WO2015015871A1 - 波長板及び分割プリズム部材 - Google Patents

波長板及び分割プリズム部材 Download PDF

Info

Publication number
WO2015015871A1
WO2015015871A1 PCT/JP2014/063383 JP2014063383W WO2015015871A1 WO 2015015871 A1 WO2015015871 A1 WO 2015015871A1 JP 2014063383 W JP2014063383 W JP 2014063383W WO 2015015871 A1 WO2015015871 A1 WO 2015015871A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
terahertz wave
total reflection
prism member
wave
Prior art date
Application number
PCT/JP2014/063383
Other languages
English (en)
French (fr)
Inventor
陽一 河田
敬史 安田
篤司 中西
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP19185566.7A priority Critical patent/EP3570082B1/en
Priority to US14/906,924 priority patent/US10591669B2/en
Priority to EP14831381.0A priority patent/EP3029495B1/en
Publication of WO2015015871A1 publication Critical patent/WO2015015871A1/ja
Priority to US16/739,214 priority patent/US10908355B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/04Refracting or diffracting devices, e.g. lens, prism comprising wave-guiding channel or channels bounded by effective conductive surfaces substantially perpendicular to the electric vector of the wave, e.g. parallel-plate waveguide lens

Definitions

  • the present invention relates to a wave plate and a split prism member.
  • a wave plate is known as an element for controlling polarization.
  • incident light having linearly polarized light can be changed to light having linearly polarized light in an arbitrary direction.
  • the wave plate one constituted by a medium having refractive index anisotropy has been generally used.
  • the refractive index anisotropy exists in the medium, the light traveling speed changes depending on the polarization direction, so that the phase of the outgoing light changes with respect to the phase of the incident light.
  • the amount of phase change at this time is inversely proportional to the wavelength of light.
  • Fresnel ROM type wave plate using a phase change accompanying total reflection (for example, see Non-Patent Document 1).
  • the Fresnel ROM type wave plate light is incident from one surface of the prism, the light is totally reflected in the prism, the light phase is changed, and then the light is emitted out of the prism.
  • the wavelength plate using the refractive index anisotropy of the medium has a problem that the wavelength region in which a desired phase change can be realized is limited because the amount of phase change is inversely proportional to the wavelength of light. Therefore, for example, when a wave plate is used for a terahertz wave having a wide wavelength region, it may be necessary to prepare wave plates having different characteristics for each wavelength.
  • the conventional Fresnel-rom type wave plate has a problem that, when applied to light having a large beam diameter, if the incident surface of the prism is increased, the size of the prism in the light traveling direction is increased accordingly. It was. Therefore, the handling of the wave plate may be complicated.
  • One aspect of the present invention has been made to solve the above problems, and provides a wavelength plate and a split prism member that can be applied over a wide wavelength region and can be reduced in size even for a large beam diameter.
  • the purpose is to do.
  • a wave plate includes a prism member having an incident surface on which a terahertz wave is incident and an output surface on which the terahertz wave incident from the incident surface is emitted.
  • a plurality of waveguides having a partial incident surface to be incident, a plurality of total reflection surfaces that totally reflect terahertz waves incident from the partial incidence surface, and a partial emission surface that emits terahertz waves totally reflected by the total reflection surface. Consists of a wave region, and by arranging a plurality of waveguide regions in a stacked manner, each partial incident surface continuously forms the incident surface of the prism member, and each partial output surface continues to the output surface of the prism member It is characterized by comprising.
  • the prism member includes a partial incident surface on which a part of the terahertz wave is incident, a plurality of total reflection surfaces that totally reflect the terahertz wave incident from the partial incident surface, and a terahertz wave that is totally reflected by the total reflection surface. It has a plurality of waveguide regions having a partial exit surface for emitting light.
  • the waveguide region it is possible to suppress the dimension in the traveling direction of the terahertz wave.
  • the waveguide region is laminated and arranged according to the beam diameter of the terahertz wave to constitute the prism member. Therefore, the incident surface and the exit surface can be arbitrarily set while suppressing the size of the prism member in the traveling direction of the terahertz wave. Can be set to the size of Therefore, the wave plate can be downsized even for a large beam diameter.
  • a gap having a gap larger than the penetration depth of the terahertz wave evanescent wave may be arranged. In this case, it is possible to prevent the terahertz waves guided through the respective waveguide regions from interfering with each other, and a desired phase change can be reliably obtained.
  • Each total reflection surface with respect to the optical axis of the terahertz wave so that the incidence axis of the terahertz wave incident on the partial incidence surface and the emission axis of the terahertz wave emitted from the partial emission surface substantially coincide with each other in each waveguide region. May be set. In this case, since the traveling direction of the terahertz wave does not change when the wave plate is rotated for polarization control of the terahertz wave, the optical system can be easily adjusted.
  • each waveguide region the inclination angles of the total reflection surfaces with respect to the optical axis of the terahertz wave may all be equal. In this case, the design and manufacture of the wave plate is facilitated, and a desired phase change amount can be obtained with high accuracy.
  • the plurality of total reflection surfaces may be composed of four surfaces including a first total reflection surface, a second total reflection surface, a third total reflection surface, and a fourth total reflection surface. .
  • the inclination angle of the total reflection surface can be optimized.
  • the prism member may be provided with a holding surface for holding the wave plate on the holding member substantially parallel to the incident axis and the outgoing axis of the terahertz wave.
  • the wave plate can be easily held by the holding member using the holding surface.
  • the wave plate may include a plurality of divided prism members each having a waveguide region, and the prism member may be formed by stacking a plurality of divided prism members.
  • each waveguide region can be easily designed and manufactured as a split prism member, a desired phase change amount can be obtained with high accuracy.
  • Each of the split prism members may be provided with a contact surface that comes into contact with the split prism members adjacent in the stacking direction substantially parallel to the incident axis and the output axis of the terahertz wave.
  • the split prism member according to one aspect of the present invention is a split prism member that constitutes a prism member having an incident surface on which a terahertz wave is incident and an output surface on which the terahertz wave incident from the incident surface is emitted.
  • a waveguiding region including:
  • the split prism member includes a partial incident surface on which a part of the terahertz wave is incident, a plurality of total reflection surfaces that totally reflect the terahertz wave incident from the partial incident surface, and a terahertz wave that is totally reflected by the total reflection surface.
  • a waveguide region having a partially emitting surface for emitting light is provided.
  • the present invention can be applied over a wide wavelength region and can be downsized even for a large beam diameter.
  • FIG. 9 is a side view of the wave plate shown in FIG. 8.
  • FIG. 1 is a perspective view showing an embodiment of a wave plate according to the present invention.
  • the wave plate 1 shown in the figure includes a prism member 2 that guides a terahertz wave, and is configured as an element that changes a polarization state of the incident terahertz wave by a certain amount.
  • a terahertz wave for example, a laser beam having a beam diameter of 30 mm is assumed.
  • the “terahertz wave” in the present invention means an electromagnetic wave having a frequency of 0.1 THz to 100 THz.
  • the prism member 2 has an incident surface 3 on which a terahertz wave is incident, an exit surface 4 that emits a terahertz wave incident from the incident surface 3, and a holding surface 7.
  • the incident surface 3 is a surface on which the terahertz wave T is incident on the prism member 2, and is located on one end side of the prism member 2.
  • a terahertz wave T is incident on the incident surface 3 substantially vertically.
  • the exit surface 4 is a surface that emits the terahertz wave T, and is located on the other end side of the prism member 2.
  • the terahertz wave T is emitted substantially perpendicularly so that the incident axis of the terahertz wave T incident on the incident surface 3 and the emission axis of the terahertz wave T emitted from the emission surface 4 substantially coincide with each other. It has become.
  • the holding surface 7 is a surface for holding the wave plate 1 on a holding member such as a holder.
  • the holding surface 7 includes the first holding surface 7a, the second holding surface 7b, the third holding surface 7c, the fourth holding surface 7d, the fifth holding surface 7e, and the sixth holding surface. It consists of a total of 6 surfaces 7f.
  • the prism member 2 is configured by laminating and arranging divided prism members 12 (12a to 12f).
  • FIG. 2A is a perspective view showing the divided prism member 12 constituting the prism member 2.
  • FIG. 2B is a side view of FIG. In FIG. 2B, the optical axis of the terahertz wave T passing through the split prism member 12 is illustrated by a chain line for convenience.
  • the split prism member 12 shown in FIGS. 2A and 2B is formed into a rectangular cross section by a cycloolefin polymer having a refractive index of 1.5, for example, and a part of the terahertz wave T passing through the prism member 2 is formed. It has a waveguide region to guide.
  • the waveguide region includes a partial incident surface 13, a total reflection surface 15, a partial emission surface 14, and a contact surface 16.
  • the partial incident surface 13 is a surface on which the terahertz wave T is incident on the split prism member 12, and is located on one end side of the split prism member 12. A part of the terahertz wave T is incident on the partial incident surface 13 substantially vertically.
  • the total reflection surface 15 is a surface that changes the phase of the terahertz wave T by totally reflecting a part of the terahertz wave T incident on the partial incident surface 13.
  • the total reflection surface 15 is composed of a total of four surfaces including a first total reflection surface 15a, a second total reflection surface 15b, a third total reflection surface 15c, and a fourth total reflection surface 15d. ing.
  • the first total reflection surface 15a is located on the bottom surface of the split prism member 12 on the side of the partial incident surface 13, and the second total reflection surface 15b is one so as to face the first total reflection surface 15a. It is located on the upper surface of the split prism member 12 on the partial incident surface 13 side.
  • the third total reflection surface 15c is located on the upper surface of the split prism member 12 on the partial emission surface 14 side, and the fourth total reflection surface 15d is arranged so as to face the third total reflection surface 15c. It is located on the bottom surface of the split prism member 12 on the partial emission surface 14 side.
  • the inclination angles ⁇ 1 to ⁇ 4 between a part of the optical axis of the terahertz wave T and the normal direction of the first total reflection surface 15a to the fourth total reflection surface 15d are all 55 °, for example. It has become.
  • a part of the terahertz wave T incident on the partial incident surface 13 includes a first total reflection surface 15a, a second total reflection surface 15b, a third total reflection surface 15c, Then, the light is totally reflected in the order of the fourth total reflection surface 15 d and guided to the emission surface 14.
  • the partial emission surface 14 is a surface for emitting a part of the terahertz wave T totally reflected by the total reflection surfaces 15a to 15d, and is located on the other end side of the divided prism member 12. From the partial emission surface 14, a part of the incidence axis of the terahertz wave T incident on the partial incidence surface 13 and a part of the emission axis of the terahertz wave T emitted from the partial emission surface 14 are substantially matched. In addition, a part of the terahertz wave T is emitted substantially vertically.
  • the abutting surface 16 is a surface that abuts on the divided prism members adjacent in the laminating direction when the prism member 2 is configured by stacking the divided prism members 12.
  • the contact surface 16 includes the first contact surface 16a, the second contact surface 16b, the third contact surface 16c, the fourth contact surface 16d, and the fifth contact surface 16e.
  • the sixth contact surface 16f is positioned on the bottom surface of the split prism member 12 between the partial incident surface 13 and the first total reflection surface 15a
  • the second contact surface 16b is the first contact surface 16b. It is located on the upper surface of the split prism member 12 between the partially incident surface 13 and the second total reflection surface 15b so as to face the contact surface 16a.
  • the third contact surface 16c is located on the bottom surface of the split prism member 12 between the first total reflection surface 15a and the fourth total reflection surface 15d, and the fourth contact surface 16d is the third contact surface 16d. It is located on the upper surface of the split prism member 12 between the second total reflection surface 15b and the third total reflection surface 15c so as to face the contact surface 16c.
  • the fifth contact surface 16e is located on the bottom surface of the split prism member 12 between the fourth total reflection surface 15d and the partial emission surface 14, and the sixth contact surface 16f is 5 is positioned on the upper surface of the split prism member 12 between the third total reflection surface 15c and the partial emission surface 14 so as to face the contact surface 16e.
  • These first contact surface 16a to sixth contact surface 16f are all flatly provided substantially parallel to the incident axis and the output axis of the terahertz wave T.
  • the amount of change ⁇ of the phase of the terahertz wave T due to total reflection at the total reflection surface 15 is expressed by the following equation (1).
  • n represents the ratio (N out / N) of the refractive index N of the split prism member 12 and the refractive index N out of the medium outside the split prism member 12, and ⁇ represents the light of the terahertz wave. The inclination angle between the axis and the normal direction of the total reflection surface is shown.
  • the amount of phase change ⁇ of the terahertz wave T due to total reflection does not depend on the wavelength of the terahertz wave T but depends on the inclination angle ⁇ of the total reflection surface 15. Therefore, by appropriately setting the inclination angle ⁇ of each total reflection surface 15a, 15b, 15c, 15d, the amount of change in the phase of the terahertz wave T due to total reflection at each total reflection surface 15a, 15b, 15c, 15d The sum can be a desired value. Therefore, according to the split prism member 12, even if the terahertz wave T has a wide wavelength region, a desired phase change amount can be realized over the entire wavelength region. Further, since the split prism member 12 uses only total reflection without using reflection by metal or the like, loss of the terahertz wave T can be suppressed.
  • FIG. 3 is a side view of the wave plate 1 shown in FIG.
  • the prism member 2 is configured by stacking and arranging six divided prism members 12a to 12f so that the contact surfaces 16 of the adjacent divided prism members 12 are in contact with each other.
  • the incident surface 3 of the prism member 2 is configured by a part of the incident surfaces 13 a to 13 f of each divided prism member 12 being continuous, and the exit surface 4 is one of the divided prism members 12.
  • the partial emission surfaces 14a to 14f are configured to be continuous.
  • the total reflection surface 15 is composed of a total of 24 total reflection surfaces 15a to 15d in the divided prism members 12a to 12f.
  • first holding surface 7a, the third holding surface 7c, and the sixth holding surface 7f of the prism member 2 are respectively the first contact surface 16a and the first holding surface 16a of the divided prism member 12f disposed at the lowermost part. 3 abutment surfaces 16c and a sixth abutment surface 16f.
  • second holding surface 7b, the fourth holding surface 7d, and the fifth holding surface 7e of the prism member 2 are respectively the second contact surface 16b of the split prism member 12a disposed on the top, the second holding surface 7e. 4 abutment surfaces 16 d and a fifth abutment surface 16 e.
  • a part T1 to T6 of the terahertz wave T incident on the incident surface 3 is incident on a partial incident surface 13 of each of the divided prism members 12a to 12f, and each divided prism member 12a.
  • the first total reflection surface 15a to 12f and the fourth total reflection surface 15d are totally reflected in this order, and then gather at the partial emission surfaces 14 of the divided prism members 12a to 12f and exit from the emission surface 4.
  • FIG. 4 is a partially enlarged view of FIG.
  • a gap G is formed between the second total reflection surface 15 b of one divided prism member 12 and the first total reflection surface 15 a of the adjacent divided prism member 12.
  • the interval between the gaps G (the interval between the total reflection surface 15a and the total reflection surface 15b) is, for example, equal to or greater than the penetration depth d p of the evanescent wave on the total reflection surfaces 15a and 15b of the terahertz wave.
  • the width of the gap portion G, immersion is preferably at least twice the saw out depth d p, immersion more preferably 3 times or more the look out depth d p, oozing depth d p More preferably, it is 6 times or more.
  • the leaching depth d p is as shown in the equation (2).
  • n represents the ratio between the refractive index N G of the medium constituting the refractive index N and a gap portion G of the splitting prism member 12 (N G / N), theta optical axis of the terahertz wave And an inclination angle between the normal direction of the total reflection surface 15 and the total reflection surface 15.
  • a similar gap G is also formed between the fourth total reflection surface 15 d of one divided prism member 12 and the third total reflection surface 15 c of the adjacent divided prism member 12.
  • the third contact surface 16 c of the split prism member 12 is above the second contact surface 16 b and the fifth contact surface 16 e (fourth). On the contact surface 16d side).
  • the prism member 2 is configured by laminating and arranging the divided prism members 12a to 12f. Further, the partial incident surfaces 13a to 13f of the divided prism members 12a to 12f continuously constitute the incident surface 3 of the prism member 2, and the partial emission surfaces 14a to 14f of the divided prism members 12a to 12f are formed. The emission surface 4 of the prism member 2 is continuously formed. Therefore, it is possible to increase the incident surface according to the beam diameter of the terahertz wave while suppressing the size of each waveguide region in the traveling direction of the terahertz wave T. Therefore, the wave plate can be downsized even for a large beam diameter.
  • the half-wave plate 21 when the half-wave plate is manufactured, for example, as shown in FIG. 5A, a prism having an incident surface 23 having the same size as the incident surface 3 and having only a single waveguide region. Let us consider a case where the half-wave plate 21 is to be configured with members.
  • the wave plate 21 of the comparative example shown in FIG. 5A includes an incident surface 23, an exit surface 24, a first total reflection surface 25a, a second total reflection surface 25b, and a third total reflection surface 25c. And a prism member 22 having a fourth total reflection surface 25d.
  • the length L ′ of the prism member 22 in the traveling direction of the terahertz wave T is, for example, 122 mm.
  • the length L of the split prism member 12 in the traveling direction of the terahertz wave T is, for example, 29 mm.
  • the prism member 2 in the traveling direction of the terahertz wave T The dimension is maintained as the dimension of the split prism member 12. Therefore, the wave plate 1 can be downsized even for a large beam diameter.
  • each of the divided prism members 12a to 12f can realize a desired amount of phase change over the entire wavelength region even when the terahertz wave T has a wide wavelength region. Therefore, in the wavelength plate 1 as well, a desired amount of phase change can be realized over the entire wavelength region even in the case of the terahertz wave T having a wide wavelength region.
  • a gap G having a gap larger than the penetration depth of the evanescent wave on the total reflection surface 15 of the terahertz wave T is disposed between the total reflection surfaces 15 of the adjacent split prism members 12. .
  • the amount of phase change of the terahertz wave T can be set to a desired value without being affected by interference between the evanescent waves.
  • the third contact surface 16 c of the split prism member 12 is on the upper side (the fourth contact surface 16 d side) than the second contact surface 16 b and the fifth contact surface 16 e. positioned.
  • the split prism members 12a to 12f are configured such that a part of the incident axis and the emission axis of the terahertz wave T substantially coincide with each other. Therefore, as shown in FIG. 3, when the divided prism members 12a to 12f are stacked, the incident axis and the emission axis of the terahertz wave T in the prism member 2 can be made to substantially coincide.
  • the wave plate 1 held by the holder 6a can be mounted on the rotating holder 6b as shown in FIG.
  • the incident axis and the emission axis of the terahertz wave T in the prism member 2 substantially coincide with each other. Therefore, by rotating the rotary holder 6 b around the incident axis and the emission axis, the incident axis of the terahertz wave T is obtained.
  • the optical system can be easily adjusted without causing a deviation in the output axis.
  • the wave plate 1 includes a prism member 2 having a holding surface 7 which is a flat surface parallel to the incident axis and the outgoing axis of the terahertz wave T. For this reason, as shown in FIG. 6, the wave plate 1 can be easily held by the holder 6 a by the flat holding surface 7.
  • FIG. 8 is a perspective view showing a wave plate according to a modification.
  • FIG. 9 is a side view thereof.
  • the wave plate 31 according to the modified example is different from the first embodiment in that it is configured by a prism member 32 that is integrally formed without using the split prism member 12. Yes.
  • the waveguide member 42 (42 a to 42 f) having a partial incident surface 43, a partial output surface 44, and a total reflection surface 45 (45 a to 45 d) similar to the divided prism member 12 is the prism member 32.
  • the partial incidence surfaces 43 are continuously arranged to form the incident surface 3 of the prism member 32 by the lamination of the waveguide regions 42, and the partial emission surfaces 44 are continuously emitted from the prism member 32.
  • the surface 4 is constituted.
  • Such a wave plate 31 also has the same effects as the above embodiment.
  • the prism member 32 may be formed by cutting a bulk material, or may be formed by laminating and fusing the divided prism member 12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

 この波長板1は、テラヘルツ波Tを入射させる入射面3と、入射面3から入射したテラヘルツ波Tを出射させる出射面4とを有するプリズム部材2を備えている。プリズム部材2は、テラヘルツ波Tの一部を入射させる一部入射面13と、一部入射面13から入射したテラヘルツ波Tを全反射させる複数の全反射面15と、全反射面15で全反射したテラヘルツ波Tを出射させる一部出射面14とを有する複数の導波領域で構成されている。波長板1は、複数の導波領域を積層配置することにより、各一部入射面13が連続してプリズム部材2の入射面3を構成し、各一部出射面14が連続してプリズム部材2の出射面4を構成している。

Description

波長板及び分割プリズム部材
 本発明は、波長板及び分割プリズム部材に関する。
 偏光を制御する素子として波長板が知られている。光軸を中心に波長板を回転させることにより、例えば直線偏光を有する入射光を任意の方向の直線偏光を有する光に変化させることができる。従来、波長板としては、屈折率異方性を有する媒質によって構成されているものが一般的に用いられてきた。媒質に屈折率異方性が存在すると、偏光方向によって光の進む速度が変化するため、入射光の位相に対して出射光の位相が変化する。このときの位相の変化量は、光の波長に反比例する。
 一方、波長板として、全反射に伴う位相変化を利用したいわゆるフレネルロム型の波長板がある(例えば非特許文献1参照)。フレネルロム型の波長板では、プリズムの一面から光を入射させ、プリズム内において光を全反射させることで光の位相を変化させた後に、光をプリズム外へ出射させる。
光学の原理I(Max Born、Emil Wolf著)
 しかしながら、媒質の屈折率異方性を利用する波長板では、位相の変化量が光の波長に反比例するため、所望の位相変化を実現できる波長領域が限られているという問題があった。したがって、例えば広い波長領域を有するテラヘルツ波に波長板を用いようとすると、波長ごとに特性の異なる波長板を準備しなければならない場合があった。
 一方、従来のフレネルロム型の波長板では、大きなビーム径を有する光に適用する場合にプリズムの入射面を大きくすると、それに伴って光の進行方向におけるプリズムの寸法が大きくなってしまうという問題があった。そのため、波長板の取り扱いが煩雑となってしまう場合があった。
 本発明の一側面は、上記課題の解決のためになされたものであり、広い波長領域にわたって適用可能であり、かつ大きなビーム径に対しても小型化が図られる波長板及び分割プリズム部材を提供することを目的とする。
 本発明の一側面に係る波長板は、テラヘルツ波を入射させる入射面と、入射面から入射したテラヘルツ波を出射させる出射面とを有するプリズム部材を備え、プリズム部材は、テラヘルツ波の一部を入射させる一部入射面と、一部入射面から入射したテラヘルツ波を全反射させる複数の全反射面と、全反射面で全反射したテラヘルツ波を出射させる一部出射面とを有する複数の導波領域で構成され、複数の導波領域を積層配置することにより、各一部入射面が連続してプリズム部材の入射面を構成し、各一部出射面が連続してプリズム部材の出射面を構成することを特徴とする。
 この波長板では、全反射を利用してテラヘルツ波の位相を変化させている。このため、位相の変化量がテラヘルツ波の波長に依存しなくなり、広い波長領域を有するテラヘルツ波に対して位相の変化量を所望の値とすることができる。また、プリズム部材は、テラヘルツ波の一部を入射させる一部入射面と、一部入射面から入射したテラヘルツ波を全反射させる複数の全反射面と、全反射面で全反射したテラヘルツ波を出射させる一部出射面とを有する複数の導波領域を有している。この導波領域では、テラヘルツ波の進行方向における寸法を抑えることが可能となる。この波長板では、テラヘルツ波のビーム径に応じて導波領域を積層配置してプリズム部材を構成するので、テラヘルツ波の進行方向におけるプリズム部材の寸法を抑えたまま、入射面及び出射面を任意の大きさに設定できる。したがって、大きなビーム径に対しても波長板の小型化が図られる。
 隣接する各導波領域における全反射面間には、テラヘルツ波のエバネッセント波の浸み出し深さよりも大きな間隔の隙間部が配置されていてもよい。この場合、各導波領域を導波するテラヘルツ波同士が互いに干渉するのを防止でき、所望の位相変化を確実に得ることができる。
 各導波領域において、一部入射面に入射するテラヘルツ波の入射軸と、一部出射面から出射するテラヘルツ波の出射軸とが略一致するように、テラヘルツ波の光軸に対する各全反射面の傾斜角が設定されていてもよい。この場合、テラヘルツ波の偏光制御のために波長板を回転させた際にテラヘルツ波の進行方向が変化しないので、光学系の調整が容易となる。
 各導波領域において、テラヘルツ波の光軸に対する各全反射面の傾斜角は、いずれも等しくなっていてもよい。この場合、波長板の設計・製造が容易となり、高い精度で所望の位相の変化量が得られる。
 各導波領域において、複数の全反射面は、第1の全反射面、第2の全反射面、第3の全反射面及び第4の全反射面の4面で構成されていてもよい。この場合、全反射面の傾斜角の最適化が可能となる。
 プリズム部材には、波長板を保持部材に保持させる保持面がテラヘルツ波の入射軸及び出射軸と略平行に設けられていてもよい。この場合、保持面を用いて波長板を保持部材に容易に保持させることが可能となる。
 波長板は、導波領域を有する分割プリズム部材を複数備え、プリズム部材は、複数の分割プリズム部材を積層配置してなっていてもよい。この場合、各導波領域を分割プリズム部材として容易に設計・製造できるため、高い精度で所望の位相の変化量が得られる。
 各分割プリズム部材には、積層方向に隣接する分割プリズム部材に当接する当接面がテラヘルツ波の入射軸及び出射軸と略平行に設けられていてもよい。この場合、隣接する分割プリズム部材の当接面同士を当接させることで、好適に分割プリズム部材を積層配置することが可能となる。
 また、本発明の一側面に係る分割プリズム部材は、テラヘルツ波を入射させる入射面と、入射面から入射したテラヘルツ波を出射させる出射面とを有するプリズム部材を構成する分割プリズム部材であって、テラヘルツ波の一部を入射させる一部入射面と、一部入射面から入射したテラヘルツ波を全反射させる複数の全反射面と、全反射面で全反射したテラヘルツ波を出射させる一部出射面とを有する導波領域を備えることを特徴とする。
 この分割プリズム部材は、テラヘルツ波の一部を入射させる一部入射面と、一部入射面から入射したテラヘルツ波を全反射させる複数の全反射面と、全反射面で全反射したテラヘルツ波を出射させる一部出射面とを有する導波領域を備えている。この分割プリズム部材では、テラヘルツ波の進行方向における寸法を抑えることができる。この分割プリズム部材をテラヘルツ波のビーム径に応じて積層配置することで、テラヘルツ波の進行方向における寸法を抑えたまま、波長板の入射面及び出射面を任意の大きさに設定できる。したがって、大きなビーム径に対しても波長板の小型化が図られる。
 本発明の一側面によれば、広い波長領域にわたって適用可能であり、かつ大きなビーム径に対しても小型化が図られる。
本発明に係る波長板の一実施形態を示す斜視図である。 (a)は図1に示した波長板を構成する分割プリズム部材を示す斜視図であり、(b)は(a)に示した分割プリズム部材の側面図である。 図1に示した分割プリズム部材の側面図である。 図1に示した分割プリズム部材の部分拡大図である。 実施例に係る波長板と比較例に係る波長板とを対比して示す側面図である。 図1に示した波長板をホルダに適用した例を示す斜視図である。 図6に示した波長板及びホルダを回転ホルダに適用した例を示す斜視図である。 変形例に係る波長板を示す斜視図である。 図8に示した波長板の側面図である。
 以下、図面を参照しながら、本発明に係る波長板の好適な実施形態について詳細に説明する。
 図1は、本発明に係る波長板の一実施形態を示す斜視図である。同図に示す波長板1は、テラヘルツ波を導波するプリズム部材2を備え、入射したテラヘルツ波の偏光状態を一定量変化させる素子として構成されている。テラヘルツ波としては、例えば30mmのビーム径を有するレーザービームが想定される。なお、本発明における「テラヘルツ波」とは、0.1THz~100THzの振動数を有する電磁波を意味する。
 プリズム部材2は、テラヘルツ波を入射させる入射面3と、入射面3から入射したテラヘルツ波を出射させる出射面4と、保持面7とを有している。入射面3は、テラヘルツ波Tをプリズム部材2内に入射させる面であり、プリズム部材2の一端側に位置している。入射面3には、テラヘルツ波Tが略垂直に入射するようになっている。出射面4は、テラヘルツ波Tを出射させる面であり、プリズム部材2の他端側に位置している。出射面4からは、入射面3に入射するテラヘルツ波Tの入射軸と、出射面4から出射するテラヘルツ波Tの出射軸とが略一致するように、テラヘルツ波Tが略垂直に出射するようになっている。
 保持面7は、波長板1をホルダ等の保持部材に保持させるための面である。本実施形態では、保持面7は、第1の保持面7a、第2の保持面7b、第3の保持面7c、第4の保持面7d、第5の保持面7e、及び第6の保持面7fの計6面で構成されている。
 プリズム部材2は、分割プリズム部材12(12a~12f)を積層配置することで構成されている。図2(a)は、プリズム部材2を構成する分割プリズム部材12を示す斜視図である。また、図2(b)は図2(a)の側面図である。図2(b)には、分割プリズム部材12を通るテラヘルツ波Tの光軸を便宜的に鎖線で図示している。図2(a)及び図2(b)に示す分割プリズム部材12は、例えば1.5の屈折率を有するシクロオレフィンポリマーによって断面矩形に形成され、プリズム部材2を通るテラヘルツ波Tの一部を導波する導波領域を有している。この導波領域は、例えば一部入射面13と、全反射面15と、一部出射面14と、当接面16とによって構成されている。
 一部入射面13は、テラヘルツ波Tを分割プリズム部材12内に入射させる面であり、分割プリズム部材12の一端側に位置している。一部入射面13には、テラヘルツ波Tの一部が略垂直に入射するようになっている。
 全反射面15は、一部入射面13に入射したテラヘルツ波Tの一部を全反射させることにより、テラヘルツ波Tの位相を変化させる面である。本実施形態では、全反射面15は、第1の全反射面15a、第2の全反射面15b、第3の全反射面15c、及び第4の全反射面15dの計4面で構成されている。第1の全反射面15aは、一部入射面13側で分割プリズム部材12の底面に位置しており、第2の全反射面15bは、第1の全反射面15aと対向するように一部入射面13側で分割プリズム部材12の上面に位置している。第3の全反射面15cは、一部出射面14側で分割プリズム部材12の上面に位置しており、第4の全反射面15dは、第3の全反射面15cと対向するように一部出射面14側で分割プリズム部材12の底面に位置している。
 本実施形態では、テラヘルツ波Tの一部の光軸と第1の全反射面15a~第4の全反射面15dの法線方向との間の傾斜角θ1~θ4は、例えばいずれも55°となっている。一部入射面13に入射したテラヘルツ波Tの一部は、図2(b)に示すように、第1の全反射面15a、第2の全反射面15b、第3の全反射面15c、及び第4の全反射面15dの順に全反射し、一部出射面14に導波される。
 一部出射面14は、全反射面15a~15dで全反射したテラヘルツ波Tの一部を出射させる面であり、分割プリズム部材12の他端側に位置している。一部出射面14からは、一部入射面13に入射するテラヘルツ波Tの一部の入射軸と、一部出射面14から出射するテラヘルツ波Tの一部の出射軸とが略一致するように、テラヘルツ波Tの一部が略垂直に出射するようになっている。
 当接面16は、分割プリズム部材12を積層配置してプリズム部材2を構成する際に、積層方向に隣接する分割プリズム部材に当接する面である。本実施形態では、当接面16は、第1の当接面16a、第2の当接面16b、第3の当接面16c、第4の当接面16d、第5の当接面16e、及び第6の当接面16fの計6面で構成されている。第1の当接面16aは、一部入射面13と第1の全反射面15aとの間で分割プリズム部材12の底面に位置しており、第2の当接面16bは、第1の当接面16aと対向するように、一部入射面13と第2の全反射面15bとの間で分割プリズム部材12の上面に位置している。
 第3の当接面16cは、第1の全反射面15aと第4の全反射面15dの間で分割プリズム部材12の底面に位置しており、第4の当接面16dは、第3の当接面16cと対向するように、第2の全反射面15bと第3の全反射面15cの間で分割プリズム部材12の上面に位置している。また、第5の当接面16eは、第4の全反射面15dと一部出射面14との間で分割プリズム部材12の底面に位置しており、第6の当接面16fは、第5の当接面16eと対向するように、第3の全反射面15cと一部出射面14との間で分割プリズム部材12の上面に位置している。これらの第1の当接面16a~第6の当接面16fは、いずれもテラヘルツ波Tの入射軸及び出射軸と略平行に平坦に設けられている。
 上述した分割プリズム部材12内において、全反射面15での全反射によるテラヘルツ波Tの位相の変化量δは、式(1)のとおりとなる。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)中、nは分割プリズム部材12の屈折率Nと分割プリズム部材12の外側の媒質の屈折率Noutとの比(Nout/N)を示し、θはテラヘルツ波の光軸と全反射面の法線方向との間の傾斜角を示す。
 式(1)から明らかなように、全反射によるテラヘルツ波Tの位相の変化量δは、テラヘルツ波Tの波長に依存しておらず、全反射面15の傾斜角θに依存している。このため、各全反射面15a,15b,15c,15dの傾斜角θを適宜設定することによって、各全反射面15a,15b,15c,15dでの全反射によるテラヘルツ波Tの位相の変化量の合計を所望の値とすることができる。したがって、分割プリズム部材12によれば、波長領域の広いテラヘルツ波Tであっても、全波長領域にわたって所望の位相の変化量を実現できる。また、分割プリズム部材12では、金属等による反射を用いずに全反射のみを利用しているため、テラヘルツ波Tの損失を抑制できる。
 分割プリズム部材12では、傾斜角θが55°となっているため、式(1)から、位相の変化量δは45°と求まる。したがって、各全反射面15a,15b,15c,15dでの全反射によるテラヘルツ波Tの位相の変化量の合計は、45°×4=180°すなわち1/2波長となる。
 図3は、図1に示した波長板1の側面図である。本実施形態では、プリズム部材2は、6つの分割プリズム部材12a~12fを隣接する分割プリズム部材12の当接面16同士が当接するように積層配置することで構成されている。
 分割プリズム部材12の積層により、プリズム部材2の入射面3は、各分割プリズム部材12の一部入射面13a~13fが連続することで構成され、出射面4は、各分割プリズム部材12の一部出射面14a~14fが連続することで構成される。また、全反射面15は、各分割プリズム部材12a~12fにおける全反射面15a~15dの計24面で構成される。
 さらに、プリズム部材2の第1の保持面7a、第3の保持面7c、及び第6の保持面7fは、それぞれ最下部に配置された分割プリズム部材12fの第1の当接面16a、第3の当接面16c、第6の当接面16fによって構成される。また、プリズム部材2の第2の保持面7b、第4の保持面7d、及び第5の保持面7eは、それぞれ最上部に配置された分割プリズム部材12aの第2の当接面16b、第4の当接面16d、及び第5の当接面16eによって構成される。
 このようなプリズム部材2の構成により、入射面3に入射したテラヘルツ波Tの一部T1~T6は、各分割プリズム部材12a~12fの一部入射面13にそれぞれ入射し、各分割プリズム部材12a~12fの第1の全反射面15a~第4の全反射面15dの順に全反射した後、各分割プリズム部材12a~12fの一部出射面14で集合して出射面4から出射する。
 図4は、図3の部分拡大図である。本実施形態においては、一の分割プリズム部材12における第2の全反射面15bと、隣接する分割プリズム部材12における第1の全反射面15aとの間に隙間部Gが形成されている。隙間部Gの間隔(全反射面15aと全反射面15bとの間隔)は、例えばテラヘルツ波の全反射面15a,15bにおけるエバネッセント波の浸み出し深さd以上となっている。隙間部Gの間隔は、浸み出し深さdの2倍以上であることが好ましく、浸み出し深さdの3倍以上であることがより好ましく、浸み出し深さdの6倍以上であることが更に好ましい。なお、浸み出し深さdは、式(2)のとおりとなる。
Figure JPOXMLDOC01-appb-M000002
 ただし、式(2)中、nは分割プリズム部材12の屈折率Nと隙間部Gを構成する媒質の屈折率Nとの比(N/N)を示し、θはテラヘルツ波の光軸と全反射面15の法線方向との間の傾斜角を示す。同様の隙間部Gは、一の分割プリズム部材12における第4の全反射面15dと、隣接する分割プリズム部材12における第3の全反射面15cとの間にも形成されている。
 また、本実施形態においては、図4に示すように、分割プリズム部材12の第3の当接面16cが、第2の当接面16b及び第5の当接面16eよりも上側(第4の当接面16d側)に位置している。
 以下、上記波長板1の作用効果を説明する。波長板1では、プリズム部材2が、分割プリズム部材12a~12fを積層配置して構成されている。また、分割プリズム部材12a~12fの一部入射面13a~13fが、連続してプリズム部材2の入射面3を構成しており、かつ分割プリズム部材12a~12fの一部出射面14a~14fが、連続してプリズム部材2の出射面4を構成している。このため、テラヘルツ波Tの進行方向における各導波領域の寸法を抑えたまま、テラヘルツ波のビーム径に応じて入射面を大きくすることが可能となる。したがって、大きなビーム径に対しても波長板の小型化が図られる。
 ここで、1/2波長板を作製するに際し、例えば図5(a)に示すように、入射面3と同じ大きさの入射面23を有し、かつ単一の導波領域のみを備えるプリズム部材で1/2波長板21を構成しようとした場合を考える。
 図5(a)に示す比較例の波長板21は、入射面23と、出射面24と、第1の全反射面25aと、第2の全反射面25bと、第3の全反射面25cと、第4の全反射面25dとを有するプリズム部材22を備えている。この波長板21では、入射面23と出射面24とを直径30mmのテラヘルツ波Tに対応させた場合、テラヘルツ波Tの進行方向におけるプリズム部材22の長さL’は、例えば122mmとなる。
 一方、図5(b)に示す実施例の波長板1では、テラヘルツ波Tの進行方向における分割プリズム部材12の長さLは、例えば29mmとなる。この波長板1では、分割プリズム部材12を積層し、入射面3と出射面4とを直径30mmのテラヘルツ波Tに対応させた場合であっても、テラヘルツ波Tの進行方向におけるプリズム部材2の寸法が分割プリズム部材12の寸法のまま維持される。したがって、大きなビーム径に対しても波長板1の小型化が図られる。
 また、各分割プリズム部材12a~12fは、波長領域の広いテラヘルツ波Tであっても、全波長領域にわたって所望の位相の変化量を実現できる。したがって、波長板1においても同様に、波長領域の広いテラヘルツ波Tであっても、全波長領域にわたって所望の位相の変化量を実現できる。
 また、波長板1では、隣接する分割プリズム部材12の全反射面15間に、テラヘルツ波Tの全反射面15におけるエバネッセント波の浸み出し深さよりも大きな間隔の隙間部Gが配置されている。このため、隣接する分割プリズム部材12を通るテラヘルツ波Tの全反射面15におけるエバネッセント波が互いに干渉することを防止できる。したがって、エバネッセント波同士の干渉の影響を受けることなく、テラヘルツ波Tの位相変化量を所望の値とすることが可能となる。
 また、波長板1では、分割プリズム部材12の第3の当接面16cが、第2の当接面16b及び第5の当接面16eよりも上側(第4の当接面16d側)に位置している。この様な構成により、分割プリズム部材12,12の境界面付近に入射するテラヘルツ波Tを損失なく全反射面15に導光することが可能となる。したがって、波長板1による光の損失の発生を低減できる。
 また、分割プリズム部材12a~12fは、テラヘルツ波Tの一部の入射軸と出射軸とが略一致するように構成されている。このため、図3に示すように、分割プリズム部材12a~12fを積層した場合に、プリズム部材2におけるテラヘルツ波Tの入射軸と出射軸とを略一致させることができる。
 波長板1を光学系に用いる場合、例えば波長板1をホルダ6aに保持させたものを(図6参照)、図7に示すように回転ホルダ6bに装着することができる。波長板1では、プリズム部材2におけるテラヘルツ波Tの入射軸と出射軸とが略一致しているので、入射軸及び出射軸を中心に回転ホルダ6bを回転させることで、テラヘルツ波Tの入射軸及び出射軸にずれが生じることなく、容易に光学系を調整できる。
 また、波長板1は、テラヘルツ波Tの入射軸及び出射軸と平行な平坦面である保持面7を有するプリズム部材2を備えている。このため、図6に示すように、平坦な保持面7によって波長板1をホルダ6aに保持させることが容易となる。
 図8は、変形例に係る波長板を示す斜視図である。また、図9は、その側面図である。図8及び図9に示すように、変形例に係る波長板31は、分割プリズム部材12を用いず、一体的に形成されたプリズム部材32によって構成されている点で第1実施形態と異なっている。
 この波長板31では、分割プリズム部材12と同様の一部入射面43、一部出射面44、及び全反射面45(45a~45d)を有する導波領域42(42a~42f)がプリズム部材32内に積層配置され、各導波領域42の積層によって各一部入射面43が連続してプリズム部材32の入射面3を構成し、各一部出射面44が連続してプリズム部材32の出射面4を構成している。このような波長板31においても、上記実施形態と同様の作用効果を奏する。なお、プリズム部材32は、バルク型の材料の削り出しによって形成してもよく、分割プリズム部材12を積層及び融着することによって形成してもよい。
 1,31…波長板、2,32…プリズム部材、3…入射面、4…出射面、7…保持面、12…分割プリズム部材、13…一部入射面、14…一部出射面、15…全反射面、16…当接面、G…隙間部、T…テラヘルツ波、θ…傾斜角。

Claims (9)

  1.  テラヘルツ波を入射させる入射面と、前記入射面から入射した前記テラヘルツ波を出射させる出射面とを有するプリズム部材を備え、
     前記プリズム部材は、前記テラヘルツ波の一部を入射させる一部入射面と、前記一部入射面から入射した前記テラヘルツ波を全反射させる複数の全反射面と、前記全反射面で全反射した前記テラヘルツ波を出射させる一部出射面とを有する複数の導波領域で構成され、
     前記複数の導波領域を積層配置することにより、前記各一部入射面が連続して前記プリズム部材の入射面を構成し、前記各一部出射面が連続して前記プリズム部材の出射面を構成する波長板。
  2.  隣接する前記各導波領域における前記全反射面間には、前記テラヘルツ波のエバネッセント波の浸み出し深さよりも大きな間隔の隙間部が配置されている請求項1に記載の波長板。
  3.  前記各導波領域において、前記一部入射面に入射する前記テラヘルツ波の入射軸と、前記一部出射面から出射する前記テラヘルツ波の出射軸とが略一致するように、前記テラヘルツ波の光軸に対する前記各全反射面の傾斜角が設定されている請求項1又は2に記載の波長板。
  4.  前記各導波領域において、前記テラヘルツ波の光軸に対する前記各全反射面の傾斜角は、いずれも等しくなっている請求項1~3のいずれか一項に記載の波長板。
  5.  前記各導波領域において、前記複数の全反射面は、第1の全反射面、第2の全反射面、第3の全反射面及び第4の全反射面の4面で構成されている請求項1~4のいずれか一項に記載の波長板。
  6.  前記プリズム部材には、前記波長板を保持部材に保持させる保持面が前記テラヘルツ波の入射軸及び出射軸と略平行に設けられている請求項1~5のいずれか一項に記載の波長板。
  7.  前記導波領域を有する分割プリズム部材を複数備え、
     前記プリズム部材は、前記複数の分割プリズム部材を積層配置してなる請求項1~6のいずれか一項に記載の波長板。
  8.  前記各分割プリズム部材には、積層方向に隣接する前記分割プリズム部材に当接する当接面が前記テラヘルツ波の入射軸及び出射軸と略平行に設けられている請求項7に記載の波長板。
  9.  テラヘルツ波を入射させる入射面と、前記入射面から入射した前記テラヘルツ波を出射させる出射面とを有するプリズム部材を構成する分割プリズム部材であって、
     前記テラヘルツ波の一部を入射させる一部入射面と、前記一部入射面から入射した前記テラヘルツ波を全反射させる複数の全反射面と、前記全反射面で全反射した前記テラヘルツ波を出射させる一部出射面とを有する導波領域を備える分割プリズム部材。
PCT/JP2014/063383 2013-07-30 2014-05-20 波長板及び分割プリズム部材 WO2015015871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19185566.7A EP3570082B1 (en) 2013-07-30 2014-05-20 Wave plate and divided prism member
US14/906,924 US10591669B2 (en) 2013-07-30 2014-05-20 Wave plate and divided prism member
EP14831381.0A EP3029495B1 (en) 2013-07-30 2014-05-20 Wave plate and divided prism member
US16/739,214 US10908355B2 (en) 2013-07-30 2020-01-10 Wave plate and divided prism member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158037 2013-07-30
JP2013158037A JP6391921B2 (ja) 2013-07-30 2013-07-30 波長板及び分割プリズム部材

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/906,924 A-371-Of-International US10591669B2 (en) 2013-07-30 2014-05-20 Wave plate and divided prism member
US16/739,214 Division US10908355B2 (en) 2013-07-30 2020-01-10 Wave plate and divided prism member

Publications (1)

Publication Number Publication Date
WO2015015871A1 true WO2015015871A1 (ja) 2015-02-05

Family

ID=52431417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063383 WO2015015871A1 (ja) 2013-07-30 2014-05-20 波長板及び分割プリズム部材

Country Status (4)

Country Link
US (2) US10591669B2 (ja)
EP (2) EP3570082B1 (ja)
JP (1) JP6391921B2 (ja)
WO (1) WO2015015871A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347450A (ja) * 1992-06-12 1993-12-27 Mitsubishi Electric Corp 波長可変レーザー装置
JP2000241767A (ja) * 1999-02-17 2000-09-08 Canon Inc 照明装置及びそれを用いた投射装置
JP2000338328A (ja) * 1999-05-31 2000-12-08 Ushio Inc 偏光ビームスプリッタおよびそれを用いた液晶表示素子の配向膜光配向用偏光光照射装置
JP2002182158A (ja) * 2000-12-12 2002-06-26 Ushio Inc 偏光ビームスプリッタを備えた光配向用偏光光照射装置
JP2002189301A (ja) * 2000-12-22 2002-07-05 Ushio Inc 光配向用偏光光照射装置
JP2009300108A (ja) * 2008-06-10 2009-12-24 Sony Corp テラヘルツ分光装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690490A (en) * 1983-09-27 1987-09-01 Kei Mori Light diverting device
US4975712A (en) * 1989-01-23 1990-12-04 Trw Inc. Two-dimensional scanning antenna
US5818395A (en) * 1997-01-16 1998-10-06 Trw Inc. Ultralight collapsible and deployable waveguide lens antenna system
US6272155B1 (en) * 1997-06-30 2001-08-07 Hoya Corporation Fiber bundle and laser apparatus using the fiber bundle of manufacturing the same
US6356679B1 (en) * 2000-03-30 2002-03-12 K2 Optronics, Inc. Optical routing element for use in fiber optic systems
DE10021725A1 (de) * 2000-05-04 2001-11-15 Osram Opto Semiconductors Gmbh Facettierter Reflektor
US6519382B1 (en) * 2000-09-11 2003-02-11 Optical Switch Corporation Frustrated total internal reflection switch using waveguides and method of operation
US6463192B1 (en) * 2001-02-26 2002-10-08 K2 Optronics, Inc. Non-blocking micro-optic switch matrix for use in fiber optic systems
JP4645173B2 (ja) * 2004-11-26 2011-03-09 株式会社ニコン 分光器、及びこれを備えている顕微分光装置
EP2273254A4 (en) * 2008-04-30 2014-02-26 Hamamatsu Photonics Kk TERRAHERTZIAN WAVE MEASURING DEVICE FOR TOTAL REFLECTION
JP5071294B2 (ja) * 2008-07-29 2012-11-14 株式会社ニコン チューナブルフィルタ、光源装置およびスペクトル分布測定装置
US8542961B2 (en) * 2008-10-31 2013-09-24 Hewlett-Packard Development Company, L.P. Optical beam couplers and splitters
JP5894575B2 (ja) * 2011-03-29 2016-03-30 浜松ホトニクス株式会社 テラヘルツ波分光計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347450A (ja) * 1992-06-12 1993-12-27 Mitsubishi Electric Corp 波長可変レーザー装置
JP2000241767A (ja) * 1999-02-17 2000-09-08 Canon Inc 照明装置及びそれを用いた投射装置
JP2000338328A (ja) * 1999-05-31 2000-12-08 Ushio Inc 偏光ビームスプリッタおよびそれを用いた液晶表示素子の配向膜光配向用偏光光照射装置
JP2002182158A (ja) * 2000-12-12 2002-06-26 Ushio Inc 偏光ビームスプリッタを備えた光配向用偏光光照射装置
JP2002189301A (ja) * 2000-12-22 2002-07-05 Ushio Inc 光配向用偏光光照射装置
JP2009300108A (ja) * 2008-06-10 2009-12-24 Sony Corp テラヘルツ分光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029495A4 *

Also Published As

Publication number Publication date
US10908355B2 (en) 2021-02-02
US10591669B2 (en) 2020-03-17
EP3029495B1 (en) 2021-10-13
EP3570082A1 (en) 2019-11-20
JP2015028559A (ja) 2015-02-12
EP3029495A4 (en) 2017-03-01
EP3029495A1 (en) 2016-06-08
US20160154176A1 (en) 2016-06-02
JP6391921B2 (ja) 2018-09-19
EP3570082B1 (en) 2021-07-14
US20200150339A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP4669744B2 (ja) 光学材料、それを用いた光学素子およびその作製方法
JP3522117B2 (ja) 自己導波光回路
US20040125449A1 (en) Grid polarizer with suppressed reflectivity
JP2013061480A5 (ja)
JP2008233528A (ja) 反射型回折格子および分光装置
Serebryannikov et al. Asymmetric transmission of terahertz waves using polar dielectrics
JP6370505B1 (ja) 光合波器
CN111902765B (zh) 波导显示元件
JP4804767B2 (ja) 超短パルスレーザ伝達装置
US10809430B2 (en) Polarization device for polarizing electromagnetic waves, methods of forming and operating the same
JP6391921B2 (ja) 波長板及び分割プリズム部材
JP2015102796A (ja) 光分岐装置
US20160116754A1 (en) Dielectric Polarizing Beam Splitter
WO2015008648A1 (ja) 波長板
WO2015188058A1 (en) Cascaded beam combiner
JP4766869B2 (ja) グラン‐トムソンプリズム型の偏光子
JP2007047374A (ja) 偏光分離素子
RU2491584C1 (ru) Интерференционный многолучевой светофильтр (варианты)
JP7442082B2 (ja) 光学ミラー
JP5217666B2 (ja) 波長選択フィルタおよび光学機器
JP2016142996A (ja) 光学素子およびテラヘルツ波発生光学デバイス
US9823398B2 (en) Polarizer and optical element having polarizer
JP2014098756A (ja) 光学部品
JP4649595B2 (ja) 波長フィルタ、波長フィルタリング方法及び波長フィルタリング装置
JP6706509B2 (ja) 偏光解消素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014831381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14906924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE