道的 Beta分子筛及其合成方法。该分子筛具有二级介孔结构,在合成过程中采用聚季铵盐同时作为微孔和介孔的导向剂,原料价格低廉且合成方法简单,具有广阔的工业应用前景。

Description

一种具有多级孔道结构的 Beta分子筛及其制备方法 技术领域
本发明涉及一种 Beta分子筛的合成方法。 背景技术
Beta分子筛是唯一具有三维十二元环直通道体系的沸石, 其独特的孔道 结构以及酸性使得 Beta分子筛具备很高的加氢裂化、 加氢异构化催化活性 和对直链垸烃的吸附能力, 并有良好的抗硫、 氮中毒能力。 可用于石化工 业中苯与丙烯烃化制异丙苯、 异丙苯歧化制二异丙苯、 甲苯异丙基化、 芳 烃垸基化、 二异丙苯垸基转移、 丙烯醚化、 甲醇芳构化、 环氧丙垸与乙醇 醚化、 苯酚甲基化、 苯胺甲基化、 异丙苯与甲苯垸基转移以及甲苯歧化与 垸基转移反应等催化剂的制备。 Beta分子筛同 USY的联合使用将提高汽油 的辛垸值。 在精细化工方面, Beta分子筛在脱水脱胺上具有很好的活性和 选择性。
但在实际应用中, 由于其相对狭窄的孔道结构会制约芳香烃等大分子在 其中的扩散, 容易造成积炭, 严重制约了 Beta分子筛在大分子反应中的应 用。
具有微介孔复合结构的多级孔道分子筛的发现, 为解决微孔中物质传递 扩散受限提供了新的方向和可能性。 肖丰收等使用四乙基氢氧化铵 TEAOH 作为微孔模板剂, 阳离子聚合物为介孔模版剂合成了多级孔道的
Beta(Angew. Chem. 2006, 118, 3162-3165 )。 D.R Serrano 首先将制备的凝胶 在一定温度下预晶化一定时间, 冷却到室温之后, 加入硅垸偶联剂与晶种 作用, 最后再在高温下晶化制得多级孔道的 Beta分子筛 (Microporous and Mesoporous Materials 115 (2008) 504-513) 他们共同的特点是, 在合成过程 中都需要使用昂贵的微孔模板剂 TEAOH。刘宝玉等人使用六铵基季铵盐表 面活性剂为模板剂合成了多级孔道的 Beta分子筛。 中国专利
CN102826564A中公开了一种多级孔结构的 Beta沸石分子筛的制备方法, 以正硅酸乙酯作为硅源, 以偏铝酸钠作为铝源, 以六铵基阳离子型季铵盐 表面活性剂作为模板剂, 虽然没有使用 TEAOH, 但其他原料价格昂贵, 不 宜获得, 不利用大规模的工业生产。 发明内容
本发明的目的提供一种 Beta分子筛, 其特征在于, 含有孔径为 2~4.8nm 的 I级介孔和孔径为 4.9~13nm的 II级介孔;优选的 I级介孔孔径为 2~4nm, II级介孔孔径为 5~10nm;进一步优选的 I级介孔的孔径为 3~4nm, II级介 孔孔径为 7~10nm。 其中, I级介孔与 II介孔的孔容比为 1: 1 ~20。 该孔容 比可以根据反应需要, 通过改变合成条件调控成 I级介孔与 II介孔的孔容 比为 1 : 1 ~10的 Beta分子筛,或者 I级介孔与 II介孔的孔容比为 1: 11 -20 的 Beta分子筛, 或者 I级介孔与 II介孔的孔容比为 1: 2~7的 Beta分子筛。
所述 I级介孔与 II介孔的总孔容不小于 0.5cm3/g。
本发明的又一目的在于提供上述具有多级孔道结构 Beta分子筛的合成 方法, 其特征在于, 将由硅源、 铝源、 聚季铵盐?、 水和碱源制成的初始凝 胶混合物, 在 120-179°C水热条件下晶化制备 Beta分子筛; 其中, 聚季铵 盐 P同时作为微孔和介孔的导向剂。
在一个优选的实施方式中, 所述聚季铵盐 P选自聚季铵盐 -6、 聚季铵盐 -7、 聚季铵盐 -10、 聚季铵盐 -22、 聚季铵盐 -32、 聚季铵盐 -37、 聚季铵盐 -39、 聚季铵盐 -44中的任意一种或几种。
在一个优选的实施方式中,所述铝源选自有机铝源和 /或无机铝源; 所述 硅源选自有机硅源和 /或无机硅源; 所述碱源选自有机碱和 /无机碱。
在一个优选的实施方式中, 所述有机铝源为异丙醇铝。
在一个优选的实施方式中, 所述无机铝源选自氧化铝、 氢氧化铝、 氯化 铝、 硫酸铝、 硝酸铝、 铝酸钠中的任意一种或任意几种。
在一个优选的实施方式中,所述有机硅源选自正硅酸甲酯和 /或正硅酸乙 酯。
在一个优选的实施方式中,所述无机硅源选自硅溶胶、硅凝胶、 白炭黑、 水玻璃中的任意一种或任意几种。
在一个优选的实施方式中, 所述有机碱选自有机胺和 /或醇的碱金属盐。 在一个优选的实施方式中, 所述无机碱选自碱金属或碱土金属的氢氧化 物、 氧化物、 碳酸盐中的任意一种或任意几种。
在一个优选的实施方式中,所述碱源为氢氧化钠和 /或氢氧化钾。在一个 优选的实施方式中, 具体合成步骤如下:
a) 将硅源、 铝源、 氢氧化钠和 /或氢氧化钾、 聚季铵盐 P和水混合, 形 成具有如下配比的初始凝胶混合物:
A1203: Si02摩尔比= 0.005-0.5
Na20和 /或 K20: Si02摩尔比 =0.10~0.5 H20: Si02摩尔比 =7~100
P: Si02质量比 =0.1~3 ;
b)将所述步骤 a)得到的初始凝胶混合装入不锈钢反应釜中, 密闭, 然 后加热到 120-179°C, 晶化不少于 12小时;
c) 待晶化完成后, 固体产物经分离、 干燥、 焙烧, 即得所述 Beta分子 筛。
在一个优选的实施方式中, 所述步骤 a) 中的聚季铵盐 P与 Si02质量比 优选为 P: SiO2=0.1~1.5, 进一步可以优选为 P: SiO2=0.1~0.8。
在一个优选的实施方式中, 所述步骤 a) 中铝源为异丙醇铝、 氧化铝、 氢氧化铝、 氯化铝、 硫酸铝、 硝酸铝、 铝酸钠中任意一种或任意几种的混 合; 所述硅源为硅溶胶、 硅凝胶、 正硅酸甲酯、 正硅酸乙酯、 白炭黑、 水 玻璃中的任意一种或任意几种的混合。
在一个优选的实施方式中, 所述步骤 b) 中晶化温度优选 130~179°C, 晶化时间优选 12-216小时。
在一个优选的实施方式中, 所述步骤 b) 中晶化方式可以为静态晶化, 也可以为动态晶化。 根据本领域公知常识, 所述结构导向剂, 也称模板剂, 作用是在分子筛或者材料合成中, 为分子筛或材料的形成提供模板作用, 目前最常见的分子筛模板剂为有机胺类化合物和含季铵离子的化合物。
根据本领域公知常识, Beta分子筛具有三个相互交叉的 12元环孔道,微 孔孔径范围为 0.6~0.7nm, 硅铝比为 20~100。
本领域技术人员根据本发明所提供的技术方案, 结合本领公知常识, 通 过对初始凝胶中原料配比的调节, 可将分子筛的硅铝比可在 20~100之间任 意调变。
本发明所述聚季铵盐 P, 为聚合度 10~100000的聚合物, 所述聚合度 平均聚合度, 即聚合物大分子链上所含重复单元数目的平均值。
其中, 所述聚季铵盐 -6 为二甲基二烯丙基氯化铵的共聚物, 分子式 (C8H16ClN)n, n为正整数; 结构式为:
Figure imgf000006_0001
所述聚季铵盐 -7为二甲基二烯丙基氯化铵 -丙烯酰胺共聚物, 分子式 (C8H16ClN)n · (C3¾NO)m, m和 n为正整数; 结构式为:
Figure imgf000006_0002
乙垸纤维素醚, 结 :
Figure imgf000006_0003
, m和 n为正整数。
所述聚季铵盐 -11 为 2-甲基 -2-丙烯酸 -2- (二甲氨基)乙酯与 1-乙烯基- 吡 咯 垸 酮 聚 合 物 的 硫 酸 二 乙 酯 复 合 物 ; 分 子 式 (C6H9NO)x-(C10H20NO2-C2H5O4S , 其中 x和 y均为正整数; 结构式为:
Figure imgf000006_0004
所述聚季铵盐 -22 为二甲基二烯丙基氯化铵-丙烯酸共聚物, 分子式 (C8H16ClN)n · (C3¾NO)m ; m和 n为正整数; 结构式为:
Figure imgf000007_0001
所述季铵盐 -32为 Ν,Ν,Ν-三甲基 -2-(2-甲基 -1-氧代 -2-丙烯基氧基:)乙基 氯化铵 -丙烯酰胺共聚物, 分子式为 (C9H18ClN02)n · (C3H5NO)m, m和 n为 正整数; 结构式为:
Figure imgf000007_0002
所述季铵盐 -37为 Ν,Ν,Ν-三甲基 -2-[(2-甲基 -1-氧 -2-丙烯基:)氧基]乙胺 盐酸盐的均聚物; 分子式为 (C9H18C1N02:) η, η为正整数; 结构式为:
Figure imgf000007_0003
所述季铵盐 -39为二甲基二烯丙基氯化铵-丙烯酰胺-丙烯酸共聚物; 分 V 子式为 (C3H402)p · (C8H16ClN)n · (C3¾NO)m; p、 m、 n均为正整数; 结构式 为:
Figure imgf000007_0004
式为 (C6H9N2 · C6H9NO · CH304S)n, n为正整数; 结构式为:
Figure imgf000007_0005
与现有技术相比, 本发明具有以下优点和有益效果:
( 1 ) 本发明利用高分子聚合物为模板剂, 原料廉价易得, 而不需要昂 贵的 TEAOH, 将 Beta分子筛的生产成本至少降低了 90%, 为大规模工业 应用奠定了基础。
(2 ) 本发明制备的 Beta分子筛同时具有微孔和介孔, 避免了单一孔道 的缺陷, 在大分子吸附和催化方面有着广阔的应用前景。 附图说明
图 1为样品 1的扫描电子显微镜图。 具体实施方式
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。
实施例中所用的原料试剂均通过商业购买获得, 不经任何特殊处理直接 使用。
所用聚季铵盐 -6购自浙江新海天生物科技有限公司;所用聚季铵盐 -7和 聚季铵盐 -10购自广州飞瑞化工有限公司; 聚季铵盐 -11购自山东宏源化工 有限公司; 聚季铵盐 -22购自海宁市黄山化工有限公司; 聚季铵盐 -32购自 江苏飞翔化工股份有限公司; 聚季铵盐 -37购自广州慧聪贸易有限公司; 聚 季铵盐 -39购自广州诗茗化工有限公司; 聚季铵盐 -44购自厦门佳俐来化工 有限公司。
实施例 1 : 样品 1-40制备
首先将铝源加入去离子水中, 搅拌均匀。 再向其中加入氢氧化钠和 /或 氢氧化钾, 混合均匀后, 加入硅源, 室温下继续搅拌直到形成均匀的硅铝 凝胶, 最后加入聚季铵盐 P, 搅拌均匀, 得到初始凝胶。将初始凝胶移入带 聚四氟内衬的不锈钢反应釜中, 直接放入烘箱中静态晶化, 或放入转动烘 箱进行动态晶化, 所得固体产物经离心分离, 用去离子水洗涤至中性, 在
110°C下空气中干燥, 并于最后在马弗炉中于 550°C下焙烧 8h, 即得到具有 多级孔结构的 Beta分子筛。所制备的样品 1~40的初始凝胶中的原料类型及 配比、 晶化方式、 晶化温度、 晶化时间以及所得产物的产率分别如表 1 所 产率的计算方法为: 经过焙烧的分子筛产物重量 ÷初始凝胶中干基总 重量 X 100%。 其中, 初始凝胶中干基为氧化硅、 氧化铝、 氧化钠和 /或氧化 钾。
表 1分子筛合成配料及晶化条件表
初始凝胶中原料及配比 晶化 晶化 产 样品 晶化
聚季铵盐 P的种类及与 温度 时间 编号 硅源、 铝源、 水、 碱的种类及摩尔比例 方式
Si02的质量比(P/ Si02) /°C /小时 /%
1 0.05A12O31 :lSi02 a :0.10Na2O:7 H20 聚季铵盐 -6, 0.1 动态 180 216 85.9
2 0.03Α12Ο3 π :lSi02 e :0.20Na2O:10H2O 聚季铵盐 -7, 0.4 静态 190 144 86.2
3 0.005Α12Ο3 ΙΠ: 1 Si02 a :0.10Na2O:10H2O 聚季铵盐 -10, 0.1 静太 180 96 87.5
4 0.005Α12Ο3 ΙΠ :lSi02 f :0.28Na2O:10H2O 聚季铵盐 -22, 3.0 静太 200 120 90.3
5 0. OlA O^lSiO :0.35Na2O:30H2O 聚季铵盐 -32, 0.8 静态 220 12 93.2
6 0. 20Al2O3 VI: 1 Si02 f :0.40Na2O:70H2O 聚季铵盐 -37, 1.5 动态 210 72 89.6
7 0.50Al2O3 VII :lSiO2 c :0.50Na2O:100H2O 聚季铵盐 -39, 1.5 静太 180 120 88.7
0.5Al2O3 v :lSiO2 c :0.10Na2O: 0.10K2O 聚季铵盐 -44, 0.2
8 静态 200 48 92.1 20H2O 聚季铵盐 -32, 0.2
聚季铵盐 -6, 0.2
0.40Al2O3 IV:lSiO2 d : 0.10Na2O: 0.10K2O:
9 聚季铵盐 -7, 0.2 动态 220 12 89.2 20H2O
聚季铵盐 -22, 0.2 聚季铵盐 -39, 0.2
聚季铵盐 -10, 0.4
0.03Α12Ο3 π :lSi02 d :0.50Na2O:100H2O 聚季铵盐 -37, 0.2 动态 185 216 90.6 聚季铵盐 -44, 0.2
0.005A12O31 :lSi02 b :0.10Na2O:60H2O 聚季铵盐 -6, 0.1 动态 120 216 76.8
0.50Al2O3 n :lSiO2 b :0.29Na2O: 7H20 聚季铵盐 -7, 0.4 静态 130 144 78.3
O.OTSAlzOs'ilSiOz6 :0.29Na2O:60H2O 聚季铵盐 -10, 0.8 静太 130 216 80.6
0.13Al2Ov :lSiO2 b :0.29K2O:100H2O 聚季铵盐 -22, 3.0 静太 145 120 81.4 聚季铵盐 -7, 0.4
0.040Α12Ο3 ΙΠ :lSi02 c :0.35Na2O:30H2O 静态 150 48 80.7 聚季铵盐 -22, 0.4
0.25Al2O3 v :lSiO2 f :0.35Na2O:30H2O 聚季铵盐 -37, 3.0 动态 160 72 85.4
0.02Al2O3 VI: 1 Si02 f :0.45Na2O:50H2O 聚季铵盐 -39, 1.5 静太 160 120 87.8
0.16Al2O3 v: 1 Si02 f :0.38Na2O:70H2O 聚季铵盐 -44, 1.5 静态 165 48 83.4 聚季铵盐 -6, 0.2
0.05Al2O3 IV: 1 Si02 a:0.25Na2O:0.25K2O: 聚季铵盐 -7, 0.2
动态 179 12 90.1 80H2O 聚季铵盐 -22, 0.2
聚季铵盐 -39, 0.2
聚季铵盐 -10, 0.4
0.02Al2O3 IV :lSi02 f :0.50Na2O:30H2O 聚季铵盐 -37, 0.2 静态 175 24 88.2 聚季铵盐 -44, 0.2
0.005Al2O3 VII :lSiO2 a :0.27Na2O:7H2O 聚季铵盐 -32, 0.4 动态 120 48 79.8 聚季铵盐 -44, 0.4
0.50Al2O3 n :lSiO2 c :0.42Na2O:100H2O 动态 179 12 89.3 聚季铵盐 -32, 0.4
聚季铵盐 -7, 0.5
0.042Α12Ο3 ΙΠ: 1 Si02 a : 0.1 lNa20: 0.11
聚季铵盐 -10, 0.3 静态 170 36 89.6 K20: 40 H20
聚季铵盐 -44, 0.2
聚季铵盐 -6, 0.4
0.50Al2O3 v: 1 Si02 c :0.36Na2O:55H2O 动态 175 48 93.2 聚季铵盐 -44, 0.4
聚季铵盐 -10, 0.2
0.12Al2O3 IV :lSi02 f :0.25Na2O:30H2O 聚季铵盐 -22, 0.3 动态 178 24 87.5 聚季铵盐 -37, 0.3
聚季铵盐 -22, 0.3
0.33Al2O3 n :lSi02 c :0.32Na2O:90H2O 动态 145 96 83.4 聚季铵盐 -44, 0.8
Figure imgf000011_0001
硅源: a硅溶胶 ; b白炭黑; e正硅酸乙酯; d正硅酸甲酯; e硅凝胶; f水玻璃。
铝源: 1铝酸钠; 11氯化铝; 111氢氧化铝; IV硫酸铝; V氧化铝; w异丙醇铝; W硝酸铝。
实施例 2 : 样品 1-40的 XRD表征
对实施例 1中所制备的样品 1-40进行 XRD表征以确认为 Beta沸石分 子筛。 所采用仪器为 Philips X ert PROX型 X射线衍射仪, 铜靶, α辐 射源(λ= 1.5418 Α), 仪器工作电压为 40kv, 工作电流为 40mA。 所得到的 样品 1 -40的 XRD谱图与标准 Beta沸石分子筛的特征谱图一致。典型的 XRD 图谱以样品 1为代表, 2Θ在 5°~50°主要衍射峰位置和峰强度如表 2所示。 其他样品数据结果与表 1 相比, 衍射峰位置和形状相同, 依合成条件的变 化相对峰强度在 ±5%范围内波动, 表明合成产物具有 Beta结构的特征。 表 2典型样品的 XRD衍射数据
Figure imgf000012_0001
实施例 3: 实施例 1中制备的样品 1~40的化学组成
对实施例 1中所制备的样品 1~40通过元素分析仪进行化学组成测量, 所采用仪器为 Magix (PHILIPS) 型 X荧光分析仪, 通过 IQ+无标定量分析 程序, 将标准样品的荧光强度和其标准组成相对应, 扣除了干扰谱线的影 响。
经过元素分析仪测量的结果为各元素的氧化物的百分含量。元素的氧化 物的百分含量经过反推, 可以得到样品的化学组成及硅铝比, 如表 3所示。
表 3样品 1~40化学组成
化学组成 (摩尔, 以 A1203为 1计算) Si/Al
样品编号
Na20+ K20 Α1203 Si02
1 0.080 1 14.8 7.4
Figure imgf000013_0001
31 0.640 1 30 15
32 0.154 1 24.5 12.25
33 0.06 1 2 1
34 0.89 1 200 100
35 0.345 1 18 9
36 0.879 1 195 97.5
37 0.456 1 49.3 24.65
38 0.98 1 150 75
39 0.120 1 8.5 4.25
40 0.118 1 2 1
实施例 4: 样品 1~40的微孔和介孔孔径分布的表征
对实施例 1中所制备的样品 1-40进行氮气物理吸附表征。 所采用仪器 为 Micromeritics Tristar3000型氮气物理吸附仪。 在进行氮气物理吸附表征 之前, 对所得到的样品 1-40进行预处理, 预处理步骤如下: 在常温下将分 子筛样品抽真空处理; 当达到真空条件后,在 130°C处理 2 h; 之后在 350°C 处理 2 h。 氮气物理吸附结果表明, 样品 1-40微孔孔径为 0.6~0.7nm, 均含 有介孔结构, 介孔孔径分布、 平均孔径及介孔孔容如表 4所示。
表 4 样品 1-40介孔孔径分布
样品编
介孔级数 介孔孔径范围 (nm) 平均孔径 (nm) 介孔孔容 cm3/g 号
1 一级介孔 2-7 3.7 0.65
2 一级介孔 3-10 5.0 0.80
3 一级介孔 5-13 7.0 0.95
4 一级介孔 3-6.5 4.0 0.99
5 一级介孔 4-7 4.5 0.78 一级介孔 4-10 5.5 0.95 一级介孔 3-5 3.8 0.80 一级介孔 3-6.5 4.0 0.84 一级介孔 3.5-5.5 3.7 0.86 一级介孔 2.5-6.5 3.5 0.81
I级介孔 2-4.3 3.9 0.38 两级介孔
II级介孔 4-13 8.7 0.38
I级介孔 2.3-4.8 3.7 0.22 两级介孔
II级介孔 4-12 8.8 0.66
I级介孔 2.4-4.7 3.5 0.14 两级介孔
II级介孔 5-12 9.0 0.85
I级介孔 2.4-4.6 3.7 0.09 两级介孔
II级介孔 5-13 8.8 0.81
I级介孔 2.5-4.7 3.5 0.08 两级介孔
II级介孔 4.7-12.5 9.2 0.88
I级介孔 2.4-4.6 3.5 0.05 两级介孔
II级介孔 4.9-10 7.9 0.75
I级介孔 2.3-4.8 3.7 0.03 两级介孔
II级介孔 4.4-11.5 8.6 0.60
I级介孔 2.9-4.8 3.9 0.05 两级介孔
II级介孔 4.3-10 7.5 0.80
I级介孔 3-4.57 3.8 0.13 两级介孔
II级介孔 4.1-10.5 8.0 0.65
I级介孔 3.0-4.7 3.4 0.10 两级介孔
II级介孔 4.3-12 8.2 0.74
I级介孔 2.9-4.8 3.3 0.18 两级介孔
II级介孔 4.3-11 7.8 0.72
I级介孔 3.0-4.8 3.2 0.06 两级介孔
II级介孔 4.0-13 8.6 0.72 I级介孔 3.0-4.6 3.5 0.12
23 两级介孔
II级介孔 4.1-10 7.9 0.78
I级介孔 2.8-4.5 3.6 0.28
24 两级介孔
II级介孔 4.3-12 8.9 0.56
I级介孔 3-4.7 3.4 0.23
25 两级介孔
II级介孔 4.3-11 7.8 0.69
I级介孔 2.9-4.8 3.3 0.05
26 两级介孔
II级介孔 4.3-11 7.8 0.94
27 一级介孔 8.0-15.0 10.3 0.68
28 一级介孔 8.2-17 10.5 0.72
29 一级介孔 9-20 11.0 0.78
30 一级介孔 9.2-19 10.9 0.77
31 一级介孔 8.0-18 10.5 0.81
32 一级介孔 8.3-18 10.3 0.87
33 一级介孔 10-20 12.0 0.95
34 一级介孔 8.0-14.0 10.0 0.97
35 一级介孔 8.9-15.3 11.0 0.84
36 一级介孔 8.7-17.2 11.3 0.83
37 一级介孔 8.5-15.0 11.1 0.86
38 一级介孔 9.0-18.2 13.0 0.85
39 一级介孔 9.0-19.3 12.5 0.94
40 一级介孔 9.3-20.0 13.3 0.96
实施例 5: 实施例 1中制备的样品 1~40的大孔结构的表征
对实施例 1中所制备的样品 1-40进行大孔结构的表征。 所采用仪器为 Micromeritics AutoPore IV 9500压汞仪。 在进行大孔结构的表征之前, 对所 得到的样品 1-40进行预处理, 预处理步骤如下: 在常温下将分子筛样品抽 真空处理; 当达到真空条件后,在 130°C处理 2 h。实验结果表明,样品 1-33 在大孔区间 50~2000nm内没有峰, 样品 34-40含有孔径分布在 50~200nm 的大孔, 如表 5所示。 表 5 样品 34-40大孔孔径分布
Figure imgf000017_0001
实施例 6: 样品的扫描电镜表征
对实施例 1 中所制备的 1~40样品进行扫描电镜表征。 所采用仪器为 Hitachi SU8020场发射扫描电镜, 加速电压为 25kV。 扫描电镜图显示, 样 品 1-40的形貌均呈现为纳米颗粒的球状的聚集。 典型的扫描电镜图以样品 1为代表, 如图 1所示。 实施例 7:
分别取实施例 1中样品 1、 2、 4、 7、 11、 12、 14、 15、 17和 19未经 马弗炉 550°C焙烧 8h的分子筛原粉 1.0 g,装入聚四氟乙烯容器中,加入 5ml 氢氟酸水溶液(20% ) , 震荡摇匀静置 lh。 待固体充分溶解之后, 收集液体 行 13C 液体核磁表征。 13C 液体核磁在 Bruker DRX-400核磁共振波普 ί 进行。 结果显示, 含有如下结构单元:
Figure imgf000018_0001
分别取实施例 1中样品 1、 2、 4、 7、 11、 12、 14、 15、 17和 19未经 马弗炉 550°C焙烧 8h的分子筛原粉, 按照实施例 4中方法进行物理吸附试 验, 预处理过程为 160°C抽真空 10h, 其他不变。 所得结果为, 上述未经焙 烧的分子筛原粉中, 微孔孔容均为 0 cm3 g_ 与焙烧过的样品比, 介孔总孔 容降至原来的 30~50%。
结合上述分子筛原粉的物理吸附试验结果和核磁试验结果,与实施例 4
结果对比, 说明焙烧前,
Figure imgf000018_0002
存在在分子筛的微孔和介孔孔道中。 以上所述, 仅是本发明的几个实施例, 并非对本发明做任何形式的限制, 虽然本发明以较佳实施例揭示如上, 然而并非用以限制本发明, 任何熟悉 本专业的技术人员, 在不脱离本发明技术方案的范围内, 当可利用上述揭 示的技术内容做出些许的变动或修饰均等同于等效实施案例, 均属于技术 方案范围内。

Claims

权利要求
1、 一种 Beta分子筛, 其特征在于, 含有孔径为 2~4.8nm的 I级介孔和孔 径为 4.9~13nm的 II级介孔;优选的范围为,所述 I级介孔的孔径为 2~4nm, 所述 II级介孔孔径为 5~10nm; 进一步优选的范围为, 所述 I级介孔的孔径 为 3~4nm, 所述 II级介孔孔径为 7~10nm。
2、 根据权利要求 1所述的 Beta分子筛, 其特征在于, 所述 I级介孔与 II 介孔的孔容比为 1 : 1 ~20; 优选的范围为, 所述 I级介孔与 II介孔的孔容 比为 1 : 1 -10;进一步优选的范围为,所述 I级介孔与 II介孔的孔容比为 1 : 2〜,。
3、 根据权利要求 1所述的 Beta分子筛, 其特征在于, 所述 I级介孔与 II 介孔的孔容比为 1 : 11 ~20。
4、 根据权利要求 1所述的 Beta分子筛, 其特征在于, 所述 I级介孔与 II 介孔的总孔容不小于 0.5cm3/g。
5、 权利要求 1-4所述任一 Beta分子筛的制备方法, 其特征在于, 将由硅 源、 铝源、 聚季铵盐?、 水和碱源制成的初始凝胶混合物, 在 120~179°C水 热条件下晶化制备 Beta分子筛; 其中, 聚季铵盐 P作为结构导向剂。
6、 根据权利要求 5所述的方法, 其特征在于, 所述聚季铵盐 P选自聚季 铵盐 -6、 聚季铵盐 -7、 聚季铵盐 -10、 聚季铵盐 -22、 聚季铵盐 -32、 聚季铵盐 -37、 聚季铵盐 -39、 聚季铵盐 -44中的任意一种或几种; 所述铝源选自有机 铝源和 /或无机铝源; 所述硅源选自有机硅源和 /或无机硅源; 所述碱源选自 有机碱和 /无机碱。
7、 根据权利要求 5所述的方法, 其特征在于, 合成步骤如下: a)将硅源、 铝源、 氢氧化钠和 /或氢氧化钾、 聚季铵盐 P和水混合, 形成 具有如下配比的初始凝胶混合物:
A1203: Si02摩尔比 = 0.005~0.5
Na20和 /或 K20: Si02摩尔比 =0.10-0.5
¾0: Si02摩尔比 =7~100
P: Si02质量比 =0.1~3;
b) 将所述步骤 a) 得到的初始凝胶混合装入不锈钢反应釜中, 密闭, 然 后加热到 120~179 V, 晶化不少于 12小时;
c)待晶化完成后, 固体产物经分离、干燥、焙烧, 即得所述 Beta分子筛。
8、 根据权利要求 5所述的方法, 其特征在于, 所述步骤 a) 中的聚季铵 盐 P与 8102质量比为 P: Si02 =0.1-1.5; 优选的范围为, 所述步骤 a) 中的 聚季铵盐 P与 Si02质量比为 P: SiO2 =0.1~0.8。
9、 根据权利要求 5所述的方法, 其特征在于, 所述步骤 b) 中晶化温度 为 130~179°C, 晶化时间为 12~216小时。
10、 根据权利要求 5所述的方法, 其特征在于, 所述步骤 c) 中晶化方式 可以为静态晶化, 也可以为动态晶化。
PCT/CN2014/073885 2013-08-20 2014-03-21 一种具有多级孔道结构的Beta分子筛及其制备方法 WO2015024381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310369527 2013-08-20
CN201310369527.7 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015024381A1 true WO2015024381A1 (zh) 2015-02-26

Family

ID=52483021

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2014/073856 WO2015024379A1 (zh) 2013-08-20 2014-03-21 一种具有中、微孔复合孔道Beta分子筛的制备方法
PCT/CN2014/073885 WO2015024381A1 (zh) 2013-08-20 2014-03-21 一种具有多级孔道结构的Beta分子筛及其制备方法
PCT/CN2014/073850 WO2015024378A1 (zh) 2013-08-20 2014-03-21 一种Beta分子筛的合成方法
PCT/CN2014/073894 WO2015024382A1 (zh) 2013-08-20 2014-03-21 一种具有多级孔道结构的Beta分子筛及其制备方法
PCT/CN2014/073876 WO2015024380A1 (zh) 2013-08-20 2014-03-21 一种具有中、微孔复合孔道结构的Beta分子筛及其合成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073856 WO2015024379A1 (zh) 2013-08-20 2014-03-21 一种具有中、微孔复合孔道Beta分子筛的制备方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2014/073850 WO2015024378A1 (zh) 2013-08-20 2014-03-21 一种Beta分子筛的合成方法
PCT/CN2014/073894 WO2015024382A1 (zh) 2013-08-20 2014-03-21 一种具有多级孔道结构的Beta分子筛及其制备方法
PCT/CN2014/073876 WO2015024380A1 (zh) 2013-08-20 2014-03-21 一种具有中、微孔复合孔道结构的Beta分子筛及其合成方法

Country Status (9)

Country Link
US (1) US20160194209A1 (zh)
EP (1) EP3037385A4 (zh)
JP (1) JP6228677B2 (zh)
KR (1) KR101818935B1 (zh)
CN (9) CN104418352B (zh)
AU (1) AU2014311141B2 (zh)
BR (1) BR112016002757B1 (zh)
EA (1) EA031800B1 (zh)
WO (5) WO2015024379A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032281A (zh) * 2015-03-17 2016-10-19 中国科学院大连化学物理研究所 一种具有介孔和微孔的丝光沸石的制备方法及应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973309B (zh) * 2016-10-21 2019-11-15 中国石油化工股份有限公司 一种含磷Beta分子筛及其制备方法
CN107973304B (zh) * 2016-10-21 2019-11-15 中国石油化工股份有限公司 一种富含介孔的Beta分子筛及其制备方法
CN106829995B (zh) * 2016-12-31 2019-11-26 温州大学 一种含晶内纳米孔的Beta沸石及其应用
CN106861614A (zh) * 2017-04-06 2017-06-20 中触媒新材料股份有限公司 含有正构烷烃馏分油吸附分离的5a分子筛吸附剂及其制备方法
CN107032369B (zh) * 2017-05-10 2019-07-02 武汉凯迪工程技术研究总院有限公司 介孔Beta沸石及其制备方法
CN109133087A (zh) * 2017-06-27 2019-01-04 中国科学院大连化学物理研究所 一种Beta分子筛的合成方法
CN108217684A (zh) * 2018-02-11 2018-06-29 中国科学院大连化学物理研究所 一种促进Beta分子筛合成的方法
CN111068751B (zh) * 2018-10-22 2022-05-03 中国石油化工股份有限公司 一种复合载体的制备方法
CN109647501B (zh) * 2019-01-18 2021-12-28 中国科学院城市环境研究所 一种多级孔Fe-β分子筛催化剂及其制备方法和用途
CN111686739B (zh) * 2019-03-12 2023-01-10 中国石油化工股份有限公司 一种含铜催化剂的制备方法
CN111484038B (zh) * 2020-04-09 2023-05-23 金华职业技术学院 一种多级孔富铝Beta分子筛及其制备方法
CN112357900B (zh) * 2020-09-08 2022-07-19 温州大学新材料与产业技术研究院 一种高密度氮氧氯共掺杂碳颗粒材料、以及制备方法与应用
CN115155652A (zh) * 2022-08-18 2022-10-11 中国科学院大连化学物理研究所 一种催化剂的制备方法及其催化剂的应用
CN116283426B (zh) * 2023-05-23 2023-10-31 南京助天中科科技发展有限公司 新型多级孔复合材料、含有其的树脂及其在土壤改良中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749162A (zh) * 2005-08-26 2006-03-22 吉林大学 高分子聚合物模板合成的复合孔沸石分子筛及其制备方法
CN102826564A (zh) * 2012-08-14 2012-12-19 华南理工大学 一种多级孔结构的Beta沸石分子筛的制备方法
CN103011189A (zh) * 2012-12-17 2013-04-03 吉林大学 一种含贵金属的微孔-介孔分子筛、制备方法及用于对硝基苯酚的催化还原

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497786A (en) * 1983-07-27 1985-02-05 Mobil Oil Corporation Deagglomeration of porous siliceous crystalline materials
JP3482673B2 (ja) * 1993-02-02 2003-12-22 東ソー株式会社 ゼオライトβの製造方法
CN1171788C (zh) * 2001-06-29 2004-10-20 中国石油天然气股份有限公司 一种中微孔复合分子筛组合物的合成方法
US20030091504A1 (en) * 2001-11-15 2003-05-15 Gary Pasquale Method for controlling synthesis conditions during molecular sieve synthesis using combinations of quaternary ammonium hydroxides and halides
US20060142143A1 (en) * 2004-12-15 2006-06-29 Hayim Abrevaya Process for preparing a dielectric interlayer film containing silicon beta zeolite
US7211239B2 (en) * 2005-04-22 2007-05-01 Basf Aktiengesellschaft Process for preparing a nanosized zeolitic material
CN100372768C (zh) * 2005-12-29 2008-03-05 吉林大学 聚季铵盐-6为模板剂合成纳米emt分子筛材料的方法
CN100372767C (zh) * 2005-12-29 2008-03-05 吉林大学 一种硅铝骨架的Na-RHO沸石的制备方法
FR2914636B1 (fr) * 2007-04-05 2009-06-26 Inst Francais Du Petrole Procede de preparation d'une zeolithe beta
CN101249968B (zh) * 2008-03-10 2010-06-02 吉林大学 无有机模板剂合成Beta分子筛的方法
CN101767797B (zh) * 2009-01-07 2012-10-10 中国石油化工股份有限公司 介孔沸石的合成方法
CN101830480B (zh) * 2009-03-11 2012-01-25 中国石油化工股份有限公司 复合孔结构沸石分子筛独石的制备方法
JP2011152496A (ja) * 2010-01-26 2011-08-11 Isuzu Motors Ltd ディーゼルエンジン排気ガス中のnoxの脱硝方法
US8951498B2 (en) * 2010-07-30 2015-02-10 University Of Iowa Research Foundation Synthesis of hierarchical nanocrystalline zeolites with controlled particle size and mesoporosity
CN102774854A (zh) * 2011-05-12 2012-11-14 北京化工大学 一种新型介-微孔NaY分子筛合成方法
CN102826565B (zh) * 2012-09-05 2014-08-20 北京化工大学 一种多级孔道Beta分子筛的制备方法
CN102950020B (zh) * 2012-09-20 2014-12-03 中国海洋石油总公司 一种含多级孔Beta分子筛的加氢裂化催化剂的制备方法
CN102895991A (zh) * 2012-10-16 2013-01-30 中国石油大学(北京) 一种fcc汽油小分子硫重质化催化剂的制备方法
CN103058216A (zh) * 2012-11-05 2013-04-24 新疆大学 一种具有晶体微孔壁的介孔分子筛的制备方法
CN103864092A (zh) * 2012-12-10 2014-06-18 国际壳牌研究有限公司 复合孔沸石β的合成与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749162A (zh) * 2005-08-26 2006-03-22 吉林大学 高分子聚合物模板合成的复合孔沸石分子筛及其制备方法
CN102826564A (zh) * 2012-08-14 2012-12-19 华南理工大学 一种多级孔结构的Beta沸石分子筛的制备方法
CN103011189A (zh) * 2012-12-17 2013-04-03 吉林大学 一种含贵金属的微孔-介孔分子筛、制备方法及用于对硝基苯酚的催化还原

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, LIFENG ET AL.: "Hierarchical Mesoporous Zeolites with Controllable Mesoporosity Templated from Cationic Polymers", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 131, 5 December 2009 (2009-12-05), pages 58 - 67, XP026940814, DOI: doi:10.1016/j.micromeso.2009.12.001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032281A (zh) * 2015-03-17 2016-10-19 中国科学院大连化学物理研究所 一种具有介孔和微孔的丝光沸石的制备方法及应用
CN106032281B (zh) * 2015-03-17 2018-07-10 中国科学院大连化学物理研究所 一种具有介孔和微孔的丝光沸石的制备方法及应用

Also Published As

Publication number Publication date
KR101818935B1 (ko) 2018-01-17
EA031800B1 (ru) 2019-02-28
CN104418348B (zh) 2018-11-02
CN104418349A (zh) 2015-03-18
KR20160044539A (ko) 2016-04-25
WO2015024382A1 (zh) 2015-02-26
CN104418350A (zh) 2015-03-18
CN104418351B (zh) 2019-09-17
EP3037385A1 (en) 2016-06-29
US20160194209A1 (en) 2016-07-07
JP2016528154A (ja) 2016-09-15
CN104418349B (zh) 2019-02-15
CN104418345B (zh) 2019-08-20
WO2015024380A1 (zh) 2015-02-26
CN104418352A (zh) 2015-03-18
JP6228677B2 (ja) 2017-11-08
BR112016002757B1 (pt) 2022-02-01
CN104418347B (zh) 2018-11-02
CN104418353B (zh) 2018-11-02
BR112016002757A2 (pt) 2020-05-19
CN104418351A (zh) 2015-03-18
WO2015024378A1 (zh) 2015-02-26
CN104418345A (zh) 2015-03-18
CN104418352B (zh) 2018-03-16
CN104418348A (zh) 2015-03-18
CN104418346A (zh) 2015-03-18
EP3037385A4 (en) 2017-01-11
WO2015024379A1 (zh) 2015-02-26
AU2014311141A1 (en) 2016-03-10
CN104418353A (zh) 2015-03-18
AU2014311141B2 (en) 2017-02-23
CN104418346B (zh) 2018-10-09
EA201690420A1 (ru) 2016-06-30
CN104418347A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2015024381A1 (zh) 一种具有多级孔道结构的Beta分子筛及其制备方法
WO2016086362A1 (zh) 一种多级孔zsm-5分子筛的合成方法
CN106865566B (zh) 一种zsm-5分子筛及其制备方法和应用
BR112012009397B1 (pt) método de preparo de zsm-5
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
CN107512728A (zh) 插卡结构多级孔fau型沸石分子筛的制备方法
CN105621445A (zh) 一种NaY型分子筛及其制备方法
CN101618877B (zh) 一种微孔-介孔分级结构材料及其制备方法
CN114014335B (zh) 一种硅锗utl型大孔分子筛及其制备方法
CN113830778B (zh) ZSM-5/β核壳型分子筛及其合成方法和应用
CN114426293B (zh) Scm-35分子筛、其制备方法和应用
CN113860323B (zh) 一种分子筛的合成方法
CN114804141B (zh) 一种纳米团簇介孔zsm-5分子筛及其制备方法
CN116174024A (zh) 一种催化裂解催化剂及其制备方法和应用
CN116262622A (zh) 一种纳米级高硅y分子筛、及其制备方法和应用
CN116409796A (zh) 可调节zsm-5/zsm-11共晶分子筛比例的快速合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837865

Country of ref document: EP

Kind code of ref document: A1