WO2015016600A1 - 배터리 제어 장치 및 방법 - Google Patents

배터리 제어 장치 및 방법 Download PDF

Info

Publication number
WO2015016600A1
WO2015016600A1 PCT/KR2014/006981 KR2014006981W WO2015016600A1 WO 2015016600 A1 WO2015016600 A1 WO 2015016600A1 KR 2014006981 W KR2014006981 W KR 2014006981W WO 2015016600 A1 WO2015016600 A1 WO 2015016600A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
control unit
amount
driving body
Prior art date
Application number
PCT/KR2014/006981
Other languages
English (en)
French (fr)
Inventor
장민철
권동근
김민서
김유미
손병국
성다영
이승호
박기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to RU2015105749A priority Critical patent/RU2635360C2/ru
Priority to JP2015529713A priority patent/JP5939496B2/ja
Priority to CN201480002190.9A priority patent/CN104641533B/zh
Priority to EP14831493.3A priority patent/EP2874271B1/en
Priority to US14/419,281 priority patent/US9889751B2/en
Publication of WO2015016600A1 publication Critical patent/WO2015016600A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • H02J7/0027
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery control apparatus and method, and more particularly, to connect a plurality of batteries having different energy densities from each other, and to control the power supplied through the plurality of batteries to control the driving of the driving body. It relates to a battery control device and a method.
  • a battery which is also called a storage battery, has increased along with the amount of electricity that enables the power generation.
  • a battery is also called a storage battery or a secondary battery, and the chemical energy (for example, sulfuric acid, etc.) present in the battery is electrolyzed by chemical action using two plates such as copper or zinc. It will generate a, means a storage device for storing or outputting such electrical energy.
  • chemical energy for example, sulfuric acid, etc.
  • These batteries consist of a positive pole (anode) and a negative pole (current), and current flows through the positive pole and flows out through the negative pole.
  • such a battery is connected to the + poles and-poles of a plurality of batteries in order to connect the series of the same current value between each battery or + poles of the plurality of batteries + poles,-poles-poles are connected between each battery Parallel connections with the same voltage value can be connected.
  • the battery can be used indefinitely because the amount of charge is determined to a certain value. Therefore, the battery is connected to an external power source at all times or connected to different types of batteries to charge the driving body such as a motor connected to the battery.
  • the maximum mileage is only 160km in the case of a vehicle with a 24kWh lithium ion battery, even when using a battery of 250Wh / kg, the maximum possible energy density of the lithium ion battery Since it is only about 300 km, it is less than 500 km, which is the maximum mileage of an internal combustion engine vehicle.
  • the present inventors in order to solve the problems of the conventional battery control device described above, by supplying power to the drive body in accordance with various situations by allowing the power to be exchanged with each other by using a plurality of batteries while the overall size of the battery is the same
  • a battery control apparatus and method capable of selectively controlling a battery have been invented.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to drive a driving body by connecting a plurality of batteries having different energy densities to each other and controlling the power supplied through the plurality of batteries. It is an object of the present invention to provide a battery control apparatus and a method for controlling the same.
  • the present invention is to provide a battery control apparatus and method for preventing the driving of the drive through the other battery abnormally operated even if the output of either battery is reduced by a plurality of batteries complement each other power mutually.
  • the battery control device may include a first battery connected to a driving body driven with electric power and supplying power for driving the driving body; A second battery connected to the first battery to supply electric power for charging the first battery, or a second battery connected to the driver to supply electric power for driving the driver; A control unit controlling an amount of power supplied between each of the first and second batteries according to the states of the first and second batteries; And a switch unit connected between the first and second batteries and the controller under the control of the controller.
  • the energy density of the first battery may be lower than the energy density of the second battery.
  • the first battery may correspond to one or more of a lithium ion (Li-ion) battery, a nickel-hydrogen (Ni-MH) battery, a metal oxide (Metal-Air) battery.
  • Li-ion lithium ion
  • Ni-MH nickel-hydrogen
  • Metal-Air metal oxide
  • the capacity of the second battery may be greater than the capacity of the first battery.
  • the second battery may correspond to one or more of a lithium (Li) battery, a lithium sulfur (Li-S) battery, a metal oxide (Metal-Air) battery, an all solid state battery. .
  • the controller may control the power supply of the second battery so that the driving body is driven through the power of the second battery.
  • the switch unit may include first and second switch units connected in parallel with the driving body, respectively, and the first and second switch units may be connected to the first and second batteries, respectively.
  • the controller may control the power of the second battery so that the second battery charges the first battery when the charge amount of the first battery is equal to or less than a preset charge amount.
  • the switch unit may include a first switch unit provided between the driver and the first battery; And a second switch unit provided between the first and second batteries.
  • control unit may control to drive the driving body through the first battery when the output amount of the second battery exceeds a preset output allowable range.
  • the switch unit may include first and second switch units connected to the driving body in parallel, respectively, and the first and second switch units may be connected to the second and first batteries, respectively.
  • a battery control method comprising: connecting a driving body driven with electric power and a first battery supplying power for driving the driving body; Connecting a second battery supplying power for charging the first battery or a power supply for driving the driver with the first battery or the driver; And connecting the control unit controlling the amount of power supplied between the first and second batteries with each other through the switch unit according to the state of the first and second batteries.
  • the battery control method may further include calculating a charge amount (SOC) of the first battery by the controller; And controlling the power supplied to the driving unit by comparing and determining the preset charging amount with the charging amount of the first battery.
  • SOC charge amount
  • controlling of the power supplied to the driving body may include controlling the switch unit to drive the driving body through the power of the second battery when the charging amount of the first battery is less than or equal to a preset charging amount. And controlling the power supply of the second battery.
  • controlling of the power supply of the second battery may include connecting the first and second switches with the first and second batteries, respectively, connected in parallel with the driving body. have.
  • the controlling of the power supplied to the driving body may include controlling the power of the second battery so that the second battery charges the first battery when the charge amount of the first battery is less than or equal to a predetermined charge amount. It may include;
  • controlling of the power of the second battery may include providing a first switch unit between the driving body and the first battery to connect each other; And providing a second switch unit between the first and second batteries so as to be connected to each other.
  • controlling of the power supplied to the driving body may include: driving the driving body through the power of the first battery when the output amount of the second battery exceeds a preset output allowable range; Controlling the power supply of the battery; may include.
  • the controlling of power supply of the first battery may include connecting first and second switch units, respectively, connected in parallel with the driving body, to the second and first batteries, respectively. have.
  • Battery control apparatus and method by connecting a plurality of batteries having a different energy density to each other, when the battery is reduced output power of the driving body by a plurality of batteries mutually complement each other This has the effect of keeping the drive working normally at all times.
  • the second battery having a high energy density and a large capacity is provided, the output efficiency is increased, and the maximum driving distance of the electric vehicle is significantly increased.
  • FIG. 1 is a view illustrating a comparison between a conventional battery 10 and a battery control apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing in more detail the configuration of the battery control device 100 according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of the battery control apparatus 100 according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating an operation of the battery control apparatus 100 illustrated in FIG. 3.
  • FIG. 5 is a circuit diagram of a battery control device 100 ′ according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating the operation of the battery control apparatus 100 ′ shown in FIG. 5.
  • FIG. 7 is a circuit diagram of the battery control device 100 ′′ according to another embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an operation of the battery control apparatus 100 ′′ shown in FIG. 7.
  • FIG. 1 is a view illustrating a comparison between a conventional battery 10 and a battery control apparatus 100 according to an embodiment of the present invention.
  • the conventional battery 10 has a single number of batteries 10 connected to the driving body 20.
  • the existing battery 10 Is not provided with a means for supplying power or charging the existing battery 10, the drive output of the driving body 20 connected to the existing battery 10 is also deteriorated together.
  • the battery control apparatus 100 forms the first and second batteries 110 and 120 so as to be connected to each other, even though the output of the first battery 110 is lowered.
  • the power supply may be supplemented or may be directly driven by using the second battery 120.
  • the overall volume is the same, but the existing battery 10 in the existing electric vehicle by dividing into two batteries By removing the) and attaching the battery control device 100, the battery control device 100 can be used as it is in an electric vehicle without having to form a separate seating space.
  • the configuration of the battery control device 100 will be described in more detail with reference to FIG. 2.
  • FIG. 2 is a block diagram showing in more detail the configuration of the battery control device 100 according to an embodiment of the present invention.
  • the battery control apparatus 100 includes a first battery 110, a second battery 120, and a controller 130.
  • the first battery 110 is connected to the driving body 20 that is driven by being supplied with power, and may serve to supply power for driving the driving body 20.
  • the driving body 20 may mean all electric products that operate using electric power, and may correspond to, for example, an electric motor.
  • the electric motor receives electric power and consumes electric power by rotating the internal rotating body, and simultaneously generates other kinetic energy using the rotating rotating body.
  • the output of the driving body 20 may also decrease, so that the driving body 20 operates abnormally due to the lack of supply power.
  • the first and second batteries 110 and 120 and the control unit 130 are complementary to each other to prevent them from being made.
  • the energy density of the first cell 110 that performs this role may be lower than the energy density of the second cell 120 to be described later, which may be an effect of the type of battery corresponding to the first cell 110. have.
  • the first battery 110 may correspond to one or more of a lithium ion (Li-ion) battery, a nickel-hydrogen (Ni-MH) battery, and a metal-air battery.
  • Li-ion lithium ion
  • Ni-MH nickel-hydrogen
  • metal-air battery metal-air battery
  • the first battery 110 may be connected to the second battery 120 and the controller 130, which will be described later, may be formed to be charged through the second battery 120, and also to control the controller 130. Output power can be controlled through, which will be described in more detail with reference to FIGS.
  • the type, output power, and capacity of the first battery 110 are not limited as long as the first battery 110 performs the above-described role (role to supply power for driving the driver 20). Note that.
  • the second battery 120 may be connected to the first battery 110 described above to supply power to the first battery 110 or to charge the first battery 110, or the driving body 20. It may be directly connected to the) to supply power for driving the drive body 20.
  • the second battery 120 Since the output of the driving body 20 may decrease when the power supplied to the driving body 20 is also reduced, the second battery 120 having such a role is abnormal due to the shortage of power supply. In order to prevent the second battery 120 from operating as described above, the second battery 120 is also operated in a complementary manner to the controller 130 described later, similarly to the first battery 110.
  • the energy density of the second battery 120 may be higher than the energy density of the first battery 110 described above.
  • the energy density of the second battery 120 may correspond to 250 Wh / kg or more, which corresponds to the second battery 120. May be an effect of the type of battery.
  • the second battery 120 may correspond to one or more of a lithium (Li) battery, a lithium sulfur (Li-S) battery, a metal oxide (Metal-Air) battery, and an all solid state battery.
  • the second battery 120 is configured as a battery capable of charging and discharging, even when all of the second battery 120 is discharged, the second battery 120 may be charged and used.
  • the second battery 120 may correspond to a higher capacity than the first battery 110.
  • the battery control device 100 may be compared with the conventional battery 10.
  • the driving body 20 can be driven for a longer time.
  • the battery control apparatus 100 since the second battery 120 has a lower output density and lower cost than the first battery 110, the battery control apparatus 100 according to an exemplary embodiment of the present invention may provide a battery that can be driven for a long time at low cost ( 10) can be implemented.
  • the second battery 120 may serve to charge the first battery 110, which prevents abnormal operation of the driving body 20 generated as the output of the first battery 110 falls. This is to be described below, which will be described in more detail with reference to FIGS.
  • the second battery 120 performs the above-described role (supplying power for driving the driver 20 or charging the first battery 110).
  • the type, output power and capacity are not limited.
  • controller 130 may play a role of controlling the amount of power supplied to the driving body 20 from the first battery 110 and the second battery 120 described above.
  • the controller 130 may correspond to a battery management system (BMS) for controlling a battery provided in the electric vehicle, and the controller 130 may include the first battery 110 in three ways. And the amount of power of the second battery 120, which will be described in more detail with reference to FIGS. 3 to 5.
  • BMS battery management system
  • FIG. 3 is a circuit diagram of the battery control apparatus 100 according to an embodiment of the present invention
  • FIG. 4 is a flowchart illustrating the operation of the battery control apparatus 100 shown in FIG. 3
  • FIG. FIG. 6 is a circuit diagram illustrating a battery control apparatus 100 ′ according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an operation of the battery control apparatus 100 ′ shown in FIG. 5.
  • FIG. 8 is a circuit diagram of the battery control apparatus 100 ′′ according to another embodiment of the invention, and FIG. 8 is a flowchart illustrating the operation of the battery control apparatus 100 ′′ shown in FIG. 7.
  • the first and second batteries 110 and 120 are connected to the driving body 20, respectively, and the switch unit 140 is connected between the connection terminals.
  • the switch 140 may also be connected to the controller 130 to serve to block and connect power of the first and second batteries 110 and 120 individually under the control of the controller 130.
  • the switch unit 140 may include a first switch unit 140a connected to the first battery 110 and a second switch unit 140b connected to the second battery 120. And when the second switch parts 140a and 140b are in an on state, the first or second batteries 110 and 120 are energized with the driving body 20, thereby driving the driving body 20. do.
  • first and second batteries 110 and 120 are also connected to the control unit 130, and the control unit 130 receives the charge amount SOC from the first and second batteries 110 and 120. Accordingly, the power supplied to the driving body 20 is controlled.
  • the controller 130 controls the power of the second battery 120 to drive the driving body 20 through the power of the second battery 120. Done.
  • the output of the driving body 20 is lowered, thereby abnormally operating.
  • the driving body 20 obtains electric power from the first battery 110 and starts driving (S401).
  • the controller 130 receives data about the charge amount SOC from the first and second batteries 110 and 120 (S402).
  • the controller 130 compares the amount of charge of the first battery 110 with the basic amount of charge set to be necessary to drive the driving body 20 based on the received amount of charge (S403).
  • the controller 130 continuously controls the first battery 110 to drive the driving body 20 through the power of the first battery 110.
  • the second switch unit 140b connected to the second battery 120 is turned off so that the second battery 120 does not operate (S404).
  • the controller 130 stops the operation by turning off the first switch unit 140a connected to the first battery 110 and the second battery. By turning on the second switch unit 140b connected to the 120, the second battery 110 is controlled to drive the driving body 20 through the power of the second battery 120 (S405).
  • the controller 130 receives the driving data from the driving body 20 (S406), and controls the first and second batteries 110 and 120 based on the driving data. The operation is performed repeatedly.
  • a battery control apparatus 100 ′ according to another embodiment of the present invention will be described with reference to FIG. 5, and the first battery 110 is connected to the driving body 20 through the first switch unit 140a ′.
  • the first and second batteries 110 and 120 are connected through the second switch unit 140b '.
  • the second battery 120 may be connected to or disconnected from the first battery 110 according to the on / off state of the second switch unit 140b '.
  • first and second batteries 110 and 120 are connected to the controller 130, which corresponds to the above-described content of FIG. 3, a detailed description thereof will be omitted.
  • the first switch unit 140a 'between the first battery 110 and the driving body 20, and the second switch unit 140b' between the first battery 110 and the second battery 120 are all It is connected to the controller 130 and is controlled by the controller 130.
  • controller 130 receives data on the amount of charge from the first and second batteries 120, and controls the power supplied to the driving body 20 according to the amount of charge.
  • the controller 130 charges the first battery 110 through the power of the second battery 120.
  • the driver 20 receives power from the first battery 110 and starts driving (S601).
  • the controller 130 receives data about the charge amount SOC from the first and second batteries 110 and 120 (S602).
  • the controller 130 compares the charging amount of the first battery 110 with the basic charging amount required to drive the driving body 20 based on the received charging amount (S603).
  • the controller 130 continuously controls the first battery 110 to drive the driving body 20 through the power of the first battery 110.
  • the second switch 120 (b) connected to the second battery 120 is turned off (S604) so that the second battery 120 does not charge the first battery.
  • the controller 130 turns on the second switch unit 140b 'connected to the second battery 120 to turn on the second battery.
  • the first battery 110 may be charged through the power of 120 (S605). Accordingly, since the first battery 110 receives power from the second battery 120, the first battery 110 can continue to normally drive the driving body 20.
  • the control unit 130 receives the driving data from the driving body 20 (S606), and controls the first and second batteries 110 and 120 based on the driving data. The operation is performed repeatedly.
  • a battery control apparatus 100 ′ according to another exemplary embodiment of the present disclosure has the same technical configuration as the battery control apparatus 100 illustrated in FIG. 3. Since it is formed so as to be described with reference to the control unit 130 is formed differently.
  • the control unit 130 may be connected to the vehicle control unit 131, and the vehicle control unit 131 may provide output request information to the control unit 130, and the control unit 130 may include the first and the first request information based on the output request information.
  • the second batteries 110 and 120 are controlled.
  • the controller 130 stops the power supply of the second battery 120 and drives the power through the power of the first battery 110. Let 20 be driven.
  • the meaning that the output amount of the second battery 120 exceeds the preset output allowable range may be higher or lower because the output amount of the second battery 120 is unstable. Therefore, the output of the second battery 120 may be less than or equal to the preset output allowable range, or the output of the second battery 120 may be significantly out of the preset allowable output.
  • the output amount of the second battery 120 exceeds the preset output allowable range means that the output amount of the second battery 120 is less than the preset output allowable range or greatly exceeds the preset output allowable range. can do.
  • the driving body 20 receives power from the second battery 120 and starts driving (S801).
  • the controller 130 receives data on the output amount from the first and second batteries 110 and 120 (S802).
  • the controller 130 compares the output amount of the second battery 120 with the basic output amount required to drive the driving body 20 based on the received output amount (S803).
  • the controller 130 continuously drives the second battery 120 to drive the driving body 20 through the power of the second battery 120.
  • the second switch unit 140b ′′ connected to the first battery 110 is turned off (S804) such that the first battery 110 is not operated at the same time.
  • the controller 130 operates by turning off the first switch unit 140a ′′ connected to the second battery 120.
  • the first battery 110 is stopped and the second switch unit 140b ′′ connected to the first battery 110 is turned on to drive the driving body 20 through the power of the first battery 110.
  • the controller 130 receives the driving data from the driving body 20 (S806), and controls the first and second batteries 110 and 120 based on the driving data. The operation is performed repeatedly.
  • a lithium-ion battery of a vehicle equipped with a conventional lithium-ion battery may have a total weight of 300 kg, a power output of 24 kWh, an energy density per weight of 140 Wh / kg, and may drive a distance of up to 160 km. have.
  • $ 750 is required to output the output of 1kWh, and at this time, a maximum cost of $ 18,000 is required to drive the total distance of 160km.
  • the conventional lithium-ion battery alone has a problem in that the driving distance is short and the cost consumed accordingly is high.
  • the first battery 110 of a vehicle equipped with the first and second batteries 110 and 120 of the battery control apparatus 100 has a weight of 200 kg, an output of 16 kWh, and 140 Wh / kg. It can have an energy density per weight.
  • the second battery 120 may have a weight of 100 kg, an output of 29 kWh, and an energy density per weight of 500 Wh / kg.
  • the weight of the first and second batteries 110 and 120 is 300 kg, the weight of the first and second batteries 110 and 120 is the same as that of the conventional lithium-ion battery.
  • the first and second batteries 110 and 120 significantly increase the driving distance and reduce the cost by more than 20% compared to the conventional lithium-ion batteries.
  • the second battery 120 of the vehicle equipped with the second battery 120 of the battery control apparatus 100 has a weight of 300 kg, an output of 86 kWh, and an energy density per weight of 500 Wh / kg. Can be.
  • the total weight of the second battery 120 is 300 kg, it has the same weight as the conventional lithium-ion battery.
  • the battery control device 100 can be seen that the driving distance is significantly increased compared to the conventional lithium-ion battery and the cost is also reduced by more than 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 서로 상이한 에너지 밀도를 가지는 복수의 배터리를 서로 연결하고, 해당 복수의 배터리를 통해 공급되는 전력을 제어함으로써 구동체의 구동이 제어되도록 하는 배터리 제어 장치 및 방법에 관한 것이다.

Description

배터리 제어 장치 및 방법
본 출원은 2013년 7월 30일에 한국 특허청에 제출된 한국 특허 출원 제10-2013-0090125호 및 2014년 7월 30일에 한국 특허청에 제출된 한국 특허 출원 제10-2014-0097062호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 배터리 제어 장치 및 방법에 관한 것으로, 보다 상세하게는, 서로 상이한 에너지 밀도를 가지는 복수의 배터리를 서로 연결하고, 해당 복수의 배터리를 통해 공급되는 전력을 제어함으로써 구동체의 구동이 제어되도록 하는 배터리 제어 장치 및 방법에 관한 것이다.
최근 산업 및 경제가 급속도로 발전함에 따라, 이러한 발전을 가능케 하는 전기의 사용량과 함께 축전지라 불리기도 하는 배터리(Battery)의 사용량도 증가하게 되었다.
일반적으로, 배터리라 함은, 축전지 또는 2차 전지라고도 하며 배터리 내에서 존재하는 화학물질(예를 들어, 황산 등)이 동판, 아연판 등과 같은 두 개의 판을 이용한 화학적 작용에 의해 전기분해 되면서 전기적 에너지를 발생시키게 되고, 이러한 전기적 에너지를 저장 또는 출력하는 저장장치를 의미한다.
이러한 배터리는 +극(양극)과 -극(음극)으로 이루어지며, 전류는 +극을 통해 유입되고 -극을 통해 유출된다.
한편, 이러한 배터리는 복수의 배터리의 +극 및 -극을 차례로 연결하여 각 배터리 간의 전류값이 동일한 직렬 연결 또는 복수의 배터리의 +극은 +극끼리, -극은 -극끼리 연결하여 각 배터리 간의 전압값이 동일한 병렬 연결로 연결할 수 있다.
이때, 배터리는 충전량이 일정한 수치로 정해지기 때문에 무한정 사용할 수 없다. 따라서, 배터리를 외부 전원과 상시 연결하여 사용하거나 이종의 배터리와 연결시켜 충전시켜줌으로써 배터리와 연결된 모터등과 같은 구동체의 구동이 원활하게 이루어지도록 한다.
하지만, 종래의 배터리 제어 장치들을 살펴보면, 24kWh 용량의 리튬이온 배터리를 적용한 차량의 경우 최대 주행거리가 160km에 불과하며, 리튬이온 전지의 최대 가능 에너지 밀도인 250Wh/kg의 배터리를 사용하더라도 최대주행거리는 300km 내외에 불과하기 때문에 아이씨디(Internal Combustion Engine) 차량의 최대 주행거리인 500km에는 못 미치기 때문에 에너지 효율이 떨어지는 문제점을 가진다.
이에, 본 발명자는 상술된 종래의 배터리 제어장치들이 가지는 문제점을 해결하기 위해, 배터리의 전체적인 크기는 동일하면서도 복수의 배터리를 이용하여 전력이 서로 교환되도록 함으로써 다양한 상황에 따라 구동체에 전력을 공급하는 배터리를 선택적으로 제어할 수 있는 배터리 제어 장치 및 방법을 발명하기에 이르렀다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은, 서로 상이한 에너지 밀도를 가지는 복수의 배터리를 서로 연결하고, 해당 복수의 배터리를 통해 공급되는 전력을 제어함으로써 구동체의 구동이 제어되도록 하는 배터리 제어 장치 및 방법을 제공하고자 한다.
보다 구체적으로, 본 발명은 서로 상이한 에너지 밀도를 가지는 복수의 배터리를 하나 이상의 구동체와 연결되도록 함으로써 구동체에 공급되는 전력을 선택적으로 제어하도록 하는 배터리 제어 장치 및 방법을 제공하고자 한다.
또한, 본 발명은 복수의 배터리가 서로 전력을 상호 보완함으로써 어느 한쪽 배터리의 출력이 저하되더라도 다른 배터리를 통해 구동체의 구동이 비정상적으로 작동되지 않도록 하는 배터리 제어 장치 및 방법을 제공하고자 한다.
실시예들 중에서, 배터리 제어 장치는 전력을 공급받아 구동되는 구동체와 연결되며, 상기 구동체가 구동되기 위한 전력을 공급하는 제1 전지; 상기 제1 전지와 연결되어 상기 제1 전지를 충전시키기 위한 전력을 공급하거나 또는 상기 구동체와 연결되어 상기 구동체가 구동되기 위한 전력을 공급하는 제2 전지; 상기 제1 및 제2 전지의 상태에 따라 상기 제1 및 제2 전지 상호 간에 공급되는 전력량을 제어하는 제어부; 및 상기 제어부의 제어를 받으며 상기 제1 및 제2 전지와 상기 제어부 상호 간을 연결하는 스위치부;를 포함한다.
일 실시예에서, 상기 제1 전지의 에너지 밀도는 상기 제2 전지의 에너지 밀도보다 낮은 것을 특징으로 할 수 있다.
일 실시예에서, 상기 제1 전지는 리튬이온(Li-ion) 전지, 니켈수소(Ni-MH) 전지, 금속산화(Metal-Air) 전지 중 하나 이상에 해당할 수 있다.
일 실시예에서, 상기 제2 전지의 용량은 상기 제1 전지의 용량보다 큰 것을 특징으로 할 수 있다.
일 실시예에서, 상기 제2 전지는 리튬(Li) 전지, 리튬유황(Li-S) 전지, 금속산화(Metal-Air) 전지, 전고체(All solid state) 전지 중 하나 이상에 해당할 수 있다.
일 실시예에서, 상기 제어부는 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지의 전력을 통해 상기 구동체가 구동되도록 상기 제2 전지의 전력공급을 제어할 수 있다.
일 실시예에서, 상기 스위치부는 상기 구동체와 각각 병렬로 연결되는 제1 및 제2 스위치부;를 포함하고, 상기 제1 및 제2 스위치부는 각각 상기 제1 및 제2 전지와 연결될 수 있다.
일 실시예에서, 상기 제어부는 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지가 상기 제1 전지를 충전하도록 상기 제2 전지의 전력을 제어할 수 있다.
일 실시예에서, 상기 스위치부는 상기 구동체 및 제1 전지 사이에 제공되는 제1 스위치부; 및 상기 제1 및 제2 전지 사이에 제공되는 제2 스위치부;를 포함할 수 있다.
일 실시예에서, 상기 제어부는 상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제1 전지를 통해 상기 구동체를 구동시키도록 제어할 수 있다.
일 실시예에서, 상기 스위치부는 상기 구동체와 각각 병렬로 연결되는 제1 및 제2 스위치부;를 포함하고, 상기 제1 및 제2 스위치부는 각각 상기 제2 및 제1 전지와 연결될 수 있다.
본 발명의 다른 실시예에 따른 배터리 제어 방법은 전력을 공급받아 구동되는 구동체와 상기 구동체가 구동되기 위한 전력을 공급하는 제1 전지를 연결하는 단계; 상기 제1 전지를 충전시키기 위한 전력을 공급하거나 또는 상기 구동체가 구동되기 위한 전력을 공급하는 제2 전지를 상기 제1 전지 또는 상기 구동체와 연결하는 단계; 및 상기 제1 및 제2 전지의 상태에 따라 상기 제1 및 제2 전지 상호 간에 공급되는 전력량을 제어하는 제어부와 상기 제1 및 제2 전지 상호 간을 스위치부를 통해 연결하는 단계;를 포함할 수 있다.
일 실시예에서, 배터리 제어 방법은 상기 제어부에서 상기 제1 전지의 충전량(SOC)을 계산하는 단계; 및 상기 제어부에서 기 설정된 충전량과 상기 제1 전지의 충전량을 비교 판단하여 상기 구동체에 공급되는 전력을 제어하는 단계;를 더 포함할 수 있다.
일 실시예에서, 상기 구동체에 공급되는 전력을 제어하는 단계는 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제어부에서 상기 제2 전지의 전력을 통해 상기 구동체가 구동되도록 상기 스위치부를 제어하여 상기 제2 전지의 전력공급을 제어하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 제2 전지의 전력공급을 제어하는 단계는 상기 구동체와 각각 병렬로 연결되는 제1 및 제2 스위치부를 각각 상기 제1 및 제2 전지와 연결하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 구동체에 공급되는 전력을 제어하는 단계는 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지가 상기 제1 전지를 충전하도록 상기 제2 전지의 전력을 제어하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 제2 전지의 전력을 제어하는 단계는 상기 구동체 및 상기 제1 전지 사이에 제1 스위치부를 제공하여 서로 연결시키는 단계; 및 상기 제1 및 제2 전지 사이에 제2 스위치부를 제공하여 서로 연결시키는 단계;를 포함할 수 있다.
일 실시예에서, 상기 구동체에 공급되는 전력을 제어하는 단계는 상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제1 전지의 전력을 통해 상기 구동체가 구동되도록 상기 제1 전지의 전력공급을 제어하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 제1 전지의 전력공급을 제어하는 단계는 상기 구동체와 각각 병렬로 연결되는 제1 및 제2 스위치부를 각각 상기 제2 및 제1 전지와 연결하는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 따른 배터리 제어 장치 및 방법은 서로 상이한 에너지 밀도를 가지는 복수의 배터리를 서로 연결함으로써, 출력이 저하되는 배터리가 발생하는 경우 복수의 배터리가 서로 전력을 상호 보완함으로써 구동체의 구동이 언제나 정상적으로 작동되도록 유지하는 효과를 가진다.
또한, 복수의 배터리를 연결함에 있어서 기존의 한 개의 배터리 사이즈와 동일한 사이즈로 형성하기 때문에 전기 자동차에 배터리를 부착하는 경우에도 기존의 배터리 수용공간에 안착시킬 수 있어 공간활용이 용이한 효과를 가진다.
또한, 에너지 밀도가 높고 용량이 큰 제2 전지를 구비하기 때문에 출력효율이 증가하여 전기 자동차의 최대 주행거리가 획기적으로 증가하는 효과를 가진다.
도 1은 기존의 배터리(10)와 본 발명의 일 실시예에 따른 배터리 제어 장치(100)를 비교하여 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 구성을 보다 구체적으로 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 회로도를 도시한 도면이다.
도 4는 도 3에 도시된 배터리 제어 장치(100)의 동작을 도시한 흐름도이다.
도 5는 본 발명의 다른 실시예에 따른 배터리 제어 장치(100')의 회로도를 도시한 도면이다.
도 6은 도 5에 도시된 배터리 제어 장치 (100')의 동작을 도시한 흐름도이다.
도 7은 본 발명의 또 다른 실시예에 따른 배터리 제어 장치(100'')의 회로도를 도시한 도면이다.
도 8은 도 7에 도시된 배터리 제어 장치(100'')의 동작을 도시한 흐름도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 1은 기존의 배터리(10)와 본 발명의 일 실시예에 따른 배터리 제어 장치(100)를 비교하여 도시한 도면이다.
도 1을 참조하면, 기존의 배터리(10)는 단일 개수로 형성되는 배터리(10)가 구동체(20)와 연결되는데, 이때 기존의 배터리(10)의 출력이 저하되는 경우 기존의 배터리(10)에 전력을 공급하거나 또는 기존의 배터리(10)를 충전시키기 위한 수단이 구비되지 않기 때문에 기존의 배터리(10)와 연결된 구동체(20)의 구동출력도 함께 저하될 수 밖에 없다.
하지만 본 발명의 일 실시예에 따른 배터리 제어 장치(100)는 제1 및 제2 전지(110, 120)을 서로 연결되도록 형성함으로써 제1 전지(110)의 출력이 저하되더라도 제2 전지(120)를 통해 전력을 보완 공급해주거나 혹은 제2 전지(120)를 이용하여 구동체(20)를 직접 구동시킬 수 도 있다.
그리고 기존의 배터리(10)와 본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 부피를 비교하여 보면, 전체적인 부피는 동일하면서도 두 개의 배터리로 나눔으로써 기존의 전기 자동차에서 기존의 배터리(10)를 탈거하고 배터리 제어 장치(100)를 해당 부착시킴으로써 별도의 안착공간을 형성할 필요 없이도 전기 자동차에서 배터리 제어 장치(100)를 그대로 사용할 수 있다.
이러한 배터리 제어 장치(100)의 구성은 도 2를 통해 보다 상세하게 살펴보기로 한다.
도 2는 본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 구성을 보다 구체적으로 도시한 블록도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 배터리 제어 장치(100)는 제1 전지(110), 제2 전지(120) 및 제어부(130)를 포함한다.
먼저, 제1 전지(110)는 전력을 공급받아 구동되는 구동체(20)와 연결되며, 구동체(20)가 구동되기 위한 전력을 공급하는 역할을 수행할 수 있다.
여기에서, 구동체(20)라 함은 전력을 이용하여 작동하는 모든 전기 제품을 의미할 수 있으며, 예를 들어 전동 모터(motor)에 해당할 수 있다.
전동 모터는 전력을 공급받아 내부의 회전체를 회전시킴으로써 전력을 소모하고, 그와 동시에 회전되는 회전체를 이용하여 다른 운동에너지를 생성하게 된다.
한편, 제1 전지(110)에서 구동체(20)에 공급되는 전력이 저하되는 경우에는 구동체(20)의 출력도 저하될 수 있으므로 구동체(20)가 공급 전력의 부족으로 인해 비정상적으로 작동하는 것을 방지하기 위하여 제1 및 제2 전지(110, 120) 그리고 제어부(130)가 상호 보완적으로 동작된다.
이러한 역할을 수행하는 제1 전지(110)의 에너지 밀도는 후술되는 제2 전지(120)의 에너지 밀도보다 낮게 형성될 수 있는데, 이는 제1 전지(110)에 해당하는 배터리의 종류의 영향일 수 있다.
제1 전지(110)는 리튬이온(Li-ion) 전지, 니켈수소(Ni-MH) 전지, 금속산화(Metal-Air) 전지 중 하나 이상에 해당할 수 있다.
이러한 제1 전지(110)는 후술되는 제2 전지(120) 및 제어부(130)와 연결될 수 있고, 제2 전지(120)를 통해 충전이 가능하도록 형성될 수 있으며 또한 제어부(130)의 제어를 통해 출력전력이 제어될 수 있는데, 이는 후술되는 도 3 내지 도 5를 통해 보다 상세하게 살펴보기로 한다.
한편, 제1 전지(110)가 상술한 역할(구동체(20)를 구동시키기 위한 전력을 공급하는 역할)을 수행하는 한, 제1 전지(110)의 종류, 출력 전력 및 용량은 제한되지 않음을 유의한다.
다음으로, 제2 전지(120)는 상술한 제1 전지(110)와 연결되어 제1 전지(110)에 전력을 공급하거나 또는 제1 전지(110)를 충전시킬 수 있고, 또는 구동체(20)와 직접적으로 연결되어 구동체(20)가 구동되기 위한 전력을 공급하는 역할을 수행할 수 있다.
이러한 역할을 수행하는 제2 전지(120) 또한 구동체(20)에 공급되는 전력이 저하되는 경우 구동체(20)의 출력이 저하될 수 있으므로 구동체(20)가 공급 전력의 부족으로 인해 비정상적으로 작동하는 것을 방지하기 위하여 제2 전지(120)도 제1 전지(110)와 마찬가지로 후술되는 제어부(130)와 상호 보완적으로 동작된다.
이러한 제2 전지(120)의 에너지 밀도는 상술한 제1 전지(110)의 에너지 밀도보다 높게 형성될 수 있는데 예를 들어, 250Wh/kg 이상에 해당할 수 있으며 이는 제2 전지(120)에 해당하는 배터리의 종류의 영향일 수 있다.
제2 전지(120)는 리튬(Li) 전지, 리튬유황(Li-S) 전지, 금속산화(Metal-Air) 전지, 전고체(All solid state) 전지 중 하나 이상에 해당할 수 있다.
또한, 제2 전지(120)는 충방전이 가능한 전지로 구성되어, 제2 전지(120)가 모두 방전되더라도 교체할 필요 없이, 충전하여 사용할 수 있다.
그리고 제2 전지(120)는 제1 전지(110)보다 고용량에 해당할 수 있는데, 이렇게 제2 전지(120)를 고용량으로 구성함에 따라 배터리 제어 장치(100)는 기존의 배터리(10)에 비해 구동체(20)를 보다 오랜 시간동안 구동시킬 수 있게 된다. 그리고 제2 전지(120)는 제1 전지(110)에 비해 출력밀도가 낮고 저가의 전지로 구성되므로, 본 발명의 일 실시예에 따른 배터리 제어 장치(100)는 저비용으로 오랜 시간 구동 가능한 배터리(10)를 구현할 수 있게 된다.
또한, 제2 전지(120)는 제1 전지(110)를 충전시키는 역할을 수행할 수 있으며, 이는 제1 전지(110)의 출력이 떨어짐에 따라 발생되는 구동체(20)의 비정상적인 작동을 방지하기 위함이며, 이는 후술되는 도 3 내지 도 5를 통해 보다 상세하게 살펴보기로 한다.
한편, 제2 전지(120)가 상술한 역할(구동체(20)를 구동시키기 위한 전력을 공급하거나 또는 제1 전지(110)를 충전시키는 역할)을 수행하는 한, 제2 전지(120)의 종류, 출력 전력 및 용량은 제한되지 않음을 유의한다.
마지막으로, 제어부(130)는 상술한 제1 전지(110) 및 제2 전지(120)에서 구동체(20)에 공급되는 전력의 전력량을 제어하는 역할을 수행할 수 있다.
즉, 제어부(130)는 전기 차량에 구비되는 배터리를 제어하는 배터리 관리 시스템(Battery Management System; BMS)에 해당할 수 있는데, 제어부(130)는 크게 3가지의 방법을 통해 제1 전지(110) 및 제2 전지(120)의 전력량을 제어할 수 있고, 이를 도 3 내지 도 5를 통해 보다 상세하게 살펴보기로 한다.
도 3은 본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 회로도를 도시한 도면이고, 도 4는 도 3에 도시된 배터리 제어 장치(100)의 동작을 도시한 흐름도이며, 도 5는 본 발명의 다른 실시예에 따른 배터리 제어 장치(100')의 회로도를 도시한 도면이고, 도 6은 도 5에 도시된 배터리 제어 장치 (100')의 동작을 도시한 흐름도이며, 도 7은 본 발명의 또 다른 실시예에 따른 배터리 제어 장치(100'')의 회로도를 도시한 도면이고, 도 8은 도 7에 도시된 배터리 제어 장치(100'')의 동작을 도시한 흐름도이다.
먼저 도 3을 살펴보면, 제1 및 제2 전지(110, 120)는 구동체(20)와 각각 연결되어 있고, 각각의 연결단 사이에는 스위치부(140)가 연결되어 있다.
여기에서 스위치(140)는 제어부(130)와도 연결되어 제어부(130)의 제어를 받아 제1 및 제2 전지(110, 120)의 전력을 개별적으로 차단 및 연결하는 역할을 수행할 수 있다.
이러한 스위치부(140)는 제1 전지(110)와 연결되는 제1 스위치부(140a) 및 제2 전지(120)와 연결되는 제2 스위치부(140b)를 포함하여 구성될 수 있으며, 제1 및 제2 스위치부(140a, 140b)가 온(On) 상태에 해당하는 경우 제1 또는 제2 전지(110, 120)가 구동체(20)와 통전되고 그에 따라 구동체(20)가 구동되게 된다.
반대로, 제1 및 제2 스위치부(140a, 140b)가 오프(Off) 상태에 해당하는 경우 제1 또는 제2 전지(110, 120)가 구동체(20)와 차단되고 그에 따라 구동체(20)의 구동도 중지된다.
또한 제1 및 제2 전지(110, 120)는 제어부(130)와도 연결되어 있는데, 제어부(130)에서는 제1 및 제2 전지(110, 120)로부터 충전량(SOC)을 전달받게 되고, 충전량에 따라 구동체(20)에 공급되는 전력을 제어하게 된다.
즉, 제1 전지(110)의 충전량이 기 설정된 충전량 이하인 경우, 제어부(130)는 제2 전지(120)의 전력을 통해 구동체(20)가 구동되도록 제2 전지(120)의 전력을 제어하게 된다.
여기에서, 제1 전지(110)의 충전량이 기 설정된 충전량 이하에 해당하는 경우에는 구동체(20)의 출력이 저하되면서 비정상적으로 작동되게 된다.
도 4를 살펴보면, 먼저 구동체(20)는 제1 전지(110)로부터 전력을 얻어 구동을 시작한다(S401). 그 다음, 제어부(130)에서는 제1 및 제2 전지(110, 120)로부터 충전량(SOC)에 대한 데이터를 수신한다(S402). 그리고 나서 제어부(130)에서는 수신한 충전량을 기초로 하여 제1 전지(110)의 충전량과 구동체(20)가 구동되기에 필요토록 설정된 기본 충전량을 서로 비교 판단하게 되는데(S403), 이때 만약 제1 전지(110)의 충전량이 기 설정된 충전량 초과인 경우, 제어부(130)는 계속 해서 제1 전지(110)의 전력을 통해 구동체(20)가 구동되도록 제1 전지(110)를 제어함과 동시에 제2 전지(120)가 동작하지 않도록 제2 전지(120)와 연결된 제2 스위치부(140b)를 오프(Off)시킨다(S404).
만약, 제1 전지(110)의 충전량이 기 설정된 충전량 이하인 경우, 제어부(130)는 제1 전지(110)와 연결된 제1 스위치부(140a)를 오프(Off)시켜 작동을 중단시키고 제2 전지(120)와 연결된 제2 스위치부(140b)를 온(On)시켜 제2 전지(120)의 전력을 통해 구동체(20)가 구동되도록 제2 전지(110)를 제어한다(S405).
그리고 계속해서 구동체(20)가 구동되는 경우 제어부(130)에서는 구동체(20)로부터 구동데이터를 전달받게 되고(S406), 구동데이터를 토대로 제1 및 제2 전지(110, 120)의 제어동작을 반복적으로 수행하게 된다.
다음으로 본 발명의 다른 실시예에 따른 배터리 제어 장치(100')를 도 5를 통해 살펴보면, 제1 전지(110)는 제1 스위치부(140a')를 통해 구동체(20)와 서로 연결되어 있고, 제1 및 제2 전지(110, 120)는 제2 스위치부(140b')를 통해 연결되어 있다.
그에 따라 제2 전지(120)는 제2 스위치부(140b')의 온/오프 상태에 따라 제1 전지(110)와 연결될 수도 있고 차단될 수도 있다.
또한, 제1 및 제2 전지(110, 120)는 제어부(130)와 연결되어 있으며 이는 상술한 도 3의 내용과 상응하기 때문에 상세한 설명은 생략하기로 한다.
한편, 제1 전지(110)와 구동체(20) 사이의 제1 스위치부(140a') 및 제1 전지(110)와 제2 전지(120) 사이의 제2 스위치부(140b')는 모두 제어부(130)와 연결되어 제어부(130)의 제어를 받게 된다.
그리고 제어부(130)에서는 제1 및 제2 전지(120)로부터 충전량에 대한 데이터를 전달받게 되고, 충전량에 따라 구동체(20)에 공급되는 전력을 제어하게 된다.
즉, 제1 전지(110)의 충전량이 기 설정된 충전량 이하에 해당하는 경우, 제어부(130)는 제 2 전지(120)의 전력을 통해 제1 전지(110)를 충전시키게 된다.
도 6을 살펴보면, 먼저 구동체(20)는 제1 전지(110)로부터 전력을 얻어 구동을 시작한다(S601). 그 다음, 제어부(130)에서는 제1 및 제2 전지(110, 120)로부터 충전량(SOC)에 대한 데이터를 수신한다(S602). 그리고 나서 제어부(130)에서는 수신한 충전량을 기초로 하여 제1 전지(110)의 충전량과 구동체(20)가 구동되기에 필요하도록 설정된 기본 충전량을 서로 비교 판단하게 되는데(S603), 이때 만약 제1 전지(110)의 충전량이 기 설정된 충전량 초과에 해당하는 경우, 제어부(130)는 계속 해서 제1 전지(110)의 전력을 통해 구동체(20)가 구동되도록 제1 전지(110)를 제어함과 동시에 제2 전지(120)가 제1 전지를 충전시키지 않도록 제2 전지(120)와 연결된 제2 스위치부(140b')를 오프(Off)시킨다(S604).
만약, 제1 전지(110)의 충전량이 기 설정된 충전량 이하에 해당하는 경우, 제어부(130)는 제2 전지(120)와 연결된 제2 스위치부(140b')를 온(On)시켜 제2 전지(120)의 전력을 통해 제1 전지(110)를 충전시킬 수 있도록 한다(S605). 그에 따라, 제1 전지(110)는 제2 전지(120)로부터 전력을 공급받기 때문에 계속해서 구동체(20)를 정상적으로 구동시킬 수 있게 된다.
그리고 계속해서 구동체(20)가 구동되는 경우 제어부(130)에서는 구동체(20)로부터 구동데이터를 전달받게 되고(S606), 구동데이터를 토대로 제1 및 제2 전지(110, 120)의 제어동작을 반복적으로 수행하게 된다.
다음으로, 본 발명의 또 다른 실시예에 따른 배터리 제어 장치(100')를 도 7을 통해 살펴보면, 배터리 제어 장치(100')는 도 3에 도시된 배터리 제어 장치(100)와 기술적 구성이 동일하게 형성되기 때문에 상이하게 형성되는 제어부(130)를 중심으로 살펴보기로 한다.
제어부(130)는 차량 제어부(131)와 연결될 수 있으며, 차량 제어부(131)에서는 제어부(130)에 출력 요구 정보를 제공하게 되고, 제어부(130)에서는 이러한 출력 요구 정보를 기초로 하여 제1 및 제2 전지(110, 120)를 제어하게 된다.
여기에서 제어부(130)는 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 제2 전지(120)의 전력공급을 중단시키고 제1 전지(110)의 전력을 통해 구동체(20)가 구동되도록 한다.
여기에서, 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 초과한다는 의미는, 제2 전지(120)의 출력량은 불안정하기 때문에 높아질 수도 있고 낮아질 수도 있다. 따라서 제2 전지(120)의 출력량이 기 설정된 출력허용 범위 이하인 경우일 수도 있고, 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 크게 벗어나는 경우일 수도 있다.
따라서, 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 초과한다는 의미는 제2 전지(120)의 출력량이 기 설정된 출력허용 범위에 못 미친다거나 또는 기 설정된 출력허용 범위를 크게 넘어서는 것을 의미할 수 있다.
도 8을 살펴보면, 먼저 구동체(20)는 제2 전지(120)로부터 전력을 얻어 구동을 시작한다(S801). 그 다음, 제어부(130)에서는 제1 및 제2 전지(110, 120)로부터 출력량에 대한 데이터를 수신한다(S802). 그리고 나서 제어부(130)에서는 수신한 출력량을 기초로 하여 제2 전지(120)의 출력량과 구동체(20)가 구동되기에 필요토록 설정된 기본 출력량을 서로 비교 판단하게 되는데(S803), 이때 만약 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 초과하지 않는 경우, 제어부(130)는 계속 해서 제2 전지(120)의 전력을 통해 구동체(20)가 구동되도록 제2 전지(120)를 제어함과 동시에 제1 전지(110)가 동작하지 않도록 제1 전지(110)와 연결된 제2 스위치부(140b'')를 오프(Off) 시킨다(S804).
만약, 제2 전지(120)의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 제어부(130)는 제2 전지(120)와 연결된 제1 스위치부(140a'')를 오프(Off)시켜 작동을 중단시키고, 제1 전지(110)와 연결된 제2 스위치부(140b'')를 온(On)시켜 제1 전지(110)의 전력을 통해 구동체(20)가 구동되도록 제1 전지(110)를 제어한다(S805).
그리고 계속해서 구동체(20)가 구동되는 경우 제어부(130)에서는 구동체(20)로부터 구동데이터를 전달받게 되고(S806), 구동데이터를 토대로 제1 및 제2 전지(110, 120)의 제어동작을 반복적으로 수행하게 된다.
다음은, 본 발명의 일 실시예에 따른 배터리 제어 장치(100)에 따른 차량의 운행 효율을 살펴보기로 한다.
일 실시에에서, 종래의 리튬-이온 전지를 장착한 차량의 리튬-이온 전지는 총 무게 300kg, 24kWh의 출력량, 140Wh/kg의 무게당 에너지밀도를 가질 수 있으며, 최대 160km의 거리를 주행할 수 있다.
이때, 1kWh의 출력량을 출력하기 위해서는 750달러가 필요하며, 이때 총 주행거리인 160km를 주행하기 위해서는 최대 18,000달러의 비용이 소요되어야 한다.
즉, 종래의 리튬-이온 전지 만으로는 주행거리도 짧고 또한 그에 따라 소모되는 비용이 많다는 문제점이 있다.
*본 발명의 일 실시예에 따른 배터리 제어 장치(100)의 제1 및 제2 전지(110, 120)를 장착한 차량의 제1 전지(110)는 무게 200kg, 16kWh의 출력량, 140Wh/kg의 무게당 에너지밀도를 가질 수 있다. 또한 제2 전지(120)는 무게 100kg, 29kWh의 출력량, 500Wh/kg의 무게당 에너지밀도를 가질 수 있다.
따라서, 제1 및 제2 전지(110, 120)의 총 무게는 300kg이므로 종래의 리튬-이온 전지와 동일한 무게를 가지게 된다.
또한, 최대 297km의 거리를 주행할 수 있고 이때, 1kWh의 출력량을 출력하기 위해서는 333달러가 필요하며, 이때 총 주행거리인 297km를 주행하기 위해서는 최대 14,857달러의 비용이 소요된다.
즉, 본 발명의 일 실시예에 따른 제1 및 제2 전지(110, 120)는 종래의 리튬-이온 전지 대비 주행거리가 획기적으로 늘어나며 비용 또한 20% 이상 감소되는 것을 알 수 있다.
본 발명의 다른 실시예에 따른 배터리 제어 장치(100)의 제2 전지(120)를 장착한 차량의 제2 전지(120)는 무게 300kg, 86kWh의 출력량, 500Wh/kg의 무게당 에너지밀도를 가질 수 있다.
따라서, 제2 전지(120)의 총 무게는 300kg이므로 종래의 리튬-이온 전지와 동일한 무게를 가지게 된다.
또한, 최대 500km 이상의 거리를 주행할 수 있고 이때, 1kWh의 출력량을 출력하기 위해서는 100달러가 필요하며, 이때 총 주행거리인 500km를 주행하기 위해서는 최대 8,600달러의 비용이 소요된다.
즉, 본 발명의 다른 실시예에 따른 배터리 제어 장치(100)는 종래의 리튬-이온 전지 대비 주행거리가 획기적으로 늘어나며 비용 또한 50% 이상 감소되는 것을 알 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (19)

  1. 전력을 공급받아 구동되는 구동체와 연결되며, 상기 구동체가 구동되기 위한 전력을 공급하는 제1 전지;
    상기 제1 전지와 연결되어 상기 제1 전지를 충전시키기 위한 전력을 공급하거나 또는 상기 구동체와 연결되어 상기 구동체가 구동되기 위한 전력을 공급하는 제2 전지;
    상기 제1 및 제2 전지의 상태에 따라 상기 제1 및 제2 전지 상호 간에 공급되는 전력량을 제어하는 제어부; 및
    상기 제어부의 제어를 받으며 상기 제1 및 제2 전지와 상기 제어부 상호 간을 연결하는 스위치부;를 포함하는 것을 특징으로 하는,
    배터리 제어 장치.
  2. 제1항에 있어서,
    상기 제1 전지의 에너지 밀도는,
    상기 제2 전지의 에너지 밀도보다 낮은 것을 특징으로 하는,
    배터리 제어 장치.
  3. 제2항에 있어서,
    상기 제1 전지는,
    리튬이온(Li-ion) 전지, 니켈수소(Ni-MH) 전지, 금속산화(Metal-Air) 전지 중 하나 이상에 해당하는 것을 특징으로 하는,
    배터리 제어 장치.
  4. 제1항에 있어서,
    상기 제2 전지의 용량은,
    상기 제1 전지의 용량보다 큰 것을 특징으로 하는,
    배터리 제어 장치.
  5. 제1항에 있어서,
    상기 제2 전지는,
    리튬(Li) 전지, 리튬유황(Li-S) 전지, 금속산화(Metal-Air) 전지, 전고체(All solid state) 전지 중 하나 이상에 해당하는 것을 특징으로 하는,
    배터리 제어 장치.
  6. 제1항에 있어서,
    상기 제어부는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지의 전력을 통해 상기 구동체가 구동되도록 상기 제2 전지의 전력공급을 제어하는 것을 특징으로 하는,
    배터리 제어 장치.
  7. 제6항에 있어서,
    상기 스위치부는,
    상기 구동체와 각각 연결되는 제1 및 제2 스위치부;를 포함하고,
    상기 제어부는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제1 스위치부를 오프(Off)시키고 상기 제2 스위치부를 온(On) 시키고, 그리고
    상기 제1 전지의 충전량이 기 설정된 충전량을 초과하는 경우, 상기 제2 스위치부를 오프(Off) 시키는 것을 특징으로 하는,
    배터리 제어 장치.
  8. 제1항에 있어서,
    상기 제어부는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지가 상기 제1 전지를 충전하도록 상기 제2 전지의 전력을 제어하는 것을 특징으로 하는,
    배터리 제어 장치.
  9. 제8항에 있어서,
    상기 스위치부는,
    상기 구동체 및 제1 전지 사이에 제공되는 제1 스위치부; 및
    상기 제1 및 제2 전지 사이에 제공되는 제2 스위치부;를 포함하고,
    상기 제어부는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 스위치부를 온(On)시켜 상기 제2 전지의 전력을 통해 상기 제1 전지가 충전되도록 하고, 그리고
    상기 제1 전지의 충전량이 기 설정된 충전량을 초과하는 경우, 상기 제2 스위치부를 오프(Off)시켜 상기 제2 전지의 전력이 상기 제1 전지에 공급되지 않도록 하는 것을 특징으로 하는,
    배터리 제어 장치.
  10. 제1항에 있어서,
    상기 제어부는,
    상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제1 전지를 통해 상기 구동체를 구동시키도록 제어하는 것을 특징으로 하는,
    배터리 제어 장치.
  11. 제10항에 있어서,
    상기 스위치부는,
    상기 구동체와 각각 연결되는 제1 및 제2 스위치부;를 포함하고,
    상기 제어부는,
    상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하지 않는 경우, 상기 제1 전지와 연결된 상기 제2 스위치부를 오프(Off) 시키고, 그리고
    상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제2 전지와 연결된 상기 제1 스위치부를 오프(Off)시키고 상기 제1 전지와 연결된 상기 제2 스위치부를 온(On)시켜 상기 제1 전지의 전력을 통해 상기 구동체가 구동되도록 하는 것을 특징으로 하는,
    배터리 제어 장치.
  12. 전력을 공급받아 구동되는 구동체와 상기 구동체가 구동되기 위한 전력을 공급하는 제1 전지를 연결하는 단계;
    상기 제1 전지를 충전시키기 위한 전력을 공급하거나 또는 상기 구동체가 구동되기 위한 전력을 공급하는 제2 전지를 상기 제1 전지 또는 상기 구동체와 연결하는 단계; 및
    상기 제1 및 제2 전지의 상태에 따라 상기 제1 및 제2 전지 상호 간에 공급되는 전력량을 제어하는 제어부와 상기 제1 및 제2 전지 상호 간을 스위치부를 통해 연결하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  13. 제12항에 있어서,
    상기 제어부에서 상기 제1 전지의 충전량(SOC)을 계산하는 단계; 및
    상기 제어부에서 기 설정된 충전량과 상기 제1 전지의 충전량을 비교 판단하여 상기 구동체에 공급되는 전력을 제어하는 단계;를 더 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  14. 제13항에 있어서,
    상기 구동체에 공급되는 전력을 제어하는 단계는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제어부에서 상기 제2 전지의 전력을 통해 상기 구동체가 구동되도록 상기 스위치부를 제어하여 상기 제2 전지의 전력공급을 제어하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  15. 제14항에 있어서,
    상기 제2 전지의 전력공급을 제어하는 단계는,
    상기 구동체와 각각 연결되는 제1 및 제2 스위치부를 각각 상기 제1 및 제2 전지와 연결하는 단계; 및
    상기 제어부에서 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제1 스위치부를 오프(Off)시키고 상기 제2 스위치부를 온(On) 시키고, 그리고 상기 제1 전지의 충전량이 기 설정된 충전량을 초과하는 경우, 상기 제2 스위치부를 오프(Off) 시키는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  16. 제13항에 있어서,
    상기 구동체에 공급되는 전력을 제어하는 단계는,
    상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 전지가 상기 제1 전지를 충전하도록 상기 제2 전지의 전력을 제어하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  17. 제16항에 있어서,
    상기 제2 전지의 전력을 제어하는 단계는,
    상기 구동체 및 상기 제1 전지 사이에 제1 스위치부를 제공하여 서로 연결시키는 단계;
    상기 제1 및 제2 전지 사이에 제2 스위치부를 제공하여 서로 연결시키는 단계; 및
    상기 제어부에서 상기 제1 전지의 충전량이 기 설정된 충전량 이하인 경우, 상기 제2 스위치부를 온(On)시켜 상기 제2 전지의 전력을 통해 상기 제1 전지가 충전되도록 하고, 그리고 상기 제1 전지의 충전량이 기 설정된 충전량을 초과하는 경우, 상기 제2 스위치부를 오프(Off)시켜 상기 제2 전지의 전력이 상기 제1 전지에 공급되지 않도록 하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  18. 제13항에 있어서,
    상기 구동체에 공급되는 전력을 제어하는 단계는,
    상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제1 전지의 전력을 통해 상기 구동체가 구동되도록 상기 제1 전지의 전력공급을 제어하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
  19. 제18항에 있어서,
    상기 제1 전지의 전력공급을 제어하는 단계는,
    상기 구동체와 각각 연결되는 제1 및 제2 스위치부를 각각 상기 제2 및 제1 전지와 연결하는 단계; 및
    상기 제어부에서 상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하지 않는 경우, 상기 제1 전지와 연결된 상기 제2 스위치부를 오프(Off) 시키고, 그리고 상기 제2 전지의 출력량이 기 설정된 출력허용 범위를 초과하는 경우, 상기 제2 전지와 연결된 상기 제1 스위치부를 오프(Off)시키고 상기 제1 전지와 연결된 상기 제2 스위치부를 온(On)시켜 상기 제1 전지의 전력을 통해 상기 구동체가 구동되도록 하는 단계;를 포함하는 것을 특징으로 하는,
    배터리 제어 방법.
PCT/KR2014/006981 2013-07-30 2014-07-30 배터리 제어 장치 및 방법 WO2015016600A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2015105749A RU2635360C2 (ru) 2013-07-30 2014-07-30 Устройство и способ управления батареей
JP2015529713A JP5939496B2 (ja) 2013-07-30 2014-07-30 バッテリー制御装置および方法{Batterymanagementapparatusandmethod}
CN201480002190.9A CN104641533B (zh) 2013-07-30 2014-07-30 用于控制电池的装置和方法
EP14831493.3A EP2874271B1 (en) 2013-07-30 2014-07-30 Apparatus and method for controlling battery
US14/419,281 US9889751B2 (en) 2013-07-30 2014-07-30 Battery management apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130090125 2013-07-30
KR10-2013-0090125 2013-07-30
KR1020140097062A KR101921641B1 (ko) 2013-07-30 2014-07-30 배터리 제어 장치 및 방법
KR10-2014-0097062 2014-07-30

Publications (1)

Publication Number Publication Date
WO2015016600A1 true WO2015016600A1 (ko) 2015-02-05

Family

ID=52571635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006981 WO2015016600A1 (ko) 2013-07-30 2014-07-30 배터리 제어 장치 및 방법

Country Status (8)

Country Link
US (1) US9889751B2 (ko)
EP (1) EP2874271B1 (ko)
JP (1) JP5939496B2 (ko)
KR (2) KR101921641B1 (ko)
CN (1) CN104641533B (ko)
RU (1) RU2635360C2 (ko)
TW (1) TWI558059B (ko)
WO (1) WO2015016600A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755800B1 (ko) * 2015-07-03 2017-07-10 현대자동차주식회사 차량의 충전제어 방법
EP3182552B1 (en) * 2015-12-18 2018-11-14 Oxis Energy Limited Lithium-sulfur battery management system
CN105539182B (zh) * 2015-12-28 2017-12-01 青岛大学 一种目字型电动汽车混合电源控制方法
JP2018006239A (ja) * 2016-07-06 2018-01-11 トヨタ自動車株式会社 電池システム
US11159031B2 (en) 2016-10-07 2021-10-26 Sony Interactive Entertainment Inc. Electrical machinery and apparatus
US11091057B2 (en) * 2016-12-01 2021-08-17 Volvo Truck Corporation Method and system for controlling a battery in a vehicle
EP3398818B1 (en) * 2017-05-04 2022-07-06 Volvo Car Corporation Voltage supply unit, battery balancing method
CN108565506A (zh) * 2017-12-18 2018-09-21 广州亿航智能技术有限公司 无人机用电池和无人机
DE102018102211B3 (de) * 2018-02-01 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriesystem für ein batteriebetriebenes elektrisches Fahrzeug und Verfahren zum Nutzen einer Restreichweite eines solchen
KR101930214B1 (ko) 2018-06-27 2018-12-17 주식회사 제이에스영테크 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템
DE102018211307A1 (de) 2018-07-09 2020-01-09 Robert Bosch Gmbh Batteriesystem für ein Elektrofahrzeug, Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeugs
WO2021080045A1 (ko) * 2019-10-25 2021-04-29 엘지전자 주식회사 복수의 배터리를 이용하는 전자 장치 및 그 제어 방법
CN113746149A (zh) 2020-05-27 2021-12-03 北京小米移动软件有限公司 充电***、方法、装置和终端设备
CN113746150A (zh) * 2020-05-27 2021-12-03 北京小米移动软件有限公司 充电***、方法、装置和终端设备
EP4064436A4 (en) 2020-09-30 2023-05-03 Contemporary Amperex Technology Co., Limited BATTERY, DEVICE AND METHOD OF MANUFACTURE AND DEVICE FOR A BATTERY
WO2022067808A1 (zh) * 2020-09-30 2022-04-07 宁德时代新能源科技股份有限公司 电池、装置、电池的制备方法以及制备装置
JP2023509418A (ja) 2020-09-30 2023-03-08 寧徳時代新能源科技股▲分▼有限公司 電池、装置、電池の製造方法及び製造装置
EP4064421A4 (en) 2020-11-17 2023-09-13 Contemporary Amperex Technology Co., Limited BATTERY, DEVICE USING BATTERY, AND METHOD AND DEVICE FOR PREPARING BATTERY
WO2023004774A1 (zh) 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 一种电池组、电池包和用电装置
WO2023130215A1 (zh) * 2022-01-04 2023-07-13 宁德时代新能源科技股份有限公司 混合串联电池模组、电池包以及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336934A (ja) * 2003-05-09 2004-11-25 Denso Wave Inc 電子機器の電源装置
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
KR101097272B1 (ko) * 2010-07-27 2011-12-21 삼성에스디아이 주식회사 배터리 팩 및 이를 구비하는 전기 이동수단
JP2013128354A (ja) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp 送受電装置、送受電システム及び送受電方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) * 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
JPH10225002A (ja) * 1997-01-31 1998-08-21 Nippon Soken Inc 携帯電話装置
JP2004208344A (ja) * 2002-12-24 2004-07-22 Toshiba Corp 複数電池を有する携帯端末
JP2005132190A (ja) * 2003-10-29 2005-05-26 Denso Corp 車両用電源システム
JP4210200B2 (ja) 2003-11-11 2009-01-14 本田技研工業株式会社 車両用電源システム
KR100976345B1 (ko) * 2008-08-06 2010-08-16 윤도군 자가발전장치와 이를 구비하는 전기차량 및 그 구동방법
JP2010088202A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 電池ユニットおよびこれを用いた電池システム
JP4893804B2 (ja) 2009-11-05 2012-03-07 トヨタ自動車株式会社 車両用電源装置
TW201214919A (en) 2010-09-24 2012-04-01 Lite On Clean Energy Technology Corp Hybrid battery module and battery management method
CN103269898B (zh) * 2010-12-20 2015-09-23 丰田自动车株式会社 电动车辆及其控制方法
KR101320743B1 (ko) 2011-08-19 2013-10-21 주식회사 포스코아이씨티 배터리 충방전 제어 장치 및 방법
JP5772476B2 (ja) 2011-10-12 2015-09-02 トヨタ自動車株式会社 電気自動車
KR101502965B1 (ko) * 2011-11-15 2015-03-17 주식회사 엘지화학 전자기기 전원공급장치
JP2012186989A (ja) * 2012-01-09 2012-09-27 Masayuki Kawada 蓄電池の充放電安定化自動ラウンドロビン式システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336934A (ja) * 2003-05-09 2004-11-25 Denso Wave Inc 電子機器の電源装置
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
KR101097272B1 (ko) * 2010-07-27 2011-12-21 삼성에스디아이 주식회사 배터리 팩 및 이를 구비하는 전기 이동수단
JP2013128354A (ja) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp 送受電装置、送受電システム及び送受電方法

Also Published As

Publication number Publication date
EP2874271B1 (en) 2020-09-02
KR20160103962A (ko) 2016-09-02
KR101680526B1 (ko) 2016-11-28
JP5939496B2 (ja) 2016-06-22
JP2015530858A (ja) 2015-10-15
RU2015105749A (ru) 2017-09-01
EP2874271A1 (en) 2015-05-20
TW201528650A (zh) 2015-07-16
CN104641533B (zh) 2019-02-26
TWI558059B (zh) 2016-11-11
US20160046195A1 (en) 2016-02-18
EP2874271A4 (en) 2016-04-20
KR101921641B1 (ko) 2018-11-26
KR20150014890A (ko) 2015-02-09
RU2635360C2 (ru) 2017-11-13
US9889751B2 (en) 2018-02-13
CN104641533A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2018030704A1 (ko) 배터리 팩을 위한 온도 모니터링 장치 및 방법
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2019093769A1 (ko) Bms 웨이크업 장치, 이를 포함하는 bms 및 배터리팩
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2017014487A1 (ko) 배터리 스택 밸런싱 장치
US9484753B2 (en) Method for balancing the charge and discharge level of a battery by switching its blocks of cells
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2013042988A2 (ko) 배터리 충전 시스템 및 이를 이용한 충전 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2012091402A2 (ko) 배터리 시스템 관리 장치 및 방법
WO2019124738A1 (ko) 배터리 충전관리 장치 및 방법
WO2018038348A1 (ko) 배터리 관리 시스템
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2021080358A1 (ko) 병렬 연결된 배터리 팩의 밸런싱 장치 및 방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2020149537A1 (ko) 배터리 충전 시스템 및 배터리 충전 방법
WO2016032131A1 (ko) Dc-dc 전압 변환기의 입력 파워 한도를 조절하기 위한 파워 제어 시스템 및 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2021080247A1 (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
WO2015002379A1 (ko) 배터리 팩 보호 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015529713

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419281

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014831493

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015105749

Country of ref document: RU

Kind code of ref document: A