WO2015008419A1 - 運転状態推定装置 - Google Patents

運転状態推定装置 Download PDF

Info

Publication number
WO2015008419A1
WO2015008419A1 PCT/JP2014/002997 JP2014002997W WO2015008419A1 WO 2015008419 A1 WO2015008419 A1 WO 2015008419A1 JP 2014002997 W JP2014002997 W JP 2014002997W WO 2015008419 A1 WO2015008419 A1 WO 2015008419A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
driving
state
data
unit
Prior art date
Application number
PCT/JP2014/002997
Other languages
English (en)
French (fr)
Inventor
近藤 崇之
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14827118.2A priority Critical patent/EP3023964B1/en
Priority to US14/906,004 priority patent/US9925986B2/en
Priority to JP2015527152A priority patent/JP6008050B2/ja
Priority to CN201480051535.XA priority patent/CN105555630B/zh
Publication of WO2015008419A1 publication Critical patent/WO2015008419A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0057Frequency analysis, spectral techniques or transforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • B60W2050/065Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot by reducing the computational load on the digital processor of the control computer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention relates to a driving state estimation device.
  • each divided data range is set to both a positive value and a negative value. It was.
  • the bin of the running state distribution is set to both a positive value and a negative value. Therefore, there is a possibility that the number of bins in the running state distribution increases. For this reason, there is a possibility that the calculation load of the driving state estimation device increases. As a result, it has been difficult to realize the driving state estimation device with a device having a relatively low calculation capability such as a smartphone or an inexpensive on-vehicle controller.
  • the present invention focuses on the above points, and an object of the present invention is to make it possible to reduce the calculation load of the driving state estimation device.
  • distribution data for traveling state distribution is acquired based on traveling state data. Subsequently, the acquired distribution data is converted into an absolute value. Subsequently, based on the distribution data converted into absolute values, the absolute values of the distribution data having different time ranges are classified into bins that are divided into a plurality of data ranges, and a plurality of frequency distributions of the distribution data are set as running state distributions. calculate. Subsequently, the driving state of the driver is estimated based on the plurality of calculated driving state distributions.
  • the absolute value of the distribution data is classified into bins that are each divided into a plurality of data ranges, and the frequency distribution of the distribution data is calculated as the running state distribution. Therefore, the bin of the calculated running state distribution is set only to a positive value. Therefore, the number of running state distribution bins can be reduced. As a result, it is possible to reduce the calculation load for estimating the driving state based on the running state distribution. Thereby, the calculation load of a driving
  • FIG. 1 It is a figure showing the structure of the vehicle carrying a driving
  • FIG. It is a flowchart showing a driving
  • FIG. 1 is a diagram illustrating a configuration of a vehicle on which the driving state estimation device according to the present embodiment is mounted.
  • the vehicle includes an accelerator pedal opening amount sensor 1, a brake pedal operation amount sensor 2, a steering angle sensor 3, a wheel speed sensor 4, a blinker detection sensor 5, and a navigation device 6.
  • the vehicle also includes a G sensor 7, a shift sensor 8, a forward vehicle detection device 9, and a controller 100.
  • the accelerator pedal opening amount sensor 1 detects the opening amount of the accelerator pedal. Then, the accelerator pedal opening amount sensor 1 outputs the detected opening amount to the controller 100.
  • the brake pedal operation amount sensor 2 detects the operation amount of the brake pedal. Then, the brake pedal operation amount sensor 2 outputs the detected operation amount to the controller 100.
  • the steering angle sensor 3 detects the steering angle of a steering wheel (not shown). Then, the steering angle sensor 3 outputs the detected steering angle to the controller 100.
  • the steering angle sensor 3 for example, an angle sensor that detects the rotation angle of the steering column can be employed.
  • the wheel speed sensor 4 detects the rotation speed of the wheel (hereinafter also referred to as “wheel speed”). Subsequently, the wheel speed sensor 4 calculates the vehicle speed based on the detected wheel speed. The wheel speed sensor 4 outputs the detected wheel speed and the calculated vehicle speed to the controller 100.
  • the turn signal detection sensor 5 detects an operation state of a turn signal lever (not shown) (hereinafter also referred to as “turn signal operation”). As the blinker operation, for example, there is an operation. Then, the turn signal detection sensor 5 outputs the detected turn signal operation to the controller 100.
  • the shift sensor 8 detects an operation state (hereinafter also referred to as “shift operation”) of a shift lever (not shown). Examples of the shift operation include the positions of shift levers such as P, D, and R. Then, the shift sensor 8 outputs the detected shift operation to the controller 100.
  • the information presentation device presents an alarm and other information to the driver according to a control signal (described later) output by the controller 100. As a presentation method, there are sound and image.
  • a speaker 10 that provides information to the driver by a buzzer sound or voice
  • a display unit that provides information to the driver by displaying an image or text can be employed.
  • the display unit for example, the display monitor of the navigation device 6 may be used.
  • the navigation device 6 includes a GPS (Global Positioning System) receiver, a map database, and a display monitor. And the navigation apparatus 6 acquires the present position and road information of a vehicle from a GPS receiver and a map database. Subsequently, the navigation device 6 acquires various types of information such as the type of road on which the vehicle travels and the road width based on the acquired current position of the vehicle and road information. Subsequently, the navigation device 6 displays a route search result, a route guidance result, and the like on the display monitor based on the acquired information.
  • the G sensor 7 detects longitudinal acceleration and lateral acceleration generated in the vehicle. Then, the G sensor 7 outputs the detected longitudinal acceleration and lateral acceleration to the controller 100.
  • the forward vehicle detection device 9 detects information (for example, a distance to the obstacle) of other vehicles and other obstacles existing in the forward direction of the vehicle. Then, the forward vehicle detection device 9 outputs the detected information to the controller 100.
  • the forward vehicle detection device 9 for example, a laser distance meter that emits laser light forward of the vehicle in the traveling direction and detects reflected light can be employed.
  • the controller 100 includes CPU (Central Processing Unit), and CPU peripheral components such as ROM (Read Only Memory), RAM (Random Access Memory), and A / D (Analog to Digital) conversion circuit.
  • the controller 100 (CPU, CPU peripheral components) includes a driving support unit 100A that performs driving instability determination processing.
  • the driving support unit 100A determines the operation state of the driving operator that can be operated by the driver based on the detection results output by the accelerator pedal opening amount sensor 1, the brake pedal operation amount sensor 2, and the like.
  • travel state data including at least one of the vehicle states. Examples of the driving operator include a steering wheel, an accelerator pedal, and a brake pedal.
  • As the vehicle state there is inter-vehicle information for the preceding vehicle.
  • information on the steering angle output by the steering angle sensor 3 (hereinafter also referred to as “steering angle information”) is adopted as the traveling state data.
  • the driving support unit 100A based on the acquired traveling state data (steering angle information), distribution data (steering angle) for a plurality of traveling state distributions (first traveling state distribution, second traveling state distribution (described later)). Prediction error ⁇ e (described later) is acquired.
  • the acquisition period of the distribution data (steering angle prediction error ⁇ e) is set to a predetermined first period (for example, 50 milliseconds).
  • the driving support unit 100A calculates a frequency distribution of absolute values of distribution data (steering angle prediction error ⁇ e) having different time ranges based on the acquired distribution data (steering angle prediction error ⁇ e) as a traveling state distribution (first A plurality of travel state distributions and second travel state distributions) are calculated.
  • the calculation period of the travel state distribution (first travel state distribution, second travel state distribution) is set to a second period (for example, 5 seconds) longer than the first period (for example, 50 milliseconds).
  • the driving support unit 100A calculates absolute entropies Hp1 and Hp2 (described later) based on the calculated plurality of travel state distributions (first travel state distribution and second travel state distribution).
  • the driving support unit 100A determines the driving state (driving instability (described later)) of the driver based on the calculated absolute entropies Hp1 and Hp2. Subsequently, the driving support unit 100A determines the driver's driving based on a difference amount (relative entropy RHp (described later)) between the calculated distributions of the plurality of driving state distributions (first driving state distribution, second driving state distribution). Determine the state (instability of operation). Then, the driving support unit 100A outputs a control signal for causing the driver to present an alarm or other information (hereinafter also referred to as “presentation information”) based on the determined driving state (driving instability). To do. Accordingly, the driving support unit 100A presents the presentation information to the driver and alerts the driver about the degree of driving instability (driving instability state).
  • the controller 100 for example, a smartphone, an in-vehicle controller, or a cloud server may be employed.
  • the vehicle transmits the detection results output from the accelerator pedal opening amount sensor 1 and the brake pedal operation amount sensor 2 to the cloud server.
  • the cloud server executes the driving instability determination process based on the detection result transmitted by the vehicle, and presents a control signal for presenting the presentation information to the driver based on the result of the driving instability determination process.
  • a vehicle presents presentation information to a driver with an information presentation device based on a control signal transmitted by a cloud server.
  • FIG. 2 is a block diagram illustrating a system configuration example of the operating state estimation device according to the present embodiment.
  • a visual information presentation device and an auditory information presentation device are illustrated as information presentation devices.
  • the display monitor of the navigation apparatus 6 and the speaker 10 are illustrated as an auditory information presentation apparatus.
  • FIG. 3 is a block diagram showing the configuration of the driving support unit 100A of the present embodiment.
  • the driving support unit 100A includes a driving state data acquisition unit 110, a driving state determination unit 120, a driving state distribution calculation unit 130, a driving instability determination unit 140, and an information presentation unit 150.
  • the traveling state data acquisition unit 110 acquires the detection result output from the steering angle sensor 3. Then, the traveling state data acquisition unit 110 sets the acquired detection result as traveling state data.
  • FIG. 4 is a diagram for explaining a driving situation of the vehicle.
  • the driving state determination unit 120 is configured to detect the driving state of the vehicle (first disturbance driving state (described later), second disturbance driving state) based on the detection results output by the accelerator pedal opening amount sensor 1, the brake pedal operation amount sensor 2, and the like. (Described later), normal operation status (described later)) is determined.
  • the driving state determination unit 120 is configured to detect the driving state of the driving operator that can be operated by the driver based on the detection results output by the accelerator pedal opening amount sensor 1, the brake pedal operation amount sensor 2, and the like. Detect environment and vehicle status.
  • the driving state determination unit 120 determines that the driving state of the vehicle is the first disturbance driving state (disturbance against the estimation of the driving state based on the detected operating state of the driving operator, the traveling environment, and the vehicle state. It is determined whether it is in the driving situation).
  • the first disturbance driving situation includes, for example, skidding, VDC (Vehicle Dynamics Control) operation, LDP (Lane Departure Preservation) operation, and various events (lane change, vehicle right / left turn, vehicle acceleration / deceleration, brake pedal (not shown) ) Operation, gear shifting operation, switch / lever operation, tunnel entrance / exit, swell, road surface joint), etc., may occur during an event such as a set time duration.
  • the VDC operation is detected based on, for example, a VDC operation flag indicating the operation of the VDC.
  • the LDP operation is detected based on, for example, an LDP operation flag indicating the operation of LDP.
  • the driving condition determination unit 120 determines that the driving condition of the vehicle becomes a disturbance with respect to the second disturbance driving condition (estimating the driving condition) based on the detected operating condition of the driving operator, the traveling environment, and the vehicle condition. It is determined whether it is in the driving situation).
  • the second disturbance driving situation for example, there are driving situations that occur in events such as lane change, vehicle left / right turn, speed change operation, tunnel entrance / exit, and swell.
  • Lane change and right / left turn of the vehicle are detected based on the turn signal detection sensor 5, for example.
  • the speed change operation is detected based on, for example, a clutch sensor (not shown) that detects the operation state of the clutch and the shift sensor 8.
  • the tunnel entrance is detected based on, for example, a light sensor (not shown) that detects the operating state of a headlight (not shown).
  • the swell is detected based on, for example, the G sensor 7 (lateral G).
  • the driving situation determination unit 120 is not in a driving situation that causes disturbance with respect to the determination of the degree of driving instability (hereinafter referred to as the driving situation). , Also called “normal driving situation”).
  • the travel state distribution calculation unit 130 is a distribution data (steering) for a travel state distribution (first travel state distribution, second travel state distribution) based on the travel state data (steering angle information) acquired by the travel state data acquisition unit 110.
  • the angle prediction error ⁇ e) is acquired.
  • the acquisition cycle of the steering angle prediction error ⁇ e is set to the first cycle (for example, 50 milliseconds).
  • the traveling state distribution calculating unit 130 calculates the frequency distribution of the absolute values of the distribution data (steering angle prediction error ⁇ e) having different time ranges based on the acquired distribution data (steering angle prediction error ⁇ e) as the traveling state distribution ( A plurality of first traveling state distributions and second traveling state distributions) are calculated.
  • the calculation period of the travel state distribution (first travel state distribution, second travel state distribution) is set to a second period (for example, 5 seconds) longer than the first period (for example, 50 milliseconds).
  • the travel state distribution calculating unit 130 acquires distribution data (steering) in a predetermined relatively long time range (for example, 2160 seconds) based on the acquired distribution data (steering angle prediction error ⁇ e).
  • the frequency distribution of the absolute value of the angle prediction error ⁇ e) is calculated as the first running state distribution.
  • the travel state distribution calculation unit 130 acquires a time range (for example, 90 seconds) shorter than the first travel state distribution (for example, 2160 seconds) based on the acquired distribution data (steering angle prediction error ⁇ e).
  • a frequency distribution of absolute values of the distribution data (steering angle prediction error ⁇ e) is calculated as the second running state distribution.
  • FIG. 5 is a block diagram illustrating a configuration of the traveling state distribution calculation unit 130 of the present embodiment.
  • the travel state distribution calculation unit 130 includes a distribution data calculation unit 130A, an absolute value conversion unit 130B, a temporary data storage unit 130C, a first travel state distribution calculation unit 130D, and a second travel state distribution calculation unit 130E. , A distribution storage unit 130F, and a distribution selection unit 130G.
  • the distribution data calculation unit 130A calculates distribution data (steering angle prediction error ⁇ e) based on the driving state data (steering angle information (steering angle ⁇ )) acquired by the driving state data acquisition unit 110.
  • the steering angle prediction error ⁇ e is calculated every predetermined first period (for example, 50 milliseconds).
  • the absolute value converting unit 130B acquires the distribution data (steering angle prediction error ⁇ e) calculated by the distribution data calculating unit 130A. Then, the absolute value converting unit 130B converts the acquired distribution data (steering angle prediction error ⁇ e) into an absolute value.
  • the temporary data storage unit 130C stores the distribution data (steering angle prediction error ⁇ e) obtained by the absolute value conversion unit 130B.
  • the absolute distribution data (steering angle prediction error ⁇ e) is stored in the temporary data storage unit 130C every first period (for example, 50 milliseconds).
  • the first running state distribution calculation unit 130D calculates the absolute value of the distribution data (steering angle prediction error ⁇ e) based on the absolute value distribution data (steering angle prediction error ⁇ e) stored in the temporary data storage unit 130C.
  • the frequency distribution is calculated as the first running state distribution.
  • the first running state distribution is calculated every second period (> first period (50 milliseconds), for example, 5 seconds).
  • the second running state distribution calculation unit 130E calculates the absolute value of the distribution data (steering angle prediction error ⁇ e) based on the absolute value distribution data (steering angle prediction error ⁇ e) stored in the temporary data storage unit 130C.
  • the frequency distribution is calculated as the second running state distribution.
  • the second running state distribution is calculated every second period (> first period (50 milliseconds), for example, 5 seconds).
  • the distribution accumulation unit 130F acquires the second traveling state distribution calculated by the second traveling state distribution calculating unit 130E. Then, the distribution accumulation unit 130F accumulates the acquired second traveling state distribution.
  • the distribution selection unit 130G determines that the driving situation determination unit 120 is in a driving situation (first disturbance driving situation, second disturbance driving situation) that causes a disturbance with respect to the estimation of the driving state (determination of driving instability). Then, the traveling state distribution (first traveling state distribution, second traveling state distribution) calculated by the first traveling state distribution calculating unit 130D and the second traveling state distribution calculating unit 130E is changed. Specifically, the distribution selection unit 130G determines whether the driving situation of the vehicle corresponds to the first disturbance driving situation or the second disturbance driving situation based on the determination result of the driving situation determination unit 120. When the distribution selection unit 130G determines that the first disturbance driving situation is satisfied, the first traveling state distribution calculating unit 130D calculates the second traveling state distribution calculated by the second traveling state distribution calculating unit 130E.
  • the first travel state distribution is replaced (hereinafter also referred to as “reset processing”).
  • the second driving state distribution calculated by the second driving state distribution calculating unit 130E is used as the first disturbance driving state and the second disturbance driving state.
  • the distribution data (steering angle prediction error ⁇ e) that is determined to be in any of the situations is replaced with the second running state distribution that does not include the absolute value (hereinafter also referred to as “restore processing”).
  • the driving instability determination unit 140 is based on the first traveling state distribution and the second traveling state distribution calculated by the traveling state distribution calculating unit 130 (the second traveling state distribution after replacement in the case of replacement). Estimate the driving state (instability of driving).
  • the information presenting unit 150 presents presentation information to the driver based on the driving state (driving instability) of the driver estimated by the driving instability determining unit 140 (hereinafter also referred to as “information presenting process”). )I do.
  • the information presenting unit 150 outputs to the information presenting apparatus a control signal that causes the driver to present the presenting information, that is, an alarm or other information presented to the driver.
  • FIG. 6 is a flowchart showing the driving instability degree determination process.
  • the driving support unit 100A (the driving state data acquisition unit 110 and the driving state determination unit 120) acquires vehicle information.
  • the vehicle information includes, for example, travel state data (steering angle information) and operation state information of the driving operator.
  • step S102 and 100 A of driving assistance parts (driving condition determination part 120) acquires traffic environment information.
  • the traffic environment information for example, there is information on a travel environment.
  • step S103 the driving support unit 100A (driving condition determination unit 120) determines the driving condition (first state) of the vehicle based on the vehicle information acquired in step S101 and the traffic environment information acquired in step S102.
  • a disturbance driving situation a second disturbance driving situation, and a normal driving situation.
  • the driving support unit 100A determines the operation state of the driving operator, the driving environment, or the vehicle information acquired in step S101 and the traffic environment information acquired in step S102. Detect vehicle status.
  • the driving support unit 100A determines that the driving condition of the vehicle is the first disturbance driving condition and the second disturbance driving based on the detected operation state, driving environment, or vehicle state of the driving operator. It is determined whether the current state or the normal operation state.
  • the traveling state distribution calculation unit 130 calculates the steering angle prediction error ⁇ e based on the traveling state data (steering angle information) acquired in step S101.
  • FIG. 7 shows special symbols used for calculating absolute entropy Hp1, Hp2, and relative entropy RHp, and names of the special symbols.
  • the steering angle smooth value ⁇ n-tilde is the steering angle ⁇ in which the influence of quantization noise is reduced.
  • the estimated value ⁇ n-hat of the steering angle is a value obtained by estimating the steering angle ⁇ at the sampling time on the assumption that the steering wheel is operated smoothly.
  • the steering angle estimated value ⁇ n-hat is obtained by performing a second-order Taylor expansion on the steering angle smooth value ⁇ n-tilde, as shown in (Equation 1) below.
  • tn is the sampling time of the steering angle ⁇ n.
  • the steering angle smooth value ⁇ n-tilde is calculated from the following (Equation 2) as an average value of three adjacent steering angles ⁇ n in order to reduce the influence of quantization noise.
  • FIG. 8 is a diagram for explaining the steering angle prediction error ⁇ e.
  • the steering angle prediction error ⁇ e at the sampling time is expressed as a difference between the steering angle estimated value ⁇ n-hat and the actual steering angle ⁇ n at the sampling time when it is assumed that the steering wheel is operated smoothly. It can be calculated from the following (Equation 4).
  • the steering angle prediction error ⁇ e is calculated only for the minimum time interval that can be intermittently operated by a human in manual operation, that is, the steering angle ⁇ n every 150 milliseconds.
  • a specific method for calculating the steering angle prediction error ⁇ e will be described below.
  • the sampling interval Ts of the steering angle ⁇ is, for example, 50 milliseconds.
  • an estimated value ⁇ n-hat of the steering angle is calculated from the above (Equation 1) using the calculated three steering angle smooth values ⁇ n-tilde.
  • the estimated value ⁇ n-hat is expressed by the following (formula 6).
  • the steering angle prediction error ⁇ e is calculated from the above (Equation 4). Subsequently, the process proceeds to step S105, and the driving support unit 100A (absolute value conversion unit 130B) converts the steering angle prediction error ⁇ e (distribution data) calculated in step S104 into an absolute value. Subsequently, the driving support unit 100A (temporary data storage unit 130C) stores the distribution data (steering angle prediction error ⁇ e) converted to an absolute value in the temporary data storage unit 130C.
  • the process proceeds to step S106, and the driving support unit 100A (the temporary data storage unit 130C, the first travel state distribution calculation unit 130D, and the second travel state distribution calculation unit 130E) starts this driving instability determination process. It is determined whether a predetermined set time (for example, 5 seconds) has elapsed. Specifically, the driving support unit 100A (the temporary data storage unit 130C, the first traveling state distribution calculating unit 130D, and the second traveling state distribution calculating unit 130E) has elapsed since the start of the driving instability determination process. It is determined whether or not a timer value T of a timer (not shown) for counting time is equal to or longer than a set time (for example, 5 seconds).
  • a predetermined set time for example, 5 seconds
  • the driving support unit 100A determines that the timer value T is equal to or longer than a set time (for example, 5 seconds). If yes (Yes), the process proceeds to step S107.
  • the driving support unit 100A determines that the timer value T is less than a set time (for example, 5 seconds). If (No), the process proceeds to step S101. Thus, the driving support unit 100A repeatedly executes the flow of steps S101 to S106 until a set time (for example, 5 seconds) elapses after the driving instability degree determination process is started. That is, the driving support unit 100A does not execute the flow after step S107 until a set time (for example, 5 seconds) elapses.
  • a set time for example, 5 seconds
  • the driving support unit 100A executes steps S107 to S117 described later, that is, calculation of the first running state distribution, the second running state distribution, and the like every second period (for example, 5 seconds).
  • the driving support unit 100A executes the flow of steps S101 to S106 at a predetermined first period (for example, every 50 milliseconds).
  • FIG. 9 and 10 are diagrams for explaining a calculation method of the first traveling state distribution and the second traveling state distribution.
  • FIG. 11 is a diagram illustrating the range of the prediction error classification bi.
  • the driving support unit 100A first running state distribution calculating unit 130D
  • distributes the distribution data (steering angle based on the absolute distribution data (steering angle prediction error ⁇ e) accumulated in the temporary data accumulating unit 130C.
  • the frequency distribution of the absolute value of the angle prediction error ⁇ e) is calculated as the first running state distribution. Specifically, as shown in FIGS.
  • the driving support unit 100 ⁇ / b> A (first travel state distribution calculation unit 130 ⁇ / b> D) is configured to calculate the steering angle prediction error ⁇ e accumulated in the temporary data accumulation unit 130 ⁇ / b> C.
  • each data range (hereinafter referred to as “bin”) is divided into a plurality of absolute values of the steering angle prediction error ⁇ e for the set time To seconds from the set time To seconds (for example, 2160 seconds) to the present. Classify).
  • the ⁇ value for example, the steering angle prediction error ⁇ e within a predetermined time based on the time series data of the steering angle ⁇ , that is, the estimated steering angle ⁇ n-hat when the steering wheel is operated smoothly and the actual value
  • the difference between the steering angle ⁇ n and the distribution (variation) of the steering angle prediction error ⁇ e is measured to calculate a 90 percent tile value (range of distribution including 90% of the steering angle prediction error ⁇ e). That is, the ⁇ value is set so that 90% of the steering angle prediction error ⁇ e is included in the section [ ⁇ , ⁇ ].
  • the prediction error category b1 is 0 or more and less than 0.5 ⁇
  • the prediction error category b6 is 0.5 ⁇ or more and less than ⁇
  • the prediction error category b7 is more than ⁇ and less than 2.5 ⁇
  • the prediction error category b8 is 2.5 ⁇ or more and less than 5 ⁇
  • the prediction error category b9 is 5 ⁇ or more.
  • the driving support unit 100A (first travel state distribution calculation unit 130D) divides the absolute value of the distribution data (steering angle prediction error ⁇ e) into a plurality of data ranges (bins (prediction error classification bi)).
  • the driving support unit 100A (first traveling state distribution calculating unit 130D) sets the calculated frequency distribution as the first traveling state distribution.
  • step S108 the driving support unit 100A (second travel state distribution calculation unit 130E) distributes the distribution data (based on the steering angle prediction error ⁇ e converted to the absolute value stored in the temporary data storage unit 130C ( The frequency distribution of the absolute value of the steering angle prediction error ⁇ e) is calculated as the second running state distribution.
  • the driving support unit 100A (second travel state distribution calculation unit 130E) divides the absolute value of the distribution data (steering angle prediction error ⁇ e) into a plurality of data ranges (bins (prediction error classification bi)).
  • the driving support unit 100A sets the calculated frequency distribution as the second travel state distribution.
  • step S109 the driving support unit 100A (distribution selection unit 130G) determines that the driving status of the vehicle is the first disturbance driving status, the second disturbance driving status, and the normal driving based on the determination result of step S103. Determine which of the situations is true. If the driving support unit 100A (distribution selecting unit 130G) determines that the first disturbance driving situation is satisfied, the driving supporting unit 100A proceeds to step S111. On the other hand, if it is determined that the driving support unit 100A (distribution selection unit 130G) corresponds to the second disturbance driving situation, the driving supporting unit 100A proceeds to step S112. On the other hand, if the driving support unit 100A (distribution selecting unit 130G) determines that the normal driving situation is satisfied, the driving supporting unit 100A proceeds to step S110.
  • step S110 the driving support unit 100A (distribution selection unit 130G) does not perform the reset process and the restore process, and does not replace the first traveling state distribution and the second traveling state distribution calculated in steps S107 and S108.
  • the process proceeds to step S113.
  • step S111 the driving support unit 100A (distribution selection unit 130G) performs reset processing, and then proceeds to step S113.
  • the driving support unit 100A replaces the second traveling state distribution calculated in step S108 with the first traveling state distribution calculated in step S107.
  • step S112 the driving support unit 100A (distribution selection unit 130G) performs the restoration process, and then proceeds to step S113.
  • the absolute value of the distribution data (steering angle prediction error ⁇ e) when it is determined that the second running state distribution calculated in step S108 is in either the first disturbance driving situation or the second disturbance driving situation. Replace with the second running state distribution that does not include the value.
  • the process proceeds to step S113, and the driving support unit 100A (driving instability determination unit 140) determines the first traveling state distribution and the second traveling state distribution calculated in steps S107 and S108 (if replaced, replacement is performed).
  • Absolute entropies Hp1 and Hp2 are calculated on the basis of the subsequent second running state distribution.
  • the traveling state distribution calculation unit 130 calculates the absolute entropy Hp1 from the following (Equation 7) based on the first traveling state distribution calculated in step S107.
  • the traveling state distribution calculation unit 130 (driving instability determination unit 140) calculates the absolute entropy Hp2 from the following (Equation 8) based on the second traveling state distribution calculated in step S108.
  • step S114 the driving support unit 100A (driving instability determination unit 140) calculates the first traveling state distribution and the second traveling state distribution calculated in steps S107 and S108 by the R 3 -steering entropy method.
  • the amount of difference (relative entropy RHp) between the distributions of the replacement (the second running state distribution after replacement) is calculated.
  • the driving support unit 100A (driving instability determination unit 140) calculates the relative entropy RHp from the following (Equation 9) based on the probability pi calculated in step S107 and the probability qi calculated in step S108. To do.
  • step S115 the driving support unit 100A (driving instability determination unit 140) estimates the driving state of the driver based on the absolute entropy Hp1 and Hp2 calculated in step S113 (driving is unstable). Determine if it is in a state). Specifically, the driving support unit 100A (driving instability determination unit 140) determines whether or not the difference (Hp2 ⁇ Hp1) between the absolute entropies Hp1 and Hp2 calculated in step S113 is larger than a predetermined determination threshold value. judge.
  • the driving support unit 100A determines that the difference between the absolute entropies Hp1 and Hp2 (Hp2 ⁇ Hp1) is larger than the determination threshold, the driving is in an unstable state. judge. On the other hand, if the driving support unit 100A (driving instability determination unit 140) determines that the difference between the absolute entropies Hp1 and Hp2 (Hp2 ⁇ Hp1) is equal to or smaller than the determination threshold, the driving support unit 100A determines that the driving is in a stable state. To do.
  • step S116 the driving support unit 100A (driving instability determination unit 140) estimates the driving state of the driver based on the relative entropy RHp calculated in step S114 (the driving becomes unstable). To determine if it exists). Specifically, driving support unit 100A (driving instability determination unit 140) determines whether or not the relative entropy RHp calculated in step S114 is greater than a predetermined determination threshold. When the driving support unit 100A (driving instability determination unit 140) determines that the relative entropy RHp is larger than the determination threshold, the driving support unit 100A determines that the driving is in an unstable state. On the other hand, if the driving support unit 100A (driving instability determination unit 140) determines that the relative entropy RHp is equal to or less than the determination threshold, the driving support unit 100A determines that the driving is in a stable state.
  • step S117 the driving support unit 100A (information presenting unit 150) presents the presenting information to the driver based on the driving state estimated (determined) in steps S115 and S116 (information presenting process).
  • driving support unit 100A determines whether or not the state determined to be an unstable state in both steps S115 and S116 has continued for a predetermined set time (for example, 5 seconds). judge.
  • the driving support unit 100A determines that the state determined to be an unstable state in both steps S115 and S116 has continued for a set time (for example, 5 seconds)
  • the information presenting process is performed.
  • the driving support unit 100A (information presentation unit 150) determines that the state determined to be an unstable state in both steps S115 and S116 has not continued for a set time (for example, 5 seconds)
  • the information The presentation process is not performed.
  • FIG. 14 An example of the information presentation process is shown in FIG.
  • a warning is displayed, and a warning is presented with a voice such as “Why don't you take a break soon?”
  • presentation information information presentation process
  • FIG. 14 it may be configured to present at a plurality of levels of presentation by a level gauge and present auditory information corresponding to each presentation level. In this case, the higher the level of driving instability in the driving state, the higher the level gauge presentation level.
  • FIG. 14 there are eight presentation levels, and the left side display shows a state where the presentation level is higher (a state where driving instability is high).
  • the driving support unit 100A executes the driving instability determination process while the vehicle is traveling. Then, the driving support unit 100A (the driving state data acquisition unit 110 and the driving state determination unit 120) acquires the driving state data (steering angle information), vehicle information, and traffic environment information (Steps S101 and S102 in FIG. 6). Subsequently, the driving support unit 100A (driving condition determination unit 120) determines the driving condition (first disturbance driving condition, second disturbance driving condition, normal driving condition) based on the acquired vehicle information and traffic environment information. (Step S103 in FIG. 6). Subsequently, the traveling state distribution calculation unit 130 (distribution data calculation unit 130A) calculates distribution data (steering angle prediction error ⁇ e) based on the acquired traveling state data (steering angle information) (step S104).
  • the driving support unit 100A (absolute value unit 130B) converts the calculated distribution data (steering angle prediction error ⁇ e) into an absolute value (step S105 in FIG. 6).
  • the driving support unit 100A (temporary data storage unit 130C) stores the distribution data (steering angle prediction error ⁇ e) converted to an absolute value in the data storage unit 13 (step S105 in FIG. 6).
  • the driving support unit 100A (the data temporary storage unit 130C, the first traveling state distribution calculating unit 130D, and the second traveling state distribution calculating unit 130E) starts the driving instability degree determination process and sets a set time (for example, 5 seconds), it is determined that it has not elapsed (step S106 “No” in FIG. 6). Then, the driving support unit 100A repeats the flow of steps S101 to S106, and calculates and accumulates distribution data (steering angle prediction error ⁇ e) every first period (for example, 50 milliseconds).
  • a set time for example, 5 seconds
  • calculation and accumulation of distribution data (steering angle prediction error ⁇ e) is executed 100 times, and 5 seconds have elapsed since the start of the driving instability degree determination process. To do. Then, the driving support unit 100A (the data temporary storage unit 130C, the first traveling state distribution calculating unit 130D, and the second traveling state distribution calculating unit 130E) starts the driving instability determination process and starts a set time (for example, It is determined that 5 seconds have elapsed (step S106 “Yes” in FIG. 6).
  • the driving support unit 100A (first traveling state distribution calculating unit 130D) distributes the distribution data (steering angle) based on the absolute value distribution data (steering angle prediction error ⁇ e) stored in the temporary data storage unit 130C.
  • the frequency distribution of the absolute value of the prediction error ⁇ e) is calculated as the first traveling state distribution and the second traveling state distribution (steps S107 and S108 in FIG. 6).
  • the driving support unit 100A (distribution selection unit 130G) determines that the driving state of the vehicle corresponds to the normal driving state based on the determination result of step S103 (steps S109 and S110 in FIG. 6). Subsequently, the driving support unit 100A (driving instability determination unit 140) calculates absolute entropies Hp1 and Hp2 based on the calculated first traveling state distribution and second traveling state distribution (step S113 in FIG. 6).
  • the computational load is relatively equal to the number of bins (prediction error classification bi) of the first traveling state distribution and the second traveling state distribution. Perform high log calculation. Subsequently, the driving support unit 100A (driving instability determination unit 140) calculates a difference amount (relative entropy RHp) between the first traveling state distribution and the second traveling state distribution by the R 3 -steering entropy method. (Step S114 in FIG. 6).
  • the driving support unit 100A (driving instability determination unit 140) estimates the driving state of the driver based on the calculated absolute entropies Hp1 and Hp2 (whether or not the driving state of the driver is in an unstable state). (Step S115 in FIG. 6). Subsequently, the driving support unit 100A (driving instability determination unit 140) estimates the driving state of the driver based on the calculated relative entropy RHp (whether or not the driving state of the driver is in an unstable state).
  • Step S116 of FIG. 6 the driving support unit 100A (information presentation unit 150) performs a presentation process based on the estimated driving state (step S117 in FIG. 6). Accordingly, the driving support unit 100A calculates the first traveling state distribution, the second traveling state distribution, the absolute entropy Hp1, Hp2, and the relative entropy RHp every second period (for example, 5 seconds).
  • the driving support unit 100A classifies the absolute value of the distribution data (steering angle prediction error ⁇ e) into a plurality of data ranges (bins (prediction error classification bi)).
  • the frequency distribution of the distribution data (steering angle prediction error ⁇ e) is calculated as the first traveling state distribution and the second traveling state distribution. Therefore, in the present embodiment, the bins of the calculated first traveling state distribution and second traveling state distribution are set only to positive values. Therefore, in the present embodiment, the number of bins (prediction error classification bi) of the first traveling state distribution and the second traveling state distribution can be reduced. Thereby, in this embodiment, the calculation load of a driving
  • the driving state estimation device can be realized by a device having a relatively low computing capacity such as a smart phone or an inexpensive on-vehicle controller.
  • the storage capacity of the distribution accumulation unit 130F can be reduced by reducing the number of bins (prediction error classification bi) of the second running state distribution.
  • the driving support unit 100A has a first period (for example, a predetermined distribution data (steering angle prediction error ⁇ e) for the first traveling state distribution and the second traveling state distribution based on the steering angle information (for example, , Every 50 milliseconds).
  • the first running state distribution is generated every second period (for example, 5 seconds) longer than the first period (for example, 50 milliseconds) based on the acquired distribution data (steering angle prediction error ⁇ e). And the second running state distribution is calculated.
  • the calculation based on the calculation of the first driving state distribution and the second driving state distribution (calculation by 64-bit real number) and the calculation of absolute entropy Hp1, Hp2 and relative entropy RHp (log calculation) is executed. It is possible to reduce the frequency, that is, the execution frequency of operations with a relatively high calculation load. Thereby, in this embodiment, the calculation load of a driving
  • FIG. 15 is a diagram illustrating the operation of a vehicle equipped with the driving state estimation device of the present embodiment.
  • RHpnew is a relative entropy when the frequency distribution of the absolute value of the distribution data (steering angle prediction error ⁇ e) is the first running state distribution or the like, that is, the present embodiment.
  • RHpold is the relative entropy when the frequency distribution of distribution data (steering angle prediction error ⁇ e) that has not been converted to an absolute value is the first running state distribution or the like (hereinafter also referred to as “before improvement”). As shown in FIG.
  • the relative entropy RHpnew of the present embodiment exceeds the determination threshold with a delay of 5 seconds from the unenhanced relative entropy RHold.
  • a delay of about 5 seconds is considered not to be a problem.
  • the relative entropy RHpnew of the present embodiment almost overlaps with the relative entropy RHold before the improvement, and it is considered that there is no practical problem.
  • the traveling state data acquisition unit 110 in FIG. 3 and step S101 in FIG. 6 constitute a traveling state data acquisition unit.
  • the travel state distribution calculation unit 130 in FIG. 3, the distribution data calculation unit 130A in FIG. 5, and step S104 in FIG. 6 constitute a distribution data acquisition unit.
  • the traveling state distribution calculating unit 130 in FIG. 3, the first traveling state distribution calculating unit 130D and the second traveling state distribution calculating unit 130E in FIG. 5, and steps S107 and S108 in FIG. 6 constitute a traveling state distribution calculating unit.
  • the driving instability determination unit 140 in FIG. 3 and steps S114 and S116 in FIG. 6 constitute a driving state estimation unit.
  • the driving support unit 100A acquires distribution data (steering angle prediction error ⁇ e) for the driving state distribution (first driving state distribution, second driving state distribution) based on the driving state data (steering angle information). . Subsequently, the driving support unit 100A converts the acquired distribution data (steering angle prediction error ⁇ e) into an absolute value. Subsequently, the driving support unit 100A makes the absolute values of the distribution data (steering angle prediction error ⁇ e) different in time range from the absolute distribution data (steering angle prediction error ⁇ e) in each data range divided into a plurality of values.
  • a plurality of frequency distributions of the distribution data are calculated as traveling state distributions (first traveling state distribution, second traveling state distribution) by classifying into a certain bin (prediction error category bi).
  • the driving support unit 100A estimates the driving state of the driver based on the calculated plurality of driving state distributions (first driving state distribution, second driving state distribution) (determines driving instability). .
  • the absolute value of the distribution data (steering angle prediction error ⁇ e) is classified into bins (five prediction error categories bi), which are each divided into a plurality of data ranges, and the distribution data (steering angle prediction bibliography).
  • the frequency distribution of the error ⁇ e) is calculated as a travel state distribution (first travel state distribution, second travel state distribution). Therefore, the bin (prediction error classification bi) of the calculated travel state distribution (first travel state distribution, second travel state distribution) is set only to a positive value. Therefore, it is possible to reduce the number of bins (prediction error category bi) in the travel state distribution (first travel state distribution, second travel state distribution). As a result, it is possible to reduce the calculation load for estimating the driving state based on the driving state distribution (first driving state distribution, second driving state distribution). Thereby, the calculation load of a driving
  • the driving support unit 100A includes a temporary data storage unit 130C that stores distribution data (steering angle prediction error ⁇ e) converted into absolute values. Then, the driving support unit 100A acquires distribution data (steering angle prediction error ⁇ e) every predetermined first period (for example, 50 milliseconds). Subsequently, the driving support unit 100A performs the second cycle (for example, the data temporary storage unit 130C accumulates every second cycle (for example, 5 seconds) longer than the first cycle (for example, 50 milliseconds). Each traveling state (first traveling state distribution, second traveling state distribution) is calculated based on the distribution data (steering angle prediction error ⁇ e) converted into absolute values for 5 seconds).
  • a temporary data storage unit 130C that stores distribution data (steering angle prediction error ⁇ e) converted into absolute values. Then, the driving support unit 100A acquires distribution data (steering angle prediction error ⁇ e) every predetermined first period (for example, 50 milliseconds). Subsequently, the driving support unit 100A performs the
  • distribution data (steering angle prediction error ⁇ e) is acquired every predetermined first period (for example, 50 milliseconds), and second longer than the first period (for example, 50 milliseconds).
  • a plurality of travel state distributions (for example, a first travel state distribution and a second travel state distribution) are calculated every cycle (for example, 5 seconds). Therefore, it is possible to reduce the execution frequency of calculations based on distribution data (steering angle prediction error ⁇ e) such as calculation of a plurality of driving state distributions (first driving state distribution, second driving state distribution) and estimation of driving state. Thereby, the calculation load of a driving
  • the driving support unit 100A acquires, as distribution data, a difference (steering angle prediction error ⁇ e) between the estimated steering angle and the actual steering angle when it is assumed that the steering wheel is operated smoothly. With such a configuration, it is possible to estimate the driving state related to the driver's steering operation.
  • the absolute value of the distribution data (steering angle prediction error ⁇ e) is classified into five sections (prediction error section bi), and the absolute value of the classified distribution data (steering angle prediction error ⁇ e) is classified (predicted). It differs from the first embodiment in that it is stored as a frequency for each error category bi). Specifically, the contents of steps S105, S107, and S108 in FIG. 6 are different from those of the first embodiment.
  • the driving support unit 100A (temporary data storage unit 130C) adds 1 to the number N1 of samples per category when the absolute value of the steering angle prediction error ⁇ e is classified into the prediction error category b1, and so on.
  • the absolute value of the steering angle prediction error ⁇ e is classified into the prediction error category bj (j is any one of 2 to 5)
  • 1 is added to the number of samples Nj for each category.
  • the driving support unit 100A (temporary data storage unit 130C) discards all data stored in the temporary data storage unit 130C at the start of the driving instability determination process, and the temporary data storage unit 130C stores the data.
  • the driving support unit 100A determines that the driving state is one of the first disturbance driving state and the second disturbance driving state in step S103, the steering angle prediction error calculated in step S104.
  • the driving support unit 100A (second travel state distribution calculation unit 130E) stores the calculated second travel state distribution in the distribution storage unit 130F.
  • qiold is qi calculated at the previous execution of this driving instability determination process
  • Kwindow is the number of samples used for calculating the second running state distribution (the number of absolute values of the steering angle prediction error ⁇ e).
  • Nall that is, the total value of the number of samples N1 to N5 for each section, becomes a number smaller than 100 when it is determined in step S103 that the driving situation is either the first disturbance driving situation or the second disturbance driving situation.
  • FIG. 16 is a diagram illustrating a configuration of a vehicle on which the driving state estimation device of this embodiment is mounted. Specifically, as shown in FIG. 16, the vehicle includes a yaw rate sensor 11. The yaw rate sensor 11 detects the yaw rate of the vehicle. Subsequently, the yaw rate sensor 11 outputs the detected yaw rate to the controller 100.
  • the driving support unit 100A calculates absolute entropies Hp1, Hp2 and relative entropy RHp using the yaw rate detected by the yaw rate sensor 11 instead of the steering angle prediction error ⁇ e (steps S105 to S114 in FIG. 6).
  • the driving support unit 100A acquires the yaw rate of the vehicle as distribution data. With such a configuration, it is possible to estimate the driving state related to the driver's lateral driving.
  • FIG. 17 is a diagram illustrating a configuration of a vehicle on which the driving state estimation device according to the present embodiment is mounted. Specifically, as shown in FIG. 17, the vehicle includes a front camera 12. The front camera 12 captures an image of a road ahead of the vehicle. Subsequently, the front camera 12 outputs the captured image to the controller 100.
  • the driving support unit 100A calculates the lateral position in the lane of the vehicle from the image captured by the front camera 12 instead of the steering angle prediction error ⁇ e, and uses the calculated lateral position in the lane to calculate absolute entropy Hp1, Hp2. And the relative entropy RHp is calculated. (Effect of this embodiment) (1) The driving support unit 100A acquires the lateral position in the lane of the vehicle as the driving state data. With such a configuration, it is possible to estimate the driving state related to the driver's lateral driving.
  • FIG. 18 is a flowchart showing a driving instability degree determination process.
  • the distribution data that is converted into absolute values is not used, and the distribution data that is not converted into absolute values is used as the traveling state distribution (the first traveling state distribution, The second driving state distribution) is different from the first embodiment.
  • the set travel environment for example, there is a travel path (circuit or the like) in which the ratio between the left curve and the right curve is outside a predetermined set range value.
  • a ratio of the left curve and the right curve for example, a left steering time in which the steering wheel is steered to the left from the neutral position, and a right steering time in which the steering wheel is steered to the right from the neutral position are Ratio (left steering time / right steering time) can be employed.
  • step S118 is provided between steps S101, S105, S107, and S108 of the driving instability degree determination process and steps S106 and S107. This is different from the first embodiment.
  • step S101 the driving support unit 100A (running state data acquisition unit 110, driving state determination unit 120) acquires vehicle information. Subsequently, the driving support unit 100A (the driving state data acquisition unit 110 and the driving state determination unit 120) accumulates the acquired vehicle information (the driving state data (steering angle information)) in the memory of the controller 100.
  • step S105 the driving support unit 100A (absolute value converting unit 130B) converts the steering angle prediction error ⁇ e (distributed data) calculated in step S104 into an absolute value.
  • the driving support unit 100A (data temporary storage unit 130C) distributes the absolute value of distribution data (steering angle prediction error ⁇ e) and the distribution data calculated in step S104, that is, distribution data that has not been converted to an absolute value (steering).
  • Angle prediction error ⁇ e is stored in the temporary data storage unit 130C.
  • the distribution data (steering angle prediction error ⁇ e) is converted into an absolute value, and the distribution data (steering angle prediction error ⁇ e) converted into an absolute value and the distribution data (steering angle prediction error ⁇ e) not converted into an absolute value are used.
  • both are stored have been shown, other configurations can be employed.
  • the absolute value of the steering angle prediction error ⁇ e is stopped, and only distribution data (steering angle prediction error ⁇ e) that has not been converted to an absolute value is used.
  • the data may be stored in the temporary data storage unit 130C.
  • the steering angle prediction error ⁇ e is converted into an absolute value, and only the distribution data (steering angle prediction error ⁇ e) converted into an absolute value is used as data. Accumulate in temporary accumulation unit 130C.
  • step S118 the driving support unit 100A determines that the driving environment of the vehicle is the setting driving environment (the ratio between the left curve and the right curve is the setting range based on the driving state data (steering angle information) stored in the memory of the controller 100. It is determined whether or not the vehicle is on an out-of-value road. Specifically, the driving support unit 100A determines the left steering time and the right direction based on the traveling state data (steering angle information) for the set time To seconds from the set time To seconds (for example, 2160 seconds) to the present time. It is determined whether or not the ratio to the steering time is outside the set range value.
  • the driving support unit 100A determines that the ratio between the left steering time and the right steering time is outside the set range value, the ratio between the left curve and the right curve is outside the set range value. It determines, and it determines with the driving environment of a vehicle being in a setting driving environment. On the other hand, when the driving support unit 100A determines that the ratio between the left steering time and the right steering time is within the set range value, the ratio between the left curve and the right curve is within the set range value. It is determined that the traveling environment of the vehicle is not in the set traveling environment.
  • FIG. 19 is a diagram illustrating the range of the prediction error category bi.
  • FIG. 20 is a diagram for explaining a calculation method of the first traveling state distribution and the second traveling state distribution.
  • step S107 if the driving support unit 100A (first travel state distribution calculation unit 130D) determines that the travel environment is not the set travel environment in step S118, the temporary data storage unit 130C stores the same as in the first embodiment.
  • the frequency distribution of the absolute value of the distribution data (steering angle prediction error ⁇ e) is calculated as the first running state distribution.
  • the driving support unit 100A (first driving state distribution calculating unit 130D) determines that the driving environment is the set driving environment in step S118, the distribution data that is stored in the temporary data storage unit 130C and is not an absolute value is stored. Based on (steering angle prediction error ⁇ e), a frequency distribution of distribution data (steering angle prediction error ⁇ e) is calculated as a first running state distribution. Specifically, as shown in FIGS. 19 and 20, the driving support unit 100A (first travel state distribution calculation unit 130D) sets the steering angle prediction error ⁇ e stored in the temporary data storage unit 130C.
  • the steering angle prediction error ⁇ e for the set time To seconds from the time To seconds (for example, 2160 seconds) to the present time is classified into a plurality of data ranges (bins).
  • the prediction error segment b4 ' is 2 ⁇ or more and less than 5 ⁇ , and the prediction error segment b5' is 5 ⁇ or more.
  • the driving support unit 100A (first travel state distribution calculation unit 130D) determines that the driving environment is in the set driving environment, the driving support unit 100A (first driving state distribution calculation unit 130D)
  • the width of the bins (prediction error classification bi ′) of the first traveling state distribution and the second traveling state distribution is increased.
  • step S108 if the driving support unit 100A (second travel state distribution calculation unit 130E) determines that the travel environment is not the set travel environment in step S118, the data temporary storage unit 130C stores the same as in the first embodiment. Based on the steering angle prediction error ⁇ e converted into the absolute value, the frequency distribution of the absolute value of the distribution data (steering angle prediction error ⁇ e) is calculated as the second running state distribution. On the other hand, if the driving support unit 100A (second travel state distribution calculation unit 130E) determines that the travel environment is the set travel environment in step S118, the distribution data that is stored in the temporary data storage unit 130C and is not an absolute value is stored. Based on (steering angle prediction error ⁇ e), a frequency distribution of distribution data (steering angle prediction error ⁇ e) is calculated as a second running state distribution.
  • the driving support unit 100A determines the steering angle from the present to the latest 90 seconds before the steering angle prediction error ⁇ e stored in the temporary data storage unit 130C.
  • the driving support unit 100A (second travel state distribution calculation unit 130E) classifies the distribution data (steering angle prediction error ⁇ e) into a plurality of data ranges (bins (prediction error classification bi ′)).
  • the driving support unit 100A (second travel state distribution calculation unit 130E) sets the calculated frequency distribution as the second travel state distribution.
  • step S118 in FIG. 18 constitutes a traveling environment detection unit.
  • the driving support unit 100A determines whether the traveling environment of the vehicle is a predetermined traveling environment based on the traveling state data (steering angle information). Subsequently, when the driving support unit 100A determines that the traveling environment of the vehicle is the set traveling environment, the distribution data (steering angle) that is not converted to an absolute value is used without using the distribution data (steering angle prediction error ⁇ e) that is converted into an absolute value.
  • the frequency distribution of distribution data having different time ranges from the prediction error ⁇ e) is classified into bins (five prediction error categories bi ′) that are divided into a plurality of data ranges, and the distribution data (steering angle prediction error ⁇ e).
  • As a running state distribution (first running state distribution, second running state distribution).
  • the driving support unit 100A increases the width of the bin (prediction error classification bi ′) of the travel state distribution (first travel state distribution, second travel state distribution).
  • the frequency distribution of the distribution data (steering angle prediction error ⁇ e) from the distribution data (steering angle prediction error ⁇ e) that is not converted to an absolute value is calculated as the driving state distribution It is calculated as (first running state distribution, second running state distribution). Therefore, for example, the frequency distribution of the absolute value of the distribution data (steering angle prediction error ⁇ e) from the absolute distribution data (steering angle prediction error ⁇ e) is changed to the driving state distribution (first driving state distribution, second driving state distribution). ), The driving state of the driver can be estimated in more detail.
  • the driving support unit 100A determines whether or not the ratio of the left curve and the right curve existing on the travel path of the vehicle is outside the set range value based on the travel state data (steering angle information). Subsequently, the driving support unit 100A determines that the driving environment of the vehicle is the set driving environment when it is determined that the ratio between the left curve and the right curve existing on the driving path of the vehicle is outside the set range value. .
  • the driving state of the driver can be estimated in more detail. As described above, the entire contents of the Japanese Patent Application No.
  • Traveling state data acquisition unit (traveling state data acquisition unit) 130 travel state distribution calculation unit (distribution data acquisition unit, travel state distribution calculation unit, temporary data storage unit, distribution calculation execution unit) 130A Distribution data calculation unit (distribution data acquisition unit) 130C Data temporary storage unit (Data temporary storage unit) 130D 1st driving state distribution calculation part (running state distribution calculation part, distribution calculation execution part) 130E 2nd driving state distribution calculation part (running state distribution calculation part, distribution calculation execution part) Steps S107 and S108 (running state distribution calculation unit, distribution calculation execution unit) 140 Driving instability determination unit (driving state estimation unit) Step S101 (running state data acquisition unit) Step S104 (distribution data acquisition unit) Step S105 (temporary data storage unit) Steps S114 and S116 (driving state estimation unit) Step S118 (running environment detection unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

 運転支援部は、走行状態データ(操舵角情報)に基づいて走行状態分布(第1走行状態分布、第2走行状態分布)用の分布データ(操舵角予測誤差(θe))を取得する。続いて、運転支援部は、取得した分布データ(操舵角予測誤差(θe))を絶対値化する。続いて、運転支援部は、絶対値化した分布データ(操舵角予測誤差(θe))に時間的範囲の異なる分布データ(操舵角予測誤差(θe))の絶対値を複数に区分けされた各データ範囲であるビン(予測誤差区分(bi))に分類して該分布データ(操舵角予測誤差(θe))の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として複数算出する。続いて、運転支援部は、算出した複数の走行状態分布(第1走行状態分布、第2走行状態分布)に基づいて運転者の運転状態を推定する(運転の不安定度を判定する)。

Description

運転状態推定装置
 本発明は、運転状態推定装置に関する。
 従来、運転状態推定装置としては、例えば、特許文献1に記載の技術がある。
 特許文献1に記載の技術では、ステアリングホイールの操舵角に基づいて、操舵操作が滑らかに行われたと仮定した場合の操舵角推定値と実際の操舵角との差(以下、「分布データ」とも呼ぶ)を算出する。続いて、算出した分布データに基づいて、普段の操舵特性に対応する相対的に時間的範囲の長い分布データの度数分布(以下、「走行状態分布」とも呼ぶ)と、現在の操舵特性に対応する相対的に時間的範囲の短い分布データの度数分布(走行状態分布)とを算出する。そして、算出した2つの走行状態分布の分布間の相違量に基づいて運転者の運転状態を推定する。これにより、特許文献1に記載の技術では、交通環境の違いによらず、運転の不安定状態を精度よく検出可能となっている。ここで、特許文献1に記載の技術では、度数分布(走行状態分布)のビン、つまり、分布データを分類するために、区分けされた各データ範囲を、正値および負値の両方に設定していた。
特開2009-9495号公報
 しかしながら、上記特許文献1に記載の技術では、走行状態分布のビンを、正値および負値の両方に設定していた。それゆえ、走行状態分布のビンの数が増大する可能性があった。そのため、運転状態推定装置の演算負荷が増大する可能性があった。その結果、スマートフォン、廉価な車載コントローラ等、演算能力が比較的低い機器で運転状態推定装置を実現することが困難であった。
 本発明は、上記のような点に着目したもので、運転状態推定装置の演算負荷を低減可能とすることを目的とする。
 上記課題を解決するために、本発明の一態様では、走行状態データに基づいて走行状態分布用の分布データを取得する。続いて、取得した分布データを絶対値化する。続いて、絶対値化した分布データに基づいて時間的範囲の異なる分布データの絶対値を複数に区分けされた各データ範囲であるビンに分類して該分布データの度数分布を走行状態分布として複数算出する。続いて、算出した複数の走行状態分布に基づいて運転者の運転状態を推定する。
 本発明の一態様によれば、分布データの絶対値を複数に区分けされた各データ範囲であるビンに分類して該分布データの度数分布を走行状態分布として算出する。それゆえ、算出した走行状態分布のビンは正値にのみ設定される。そのため、走行状態分布のビンの数を低減できる。その結果、走行状態分布に基づく運転状態の推定の演算負荷を低減できる。これにより、運転状態推定装置の演算負荷を低減できる。
運転状態推定装置を搭載した車両の構成を表す図である。 運転状態推定装置のシステム構成例を表すブロック図である。 運転支援部100Aの構成を表すブロック図である。 車両の運転状況を説明するための図である。 走行状態分布算出部130の構成を表すブロック図である。 運転不安定度判定処理を表すフローチャートである。 絶対エントロピーHp1、Hp2、相対エントロピーRHp算出に用いる記号を説明するための図である。 操舵角予測誤差θeを説明するための図である。 第1走行状態分布および第2走行状態分布の算出方法を説明するための図である。 第1走行状態分布および第2走行状態分布の算出方法を説明するための図である。 予測誤差区分biの範囲を表す図である。 相対エントロピーRHpを説明するための図である。 情報呈示オン例を説明するための図である。 情報呈示オン例を説明するための図である。 運転状態推定装置を搭載した車両の動作を表す図である。 運転状態推定装置を搭載した車両の構成を表す図である。 運転状態推定装置を搭載した車両の構成を表す図である。 運転不安定度判定処理を表すフローチャートである。 予測誤差区分biの範囲を表す図である。 第1走行状態分布および第2走行状態分布の算出方法を説明するための図である。
 本発明に係る実施形態について図面を参照しつつ説明する。
(第1実施形態)
(構成)
 図1は、本実施形態の運転状態推定装置を搭載した車両の構成を表す図である。
 図1に示すように、車両は、アクセルペダル開度量センサ1、ブレーキペダル操作量センサ2、操舵角センサ3、車輪速センサ4、ウインカ検出センサ5、およびナビゲーション装置6を備える。また、車両は、Gセンサ7、シフトセンサ8、前方車両検出装置9、およびコントローラ100を備える。
 アクセルペダル開度量センサ1は、アクセルペダルの開度量を検出する。そして、アクセルペダル開度量センサ1は、検出した開度量をコントローラ100に出力する。
 ブレーキペダル操作量センサ2は、ブレーキペダルの操作量を検出する。そして、ブレーキペダル操作量センサ2は、検出した操作量をコントローラ100に出力する。
 操舵角センサ3は、ステアリングホイール(不図示)の操舵角を検出する。そして、操舵角センサ3は、検出した操舵角をコントローラ100に出力する。操舵角センサ3としては、例えば、ステアリングコラムの回転角を検出する角度センサを採用できる。
 車輪速センサ4は、車輪の回転数(以下、「車輪速」とも呼ぶ)を検出する。続いて、車輪速センサ4は、検出した車輪速に基づいて車速を算出する。そして、車輪速センサ4は、検出した車輪速および算出した車速のそれぞれをコントローラ100に出力する。
 ウインカ検出センサ5は、ウインカレバー(不図示)の操作状態(以下、「ウインカ操作」とも呼ぶ)を検出する。ウインカ操作としては、例えば、操作の有無がある。そして、ウインカ検出センサ5は、検出したウインカ操作をコントローラ100に出力する。
 シフトセンサ8は、シフトレバー(不図示)の操作状態(以下、「シフト操作」とも呼ぶ)を検出する。シフト操作としては、例えば、P、D、R等のシフトレバーの位置がある。そして、シフトセンサ8は、検出したシフト操作をコントローラ100に出力する。
 情報呈示装置は、コントローラ100が出力した制御信号(後述)に従って、警報その他の情報を運転者に呈示する。呈示方法としては、音声や画像がある。情報呈示装置としては、例えば、ブザー音や音声により運転者への情報提供を行うスピーカ10、および画像やテキストの表示により運転者への情報提供を行う表示ユニットを採用できる。表示ユニットとしては、例えば、ナビゲーション装置6の表示モニタを流用してもよい。
 ナビゲーション装置6は、GPS(Global Positioning System)受信機、地図データベース、および表示モニタを備える。そして、ナビゲーション装置6は、GPS受信機および地図データベースから車両の現在位置および道路情報を取得する。続いて、ナビゲーション装置6は、取得した車両の現在位置および道路情報に基づいて車両が走行する道路の種別や道路幅員等の各種情報を取得する。続いて、ナビゲーション装置6は、取得した情報に基づいて経路探索の結果および経路案内の結果等を表示モニタに表示する。
 Gセンサ7は、車両に発生した前後加速度および横加速度を検出する。そして、Gセンサ7は、検出した前後加速度および横加速度をコントローラ100に出力する。
 前方車両検出装置9は、車両の進行方向前方に存在する他の車両その他の障害物の情報(例えば、障害物までの距離)を検出する。そして、前方車両検出装置9は、検出した情報をコントローラ100に出力する。前方車両検出装置9としては、例えば、車両の進行方向前方にレーザー光を出射して反射光を検出するレーザ距離計を採用できる。
 コントローラ100は、CPU(Central Processing Unit)、並びにROM(Read Only Memory)、RAM(Random Access Memory)およびA/D(Analog to Digital)変換回路等のCPU周辺部品を備える。そして、コントローラ100(CPU、CPU周辺部品)は、運転不安定度判定処理を行う運転支援部100Aを備える。運転不安定度判定処理では、運転支援部100Aは、アクセルペダル開度量センサ1およびブレーキペダル操作量センサ2等が出力した検出結果に基づいて、運転者が操作可能な運転操作子の操作状態、および車両状態の少なくとも一方を含む走行状態データを取得する。運転操作子としては、例えば、ステアリングホイール、アクセルペダル、およびブレーキペダルがある。車両状態としては、前方車両に対する車間情報がある。本実施形態では、走行状態データとして、操舵角センサ3が出力した操舵角の情報(以下、「操舵角情報」とも呼ぶ)を採用する。
 続いて、運転支援部100Aは、取得した走行状態データ(操舵角情報)に基づいて複数の走行状態分布(第1走行状態分布、第2走行状態分布(後述))用の分布データ(操舵角予測誤差θe(後述))を取得する。分布データ(操舵角予測誤差θe)の取得周期は、予め定めた第1周期(例えば、50ミリ秒)とする。続いて、運転支援部100Aは、取得した分布データ(操舵角予測誤差θe)に基づいて時間的範囲の異なる分布データ(操舵角予測誤差θe)の絶対値の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として複数算出する。走行状態分布(第1走行状態分布、第2走行状態分布)の算出周期は、第1周期(例えば、50ミリ秒)よりも長い第2周期(例えば、5秒)とする。続いて、運転支援部100Aは、算出した複数の走行状態分布(第1走行状態分布、第2走行状態分布)に基づいて絶対エントロピーHp1、Hp2(後述)を算出する。
 続いて、運転支援部100Aは、算出した絶対エントロピーHp1、Hp2に基づいて運転者の運転状態(運転の不安定度(後述))を判定する。続いて、運転支援部100Aは、算出した複数の走行状態分布(第1走行状態分布、第2走行状態分布)の分布間の相違量(相対エントロピーRHp(後述))に基づいて運転者の運転状態(運転の不安定度)を判定する。そして、運転支援部100Aは、判定した運転状態(運転の不安定度)に基づいて警報その他の情報(以下、「呈示情報」とも呼ぶ)を運転者に呈示させる制御信号を情報呈示装置に出力する。これにより、運転支援部100Aは、運転者に呈示情報を呈示し、運転の不安定度(運転の不安定状態)について運転者の注意を喚起する。
 なお、走行状態データとしては、前方車両に対する車間情報(車間距離、車間時間)や、アクセルペダルやブレーキペダルの操作に基づく加減速情報等を採用してもよい。車間情報(車間距離、車間時間)や、加減速情報等を採用する場合、走行状態分布(第1走行状態分布、第2走行状態分布)および分布間の相違量(相対エントロピーRHp)の算出は、例えば、国際公開番号WO2009/013815(特願2009-524342号)の公報等に記載しているような公知の方法によって算出すればよい。
 コントローラ100としては、例えば、スマートフォンや、車載コントローラ、クラウドサーバを採用してもよい。クラウドサーバを採用する場合、車両が、アクセルペダル開度量センサ1、およびブレーキペダル操作量センサ2等が出力した検出結果をクラウドサーバに送信する。これにより、クラウドサーバが、車両が送信した検出結果に基づいて運転不安定度判定処理を実行し、運転不安定度判定処理の結果に基づいて呈示情報を運転者に呈示させる制御信号を情報呈示装置に送信する。そして、車両が、クラウドサーバが送信した制御信号に基づいて情報呈示装置で運転者に呈示情報を呈示する。
 図2は、本実施形態の運転状態推定装置のシステム構成例を表すブロック図である。
 図2に示すように、本実施形態では、情報呈示装置として、視覚情報呈示装置、および聴覚情報呈示装置を例示している。また、視覚情報呈示装置としては、ナビゲーション装置6の表示モニタ、聴覚情報呈示装置としては、スピーカ10を例示している。
 図3は、本実施形態の運転支援部100Aの構成を表すブロック図である。
 図3に示すように、運転支援部100Aは、走行状態データ取得部110、運転状況判定部120、走行状態分布算出部130、運転不安定度判定部140、および情報呈示部150を備える。
 走行状態データ取得部110は、操舵角センサ3が出力した検出結果を取得する。そして、走行状態データ取得部110は、取得した検出結果を走行状態データとする。
 図4は、車両の運転状況を説明するための図である。
 運転状況判定部120は、アクセルペダル開度量センサ1、およびブレーキペダル操作量センサ2等が出力した検出結果に基づいて、車両の運転状況(第1外乱運転状況(後述)、第2外乱運転状況(後述)、通常運転状況(後述))を判定する。具体的には、運転状況判定部120は、アクセルペダル開度量センサ1、およびブレーキペダル操作量センサ2等が出力した検出結果に基づいて、運転者が操作可能な運転操作子の操作状態、走行環境、および車両状態を検出する。続いて、運転状況判定部120は、検出した運転操作子の操作状態、走行環境、および車両状態に基づいて、車両の運転状況が第1外乱運転状況(運転状態の推定に対して、外乱となる運転状況)にあるかを判定する。第1外乱運転状況としては、例えば、横滑り、VDC(Vehicle Dynamics Control)作動、LDP(Lane Departure Preservation)作動、および各種事象(車線変更、車両の右左折、車両の加減速、ブレーキペダル(不図示)の操作、変速操作、スイッチ・レバー操作、トンネル出入口、うねり、路面のジョイント)が設定時間継続等のイベントで発生する運転状況がある。VDC作動は、例えば、VDCの作動を表すVDC作動フラグに基づき検出する。LDP作動は、例えば、LDPの作動を表すLDP作動フラグに基づき検出する。
 また、運転状況判定部120は、検出した運転操作子の操作状態、走行環境、および車両状態に基づいて、車両の運転状況が第2外乱運転状況(運転状態の推定に対して、外乱となる運転状況)にあるかを判定する。第2外乱運転状況としては、例えば、車線変更、車両の右左折、変速操作、トンネル出入口、およびうねり等のイベントで発生する運転状況がある。車線変更、車両の右左折は、例えば、ウインカ検出センサ5に基づき検出する。変速操作は、例えば、クラッチの操作状態を検出するクラッチセンサ(不図示)、シフトセンサ8に基づき検出する。トンネル出入口は、例えば、ヘッドライト(不図示)の作動状態を検出するライトセンサ(不図示)に基づき検出する。うねりは、例えば、Gセンサ7(横G)に基づき検出する。一方、運転状況判定部120は、第1外乱運転状況および第2外乱運転状況のいずれでもないと判定した場合には、運転の不安定度の判定に対して外乱となる運転状況にない(以下、「通常運転状況」とも呼ぶ)と判定する。
 走行状態分布算出部130は、走行状態データ取得部110が取得した走行状態データ(操舵角情報)に基づいて走行状態分布(第1走行状態分布、第2走行状態分布)用の分布データ(操舵角予測誤差θe)を取得する。操舵角予測誤差θeの取得周期は、第1周期(例えば、50ミリ秒)とする。続いて、走行状態分布算出部130は、取得した分布データ(操舵角予測誤差θe)に基づいて時間的範囲の異なる分布データ(操舵角予測誤差θe)の絶対値の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として複数算出する。走行状態分布(第1走行状態分布、第2走行状態分布)の算出周期は、第1周期(例えば、50ミリ秒)よりも長い第2周期(例えば、5秒)とする。
 具体的には、走行状態分布算出部130は、取得した分布データ(操舵角予測誤差θe)に基づき、予め定めた相対的に長い時間的範囲(例えば、2160秒)で取得した分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布として算出する。また、走行状態分布算出部130は、取得した分布データ(操舵角予測誤差θe)に基づき、第1走行状態分布(例えば、2160秒)よりも短い時間的範囲(例えば、90秒)で取得した分布データ(操舵角予測誤差θe)の絶対値の度数分布を第2走行状態分布として算出する。第1走行状態分布および第2走行状態分布の算出例については後述する。
 図5は、本実施形態の走行状態分布算出部130の構成を表すブロック図である。
 図5に示すように、走行状態分布算出部130は、分布データ算出部130A、絶対値化部130B、データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E、分布蓄積部130F、および分布選択部130Gを備える。
 分布データ算出部130Aは、走行状態データ取得部110が取得した走行状態データ(操舵角情報(操舵角θ))に基づき分布データ(操舵角予測誤差θe)を算出する。操舵角予測誤差θeは、予め定めた第1周期(例えば、50ミリ秒)毎に算出する。
 絶対値化部130Bは、分布データ算出部130Aが算出した分布データ(操舵角予測誤差θe)を取得する。そして、絶対値化部130Bは、取得した分布データ(操舵角予測誤差θe)を絶対値化する。
 データ一時蓄積部130Cは、絶対値化部130Bが絶対値化した分布データ(操舵角予測誤差θe)を蓄積する。絶対値化した分布データ(操舵角予測誤差θe)は、第1周期(例えば、50ミリ秒)毎にデータ一時蓄積部130Cに蓄積する。
 第1走行状態分布算出部130Dは、データ一時蓄積部130Cが蓄積している絶対値化した分布データ(操舵角予測誤差θe)に基づいて、分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布として算出する。第1走行状態分布は、第2周期(>第1周期(50ミリ秒)。例えば、5秒)毎に算出する。
 第2走行状態分布算出部130Eは、データ一時蓄積部130Cが蓄積している絶対値化した分布データ(操舵角予測誤差θe)に基づいて、分布データ(操舵角予測誤差θe)の絶対値の度数分布を第2走行状態分布として算出する。第2走行状態分布は、第2周期(>第1周期(50ミリ秒)。例えば、5秒)毎に算出する。
 分布蓄積部130Fは、第2走行状態分布算出部130Eが算出した第2走行状態分布を取得する。そして、分布蓄積部130Fは、取得した第2走行状態分布を蓄積する。
 分布選択部130Gは、運転状況判定部120が運転状態の推定(運転の不安定度の判定)に対して外乱となる運転状況(第1外乱運転状況、第2外乱運転状況)にあると判定すると、第1走行状態分布算出部130Dおよび第2走行状態分布算出部130Eが算出する走行状態分布(第1走行状態分布、第2走行状態分布)を変更する。具体的には、分布選択部130Gは、運転状況判定部120の判定結果に基づいて、車両の運転状況が第1外乱運転状況および第2外乱運転状況のいずれに該当するのかを判定する。そして、分布選択部130Gは、第1外乱運転状況に該当すると判定した場合には、第2走行状態分布算出部130Eが算出した第2走行状態分布を、第1走行状態分布算出部130Dが算出した第1走行状態分布で置き換える(以下、「リセット処理」とも呼ぶ)。
 一方、分布選択部130Gは、第2外乱運転状況に該当すると判定した場合には、第2走行状態分布算出部130Eが算出した第2走行状態分布を、第1外乱運転状況および第2外乱運転状況のいずれかにあると判定しているときの分布データ(操舵角予測誤差θe)の絶対値を含まない第2走行状態分布で置き換える(以下、「リストア処理」とも呼ぶ)。
 運転不安定度判定部140は、走行状態分布算出部130が算出した第1走行状態分布および第2走行状態分布(置き換えた場合には、置き換え後の第2走行状態分布)に基づいて運転者の運転状態(運転の不安定度)を推定する。
 情報呈示部150は、運転不安定度判定部140が推定した運転者の運転状態(運転の不安定度)に基づいて運転者に呈示情報を呈示する処理(以下、「情報呈示処理」とも呼ぶ)を行う。情報呈示処理では、情報呈示部150は、呈示情報、つまり、運転者に呈示する警報その他の情報を運転者に呈示させる制御信号を情報呈示装置に出力する。
(運転不安定度判定処理)
 次に、運転支援部100Aが実行する運転不安定度判定処理について説明する。運転不安定度判定処理は、予め定めた制御周期毎に実施する。
 図6は、運転不安定度判定処理を表すフローチャートである。
 図6に示すように、まず、ステップS101では、運転支援部100A(走行状態データ取得部110、運転状況判定部120)は、車両情報を取得する。車両情報としては、例えば、走行状態データ(操舵角情報)、および運転操作子の操作状態の情報がある。
 続いてステップS102に移行して、運転支援部100A(運転状況判定部120)は、交通環境情報を取得する。交通環境情報としては、例えば、走行環境の情報がある。
 続いてステップS103に移行して、運転支援部100A(運転状況判定部120)は、ステップS101で取得した車両情報、およびステップS102で取得した交通環境情報に基づいて、車両の運転状況(第1外乱運転状況、第2外乱運転状況、通常運転状況)を判定する。具体的には、運転支援部100A(運転状況判定部120)は、ステップS101で取得した車両情報、およびステップS102で取得した交通環境情報に基づいて、運転操作子の操作状態、走行環境、または車両状態を検出する。続いて、運転支援部100A(運転状況判定部120)は、検出した運転操作子の操作状態、走行環境、または車両状態に基づいて、車両の運転状況が第1外乱運転状況、第2外乱運転状況、および通常運転状況のいずれの状況にあるか判定する。
 続いてステップS104に移行して、走行状態分布算出部130(分布データ算出部130A)は、ステップS101で取得した走行状態データ(操舵角情報)に基づいて操舵角予測誤差θeを算出する。ここで、図7に、絶対エントロピーHp1、Hp2、相対エントロピーRHpを算出するために用いる特殊記号およびこの特殊記号の名称を示す。操舵角円滑値θn-tildeは、量子化ノイズの影響を低減した操舵角θである。また、操舵角の推定値θn-hatは、ステアリングホイールを滑らかに操作したと仮定してサンプリング時点における操舵角θを推定した値である。操舵角推定値θn-hatは、以下の(式1)に示すように、操舵角円滑値θn-tildeに対して二次のテイラー展開を施して得る。
Figure JPOXMLDOC01-appb-M000001
 (式1)において、tnは操舵角θnのサンプリング時刻である。
 操舵角円滑値θn-tildeは、量子化ノイズの影響を低減するために、3個の隣接した操舵角θnの平均値として以下の(式2)から算出する。
Figure JPOXMLDOC01-appb-M000002
 (式2)において、lは、操舵角円滑値θn-tildeの算出時間間隔を150ミリ秒、すなわち、手動操作において人間が断続的に操作可能な最小時間間隔とした場合に、150ミリ秒内に含まれる操舵角θnのサンプル数を表す。
 操舵角θnのサンプリング間隔をTsとすると、サンプル数lは、以下の(式3)で表する。
   l=round(0.15/Ts) ・・・(式3)
 (式3)において、k=1、2、3の値をとり、(k*1)により150ミリ秒間隔の操舵角とそれに隣接する合計3個の操舵角θnに基づいて、円滑値θn-tildeを求めることができる。したがって、このような円滑値θn-tildeに基づいて算出する推定値θn-hatは、実質的に150ミリ秒間隔で得た操舵角θにより算出したことになる。
 図8は、操舵角予測誤差θeを説明するための図である。
 サンプリング時点における操舵角予測誤差θeは、図8に示すように、ステアリングホイールを滑らかに操作したと仮定した場合のサンプリング時点における操舵角推定値θn-hatと実際の操舵角θnとの差として、以下の(式4)から算出できる。
Figure JPOXMLDOC01-appb-M000003
 ただし、操舵角予測誤差θeは、手動操作において人間が断続的に操作可能な最小時間間隔、すなわち、150ミリ秒毎の操舵角θnに対してのみ算出するものとする。
 以下に、操舵角予測誤差θeの具体的な算出方法を説明する。なお、操舵角θのサンプリング間隔Tsは、例えば、50ミリ秒とする。まず、150ミリ秒間隔の隣接する3個の操舵角θnを用いて、上記(式2)から3個の操舵角円滑値θn-tildeを算出する。3個の操舵角円滑値θn-tildeは、以下の(式5)で表す。
Figure JPOXMLDOC01-appb-M000004
 次に、算出した3個の操舵角円滑値θn-tildeを用いて、上記(式1)から操舵角の推定値θn-hatを算出する。推定値θn-hatは、以下の(式6)で表す。
Figure JPOXMLDOC01-appb-M000005
 そして、算出した操舵角推定値θn-hatと実際の操舵角θnとを用いて、上記(式4)から操舵角予測誤差θeを算出する。
 続いてステップS105に移行して、運転支援部100A(絶対値化部130B)は、ステップS104で算出した操舵角予測誤差θe(分布データ)を絶対値化する。続いて、運転支援部100A(データ一時蓄積部130C)は、絶対値化した分布データ(操舵角予測誤差θe)をデータ一時蓄積部130Cに蓄積する。
 続いてステップS106に移行して、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)は、この運転不安定度判定処理を開始してから予め定めた設定時間(例えば、5秒)経過したか否かを判定する。具体的には、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)は、この運転不安定度判定処理を開始してからの経過時間をカウントするタイマー(不図示)のタイマー値Tが設定時間(例えば、5秒)以上であるか否かを判定する。そして、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)は、タイマー値Tが設定時間(例えば、5秒)以上であると判定した場合には(Yes)、ステップS107に移行する。
 一方、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)は、タイマー値Tが設定時間(例えば、5秒)未満であると判定した場合には(No)、ステップS101に移行する。これにより、運転支援部100Aは、この運転不安定度判定処理を開始してから設定時間(例えば、5秒)が経過するまでは、ステップS101~S106のフローを繰り返し実行する。すなわち、運転支援部100Aは、設定時間(例えば、5秒)が経過するまではステップS107以降のフローは実行しない。したがって、運転支援部100Aは、後述するステップS107~S117、つまり、第1走行状態分布、第2走行状態分布の算出等を第2周期(例えば、5秒)毎に実行する。
 ここで、本実施形態では、運転支援部100Aは、ステップS101~S106のフローを予め定めた第1周期(例えば、50ミリ秒毎)で実行する。
 図9、図10は、第1走行状態分布および第2走行状態分布の算出方法を説明するための図である。図11は、予測誤差区分biの範囲を表す図である。
 ステップS107では、運転支援部100A(第1走行状態分布算出部130D)は、データ一時蓄積部130Cが蓄積している絶対値化した分布データ(操舵角予測誤差θe)に基づいて分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布として算出する。具体的には、運転支援部100A(第1走行状態分布算出部130D)は、図9、図10、図11に示すように、データ一時蓄積部130Cが蓄積している操舵角予測誤差θeの絶対値のうち、設定時間To秒(例えば、2160秒)前から現在までの設定時間To秒分の操舵角予測誤差θeの絶対値を複数に区分けされた各データ範囲(以下、「ビン」とも呼ぶ)に分類する。本実施形態では、ビンとして、5個の予測誤差区分bi(=b1、b2、b3、b4、b5)を採用する。
 予測誤差区分bi(=b1~b5)の範囲は、ステアリングエントロピーの算出に用いるα値に基づいて設定する。α値としては、例えば、操舵角θの時系列データに基づいて一定時間内の操舵角予測誤差θe、すなわち、ステアリングホイールを滑らかに操作したと仮定した場合の操舵角推定値θn-hatと実際の操舵角θnとの差を求め操舵角予測誤差θeの分布(ばらつき)を測定して90パーセントタイル値(操舵角予測誤差θeの90%が含まれる分布の範囲)を算出したものがある。すなわち、α値は、操舵角予測誤差θeの90%が区間[-α、α]の中に含まれるように設定する。
 具体的には、予測誤差区分b1は0以上で且つ0.5α未満とし、予測誤差区分b6は0.5α以上で且つα未満とし、予測誤差区分b7はα以上で且つ2.5α未満とし、予測誤差区分b8は2.5α以上で且つ5α未満とし、予測誤差区分b9は5α以上とする。予測誤差区分bi(=b1~b5)の範囲は、第1走行状態分布および第2走行状態分布で同じものを用いる。続いて、運転支援部100A(第1走行状態分布算出部130D)は、各予測誤差区分bi(=b1~b5)に含まれる操舵角予測誤差θeの絶対値の度数の全度数に対する確率pi(=p1、p2、p3、p4、p5)を求める。
 これにより、運転支援部100A(第1走行状態分布算出部130D)は、分布データ(操舵角予測誤差θe)の絶対値を複数に区分けされた各データ範囲(ビン(予測誤差区分bi))に分類して該分布データ(操舵角予測誤差θe)の度数分布(各予測誤差区分biの確率pi(=p1~p5))を算出する。そして、運転支援部100A(第1走行状態分布算出部130D)は、算出した度数分布を第1走行状態分布とする。
 続いてステップS108に移行して、運転支援部100A(第2走行状態分布算出部130E)は、データ一時蓄積部130Cが蓄積している絶対値化した操舵角予測誤差θeに基づいて分布データ(操舵角予測誤差θe)の絶対値の度数分布を第2走行状態分布として算出する。具体的には、運転支援部100A(第2走行状態分布算出部130E)は、データ一時蓄積部130Cが蓄積している操舵角予測誤差θeの絶対値のうち、現在から直近の90秒前までの操舵角予測誤差θeの絶対値を5個の予測誤差区分bi(=b1~b5)に分類する。続いて、運転支援部100A(第2走行状態分布算出部130E)は、各予測誤差区分bi(=b1~b5)に含まれる操舵角予測誤差θeの絶対値の度数の全度数に対する確率qi(=q1、q2、q3、q4、q5)を求める。
 これにより、運転支援部100A(第2走行状態分布算出部130E)は、分布データ(操舵角予測誤差θe)の絶対値を複数に区分けされた各データ範囲(ビン(予測誤差区分bi))に分類して該分布データ(操舵角予測誤差θe)の度数分布(各予測誤差区分biの確率qi(=q1~q5))を算出する。そして、運転支援部100A(第2走行状態分布算出部130E)は、算出した度数分布を第2走行状態分布とする。
 続いてステップS109に移行して、運転支援部100A(分布選択部130G)は、ステップS103の判定結果に基づいて、車両の運転状況が第1外乱運転状況、第2外乱運転状況、および通常運転状況のいずれに該当するのかを判定する。そして、運転支援部100A(分布選択部130G)は、第1外乱運転状況に該当すると判定した場合には、ステップS111に移行する。一方、運転支援部100A(分布選択部130G)は、第2外乱運転状況に該当すると判定した場合には、ステップS112に移行する。一方、運転支援部100A(分布選択部130G)は、通常運転状況に該当すると判定した場合には、ステップS110に移行する。
 ステップS110では、運転支援部100A(分布選択部130G)は、リセット処理、リストア処理を行わず、ステップS107、S108で算出した第1走行状態分布および第2走行状態分布の置き換えを行わずに、ステップS113に移行する。
 一方、ステップS111では、運転支援部100A(分布選択部130G)は、リセット処理を行った後、ステップS113に移行する。リセット処理では、運転支援部100A(分布選択部130G)は、ステップS108で算出した第2走行状態分布を、ステップS107で算出した第1走行状態分布で置き換える。
 一方、ステップS112では、運転支援部100A(分布選択部130G)は、リストア処理を行った後、ステップS113に移行する。リストア処理では、ステップS108で算出した第2走行状態分布を、第1外乱運転状況および第2外乱運転状況のいずれかにあると判定しているときの分布データ(操舵角予測誤差θe)の絶対値を含まない第2走行状態分布で置き換える。
 続いてステップS113に移行して、運転支援部100A(運転不安定度判定部140)は、ステップS107、S108で算出した第1走行状態分布および第2走行状態分布(置き換えた場合には、置き換え後の第2走行状態分布)に基づいて絶対エントロピーHp1、Hp2を算出する。具体的には、走行状態分布算出部130(運転不安定度判定部140)は、ステップS107で算出した第1走行状態分布に基づき、以下の(式7)から絶対エントロピーHp1を算出する。また、走行状態分布算出部130(運転不安定度判定部140)は、ステップS108で算出した第2走行状態分布に基づき、以下の(式8)から絶対エントロピーHp2を算出する。
Figure JPOXMLDOC01-appb-M000006
 上記(式7)(式8)より、絶対エントロピーHp1、Hp2が小さいほど、第1走行状態分布および第2走行状態分(操舵角予測誤差θeの分布)の峻険度が増大し、操舵角予測誤差θeの絶対値の分布が一定の範囲に収まる。すなわち、運転操作が滑らかに行われ、運転が安定状態にあることを示す。一方、絶対エントロピーHp1、Hp2が大きいほど、操舵角予測誤差θeの絶対値の分布の峻険度が低減し、操舵角予測誤差θeの分布がばらつく。すなわち、運転操作が滑らかに行われず、運転が不安定状態にあることを示す。
 続いてステップS114に移行して、運転支援部100A(運転不安定度判定部140)は、R3-ステアリングエントロピー法によって、ステップS107、S108で算出した第1走行状態分布および第2走行状態分布(置き換えた場合には、置き換え後の第2走行状態分布)の分布間の相違量(相対エントロピーRHp)を算出する。具体的には、運転支援部100A(運転不安定度判定部140)は、ステップS107で算出した確率piおよびステップS108で算出した確率qiに基づき、以下の(式9)から相対エントロピーRHpを算出する。
Figure JPOXMLDOC01-appb-M000007
 図12は、相対エントロピーRHpを説明するための図である。
 上記(式9)より、相対エントロピーRHpが小さいほど、第1走行状態分布の確率pi(=p1~p5)と第2走行状態分布の確率qi(=q1~q5)とのずれが小さくなる。すなわち、図12に示すように、運転者の現在の運転操作が普段の運転操作と同様に滑らかに行われ、運転が安定状態にあることを示す。一方、相対エントロピーRHpが大きいほど、第1走行状態分布の確率pi(=p1~p5)と第2走行状態分布の確率qi(=q1~q5)とのずれが大きくなる。すなわち、運転者の現在の運転操作が普段の運転操作と比べて滑らかに行われず、運転が不安定状態にあることを示す。
 続いてステップS115に移行して、運転支援部100A(運転不安定度判定部140)は、ステップS113で算出した絶対エントロピーHp1、Hp2に基づいて運転者の運転状態を推定する(運転が不安定状態にあるか否かを判定する)。具体的には、運転支援部100A(運転不安定度判定部140)は、ステップS113で算出した絶対エントロピーHp1、Hp2の差(Hp2-Hp1)が予め定めた判定閾値よりも大きいか否かを判定する。そして、運転支援部100A(運転不安定度判定部140)は、絶対エントロピーHp1、Hp2の差(Hp2-Hp1)が判定閾値よりも大きいと判定した場合には、運転が不安定状態にあると判定する。一方、運転支援部100A(運転不安定度判定部140)は、絶対エントロピーHp1、Hp2の差(Hp2-Hp1)が判定閾値以下であると判定した場合には、運転が安定状態にあると判定する。
 続いてステップS116に移行して、運転支援部100A(運転不安定度判定部140)は、ステップS114で算出した相対エントロピーRHpに基づいて運転者の運転状態を推定する(運転が不安定状態にあるか否かを判定する)。具体的には、運転支援部100A(運転不安定度判定部140)は、ステップS114で算出した相対エントロピーRHpが予め定めた判定閾値よりも大きいか否かを判定する。そして、運転支援部100A(運転不安定度判定部140)は、相対エントロピーRHpが判定閾値よりも大きいと判定した場合には、運転が不安定状態にあると判定する。一方、運転支援部100A(運転不安定度判定部140)は、相対エントロピーRHpが判定閾値以下であると判定した場合には、運転が安定状態にあると判定する。
 続いてステップS117に移行して、運転支援部100A(情報呈示部150)は、ステップS115、S116で推定(判定)した運転状態に基づいて運転者に呈示情報を呈示する処理(情報呈示処理)を行う。具体的には、運転支援部100A(情報呈示部150)は、ステップS115およびS116の両方で不安定状態と判定した状態が予め定めた設定時間(例えば、5秒)以上継続したか否かを判定する。そして、運転支援部100A(情報呈示部150)は、ステップS115およびS116の両方で不安定状態と判定した状態が設定時間(例えば、5秒)以上継続したと判定した場合には、情報呈示処理を行う。一方、運転支援部100A(情報呈示部150)は、ステップS115およびS116の両方で不安定状態と判定した状態が設定時間(例えば、5秒)以上継続していないと判定した場合には、情報呈示処理を行わない。
 情報呈示処理の例を、図13に示す。この例では、警告表示を行うとともに、「ピー!!そろそろ休憩しませんか。」等と音声で警告の呈示を行う。
 なお、本実施形態では、不安定状態と判定した状態が設定時間(例えば、5秒)以上継続したと判定した場合に、呈示情報を呈示する処理(情報呈示処理)を行う例を示したが、他の構成を採用することもできる。例えば、図14に示すように、レベルゲージによって複数段階の呈示レベルで呈示するとともに、各呈示レベルに対応した聴覚情報を呈示する構成としてもよい。この場合、運転状態として運転の不安定度が高くなるほど、レベルゲージの呈示レベルを高くする。図14では、8段階の呈示レベルとし、左側の表示ほど呈示レベルが高い状態(運転の不安定度が高い状態)を示している。
(動作その他)
 次に、本実施形態の運転状態推定装置を搭載した車両の動作について説明する。
 車両の走行中、運転支援部100Aが、運転不安定度判定処理を実行したとする。すると、運転支援部100A(走行状態データ取得部110、運転状況判定部120)が、走行状態データ(操舵角情報)、車両情報および交通環境情報を取得する(図6のステップS101、S102)。続いて、運転支援部100A(運転状況判定部120)が、取得した車両情報および交通環境情報に基づき、車両の運転状況(第1外乱運転状況、第2外乱運転状況、通常運転状況)を判定する(図6のステップS103)。続いて、走行状態分布算出部130(分布データ算出部130A)が、取得した走行状態データ(操舵角情)に基づいて分布データ(操舵角予測誤差θe)を算出する(ステップS104)。
 続いて、運転支援部100A(絶対値化部130B)が、算出した分布データ(操舵角予測誤差θe)を絶対値化する(図6のステップS105)。続いて、運転支援部100A(データ一時蓄積部130C)が、絶対値化した分布データ(操舵角予測誤差θe)をデータ蓄積部13に蓄積する(図6のステップS105)。続いて、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)が、この運転不安定度判定処理を開始してから設定時間(例えば、5秒)経過していないと判定する(図6のステップS106「No」)。そして、運転支援部100Aが、ステップS101~S106のフローを繰り返し、第1周期(例えば、50ミリ秒)毎に分布データ(操舵角予測誤差θe)を算出・蓄積する。
 また、上記ステップS101~S106のフローを繰り返すうちに、分布データ(操舵角予測誤差θe)の算出・蓄積を100回実行し、この運転不安定度判定処理を開始してから5秒経過したとする。すると、運転支援部100A(データ一時蓄積部130C、第1走行状態分布算出部130D、第2走行状態分布算出部130E)が、この運転不安定度判定処理を開始してから設定時間(例えば、5秒)経過したと判定する(図6のステップS106「Yes」)。続いて、運転支援部100A(第1走行状態分布算出部130D)が、データ一時蓄積部130Cが蓄積している絶対値化した分布データ(操舵角予測誤差θe)に基づいて分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布および第2走行状態分布として算出する(図6のステップS107、S108)。
 ここで、車両の運転状況が、通常運転状況であったとする。すると、運転支援部100A(分布選択部130G)が、ステップS103の判定結果に基づき、車両の運転状況が通常運転状況に該当すると判定する(図6のステップS109、S110)。続いて、運転支援部100A(運転不安定度判定部140)が、算出した第1走行状態分布および第2走行状態分布に基づいて絶対エントロピーHp1、Hp2を算出する(図6のステップS113)。絶対エントロピーHp1、Hp2の算出では、(式7)(式8)に示すように、第1走行状態分布および第2走行状態分布のビン(予測誤差区分bi)の数だけ、比較的演算負荷の高いlog計算を行う。続いて、運転支援部100A(運転不安定度判定部140)が、R3-ステアリングエントロピー法によって、第1走行状態分布および第2走行状態分布の分布間の相違量(相対エントロピーRHp)を算出する(図6のステップS114)。
 相対エントロピーRHpの算出では、(式9)に示すように、第1走行状態分布および第2走行状態分布のビン(予測誤差区分bi)の数だけ、比較的演算負荷の高いlog計算を行う。続いて、運転支援部100A(運転不安定度判定部140)が、算出した絶対エントロピーHp1、Hp2に基づき運転者の運転状態を推定する(運転者の運転状態が不安定状態にあるか否かを判定する)(図6のステップS115)。続いて、運転支援部100A(運転不安定度判定部140)が、算出した相対エントロピーRHpに基づいて運転者の運転状態を推定する(運転者の運転状態が不安定状態にあるか否かを判定する)(図6のステップS116)。続いて、運転支援部100A(情報呈示部150)が、推定した運転状態に基づいて呈示処理を行う(図6のステップS117)。これにより、運転支援部100Aが、第2周期(例えば、5秒)毎に第1走行状態分布、第2走行状態分布、絶対エントロピーHp1、Hp2、相対エントロピーRHpを算出する。
 このように、本実施形態では、運転支援部100Aは、分布データ(操舵角予測誤差θe)の絶対値を複数に区分けされた各データ範囲(ビン(予測誤差区分bi))に分類して該分布データ(操舵角予測誤差θe)の度数分布を第1走行状態分布および第2走行状態分布として算出する。それゆえ、本実施形態では、算出した第1走行状態分布および第2走行状態分布のビンは正値にのみ設定される。そのため、本実施形態では、第1走行状態分布および第2走行状態分布のビン(予測誤差区分bi)の数を低減できる。これにより、本実施形態では、運転状態推定装置の演算負荷を低減できる。それゆえ、スマートフォン、廉価な車載コントローラ等、演算能力が比較的低い機器で運転状態推定装置を実現できる。また、本実施形態では、第2走行状態分布のビン(予測誤差区分bi)の数が低減することで、分布蓄積部130Fの記憶容量を低減できる。
 また、本実施形態では、運転支援部100Aは、操舵角情報に基づいて第1走行状態分布および第2走行状態分布用の分布データ(操舵角予測誤差θe)を予め定めた第1周期(例えば、50ミリ秒)毎に取得する。そして、本実施形態では、取得した分布データ(操舵角予測誤差θe)に基づいて第1周期(例えば、50ミリ秒)よりも長い第2周期(例えば、5秒)毎に第1走行状態分布および第2走行状態分布を算出する。それゆえ、本実施形態では、第1走行状態分布および第2走行状態分布の算出(64ビット実数による演算)や、絶対エントロピーHp1、Hp2、相対エントロピーRHpの算出(log計算)に基づく演算の実行頻度、つまり、比較的演算負荷の高い演算の実行頻度を低減できる。これにより、本実施形態では、運転状態推定装置の演算負荷をより低減できる。
 図15は、本実施形態の運転状態推定装置を搭載した車両の動作を表す図である。図15において、RHpnewは、分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布等とする場合、つまり、本実施形態の相対エントロピーである。また、RHpoldは、絶対値化していない分布データ(操舵角予測誤差θe)の度数分布を第1走行状態分布等とする場合(以下、「改良前」とも呼ぶ)の相対エントロピーである。
 図15(a)に示すように、本実施形態の相対エントロピーRHpnewは、改良前の相対エントロピーRHoldから5秒遅れて判定閾値を超える。しかしながら、車両の運転状態の推定では、5秒程度の遅れは問題とならないものと考える。また、図15(b)に示すように、車両のトリップ中、本実施形態の相対エントロピーRHpnewは、改良前の相対エントロピーRHoldとほぼ重なっており、実用上問題がないものと考える。
 本実施形態では、図3の走行状態データ取得部110、図6のステップS101が走行状態データ取得部を構成する。以下同様に、図3の走行状態分布算出部130、図5の分布データ算出部130A、図6のステップS104が分布データ取得部を構成する。また、図3の走行状態分布算出部130、図5の第1走行状態分布算出部130D、第2走行状態分布算出部130E、図6のステップS107、S108が走行状態分布算出部を構成する。さらに、図3の運転不安定度判定部140、図6のステップS114、S116が運転状態推定部を構成する。
(本実施形態の効果)
 本実施形態は、次のような効果を奏する。
(1)運転支援部100Aは、走行状態データ(操舵角情報)に基づいて走行状態分布(第1走行状態分布、第2走行状態分布)用の分布データ(操舵角予測誤差θe)を取得する。続いて、運転支援部100Aは、取得した分布データ(操舵角予測誤差θe)を絶対値化する。続いて、運転支援部100Aは、絶対値化した分布データ(操舵角予測誤差θe)に時間的範囲の異なる分布データ(操舵角予測誤差θe)の絶対値を複数に区分けされた各データ範囲であるビン(予測誤差区分bi)に分類して該分布データ(操舵角予測誤差θe)の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として複数算出する。続いて、運転支援部100Aは、算出した複数の走行状態分布(第1走行状態分布、第2走行状態分布)に基づいて運転者の運転状態を推定する(運転の不安定度を判定する)。
 このような構成により、分布データ(操舵角予測誤差θe)の絶対値を複数に区分けされた各データ範囲であるビン(5個の予測誤差区分bi)に分類して該分布データ(操舵角予測誤差θe)の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として算出する。それゆえ、算出した走行状態分布(第1走行状態分布、第2走行状態分布)のビン(予測誤差区分bi)は正値にのみ設定される。そのため、走行状態分布(第1走行状態分布、第2走行状態分布)のビンの数(予測誤差区分bi)を低減できる。その結果、走行状態分布(第1走行状態分布、第2走行状態分布)に基づく運転状態の推定の演算負荷を低減できる。これにより、運転状態推定装置の演算負荷を低減できる。
(2)運転支援部100Aは、絶対値化した分布データ(操舵角予測誤差θe)を蓄積するデータ一時蓄積部130Cを備える。そして、運転支援部100Aは、分布データ(操舵角予測誤差θe)を予め定めた第1周期(例えば、50ミリ秒)毎に取得する。続いて、運転支援部100Aは、第1周期(例えば、50ミリ秒)よりも長い第2周期(例えば、5秒)毎に、データ一時蓄積部130Cが蓄積している第2周期(例えば、5秒)分の絶対値化した分布データ(操舵角予測誤差θe)に基づいて各走行状態(第1走行状態分布、第2走行状態分布)を算出する。
 このような構成により、予め定めた第1周期(例えば、50ミリ秒)毎に分布データ(操舵角予測誤差θe)を取得するとともに、第1周期(例えば、50ミリ秒)よりも長い第2周期(例えば、5秒)毎に複数の走行状態分布(例えば、第1走行状態分布、第2走行状態分布)を算出する。それゆえ、複数の走行状態分布(第1走行状態分布、第2走行状態分布)の算出や運転状態の推定等、分布データ(操舵角予測誤差θe)に基づく演算の実行頻度を低減できる。これにより、運転状態推定装置の演算負荷を低減できる。
(3)運転支援部100Aは、分布データとして、ステアリングホイールを滑らかに操作したと仮定した場合の操舵角推定値と実際の操舵角との差(操舵角予測誤差θe)を取得する。
 このような構成により、運転者の操舵操作に関する運転状態を推定できる。
(第2実施形態)
 次に、本発明に係る第2実施形態について図面を参照しつつ説明する。
 なお、上記第1実施形態と同様な構成等については同一の符号を使用する。
 本実施形態は、分布データ(操舵角予測誤差θe)の絶対値を5個の区分(予測誤差区分bi)に分類し、分類した分布データ(操舵角予測誤差θe)の絶対値を区分(予測誤差区分bi)毎の度数として蓄積する点が第1実施形態と異なる。具体的には、第1実施形態とは、図6のステップS105、S107、およびS108の内容が異なっている。
 ステップS105では、運転支援部100A(データ一時蓄積部130C)は、ステップS104で算出した操舵角予測誤差θeの絶対値をデータ一時蓄積部130Cに蓄積する。具体的には、運転支援部100A(データ一時蓄積部130C)は、ステップS104で算出した操舵角予測誤差θeの絶対値を5個の予測誤差区分bi(=b1~b5)に分類する。続いて、運転支援部100A(データ一時蓄積部130C)は、分類結果に基づいて区分毎標本数Ni(=N1、N2、N3、N4、N5)を設定する。
 具体的には、運転支援部100A(データ一時蓄積部130C)は、操舵角予測誤差θeの絶対値を予測誤差区分b1に分類した場合には区分毎標本数N1に1を加算し、以下同様に、操舵角予測誤差θeの絶対値を予測誤差区分bj(jは2~5のいずれか)に分類した場合には区分毎標本数Njに1を加算する。区分毎標本数Ni(=N1~N5)の初期値は0とする。続いて、運転支援部100A(データ一時蓄積部130C)は、区分毎標本数Ni(=N1~N5)をデータ一時蓄積部130Cに蓄積する。これにより、運転支援部100A(データ一時蓄積部130C)は、ステップS104で算出した操舵角予測誤差θeの絶対値を5個の予測誤差区分bi(=b1~b5)に分類し、分類した操舵角予測誤差θeの絶対値を予測誤差区分bi(=b1~b5)毎の度数として蓄積する。なお、運転支援部100A(データ一時蓄積部130C)は、この運転不安定度判定処理の開始時にデータ一時蓄積部130Cが蓄積しているデータをすべて破棄し、データ一時蓄積部130Cが蓄積している区分毎標本数Ni(=N1~N5)を初期化する。
 なお、運転支援部100A(データ一時蓄積部130C)は、ステップS103で第1外乱運転状況および第2外乱運転状況のいずれかの運転状況にあると判定すると、ステップS104で算出した操舵角予測誤差θeの絶対値のデータ一時蓄積部130Cへの蓄積を中断する。すなわち、運転支援部100A(データ一時蓄積部130C)は、操舵角予測誤差θeの絶対値の分類や、区分毎標本数Ni(=N1~N5)の算出・蓄積を中断する。これにより、運転支援部100A(データ一時蓄積部130C)は、ステップS103で第1外乱運転状況および第2外乱運転状況にあると判定していない期間、つまり、通常運転状況にあると判定している期間の分布データ(操舵角予測誤差θe)の絶対値のみを蓄積する。また、運転支援部100A(データ一時蓄積部130C)は、ステップS103で第1外乱運転状況および第2外乱運転状況のいずれかの運転状況から通常運転状況に変化したと判定すると、ステップS104で算出した操舵角予測誤差θeの絶対値のデータ一時蓄積部130Cへの蓄積を再開する。すなわち、運転支援部100A(データ一時蓄積部130C)は、操舵角予測誤差θeの絶対値の分類や、区分毎標本数Ni(=N1~N5)の算出・蓄積を再開する。
 ステップS107では、運転支援部100A(第1走行状態分布算出部130D)は、データ一時蓄積部130Cが蓄積している操舵角予測誤差θeの絶対値(区分毎標本数Ni(=N1~N5))に基づいて第1走行状態分布を算出する。具体的には、運転支援部100A(第1走行状態分布算出部130D)は、データ一時蓄積部130Cが蓄積している区分毎標本数Ni(=N1~N5)に基づき、以下の(式10)から各予測誤差区分bi(=b1~b5)に含まれる操舵角予測誤差θeの絶対値の度数の全度数に対する確率pi(=p1~p5)を求める。
Figure JPOXMLDOC01-appb-M000008
 (式10)において、pioldはこの運転不安定度判定処理の前回の実行時に算出したpiであり、Kwindowは第1走行状態分布の算出に用いる標本数(操舵角予測誤差θeの絶対値の数)、Nallは区分毎標本数Ni(=N1~N5)の合計値である。本実施形態では、(式10)のKwindowは、432000(=2160秒/50ミリ秒/回)になる。また、Nallは、ステップS103で運転状況が通常運転状況にあると判定すると、100(=5秒/50ミリ秒/回)になる。なお、Nall、つまり、区分毎標本数N1~N5の合計値は、ステップS103で運転状況が第1外乱運転状況および第2外乱運転状況のいずれかであると判定すると100より小さい数になる。
 ステップS108では、運転支援部100A(第2走行状態分布算出部130E)は、データ一時蓄積部130Cが蓄積している操舵角予測誤差θe(区分毎標本数Ni(=N1~N5))に基づいて第2走行状態分布を算出する。具体的には、運転支援部100A(第2走行状態分布算出部130E)は、データ一時蓄積部130Cが蓄積している区分毎標本数Ni(=N1~N5)に基づき、以下の(式11)から各予測誤差区分biに含まれる操舵角予測誤差θeの絶対値の度数の全度数に対する確率qi(=q1~q5)を求める。そして、運転支援部100A(第2走行状態分布算出部130E)は、算出した第2走行状態分布を分布蓄積部130Fに蓄積する。
Figure JPOXMLDOC01-appb-M000009
 (式11)において、qioldはこの運転不安定度判定処理の前回の実行時に算出したqiであり、Kwindowは第2走行状態分布の算出に用いる標本数(操舵角予測誤差θeの絶対値の数)、Nallは区分毎標本数Ni(=N1~N5)の合計値である。本実施形態では、(式11)のKwindowは、18000(=90秒/50ミリ秒/回)になる。また、Nallは、ステップS103で運転状況が通常運転状況にあると判定すると、100(=5秒/50ミリ秒/回)になる。なお、Nall、つまり、区分毎標本数N1~N5の合計値は、ステップS103で運転状況が第1外乱運転状況および第2外乱運転状況のいずれかであると判定すると100より小さい数になる。
(本実施形態の効果)
 本実施形態は、次のような効果を奏する。
(1)運転支援部100Aは、分布データ(操舵角予測誤差θe)を5個の予測誤差区分bi(=b1~b5)に分類し、分類した分布データ(操舵角予測誤差θe)を予測誤差区分bi(=b1~b5)毎の度数としてデータ一時蓄積部130Cに蓄積する。
 このような構成により、5個の予測誤差区分bi(=b1~b5)毎の分布データ(操舵角予測誤差θe)の度数をデータ一時蓄積部130Cに蓄積する。それゆえ、5個の予測誤差区分bi(=b1~b5)毎の分布データ(操舵角予測誤差θe)の度数に基づいて、各走行状態分布(第1走行状態分布、第2走行状態分布)を算出できる。
(第3実施形態)
 次に、本発明に係る第3実施形態について図面を参照しつつ説明する。
 なお、上記第1実施形態と同様な構成等については同一の符号を使用する。
 本実施形態は、分布データとして、ヨーレートを用いる点が第1実施形態と異なる。
 図16は、本実施形態の運転状態推定装置を搭載した車両の構成を表す図である。
 具体的には、図16に示すように、車両は、ヨーレートセンサ11を備える。
 ヨーレートセンサ11は、車両のヨーレートを検出する。続いて、ヨーレートセンサ11は、検出したヨーレートをコントローラ100に出力する。
 そして、運転支援部100Aは、操舵角予測誤差θeの代わりに、ヨーレートセンサ11が検出したヨーレートを用いて、絶対エントロピーHp1、Hp2および相対エントロピーRHpを算出する(図6のステップS105~S114)。
(本実施形態の効果)
(1)運転支援部100Aは、分布データとして、車両のヨーレートを取得する。
 このような構成により、運転者の横方向の運転に関する運転状態を推定できる。
(第4実施形態)
 次に、本発明に係る第4実施形態について図面を参照しつつ説明する。
 なお、上記第1実施形態と同様な構成等については同一の符号を使用する。
 本実施形態は、分布データとして、車両の車線内横位置を用いる点が第1実施形態と異なる。
 図17は、本実施形態の運転状態推定装置を搭載した車両の構成を表す図である。
 具体的には、図17に示すように、車両は、前方カメラ12を備える。
 前方カメラ12は、車両の前方の道路の画像を撮影する。続いて、前方カメラ12は、撮影した画像をコントローラ100に出力する。
 そして、運転支援部100Aは、操舵角予測誤差θeの代わりに、前方カメラ12が撮影した画像から車両の車線内横位置を算出し、算出した車線内横位置を用いて、絶対エントロピーHp1、Hp2および相対エントロピーRHpを算出する。
(本実施形態の効果)
(1)運転支援部100Aは、走行状態データとして、車両の車線内横位置を取得する。
 このような構成により、運転者の横方向の運転に関する運転状態を推定できる。
(第5実施形態)
 次に、本発明に係る第5実施形態について図面を参照しつつ説明する。
 なお、上記第1実施形態と同様な構成等については同一の符号を使用する。
 図18は、運転不安定度判定処理を表すフローチャートである。
 本実施形態は、車両の走行環境が予め定めた設定走行環境にあると判定すると、絶対値化した分布データを用いず、絶対値化していない分布データから走行状態分布(第1走行状態分布、第2走行状態分布)を算出する点が第1実施形態と異なる。設定走行環境としては、例えば、左カーブと右カーブとの比率が予め定めた設定範囲値外にある走行路(サーキット等)がある。左カーブと右カーブとの比率としては、例えば、ステアリングホイールを中立位置よりも左側に操舵している左方向操舵時間と、ステアリングホイールを中立位置よりも右側に操舵している右方向操舵時間との比率(左方向操舵時間/右方向操舵時間)を採用できる。具体的には、本実施形態は、図18に示すように、運転不安定度判定処理のステップS101、S105、S107、S108の内容と、ステップS106とステップS107との間にステップS118を設けた点とが第1実施形態と異なる。
 ステップS101では、運転支援部100A(走行状態データ取得部110、運転状況判定部120)は、車両情報を取得する。続いて、運転支援部100A(走行状態データ取得部110、運転状況判定部120)は、取得した車両情報(走行状態データ(操舵角情報))をコントローラ100のメモリに蓄積する。
 ステップS105では、運転支援部100A(絶対値化部130B)は、ステップS104で算出した操舵角予測誤差θe(分布データ)を絶対値化する。続いて、運転支援部100A(データ一時蓄積部130C)は、絶対値化した分布データ(操舵角予測誤差θe)と、ステップS104で算出した分布データ、つまり、絶対値化していない分布データ(操舵角予測誤差θe)とをデータ一時蓄積部130Cに蓄積する。
 なお、本実施形態では、分布データ(操舵角予測誤差θe)を絶対値化し、絶対値化した分布データ(操舵角予測誤差θe)と絶対値化していない分布データ(操舵角予測誤差θe)との両方を蓄積する例を示したが、他の構成を採用することもできる。例えば、車両の走行環境が予め定めた設定走行環境であると判定した場合に、操舵角予測誤差θeの絶対値化を休止し、絶対値化していない分布データ(操舵角予測誤差θe)のみをデータ一時蓄積部130Cに蓄積する構成としてもよい。この場合、車両の走行環境が予め定めた設定走行環境ではないと判定した場合に、操舵角予測誤差θeの絶対値化を行い、絶対値化した分布データ(操舵角予測誤差θe)のみをデータ一時蓄積部130Cに蓄積する。
 ステップS118では、運転支援部100Aは、コントローラ100のメモリが蓄積している走行状態データ(操舵角情報)に基づいて車両の走行環境が設定走行環境(左カーブと右カーブとの比率が設定範囲値外にある走行路)にあるか否かを判定する。具体的には、運転支援部100Aは、設定時間To秒(例えば、2160秒)前から現在までの設定時間To秒分の走行状態データ(操舵角情報)に基づいて左方向操舵時間と右方向操舵時間との比率が設定範囲値外にあるか否かを判定する。そして、運転支援部100Aは、左方向操舵時間と右方向操舵時間との比率が設定範囲値外にあると判定した場合には、左カーブと右カーブとの比率が設定範囲値外にあると判定し、車両の走行環境が設定走行環境にあると判定する。一方、運転支援部100Aは、左方向操舵時間と右方向操舵時間との比率が設定範囲値内にあると判定した場合には、左カーブと右カーブとの比率が設定範囲値内にあると判定し、車両の走行環境が設定走行環境にはないと判定する。
 図19は、予測誤差区分biの範囲を表す図である。また、図20は、第1走行状態分布および第2走行状態分布の算出方法を説明するための図である。
 ステップS107では、運転支援部100A(第1走行状態分布算出部130D)は、ステップS118で走行環境が設定走行環境にないと判定すると、第1実施形態と同様に、データ一時蓄積部130Cが蓄積している絶対値化した操舵角予測誤差θeに基づいて分布データ(操舵角予測誤差θe)の絶対値の度数分布を第1走行状態分布として算出する。一方、運転支援部100A(第1走行状態分布算出部130D)は、ステップS118で走行環境が設定走行環境にあると判定すると、データ一時蓄積部130Cが蓄積している絶対値化していない分布データ(操舵角予測誤差θe)に基づいて分布データ(操舵角予測誤差θe)の度数分布を第1走行状態分布として算出する。具体的には、運転支援部100A(第1走行状態分布算出部130D)は、図19、図20に示すように、データ一時蓄積部130Cが蓄積している操舵角予測誤差θeのうち、設定時間To秒(例えば、2160秒)前から現在までの設定時間To秒分の操舵角予測誤差θeを複数に区分けされた各データ範囲(ビン)に分類する。本実施形態では、ビンとして、5個の予測誤差区分bi’(=b1’、b2’、b3’、b4’、b5’)を採用する。
 予測誤差区分bi’(=b1’~b5’)の範囲は、ステアリングエントロピーの算出に用いるα値に基づいて設定する。具体的には、予測誤差区分b1’は-5α未満とし、予測誤差区分b2’は-5α以上で且つ-2α未満とし、予測誤差区分b3’は-2α以上で且つ2α未満とする。また、予測誤差区分b4’は2α以上で且つ5α未満とし、予測誤差区分b5’は5α以上とする。予測誤差区分bi’(=b1’~b5’)の範囲は、第1走行状態分布および第2走行状態分布で同じものを用いる。これにより、運転支援部100A(第1走行状態分布算出部130D)は、走行環境が設定走行環境にあると判定した場合には、走行環境が設定走行環境にないと判定した場合に比べ、第1走行状態分布、第2走行状態分布のビン(予測誤差区分bi’)の幅を大きくする。
 続いて、運転支援部100A(第1走行状態分布算出部130D)は、各予測誤差区分bi’(=b1’~b5’)に含まれる操舵角予測誤差θeの度数の全度数に対する確率pi(=p1~p5)を求める。これにより、運転支援部100A(第1走行状態分布算出部130D)は、分布データ(操舵角予測誤差θe)を複数に区分けされた各データ範囲(ビン(予測誤差区分bi’))に分類して該分布データ(操舵角予測誤差θe)の度数分布(各予測誤差区分bi’の確率pi(=p1~p5))を算出する。そして、運転支援部100A(第1走行状態分布算出部130D)は、算出した度数分布を第1走行状態分布とする。
 ステップS108では、運転支援部100A(第2走行状態分布算出部130E)は、ステップS118で走行環境が設定走行環境にないと判定すると、第1実施形態と同様に、データ一時蓄積部130Cが蓄積している絶対値化した操舵角予測誤差θeに基づいて分布データ(操舵角予測誤差θe)の絶対値の度数分布を第2走行状態分布として算出する。一方、運転支援部100A(第2走行状態分布算出部130E)は、ステップS118で走行環境が設定走行環境にあると判定すると、データ一時蓄積部130Cが蓄積している絶対値化していない分布データ(操舵角予測誤差θe)に基づいて分布データ(操舵角予測誤差θe)の度数分布を第2走行状態分布として算出する。
 具体的には、運転支援部100A(第2走行状態分布算出部130E)は、データ一時蓄積部130Cが蓄積している操舵角予測誤差θeのうち、現在から直近の90秒前までの操舵角予測誤差θeを5個の予測誤差区分bi’(=b1'~b5’)に分類する。続いて、運転支援部100A(第2走行状態分布算出部130E)は、各予測誤差区分bi’(=b1’~b5’)に含まれる操舵角予測誤差θeの度数の全度数に対する確率qi(=q1~q5)を求める。これにより、運転支援部100A(第2走行状態分布算出部130E)は、分布データ(操舵角予測誤差θe)を複数に区分けされた各データ範囲(ビン(予測誤差区分bi’))に分類して該分布データ(操舵角予測誤差θe)の度数分布(各予測誤差区分bi’の確率qi(=q1~q5))を算出する。そして、運転支援部100A(第2走行状態分布算出部130E)は、算出した度数分布を第2走行状態分布とする。
 本変形例では、図18のステップS118が走行環境検出部を構成する。
(本実施形態の効果)
(1)運転支援部100Aは、走行状態データ(操舵角情報)に基づいて車両の走行環境が予め定めた設定走行環境であるか否かを判定する。続いて、運転支援部100Aは、車両の走行環境が設定走行環境であると判定すると、絶対値化した分布データ(操舵角予測誤差θe)を用いず、絶対値化していない分布データ(操舵角予測誤差θe)から時間的範囲の異なる分布データの度数分布を複数に区分けされた各データ範囲であるビン(5個の予測誤差区分bi’)に分類して該分布データ(操舵角予測誤差θe)を走行状態分布(第1走行状態分布、第2走行状態分布)として複数算出する。また、運転支援部100Aは、走行状態分布(第1走行状態分布、第2走行状態分布)のビン(予測誤差区分bi’)の幅を大きくする。
 このような構成により、車両の走行環境が設定走行環境である場合に、絶対値化していない分布データ(操舵角予測誤差θe)から分布データ(操舵角予測誤差θe)の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として算出する。それゆえ、例えば、絶対値化した分布データ(操舵角予測誤差θe)から分布データ(操舵角予測誤差θe)の絶対値の度数分布を走行状態分布(第1走行状態分布、第2走行状態分布)として算出する方法に比べ、運転者の運転状態をより詳細に推定できる。
(2)運転支援部100Aは、走行状態データ(操舵角情報)に基づいて車両の走行路に存在する左カーブと右カーブとの比率が設定範囲値外にあるか否かを判定する。続いて、運転支援部100Aは、車両の走行路に存在する左カーブと右カーブとの比率が設定範囲値外にあると判定した場合に、車両の走行環境が設定走行環境であると判定する。
 このような構成により、例えば、サーキット等、左カーブおよび右カーブのいずれかが多い走行路を走行している場合に、運転者の運転状態をより詳細に推定できる。
 以上、本願が優先権を主張する日本国特許出願2013-150725(2013年7月19日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
110  走行状態データ取得部(走行状態データ取得部)
130  走行状態分布算出部(分布データ取得部、走行状態分布算出部、データ一時蓄積部、分布算出実行部)
130A 分布データ算出部(分布データ取得部)
130C データ一時蓄積部(データ一時蓄積部)
130D 第1走行状態分布算出部(走行状態分布算出部、分布算出実行部)
130E 第2走行状態分布算出部(走行状態分布算出部、分布算出実行部)
ステップS107、S108(走行状態分布算出部、分布算出実行部)
140  運転不安定度判定部(運転状態推定部)
ステップS101(走行状態データ取得部)
ステップS104(分布データ取得部)
ステップS105(データ一時蓄積部)
ステップS114、S116(運転状態推定部)
ステップS118(走行環境検出部)

Claims (7)

  1.  運転者が操作可能な運転操作子の操作状態および車両状態の少なくとも一方を含む走行状態データを取得する走行状態データ取得部と、
     前記走行状態データ取得部が取得した走行状態データに基づいて走行状態分布用の分布データを取得する分布データ取得部と、
     前記分布データ取得部が取得した分布データを絶対値化する絶対値化部と、
     前記絶対値化部が絶対値化した分布データに基づいて時間的範囲の異なる分布データの絶対値を複数に区分けされた各データ範囲であるビンに分類して該分布データの度数分布を走行状態分布として複数算出する走行状態分布算出部と、
     前記走行状態分布算出部が算出した複数の走行状態分布に基づいて前記運転者の運転状態を推定する運転状態推定部と、を備えたことを特徴とする運転状態推定装置。
  2.  前記絶対値化部が絶対値化した分布データを蓄積するデータ一時蓄積部を備え、
     前記分布データ取得部は、分布データを予め定めた第1周期毎に取得し、
     前記走行状態分布算出部は、前記第1周期よりも長い第2周期毎に、前記データ一時蓄積部が蓄積している前記第2周期分の絶対値化した分布データに基づいて各走行状態を算出することを特徴とする請求項1に記載の運転状態推定装置。
  3.  前記走行状態データ取得部が取得した走行状態データに基づいて車両の走行環境が予め定めた設定走行環境であるか否かを判定する走行環境判定部を備え、
     前記走行状態分布算出部は、前記走行環境判定部が前記車両の走行環境が前記設定走行環境であると判定すると、前記絶対値化部が絶対値化した分布データを用いず、前記分布データ取得部が取得した分布データから時間的範囲の異なる分布データの度数分布を複数に区分けされた各データ範囲であるビンに分類して該分布データを走行状態分布として複数算出するともに、走行状態分布のビンの幅を大きくすることを特徴とする請求項1または2に記載の運転状態推定装置。
  4.  前記走行環境判定部は、前記走行状態データ取得部が取得した走行状態データに基づいて前記車両の走行路に存在する左カーブと右カーブとの比率が設定範囲値外にあるか否かを判定し、前記車両の走行路に存在する左カーブと右カーブとの比率が設定範囲値外にあると判定した場合に、前記車両の走行環境が前記設定走行環境であると判定することを特徴とする請求項3に記載の運転状態推定装置。
  5.  前記分布データ取得部は、分布データとして、ステアリングホイールを滑らかに操作したと仮定した場合の操舵角推定値と実際の操舵角との差を取得することを特徴とする請求項1から4のいずれか1項に記載の運転状態推定装置。
  6.  前記分布データ取得部は、分布データとして、車両のヨーレートを取得することを特徴とする請求項1から4のいずれか1項に記載の運転状態推定装置。
  7.  前記分布データ取得部は、分布データとして、車両の車線内横位置を取得することを特徴とする請求項1から4のいずれか1項に記載の運転状態推定装置。
PCT/JP2014/002997 2013-07-19 2014-06-05 運転状態推定装置 WO2015008419A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14827118.2A EP3023964B1 (en) 2013-07-19 2014-06-05 Driving state estimation device
US14/906,004 US9925986B2 (en) 2013-07-19 2014-06-05 Driving state estimation device
JP2015527152A JP6008050B2 (ja) 2013-07-19 2014-06-05 運転状態推定装置
CN201480051535.XA CN105555630B (zh) 2013-07-19 2014-06-05 驾驶状态估计装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-150725 2013-07-19
JP2013150725 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008419A1 true WO2015008419A1 (ja) 2015-01-22

Family

ID=52345905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002997 WO2015008419A1 (ja) 2013-07-19 2014-06-05 運転状態推定装置

Country Status (5)

Country Link
US (1) US9925986B2 (ja)
EP (1) EP3023964B1 (ja)
JP (1) JP6008050B2 (ja)
CN (1) CN105555630B (ja)
WO (1) WO2015008419A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126253A (ja) * 2016-01-15 2017-07-20 トヨタ自動車株式会社 運転負荷推定装置
WO2018212090A1 (ja) * 2017-05-15 2018-11-22 キヤノン株式会社 制御装置及び制御方法
JP2018195301A (ja) * 2017-05-15 2018-12-06 キヤノン株式会社 制御装置及び制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE541322C2 (en) * 2016-06-02 2019-07-02 Scania Cv Ab Method and system for determining whether the driver of a vehicle is holding the steering wheel
US10539961B2 (en) * 2016-11-01 2020-01-21 Ford Global Technologies Steering capability prediction
CN114861793A (zh) * 2019-02-21 2022-08-05 百度在线网络技术(北京)有限公司 一种信息处理方法、装置及存储介质
CN110491126B (zh) * 2019-08-25 2021-11-16 安徽深蓝大健康智能科技有限公司 一种基于物联网技术的非机动车路口行驶控制方法和***
CN112590798B (zh) * 2020-09-09 2021-10-22 禾多科技(北京)有限公司 用于检测驾驶员状态的方法、装置、电子设备和介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009495A (ja) 2007-06-29 2009-01-15 Nissan Motor Co Ltd 車両用運転支援装置および車両用運転支援装置を備える車両
WO2009013815A1 (ja) 2007-07-24 2009-01-29 Nissan Motor Co., Ltd. 車両用運転支援装置および車両用運転支援装置を備える車両
JP2009524342A (ja) 2006-01-23 2009-06-25 サムスン エレクトロニクス カンパニー リミテッド Csi端末によるimsドメインを介して受信されたリアルタイムサービスのための要求を含むims端末の呼要求の処理方法及び装置
JP2010139321A (ja) * 2008-12-10 2010-06-24 Toshiba Corp 移動無線端末装置
JP2010198118A (ja) * 2009-02-23 2010-09-09 Nissan Motor Co Ltd 車両用情報提供装置及び車両用情報提供方法
JP2012203869A (ja) * 2011-03-28 2012-10-22 Nissan Motor Co Ltd 走行評価装置
WO2012144131A1 (ja) * 2011-04-20 2012-10-26 日産自動車株式会社 車両用情報提供装置
WO2012157192A1 (ja) * 2011-05-18 2012-11-22 日産自動車株式会社 運転不安定度判定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334146B4 (de) * 1992-10-14 2007-08-02 Volkswagen Ag Einrichtung zur selbsttätigen Schaltung eines mehrgängigen Gangwechselgetriebes
JP3357159B2 (ja) * 1993-08-10 2002-12-16 三菱自動車工業株式会社 車両運転操作状態の推定方法および車両運転特性制御方法
CN100400332C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
JP5386543B2 (ja) * 2011-05-25 2014-01-15 株式会社審調社 運転評価システム、運転評価用プログラム、及び運転評価方法
JP5880580B2 (ja) * 2012-01-20 2016-03-09 トヨタ自動車株式会社 車両挙動予測装置及び車両挙動予測方法、並びに運転支援装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524342A (ja) 2006-01-23 2009-06-25 サムスン エレクトロニクス カンパニー リミテッド Csi端末によるimsドメインを介して受信されたリアルタイムサービスのための要求を含むims端末の呼要求の処理方法及び装置
JP2009009495A (ja) 2007-06-29 2009-01-15 Nissan Motor Co Ltd 車両用運転支援装置および車両用運転支援装置を備える車両
WO2009013815A1 (ja) 2007-07-24 2009-01-29 Nissan Motor Co., Ltd. 車両用運転支援装置および車両用運転支援装置を備える車両
JP2010139321A (ja) * 2008-12-10 2010-06-24 Toshiba Corp 移動無線端末装置
JP2010198118A (ja) * 2009-02-23 2010-09-09 Nissan Motor Co Ltd 車両用情報提供装置及び車両用情報提供方法
JP2012203869A (ja) * 2011-03-28 2012-10-22 Nissan Motor Co Ltd 走行評価装置
WO2012144131A1 (ja) * 2011-04-20 2012-10-26 日産自動車株式会社 車両用情報提供装置
WO2012157192A1 (ja) * 2011-05-18 2012-11-22 日産自動車株式会社 運転不安定度判定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126253A (ja) * 2016-01-15 2017-07-20 トヨタ自動車株式会社 運転負荷推定装置
WO2018212090A1 (ja) * 2017-05-15 2018-11-22 キヤノン株式会社 制御装置及び制御方法
JP2018195301A (ja) * 2017-05-15 2018-12-06 キヤノン株式会社 制御装置及び制御方法
US11390276B2 (en) 2017-05-15 2022-07-19 Canon Kabushiki Kaisha Control device, control method, and non-transitory storage medium

Also Published As

Publication number Publication date
EP3023964A4 (en) 2016-07-27
JP6008050B2 (ja) 2016-10-19
EP3023964A1 (en) 2016-05-25
US20160152239A1 (en) 2016-06-02
JPWO2015008419A1 (ja) 2017-03-02
EP3023964B1 (en) 2017-08-09
CN105555630B (zh) 2017-07-25
CN105555630A (zh) 2016-05-04
US9925986B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6008050B2 (ja) 運転状態推定装置
JP5621921B2 (ja) 運転不安定度判定装置
JP6800565B2 (ja) 適合化予測のために広域的シーンコンテクストを使用する方法およびシステム並びに対応するプログラム、該システムを備えた乗り物
CN110733501B (zh) 用于自动避免碰撞的方法
US9428057B2 (en) Information provision device for use in vehicle
JP5555778B2 (ja) 渋滞予測方法
US10089867B2 (en) Anomalous travel location detection device and anomalous travel location detection method
WO2014007052A1 (ja) 車線逸脱判定装置,車線逸脱警報装置及びそれらを使った車両制御システム
EP3330669A1 (en) Control method for travel control device, and travel control device
US20130245929A1 (en) Filtering method and filter device for sensor data
US20170166220A1 (en) Drive support apparatus
JP5298104B2 (ja) 車両の制御装置
JP2015161545A (ja) 車両挙動予測装置及びプログラム
JP6075453B2 (ja) 運転状態推定装置
JP6221568B2 (ja) 運転支援装置
CN113696900A (zh) 驾驶技能评价***
JP2011118723A (ja) 車両の衝突を回避するための装置
JP6008049B2 (ja) 車両用情報提供装置
JP6102663B2 (ja) 地点登録システム、方法およびプログラム
JP2015076057A (ja) 車両用情報提供装置
JP5854135B2 (ja) 車両用情報提供装置
JP2006178674A (ja) 走行支援装置
JP2016045915A (ja) 一時不停止警報装置
JP6686865B2 (ja) 運転状態判定装置
WO2013136780A1 (ja) 不慮予測感度判定システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051535.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14906004

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014827118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014827118

Country of ref document: EP